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University of Westminster, Watford Road, HA1 3TP, Harrow, UK

ABSTRACT

This paper describes continuing research concerned with the measurement and modeling of human spatial contrast
sensitivity and discrimination functions, using complex pictorial stimuli. The relevance of such functions in image
quality modeling is also reviewed. Previously'? we presented the choice of suitable contrast metrics, apparatus and
laboratory set-up, the stimuli acquisition and manipulation, the methodology employed in the subjective tests and initial
findings. Here we present our experimental paradigm, the measurement and modeling of the following visual response
functions: 1) Isolated Contrast Sensitivity Function (iCSF); Contextual Contrast Sensitivity Function (cCSF); Isolated
Visual Perception Function (IVPF); Contextual Visual Perception Function (cVPF). Results indicate that the measured
cCSFs are lower in magnitude than the iCSFs and flatter in profile. Measured iVPFs, cVPFs and cCSFs are shown to
have similar profiles. Barten’s contrast detection model® was shown to successfully predict iCSF. For a given frequency
band, the reduction, or masking of cCSF compared with iCSF sensitivity is predicted from the linear amplification
model (LAM)*. We also show that our extension of Barten’s contrast discrimination model'” is capable of describing
iVPFs and cVPFs. We finally reflect on the possible implications of the measured and modeled profiles of ¢cCSF and
cVPF to image quality modeling.

Keywords: Contrast sensitivity, contextual contrast sensitivity, contrast discrimination, contextual contrast
discrimination, Barten detection model, linear amplification model (LAM), image quality, image fidelity, CSF
implementation.

1. INTRODUCTION

The paper describes the most recent developments of our research, concerned with the determination of human contrast
sensitivity and contrast discrimination functions from complex pictorial stimuli. We maintain that such functions are
relevant to image fidelity and image quality modeling, and that findings from our research may provide some answers on
the relevance and application of the Contrast Sensitivity Function (CSF) in fidelity or/and quality models. We measure
two sensitivity functions, each at two different conditions'?*: the Isolated Contrast Sensitivity Function (iCSF) and the
Isolated Visual Perception Function (1IVPF) are contrast detection (threshold contrast sensitivity) and discrimination
(suprathreshold contrast sensitivity) functions respectively, measured from bandpass images in isolation (i.e. displayed
in uniform luminance backgrounds). The Contextual Contrast Sensitivity Function (cCSFs) and the Contextual Visual
Perception Function (cVPFs) are again contrast detection and discrimination functions respectively, but measured from
bandbass images in context (i.e. displayed as embedded in the pictorial images to which they belong).

Previously'” we presented the choice of suitable contrast metrics, apparatus and laboratory set-up, the stimuli acquisition
and manipulation, and the methodology employed in the subjective tests. Here, a short review of the use and
implementation of CSFs to different genres of image quality and fidelity models is given in Section 2. Section 3 presents
our revised experimental paradigm, the range of stimulus conditions and defines Barten’s detection® and discrimination’
models, which are used in our study. We have extended the latter model, to address spatial frequency'. In Section 4
measured and modeled results from one pictorial image, at two different contrast levels, are presented and discussed,
along with initial thoughts on possible implications of the findings in image quality modeling. Conclusions are drawn in
Section 5. The appendix explains our derivation of the theoretical relationship between contextual detection (cCSF) and
isolated detection (iCSF) through application of the linear amplification model (LAM)*.
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2. THE RELEVANCE OF CONTRAST DETECTION AND DISCRIMINATION MODELS
TO THE MODELING OF IMAGE QUALITY AND FIDELITY

One approach to image quality modeling has its origins in traditional imaging science, with its roots in chemical
imaging, where quality (defined as the subjective —visual- impression the image conveys) is assumed to have a functional
relationship with measured attributes in imaging systems (e.g. measures of sharpness, noise, etc.) Image quality
metrics/models originating from this school of thought combine one or more imaging performance measures (e.g. MTF,
PSF, NPS, etc.) with a model of the Human Visual System (HVS), typically the Contrast Sensitivity Function (CSF), to
predict the visual quality, as judged by human observers, i.e. as measured using psychophysics. Examples of these types
of metrics are: SQF®, MTFA’, SQRI®, PIC’, and more recently the EPIC'® metric, with the SQRI (a metric determined by
integrating the system’s spatial characteristics and the CSF as a weighting function) being the most widely accepted
paradigm. This is rather an “engineering approach” to image quality, dating back to Schade et al."', who first extended
optical system descriptions, such as the MTF, to the visual process. In this modeling approach, the output image is
considered as function of the input signal (input intensities), the physical characteristics/limitations of the imaging
system components (capture, image processing, print/display) as well as the human visual system; and all three are
separable. An advantage of this type of approach is that, the performance of the imaging chain, and thus the quality
associated with its imagery, can be cascaded from the measured performance of the individual imaging component
systems/processes (and vice versa). Also, the model algorithms are simple to implement. A considerable disadvantage
however is that, the performance of the imaging components (including that of the HVS) is measured using simple test
patterns, such as gratings, edges, and noise patterns. Thus relevant image quality metrics fail to address scene
dependency, i.e. the variation of the human responses, as well as the variation in the performance of imaging algorithms
with different types of complex signal, that is different types of pictorial imagery '*'*. Further, there have been great
debates over whether the non-linear contrast transduction by the HVS can be described by the CSF'> and cascaded along
with measures linked to linear system theory'®'”. The engineering type of metrics are considered to only be suitable for
the valuation of image quality optical systems, the visibility of uniform noise or of uniformly distributed artifacts'®.

During the late 1980’s, another outlook to quality modeling was already being in development. This approach was born
with digital imaging and addressed image fidelity (defined as the ability to quantify detection and visual differences
between images). The first models were designed to predict visual differences between two images (typically but not
exclusively an original and a compressed version). The 1D CSF was considered too simple a model to describe alone all
complex functions of the HVS in viewing complex scenes. The non-linearities of various digital image processes were
undoubtedly not compatible with linear system theory. Along with the use of 2D CSFs, other processes accounting for
visual masking, contrast gain, local contrast, oriented responses and probability of detection were incorporated in the
image fidelity models of the time. These models use images, rather than parameters of the imaging system in fidelity
predictions. They tackle directly problems related to visual masking encouraged when viewing pictorial imagery, as well
as the scene dependency of imaging algorithms. Typically, the images are frequency decomposed to different visual
channels and differences between the weighted channels of the original and the distorted image versions are pooled.
Their development was facilitated by the fact that images were now made out of numbers and thus a “computational
approach” that included many complicated visual processes and system simulations was more accessible. One of the
most eminent of these fidelity models was Daly’s VDP'C. In this a 2D bandpass CSF is used, prior to frequency
decomposition, as a weighting function having many parameters, including radial spatial frequency, luminance, image
size, and eccentricity and viewing distance. In another, Lubin’s mechanistic model for detection and discrimination'’
developed to quantify the visibility of display information, the CSF is used as a base sensitivity normalization factor
after channel decomposition. Some image difference models use weightings of the spatial frequency channels derived
empirically, instead of relying on a threshold sensitivity model such as the CSF, or no CSF at all*’.

Throughout the advances in quality and fidelity modeling, debates have been published on whether threshold contrast
sensitivity is relevant to image quality, since the latter deals with suprathreshold contrasts. But conflicting views and
evidence on both its relevance and implementation have continually emerged. Notably, Silverstein and Farrell in 1996
found weak correlations between image fidelity and image quality and declared that suprathreshold judgments are
unrelated to contrast threshold judgments. They stressed that we should not expect human vision models based on
contrast detection to predict judgments of image quality, but that it is possible to develop computational measures of
image fidelity using them. But, they recognized the role of contrast detection in image quality, since the detection of
artifacts (for example those introduced by compression) impacts its judgment.



Other than in the traditional image quality models and some fidelity models designed for compression, the CSF has been
reported successful when incorporated in models dealing with visibility of halftone patterns (eg. Zhang and Wandell)*,
in image rendering and image appearance models that focus both on the prediction of image quality scales, as well as
suprathreshold visual differences (e.g Fairchild and Johnson)*?*. Opposite views have come from many too. Ahumada
and his colleagues®®?, after investigating various computational models concluded that, CSF weighting does not
necessarily improve image quality metrics designed to predict the detectability of objects in complex backgrounds.
Rogowitz et al.® questioned the suitability of simple detection models applied to suprathreshold scaling methods for
evaluating the perceived quality of images with multiple suprathreshold artifacts.

Some recent successful approaches to image fidelity and quality do not use low-level visual descriptors at all. Instead
they operate on various hypotheses on what the HVS attempts to accomplish when presented with pictorial imagery.
SSIM'*?7 calculates structural similarity between original and distorted image versions and operates on the assumption
that the HVS has evolved to extract structural information from natural scenes. The ICF model®®, an information
theoretic approach to fidelity, is based on the assumption that human vision has evolved according to the statistical
properties of the natural environment, and thus a distorted image can be quantified according to the amount of
information it provides about the original. An extension of ICF, the VIFZ(’, has accounted for some properties of vision,
but is missing low-level properties in the name of analytical and computational simplicity and independence from
viewing conditions. It collects all sources of HVS uncertainty into one additive noise component, thus expressing the
CSF in terms of equivalent internal noise. Because these models ignore the HVS response under different viewing
conditions (e.g. viewing distance) and do not account for any output system characteristics (e.g. display MTF and
luminance non-linearity) their results cannot be calibrated for different viewing conditions, or systems. In parallel to the
development of such models, current successful models, such as the VSNR** amongst numerous others, still incorporate
a CSF.

Haun and Peli’' recently argued that in estimating the visual quality of an image, contrast thresholds are of principal
importance, whilst perceived suprathreshold magnitudes are relatively less important; and that the specific sensitivity
functions commonly used to estimate perceived contrast and quality may be misapplied, or inappropriate. So how should
contrast detection models be applied? The most common approaches have been to weight the signal by applying the CSF
as a spatial filter, either in the spatial or spatial frequency domain; or after channel decomposition, to weight the channel
sensitivity so that the sum approaches the target CSF. Peli* tested the validity of the threshold CSF derived from Gabor
patches as a weighting function in predicting sharpness differences and found that the best CSFs for image quality
modeling are low pass, flat at low frequencies (i.e. not typical bandpass CSFs). In a late search of Haun and Peli* for
contrast weightings relevant to the perception of contrast in suprathreshold complex imagery, they produced scene
dependent perceived contrast weights, forming a bandpass spatial frequency function. They suggested that the perceptual
impact of an image, and the way its contrast is interpreted by an observer, is dependent on the structure of the image as
well as the type of observer.

Our view is that contrast perception models are relevant to image fidelity and image quality, especially when the latter
decreases monotonically with the visual appearance of any type of “noise” (i.e. noise in its wider sense, relating to any
information preventing visually optimum transmission of the signal). But questions remain to be answered. How do
CSFs derived from simple stimuli relate to the viewing of complex pictorial imagery? Are contrast discrimination
functions (VPFs) more relevant to suprathreshold image contrasts than the CSF? Are functions other than CSFs or VPFs
more suitable weighting functions for application in image quality modeling? According to Haun et al."”, the quest for a
standard spatial observer, which can make both qualitative and quantitative judgments from images, is a very complex
matter. The Modelfest experiment®*** has been an effort to establish a standard spatial observer relevant to image quality
modeling, but has employed mainly non-pictorial stimuli. One of our aims is that, by extracting contrast sensitivities and
discrimination functions directly from pictorial imagery, we may shed some light to some of these long contested
matters.



2. METHODOLOGY
2.1 Experimental paradigm

As previously reported’, we measure four visual response functions. All experiments involve the presentation of an
unchanged standard stimulus and a modified test stimulus.

1) Isolated Contrast Sensitivity (iCSF), describes the ability of the visual system to detect any spatial signal in a
given spatial frequency octave in isolation and is the closest equivalent to a conventional sinewave CSF. It is
measured by presenting the standard, comprising a uniform field of mean luminance equal to the mean luminance
of the image, against the test, comprising a variable increment of band contrast around the standard. The
comparisons continue until the test image is perceived as just different from the standard. The value of the band
contrast of the chosen test image is the band contrast detection threshold.

ii) Contextual Contrast Sensitivity Function (cCSF), describes the ability of the visual system to detect a spatial
signal in a given octave contained within an image. The procedure for obtaining this measurement is the same as
for the iCSF, but now both standard and test consist of an image containing all pictorial information outside the
band of interest (i.e. the selected band is removed). As in the measurement of the iCSF, the test is shown with a
variable increment of band contrast and the comparisons continue until the test is perceived as just different from
the standard. Again, the value of the test band contrast is the contrast detection threshold, but this time defined
for the contextual sensitivity conditions. A comparison between isolated and contextual band conditions indicates
the extent that spatial information outside of the band of interest acts as a source of signal masking.

iii)  Isolated Visual Perception Function (iVPF), describes visual sensitivity to changes in suprathreshold contrast of
any spatial signal in a given spatial frequency octave in isolation. The procedure for obtaining this measurement
is similar to that used for iCSF determination, but now both standard and test consist of a band in isolation,
containing full pictorial information.

iv) Contextual Visual Perception Function (cVPF), describes visual sensitivity to changes in suprathreshold contrast
in an image. The procedure for obtaining this measurement is similar to that used for cCSF determination, but
now both standard and test consist of an image containing full pictorial information in all bands. The contrast of
the band of interest within the test image is progressively reduced until a difference between the test and the
standard is just perceived. For a given band, the difference between the contrast of the standard and the contrast
of the ‘just perceived’ test will produce the contrast difference threshold.

Figure 1 presents illustrative examples of the low contrast version of one test image from out image set (i.e. low contrast
“Gallery”), for all experimental conditions 1), ii), iii) and iv).

2.2 Choice and conditions of visual stimuli

Careful thought has been put into the collection of suitable visual stimuli for our experiments. The stimulus acquisition
and calibration, as well as the characterization and setup of the imaging chain we used for the presentation of the stimuli
to selected observers are detailed in reference 1. The stimulus conditions we aim to investigate, including variations in
stimulus mean luminance, color information, noise and contrasts, along with the types of scenes we have selected for
experimentation are listed in reference 2.

The stimulus size and viewing specifications for all conditions and stimuli are as follows: field size 15° subtense; one
mode of view: global free-view scanning; viewing distance 1.8m; spatial frequencies centered 0.1- 32 cycles/deg.



i) --
ii) --
iii) --
iv) --

Figure 1: Standard images (left) and test images (right) presented for i) iCSF experiment, ii) cCSF experiment, iii) iVPF
and iv) cVPF experiments, using the low contrast version of the “Gallery” image.




2.3 Modeling contrast detection and discrimination

Barten has presented two models relevant to our studies in his classical thesis on contrast sensitivity: a model for
contrast detection® and a model for contrast discrimination®. We extended the Barten model for contrast discrimination
to provide a full description of the VPF for static images and demonstrated its capability for describing measured
sensitivity data obtained from sinewave as well as complex image forms'. The extension involves the inclusion of
spatial frequency as a variable.

In brief: the detection model expresses contrast detection, ¢, as a function of spatial frequency, u, in cycles per degree
(c/deg), by:

-1
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where, K is a constant, and the terms O,H,A and © are filter signal transfer characteristics associated with photon
capture, lateral inhibition in the retina, and area summation respectively. The term © is a combination of both photon
noise and internal neural noise. The numerical values of most parameter values in Equation 1 are already known’>®*’
and the remainder, which are specific to particular stimulus conditions, can be readily calculated®®. Our formulation for
the VPF is given by:
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Equation 2 shows that if contrast at detection ¢, is known, the VPF can be immediately calculated for a given pedestal
(or narrow band) contrast ¢,. The constant k is the inverse of the Crozier coefficient”, and represents the minimum
signal/noise level required for detecting a spatial signal. In human vision, this is approximately equal to 3.0'"*°. The
inverse of ¢, gives the classic CSF. At a given frequency, the VPF represents the reciprocal of the difference between
the contrast level of a suprathreshold sinewave signal (c,) and a level (¢), which can just be discriminated, i.e. VPF =| ¢
- ¢ |. Note that as pedestal contrast approaches zero, 4c approaches c¢,. In other words, both the CSF and VPF collapse
into a single function.

As previously reported?, initial measurements of both iCSF and ¢cCSF were obtained from a chosen pictorial scene with
a relatively low contrast spectrum. RMS band contrast was the metric chosen to calculate sensitivities. The results
revealed an iCSF, which closely follows the profile and magnitude of a sinewave CSF, appropriate for the stimulus size
and mean luminance employed. Measurements of cCSF were found to be both lower in magnitude and produce a flatter
function in profile compared with the iCSF, showing that basic band detection is masked by the presence of the picture.

Measurements of iCSF and cCSF revealed that:
c’(u) - ¢;°(u) = constant ¢;” (1) 3)
where c¢. and ¢; denote the detection contrast (¢, ) for contextual and isolated conditions.

It is well established that spatial sinewave detection is generally masked when the stimulus is embedded within other
spatial information, whether this be in the form of white*, or band filtered 2D noise™***, or 1D compound grating
structures*. In most of these studies, the measured CSF reduces in magnitude, and its peak shifts to relatively high
frequencies (10-20 c/deg). Again, previous work on sinewave detection suggests that the majority of this noise will
originate from a frequency range of + and — 1 octave from the stimulus sinewave™**. Therefore, a likely source for the
detection suppression of a given octave band of the cCSF is noise generated from the flanking signal bands centered +
and — 1 octaves away. With this assumption, the linear amplification model (LAM)*, which relates the power spectral
density of the masking noise to contrast detection, theoretically predicts Equation 3, as shown in the Appendix.
Previous experimental studies of sinewave detection in the presence of noise have successfully employed the LAM to
quantify the extent of the masking**>#647,

Equation 3 enables contextual detection to be calculated directly from the iCSF and the contrast spectrum of the image.
Equations 1, 2 and 3 fully define our current model framework for describing detection and discrimination sensitivities
in real scenes.



3. RESULTS AND DISCUSSION

Sensitivity measurements for the iCSF, cCSF, iVPF and cVPF, obtained for our first selected stimulus, the Gallery
image (Figure 1), at two different contrast levels (see section 4.2, Figure 3), are presented and discussed below, along
with model predictions. The measurements represent mean responses from minimum four and maximum eight selected
observers®.

3.1 iCSF

The data points in Figure 2 are measured values of iCSF for the two image contrasts. Error bars represent the standard
mean error™. The curve represents Equation 1, with parameter values fixed for a 15-degree stimulus size and a mean
luminance of 10 cd/sqm. Since the band contrast does not play a role in basic isolated detection, the measured iCSFs are
the same for both the high and the low contrast versions of the stimulus. The fact that Equation 1 appears to model
successfully the iCSF data is interesting, because the stimuli used for the iCSF experiment contain pictorial information
only from a narrow band at a time (pictorial content not dissimilar to images of gratings) on an otherwise uniform
background.
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Figure 2. Measured (data points) and modeled iCSF. Black circles: low contrast image, white circles: high contrast image.

3.2 Image Contrast Spectra

Figure 3 shows image contrast spectra (expressed as ¢,> ) for the low and high contrast versions of the Gallery image. For
spatial frequencies above 0.1 c/deg, the spectra demonstrate the expected “1/f” format, which is characteristic of most
natural scenes”’. The power law regression curves give:

e = Au” )

where A equals 0.0059 (for low contrast), 0.0647 (for high contrast); and B equals 0.807 (for low contrast) and 0.847
(for high contrast). The values of B are within the expected range for natural scenes™®.
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Figure 3. Contrast spectra for the low (black circles) and high contrast (white circles) versions of the Gallery image. Brolen lines
represent the power low regression lines

3.3 ¢CSF

The data points in Figure 4 produce direct measurements of cCSF. The curves are theoretical predictions of cCSF and
were obtained using Equation 3 with ¢; given from equation 1, and ¢, from equation 4. The constant in Equation 3 is
theoretically independent of image contrast and, to a good approximation; this was found to be the case (0.005 for the
low contrast image and 0.004 for the high contrast image).
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Figure 4. Measured (data points) and modeled cCSF (broken lines). Black circles: low contrast image, white circles: high
contrast image.

In Figure 4 the cCSF is relatively flat in profile, compared with the bandpass nature displayed by the iCSF. The cCSF
finally reduces in magnitude at high frequency. The high contrast cCSF is also lower in magnitude compared with the
iCSF. This is clearly due to the increased masking impacting on band detection, which originates from other signal
information in the high contrast image. The relationship between model predictions and measured data is very good.

3.4 iVPF

Data points in Figure 5 correspond to the measured iVPF. The curves are theoretical values calculated from equation 2.
In the determination of these curves, appropriate values of ¢, (equal to c¢; for isolated band sensitivity) were obtained from
Equation 3, for both low and high contrast images.
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Figure.5. Measured (data points) and modeled iVPF (broken lines). Black circles: low contrast image, white circles: high contrast
image.The curves are calculated from equations 1, 2 and 3 for both image contrast levels.

Good agreement exists between measured and modelled iVPF for the low contrast image. With the high contrast image,
good agreement between measured and modelled values again exists for spatial frequencies at and above 1.0 c/deg. At
lower frequencies, the model undershoots the measured data, which indicates a sensitivity close to the low contrast
image. This deviation between model and measurement is discussed in section 4.6.

3.5 ¢VPF

cVPF results are given in Figure 6. Curves and data points are similarly defined as those in Figure 4. For the application
of Equation 2, values of ¢, (equal to c. for contextual band sensitivity) were obtained from Equation 3, for both low and
high contrast images. The deviation between measurement and model prediction is again evident at low spatial
frequencies for the high contrast image.
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Figure 6. Measured (data points) and modeled cVPF (broken lines). Black circles: low contrast image, white circles: high contrast
image.

3.6 Discussion on CSF and VPF results

As previously reported” the iCSF closely follows the profile of the standard sinewave grating CSF, appropriate for the
size and luminance of the pictorial stimulus used in this study. Use of Equations 1, 3, and 4 enables good predictions of
the cCSF to be made and this applies to both the low and high contrast versions of the image. Moreover, the results show
that band detection is lowered as image contrast is raised. The overall profile of the cCSF reveals a slow increase in



contextual detection until a turning point is reached around 20 c/deg, due to optical limitations of the eye. If, as pictorial
content varies the iCSF remains invariant and may be represented with the standard sinewave CSF relevant to both
picture size and mean luminance, the model shows that the cCSF can be readily predicted, given the image’s contrast
spectrum. The generality of this finding will be tested with planned variations in pictorial content.

The iVPF obtained in this study shows a profile similar to cCSF. Agreement between measurements and the model is
found at all frequencies in the low contrast image. Also, as Figure 5 illustrates, raising picture contrast reduces contrast
discrimination for frequencies above about 1.0 c/deg, as predicted from the model. This behavior would in fact be
expected from the so-called “dipper” function, which relates contrast discrimination to pedestal (or in our case band)
contrast. Such functions are defined when the contrast difference | ¢ - ¢, | is plotted against c,. Typically the dipper
shows that as pedestal contrast increases from zero (where discrimination is equivalent to detection), contrast
discrimination sensitivity first increases to pedestal values of around 0.01, and then decreases approximately in
accordance to Weber’s law. The band contrasts existing in both the high and low contrast images used in our study are
well above 0.01 in value.

The enhanced measured values of the iVPF at low frequencies in the high contrast image are unexpected and reveal
visual discrimination sensitivity levels similar to those for the low contrast image. The model in its current form does not
predict this behavior as seen in Figure 5. However, some experimental studies of the dipper function have revealed a
reduction in slope and slight downward curvature of the nominal Weber region at low spatial frequency’>>. This
demonstrates that at low frequency and relatively high contrast levels, discrimination sensitivity is significantly higher
than would otherwise be expected. It is likely that this phenomenon is being reflected in our measured data. Many
existing models of discrimination (including that represented in our model by Equation 2) do not address this particular
low frequency dependent behavior. The visual mechanisms responsible for this discrimination finding are unclear. One
possibility is that the compressive non-linear transduction mechanism outlined by Wilson™ and others, which strongly
influences discrimination of high contrast suprathreshold signals may, itself, be frequency dependent. This transduction
mechanism 1is incorporated in the VPF model given in Equation 2, but not in a frequency dependent form. Further
investigation of this particular non-linear feature will be conducted during current and future planned studies of the VPF
model construct.

The cVPF results again show agreement between measured and modeled values for the low contrast image. The
measured and modeled values obtained from the high contrast image show a similar deviation at low frequencies to that
displayed by the iVPF results. Clearly, the low frequency mechanism operating to compensate for any reduction in
discrimination sensitivity at high contrast, relates, at least in part, to the intrinsic perception of suprathreshold sinewave
signals, whether defined from grating, or isolated band stimuli, i.e. it is not an effect relating to contextual viewing.
However, it is very likely that other factors play a role in contextual band discrimination. For example, the perceived
contrast of an individual band within a picture may not be fully reflected by the objective band contrast value®®. Again,
the existence of surround and overlaying spatial signals has been shown to directly lower perceived contrast of a
suprathreshold test grating®*™. Interestingly, this effect appears greatest at frequencies below 1 c/deg™. At the moment,
these additional perceptual considerations are not included in our modeling. These issues are important, particularly it
would seem, at low frequencies, and we intend to address them in future work.

It is of interest to note that Haun and Peli’® report that, under experimental conditions where random modifications in
band contrast are performed, overall global pictorial contrast is determined primarily within the 1.0-6.0 c/deg frequency
range. These authors suggest that contrast perception in a real scene should be weighted by a narrow band function
centered around 2.0 c/deg and challenge the concept of contrast gain control. Such spatial frequency tuning of contrast
discrimination is not observed in our cVPF measurements. The relatively flat profile of the cVPF is consistent with
previous experimental investigations of band contrast discrimination in real scenes, when this has been directly
measured. For example, the dipper functions obtained by Bex, Mareschal and Dakin®’ show that at a given (contextual)
band contrast, contrast discrimination is similar in value at 1.0, 2.0 and 4 c¢/deg. The band contrast matching experiment
performed by Bex and Makous™ for a range of spatial frequencies (0.1-10.0 c¢/deg) also leads to the expectation of a
relatively flat cVPF.

From a general consideration of factors influencing the overall subjective image quality of a reproduced pictorial scene,
both contextual contrast detection (cCSF) and contextual contrast discrimination (cVPF) are of primary importance.
Figure 7 shows a comparison between cCSF and cVPF for both the low and high contrast images.
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Figure 7. Comparison between measured cCSF (diamonds) and cVPF (circles) for the low contrast image (left)
and high contrast image (right).

A feature of the data shown for the low contrast image is that both measured cCSF and cVPF are almost identical, and
characterized by a gradual increase up to the optical limit of the eye. Similar conclusions can be drawn from the high
contrast comparison, although detection is slightly reduced compared with discrimination. Overall gradient of the
sensitivity responses is again low in this case. Given that the CSF is used as a visual weighting function in image quality
models, (usually normalized, so that the absolute sensitivity magnitudes shown in Figure 7 have no real bearing), the
results suggest that near equal weighting should be given to all frequencies, up to the limit of human spatial vision
(acuity point). This weighting potentially incorporates visual masking effects, which are known to flatten the CSF*>. We
are continuing to measure both detection and discrimination sensitivities for a range of images of varying pictorial
content, as described in reference 2. If similar results to our reported study were obtained, then our findings would
significantly challenge current implementations of a standard bandpass (tuned to 1-2 c/deg) sinewave CSF in image
quality modeling.

5. CONCLUSIONS

In this paper we described recent initial findings from on going research, undertaken to determine experimentally and
further model threshold and suprethreshold (discrimination) contrast sensitivity functions from complex pictorial
imagery. Results derived using one stimulus image at two different contrast levels (i.e. one stimulus at optimum visual
contrast and another at considerably lower contrast than the first) indicate the following: Spatial contrast detection
sensitivity in a real image (i.e. see cCSF) is characterized by a frequency response function, which is relatively flat up to
around 20 c/deg (unlike the bandpass iCSF, which has a similar profile to a sinewave CSF for the given viewing
conditions). Beyond this frequency, detection sensitivity decreases due to optical limitations of the eye. Spatial contrast
discrimination sensitivity in a real image (see cVPF) displays a similar frequency response profile and magnitude to the
detection function. This is a preliminary result, but if it holds for different types of imagery and viewing conditions, it
will have implications in the way CSFs are considered, and possibly implemented, in image quality modeling. By
experimenting with different contrast levels we found that increasing overall contrast of the image lowers both detection
and discrimination sensitivities for frequencies above 1.0 c/deg. The results suggest that spatial detectors in the HVS
attempt to normalize out contrast differences existing in natural scenes. Both detection and discrimination can be
theoretically described using the Barten detection model and our extension to the Barten discrimination model.
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APPENDIX

The theoretical relationship between contextual detection (cCSF) and isolated detection (iCSF) through
application of the linear amplification model (LAM)

The impact of spatiotemporal noise on signal contrast detection can be quantified through the linear amplification model
(LAM)**. This model has been verified experimentally through a number of studies employing sine-wave gratings
embedded in both static and dynamic noise®*>**’_ If the signal and noise cover the same stimulus area, the LAM states
that for a given spatial frequency:

(@)~ (®) = ¥ (D), (AD)

where (@), and (®); denote the power spectral density of the signal at the threshold of detection either with or without
spatiotemporal noise respectively. (@), is the power spectral density of the noise. The constant A° is a dimensionless
number, independent of spatial or temporal frequency. It relates to the reciprocal of sampling efficiency, which describes
the ability of an observer to make use of stimulus information relative to an ideal observer'’. Barten® also indicates that
this constant can also be described in terms of the Crozier coefficient. In other words, A’ is essentially a basic visual
constant.

As now shown, our analysis treats individual signal bands as also acting as sources of noise operating on other bands in
the image.

The general relationship between the two-sided version of ® and RMS contrast ¢ for static images is then given by:
(0)2 = ff@(u,v)ZduZdv (A2)

where the limits of each integration are 0 and oo, and the terms u, and v denote spatial frequency.

For each filtered band in our experiments we define c as:

(0)2 - % Z ((Ljf Lmean) /Lmean)2 (A3)

where L; is the luminance of the j th pixel in the band, L., is the mean luminance of the image and N is the number of
pixels. The summation shown in Equation A3 is conducted over the range j=1.0 to N. Note that for all bands considered
in our examination, N is constant and equal to the total number of pixels in the image. Our particular band signals were
produced using rotationally symmetric log cosine filters', which define u=v. In this analysis, each signal band is
mathematically approximated by an idealized rectangular spectrum of 1 octave width, defined by a frequency difference
of (a - b) c/deg. A constant spectral density is also assumed within a given band. For such a band we have from
Equation A2:

() =(2(a-b)) @ (A4)

Noise masking effects on grating detection at a given frequency u c/deg emanate mainly from spatial frequencies
occurring within +1 and -1 octave of this frequency™. We assume that the same occurs for masking of individual signal
bands in our image. In our experimentation, we initially measure band contrast sensitivity when presented in isolation to
the observer i.e. all other image bands removed. The measured sensitivity therefore represents a response to a
combination of all frequency components defined within the octave. We then measure the band sensitivity with all the
other signal bands present, i.e. within the full context of the pictorial image. Any change in detection sensitivity
compared with the isolated condition, will reflect the impact of spatial frequencies outside of the signal octave.

The impact of masking from a noise source of frequency u,, on a signal at frequency u, can be quantified through:

o

D, (u)= fw(u”,u) (D(un)/u du (AS)

0



where ®(u,) represents the spectral density of the noise source at frequency u, , remote from the signal band. @, (1) is
the effective spectral density of this noise operating at frequency u.

The function y found empirically by Barten® from a study of the Stromeyer and Julesz* data is given by:
Y (u,,u)= 0.747 exp(2.2 10°(u4,/11)) (A6)

Equation A6 represents a log normal function described by a Gaussian distribution of In(u,/u), with a half-height width
of two octaves, consistent with the premise that noise masking on a given signal band will be mainly generated from
spatial frequencies within the two flanking signal bands. Consider now, a band signal centered on frequency u, (with
squared RMS contrast denoted by ¢, ). This represents one point on the contrast spectrum. For the specific image from
which we have measured detection sensitivity (low contrast Gallery) we find that, to a good first approximation:

(c )y = 0.0056u"77° (A7)

If it assumed that the noise at # emanates from the two flanking signal bands (centered at +1 and -1 octaves from u), then
for each of these Equation 5 can be stated as:

[ R u] =P_ fw u,,,u /u du (A8)

for frequencies in the signal band -1 octave below the band at # and:
[@n (u ] <I>+lf1,l1 u, u /u du (A9)
for frequencies +1 octave above.

The integration limits (a,b) are (1/N2u, 1/2N2u) for the -1 octave flanking band and (2V2u, V2u) for the +1 octave
flanking band.

Using Equation A4, Equations A8 and A9 can be re-written as Equations A10 and A11:
[<I>n (”)],] = (cf) fw u”,u /u du (A10)

b

[<I>n (u)]ﬂ = (cf)+l (2(a—b))72 fw(u”,u) /u du (Al11)

a

The total noise spectral density at u is then given by:
(D, ()] = [Py ()]t + [Py ()]41 (Al12)

Equation 12 was evaluated for each signal band as its central frequency u varied. The integrals were calculated using
Simpsons rule. It was found that, at any given u:
D, =0.8 O, (A13)

where @, denotes the spectral density of the signal band at u.

Combining Equation A1l (the LAM) with Equations A4 and A13 gives the prediction that, at a given value of u:
[e]-[e’1=2 08¢ (A14)

The terms [¢.”] and [c;’] denote the contextual and isolated detection threshold values (squared) for RMS contrast at the
band at u. Thus, the algebraic difference between these two quantities is directly proportional to the square of the
contrast spectrum at u.



