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Abstract: Human decision-making does not conform to the independent decision-making hypothesis
from classical decision-making theory. Thus, we introduce quantum decision-making theory into the
Lotka–Volterra model (L–V model), to investigate player population dynamics while incorporating
the initial strategy, game payoffs and interactive strategies in an open social system. Simulation
results show that: (1) initial strategy, entanglement intensity of strategy interaction, and payoffs
impact population dynamics; (2) In cooperative coexistence, game players mutually exceed the initial
environmental capacity in an open system, but not in competitive coexistence; (3) In competitive
coexistence, an initial strategy containing an entanglement intensity of strategies plays a vital role in
game outcomes. Furthermore, our proposed model more realistically delineates the characteristics of
population dynamics in competitive or cooperative coexistence scenarios.

Keywords: Lotka–Volterra model; quantum game; competitive coexistence; cooperative coexistence;
strategy interaction

1. Introduction

The Lotka–Volterra (L–V) model proposed by Vito Volterra in the early 20th century
has long been used to characterize population dynamics of ecological competitors and
in the past few decades has been widely introduced to simulate connections between
two species [1–3]. In the latest century, the L–V model has been widely introduced into
social science fields to explore the evolution of strategies when two participants decide
between two choices, such as for technological substitution [4–7], diffusion and compe-
tition analysis of the TV and smart phone industries[8], interaction effects between two
retailers’ competing formats[9], feasibility of using low carbon energy to reduce fossil fuel
consumption[10], forecasting the intensity of retailers’ competition[11], maritime cluster
development[7], armed confrontation[12], and competition in the knowledge diffusion
market [13]. Currently, some researchers have shown that an L–V model equation for
n-1 species is equivalent to a replicator equation in an evolutionary game for n strategies to
create a linkage between the evolutionary game and a fundamental equation of theoretical
ecology [14,15]. The evolutionary game model is based on the hypothesis of bounded
or limited rationality coming from limited knowledge and competence. Bounded ratio-
nality is regarded as the boundedness of human rationality, which is a basic fact about
the complexities of the world. That hypothesis means that there is no chance or ability
to independently evaluate a large number of facts and propositions in such an environ-
ment [16–20]. Limited rationality means that humans usually achieve game equilibrium
through trial and error [21]. It seems entirely natural to consider the interaction between
payoffs and density limitations, in view of successful individuals (those with high returns)
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being stronger than their competitors or more resistant to crowding effects. Thus, a density
game was proposed by Novak et al. [15] combining a payoff matrix in competitive L–V
model equations with its formula expressed as Equation (1). Further, Huang et al. [14]
proposed an average stochastic dynamics model as Equation (2) to explore the traits of
frequency-dependence and demographic fluctuations in deterministic competitive L–V
model equations. 
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where, xi, dx/dt, xT , are the abundance of strategy i, time derivative, and the sum of xi,
respectively; ri > 0 is the net reproductive rate; Ki is the carrying capacity; aij > 0 is
payoffs for strategy i versus j; a, b, c, d, are game payoff items, respectively; rx and ry are
the net growth rates of two participants, respectively; and M is the maximum environment
capacity, which is a measure of equilibrium densities.

Linkages between the evolutionary game model and population dynamics have
been further elucidated in the literature. Evolutionary game theory is generally ap-
plied to predicting outcomes of competing strategies by introducing mathematical cri-
teria [22,23].Compared with classical decision-making theories, evolutionary game theory
advances the idea that players are not completely rational and usually achieve game
equilibrium through trial and error [21,24]. The evolutionary game theory has also been
introduced widely into social-economic fields[25]. However, an inherent rule in the existing
literature is that these strategies are independent and most of those studies refer to the
evolutionary game theory proposed by Smith [23]. Nonetheless, social mechanisms of
learning and imitation are usually more complicated than genetic mechanisms, because
a wide variety of learning and imitation processes are conceivable and the appropriate
dynamical representation seems to be highly context-dependent [24]. In fact, nature rep-
resents a quantum mechanism. Human cognitive decision-making and its game process
are information processing, where the human brain accepts input information from the
outside world, transforms that information into inner psychological activities through
brain processing, and acts on that information, which then dominates human behavior.
Furthermore, human decision-making follows the quantum rule [26], which implies that
human decision-making is interactive [27].

At present, some researchers have introduced quantum decision-making theory into
social science to assess the potential value of quantum economic mechanisms in a static
system constrained by constant environment capacity [28,29]. Compared with classical
decision theory, quantum decision theory has unique advantages in solving many para-
doxes that cannot be solved by classical decision theory [30,31]. However, modern society
is a dynamic and open system, with the simultaneous characteristics of superposition and
interacting states. Despite previous studies that used the L–V model and quantum game
theory, naturally there are some research gaps that should be addressed. First, most of those
previous studies ignored linkages between decision-making and population dynamics,
making it difficult to reflect on the irrational traits of human decision-making. Second, the
initial strategy was regarded as an exogenous variable, although, in the real world, some
game outcomes are dominated by their initial strategies [32], and decision making and
population dynamics are not mutually independent[33]. It is therefore crucial to better
understand the evolution of population dynamics in an open social-economic system using
quantum decision-making and the L–V model theory. The following are our objectives:
(1) to propose a new framework to explore population dynamics; (2) to determine whether
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game payoffs, initial strategy and strategy interactions play a vital role in population
dynamics; (3) to delineate the characteristics of population dynamics when considering
strategy interactions.

This study contains the following innovations: (1) it proposes an improved L–V
model using quantum game theory to investigate population dynamics in an open system,
putting aside the assumptions of two ecological competitors, two choices and independent
strategies as in the Lotka–Volterra model; (2) In comparison with previous studies using the
L–V model, such as Novak et al. [14,15], our proposed model exhibits swapping information
and state superposition. Swapping information refers to non-revealed and continuous
random information, which represent strategy interactions [34–36]], such as learning from
participating in repeated games, influenced by the amount of disposable information [37].
The game state is superposed in our model rather than mixed, and thus can be denoted by
a qubit or tensor products of multiple qubits. State superposition means that all possible
measurement values have some potential of being expressed at each moment, during
which the potentials can interfere with each other—for example, wave interference can
change the final observed measurement value [38]. State superposition is a basic trait of
quantum computation and intrinsically represents the conflict, ambiguity, or uncertainty
that people experience, as in the most famous example of Schrödinger’s cat “before the
box is opened, the cat has two characteristics: death and life;” (3) Our method is similar to
methods for investigating population dynamics using the evolutionary game model and
L–V model theory, which considered mutual learning in repetitive games. However, our
method differs in three important aspects. First, strategy interactions are considered in our
model, rather than assuming that strategies are simply independent [3]. Second, our model
considers the initial strategy state, which is ignored in the extant literature for population
dynamics [39,40]. Third, the environmental capacity is regarded as dynamic in an open
system in our model, unlike in the extant literature where environmental capacity was
constant [9].

2. Theoretical Framework
2.1. Quantum Game Model

This section provides a brief summary of basic definitions and concepts from quantum
game theory for readers who are new to quantum mechanics so that they can make sense
of the theory. Although some readers might find quantum game theory to be completely
new, the following brief explanation only emphasizes how to reach the concepts of strategy
interaction and player strategy state. In this section, game players refer to two groups:
player A and player B.

2.1.1. Basics of the Quantum Game Model

Quantum mechanics is arguably the most important and best empirically confirmed
scientific theory in human history (Busemeyer and Wang, 2015). The quantum game model
combines physical behavior information from quantum mechanics with game theory to
describe swapping information between players and fulfilments. The evolution of the
quantum system can be pictured through unitary matrices and, if considering the game
of players and available strategies as qubits, the expression of the quantum system can
be symbolized as G(n, Θ(H), ρ, S, u) [41]. Here, n, H, Θ(H) are the number of races,
Hilbert spaces and game state spaces, respectively; ρ ∈ Θ(H) is the initial quantum state;
S = S1 × S2 × · · · × Sn are strategy spaces; and u = u1 × u2 × · · · × un is a utility function
with ui : Θ(H)→ } for player i. In this study, for simplicity, any element or vector of the
space of states is expressed by the symbol |·〉 (ket-vector) and 〈·| (bra-vector).

2.1.2. Hilbert Spaces and Space of States

A player faces a variety of strategies, while game payoffs are concrete realizations
of those strategies. Let {|si〉} be the representation basis formed by the set of the basic
representation states |si〉. The representation basis is orthonormal and the strategy space
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Hi ≡ U{|si〉} is the closed linear envelope of the representation basis, such that we
have defined a Hilbert space. The strategy state can be expanded in terms of that basis as
|ψ〉 = ∑

si

csi |Si〉. Here, the strategy state is normalized such that |〈S|S〉| = 1, and ∑
si

|csi |
2 =1.

A set of several strategies is called a prospect and a prospect-representation is a
concrete implementation of a prospect. The prospect-representation state is the tensor
product of the representation states. It can be expressed as |S〉 = ⊗|Si〉 = |s1s2s3〉, and
the prospect-representation basis |S〉 is also orthonormal, 〈S|S〉 = ∏

i,j

〈
Si
∣∣Sj
〉
, 〈S|S〉 is

the representation of inner product for |S〉. The closed linear envelope of the prospect-
representation state defines the prospect-space, which is a Hilbert space obtained as the
tensor product of the strategy spaces, H = U{|S〉} = ⊗

i
Hi.

2.1.3. Entanglement and Disentanglement

The literature from the quantum information and quantum computation fields em-
phasize the parameters related to entanglement measures. Considering interactions to be
between actions available for a player and their beliefs about the other player, deviations
from classical results arise from the interaction between the space of strategies of the two
different players by a unitary operation; entanglement is such phenomenon that the global
states of a composite system cannot be expressed by a product of the states of individual
subsystems, which underlines the intrinsic order of statistical relations between subsystems
of a compound quantum system [42]. Thus, a disentangled prospect-state is a prospect-
state that can be expressed as |ψ〉 = ⊗

i
|ψi〉, which shows that the tensor product of strategy

states |ψ〉 can be decomposed. Thus, an entangled prospect-state is any prospect-state,
|ψ〉 ∈ H, given by |ψ〉 = ∑

S
cS|S〉 and ∑

S
|cS|2 = 1, which means a state |ψ〉 is entangled if

such a decomposition does not exist.

2.2. Calculation Steps for the Quantum Game Model

According to Sun [42] and Eisert [32], the basic calculation process for a quantum
game can be illustrated as in Figure 1. The calculations include three steps: the initial
quantum strategy state calculation, the final quantum strategy state calculation, and the
quantum strategy-representation calculation. In this study, we assign the players’ payoffs
directly as the strategy-representation of the concrete realization of the strategy according
to classical decision-making theories.

Figure 1. Schematic diagram of the quantum game calculation. (Note: this schematic diagram is
mainly referred to Eisert et al. 1999).

2.2.1. Hypothesis

Before calculating the quantum strategy payoff, it is necessary to set the following
hypothesis based on the characteristics of interdependent strategies in an open system.

Rule 1: Two group players (player A and player B), both have two basic vectors as
Cooperation (Ĉ) and Competition (D̂). Importantly, the strategies of player A and player B
are inter-dependent.

Rule 2: Both group players’ information can be simultaneously known by each other
due to strategy entanglement.
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Based on the above rules, the quantum payoffs matrix of basis vectors between player
A and player B, can be expressed as shown in Table 1. In Table 1, Aij, Bij (i, j = 1, 2) means
the profit gained by player A and player B on the condition that player A chooses i (i = 1,
Cooperation (Ĉ); i = 2, Competition (D̂)) strategy, and player B chooses j (j = 1, Cooperation
(Ĉ); j = 2, Competition (D̂)) strategy simultaneously, respectively. All the parameters are
positive.

Table 1. Basis vector game payoffs.

Player B
Cooperation (Ĉ) Competition (D̂)

Player A Cooperation (Ĉ) A11, B11 A12, B12
Competition (D̂) A21, B21 A22, B22

2.2.2. Calculation Steps

Step 1: Calculate the initial quantum strategy state (|ψi〉)
Payoffs of the quantum game rely on potential outputs from classical strategies.

Assuming that the classical available strategies for both players in this game are D and C,

we assign as two fundamental vectors |C〉 =
(

1
0

)
, |D〉 =

(
0
1

)
, each representing a

qubit, respectively, to the basis of the Hilbert space. Considering the Hilbert space given by
the tensor product of spaces associated with each player’s strategy and their evaluation
of what the other player will choose, the starting strategy state can be spanned by any
combination of four bases |CC〉, |CD〉, |DC〉, |DD〉. Next, the qubits |C〉 ⊗ |D〉 go through
a two-qubit entangling gate Ĵ = exp

(
iγ D̂⊗ D̂/2

)
, which is a reversible two-bit gate with

entanglement parameter γ ∈
[
0, π

2
]
. Then, the quantization process of the game can be

represented as Equation (3).

Ĵ = exp
(
iγ D̂⊗ D̂/2

)
= exp

(
i
γ

2

(
0 1
−1 0

)
⊗
(

0 1
−1 0

))
=


cos(γ/2) 0 0 i sin(γ/2)

0 cos(γ/2) −i sin(γ/2) 0
0 −i sin(γ/2) cos(γ/2) 0

i sin(γ/2) 0 0 cos(γ/2)

. (3)

Subsequently, the initial quantum strategy state can be obtained from Equation (4)

|ψi〉 = Ĵ|CD〉 =


0

cos(γ/2)
−i sin(γ/2)

0

. (4)

Here, parameter γ is the game’s entanglement parameter if γ = 0 means a separable
game; |ψi〉 is the initial state.

Step 2: Calculate the final quantum strategy state (
∣∣∣ψ f

〉
)

ÛA and ÛB are local unitary operators for the local manipulation of player A and
player B, respectively. A pure quantum strategy Û(θ, α) is a special unitary group SU(2)
operator, which can be described by Equation (5).

Û(θ, α) =

(
eiα cos(θ/2) sin(θ/2)
− sin(θ/2) e−iα cos(θ/2)

)
, (5)

where 0 ≤ θ ≤ π and 0 ≤ α ≤ π
2 ; the operators of the cooperation and competition

strategies are Ĉ ≡ Û(0, 0) and D̂ ≡ Û(π, 0), respectively.
Once players carry out their actions, their game is turned into state

(
ÛA ⊗ ÛB

)
Ĵ|CD〉,

and the two group players propose their qubits for the final measurement, which is
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achieved by a gate reversible J̃ = Ĵ+. The final state (
∣∣∣ψ f

〉
) is a superposition as shown in

Equations (6) and (7). ∣∣∣ψ f

〉
= J̃
(
ÛA ⊗ ÛB

)
Ĵ|CD〉 (6)

ÛA ⊗ ÛB =

(
eiαA cos(θA/2) sin(θA/2)
− sin(θA/2) e−iαA cos(θA/2)

)
⊗
(

eiαB cos(θB/2) sin(θB/2)
− sin(θB/2) e−iαB cos(θB/2)

)
. (7)

Accordingly,∣∣∣ψ f

〉
= J̃
(
ÛA ⊗ ÛB

)
Ĵ|CD〉

=


cos(θA/2 ) cos(θB/2 ) cos(αA) + sin(θA/2 ) cos(θB/2 ) sin(αB) sin(γ) + i cos(θA/2 ) sin(θB/2 ) sin(αA) cos(γ)

cos(θA/2 ) cos(θB/2 )(cos(αA − αB)− i cos(αA − αB) sin(γ))
cos(θA/2 ) cos(θB/2 ) cos(αA) sin(αB) sin(γ)− sin(θA/2 ) sin(θB/2 )− cos(θA/2 ) cos(θB/2 ) sin(αA) cos(αB) sin(γ)

cos(θA/2 ) sin(θB/2 ) sin(αA) sin(γ)− sin(θA/2 ) cos(θB/2 ) cos(αB) + i sin(θA/2 ) cos(θB/2 ) sin(αB) cos(γ)

. (8)

The measurement of Equation (8) will cause the final state to collapse into one of the
classical outcomes, and a payoff is obtained in line with the corresponding matrix entries.

Step 3: Calculate quantum payoffs
Considering the computing example of payoffs in a quantum game [42,43], one

player’s quantum payoff ($A) can be defined as Equation (9). Then, according to Equation (8)
the probability of the final state collapsing into the basis vector of the tensor product space
is calculated as Equation (10). Finally, the quantum payoff of the entangled quantum game
can be calculated by integrating Equations (9) and (10).

$A = A11PCC + A12PCD + A21PDC + A22PDD

PCC =
∣∣∣〈CC′|ψ f

〉∣∣∣2
PCD =

∣∣∣〈CD′|ψ f

〉∣∣∣2
PDC =

∣∣∣〈DC′|ψ f

〉∣∣∣2
PDD =

∣∣∣〈DD′|ψ f

〉∣∣∣2
, (9)


PCC = (cos(θA/2 ) cos(θB/2 ) cos(αA) + sin(θA/2 ) cos(θB/2 ) sin(αB) sin(γ))2 − (cos(θA/2 ) sin(θB/2 ) sin(αA) cos(γ))2

PCD = cos2(θA/2 ) cos2(θB/2 )
(
cos2(αA − αB) + cos2(αA − αB) sin2(γ)

)
PDC = (cos(θA/2 ) cos(θB/2 ) cos(αA) sin(αB) sin(γ)− sin(θA/2 ) sin(θB/2 )− cos(θA/2 ) cos(θB/2 ) sin(αA) cos(αB) sin(γ))2

PDD = (cos(θA/2 ) sin(θB/2 ) sin(αA) sin(γ)− sin(θA/2 ) cos(θB/2 ) cos(αB))
2 − (sin(θA/2 ) cos(θB/2 ) sin(αB) cos(γ))2

, (10)

where PCC, PCD, PDC, PDD are the probabilities of the final quantum strategy state collapsing
into pure outcomes |CC′〉, |CD′〉, |DC′〉, |DD′〉, respectively. Equations (9) and (10) show
that quantum payoffs can be expressed by traditional game payoffs and the entanglement
parameter γ considering the parameters of each player’s strategic evolution.

3. An Improved L–V Model: Coexistence of Competition and Cooperation

This part focuses on equilibrium analysis of the improved L–V model, based on
part two, which explains and describes the computation process of the quantum game.
Firstly, based on the interaction parameters, each player’s interactive coexistence can be
classified as either cooperative or competitive [8]. Cooperative coexistence means that the
interactive parameters are positive, while competitive coexistence has negative interactive
parameters. Thus, an improved coexistence model integrating density game theory and
quantum decision making can be expressed as Equation (11) for competition coexistence
and Equation (12) for cooperation coexistence. Then, based on the three payoff calculation
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steps for the quantum game and related equations, six special cases can be obtained
(Table 2). 

dxA
dt

= rAxA

(
1− xB

RB MB
− xA

MA

)
dxB
dt

= rBxB

(
1− xB

MB
− xA

RA MA

) (11)


dxA
dt

= rAxA

(
1 +

xB

RB MB
− xA

MA

)
dxB
dt

= rBxB

(
1− xB

MB
+

xA

RA MA

) , (12)

where xA is the population size of player A; MA represents the maximum environmental
capacity for player A; rA denotes net natural growing rate for player A; RA, RB, are the
quantum average payoffs for players A and B, respectively; RA, RB represent mutual
effect coefficients for the players; RA MA, RB MB, are the maximum gains for player A and
player B under the maximum environmental capacity, respectively. rBxB, rAxA, reflects

each players’ developing trends. 1− xA
MA

, 1− xB
MB

, are the coefficients of damped growth,

stemming from the environmental capacities of player A and player B, respectively.

Table 2. Quantum payoffs by case.

Case Strategy Parameter Quantum Payoff

1 ÛA = Q̂, ÛB = Q̂ θA = 0, θB = 0, αA = π/2,αB = π/2 RA = A11, RB = B11

2 ÛA = Ĉ, ÛB = Q̂ θA = 0, θB = 0, αA = 0, αB = π/2
RA = A11 + (A22 − A11) sin2(γ),
RB = B11 + (B22 − B11) sin2(γ)

3 ÛA = D̂, ÛB = Q̂ θA = π, θB = 0, αA = 0, αB = π/2
RA = A21 + (A12 − A21) sin2(γ),
RB = B21 + (B12 − B21) sin2(γ)

4 ÛA = D̂, ÛB = D̂ θA = π, θB = π, αA = 0, αB = 0 RA = A22, RB = B22
5 ÛA = Ĉ, ÛB = Ĉ θA = 0, θB = 0, αA = 0, αB = 0 RA = A11, RB = B11
6 ÛA = D̂, ÛB = Ĉ θA = π, θB = 0, αA = 0, αB = 0 RA = A21, RB = B21

(Note: RA, RB, player A’s and player B’s payoff, respectively).

In Table 2, case 1 illustrates when both players initially take the same quantum strategy

ÛA = ÛB = Û
(
0, π

2
)
= Q̂ =

(
i 0
0 −i

)
, taking their competitor’s strategy into account

(i.e., the largest entanglement intensity γ =
π

2
). Case 2 is when initially player A selects

the cooperative strategy ÛA = Û(0, 0) = Ĉ, ignoring the strategy of player B, while
player B selects quantum strategy ÛB = Û(0, π/2) = Q̂, taking the strategy of player A
into account. Case 3 illustrates when the initial strategy of player A is the Competitive
strategy ÛA = Û(0, 0) = D̂, ignoring the strategy of player B, but player B initially selects
ÛB = Û(0, π/2) = Q̂, taking the strategy of player A into account. Cases 4–6 show both
players implementing pure and independent strategies as in the classical game model.
Thus, the following sections focus on the cases 1–3 since they cover cases not in the classical
game model.

3.1. Equilibrium and Stability Conditions in Competitive Coexistence

According to the stability theory of ordinary differential equations, in Equation (11),
four local equilibriums can be obtained as E1(0, 0), E2(0, MB), E3(MA, 0), and

E4

(
MARA

(
RB − 1

)
RARB − 1

,
MBRB

(
RA − 1

)
RARB − 1

)
. Comparing the four local equilibrium points, E4

means that players are coexisting while sgn
(

RARB − 1
)

= sgn
(

RB − 1
)

= sgn
(

RA − 1
)
=

+1 or −1. Then, based upon the stability theory of ordinary differential equations, the
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Jacobean matrix of Equation (11) can be expressed as Equation (13). The corresponding
determinant value and trace of the matrix can be expressed as in Equation (14).

J =

 rA −
rAxB

MBRB
− 2rAxA

MA
− rAxA

MBRB

− rBxB

MARA
rB −

rBxA

MARA
− 2rBxB

MB

 (13)


detJ =

(
rA −

rAxB

MBRB
− 2rAxA

MA

)
∗
(

rB −
rBxA

MARA
− 2rBxB

MB

)
− rAxA

MBRB
∗ rBxB

MARA

trJ = −
[(

rA −
rAxB

MBRB
− 2rAxA

MA

)
+

(
rB −

rBxA

MARA
− 2rBxB

MB

)] . (14)

Then, according to the stability theory of ordinary differential equations, the equi-
librium reaches the asymptotic stable state when trJ > 0 and detJ > 0. The determinant
symbol, trace symbol and the stability condition of the equilibrium points in competition
coexistence can be obtained as shown in Table 3. Here, E4 has a coexisting state when
sgn
(

RARB − 1
)

= sgn
(

RB − 1
)

= sgn
(

RA − 1
)
= +1, and the population scales of the

two players are positive. Here, RB, RA are payoff functions for players B and A, respec-
tively, combining the matrix payoff items with their entanglement parameters. Then, the
equilibrium and stability conditions in cases 1–3 (Table 4) can be obtained as shown in
Table 4.

Table 3. Stability analysis of coexistence equilibrium in the competition symbiosis.

Equilibrium detJ trJ Stability Condition

E4

(
MARA

(
RB − 1

)
RARB − 1

,
MBRB

(
RA − 1

)
RARB − 1

)
rArA

(
RA − 1

)(
RB − 1

)
RARB − 1

RArA
(

RB − 1
)
+ RBrB

(
RA − 1

)
RARB − 1

sgn
(

RARB − 1
)

= sgn
(

RB − 1
)

=
sgn
(

RA − 1
)
= +1

Table 4. Stability conditions for coexistence equilibrium by case for the competition scenario.

Case Equilibrium Stability Condition

1 E4

(
MAA11(B11−1)

A11B11−1 , MBB11(A11−1)
A11B11−1

)
sgn(A11B11 − 1) = sgn(A11 − 1) = sgn(B11 − 1) = +1

2
E4

 MA(A11+(A22−A11) sin2(γ))((B11+(B22−B11) sin2(γ))−1)
(A11+(A22−A11) sin2(γ))(B11+(B22−B11) sin2(γ))−1

,

MB(B11+(B22−B11) sin2(γ))((A11+(A22−A11) sin2(γ))−1)
(A11+(A22−A11) sin2(γ))(B11+(B22−B11) sin2(γ))−1

sgn
((

A11 + (A22 − A11) sin2(γ)
)(

B11 + (B22 − B11) sin2(γ)
)
− 1
)

= sgn
(

A11 + (A22 − A11) sin2(γ)− 1
)

= sgn
(

B11 + (B22 − B11) sin2(γ)− 1
)
= +1

3
E4

 MA(A21+(A12−A21) sin2(γ))((B12+(B21−B12) sin2(γ))−1)
(A21+(A12−A21) sin2(γ))(B12+(B21−B12) sin2(γ))−1

,

MB(B12+(B21−B12) sin2(γ))((A21+(A12−A21) sin2(γ))−1)
(A21+(A12−A21) sin2(γ))(B12+(B21−B12) sin2(γ))−1

sgn
((

A21 + (A12 − A21) sin2(γ)
)(

B12 + (B21 − B12) sin2(γ)
)
− 1
)

= sgn
(((

B12 + (B21 − B12) sin2(γ)
)
− 1
))

= sgn
(((

A21 + (A12 − A21) sin2(γ)
)
− 1
))

= +1

In addition, on the basis of the stability condition sgn
(

RARB − 1
)

= sgn
(

RB − 1
)

=
sgn
(

RA − 1
)

= +1 (Table 4), if sgn
(

RB − 1
)

= sgn
(

RA − 1
)

= +1 is met, then
sgn
(

RARB − 1
)
= +1 should also be naturally met. According to the stability condi-

tions of cases 1 and 3, their interactive intensity γ ∈
[
0, π

2
]
, is a quantum entanglement

parameter meeting the stability condition, which can be obtained as one of the cases in
Equation (15).

Case 1 : γ ∈ [0, π/2]

Case 2 : sin2 γ < min((A11 − 1)/(A11 − A22), (B11 − 1)/(B11 − B22))

Case 3 : sin2 γ < min((B21 − 1)/(B21 − B12), (A21 − 1)/(A21 − A12))

(15)



Mathematics 2021, 9, 2217 9 of 17

3.2. Equilibrium and Stability Conditions in Cooperative Coexistence

According to the stability theory of ordinary differential equations, Equation (12) can
reach four local equilibriums: E1(0, 0), E2(0, MB), E3(MA, 0), and

E4

(
MARA

(
RB + 1

)
RARB − 1

,
MBRB

(
RA + 1

)
RARB − 1

)
. Based on sgn

(
RARB − 1

)
= +1, the equilibrium

state in E4 is the coexistence equilibrium with positive population growth for both players.
The Jacobean matrix of the equation can be obtained as Equation (16). Then, the related
determinant value and trace of the matrix can be calculated based on Equation (16), and
the calculation result is shown in Equation (17).

J =

 rA +
rAxB

MBRB
− 2rAxA

MA

rAxA

MBRB
rBxB

MARA
rB +

rBxA

MARA
− 2rBxB

MB

 (16)

 detJ =
(

rA + rAxB
MBRB

− 2rAxA
MA

)
∗
(

rB + rBxA
MARA

− 2rBxB
MB

)
− rAxA

MBRB
∗ rBxB

MARA

trJ = −
[(

rA + rAxB
MBRB

− 2rAxA
MA

)
+
(

rB + rBxA
MARA

− 2rBxB
MB

)] (17)

Note that, according to the stability theory of ordinary differential equations, the
equilibrium can evolve to the asymptotic stable state when trJ > 0 and detJ > 0. The
determinant symbol, trace symbol and the stability condition of the equilibrium point in
the cooperation scenario can be obtained as shown in Table 5. The coexistence point E4 is
stable when sgn

(
RARB − 1

)
= +1, and population change is positive. Further, in view of

cooperation coexistence and its stability condition (Table 5), the equilibrium and stability
conditions of cases 1–3 (Table 3) are shown in Table 6. Thus, according to the stability
conditions of those cases, the range of entanglement parameters meeting the stability
conditions can be calculated as for the cases in Equation (17).

Table 5. Stability analysis of coexistence equilibrium in the cooperation symbiosis.

Equilibrium detJ trJ Stability Condition

E4

(
MA RA(RB+1)

RA RB−1
,

MB RB(RA+1)
RA RB−1

)
rArA(RA+1)(RB+1)

RA RB−1
RArA(RB+1)+RBrB(RA+1)

RA RB−1
sgn
(

RARB − 1
)
= +1

Table 6. Stability conditions for coexistence equilibrium by case for cooperation symbiosis.

Case Equilibrium Stability Condition

1 E4

(
MAA11(B11+1)

A11B11−1 , MBB11(A11+1)
A11B11−1

)
sgn(A11B11 − 1)= +1

2
E4

 MA(A11+(A22−A11) sin2(γ))((B11+(B22−B11) sin2(γ))+1)
(A11+(A22−A11) sin2(γ))(B11+(B22−B11) sin2(γ))−1

,

MB(B11+(B22−B11) sin2(γ))((A11+(A22−A11) sin2(γ))+1)
(A11+(A22−A11) sin2(γ))(B11+(B22−B11) sin2(γ))−1

sgn
(

A11 + (A22 − A11) sin2(γ)
)(

B11 + (B22 − B11) sin2(γ)
)
− 1

= +1

3
E4

 MA(A21+(A12−A21) sin2(γ))((B12+(B21−B12) sin2(γ))+1)
(A21+(A12−A21) sin2(γ))(B12+(B21−B12) sin2(γ))−1

,

MB(B12+(B21−B12) sin2(γ))((A21+(A12−A21) sin2(γ))+1)
(A21+(A12−A21) sin2(γ))(B12+(B21−B12) sin2(γ))−1

sgn
((

A21 + (A12 − A21) sin2(γ)
)(

B12 + (B21 − B12) sin2(γ)
)
− 1
)

= +1

4. Results and Scenario Analysis

Based on the improved L–V model proposed above and the calculated results of play-
ers’ strategy equilibrium and stability conditions, the simulation results for competition
and cooperation coexistence are shown as follows (Tables 3–6). In case 1, players imple-
ment the initial strategies with the largest entanglement intensity. First, in competitive
coexistence, players’ strategies evolve into a state where the population sizes of the two

players reach a stable state (player A:
MA A11(B11 − 1)

A11B11 − 1
; player B:

MBB11(A11 − 1)
A11B11 − 1

) once
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sgn(A11B11 − 1) = sgn(A11 − 1) = sgn(B11 − 1) = +1 (Tables 3 and 4). Second, in cooper-

ative coexistence, the final and stable sizes of players’ populations are
MA A11(B11 + 1)

A11B11 − 1

(player A) and
MBB11(A11 + 1)

A11B11 − 1
(player B) once sgn(A11B11 − 1) = sgn(A11 − 1) =

sgn(B11− 1) = +1 (Tables 5 and 6). Case 1 simulation results reflect that the final and stable
sizes of players’ populations are decided by their environmental capacity (MA and MB) and
payoffs (A11 and B11). It seems that players with larger environmental capacities or higher
returns will obtain larger population sizes. In cases 2–3, in competitive (Tables 3 and 4)
and cooperative coexistence (Tables 5 and 6), all players’ strategies finally evolve into a
state with stable population sizes, when the entanglement intensity of strategy interaction
meets the requirements illustrated in Equations (15). The results show that players’ pop-
ulation sizes are decided by their environmental capacities (MA and MB), payoff items
(Table 1) and entanglement intensity (γ). Thus, the following analysis of scenarios further
investigates the influences of entanglement intensity and payoffs in various settings for
coexistence on the player population sizes using scenario simulations.

4.1. Scenario Settings

Figure 2 shows the framework of system dynamic simulations for different scenarios.
This system includes two state variables xA and xB, two flow rate variables dxA/dt and dxB/dt,
sixteen external variables, six intermediate variables, and one shadow variable (varying
quantum entanglement parameter); start time INITIALTIME = 0, system simulation end
time FINAL TIME = 60; simulation time step, TIME STEP = 1, and time unit generation.
Here, all initial values meet the Stability conditions for competitive coexistence (Table 7).
In addition, to further investigate the impacts of higher payoffs (higher returns) on game
outcomes, it is assumed that player A’s payoffs exceed player B’s payoffs. Entanglement
parameter (γ), as a variable representing the entanglement intensity of interactive strategy,
can be calculated as Equation (18), based on the aforementioned calculation steps and
scenario setting and with its value meeting the game equilibrium and stable conditions for
competition and cooperation coexistence. Thus, γ = 20◦, 45◦ and 70◦ are set in the simula-
tions to disclose whether entanglement intensity affects the evolution trajectories of player
population sizes and delineate the characteristics of those population size trajectories.

Case 1 : γ ∈
[
0, π

2
]

Case 2 : γ ∈
[
0, π

2
]

{
Case 3 : γ ∈ (33.21◦, 63.43◦) in competiton coexistence
Case 3: γ ∈

[
0, π

2
]

in cooperation coexistence

(18)

4.2. Scenario Simulation Results and Analysis

Figure 3 shows that, in case 1, player population sizes first rapidly increase and
then evolve into a stable state whether the coexistence is competitive or cooperative in
γ= 20

◦
, 45

◦
and 70

◦
. First, the population size evolution trajectories, whether for competi-

tive or cooperative coexistence, are the same despite different γ values. Second, in theory,
player A with higher payoffs (higher returns) generally has more power than player B and
thus the final and stable population size for player A is always larger than for player B
whether the coexistence is cooperative or competitive. Meanwhile, the final population
sizes for players in cooperative coexistence are larger than the initial environment capacity
(Ma = 50, Mb = 50). However, population sizes for players in competitive coexistence are
always smaller than the initial environment capacity (Ma = 50, Mb = 50).
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Figure 2. Schematic diagram of system dynamics simulation of the improved L–V model.

Table 7. Variables and initial values for the theoretical and simulation model.

Variable in
Theoretical Model

Corresponding
Variable in

Simulation Model
Initial Value Variable in

Theoretical Model

Corresponding
Variable in

Simulation Model
Initial Value

A11 A11 1.5 MA Ma 50
A12 A12 0.8 xB xB 10
A21 A21 1.8 rB rB 0.8
A22 A22 1.3 MB Mb 50
B11 B11 1.4 θA ca 180
B12 B12 1.7 θB cb 0
B21 B21 0.7 αA alfa 0
B22 B22 1.2 αB alfb 90
xA xA 10 γ GA 40◦

rA rA 0.5

Figure 3. Evolution trajectories for player population sizes in case 1. (Note: QQ is for case 1; 20, 45, and 70 are the different
entanglement intensities; Coo and Com are the cooperation and competition coexistence, respectively; xA20 and xB20, xA45
and xB45, and xA70 and xB70 are the evolution trajectories of player A and B population sizes with entanglement intensity
20◦, 45◦ and 70◦, respectively).

Figure 4 shows that, in case 2, the population sizes for each player first rapidly
increase, and then evolve into a stable state whether the coexistence is competitive or
cooperative. First, in competitive coexistence: the final and stable population sizes cannot
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break through the initial environment capacity (Ma = 50, Mb = 50); the entanglement
intensity (γ) negatively affects the final population size for player A, but has no impact
on the evolution of population size for player B; the final population size for player B is
larger than for player A, even though the payoff for player A is higher than for player B,
which reflects weaker players defeating stronger players in case 2. Second, in cooperative
coexistence: the final population sizes for players surpasses the initial environment capacity;
the entanglement intensity (γ) simultaneously and positively affects population sizes for
the players; all final population sizes for player A are larger than for player B no matter
the γ value. Meanwhile, by contrast, final population sizes for players in cooperative
coexistence are always larger than the initial environmental capacity, but always smaller
than the initial environmental capacity in competitive coexistence. Furthermore, increasing
entanglement intensity increases population sizes for players in cooperative coexistence,
but constrains population sizes for players who initially take an independent strategy
in competitive coexistence. In addition, in competitive coexistence, the final and stable
population sizes for player B are larger than those for player A, even though player B
has lower returns than player A, which reflects that, in some cases, weaker players can
beat stronger players in competitive coexistence. However, in cooperative coexistence, the
final population sizes for player A with higher payoffs are always larger than the final
population sizes for player B, which illustrates that players with higher payoffs generally
have more power in cooperative coexistence.

Figure 4. Evolution trajectories for player population sizes in case 2. (Note: ca0 is case 2; 20, 45, and 70 equal different
entanglement intensities; Coo and Com are cooperation and competition coexistence, respectively; xA20 and xB20, xA45
and xB45, and xA70 and xB70 are the evolution trajectories of player A and B population sizes with entanglement intensity
20◦, 45◦ and 70◦, respectively).

Figure 5 shows that, in case 3, the impacts of the entanglement intensity (γ) on the
evolution trajectories and final population sizes for players vary with the entanglement
intensity (γ). First, when γ = 20◦: in competitive coexistence, the population size for player
A first rapidly increases and then rapidly decreases to nearly zero, but the population
size for player B first rapidly increases and then slowly increases to about 50 (the initial
environmental capacity); in cooperative coexistence, the population sizes for both players
first rapidly increase and then slowly evolve into stable values, and both final and stable
population sizes are larger than the initial environmental capacities. Second, when γ = 45◦:
in competitive coexistence, the population sizes for both players first rapidly increase
and then slowly decrease to stable values, less than the initial environmental capacity.
Meanwhile, when γ = 70◦, in competitive coexistence, the population size for player A
first rapidly increases and then slowly increases to a stable population size close to the



Mathematics 2021, 9, 2217 13 of 17

initial environmental capacity, but the population size for player B first rapidly increases
and then rapidly decreases to zero; in cooperative coexistence, the population sizes for
both players first rapidly increase and then slowly stabilize, changing with entanglement
intensity (γ), and all the final and stable population sizes for both players are larger than
the initial maximum environmental capacity, but population size for player A is always
larger than for player B.

Figure 5. Evolution trajectories for player population sizes in case 3. (Note: ca180 is case 3; 20, 45, and 70 equal different
entanglement intensities; Coo and Com are cooperation and competition coexistence, respectively; xA20 and xB20, xA45
and xB45, and xA70 and xB70 are the evolution trajectories of player A and B population sizes with entanglement intensity
20◦, 45◦ and 70◦, respectively).

In sum, the initial strategy state of players, payoffs and entanglement intensity obvi-
ously affect the evolution of population sizes for the players, with the obviously different
characteristics between competitive and cooperative coexistence. First, the final and sta-
ble population sizes for players change with the initial strategy state, such as in cases 1
and 3, when γ = 20◦, in competitive coexistence, the final and stable population sizes
for player A in case 1 is close to 27 and nearly zero in case 3, while the final and stable
population sizes for player B in case 1 is close to 18 and close to 50 in case 3. Second,
the entanglement intensity also plays a key role in the final and stable population sizes.
For example, in case 3, when γ = 20◦, the final and stable population sizes for player A
are close to zero, but the final and stable population sizes for player B almost reach the
initial environmental capacity (50), even though the payoffs for player B are lower than
for player A. Third, players with higher payoffs always have more strength in cooperative
coexistence. Furthermore, all the final and stable population sizes for players in cooperative
coexistence are larger than the initial environmental capacity. In contrast, all the final and
stable population sizes for players in competitive coexistence are smaller than the initial
environmental capacity. Finally, the results certify that players with higher payoffs in
cooperative coexistence always are stronger in that coexistence, but not in competitive
coexistence.

5. Discussion

The L–V model depicting population dynamics of ecological competitors has been
continuously improved [14,15]. However, both the L–V model and the improved L–V
models disregard the game initial strategy and strategy interactions. For example, in the
improved model proposed by Novak et al. [14] or Huang et al. [15], the environment
capacities are constant, strategies are independent, and the initial strategy is exogenous.
In reality, human decisions follow quantum rules, are mutually dependent [27], and the
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entanglement intensity of strategy interactions and payoffs determine game equilibrium
and stability [44]. Thus, our proposed model fills those knowledge gaps, not only by
quantifying the entanglement intensity of strategy interactions, but also by taking the
initial strategy and dynamic environment capacity into account. Most importantly, our
scenario simulation results certify that the initial strategy, payoffs and entanglement inten-
sity of strategy interactions codetermine the population dynamics for the players, game
equilibrium and stability.

In particular, the impacts of the initial strategy, payoffs and entanglement intensity of
strategy interactions on the final and stable population sizes differ between cooperative and
competitive coexistence. First, in cooperative coexistence, all the population sizes finally
evolve into a stable state and exceed the initial environment capacity in the three scenario
simulations, but in competitive coexistence, all the population sizes are less than the initial
environmental capacity. Furthermore, the disparities in the final and stable population
sizes in the different scenarios within competitive or cooperative coexistence are decided by
the initial strategy, payoffs and the entanglement intensity of strategy interactions. These
findings prove that cooperative coexistence is beneficial to increasing population sizes for
players and overcomes the constraints of the initial environmental capacity. As Nowak [45]
determined, in cooperative coexistence all players are mutually beneficial. In addition,
in an open and dynamic system, environmental capacity grows with social-economic
development and technological progress. Thus, in cooperative coexistence, all the final
and stable population sizes for players exceeded the initial environmental capacity due to
the increased environmental capacity. However, in competitive coexistence, population
sizes cannot break through their initial environmental capacity mainly because resource
allocation is generally lower than in cooperative coexistence.

Furthermore, the scenario simulation results reveal that the entanglement parameter
for the evolutionary trajectories of player population dynamics, determine the stability con-
ditions for the coexistence equilibrium (Figures 4 and 5). As Müller and Rau [46] affirmed,
human decisions are interdependent mainly because human decisions are determined
through different potential and non-potential conflicting motives and occur in an uncertain
social environment. Importantly, our proposed model can be used to not only quantify the
entanglement intensity but also delineate disparities in impacts of entanglement intensity
on game outcomes in combination with different initial strategies. First, the scenario model
results verify our hypothesis that the strategy evolution and game outcomes change since
the initial strategy varies the entanglement intensity of strategy interactions as in case 2
(Figure 4) and case 3 (Figure 5). This finding agrees with the identification by Du et al. [45]
that entanglement intensity dominates game outcomes, except in case 1 (Figure 3), when
game outcomes were the same even with different entanglement intensities. However,
these cases provide evidence to support the significance of the initial strategy on game
outcomes.

Most studies asserted that players with higher payoffs are always stronger in the
real world [14]. However, in reality, many large companies with higher payoffs have
been beaten by smaller companies, and many weaker players overcome stronger players.
Our findings provide evidence to better explain why weaker players can win. First,
the results illustrate that players with higher payoffs may be beaten by their weaker
competitors in competitive coexistence if players with higher payoffs initially disregard
their weaker competitors and make their strategies independent from their competitors
(Figure 5). The scenario simulation results indicate that the entanglement intensity γ= 20◦

(γ= 20◦ < 33.31◦) leads stronger players to an extinct state in case 3 as the stronger players
implement an initial independent strategy and continuously disregard their competitors in
the game. Another interesting finding is that, in case 2 of competitive coexistence (Figure 4),
the population sizes of players with higher payoffs are always larger than those of weaker
players when γ= 70◦ (γ= 70◦ > 63.43◦). In other words, players with higher payoffs have
stronger powers in coexistence once those higher payoff players decided to cooperate with
their competitors when making their strategy. Walker and Hipel’s [47] findings support
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that players’ attitudes are a structure, which allows a decision analyst to consider the
decision makers’ desires to hurt or help themselves or other decision makers, or to be
neutral.

Most notably, compared to the improved L–V model, which uses evolutionary game
theory, our model can simulate how players choose two pure strategies simultaneously,
namely how players can choose strategy superposition by implementing cooperative
and competitive strategies. That strategy state can be represented as state superposition

by |ψ〉 = (C1|11〉+ C2|01〉+ C3|10〉+ C4|00〉) (C1, C2, C3, C4, is amplitude,
4
∑

i=1
C2

i = 1).

In reality, most players have implemented this type of strategy portfolio, which largely
deviates from previous research based on classical and evolutionary game models because
of the principle of set mutual exclusion in classical probability theory. One example of this
tendency is the improved L-V model proposed by Huang [14], in which the single strategy
selection only involves special cases and is inconsistent with actual situations.

6. Conclusions

In this study, based on the modified L–V model and quantum decision making theory,
our proposed model incorporates the initial strategy state, payoffs and entanglement
intensity of strategy interaction in an open social system, and can be used to investigate
player population dynamics. Simulation results show that our proposed model can be
used to interpret more realistic population dynamics in coexistence. One finding is that our
proposed model is not constrained by the assumption of density-dependent mechanisms.
Another finding is that our proposed model is not limited by the assumption of independent
strategies. Our theoretical analyses show similar conclusions to those from a modified
L–V model in that payoffs and entanglement intensity determine population dynamics,
equilibrium and stability, and that player population sizes in cooperative coexistence
would be larger than in competitive coexistence. Further, our results identify that the initial
strategy, combined with the entanglement intensity of strategy interaction, play a vital role
in game outcomes and game process, which greatly differs from the results from previous
studies, which put aside the initial strategy state. Additionally, our results clearly reveal
why stronger players may be defeated by the weaker competitors, at times, in the real
world.

Understanding the influence of entanglement intensity on interactive strategy, initial
strategy state, and payoffs on player population dynamics, equilibrium and stability should
be regarded as an important step to elucidate player population dynamics in an open social
system which more closely simulates reality. In this study, some limitations are worth
noting. Although our model theoretically delineates the characteristics of population size
evolution with strategy interaction, designing experimental methods to compute strategy
interaction intensity is one of the key issues to be investigated in the future. Further study
will empirically test our proposed model by designing experimental methods to estimate
strategy interaction intensity.
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