
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

Molecular docking and geographical information systems as 

tools to assess the potential impact of veterinary medicines on 

non-target organisms and the environment

Bowker, F.

 

This is an electronic version of a PhD thesis awarded by the University of Westminster. 

© Miss Faye Bowker, 2015.

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk


1 
 

Molecular docking and geographical information systems as 

tools to assess the potential impact of veterinary medicines 

on non-target organisms and the environment 

 

 

 

 

 

 

Faye Bowker 

 

 

 

 

 

 

A thesis submitted in partial fulfilment of the requirements 

of the University of Westminster for the degree of doctor of 

philosophy 

 

September 2015

 



i 
 

Abstract 

Veterinary medicines (VMs) from agricultural industry can enter the environment in a number of 

ways. This includes direct exposure through aquaculture, accidental spillage and disposal, and 

indirect entry by leaching from manure or runoff after treatment. Many compounds used in 

animal treatments have ecotoxic properties that may have chronic or sometimes lethal effects 

when they come into contact with non-target organisms. VMs enter the environment in mixtures, 

potentially having additive effects. Traditional ecotoxicology tests are used to determine the 

lethal and sometimes reproductive effects on freshwater and terrestrial organisms. However, 

organisms used in ecotoxicology tests can be unrepresentative of the populations that are likely 

to be exposed to the compound in the environment. Most often the tests are on single compound 

toxicity but mixture effects may be significant and should be included in ecotoxicology testing. 

This work investigates the use, measured environmental concentrations (MECs) and potential 

impact of sea lice treatments on salmon farms in Scotland. Alternative methods for ecotoxicology 

testing including mixture toxicity, and the use of in silico techniques to predict the chronic impact 

of VMs on different species of aquatic organisms were also investigated. 

The Scottish Environmental Protection Agency (SEPA) provided information on the use of five sea 

lice treatments from 2008-2011 on Scottish salmon farms. This information was combined with 

the recently available data on sediment MECs for the years 2009-2012 provided by SEPA using 

ArcGIS 10.1.  In depth analysis of this data showed that from a total of 55 sites, 30 sites had a MEC 

higher than the maximum allowable concentration (MAC) as set out by SEPA for emamectin 

benzoate and 7 sites had a higher MEC than MAC for teflubenzuron. A number of sites that were 

up to 16 km away from the nearest salmon farm reported as using either emamectin benzoate or 

teflubenzuron measured positive for the two treatments. There was no relationship between 

current direction and the distribution of the sea lice treatments, nor was there any evidence for 

alternative sources of the compounds e.g. land treatments.  The sites that had MECs higher than 

the MAC could pose a risk to non-target organisms and disrupt the species dynamics of the area. 

There was evidence that some marine protected sites might be at risk of exposure to these 

compounds. 

To complement this work, effects on acute mixture toxicity of the 5 sea lice treatments, plus one 

major metabolite 3-phenoxybenzoic acid (3PBA), were measured using an assay using the 

bioluminescent bacteria Aliivibrio fischeri. When exposed to the 5 sea lice treatments and 3PBA A. 

fischeri showed a response to 3PBA, emamectin benzoate and azamethiphos as well as 

combinations of the three. In order to establish any additive effect of the sea lice treatments, the 

efficacy of two mixture prediction equations, concentration addition (CA) and independent action 
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(IA) were tested using the results from single compound dose response curves. In this instance IA 

was the more effective prediction method with a linear regression confidence interval of 82.6% 

compared with 22.6% of CA.  

In silico molecular docking was carried out to predict the chronic effects of 15 VMs (including the 

five used as sea lice control). Molecular docking has been proposed as an alternative screening 

method for the chronic effects of large animal treatments on non-target organisms. Oestrogen 

receptor alpha (ERα) of 7 non-target bony fish and the African clawed frog Xenopus laevis were 

modelled using SwissModel. These models were then ‘docked’ to oestradiol, the synthetic 

oestrogen ethinylestradiol, two known xenoestrogens dichlorodiphenyltrichloroethane (DDT) and 

bisphenol A (BPA), the antioestrogen breast cancer treatment tamoxifen and 15 VMs using Auto 

Dock 4. Based on the results of this work, four VMs were identified as being possible 

xenoestrogens or anti-oestrogens; these were cypermethrin, deltamethrin, fenbendazole and 

teflubenzuron. Further investigation, using in vitro assays, into these four VMs has been 

suggested as future work. A modified recombinant yeast oestrogen screen (YES) was attempted 

using the cDNA of the ERα of the zebrafish Danio rerio and the rainbow trout Oncorhynchus 

mykiss. Due to time and difficulties in cloning protocols this work was unable to be completed. 

Use of such in vitro assays would allow for further investigation of the highlighted VMs into their 

oestrogenic potential. 

In conclusion, VMs used as sea lice treatments, such as teflubenzuron and emamectin benzoate 

may be more persistent and have a wider range in the environment than previously thought. 

Mixtures of sea lice treatments have been found to persist together in the environment, and 

effects of these mixtures on the bacteria A. fischeri can be predicted using the IA equation. Finally, 

molecular docking may be a suitable tool to predict chronic endocrine disrupting effects and 

identify varying degrees of impact on the ERα of nine species of aquatic organisms. 
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Table of Species 

Latin name Common name 

Acartia tonsa Marine copepod* 

Aliivibrio fishceri Bioluminescent marine bacteria* 

Anabaena flos-aquae Cyanobacteria* 

Aphodius constans  Dung beetle 

Apis cerana Asiatic honey bee 

Caligus elongatus Sea louse 

Chironomus riparius  Harlequin fly/bloodworm 

Chironomus tentans Non-biting midge/bloodworm 

Chironomus yoshimatsui Non-biting midge/bloodworm 

Corophium volutator  Amphipod crustacean* 

Crangon septemspinosa  Sand shrimp 

Crassostrea gigas Pacific oyster 

Danio rerio Zebra fish 

Echinogammarus marinus Amphipod crustacean* 

Eisenia fetida/E. Andrei Brandling worm 

Escherichia coli  Gram-negative bacteria* 

Euprymna scolopes  Hawaiian bobtail squid  

Gasterosteus aculeatus Three spined stickleback 

Gavia stellata Red-throated loon 

Gyps bengalensis  White-rumped vulture  

Hediste diversicolor Ragworm 

Homarus americanus  American lobster 

Homarus gammarus  European lobster 

Homo sapiens Human 

Lemna minor Duckweed 

Lepeophtheirus salmonis  Sea louse 

Leptometra celtica  Filter feeding echinoderm* 

Lutra lutra  European otter 

Marisa cornuarietis Giant ramshorn snail 

Musca autumnalis  Face fly 

Mysid sp.  Opossum shrimp 

Mytilus galloprovincialis  Mediterranean mussel 

Navicula pelliculosa Diatom* 

Nitocra spinipies  Epibenthic copepod* 

Nucella lapillus Dog whelk 

Onchrynchus mykiss Rainbow trout 

Ophiopsila annulosa Gravel brittle star  

Oreochromis niloticus  Nile tilapia 

Palaemon elegans  Rock shrimp 

Phaeodactylum tricornutum Diatom* 

Phoca vitulina  Harbour seal 

Pimephales promelas Fathead minnow 

Placostegus tridentatus  Rare tubeworm*  

* = species description due to common name being unavailable 
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Table of Species continued 

Latin name Common name 

Pseudokirchneriella subcapitata Microalga* 

Rutilus rutilus Common roach 

Saccharomyces cerevisiae  Brewer’s yeast 

Salmo salar Atlantic salmon 

Scathophaga stercoraria Yellow dung fly 

Skeletonema costatum  Diatom* 

Sparus aurata Gilt head bream 

Spodoptera exigua Beet armyworm 

Tisbe holothuriae Harpacticoid copepod* 

Trialeurodes vaporariorum   Whitefly 

Vibrio harveyi Bioluminescent marine bacteria* 

Xenopus laevis African clawed frog 

* = species description due to common name being unavailable 
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Chapter 1 

General Introduction 

Large animal treatments, including veterinary medicines (VMs), endo and ectoparasiticides, 

aquaculture treatments and antibiotics are widely used in agriculture throughout the world. They 

are essential for good animal welfare, producing healthy animal products and preventing financial 

loss (Capleton et al., 2006). These compounds have the potential to pollute both the terrestrial 

and aquatic environment, through point source (direct) and diffuse (indirect) entry; potentially 

damaging non-target organisms (table 1.1). While human pharmaceuticals and VMs consist of 

broadly the same active ingredients, with the exception of some parasiticides, entry into the 

environment differs. The main route of entry to the environment from human pharmaceuticals is 

through the sewage system and so potential threats are to aquatic ecosystems, commonly at 

continuous, low concentrations (Crane et al., 2006). However, with the exception of aquaculture 

treatments, VMs are applied in much larger doses and are often administered to a whole flocks 

and herds. In contrast, VMs used to treat companion animals are considered to be of lower risk 

than those used in food production animals in terms of environmental pollution due to their 

relatively low administration levels (Boxall et al., 2003). The main concern with terrestrial VMs is 

that manure containing the parent and/or metabolised active ingredient reaches the terrestrial 

environment, creating spots of contamination which are a particular concern for non-target 

terrestrial organisms (Svendsen et al., 2005). There is also the potential that VMs may leech into 

the aquatic environment, although the most likely route of entry to aquatic environments is 

though aquaculture, topical administration, spillage or disposal (Crane et al., 2006; De Knecht et 

al., 2009). 

Table 1.1 Most common routes of entry for VMs. 

Route of 

Entry 

Type of 

Administration 

Example 

 

Runoff Topical Following application of topical treatment contamination 

can occur through precipitation or through treated animals 

directly entering a water source. 

Waste 

material 

Oral, parental, 

topical 

Manure spreading, wastewater from aquaculture, 

wastewater from sheep dip, wastewater from clean up, 

residues on administrators’ clothes. 

Excretion Oral Via faeces and urine. 

Spillage Oral, parental, 

topical 

Accidental or deliberate spillage directly into watercourse or 

onto land. 

Disposal Oral, parental, 

topical 

Containers of VMs hold residues, when disposed into regular 

waste VMs can enter the environment. 

Adapted from (De Knecht et al., 2009) 
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Sheep dips are of particular concern, not only are they considered highly toxic, but the method of 

disposal is either via soakaways or direct application to ‘sacrificial’ land (Boucard et al., 2008). 

Aquaculture is also beginning to attract attention and concern. It is a rapidly growing industry and 

the need for VMs such as ectoparasiticides, disinfectants and antibacterials is increasing. Salmon 

farms are situated directly in the ocean with no physical barrier between the farm and the marine 

environment except a metal cage. This makes it inevitable that VMs used in aquaculture are 

quickly dispersed into the surrounding water column and sediment, with a resultant risk to non-

target organisms. Aquaculture VMs are also likely to enter the environment as mixtures, as 

treatments may be used in conjunction. At present, ecotoxicology tests are generally single 

species, single compound tests and do not take into account the additive effects of mixtures. A 

report published by Kortenkamp et al. (2009) for the European Union (EU) commission (EC) 

highlighted the importance of testing mixtures of compounds that are likely to enter the 

environment together. This has not yet been embedded in ecotoxicology regulation. 

Perhaps the most documented case of a VM causing environmental damage is that of diclofenac 

in India and Pakistan. Populations of Gyps spp. vultures considerably declined in the early 1990’s. 

It was found that they were feeding on the carcasses of livestock that had been previously treated 

with diclofenac (Taggart et al., 2007). Diclofenac has been used in human pharmaceuticals since 

the 1970s, but as it is readily metabolised and has a low potency, environmental impacts were 

never thought to be a problem (EMEA, 2004). The 50% lethal dose (LD50) data for rats, mice and 

rabbits is 53 mg/kg, 95 mg/kg and 157 mg/kg respectively making it a low risk drug (CVMP, 2004).  

Aquatic ecotoxicology data for diclofenac is limited, effect concentration 50% (EC50) data is 

available for the water flea Daphnia magna which Cleuvers (2004) reported to be at 68 mg/L. 

Schwaiger et al. (2004) found that a 28 day EC50 chronic effect of diclofenac on the rainbow trout 

Oncorhynchus mykiss occurred at 5 μg/L and concluded that a no observed effect concentration 

(NOEC) for the species was 1 μg/L. It has also been reported that some rivers have been known to 

contain up to 2 μg/L (Schwaiger et al., 2004). Toxicity tests on the white-rumped vulture Gyps 

bengalensis have shown that even the recommended low dose for treatment of mammals, 0.25 

mg/kg bodyweight (bw), can cause death by renal failure and visceral gout (Oaks et al., 2004). This 

serves as an excellent illustration of why using LD50 data from model species is flawed. Not only 

does the LD50 concentrate on acute toxicity, disregarding chronic effects, data is only available for 

a few select test organisms. Thus finding sensitivity in species that have not previously been 

considered becomes difficult. As part of the Water Framework Directive (WFD), ‘mechanism to 

identify emerging pollutants’, a recently compiled report by the EU Joint Research Council (JRC), 

under directive 2008/105/EC (the Environmental Quality Standards Directive, EQSD), has added 

diclofenac to its emerging pollutant watch list along with 17α-oestradiol (E2) and 17β-

ethinylestradiol (EE2). The watch list is a list of ten substances that are to be closely monitored for 
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the next four years on an EU wide level in order to monitor and regulate their use. Diclofenac was 

added due to growing concerns on its concentration in water and its resulting impacts on wildlife, 

however there is little evidence to support this which is why it has been included in the watch list 

(Loos, 2015).  

The potential for VMs to reach the environment largely depends on the target group and method 

of application. All aquaculture treatments are classed as high risk for their potential to reach the 

environment, as they are applied directly to the environment. Topical treatments that are applied 

to intensively reared animals are also high risk; this includes sheep dip and spray on solutions of 

antimicrobials. The potential to reach the environment from topical treatments is especially high 

when it is raining or the treated animals are near waterways soon after treatment, as wash off is 

likely to contain the parent compound (De Knecht et al., 2009). Many topical treatments are used 

for the control of parasites; therefore they are specifically designed to target invertebrates (De 

Knecht et al., 2009). Non-target invertebrates are especially at risk when exposed to these types 

of VMs. Medium risk treatments include those applied to herd animals either orally or 

intravenously and have a low or medium metabolism (low 80%-20%; medium <20%) and those 

VMs applied to individual or companion animals topically. VMs that have a low risk of entering 

the environment are those that are applied to herd animals intravenously or orally and have a 

high metabolism (>80%) and those that are applied to individual or companion animals orally or 

intravenously, no matter their metabolism.  

1.1 Treatments in Aquaculture 

The aquaculture of salmon is a fairly new farming practice, which has been in existence in the EU 

since the 1960s. The intensity of fish farming and levels of production in the EU have risen 

significantly over the past twenty years along with the reduction of large scale fishing (European 

Commission, 2014). This is partly in response to the decline of global fish stocks and a growing 

demand due to population increases (Jiang, 2010). However, carnivorous fish aquaculture such as 

salmon farming has been criticised for potentially damaging wild populations, as the feed often 

comes from wild stocks; the spread of disease is increased; and escaped fish may interact with 

wild populations, potentially damaging the gene pool (Krkošek et al., 2006). Salmon farming is one 

of the biggest industries in Scotland, with 162,223 tonnes being produced in 2012 (Scottish 

Government, 2012) a 40.5 fold increase from 1984 where salmon production was just under 4000 

tonnes (Whitmarsh and Wattage, 2006). 

After Norway and Canada, Scotland is the third largest salmon producing nation (Burridge et al., 

2010) with the Scottish government hoping to increase production by a further 50% by 2020. 

Salmon can be kept at high densities e.g. sometimes up to 25 kg/m3 in Norway (Oppedal et al., 
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2011), which makes them more susceptible to infection, particularly by the sea lice 

Lepeophtheirus salmonis and Caligus elongatus. 

Geographical information systems (GIS) are maps, which are used to plot data with spatial 

information to provide a graphical interpretation of that data. Examples of the use of GIS data 

include the mapping, emergence and spread of the Ebola virus in West Africa (Pigott et al., 2014); 

determining inshore habitat types (Foster-Smith, 2010) and the modelling of particulate waste 

matter around aquaculture sites (Pérez et al., 2002).  The use of treatments to control the sea lice 

infestation has been of particular concern in Scottish aquaculture (Aaen et al., 2015; Boxaspen, 

2006; Sevatdal et al., 2005). GIS can provide visual interpretations to assist with the analysis of 

treatments that are being applied as mixtures; which treatments are being used and where; the 

proximity of fish farms to special areas of conservation (SACs) and special protection areas (SPAs); 

the comparison of treatment use over several years; below surface currents; and the distance 

between sea lice treatment use and MECs in the marine sediment in Scottish salmon farms (see 

chapter 2).  

1.2 Xenoestrogens in the Environment 

The impact of xenoestrogens on the common roach Rutilus rutilus and the rainbow trout O. 

mykiss is well documented. In field studies it was found that 5% of a R. rutilus population 

downstream of sewage treatment plants (STP) were hermaphrodites (Jobling et al., 2002). Other 

studies have concluded that the effluent from the STPs caused an increase in vitellogenin (VTG) 

production in male O. mykiss (Sumpter and Jobling, 1995). Other well-documented effects of 

xenoestrogens on fish in the environment include altered sexual development (Jobling et al., 

1998); reduced fertility (Jobling et al., 2002); reduction in gonadosomatic growth index (Filby et 

al., 2007); reduced osmoregulation (Carrera et al., 2007; Lerner et al., 2012); reduced immune 

functions (Casanova-Nakayama et al., 2011); and altered embryonic development  (Jobling et al., 

2003). Not only does an increase in oestrogenic substances cause change on a physiological level, 

but on a population level. Over a seven year study on the chronic addition of EE2 to a whole lake 

in Ontario, Canada, Kidd et al. (2007) found that population dynamics of the fathead minnow 

Pimephales promelas reduced from 180 (± 48) catch per unit effort (CPUE) in 1999 to 0.1 (± 0.001) 

CPUE in 2004 at concentrations of just 5 ng/L EE2.  CPUE is a measure of abundance, in the Kidd et 

al. (2007) study CPUE was the mean number of  P. promelas caught per day averaged over a 100 

day period. 

VTG production is often used as a biomarker of the oestrogenic activity of a substance in fish. VTG 

is the yolk precursor protein that is synthesised with an increase in oestrogen production. VTG is 

found in high levels in the plasma of gravid female fish, but is found in much lower levels in male 

fish (Sumpter and Jobling, 1995). As well as pharmaceuticals which have been specifically 
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developed to have an oestrogenic effect, such as the active ingredient in the contraceptive pill, 

EE2 and diethylstilboestrol (DES), it has been shown that compounds that were designed for other 

uses can produce oestrogenic effects on non-target organisms, primarily bisphenol A (BPA) (Ben-

Jonathan and Steinmetz, 1998; Levy et al., 2004) and dichlorodiphenyltrichloroethane (DDT)  (Fu 

et al., 2007) as well as some phytoestrogens such as genistein (Ng et al., 2006). When 

investigating the oestrogenic effects of 200 pesticides against human oestrogen receptor (ER)α, 

human ERβ in an in vitro reporter assay using Chinese hamster ovaries Kojima et al. (2004) found 

that the synthetic pyrethroids, cypermethrin and permethrin, used in VM as ectoparasiticides, 

showed a positive oestrogenic response whereas Du et al. (2010) found the synthetic pyrethroid 

deltamethrin is a mild xenoestrogen and a major metabolite of several synthetic pyrethroids, 3-

phenoxybenzioc acid (3PBA), was found to be ER antagonist. Cypermethrin and deltamethrin are 

used in agriculture primarily as sheep dips and also as aquaculture treatments, permethrin is used 

as a topical treatment for domestic dogs and cats. 

It has been found that a number of chemicals used in industry and agriculture act as 

xenoestrogens. For instance BPA, often used in plastic and metal products, has been found to 

produce xenoestrogenic effects to a number of aquatic species such as the African clawed frog 

Xenopus laevis (Levy et al., 2004); the rainbow trout O. mykiss (Ackermann et al., 2002) and the 

zebrafish Danio rerio (Cosnefroy et al., 2011). Other chemicals have been found to have similar 

effects such as nonylphenol (Madigou et al., 2001); and DDT (Ackermann et al., 2002; Cosnefroy 

et al., 2011). It has also been reported that a number of VMs may have xenoestrogenic effects on 

non-target organisms (Kojima et al., 2004) although there has been little work to support this.  

In the aquatic environment, invertebrates such as molluscs and crustaceans also come into 

contact with xenoestrogens. Although many molluscs, such as the Pacific oyster Crassostrea gigas 

and the freshwater giant ramshorn snail Marisa cornuarietis have been found to have receptors 

similar to vertebrate ER in vitro studies have shown that they do not bind to oestrogens and 

xenoestrogens in a similar way to their vertebrate counterparts (Bannister et al., 2013; Bannister 

et al., 2007). However, in vivo studies have shown that oestrogens and xenoestrogens can have a 

physiological effect on molluscs. Oehlmann et al. (2000) showed that the known xenoestrogens 

bisphenol A (BPA) and octylphenol (OP) elicit a response on the female organs of M. cornuarietis 

and the dog whelk Nucella lapillus, including an increase in size of the pallial sex gland, formation 

of a second vagina and abnormality of the pallial oviduct. Pallial sex gland increases were also 

found in N. lapillus by Castro et al. (2007) when exposed to sewage effluent containing BPA and 

OP. 

It is important to note that the biological pathway that a xenoestrogen takes can have impacts on 

several genes, and that these effects can vary between male and female, and with tissue. 
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Examples of genes affected by an increase in oestrogenic substances include thyroid hormone 

receptor-α (thra), growth hormone (gh) and insulin like growth factor (igf1), which may present 

complications not only affecting reproduction but other physiological changes such as growth and 

disturbances in osmoregulatory functions (Filby et al., 2006; Lerner et al., 2012). Alterations noted 

in male fish include the increase of VTG leading to reduced gonadal development and resulting in 

intersex characteristics, as well as reduced sperm motility and delayed sexual maturation (Jobling 

et al., 2002; Jobling et al., 1998; Kidd et al., 2007). Changes in females include reduced fecundity 

and altered oogenesis (regressed and vacuolated oocytes) (Jobling et al., 2002; Jobling et al., 

1998; Kidd et al., 2007). 

1.3 Using Molecular Docking as a Predictor of Ecotoxicology 

Traditionally molecular docking has been used in drug development (Gschwend et al., 1996), 

however it has been proposed more recently that molecular docking could be used to aid 

ecotoxicology testing (Raunio, 2011; Shyu et al., 2011). While there are some commercially 

available programs such as FlexX and molegro there are also programs such as AutoDock 4, 

AutoDock Vina and DOCK that are available as open source software. Selected biomarker species 

are designated for traditional ecotoxicology testing, in aquatic environments these are generally 

an algae species (usually Pseudokirchneriella subcapitata, Skeletonema costatum, Navicula 

pelliculosa, Anabaena flos-aquae), an aquatic plant species (generally the duckweed Lemna 

minor) an invertebrate species (usually the water flea D. magna) and a fish species (e.g. the 

rainbow trout O. mykiss or the zebrafish D. rerio). These organisms might not always be 

representative of a given aquatic environment (Meredith-Williams et al., 2012). It is proposed, in 

this study, that molecular docking programs could assist ecotoxicology testing by enhancing their 

relevance to the ecosystem that might be exposed to particular VMs through the ability to test 

species appropriate for the particular ecosystem. 

Using these programs, this research is intended to provide an indication of which species may be 

more sensitive than others to certain VMs, and therefore which species may be appropriate 

target species when environmental risk assessments (ERA) are being designed. This represents a 

novel approach to ecotoxicology testing. Further wet work would need to be carried out if there 

are potential matches between species and compounds. Currently a mode of action (MOA) 

approach is being used i.e. where the MOA of the compound is considered as part of the ERA 

(ECETOC, 2007). 

However, although certain pharmaceuticals and pesticides might have specific MOAs, it does not 

necessarily mean that they will only act on specific pathways and receptors. It is likely that they 

will act on other channels that may not have been considered (Hutchinson, 2002). By using high 

throughput screening of different receptors and different species links between compounds and 
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different channels can be made, further aiding the specificity of testing, and contributing to 

reducing the time and cost of traditional ecotoxicology testing. Therefore the focus of molecular 

docking in this instance will be on the oestrogen receptor alpha (ERα) of several aquatic species as 

endocrine disrupting chemicals (EDCs) and in particular xenoestrogens have been well 

documented in the aquatic environment (Bannister et al., 2013; Bannister et al., 2007; Ben-

Jonathan and Steinmetz, 1998; Jobling et al., 2003; Jobling et al., 2002; Jobling et al., 1998; Jobling 

and Tyler, 2003; Sumpter and Jobling, 1995; Urbatzka et al., 2012).  

There are limitations to using this technology in ecotoxicology testing. Firstly, 3 dimensional (3D) 

models of receptors need to be available. 3D coordinates of existing X-ray crystallography 

structures of receptors can be fed into the programs and their interactions with ligands of interest 

can be studied. However, as there are relatively few X-ray crystallography structures available, 

presently models are made using the existing X-ray crystallography structures as templates. 

Sequences of proteins with a similarity of >30% with an already existing 3D structure can be used 

as templates; however they must be used with caution and treated as theoretical proteins (Arnold 

et al., 2006). 

Once again, using sequences to build 3D structures has limitations in that only proteins that have 

been sequenced can be used and they must have a suitable 3D template available. Often, the 

crystal structure is not of the whole protein but of a specific domain. This is a fast developing 

technology, with more and more organisms sequenced and undoubtedly in the future these 

limitations will be reduced, enabling the use of 3D molecular docking to become more prevalent 

and relied upon.   

1.4 Regulation of veterinary medicines in the EU 

Environmental quality standards (EQS) are intended to protect non-target organisms from being 

exposed to levels of substances in the aquatic environment that may cause chronic or lethal 

effects. An EQS includes a maximum allowable concentration (MAC) that is calculated by 

determining the predicted no effect concentration (PNEC). The PNEC is a concentration of a 

substance that is thought to cause no effect in the environment. The PNEC is calculated by 

collecting ecotoxicology data from the ‘most sensitive species’ in the environment. Ecotoxicology 

tests are usually short-term acute tests, which rely on lethal concentration 50% (LC50); this is the 

concentration where 50% of the population exposed is expected to suffer the lethal effect of the 

given compound. The effect concentration 50% (EC50) is the concentration of the test compound 

at which a pre-determined effect on 50% of the population is achieved. This effect could refer to 

chronic effect (such as the concentration at which 50% of the population fail to produce offspring, 

compared with the control) or it could refer to a lethal effect (the concentration at which 50% of 

the population is unresponsive, this is usually used for invertebrates). By determining an EC50 or 
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LC50 of the most sensitive species and applying an assessment factor (AF) to it (usually 10 – 1000 

times lower than the effect concentration), then it is assumed that the resulting concentration 

would cause no adverse effect on the wider community (European Commission, 2003). A downfall 

to the PNEC is that the most sensitive species may not always be the most sensitive and more 

‘robust’ species may in fact suffer the effects of a substance more, such as the example of Gyps 

spp. vultures in section 1 of this chapter (Naidoo et al., 2007; Taggart et al., 2007). Calculation of a 

predicted environmental concentration (PEC) is more complicated than the PNEC. There is a 

different PEC depending on the environmental compartment in which the substance is to be 

released, for example in the aquatic environment there is the PECaquatic and PECsediment, and in the 

terrestrial environment there is the PECsoil. A number of factors must be taken into consideration 

when calculating the PEC, these include projected use in kg; sources of entry (see table 1.1); 

environmental fate and physicochemical properties, such as log Kow and solubility (see section 1.4 

on regulation of VMs in the EU). If a PNEC is lower than a PEC then a substance may not be 

authorised for use or tougher regulation on licensing may be applied. However PECs are difficult 

to calculate, especially in sediment. Often the measured environmental concentration (MEC) of a 

substance can be substantially higher than the PEC (Boxall et al., 2002). MECs are unavailable for a 

number of VMs, so it can be difficult to know whether or not they are having an effect on the 

environment and non-target organisms. Currently there is very little information on the 

bioavailability and adsorption of substances in sediments, this is especially concerning as, with the 

exception of azamethiphos and deltamethrin, the treatments used to control sea lice in fish farms 

disperse quickly from the water column and are likely to have a strong adsorption to sediment 

(see chapter 2, section 2.1.2 table 2.1).  

In 2007 the registration, evaluation, authorisation and restriction of chemicals (REACH) was 

implemented by the European chemicals agency (ECHA) under regulation (EC) No 1907/2006 of 

the European Parliament and Council. REACH is an EU wide initiative which aims to manage the 

risk of chemicals by collecting safety information on chemicals used or produced within the EU. 

The majority of chemicals are regulated by REACH; however products exempt from REACH include 

human pharmaceuticals (under Directive 2001/83/EC) and VMs (under Regulation (EC) No 

176/2004; Directive 2001/82/EC). Although all of the products discussed in this study are VMs it is 

important to note that some also fall under the category of plant protection products, which 

would fall under the regulation of REACH as well as the sustainable use of pesticides (Directive 

2009/128/EC) and the WFD (Directive 200/60/EC). In particular endo and ectoparasiticides such as 

the synthetic pyrethroids cypermethrin and deltamethrin, and the organophosphates 

azamethiphos and diazinon would be subject to REACH regulation (HSE, 2012). 
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Medicinal products which do not fall under REACH and are instead covered by regulation (EC) No 

726/2004 ‘Community procedures for the authorisation and supervision of medicinal products for 

human and veterinary use and establishing a European Medicines Agency’ and more specifically 

for VMs, the directive 2001/82/EC ‘Community code relating to veterinary medicinal products’ 

applies.  This regulation is covered by an EU-Japan-USA wide programme: ‘International 

Cooperation on Harmonisation of Technical Requirements for Registration of Veterinary 

Medicinal Products’, otherwise known as VICH. VICH aims to harmonise the regulation of 

veterinary pharmaceuticals on an international scale. In terms of environmental impact 

assessments (EIA) there are two phases new VMs must pass through (VICH, 2000; VICH, 2006).  

Phase I (VICH-GL6) of the EIA comprises of a series of questions on the properties of the VM to 

assess the possible impacts on the environment. Some VMs may pass through phase I without 

progressing to phase II, these are VMs which are used in low quantities and/or are substances 

made from natural products that degrade easily in the environment, for example vitamins, 

peptides and proteins (VICH, 2000). Questions include information on the estimated use, target 

species, whether the target species is to be treated in the aquatic or terrestrial environment, and 

estimates on PECs (VICH, 2000). A VM which is used for large numbers of animals at once, has an 

environmental introduction concentration (EICaquatic) of >1 μg/L or a PECsoil of >100 μg/kg or is a 

ecto or endoparasiticide will most likely progress to phase II EIA which includes more complex 

physical-chemical analysis (table 1.2), environmental fate studies (table 1.3) and ecotoxcity testing 

(table 1.4).  

Phase II (VICH-GL38) can be split into three branches of use depending on the target species main 

environment. The three branches are aquaculture, intensively reared animals and pasture 

animals. Phase II can also be split into tier A and tier B. Phase II focuses on gathering information 

to calculate a risk quotient (RQ). The RQ is based on calculated PEC and PNEC values. The RQ is 

calculated as set out in equation 1.1 (VICH, 2006). 

Equation 1. 1 

𝑅𝑄 =
𝑃𝐸𝐶

𝑃𝑁𝐸𝐶
 

Where the RQ is equal to the PEC over the PNEC. If the RQ is <1 then further testing is no longer 

needed, if the RQ ≥1 then further testing is required and the VM must go to tier B of testing.  
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Physical-chemical properties tests must be carried out on all VMs that progress to phase II (table 

1.2). Physical-chemical properties can give vital information on how the test compound may 

interact in the environment and within biota (VICH, 2006). Water solubility along with n-

octanol/water coefficient gives information on how hydrophobic or hydrophilic a compound is. 

Hydrophobic compounds will have low water solubility and are more likely to accumulate in the 

sediment or bioaccumulate in fatty tissues within the body of organisms. A compound with a log 

Kow of ≥ 5 raises concerns over the likelihood of bioaccumulation (Montforts, 2006). The PEC is 

determined by the results from physical-chemical (table 1.2) and environmental fate tests (table 

1.3). The PNEC is determined by the results from the EC50 or LC50 test. An assessment factor (AF) is 

applied to each test species, an AF of 1000 means that the PNEC would be 1000 times lower than 

the EC/LC50 value as determined from the acute toxicity test. After testing has established a PEC 

and PNEC then a RQ can be calculated (equation 1.1).  

Table 1.2 Physical-Chemical property tests to be conducted on VMs in tier A phase II of VICH 

guidelines. 

Study Description Guideline  

Water Solubility Maximum saturation mass of the VM in water 

at 20°C ± 0.5°C. 

OECD 105 (OECD, 

1995b) 

Dissociation constant 

in water  

The concentration at which a reversible spiting 

of one chemical compound into two or more 

smaller chemical species. 

OECD 112 (OECD, 

1981b) 

UV-Visible absorption 

spectrum 

The UV-Visible absorption spectrum gives 

information on the wavelengths needed for the 

photochemical degradation of the VM. 

OECD 101 (OECD, 

1981a) 

Melting point/range The temperature range needed for the VM to 

go from its solid state to its liquid state. 

OECD 102 (OECD, 

1995a) 

Vapour pressure The saturation pressure of a VM either in its 

liquid or solid form. This is also described as the 

equilibrium between the liquid (or solid) and its 

vapour.  

OECD 104 (OECD, 

2006a) 

n-Octanol/water 

partition coefficient  

The n-octanol/water coefficient determines the 

dissociation of the VM between two immiscible 

substances (in this case the fatty alcohol 

octanol and water). This can then establish the 

log Kow which helps estimate a VMs 

bioaccumulative potential.  

OECD 107 (OECD, 

1995c) or 117 (OECD, 

2004c) 
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Environmental fate tests need to be carried out on all VMs which progress to phase II (table 1.3). 

Photolysis and hydrolysis tests are optional, however they can help build a bigger profile on 

degradation and persistence in the environment (VICH, 2006). 

Table 1.3 Environmental fate tests required in tier A of phase II of VICH 

Study Description Guideline 

Soil 

adsorption/desorption 

Using a variety of soils with differing 

components (clay, organic carbon, sand) the 

partition coefficient can be determined for a 

number of environments, therefore 

determining a range. 

OECD 106 (OECD, 

2004a) 

Soil biodegradation The rate of transformation of the VM in aerobic 

and anaerobic soils where a half-life can be 

determined. 

OECD 307 (OECD, 

2002a) 

Degradation in aquatic 

systems 

VM is added to aquatic system and degradation 

in sediment is measured, half-lives can be 

determined. 

OECD 308 (OECD, 

2002b) 

Photolysis The amount of time taken for a VM to break 

down in water when exposed to differing 

degrees of light. 

OECD 316 (OECD, 

2008b) 

Hydrolysis The amount of time taken for VM to break 

down in water in three different pH values, 4, 7 

and 9. The tests are carried out for 5 days at 

50°C ± 0.5°C. 

OECD 111 (OECD, 

2004b) 
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Aquatic toxicology tests are usually only required for VMs which will directly enter waterways, for 

example VMs used in aquaculture (table 1.4). Further aquatic ecotoxicology testing may be 

needed for VMs intended for terrestrial use which progress to tier B (VICH, 2006). 

Table 1.4 Aquatic ecotoxicology tests required for tier A phase II VICH. 

Study Description Guideline 

Freshwater algae 

inhibition  

Freshwater algae or cyanobacteria are exposed 

to 72-hour EC50 test. A range of concentrations 

is tested and the rate of growth is measured 

against a control culture. PNEC is determined 

by an AF of 100. 

OECD 201 (OECD, 

2011) 

Freshwater Daphnia 

immobilisation 

Freshwater invertebrate, the water flea 

Daphnia sp. (most commonly D. magna) 

subjected to 48-hour EC50 test. Daphnids under 

24 hours old are exposed to a range of 

concentrations; immobilisation is recorded and 

compared with controls. PNEC is determined 

by an AF of 1000. 

OECD 202 (OECD, 

2004d) 

Freshwater acute fish  Freshwater fish undertake a 96-hour LC50 test. 

No species of fish is specified. Over a period of 

96 hours fish are exposed to a range of 

concentrations of test VM, percentage of death 

is compared to controls, where 10% is the 

maximum death allowed in the control. PNEC is 

determined by an AF of 1000. 

OECD 203 (OECD, 

1992) 

Marine algae inhibition  Similar to freshwater algae inhibition, but with 

marine specific media and the marine algae 

Skeletonema costatum and Phaeodactylum 

tricornutum. PNEC is determined by an AF of 

100. 

ISO 10253 

Marine crustacean 

acute  

One of the three copepod species Acartia 

tonsa, Nitocra spinipies or Tisbe holothuriae to 

be subjected to a range of concentrations of 

test VM for 96 hours. PNEC is determined by an 

AF of 1000. 

ISO 14669 

Marine acute fish  No official guideline is available for the acute 

test on marine fish. However it is assumed that 

the test is similar to the freshwater acute test, 

with marine species in marine media. PNEC is 

determined by an AF of 1000. 

No current guideline, 

seek professional 

advice. 
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Terrestrial ecotoxicology tests are needed for VMs that are applied to terrestrial animals, for 

example topical treatments for herds such as sheep dip (table 1.5). 

Table 1.5 Terrestrial toxicity tests required for tier A testing in phase II VICH EIA. 

Study Description Guideline 

Nitrogen 

transformation 

in soil 

Soil is treated with the highest concentration of VM 

expected in the field. After 0, 7, 14 and 28 days of 

incubation soil a sample of soil is taken and a solvent 

added to extract nitrates. Results are compared to 

controls, if the difference between the control soil and the 

soil treated with the test VM is <25 % the test is carried on 

for 100 days. After 100 is the difference is still <25 % the 

VM progresses to tier B of testing. 

OECD 216 

(OECD, 2000) 

Terrestrial 

plants 

Seeds are planted in soil that has been spiked with various 

concentrations of the test VM. Seedling emergence and 

plant growth are measured and compared with the 

control. A number of crops are used in this study including 

tomato, barley and onion plants. An AF of 100 is applied to 

this test to determine a NOEC. 

OECD 208 

(OECD, 2006b) 

Earthworm 

reproduction 

The earthworm reproduction test uses either Eisenia fetida 

or E. andrei. Worms are exposed to soil, which has been 

spiked with varying concentrations of test VM. The test is 

carried out over 28 days and effects such as growth, 

number of cocoons produced and abnormalities are 

recorded and compared against the control. 

OECD 222 

(OECD, 2004e) 

Dung fly larvae Dung is spiked with the test VM at various concentrations, 

10 eggs of Scathophaga stercoraria or 10 larvae of Musca 

autumnalis are also added to the dung. Five days after the 

emergence of the last adult from the control, the test is 

stopped. Effects on sex and number of emerged adults, 

and physical abnormalities are recorded and a NOEC/ECx 

can be determined. 

OECD 228 

(OECD, 2008a) 

Dung beetle 

larvae 

Dung is spiked with the test VM at various concentrations; 

seven individuals of Aphodius constans in the 1st instar 

larval stage (≤ 7 days old) are added to the dung. Endpoints 

are EC50 and NOEC. Observations on survival and 

morphological changes are made once a week for three 

weeks until the end of the test (21 days).  

Unclassified 

ENV/JM/MONO

(2010)13 

(OECD, 2010) 
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For VMs with a RQ of ≥1 (see equation 1.1) then tier B of phase II must be considered. Other 

instances where tier B of testing is required are when a VM has a log Kow ≥4 or where the effect on 

soil micro-organisms is > 25% for terrestrial use VMs (table 1.5). Tier B of phase II considers more 

rigorous tests such as fish bioconcentration and chronic effect studies. Tier B of phase II is more 

focused in that tests only need to be carried out for those species in which the RQ is ≥1. Detailed 

below are the chronic studies used in tier B, phase II of VICH (table 1.6). 

Table 1.6 Aquatic ecotoxicology testing in regard to tier B, phase II of VICH. 

Study Description Guideline 

Freshwater 

algae growth 

inhibition and 

marine algae 

growth 

inhibition 

This is the same test as previously described in table 

1.3, however in this tier the NOEC must be 

measured and an AF of 10 applies. The study must 

use the same algal species as in tier A. 

OECD (2011) 

201 

(freshwater); 

ISO 10253 

(marine) 

D. magna 

reproduction  

Young female D. magna are exposed to a range of 

concentrations of the VM over a period of 21 days. 

Surviving offspring are counted daily. Other features 

can also be recorded such as the sex ratio of 

offspring. The LOEC and NOEC are reported and an 

AF of 10 is applied. 

OECD 211  

Freshwater 

fish early life 

stage 

At least 60 fertilised eggs are exposed to a range of 

concentrations of the test VM. The test lasts until all 

control eggs are free-feeding fish. The LOEC and 

NOEC are observed and an AF of 10 applies. 

OECD 210  

Freshwater 

sediment 

invertebrate 

species 

toxicity 

Chironomid larvae are added to beakers containing 

sediment and water. Test subjects are exposed to 

either spiked sediment containing a range of 

concentrations of the test VM (OECD 218) or water 

containing a range of concentrations containing the 

test VM (OECD 219). The study lasts either 28 days 

(for Chironomus riparius and C. yoshimatsui) or 65 

days (for C. tentans). Emergence time, survival and 

egg deposition are recorded as well as any 

behavioural abnormalities. The LOEC and NOEC are 

recorded and an AF of 10 applies 

OECD 218 

(primary 

entry to 

environment 

through 

sediment or 

soil) OECD 

219 (primary 

entry to 

environment 

through 

water) 

Marine 

species NOECs  

Tier B, phase II also suggests the NOEC for 

crustacean chronic toxicity or reproduction, fish 

chronic toxicity and sediment invertebrate toxicity. 

As there are currently no official guidelines for these 

tests a description is not provided. An AF of 10 

applies to all. 

No current 

guidelines 
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VMs may need to go through re-evaluation if they pass through phase I but their intended use 

changes. For example, a substance that has been approved for use in domestic animals may pass 

through the EIA with relative ease, and without the need for further testing. If the use of that VM 

changes to include use in aquaculture or for pasture and intensively reared animals then 

progression to phase II testing is more likely to occur.  

1.5 Reduction in animal testing 

The paper "The Principles of Humane Experimental Technique” by Russell et al. (1959), first 

mentioned the 3Rs of animal testing, replacement, reduction and refinement. They suggested 

that where possible animals should be replaced with non-sentient alternatives. If testing was 

needed then a reduction in the number of animals to be used and refining the species used 

depending on the population to be exposed was essential.  This principle was not implemented in 

the UK until the 1980s with the creation of the ‘Animals (Scientific Procedures) Act 1986’ 

(Baumans, 2004; Home Office, 2014). While the use of vertebrates has been reduced and 

replaced with invertebrate and in vitro models, the use of invertebrates appears to still be heavily 

relied on in ecotoxicology testing. For testing on ‘sentient’ beings, special licences are required, 

however for most invertebrates (excluding cephalopods) licencing is not needed and tests can be 

carried out with relative ease (Home Office, 2014).  

Whilst nociception, the ability to recognise harmful stimuli, is a widely accepted response of both 

vertebrates and invertebrates the debate on whether invertebrates can experience pain is still a 

largely contentious issue (Sneddon et al., 2014). A number of research articles have attempted to 

clarify pain in invertebrates, and it is now accepted that cephalopods, such as squid and octopi, do 

experience pain and therefore testing on these animals is limited and controlled, with protocols 

put in place in order to reduce discomfort when testing (Andrews et al., 2013; Smith et al., 2013).   

Barr et al. (2008) exposed the rock shrimp Palaemon elegans to either pinching of the antenna, 

10% acetic acid or a local anaesthetic treatment of 2% benzocaine. Tail flicking, a reflex behaviour, 

was observed as was grooming of the treated antenna. They found that a significant number of 

shrimp flicked their tail and groomed the antenna that had not been treated with anaesthetic 

after being subjected to either 10% acetic acid or pinching. 

Although there is no way of conclusively determining whether invertebrates experience pain in a 

similar way to humans, the above studies suggest that there is at least a response which indicates 

pain when exposed to noxious stimuli. Therefore it has been proposed that the precautionary 

principle should also be applied to invertebrate testing with a reduction in testing, and more 

stringent controls over euthanasia techniques with regards to invertebrates (Sneddon et al., 

2014). While it is unlikely that animal testing will be totally eliminated in ecotoxicology testing, 
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the move towards more intelligent testing, which do not use the whole animal (in vitro) and the 

application of predictions using models (e.g. in silico) can help reduce the burden of testing, as 

well as potentially broadening our knowledge on the effects of chemicals on non-target 

organisms. 

1.6 Quantitative structure activity relationships (QSARs) in ecotoxicology 

Quantitative structure activity relationships (QSARs) are computer-aided prediction models used 

to determine the likely toxicity of a compound based on the already known toxicity of compounds 

with a similar structure (Schultz et al., 2003). Under the Organisation for Economic Cooperation 

and Development (OECD) there are guidelines on which QSAR tests are to be taken into 

consideration. Implementation of QSARs amongst member states of the OECD began in the early 

1990s, originally for use in aquatic ecotoxicology. QSARs are mathematical estimations on the 

effects of chemicals based on structure. The structure of the test compound is compared to a 

database of chemicals with pre-existing data on physical-chemical properties such as solubility, 

dissociation constant and n-octanol/water coefficient (table 1.2); environmental fate information 

such as biodegradation, soil sorption/desorption (see table 1.3) as well as ecotoxicity information 

(see tables 1.4, 1.5 and 1.6).  Predictions on the test compounds likely effects on the environment 

and biota can be extrapolated from this information and a RQ can be calculated. If the new 

compound has a RQ ≥1 then testing via VICH guidelines should commence (see this chapter, 

section 1.4) (VICH, 2000; VICH, 2006). QSARs are now heavily relied on, since the regulation of 

chemicals has vastly improved and since the implementation of REACH, which requires all 

chemicals currently manufactured or used in the EU to be registered before 2018, QSARs are a 

time and cost effective method of determining the likely effects of the test chemical. Although 

QSAR information cannot be used alone, it is a good early stage method to be used in conjunction 

with other methods such as high throughput in vitro testing. 

An advantage to using 3D QSARs such as molecular docking is that pre-existing data need not 

necessarily be used. Although pre-existing data is always an advantage, so long as the 3D 

structure of the compound is known and the 3D structure of the target protein is robust then 

predictions on binding can be made (Huey et al., 2007; Morris et al., 2009; Trott and Olson, 2010).  

1.7 VMs of high concern in intensive farming in the UK 

While prioritising the potential hazard the use of VMs in UK farming cause to the environment, 

Boxall et al. (2003) categorised 56 VMs as being high risk and high priority in the UK environment. 

Selection criteria for the prioritisation of these VMs are laid out below (figure 1.2). Of the high-risk 

VMs described, three are used in aquaculture to control sea lice in salmon farms (Boxall et al., 

2003). These three, cypermethrin, deltamethrin and emamectin benzoate are described in detail, 

along with their potential environmental impacts in chapter 2. Along with these three VMs a 
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fourth, azamethiphos, and a fifth, teflubenzuron are used for sea lice control in salmon 

aquaculture. These five aquaculture VMs and a major metabolite of the synthetic pyrethroids, 3-

phenoxybenzoic acid, were tested for their mixture effects on the marine bacteria Aliivibrio 

fischeri (chapter 3) and in chapter 4 for their effects on the oestrogen receptor alpha (ERα) of ten 

species. Other VMs included in the prioritisation list  (Boxall et al., 2003) also were studied 

including sulfadiazine (an antibiotic used in aquaculture), diazinon (a sheep dip), fenbendazole, 

ivermectin, and amitraz. An in depth rationale behind choosing all of the VMs to be investigated 

in this project is set out in chapter 4 (section 4.2.1, table 4.2). 

 

Figure 1.1 Decision tree for potential risk of VMs in the environment. Adapted from Boxall et al. 

(2003). 

  



18 
 

1.8 Conclusion 

Ecological effects of the application of pesticides have been heavily researched (Cold and Forbes, 

2004; Langan and Shaw, 2006; Margni et al., 2002; Schäfer et al., 2007). Apart from antibiotics 

(Blackwell et al., 2009; Kay et al., 2005; Morris and Masterton, 2002; Sarmah et al., 2006), fish 

farm medicines (Kim et al., 2008; Zuccato et al., 2010) and sheep dips (Boucard et al., 2008; Virtue 

and Clayton, 1997) the environmental impacts of VMs have not received as much attention. 

Consideration of factors including compound mixtures (Cleuvers, 2004) and multi species trials 

(Boleas et al., 2005) are relatively under researched, this is an area which would benefit from 

further investigation. 

Current legislative practise of ecotoxicology testing has been criticised for being dated and 

unrepresentative (Barry and Davies, 2004). A commentary on a strategic seminar held by the 

Partnership for European Environmental Research (PEER) in November 2010 by Artigas et al. 

(2012) concluded that for ecotoxicology testing to support environmental, social and economic 

welfare then tests should not only rely on laboratory and field based studies but should also 

include, where possible, computer modelling programmes and GIS technologies offering a more 

informed awareness of the environmental fate of VMs.  

1.9 Hypotheses, Aim and Objectives 

1.9.1 Hypotheses 

1. Veterinary medicines used in intensive farming enter the environment as mixtures with the 

potential to have an additive effect, impacting negatively on non-target organisms. 

2. Molecular docking is a viable tool for determining the environmental impacts of veterinary 

medicines on non-target organisms. 

1.9.2 Aim 

To provide informed recommendations to improve the current methods of conducting 

environmental risk assessments, including the assessment of chemical mixtures, and 

environmental risk management on veterinary medicines used in intensive farming within the EU. 

1.9.3 Objectives 

Five objectives were set out for the current project. They are: 

1. Review the current knowledge base on VMs used in intensive farming including fish farm 

medicines in the environment (chapter 2; chapter 6). 

2. Investigate the potential environmental impacts of sea lice treatments individually and as 

mixtures with the aid of GIS (chapter 2).  
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3. Examine the predictive efficacy of two equations on mixture toxicity to the marine 

bioluminescent bacteria Aliivibrio fischeri (chapter 3). 

4. Determine potential effects of the selected VMs on non-target organisms using in silico 

techniques (chapter 4). 

5. Compare in silico work with in vitro assay using the yeast oestrogen screen (YES) (chapter 

5). 

6. Examine the proposed EU plans to change ERAs to include mixture toxicity and multi 

species testing of compounds in environmental regulation (chapter 6). 

1.10 Contribution to Knowledge 

This project will evaluate the use of GIS as a tool to aid the assessment of sea lice treatment use in 

Scotland (between the years 2007 and 2011), their MECs (between 2008 and 2012) and potential 

impacts on the surrounding marine environment. The potential use of molecular docking as a tool 

in ecotoxicology testing of veterinary medicines will be determined and recommendations on its 

application made.  
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Chapter 2 

The distribution and use of sea lice treatments in Scottish 

aquaculture 

2.1 Introduction 

The impacts of sea lice infestations on farmed salmon can range from minor skin irritation to 

stress induced mortality (Costello, 2006). Sea lice infestation not only causes a problem to farmed 

fish, but it is a growing concern that farmed fish pass on the parasite to wild populations of fish, 

causing a decline in wild salmon populations (Liu et al., 2011). There has been an increase in sea 

lice infestations as fish farming has grown. Currently there are six treatments registered for use in 

Scottish salmon farms to try and combat the problem, these are azamethiphos, cypermethrin, 

deltamethrin, emamectin benzoate, hydrogen peroxide and teflubenzuron (table 2.1). 

Teflubenzuron is a selective treatment, which acts as a chitinase inhibitor (Burridge et al., 2010; 

Tassou and Schulz, 2011), so must be applied before the adult stages of the parasite to achieve 

full effectiveness as a treatment (see figure 2.1 for the life cycle of L. salmonis). It is anticipated 

that if teflubenzuron is applied correctly then further treatment of sea lice should be obsolete for 

a full life cycle or one year (SEPA, 1999). The other treatments are less selective working on all life 

stages (table 2.1). However, there is a need for more selective treatments as resistance to the 

current treatments is increasing (Boxaspen, 2006). The concentration of sea lice treatment 

residues in Scottish marine environments are measured by Scottish Environmental Protection 

Agency (SEPA) every few years. In 2005 SEPA conducted a small sediment survey and took 51 

samples from 33 fish farms. The samples were taken outside of the 25 m buffer zone or allowable 

zone of effects (AZE) surrounding fish farms. Out of the 51 samples taken 18 were positive for 

cypermethrin, two of these sites had a higher measured environmental concentration (MEC) than 

the lowest predicted no effect concentration (PNEC) of 2.2 µg/kg and two of the sites that tested 

positive for cypermethrin did not have consent for its use. Teflubenzuron tested positive in 25 of 

the 51 samples, none of the samples were above the lowest PNEC of 10 µg/kg. Three of the sites 

that tested positive did not possess a licence for discharging the substance (see chapter 1, section 

1.4 on the regulation of VM use). Currently there is very little information on the bioavailability 

and adsorption of substances in sediments, this is especially concerning as, with the exception of 

azamethiphos and deltamethrin, the treatments used to control sea lice in fish farms disperse 

quickly from the water column and are likely to have a strong adsorption to sediment (table 2.1).  
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Figure 2.1 The life cycle of the sea lice L. salmonis with estimated timeline and size between each 

stage at 20°C. Adapted from Schram (1993).  

Six treatments are currently used in Scottish aquaculture to control sea lice; these are 

azamethiphos, cypermethrin, deltamethrin, emamectin benzoate, teflubenzuron and hydrogen 

peroxide. Hydrogen peroxide has been excluded from this study due to the lack of information 

given on use. SEPA does not request information on hydrogen peroxide use from farms because it 

is not considered to be detrimental to non-target organisms, and with a log Kow of -1.5 it is 

hydrolysed within and non-persistent in the water column and sediments (US EPA, 2007). Sea lice 

treatments are administered as either in-bath or in-feed. Table 2.1 outlines the environmental 

profile for each of these treatments while figure 2.2 provides the 2D structure for each treatment.  
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Table 2.1 Environmental profiles of the five sea lice treatments used in Scotland 2008-2011.  

Environmental 

profile 

Azamethiphos Cypermethrin Deltamethrin Emamectin 

benzoate 

Teflubenzur

on 

Log Kow 1.05 6.3 4.6 5 5.39 

Solubility in 

water 20°C 

1.1 g/L 5-10 µg/L 2 µg/L 550 μg/L 3 μg/L 

Mode of action 

on target 

species (sea 

lice) 

Inhibitor of 

acetylcholinest

erase (AChE) 

Inhibition of 

sodium 

channel 

activation gate  

Inhibition of 

sodium 

channel 

activation gate 

Antagonist of 

γ,γ-

aminobutyric 

acid (GABA)  

Chitinase 

inhibitor 

Half-life in 

sediment (days) 

9 days (half-

life water 10.8 

days) 

35-80 days 65 164-175 days 104-123 days 

Recommended 

dose  

IB 0.1 mg/L for 

30 - 60 

minutes 

IB 5 µg/L for 

60 minutes 

IB 2 µg/L for 

60 minutes 

IF 50 µg/kg 

body weight 

(bw) per day, 

for 7 days 

IF 10 mg/kg 

bw per day, 

for 7 days 

PNEC (water 

column) 

5 ng/L (72 

hours) 

N/A N/A 0.22 ng/L N/A 

Annual average 

(water column) 

N/A 0.05 ng/L 0.3 ng/L N/A 6 ng/L 

MAC (water 

column) 

150 ng/L (24 

hours); 250 

ng/L (3 hours) 

0.5 ng/L (24 

hours); 16 

ng/L (3 hours) 

2 ng/L (24 

hours); 9 ng/L 

(3 hours) 

N/A 30 ng/L 

Far field PNEC 

(sediment) 

N/A N/A 330 ng/kg 0.763 μg/kg 

wet weight 

2 μg/kg dry 

weight  

Near field (AZE) 

PNEC 

(sediment) 

N/A N/A 330 ng/kg 7.63 μg/kg 

wet weight 

10 mg/kg dry 

weight 

MAC = maximum acceptable concentration; PNEC = Predicted no effect concentration; IB = in-

bath; IF = in-feed; N/A = not available; AZE = allowable zone of effect; Near field = within 25 m 

radius of aquaculture cage; Far field = 25 – 100 m radius of aquaculture cage. References: 

(Marsella et al., 2000; SAMS, 2005; SEPA, 2008). 
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Figure 2.2 2D chemical structure of the five sea lice treatments; (a) azamethiphos; (b) 

cypermethrin; (c) deltametherin; (d) teflubenzuron; (e) emamectin benzoate.  

2.1.1 Sediment transfer 

A number of factors need to be considered when beginning to estimate the distribution of sea lice 

treatments from fish farm cages. These include the method of application (in-feed or in-bath); 

current speed and direction; settling velocity (especially in-feed); position and number of cages; 

bathymetry (underwater topography); amount of treatment; solubility and log Kow (ability to bind 

to sediments) and persistence in sediment. For in-feed treatments it is estimated that 90% of feed 

will be eaten, while 10% will settle directly as uneaten feed (Hargrave 1994), this uneaten feed as 

well as faeces settles directly below the cage and travels along the sea floor by saltation when 

currents reach a critical value, dependent on the size and density of the particle (Rice et al., 1996). 

Chemicals with low water solubility and high lipophilicity readily bind to sediments and have a 

greater likelihood of becoming persistent in the environment (Jones and de Voogt, 1999). 

Persistent organic pollutants (POPs) are often chemicals with a log Kow of ≥ 5  and have half-lives 

of several months or years (Kelly et al., 2007).  POPs have the capacity to be bioaccumulative and 

persist in sediments and organisms. Treatments used as sea lice control that share characteristics 

of POPs are a threat to the marine environment and can be especially detrimental to organisms in 

the benthos, cypermethrin, emamectin benzoate and teflubenzuron all have a log Kow ≥ 5 and 

therefore pose an increased risk to benthic organisms (see table 2.1).  Due to their lipophilic 

nature there is the added risk of bioaccumulation in fat stores within aquatic organisms becoming 

more concentrated as they move through trophic levels (Wania and Mackay, 1996).  
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The lethal and chronic effects of all five sea lice treatments have been reported as being in the 

µg/L and even ng/L range for invertebrates (see table 2.2). This highlights the importance of 

understanding the rates and concentrations that they are entering the marine environment, and 

to identify areas of risk and to establish common treatment mixtures and the knock on effect 

mixtures of these treatments might have on the surrounding environment.  
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Table 2.2 Lethal and chronic effects of the five sea lice treatments on non-target aquatic organisms. 

Test organism Test description Effect 
concentration 
azamethiphos  

Effect 
concentration 
cypermethrin  

Effect 
concentration 
deltamethrin  

Effect concentration 
emamectin benzoate  

Effect 
concentration 
teflubenzuron 

Reference 

Echinogammarus marinus 
(marine amphipod*) 

1 hr exposure 95 
hr recovery EC50 

- 180 ng/L 47 ng/L - - (Van Geest et al., 
2014) 

E. marinus 24 hr exposure 72 
hr recovery EC50 

- 20 ng/L 6.7 ng/L - - (Van Geest et al., 
2014) 

Corophium volutator 
(marine amphipod*) 

10 d sediment 
LC50  

182 µg/kg 
(wet weight) 

5 µg/kg (wet 
weight) 

- 153 µg/kg (wet 
weight) 

- (Mayor et al., 2008) 

Hediste diversicolor 
(ragworm) 

10 d sediment 
LC50 

- - - 1368 µg/kg (wet 
weight) 

- (Mayor et al., 2008) 

Homarus americanus Stage I 
(American lobster) 

24 hr LC50 8.9 ng/L - 0.8 ng/L - - (Burridge et al., 2014) 

H. americanus adult 24 hr LC50 2.8 ng/L - 15 ng/L - - (Burridge et al., 2014) 

Crangon septemspinosa 
(sand shrimp) 

24 hr LC50 191 ng/L - 27 ng/L - - (Burridge et al., 2014) 

Mysid sp. (opossum shrimp) 24 hr LC50 12.5 ng/L - 1.4 ng/L - - (Burridge et al., 2014) 

Daphnia magna (water flea) 48 hr EC50 0.67 µg/L 0.3 µg/L 0.56 µg/L 1 µg/L 1.2 µg/L (Koyanagi et al., 1998; 
University of 
Hertfordshire, 2013) 

Chironomus riparius (non-
biting midge/bloodworm) 

Sediment EC50 

fecundity  
- - - - 112.7 µg/kg 

(dry weight) 
(Tassou and Schulz, 
2011) 

C. riparius Sediment EC50 

fertility 
- - - - 74.5 µg/kg 

(dry weight) 
(Tassou and Schulz, 
2011) 

EC50 = Effect concentration 50%; LC50 = Lethal concentration 50%; dashes represent no available data; * = no common name available. 
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2.1.2 Marine Environment in Scotland and the designation of SPAs and SACs 

The UK coastal environment is under a number of EU and UK regulation and protection. The three 

main pieces of legislation that are of relevance within this chapter are the EU habitats directive 

(92/43/EEC) in which the designation of special areas of conservation (SACs) are applied; the EU 

birds directive (2009/147/EC) in which the designation of special protection areas (SPAs) are 

applied; and the EU water framework directive (WFD)  (2000/60/EC). SPAs are areas in which rare 

or vulnerable species of birds (under Annex I of the EU birds directive 2009/147/EC) habituate and 

therefore are in need of protection (European Parliment, 2009). SACs are habitats that support 

protected and priority habitats (listed under Annex I of the EU habitats directive 92/43/EEC), such 

as reefs and submerged sea caves, and species (listed under Annex II), such as the common seal 

Phoca vitulina and the otter Lutra lutra (McLeod et al., 2005). The Scottish environment has 243 

designated SACs, with 38 of these falling into the marine environment. There are 161 SPAs in 

Scotland, with 49 sites having marine components.  

2.1.3 Chapter objectives 

In order to address objectives 1 and 2 (chapter 1; section 1.9.3) the objectives for this chapter are 

to: 

-  Examine the changing practice in sea lice treatments in Scottish salmon farms between 2007 – 

2011 using SEPA data (Natural Scotland, 2015b). 

-  Establish any relationship between sea lice treatment use on salmon farms between 2007 - 

2011 to sediment MECs taken 2008 – 2012.  

- Assess the potential impact of sea lice treatments on the surrounding aquatic environment 

including SPAs and SACs.  

2.2 Methods 

2.2.1 Data sources and preparation for use in the Geographical Information System ArcGIS 

Information on sea lice treatment use in Scottish salmon farms was provided by SEPA access to 

information. The information obtained from SEPA is used by them for monitoring purposes. The 

information supplied included the geographical coordinates of salmon farms in Scottish waters; 

maximum allowed biomass at individual salmon farm; the company, name and code of the farm; 

and monthly information on the amount in grams of sea lice chemicals for the years 2008-2011 

(Natural Scotland, 2015b). The sea lice treatments that were included in the database were 

cypermethrin, deltamethrin, azamethiphos, emamectin benzoate and teflubenzuron. 

Geographical coordinates were provided as national grid reference (NGR), these were converted 

to latitude and longitude coordinates using the batch conversion tool on the ordnance survey 
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website (Ordnance Survey, 2013) for use in ArcGIS 10.1 (ESRI, 2012). Maps throughout this 

chapter were created using ArcGIS® software provided by Esri. ArcGIS® and ArcMap™ are the 

intellectual property of Esri and are used herein under license. For more information about Esri® 

software, visit www.esri.com. 

Total treatment use in grams per farm was calculated for each year from the SEPA data. ArcGIS 

10.1 (ESRI, 2012) was used to visualise the locations of the farms and distribution of chemicals 

and changes with year. ArcGIS 10.1 uses layers of information that can then be added and 

modified on maps. Layers for each treatment were the amount of use in grams per farm per year 

and the average MECs at a single site (n = 3) and were created using the information provided by 

SEPA. Layers containing information on marine SACs and SPAs were downloaded from the Joint 

Nature Conservation Committee (JNCC) and were added to the maps (JNCC, 2012). Maps were 

made to show the treatment use, mixtures of treatments and their proximity to SACs and SPAs for 

the whole of the Scottish coastline. 

Information on sediment MECs was obtained from the SEPA website (SEPA, 2013). These included 

measurements for teflubenzuron and emamectin benzoate for the years 2008-2012. 

Measurements were taken either within the 25 m AZE or between 100 m and 1000 m away from 

the site of a fish farm. ArcGIS 10.1 was used to plot the locations of the sampling sites for 

sediment MEC determinations for each year. The number of sites sampled per year varied 

between 9 sites in 2009 and 2010 and 19 sites in 2012 (with three sample replicates per site).  

Data on monthly ocean current speed and direction was downloaded in the form of a NetCDF file 

from the open source website MyOcean http://marine.copernicus.eu/ (European Commission, 

2015), an EU initiative for the monitoring and forecasting of ocean activity. Ocean current depth 

was available from surface currents then every 25 m until a 200 m depth. It was decided that a 

depth of 50 m would be represented on the maps, as much of the Scottish coastal area is 

between 50 and 100 m deep (Foster-Smith, 2010). Annual means were calculated from monthly 

means using ArcGIS 10.1. Information on zonal velocity and meridional velocity was taken from 

this data, and using equation 2.1 the direction of flow could be calculated and added to maps in 

the form of arrows. 

Equation 2.1  

(
180

𝜋
) ×  atan2 (z, m) 

Where z is the zonal (east/west) velocity and m is the meridional (north/south) velocity.  

  

http://marine.copernicus.eu/
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2.3 Results 

2.3.1 Total use of sea lice treatments on Scottish salmon farms 

Cypermethrin was applied year round from 2007-2010 where use decreased in the second half of 

2011 (figure 2.3a). Deltamethrin was applied year round from the middle of 2008-2011 (figure 

2.3a). Azamethiphos was applied year round from 2008-2011 and emamectin benzoate was 

applied year round for all years 2007-2011 (figure 2.3b). Teflubenzuron was applied mainly in the 

winter months for all years except 2008 (figure 2.3b).  

 

Figure 2.3a The total monthly use in kg of cypermethrin and deltamethrin between 2007 and 

2011 for all Scottish salmon farms. Source SEPA (2012).  

 

Figure 2.3b The total monthly use in kg of azamethiphos, teflubenzuron and emamectin benzoate 

between 2007 and 2011 for all Scottish salmon farms. Source SEPA (2012).  
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Use of all of the sea lice chemicals increased from 2002 to 2014 except for cypermethrin, which 

declined in use over the twelve-year period. Cypermethrin use declined between 2007 and 2011 

and has not been used on Scottish salmon farms since 2011. Total use peaked in 2012 when 514.7 

kg of all sea lice treatments were used. Overall the VM used in the highest quantity throughout 

the four years was azamethiphos, with use more than doubling over the four years from 100.2 kg 

in 2008 to 211.9 kg in 2011. Teflubenzuron showed the biggest increase in use from not being 

used at all in 2008 to 91.6 kg applied in 2011. Emamectin benzoate was the only VM which was 

used in every year and was the third most used VM (in kg) over the 12 year period (Table 2.3). 

Table 2.3 The total use of each of the five treatments in grams of active ingredient per year for all 

the salmon farms monitored by SEPA.  Data that is in italics has been represented using GIS 

(figures 2.4-2.18). Data obtained from Natural Scotland (2015b) database. 

 Year 
Cypermethrin 
(kg) 

Deltamethrin 
(kg)   

Emamectin 
Benzoate 
(kg) 

Teflubenzuron 
(kg)  

Azamethiphos 
(kg) 

Total use* 
(kg) 

2002 12 0 12.6 72.7 45.6 142.9 

2003 9 0 29 36 30.2 104.2 

2004 7.9 0 45.3 0 7.6 60.8 

2005 5.7 0 33.6 0 0 39.3 

2006 9.1 0 36 0 0 45.1 

2007 36.8 0 61.7 95.8 0 194.3 

2008 21.4 2.9 63.5 0 100.2 188.7 

2009 11.9 13.4 51.8 61.8 203.9 342.8 

2010 3 13.8 61.4 75 157.6 310.8 

2011 1 21.1 70.5 91.6 211.9 396.1 

2012 0 21.1 73.4 224.8 195.4 514.7 

2013 0 12.4 59.5 262 153.7 487.6 

2014 0 17.5 63.6 0 253.3 334.4 

Total 
use** 
(kg) 117.8 102.2 661.9 919.7 1360.1 3161.7 

* = Total use of all treatments per year. 
** = Total use of each treatment over 12 years. 
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The majority of the farms are located on the west coast of Scotland and across the Shetland and 

Orkney islands. Patterns of treatment use changed each year, confirming that farms are likely to 

use a mixture of chemicals rather than use only one (figures 2.4 - 2.6), for example deltamethrin 

was barely used in 2007 and 2008 (figure 2.4 and 2.5a; table 2.3) but use increased in 2009 

through to 2012 (figures 2.5b, 2.6a and b; table 2.3). Treatments were used in conjunction with 

one another, with there being 401 occasions over the four years where more than one treatment 

was used in the same month on the same farm, on two occasions in 2008 four treatments, 

azamethiphos; cypermethrin; deltamethrin; and emamectin benzoate, were used on the same 

farm in the same month, on the farms CAG1 (UK NGR NM64425884) and GCD1 (UK NGR 

NM67606070). Both of these farms were located on the SAC, Sunart (UK NGR NM665605), a 

conservation area due to its reefs and population of the otter L. lutra (JNCC, 2015b). 

Teflubenzuron was not used in 2008 (figure 2.5a) and was the least frequently used treatment for 

the control of sea lice in the years 2007 (figure 2.4), 2009 (figure 2.5b), 2010 (figure 2.6a) and 

2011 (figure 2.6b).  

In 2007, fourteen salmon farms that were located on seven different SACs used the treatments 

emamectin benzoate and/or cypermethrin (figure 2.3, appendix A; table A.1); three SACs (Sunart; 

Loch Duich and Loch Laxford) located in med-West Scotland; had three farms on them, using a 

mixture of emamectin benzoate and cypermethrin.  
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Figure 2.4 Total use in the year 2007 of three sea lice treatments, cypermethrin (teal); emamectin 

benzoate (orange) and teflubenzuron (yellow). Special protection areas (SPAs) are represented by 

the dark green areas and special areas of conservation (SACs) are represented by the light green 

areas. Circles increase as treatment use (in grams) increases. Black arrows represent the direction 

of ocean currents 50 m below the surface (annual average). Background map source: Esri® 

In 2008, eleven salmon farms located on five different SACs used one or a combination of the 

treatments azamethiphos, cypermethrin, deltamethrin and emamectin benzoate (figure 2.5a and 

appendix A; table A.2). In 2009, twelve salmon farms that were located on seven different SACs 

used one or a combination of the four treatments azamethiphos, cypermethrin, deltamethrin and 

emamectin benzoate (figure 2.5b and appendix A). 
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Figure 2.5 Total treatment use in 2008 (a) and 2009 (b) for the five sea lice treatments, 

azamethiphos (purple); cypermethrin (teal); deltamethrin (red); emamectin benzoate (orange) 

and teflubenzuron (yellow). SPAs are represented by the dark green areas and SACs are 

represented by the light green areas. Circles increase as treatment use (in grams) increases. Black 

arrows represent annual average direction of ocean current at 50m below sea level for 2008 (a) 

and 2009 (b). Background map source: Esri® 

a

. 

b

.

. 
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In 2010, twelve salmon farms located on seven separate SACs used either one or a combination of 

the treatments azamethiphos, cypermethrin, deltamethrin and emamectin benzoate (see figure 

2.6a; appendix A; table A.4). One farm (CAG1), located on the SAC Sunart used azamethiphos, 

cypermethrin, deltamethrin and emamectin benzoate within the year. In 2011, eleven fish farms, 

located on seven separate SACs, used one or a combination of the treatments azamethiphos, 

cypermethrin, deltamethrin, emamectin benzoate and teflubenzuron (figure 2.6b; appendix A; 

table A.5). One farm in 2011 used azamethiphos, deltamethrin, emamectin benzoate and 

teflubenzuron within the same year, this was the farm FOI1 (UK NGR NC19904920) located on the 

SAC Loch Laxford (UK NGR NC198501), an area of conservation due to its reef and shallow inlet 

habitats (JNCC, 2015a). 
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Figure 2.6 Total treatment use in 2010 (a) and 2011 (b) for the five sea lice treatments, 

azamethiphos (purple); cypermethrin (teal); deltamethrin (red); emamectin benzoate (orange) 

and teflubenzuron (yellow). SPAs are represented by the dark green areas and SACs are 

represented by the light green areas. Circles increase as treatment use (in grams) increases. Black 

arrows represent annual average direction of ocean current at 50m below sea level for 2010 (a) 

and 2011 (b). Background map source: Esri® 

a

. 

b

. 
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2.3.2 Sediment MECs  

Sediment MECs are presented for two of the five fish farm medicines, teflubenzuron (table 2.4) 

and emamectin benzoate (table 2.5) for the years 2008-2012. Sediment MECs were not available 

for azamethiphos as it was not included in the monitoring, this is because azamethiphos does not 

bind readily to sediment due to its hydrophilic nature (table 2.1); deltamethrin and cypermethrin 

sediment MECs were all below the limit of detection (LOD) and therefore were not included. The 

LOD for teflubenzuron was 0.2 µg/kg (dry weight) whereas the LOD for emamectin benzoate was 

variable as measurements were taken from wet samples. Emamectin benzoate LOD varied 

between 0.08 and 0.69 µg/kg (wet weight). 

Table 2.4 Mean teflubenzuron measured environmental concentration (MEC) (n = 3) for each site 

and the sites distance from nearest salmon farm (that used teflubenzuron the previous year) for 

the years 2008-2012 MEC data source: SEPA (2013). 

Year MEC (µg/kg) 
Dry weight 

Distance from nearest farm (km) No. of farms within 2km  

2008 0.4 59.8 0 

0.18 59.3 0 

0.27 59.1 0 

2 71.5 0 

154.2 71.1 0 

1.34 70.9 0 

170.1 94.8 0 

6.36 95.1 0 

0.45 71.5 0 

0.16 72 0 

0.86 178.5 0 

0.27 245.5 0 

2009 0.53 N/A 0 

0.31 N/A 
0 

2010 0.17 15.5 0 

2011 0.27 35 0 

2012 402.67 0.316 1 

698.33 0.261 1 

333 0.162 1 

7.105 0.709 1 

43.13 1 1 

15.21 0.887 1 

2.24 30 0 

0.19 8.7 0 

0.62 8 0 

N/A = not applicable as no farms had decalred teflubenzuron use the previous year. 
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Table 2.5 Mean emamectin benzoate measured environmental concentration (MEC) (n = 3) for 

each site and the sites distance from nearest salmon farm (that used emamectin benzoate the 

previous year) for the years 2008 - 2012. MEC data source: SEPA (2013). 

Year MEC (µg/kg) wet weight Distance from nearest farm (km) No. of farms within 2km 

2008 4.97 0.118 3 

1.47 0.126 3 

2.27 0.111 1 

0.31 0.916 1 

0.9 0.355 1 

0.28 0.58 1 

1.79 0.415 1 

0.35 0.478 1 

0.2 0.782 1 

2009 1.35 23.5 0 

7.19 0.25 1 

1.045 0 1 

8.03 0.122 1 

1.39 1.5 1 

6.06 0.2 1 

17.4 0.165 1 

2010 0.31 1.3 1 

13 0.47 2 

0.57 1.1 2 

14.2 0.127 1 

7.96 0.208 2 

1.73 0.111 1 

2011 1.29 0.111 2 

0.23 0.498 2 

4.75 0 1 

0.32 0.568 1 

10.66 0.794 1 

25.08 0.223 1 

23.83 0.111 2 

1.61 0.166 2 

0.92 12.1 0 

0.71 22 0 

2012 1.08 0.316 2 

1.51 0.261 2 

1.57 0.162 2 

0.93 0.296 2 

1.86 0.117 2 

5.98 0.236 2 

20.7 0 2 

0.96 0.223 2 

9.84 0.223 3 

0.39 0.274 3 

0.18 0.339 2 

0.09 0.659 3 

2.03 0.26 2 

0.15 0.162 2 

1.96 0.629 2 
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The ocean current data could not be used to draw conclusions on the likely movement of 

sediment from farms to sediment MECs as the measurements for currents were taken 16 km 

apart, and measurements were 16 km away from the coastline, which is where most of the farms 

are located.  

In 2008 sediment samples from nine sites showed detectable MECs for emamectin benzoate, of 

which five were over the MAC of 0.763 µg/kg (table 2.5). The five sites that had a MEC greater 

than the MAC were within 500 m of the nearest salmon farm that had used emamectin benzoate 

in the previous year (figures 2.7c and d; and 2.8c and d). Twelve sites tested positive for 

teflubenzuron in 2008 (table 2.4; figures 2.9c and d and 2.10c and d). All twelve sites where 

samples were taken were several kilometres away from the nearest salmon farm that had used 

teflubenzuron the previous year. The majority of sites that were positive for teflubenzuron in 

2008 were found below the MAC of 2 µg/kg; however two samples were over 75 times higher 

than the MAC at 154.2 µg/kg and 170.1 µg/kg (figure 2.9d).  
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Figure 2.7 Sediment MECs for emamectin benzoate taken in 2008. Emamectin 

benzoate use for 2007 is shown (orange circles). MECs are represented by 

triangles; no detection of emamectin benzoate (white); detection of emamectin 

benzoate below the MAC (<0.763 μg/kg) (light peach); and detection of 

emamectin benzoate above the MAC (0.763-7.63 μg/kg) (dark peach). Their 

proximity to SPAs (dark green) and SACs (light green) are also shown. Black 

arrows represent current direction (50 m below surface). Background map 

source: Esri® 

  

a. b. c. 

d. 
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Figure 2.8 Sediment MECs for emamectin benzoate taken in 2008. 

Emamectin benzoate use for 2007 is shown (orange circles). MECs are 

represented by triangles; no detection of emamectin benzoate (white); 

detection of emamectin benzoate below the MAC (<0.763 μg/kg) (light 

peach); detection of emamectin benzoate above the MAC (0.763-7.63 μg/kg) 

(dark peach) and detection of emamectin benzoate ten times or more above 

the MAC (>7.63 μg/kg) (red). Their proximity to SPAs (dark green) and SACs 

(light green) are also shown. Background map source: Esri®  

  

a. b. c. 

d. 
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a. b. c. 

d. 

Figure 2.9 Sediment MECs for teflubenzuron taken in 2008. Teflubenzuron 

use for 2007 is shown. MECs are represented by triangles; no detection of 

teflubenzuron (white); detection of teflubenzuron below the MAC (<2 μg/kg) 

(light peach); and detection of teflubenzuron above the MAC (2-20 μg/kg) 

(dark peach). Their proximity to SPAs (dark green) and SACs (light green) are 

also shown. Black arrows represent current direction (50 m below surface). 

Background map source: Esri® 
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d. 

a. b. c. 

d. 

Figure 2.10 Sediment MECs for teflubenzuron taken in 2008. Teflubenzuron 

use for 2007 is shown. MECs are represented by triangles; no detection of 

teflubenzuron (white); detection of teflubenzuron below the MAC (<2 μg/kg) 

(light peach); detection of teflubenzuron above the MAC (2-20 μg/kg) (dark 

peach) and detection of teflubenzuron ten times or more above the MAC 

(>20 μg/kg) (red). Their proximity to SPAs (dark green) and SACs (light green) 

are also shown. Black arrows represent current direction (50 m below 

surface). Background map source: Esri® 
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In 2009 nine sites had detectable emamectin benzoate sediment MECs. Of these nine sites, seven 

contained emamectin benzoate in detectable concentrations (figures 2.11c, d and e). Two sites 

contained emamectin benzoate at concentrations more than ten times higher than the MAC; the 

two sites were 100-250 m from the nearest fish farm that had used emamectin benzoate the 

previous year (figure 2.11e).  In 2009 two sites had a detectable concentration of teflubenzuron; 

the concentration of both of the sediment MECs from the two sites was below the MAC of 2 

μg/kg. However there was no recorded use of teflubenzuron in the previous year (figure 2.12; 

table 2.3). 
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Figure 2.11 Sediment MECs for emamectin benzoate taken in 2009. 

Emamectin benzoate use for 2008 is shown (orange circles). MECs are 

represented by triangles; no detection of emamectin benzoate (white); 

detection of emamectin benzoate below the MAC (<0.763 μg/kg) (light 

peach); detection of emamectin benzoate above the MAC (0.763-7631 μg/kg) 

(dark peach) and detection of emamectin benzoate ten times or more above 

the MAC (>7.63 μg/kg) (red). Their proximity to SPAs (dark green) and SACs 

(light green) are also shown. Black arrows represent current direction (50 m 

below surface). Background map source: Esri® 

 

a. b. c. 

d. 

e. 
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Figure 2.12 Sediment MECs for teflubenzuron taken in 2009. Usage is not shown as 

there was no teflubenzuron use in 2008. MECs are represented by triangles; no 

detection of teflubenzuron (white); and detection of teflubenzuron below the MAC 

(<2 μg/kg) (light peach). Their proximity to SPAs (dark green) and SACs (light green) 

are also shown. Black arrows represent current direction (50 m below surface). 

Background map source: Esri® 

 

a. b. 

c. 
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Emamectin benzoate was detected in 6 of the sample sites in 2010 (figure 2.13c;d and e). Four of 

those sites had sediment levels of emamectin benzoate at a higher concentration than the MAC 

(>0.763 μg/kg), with three being higher than the MAC by at least ten times. Teflubenzuron was 

detected at one of nine sites in 2010 (figure 2.14c) at a concentration of 0.17 μg/kg, which is 

lower than the MAC (2 μg/kg) however this site was more than 16 km away from two farms, 

which in the previous year used 17.3 kg and 42.7 kg of teflubenzuron. There are some fish farms 

on the Shetland Islands using emamectin benzoate treatments that are located on the SAC Yell 

Sound Coast, which is a protected habitat supporting populations of the European otter L. lutra 

and the UK biodiversity action plan (BAP) priority species, the common seal P. vitulina (JNCC, 

2013). There are also seven farms that are within 2 km of the Yell Sound Coast SAC. 
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Figure 2.13 Sediment MECs for emamectin benzoate taken in 2010. 

Emamectin benzoate use for 2009 is shown (orange circles). MECs are 

represented by triangles; no detection of emamectin benzoate (white); 

detection of emamectin benzoate below the MAC (<0.763 μg/kg) (light peach); 

detection of emamectin benzoate above the MAC (0.763-7.63 μg/kg) (dark 

peach) and detection of emamectin benzoate ten times or more above the 

MAC (>7.1 μg/kg) (red). Their proximity to SPAs (dark green) and SACs (light 

green) are also shown. Black arrows represent current direction (50 m below 

surface). Background map source: Esri® 

 

a. b. c. 

d. 

e. 
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Figure 2.14 Sediment MECs for teflubenzuron taken in 2010. MECs are 

represented by triangles; no detection of teflubenzuron (white); and 

detection of teflubenzuron below the MAC (<2 μg/kg) (light peach). 

Their proximity to SPAs (dark green) and SACs (light green) are also 

shown. Black arrows represent current direction (50 m below surface). 

Background map source: Esri® 

a. b. 

c. 
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In 2011 ten sites had a detectable MEC of emamectin benzoate, out of a possible 18. Seven of 

these sites were equal to or higher than the MAC. The samples in 2011 were taken from the 

Shetland islands and the total use of emamectin benzoate for the surrounding farms for the 

previous year 2010, varied between 0 g and 1.55 kg (figure 2.15). One site, that was ~800 m away 

from the nearest farm that used emamectin benzoate had an MEC of >7.63 μg/kg. In 2011 a 

measurable concentration of teflubenzuron (figure 2.16c) was found at one of 18 sites, this 

concentration was lower than the MAC at 0.27 μg/kg. The closest fish farm to this site that used 

teflubenzuron was 35 km away and used 75 kg of teflubenzuron in 2010, and 17.59 kg in 2009.  

 

 



49 
 

Figure 2.15 Sediment MECs for emamectin benzoate taken in 2011. Emamectin 

benzoate use for 2010 is shown (orange circles). MECs are represented by triangles; 

no detection of emamectin benzoate (white); detection of emamectin benzoate 

below the MAC (<0.763 μg/kg) (light peach); detection of emamectin benzoate above 

the MAC (0.763-7.63 μg/kg) (dark peach) and detection of emamectin benzoate ten 

times or more above the MAC (>7.1 μg/kg) (red). Their proximity to SPAs (dark green) 

and SACs (light green) are also shown. Black arrows represent current direction (50 m 

below surface). Background map source: Esri® 

a. b. c. 

d. 

e. 
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a. c. 

Figure 2.16 Sediment MECs for teflubenzuron taken in 2011.  MECs are 

represented by triangles; no detection of teflubenzuron (white); and detection of 

teflubenzuron below the MAC (<2 μg/kg) (light peach). Their proximity to SPAs 

(dark green) and SACs (light green) are also shown. Black arrows represent current 

direction (50 m below surface). Background map source: Esri® 

 

a. b. 

c. 
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Emamectin benzoate was detected in 17 of the 19 sites in 2012 (figure 2.17c; d and e). The 

nearest farm to one of these sampling sites that used the treatment was ~3950 m away. The 2012 

teflubenzuron MECs (figure 2.18c; d and e) showed there were ten samples containing detectable 

levels of teflubenzuron in sediment across the 19 sites. Of these samples, seven were higher than 

the MAC, with three having a concentration between 333-698.33 μg/kg. The three sites which had 

a concentration between 333-698.33 μg/kg were within 400 m of a farm which used 54 kg of 

teflubenzuron in December 2011. One site which had a concentration of 43.13 μg/kg was ~1 km 

away from a farm that had used 54 kg of teflubenzuron in 2011. 
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Figure 2.17 Sediment MECs for emamectin benzoate taken in 2012. 

Emamectin benzoate use for 2011 is shown (orange circles). MECs are 

represented by triangles no detection of emamectin benzoate (white); 

detection of emamectin benzoate below the MAC (<0.763 μg/kg) (light 

peach); detection of emamectin benzoate above the MAC (0.763-7.63 

μg/kg) (dark peach) and detection of emamectin benzoate ten times or 

more above the MAC (>7.1 μg/kg) (red). Their proximity to SPAs (dark 

green) and SACs (light green) are also shown. Black arrows represent 

current direction (50 m below surface). Background map source: Esri® 

 

a. b. c. 

d. 

e. 
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Figure 2.18 Sediment MECs for teflubenzuron taken in 2012.Teflubenzuron use for 

2011 is shown (yellow circles). MECs are represented by triangles; below detection 

limit (BDL) of teflubenzuron (white); detection of teflubenzuron below the MAC (<2 

μg/kg) (light peach); detection of teflubenzuron above the MAC (2-20 μg/kg) (dark 

peach) and detection of teflubenzuron ten times or more above the MAC (>20 μg/kg) 

(red). Their proximity to SPAs (dark green) and SACs (light green) are also shown. Black 

arrows represent current direction (50 m below surface). Background map source: 

Esri® 

 

a. b. c. 

d. 

e. 
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Between 2008 and 2012, 47 out of a total 70 sediment samples tested positive for emamectin 

benzoate (table 2.5), while 25 tested positive for teflubenzuron (table 2.4). Of the 47 positive 

emamectin benzoate samples, 35 were above the MAC of 0.763 µg/kg, with a further 11 samples 

exceeding concentrations ten times higher than the MAC. Of the 25 positive teflubenzuron 

samples, 11 were higher than the MAC of 2 µg/kg, with six exceeding the MAC by at least ten 

times. Four of the six sites were all within 2 km of the nearest fish farm that had used 

teflubenzuron in the preceding year (figure 2.18; table 2.4). The majority of sites which had 

measurable concentrations of emamectin benzoate were within 2 km of a fish farm that had used 

emamectin benzoate in the previous year (n = 47). There were three sites with detectable levels 

of emamectin benzoate where the nearest farm was over 2 km away, with two of these sites 

having concentrations above the MAC. Six sites with detectable concentrations of teflubenzuron 

were within 2 km of the nearest farm to have used the treatment in the last year. Of the seven 

sites that were more than 2 km away from the nearest farm that had used the treatment, one 

was over the MAC with a concentration of 2.24 µg/kg (table 2.4, figure 2.17d).  

2.3.3 Timing of teflubenzuron application  

Teflubenzuron is a treatment that is used to break the life cycle of sea lice and if used correctly 

should prevent the use of additional sea lice treatments for a further year (SEPA, 1999). However, 

the SEPA data shows the salmon farms around the coast of Scotland that have used teflubenzuron 

were no less likely to use other sea lice treatments up to ten months after applying teflubenzuron 

than ten months before using teflubenzuron (figure 2.19). Overall use of treatments increased 

from 15.6 kg treatment use in the ten months before the application of teflubenzuron, to 27.2 kg 

treatment use in the ten months after teflubenzuron application. The use of cypermethrin, 

teflubenzuron, emamectin benzoate and azamethiphos increased after the first application of 

teflubenzuron, with the increase in emamectin benzoate being significantly higher after the first 

application of teflubenzuron (P = 0.017). Deltamethrin was the only sea lice treatment whose use 

decreased after the first application of teflubenzuron (figure 2.19).  
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Figure 2.19 Total treatment use on Scottish salmon farms (a) ten months before and (b) ten 

months after teflubenzuron application. Timing of application of teflubenzuron varied between 

farms, application of treatment was for the years 2007-2012.   

  

a. 

b. 
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2.4 Discussion 

2.4.1 Chemical Use on Scottish Salmon Farms 

The general use of sea lice chemicals around the Scottish coast increased between 2002 and 2014 

(table 2.3; figures 2.4 – 2.6). To avoid resistance in sea lice the veterinary medicines directorate 

(VMD) recommends that treatments are used in cycles with breaks of use for a few years (VMD, 

2013). This appears to be the case for azamethiphos, cypermethrin, deltamethrin and 

teflubenzuron; however emamectin benzoate was used every year for twelve years (table 2.3). 

Resistance to pyrethroids, emamectin benzoate and azamethiphos have been documented in sea 

lice while resistance in teflubenzuron has not been reported (Aaen et al., 2015; Sevatdal et al., 

2005). There are a number of fish farms using emamectin benzoate, deltamethrin and 

azamethiphos from 2009 onwards (figure 2.5b; figure 2.6a and b; figure 2.15) in and around the 

Yell Sound Coast SAC, around the Shetland islands (UK NGR HU467755). This is a protected 

habitat due to the populations of the otter L. lutra and the common seal P. vitulina that it 

supports. The marine environment is especially valuable for the algal beds that L. lutra feed on 

(JNCC, 2013). The 72hr EC50 for emamectin benzoate on the algal species P. subcapitata is 0.072 

mg/l compared with the PEC for emamectin benzoate in aquaculture of 4.16 pg/l it is unlikely that 

it will have a chronic effect on algal species (Willis and Ling, 2003). Sediment MECs on the other 

hand are higher than the aquatic PEC, with 33 measurements exceeding the MAC of 0.76 μg/kg 

(table 2.1; table 2.5; figures 2.7; 2.8; 2.11; 2.13; 2.15). The LC50 of the amphipod crustacean C. 

volutator has been reported at 153 μg/kg (table 2.2) (Mayor et al., 2008). The LC50 of C. volutator 

is just over 6 times the highest recorded sediment MEC for emamectin benzoate measured in 

2011 (UK NGR HU449484; figure 2.15). Even when applying an AF of 10 on the emamectin 

benzoate LC50 of C. volutator would mean this concentration is above the PNEC for this species. 

The 72hr EC50 for P. subcapitata exposed to deltamethrin is 9.1 mg/l, the PEC for deltamethrin as 

an aquaculture treatment is unavailable, however given the hydrophobicity of deltamethrin and 

the MEC of deltamethrin being reported as <10 ng/L (Langford et al., 2014), environmental 

concentrations are unlikely to cause chronic or acute effects on P. subcapitata. There is no 

information on the ecotoxicology of azamethiphos on algal species. The SPAs are protected due to 

their ability to support migratory or breeding birds under Annex I of the EC Birds Directive 

(European Parliment, 2009). Some habitats support marine birds such as the red crested loon 

Gavia stellata which feeds on fish, molluscs and other invertebrates. The sediment MECs 

consistently measured above the sediment MAC for teflubenzuron and emamectin benzoate 

(table 2.3 and 2.4); both of these VMs have low reported EC50 and LC50 for invertebrates (table 

2.2) and it is therefore possible that changes in marine species composition due to chronic or 

lethal effects of VMs on invertebrates could affect species diversity and richness, causing a 

secondary effect on birds using these areas to feed (Suryan et al., 2006).  
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There have been observed occurrences of intersex invertebrates in bodies of water containing 

EDCs. Intersexuality is defined as either the masculinity of female individuals or the feminisation 

of male individuals; it has been documented in both vertebrates and invertebrates (Ford et al., 

2007; Jobling et al., 2003; Jobling et al., 2002; Oehlmann et al., 2000; Schulte-Oehlmann et al., 

2000). Intersexuality of invertebrates has been known to occur in the presence of EDCs such as 

the anti-fouling agent tributyltin, a xenoandrogen and bisphenol A, a xenoestrogen. Effects of 

intersex can include the growth of male sex organs in female individuals in the presence of 

xenoandrogens (Schulte-Oehlmann et al., 2000) and the growth of female sex organs in males 

individuals (Oehlmann et al., 2000).  In a field study on the marine amphipod E. marinus at a 

salmon farm near the SAC Sunart, (Ford et al., 2007) found a higher incidence of intersex females 

(16% of total sample) and a lower proportion of males (27% of total sample) compared with a site 

2.5 km away which found 0% intersex females and 47% males. The fish farm in question, had used 

both cypermethrin and emamectin benzoate, although (Ford et al., 2012) do not explicitly link the 

higher proportion of intersex individuals to the use of cypermethrin and emamectin benzoate it is 

a possibility that these treatments are having an effect on the endocrinology of E. marinus. In a 

study on the abundance of zooplankton around a farm on Loch Sunart treated with emamectin 

benzoate and cypermethrin, Willis et al. (2005) reported that there were no adverse effects on 

the abundance of zooplankton over the 31 month test period. The amount of active ingredient 

that was added the farm was 78 g of cypermethrin and 315 – 316.6 g of emamectin benzoate 

(which was applied on three occasions). These rates of application are much lower than the 

highest reported use of cypermethrin and emamectin benzoate in Scotland between the years 

2007 and 2011. The highest amount of cypermethrin used was 840 g, while the highest amount of 

emamectin benzoate used was reported as being 14.7 kg (Natural Scotland, 2015a). There are 

three salmon farms located on the SAC Sunart, which is protected due to its reef habitats and the 

occurrence of the otter L. lutra. These farms repeatedly used sea lice treatments over the years 

2007-2011, often occurring in mixtures of emamectin benzoate and cypermethrin, as well as 

occasions where azamethiphos was used as well as emamectin benzoate and cypermethrin (see 

appendix A). Repeated applications of mixtures of these treatments could lead to endocrine 

disrupting effects not only on E. gammarus but also on other invertebrates which reside in the 

reefs such as the rare tubeworm Placostegus tridentatus which has been found at Loch Sunart, 

leading to a possible reduction in fecundity and fertility, which could ultimately result in 

population decline.  

In 2010 four sites had sediment MECs that were over the sediment MAC for emamectin benzoate 

(see table 2.5; figure 2.13). Three of these sites were within 5 km of the SAC Firth of Lorn. The 

Firth of Lorn is a designated area of conservation area due to its diverse species of reefs which are 

home to the gravel brittle star Ophiopsila annulosa, a benthic starfish and Leptometra celtica a 
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filter feeding echinoderm, which is a Scottish natural heritage priority marine feature (Scottish 

Natural Heritage, 2015). The salmon farm, FFMC53 (UK NGR NM71400781), is situated directly on 

the Firth of Lorn, in 2007 and 2009 FFMC53 used emamectin benzoate and 2011 FFMC53 used 

emamectin benzoate and azamethiphos (appendix A; tables A.1; A3; and A5). Emamectin 

benzoate is known to persist in the sediment with a half-life of 164-175 days (table 2.1), as L. 

celtica is a filter feeder it may be exposed to suspended sediment that has bound to emamectin 

benzoate, the highest recorded sediment MEC for emamectin benzoate was 25.08 μg/kg in 2011 

this was 223 meters away from the nearest farm (table 2.5; figure 2.15). The half-life for 

azamethiphos in water is 10.8 days (table 2.1); L. celtica could also be exposed to concentrations 

of azamethiphos. The highest water MEC data for azamethiphos, found by Langford (2015) was 26 

ng/L, directly below a fish farm that had used azamethiphos the previous week (table 3.1). It is 

likely that L. celtica will be exposed to emamectin benzoate and azamethiphos at concentrations 

that could cause chronic effects, and will be particularly vulnerable due to the specific nature of 

these VMs to target invertebrates.  

Dispersion tests using the dye rhodamine as a tracking tool show that azamethiphos and 

cypermethrin have the potential to travel up to 3km away from point source, within 5.5 hours of 

exposure (Ernst et al., 2001). Cypermethrin is notoriously toxic to invertebrates at very low 

concentrations (table 2.2). Due to the high toxicity of cypermethrin, especially on crustaceans and 

molluscs it is likely that usage causes a toxic plume, of up to 2km, capable of mass mortality 

immediately following release. In total 139 farms used cypermethrin on 622 occasions, either as a 

single treatment or in combination with other treatments between 2007 and 2011 (cypermethrin 

was not used in 2012, see table 2.2). Overall cypermethrin use decreased from 308 applications in 

2007 to just 14 applications in 2011 (figure 2.4 and 2.6a; appendix B). 

2.4.2 Teflubenzuron Use 

Teflubenzuron is a treatment that was used on a total of 16 farms, on 20 occasions between 2007 

and 2011 (figure 2.4, 2.5b; figure 2.6).  Although it was the treatment that was used the least 

frequently the total amount in kg used was the second highest of all treatments. Teflubenzuron is 

a chitinase inhibitor and is therefore only effective when applied to salmon infected with juvenile 

lice in the moulting stages (Burridge et al., 2010; Tassou and Schulz, 2011). Controlling sea lice 

infestation with teflubenzuron requires careful timing since correct use of the treatment should 

break the lifecycle and prevent infestation for a whole year (SEPA, 1999). However, this is difficult 

to achieve as the moulting stage between juvenile and adult largely depends on the temperature 

of the water. It was suggested by SEPA (1999) that salmon farmers apply teflubenzuron between 

May and October. The data, however, indicates that teflubenzuron was applied in February, 

March, June and July in 2007; June and December 2009; December 2010; and February, May, 
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November and December 2011 (figure 2.3b). In the ten months following teflubenzuron 

treatment, all of the salmon farms investigated continued to use one or more of the other four 

treatments (figure 2.19). It is possible that the application of teflubenzuron was too late or too 

early. It is also is recommended that before applying teflubenzuron another treatment should be 

used directly before to first remove adult lice. This appears not to be the case, which could be the 

reason why most farms have used other treatments in the ten months after teflubenzuron (figure 

2.19). Field trials by SEPA (1999), on ‘worst case scenario’ test of Calicide, a commercial 

teflubenzuron product, used 19.6 kg of product over seven days to treat 294.6 tonnes of salmon. 

It was found that there was an adverse effect on benthic fauna up to 50 m from cages but it was 

not thought to be detrimental to the species richness and diversity of the area, and it was 

concluded that after the 115 day half-life community structure would be rebuilt. The site SLO1, 

located in a Loch on the North West side of the Shetland Islands (UK NGR HU28508270) used a 

total of 75 kg of teflubenzuron as a sea lice treatment in December 2010 with a maximum allowed 

biomass of 1500 tonnes (figures 2.6b and 2.16a). In the SEPA (1999) report on teflubenzuron 

persistence, the field example that it was based on was one application of the VM, however there 

were three farms that used teflubenzuron in the ten months following the original application of 

teflubenzuron (see figure 2.19). These sites were BAD12 (UK NGR NC14834061), which used 8.8 

kg of teflubenzuron of 6 months after the first application of 0.87 kg; GRA1 (UK NGR 

NB40501430), which used 7.7 kg of teflubenzuron 1 month after the first application of 6 kg; and 

KYL1 (UK NGR NB40501430), which used 40 kg of teflubenzuron 5 months after the first 

application of 22.1 kg. The calculation of the half-life of teflubenzuron did not take into account 

repeat applications. Considering the longevity of teflubenzuron in sediment, repeat applications 

should be taken into account as accumulation can occur which would in turn increase the 

sediment MEC (SEPA, 1999).  

Metabolism of teflubenzuron by Atlantic salmon is low, with only around 10% of teflubenzuron 

absorbed by salmon, the remaining 90% enters the environment through excretion 

predominantly as parent compound (Jenkins, 1995; Ritchie, 1997; SEPA, 1999). According to 

preliminary studies by Samuelsen et al. (2014), faecal matter from S. salar showed concentrations 

of teflubenzuron that were 2 times that of the original administered dose. Teflubenzuron also is 

administered as an in feed treatment, meaning any uneaten food will enter directly into the 

environment, providing food for wild organisms in the surrounding area (Telfer et al., 2006). 

Teflubenzuron adsorbs strongly to sediment as the log Kow is high at 5.39 and its water solubility is 

low at 20 μg/l at 20°C (table 2.1). It is, therefore, likely to remain in the benthos, affecting benthic 

organisms such as crustaceans and other marine invertebrates. The EC50 for fecundity in C. 

riparius is 112.7 μg/kg (table 2.2), however teflubenzuron was measured in sediment at 

concentrations exceeding 112.7 μg/kg on two and three occasions in 2008 and 2012 respectively. 
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C. riparius is a sediment dwelling invertebrate which is found in rivers in the 1st instar larval stage. 

There is no ecotoxicology data for teflubenzuron available for marine species. It has been said 

that crustaceans are particularly sensitive to teflubenzuron during the moulting stages (SEPA, 

1999). It is therefore likely that in the locations where teflubenzuron was measured above 112.7 

μg/kg, in 2012 at concentrations as high as 698.33 μg/kg, there will be a detrimental effect on 

crustaceans. This may lead to a knock on effect on species dynamics through the trophic level in 

the areas affected (Jonsson et al., 2006). Chronic ecotoxicology studies on the European lobster 

Homarus gammarus by Samuelsen et al. (2014) fed pellets containing 10 mg or 20 mg of 

teflubenzuron per kg bodyweight (bw) for seven days and with a rest period of three months 

showed that almost 50% of exposed juveniles experienced mortality or deformities including 

delay in moulting, stiff or twisted of joints due to over calcification, damage to tail fans and puffy 

or swollen carapace resulting in exposure of gills. The majority of mortalities were during the 

moulting stages, which was to be expected given the MOA of teflubenzuron (a chitinase 

inhibitor). Of the two doses administered during this study there was no significant difference in 

mortality between low and high dose (41% and 38% respectively). This study highlights that the 

recommended treatment dose of teflubenzuron is significant enough to cause detrimental effects 

on H. gammarus with the possibility that exposure to concentrations found in the sediment 

around Scotland of up to 698.33 μg/kg (see table 2.2) could pose the risk of significant alterations 

to populations of this and potentially other crustaceans exposed in the environment. 

2.4.3 Sediment MECs of Teflubenzuron and Emamectin benzoate  

GIS has been used to predict the distribution of particulate waste for individual farms in order to 

determine the settling of treatments and establish a tailored AZE; dependent on the strength and 

direction of currents (Pérez et al., 2002). In general however, there are two AZE for aquaculture 

sites, a near field which is a 25 m buffer zone around the fish farm and a far field AZE which is a 

100 m buffer zone around the fish farm. Each AZE has a different MAC depending on the 

treatment used. The near and far field MAC for emamectin benzoate is 7.63 µg/kg and 0.763 

µg/kg respectively, while the near and far field MAC for teflubenzuron is 10 mg/kg and 2 µg/kg 

respectively (table 2.1). The majority of samples in the SEPA data set were taken more than 100 m 

away from the nearest fish farm that had last used either emamectin benzoate or teflubenzuron. 

There were 19 sites with detectable concentrations of teflubenzuron that were more than 2 km 

from the nearest farm that had last used this treatment, while 3 sites with a detectable 

concentration of emamectin benzoate were 2 km from the nearest farm that had used the 

treatment. In 2008 three samples had levels of teflubenzuron that ranged from 6.36 – 170.1 

µg/kg, but the nearest farm that had used teflubenzuron was 71.1-94.8 km away from the three 

sites. These levels of teflubenzuron are consistent with samples that are within 1 km a farm that 

has used teflubenzuron in the past year (table 2.4) (SEPA, 1999).  The most probable explanation 
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for such high concentrations of treatments occurring at long distances from nearest farm that has 

declared use, is that some fish farms have not been forthcoming in their use of teflubenzuron and 

emamectin benzoate, this information indicates that it is possible that the source of this pollution 

is from salmon farms that are closer to the sampling sites, rather than travelling from over 70 km 

away. 

Both emamectin benzoate and teflubenzuron are used in terrestrial agriculture as pesticides, 

there is the possibility that the source of pollution is from terrestrial agriculture, especially as 

many of the MECs are coastal and near estuaries. Terrestrial sources of pollution from agriculture, 

transport and industry have previously been detected in marine sediments (Brodie et al., 2012). 

Emamectin benzoate is approved as a plant protection product in the EU for peppers, cucumbers 

and melons (European Commission, 2013) and teflubenzuron is approved for use on tomato 

plants to control the whitefly Trialeurodes vaporariorum and the beet armyworm caterpillar 

Spodoptera exigua (European Commission, 2010). However, records on terrestrial use of 

teflubenzuron show that in Scotland over the years 2007-2010 teflubenzuron was used at a rate 

of <1 kg per year over a total of 15 ha (FERA, 2015). The exact location for the terrestrial use of 

teflubenzuron is not provided, however due to the low amount used as a plant protection product 

it is unlikely that sediments with a detectable level of teflubenzuron were polluted by terrestrial 

sources. No information was present for emamectin benzoate usage, however due to the nature 

of terrestrial use it is also likely to have been used in low quantities in terrestrial agriculture in 

Scotland. Given this it is unlikely that terrestrial sources contributed to sediment MECs of 

emamectin benzoate. All samples were taken within 1 km of an aquaculture site, there is the 

possibility that the source of pollution is coming from nearby salmon farms that have not declared 

their use of emamectin benzoate or teflubenzuron. 

In-feed treatments generally persist in the environment more than in-bath treatments. It is 

estimated that 90% of feed will be eaten, while 10% will settle directly as uneaten feed (Hargrave, 

1994), this uneaten feed as well as faeces settles directly below the cage and travels along the sea 

floor by saltation when currents reach a critical value (Rice et al., 1996). This leaves benthic 

organisms vulnerable to exposure to these treatments not only if they are below the cages but 

potentially over some distance.  This seems to be indicated by the SEPA data since the fish farms 

are often some distance from the sampling site but the treatments are still detectable (figures 

2.9c and d; 2.10c and d; 2.12c and 2.16c). A reason for detection of teflubenzuron and emamectin 

benzoate in samples that were far away from using fish farms may be two fold. First the 

persistence of these treatments in the sediment might be longer than expected and secondly 

treatments are not bound to sediment in the immediate vicinity of the fish farm as quickly as 

thought (see table 2.1 for log Kow relating to accumulation in sediment) but travel much further 
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distances in the water column than previously expected. Both teflubenzuron and emamectin 

benzoate are provided as in feed treatments. Information on the in bath treatments, 

deltamethrin and cypermethrin, were included in the SEPA report on sediment MECs, however all 

of the samples did not have detectable concentrations of these two pyrethroids. While 

cypermethrin and deltamethrin generally have a higher toxicity to the majority of tested species 

(table 2.2) they appear to be less persistent in the environment than their in feed counterparts. In 

feed treatments are not only risky to non-target organisms due to their presence in the sediment 

(figures 2.9 – 2.18), it is also known that organisms in the wild will travel in order to scavenge 

uneaten feed from aquaculture sites (Telfer et al., 2006). 

The half-life of teflubenzuron has been provided by SEPA as being 115 days, however other 

studies have stipulated that it may be as long as 170 days (Samuelsen et al., 2015). Field studies 

undertaken in Loch Eil, Scotland (SEPA, 1999) (separate studies from the data analysed above) 

have shown that measureable concentrations of teflubenzuron have been found up to 1 km away 

in the direction of currents from treated fish farms. It was estimated that 98% of teflubenzuron 

was degraded or dispersed from the site of treatment after 645 days (SAMS, 2005; SEPA, 1999).  

Teflubenzuron was detected at measurable concentrations in two sites (UK NGR NN019645; 

NN059705) in 2009 (figure 2.12). Teflubenzuron was not used in 2008 and in 2007 a total of 

95.769 kg of teflubenzuron was used. Teflubenzuron use in 2007 was applied 8 times in 6 salmon 

farms in the North-West of Scotland, around Stornoway (table 2.2; figure 2.4).  This is still over 

160 km far away from the sites in Loch Leven, situated in a Loch in mid-West Scotland, which 

found teflubenzuron in detectable concentrations; it is highly unlikely that the farms around 

Stornoway are the source. The last known use of teflubenzuron within 10 km away from the two 

sites was at a salmon farm in Loch Leven, which used 16 kg in December 2002 (CALL1; UK NGR 

NN0805980). The two sediment samples had a concentration that was lower than the MAC at 

0.53 and 0.31 µg/kg but nevertheless apparently detectable concentrations were found more 

than 6 years, almost 10 km away, after treatment on fish farms (Natural Scotland, 2015b). Field 

studies from Norwegian fish farms treated with teflubenzuron by Langford (2011) show that 

teflubenzuron was detected in sediment samples ‘several months’ (exact dates are not 

mentioned in the report) after application of either 80 kg or 225 kg to farms at concentrations of 

7.2 – 66 μg/kg and 8.3 – 269.2 μg/kg respectively, these concentrations are similar to what has 

been presented in the current work (table 2.4). This suggests either that teflubenzuron is more 

persistent than other studies suggest (Samuelsen et al., 2015; SEPA, 1999) or perhaps that the 

source of contamination is from farms that have not declared their use.   

There are a number of farms using emamectin benzoate less than 2 km away from SPAs and SACs 

in the Argyll and Bute region, with some salmon farms using emamectin benzoate which are 
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directly located on SACs and SPAs (see figure 2.17c and section 2.4.1). Both teflubenzuron and 

emamectin benzoate also have the potential to travel long distances as they were detected in 

samples taken more than 20 km away (figure 2.9 and 2.11c).  If this is the case, rather than the 

lack of declaration (as mentioned previously above) then it is more than likely that several SACs 

and SPAs will be exposed to sea lice treatments, with possible knock on effects on community 

structure and population dynamics. 

A potential explanation of the distance travelled by teflubenzuron and emamectin benzoate could 

be the presence of phytoplankton in the water column. During spring and summer blooms higher 

than normal densities of phytoplankton may be exposed to and accumulate teflubenzuron. 

Phytoplankton have the potential to travel considerable distances in water currents, before dying 

and sinking to the benthos carrying any accumulated load of sea lice treatments. This could result 

in benthic organisms being exposed to elevated concentrations of teflubenzuron some distance 

from the treatment site (SAMS, 2005). However, further investigation is needed to determine 

whether this could be a contributing factor in the trace amounts of teflubenzuron in sediment at 

considerable distance form fish farms that were found in the monitoring data.  

MEC samples were taken at different locations in the years 2008-2012. Monitoring of sediments 

to detect these contaminants is undertaken by SEPA and Marine Scotland Science (MSS). Under 

the WFD, there are currently no environmental quality standards (EQS) for sediment, in place of 

an EQS it has been suggested that the effects range low (ERL) take its place whilst sediment EQS is 

being adopted (Webster et al., 2013). Despite this, monitoring of sediments appears to be in 

different locations each year (figures 2.7-2.18). A proposal by Webster et al. (2013) suggests that 

sites where sediments have concentrations above ERL monitoring should be annual. Webster et 

al. (2013) also suggested that in sites where sediments were found to have concentrations below 

the limit of detection (BDL) should occur every six years, and for sites that had concentrations 

above the BDL but below the ERL sampling should occur every three years. There was a total of 70 

sites sampled for sediment MECs of teflubenzuron and emamectin benzoate, over the five year 

period 2008 - 2012 according to the proposed monitoring by Webster et al. (2013) 40 of these 

sites would need revisiting every year, with 16 requiring 3 yearly sampling and 14 sites only 

requiring 6 yearly sampling. Hopefully this will bring a more comprehensive assessment to the 

sediment quality of sites around salmon farms; however it is clear that this proposed sampling 

would put a lot more pressure on SEPA to increase sediment monitoring as more than half of the 

sites sampled had sediment MEC above the sediment MAC for emamectin benzoate and/or 

teflubenzuron. Additionally, more frequent sampling in the same sites could give insight into 

degradation times of both teflubenzuron and emamectin benzoate. 
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2.5 Conclusion 

A number of sites where sediment MEC samples were taken and show a detectable concentration 

of either teflubenzuron or emamectin benzoate were >2 km from the nearest salmon farm that is 

known to have used either treatment in the previous year. The most likely explanation for this is 

that salmon farms declared use of treatments on a voluntary basis, some farms may have not 

been forthcoming with information or there are inaccuracies in the data that was provided by 

SEPA. Sediment MECs of teflubenzuron have been reported as being at concentrations that are 

higher than MACs and in some cases in concentrations high enough to cause lethal and chronic 

effects of C. riparius and H. gammarus (table 2.2 and 2.4) (Park and Kwak, 2012; Samuelsen et al., 

2014). With resistance of sea lice to treatments rising and the growth in salmon production in 

Scotland it is inevitable that reliance on treatments will also increase. All treatments were used on 

at least one occasion on SACs. Particularly vulnerable SACs are those containing reef habitats that 

support important and rare invertebrates. Monitoring of sediment MECs around fish farms is in 

need of being more consistent, as in the years 2008-2012 monitoring occurred at different sites 

each year, the new proposals for monitoring by Webster et al. (2013) should address this 

problem. 
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Chapter 3  

Aliivibrio fischeri assay – a measure of acute toxicity and mixture 

effects 

3.1 Introduction 

Aliivibrio fischeri (previously classified as Vibrio fischeri) (Urbanczyk et al., 2007) is a Gram-

negative bioluminescent marine bacterium with a wide global distribution.  It is a bacterium of 

ecological importance due to its symbiotic relationship with marine animals, including the highly 

reported and researched Hawaiian bobtail squid Euprymna scolopes (Ruby and McFall-Ngai, 1999; 

Soto et al., 2012). In their free living state A. fischeri are not bioluminescent, it is only when they 

are found in high densities, such as within another organism, that they begin to emit 

luminescence through quorum sensing (James et al., 2000). This luminescence can be triggered 

when grown in certain laboratory conditions and thus has resulted in A. fischeri being used as a 

model organism for a number of assays (Whitehead et al., 2001).  

One such assay is using A. fischeri as a bio-indicator for water quality (Costa et al., 2015; 

Hernando et al., 2007; Ma et al., 2015; Parvez et al., 2008; Villa et al., 2012; Yan et al., 2015). A 

standard protocol has been developed by the International Organisation for Standardization (ISO) 

in 1998 (ISO 11348). The assay has a wide scope and can be applied to field samples as well as 

laboratory samples. The A. fischeri assay can be conducted using freeze-dried bacteria; liquid 

dried bacteria or freshly prepared bacteria.  

3.1.1 Luminescence in A. fischeri and application as a bioassay  

Quorum sensing is an intercellular process in communities of bacteria involving auto induction of 

a particular gene. In Gram-negative bacteria it is most often regulated by N-acylated homoserine 

lactones (AHLs). AHLs are signalling molecules that assist in the communication of gene 

expression between bacterial cells. AHLs are produced within the cell and excreted into the 

environment to be picked up by neighbouring cells, so a higher number of cells results in a higher 

concentration of AHLs (Kuttler and Hense, 2008).  

In A. fischeri luminescence, a quorum sensing event, is regulated by the lux genes, which are 

ordered into two operons, the left (OL) and the right (OR).  On OR is the luxI gene which produces 

the A. fischeri specific AHL, N-3-oxohexanoyl-L-homoserine lactone (OHHL).  OR also contains the 

genes luxCDABEG which are the genes responsible for encoding the luminescence enzymes 

(James et al., 2000). OL contains the luxR gene, which encodes the transcriptional activator 

protein, luxR, which when bound to OHHL binds to the lux box to transcribe luxCDABEG causing 
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subsequent elevation in bioluminescence and increased OHHL production (Whitehead et al., 

2001). The luxI protein produces the signal molecules OHHL, however in order for the OHHL 

transcription activator protein luxR to bind to the lux box a certain threshold must be reached, if 

that threshold is not reached then transcription of luxCDABEG is not operated and the cell is not 

luminescent (figure 3.1 a). When OHHLs are present in higher concentration from neighbouring 

cells, they can then bind to the luxR protein. LuxR in turn induces the lux box to transcribe the 

luxCDABEG operon, regulating bioluminescence. When the lux box is bound to luxR it also 

transcribes luxI which in turn produces more OHHLs which are transmitted into the surrounding 

environment further increasing the signal to surrounding molecules to produce more 

luminescence (figure 3.1 b). 

 

  

Figure 3.1 Quorum sensing in A. fischeri when found in low densities (a.) and in high densities (b.). 

Orange triangles represent OHHLs. Adapted from Whitehead et al. (2001).  

Loss of luminescence occurs when cells die. Since high densities of active A. fischeri emit 

luminescence, and this luminescence decreases with numbers of active A. fischeri loss can be 

quantified using a luminometer (Whitehead et al., 1979). Luminescence of A. fischeri, caused by 

quorum sensing, is therefore what makes A. fischeri an ideal organism for studying the acute 

effects of chemicals. The use of A. fischeri has been used as a bio-indicator for water health and 

quality (see figure 3.2 for example of A. fischeri bioluminescence).   
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Figure 3.2 A. fischeri colonies grown on agar plates shown under (a) light and (b) in the dark 

Source: (Pierson III et al., 2009) 

3.1.2 Predicting mixture effects 

Ecotoxicology testing generally focuses on acute single compound testing. Realistically however, 

aquatic organisms are exposed to a cocktail of pollutants, which are released in pulses rather than 

uniformly as in laboratory controlled systems (Janssens and Stoks, 2012; Rasmussen et al., 2013). 

Testing for the outcome of an infinite combination of mixtures has been a problem.  An 

alternative to laboriously testing different combinations of mixtures in varying ratios is to use 

prediction models based on effects of single compound data. The two most commonly used 

models are concentration addition (CA) (equation 3.1), originally known as Loewe additivity 

(Loewe, 1953) and independent action (IA) (equation 3.2), otherwise known as Bliss independent 

action (Bliss, 1939; Villa et al., 2012).  

Equation 3.1 – CA 

𝐷𝑚𝑖𝑥  =  ∑ 𝑎𝐷𝑖

𝑛

𝑖=1

 

Where 𝐷𝑚𝑖𝑥 is the predicted effect concentration of the mixture, and 𝑎𝐷𝑖 is the effect 

concentration of each individual compound (SCHER et al., 2012).  

Whereas the IA model assumes compounds have a dissimilar MOA and therefore act 

independently. The equation is as follows: 

Equation 3.2 – IA 

𝑃𝑚𝑖𝑥  = 1 − (1 − 𝑃1)(1 − 𝑃2)(1 − 𝑃3) … . (1 − 𝑃𝑛) 

Where 𝑃𝑚𝑖𝑥 is the total predicted effect from the mixture, and 𝑃1, 𝑃2 etc. is effect of each 

individual component of the mixture. 

a b 
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Both CA and IA assume that the chemicals act independently and therefore neither model 

accounts for chemicals that may have a synergistic effect or those that might have an antagonist 

effect. Cedergreen et al. (2008), compared the predictability of IA and CA for compounds with 

different MOAs on seven test systems including the water flea D. magna, the micro algae P. 

subcapitata, the bioluminescent bacteria Aliivibrio fischeri and the duckweed L. minor. Pooling 

data from various studies they were able to analyse the predictive value of these models for 98 

chemical mixtures, over 158 data sets. They concluded that IA could successfully predict the 

outcome of 47% of the mixtures, where CA could predict 36%. It appears that these models are 

not sufficiently accurate to predict the effects of mixtures with differing MOAs. In vitro systems 

could provide a more comprehensive understanding of mixture toxicity. 

The A. fischeri assay is a rapid way of determining the acute toxic effects of VMs on bacterial cells. 

Although environmental concentrations of the VMs tested are unlikely to reach acute levels, due 

to the immediate results obtained the A. fischeri assay has been deemed suitable to test for 

mixture toxicity. The acute test for toxicity on A. fischeri was decided to be the most efficient and 

cost effective assay to test for the reliability of the two prediction equations CA and IA.  

3.1.3 Chapter objectives 

In order to address objective 3 (chapter 1; section 1.9.3), the objectives of using the A. fischeri 

assay were: 

 To determine the acute toxicity of the five VMs azamethiphos, cypermethrin, 

deltamethrin, emamectin benzoate and teflubenzuron used in UK aquaculture as a means 

of sea lice infestation removal.  

 To compare acute toxicity of a common degradation product, 3PBA, to two of its parent 

compounds (cypermethrin and deltamethrin). 

 To predict the effect of mixtures on acute toxicity using single compound data as a 

reference point using the CA and IA equations and compare to measured mixture effects.  

3.2 Materials and Methods 

3.2.1 Acute Aliivibrio fischeri assay for selected VMs and degradation products 

Solutions were filter sterilised using a 0.22 µm filter (Merek Millipore, Darmstadt, Germany) or by 

autoclaving at 121°C for 15 minutes. A single colony of A. fischeri (NCIMB, Aberdeen, UK) was 

grown in oceanibulbus broth (see appendix D for components) at 20°C in a shaking incubator 

(150 rpm) for 24 hours until the optical density (OD)600 was ~2.5. A 5 ml aliquot of this culture was 

inoculated in 50ml of oceanibulbus broth and grown at 20°C in a shaking incubator (150 rpm) for 

24 hours until OD600 was ~2.5. Cells were harvested by centrifuging for 10 minutes at 3000 rpm at 
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15°C and washed with 10ml filter sterilised 2% mass per volume (w/v) NaCl (Sigma-Aldrich, Poole, 

UK). The wash step was repeated once. Cells were then diluted in 2% (w/v) NaCl to an OD600 of ~5.  

All test chemicals were purchased from Sigma-Aldrich (Poole, UK), unless otherwise stated. 

Cypermethrin, deltamethrin, azamethiphos, teflubenzuron, emamectin benzoate and the 3-

phenoxybenzoaic acid (3PBA) were first dissolved in dimethyl sulfoxide (DMSO) (Fisher, 

Loughborough, UK) to a concentration of 20 mg/ml apart from deltamethrin which was dissolved 

to a concentration of 10 mg/ml. Test chemicals were then serially diluted in 2% (w/v) NaCl to a 

concentration ranging 400 – 0.1 mg/ml.  

A positive control standard curve of phenol was performed with each assay at a concentration of 

50 - 1 mg/ml to ensure validity of A. fischeri cells. Phenol controls were treated in the same way 

as test VMs. DMSO, concentration in wells never exceeded 2%; controls also contained 2% DMSO.  

The test VM was added to each well, of a white opaque 96-well plate (ThermoScientific, 

Loughborough, UK) at a volume of 150 µl, along with 150 µl of A. fischeri to give a final OD600 of 

2.5 in each well. Plates were incubated at 15°C for 15 minutes. Blanks contained 294 µl 2% (w/v) 

NaCl and 6 µl DMSO; controls contained 150 µl A. fischeri 144 µl of 2% (w/v) NaCl and 6 µl DMSO. 

Luminescence was measured using a plate reader (FLUOstar OPTIMA, BMG LABTECH, Germany) 

using a transparent lens with a gain of 4095 across a wavelength range of 230 – 900 nm. 

Luminescence was measured in relative light units (RLU) minus the blank measurement and 

presented as a percentage to the DMSO control. The experiment was repeated three times. 

Results were given as relative light units (RLU), and expressed as a percentage from the mean 

using equation 3.3. 

Equation 3.3        

X = (T ÷ C) × 100 

Where X is the percentage from control, T is the measured value in RLU and C is the control value 

in RLU.  

3.2.2 Prediction of mixture toxicity  

VMs were initially tested individually, once the results had been analysed by determining the EC50 

using sigmoidal dose response curves (see section 3.2.4) mixtures of chemicals were tested. Three 

compounds were used for the mixture toxicity tests. These were 3PBA, emamectin benzoate and 

azamethiphos. This was because an EC50 for cypermethrin, deltamethrin and teflubenzuron could 

not be calculated for A. fischeri (see table 3.1). 
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Four mixtures were investigated. Mixture A consisted of 1:1 ratio of azamethiphos and 3PBA at a 

concentration range of 0.05 - 200 mg/L of each substance. Mixture B consisted of equal parts of 

azamethiphos and emamectin benzoate at a concentration range of 0.05 - 200 mg/L of each VM. 

Mixture C consisted of equal parts of 3PBA and emamectin benzoate at a concentration range of 

0.05 - 200 mg/L of each substance. Mixture D consisted of equal parts of azamethiphos, 3PBA and 

emamectin benzoate at a concentration range of 0.05 - 100 mg/L.  Equations 3.1 and 3.2 (section 

3.1.2) were used to determine whether the toxicity of single VMs could be used to make 

predictions on mixture effects. The effectiveness of CA and IA were compared to measured 

effects of mixtures using statistical analysis (section 3.2.4). 

3.2.3 Determination of A. fischeri sensitivity to emamectin benzoate using plate counts 

Due to elevated bioluminescence in the previous assay, plate counts of A. fischeri exposed to 

different concentrations of emamectin benzoate were carried out. A. fischeri was cultured and 

washed in 2% (w/v) NaCl as described previously (section 3.2.2). To each 90 mm petri dish 

(Sterilin Ltd, Newport, UK) 20 ml of spiked Oceanobulbus agar (see appendix D for constituents) 

was added, with concentrations of emamectin benzoate between 0.1 - 400 mg/L. Phenol was 

used as a positive control at a concentration of 0.1 - 50 mg/L. Filter sterilised emamecin benzoate 

and phenol were added to agar after autoclaving and immediately before pouring into plate 

(maximum temperature 45°C). Negative controls contained only 20 ml of Oceanobulbus agar. 

Petri dishes were inoculated with 100 µl of culture, which was spread with a sterile glass plate 

spreader, at a cell density of 1500 cells/ml. Petri dishes were incubated at 16°C for 72 hours after 

which colony counts were performed. Results were expressed as cells/ml. Each concentration had 

a replication of three. The experiment was repeated twice. 

3.2.4 Statistical methods 

GraphPad (GraphPad Prism, 2010) was used to create sigmoidal dose response curves, from 

which the EC50 of each compound and each mixture could be determined.  Predicted mixture 

curves were compared using nonlinear regression. One-way analysis of variance (ANOVA) with 

Tukey’s post hoc test was performed for each concentration of each test chemical to determine 

significant differences (P < 0.05) from the control (Tukey, 1949). Predictions on mixture toxicity 

were made using both the CA (equation 3.1) and IA (equation 3.2) models. Pearson’s correlation 

was used to determine the accuracy of CA and IA. 
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3.3 Results 

3.3.1 Single compound toxicity to A. fischeri and calculated EC50 

Six compounds were analysed for single compound acute toxicity. These were 3PBA, 

azamethiphos, cypermethrin, deltamethrin, emamectin benzoate and teflubenzuron. 

Concentration ranged between 0.1 - 400 mg/L for all VMs except deltamethrin which ranged 

between 0.2 – 200 mg/L (due to the low solubility of deltamethrin in DMSO). Cypermethrin, 

deltamethrin and teflubenzuron appeared to have no effect on the bioluminescence on A. fischeri 

even at the highest concentration of 400 mg/L for cypermethrin and teflubenzuron, and 200 mg/L 

for deltamethrin (figure 3.5). Therefore these compounds were not included when investigating 

mixtures. At higher concentrations, 200 – 400 mg/ml, emamectin benzoate showed a significant 

increase in bioluminescence (P < 0.05) when compared with DMSO controls (section 3.3.2; figure 

3.7). Lower concentrations of emamectin benzoate, 0.5 - 150 mg/ml, showed no difference in 

luminescence when compared with the control (section 3.3.2; figure 3.7). The EC50 for each tested 

VM was calculated and compared with reported MECs (table 3.1). Azamethiphos and 3PBA 

caused sufficient loss of luminescence at the concentrations tested and therefore a EC50 was able 

to be calculated for these two VMs. Cypermethrin, deltamethrin, emamectin benzoate and 

teflubenzuron did not cause more than 50% cell death at the highest concentrations and so an 

EC50 was not calculated for these VMs. Rather than causing a reduction in luminescence 

emamectin benzoate appeared to encourage luminescence (section 3.3.2; figure 3.7). As some of 

the tested VMs caused an increase in luminescence from the control, some dose response curves 

start below 0. 
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Table 3.1 Comparison of EC50 mg/L for the six compounds for A. fischeri and the highest reported 

aquatic MEC. 

Compound A. fischeri   EC50 mg/L 

(this study) 

Highest reported 

aquatic MEC 

Reference (for 

aquatic MEC) 

Azamethiphos 41.25 ± 0.04 26 ng/L (Norway) (Langford, 2015) 

Cypermethrin >400 85.1 µg/L (UK) (Boxall et al., 2002) 

Deltamethrin >200 n.d n.d 

Emamectin benzoate >400 25.08 µg/kg  

(sediment) 

(Natural Scotland 

2015b) 

Teflubenzuron >400 12.9 ng/L (Norway) (Langford et al., 2014) 

3PBA 281 ± 0.02 n.d n.d 

Phenol (positive 

control) 

17.38 ± 0.03 N/A N/A 

n.d = no data. N/A = not applicable 

Azamethiphos and 3PBA had an acute toxic effect on A. fischeri. These were the only compounds 

where an EC50 could be calculated. Azamethiphos produced an EC50 of 41.25 mg/L (figure 3.3). 

One-way ANOVA with Tukey’s post hoc indicates that a significant increase in A. fischeri cell 

inhibition by azamethiphos begins at 10 mg/L (P <0.001) and cell inhibition is significantly 

increased right through to 400 mg/L (P <0.001). 

 

Figure 3.3 The acute toxicity of azamethiphos on A. fischeri, after 30 minutes incubation (15 °C), 

shown as percentage of cell death against the control (% inhibition). Bars show standard error of 

the mean (n = 3).  

The degradation product 3PBA caused greater toxicity to A. fischeri than its parent compounds 

cypermethrin and deltamethrin (figures 3.4 and 3.5). The EC50 for 3PBA was 281 mg/L whereas the 

EC50 for cypermethrin and deltamethrin could not be determined since the highest concentration 
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for both VMs did not cause 50% of inhibition. One-way ANOVA with Tukey’s post hoc indicates 

that a significant increase in A. fischeri cell inhibition by 3PBA begins at 150 mg/L (P = 0.008) and 

cell inhibition is significantly increased right through to 400 mg/L (P <0.001). Bioluminescence was 

significantly higher in A. fischeri exposed to 10 mg/L of 3PBA than A. fischeri control (P = 0.01). 

 

Figure 3.4 The acute toxicity of 3PBA on A. fischeri, after 30 minutes incubation (15 °C), shown  as 

a percentage of cell death from the control (% inhibition). Bars show standard error (n = 3).  

Cypermethrin, deltamethrin and teflubenzuron did not cause significantly higher cell inhibition on 

A. fischeri than controls apart from teflubenzuron at a concentration of 0.4 mg/L which caused an 

average of 38.8 (± 0.93) cell inhibition. 
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Figure 3.5 Dose response curves for cypermethrin, deltamethrin and teflubenzuron on A fischeri, 

after 30 minutes incubation (15 °C), shown as percentage cell death. Bars show standard error (n 

= 3).  
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Phenol was used as a positive control, phenol has a reported EC50 to A. fischeri of 22 – 40.2 

mg/L(Pintar et al., 2008).  In this case phenol produced an EC50 of 17.38 mg/L (figure 3.6). 
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Figure 3.6 Dose response curves for the positive control phenol on A fischeri, after 30 minutes 

incubation (15 °C), shown as percentage cell death. Bars show standard error (n = 3).  

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

3.3.2 Emamectin benzoate increases in luminescence 

A. fischeri was exposed to emamectin benzoate in concentrations between 0.5 mg/L – 400 mg/L. 

When exposed to 200 mg/L, 300 mg/L and 400 mg/L A. fischeri showed a significantly higher 

expression of bioluminescence than the control (figure 3.7). For luminescence to exceed the 

control is unexpected as luminescence is associated with growth. If emamectin benzoate had no 

effect on luminescence then results should not have significantly increased compared with the 

control.  

 

 

 

Figure 3.7 A. fischeri cell inhibition when exposed to concentrations of emamectin benzoate (0.5 -

400 mg/L) after 30 minutes incubation (15 °C), shown as percentage cell death.  Bars show 

standard error of the mean (n = 3). Values were tested for significance from the mean using one-

way ANOVA * = P <0.05 *** = P <0.0001.   
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Due to this unexpected increase in bioluminescence of A. fischeri when exposed to emamectin 

benzoate, the possibility of chemiluminescence was investigated. A 96 well plate without A. 

fischeri was prepared at all concentrations of emamectin benzoate dissolved in DMSO and diluted 

in 2% (w/v) NaCl. The outcome of this test was that emamectin benzoate does not exhibit any 

chemiluminescent properties.  

As it was discovered that emamectin benzoate is not chemiluminescent, plate counts were 

carried out in order to establish whether the increase in bioluminescence of A. fischeri in the 

original assay was as a result of enhanced growth due to the addition of emamectin benzoate.  

Due to the unexpected increase in bioluminescence of A. fischeri when exposed to emamectin 

benzoate, plate counts were carried out in order to establish actual cell number and whether 

there was a negative growth response of A. fischeri when exposed to different concentrations of 

emamectin benzoate. Despite an increase in bioluminescence of A. fischeri when exposed to 

concentrations of emamectin benzoate between 200 – 400 mg/L in the original assay (figure 3.7), 

this was not reflected in the plate count assays. Agar plates containing 400 mg/L, 200 mg/L and 

100 mg/L, A. fischeri showed a significant decrease in the number of colonies grown compared to 

the negative DMSO control. Exposure to 50 mg/L and 1 mg/L emamectin benzoate cell numbers 

were not significantly different from the control (figure 3.8).  

 

Figure 3.8 Plate counts of A. fischeri exposed to emamectin benzoate. Cells/ml when exposed to 

concentrations of emamectin benzoate ranging between 400 – 1 mg/L, incubation was 72 hours 

at 15 °C. DMSO was used as positive control and phenol as negative control. Bars show standard 

error (n = 3). Values were compared to the mean to test for significance using one-way ANOVA ** 

= <0.01 significance from control; *** <0.001 significance from control. 
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3.3.3 Mixture effects on A. fischeri and comparison with prediction equations 

Four mixtures were investigated, these were mixture A which was equal parts 3PBA and 

azamethiphos (figure 3.9), mixture B which was equal parts azamethiphos and emamectin 

benzoate (figure 3.10), mixture C which was equal parts 3PBA and emamectin benzoate (figure 

3.11) and mixture D which was equal parts 3PBA, azamethiphos and emamectin benzoate (figure 

3.12). Measured toxicity of the four mixtures was compared with predicted toxicity using CA 

(equation 3.1) and IA (equation 3.2). IA estimates gave lower EC50 results than observed findings 

for all four mixtures (figures 3.9 – 3.12; table 3.2). CA estimates were higher than measured EC50 

results for mixture B (figure 3.10) and mixture D (figure 3.12). An EC50 was not calculated for 

mixture C as the given range estimated by CA did not reach the 50% mark.  

A. fischeri was exposed to mixture A, which was a 1:1 ratio of azamethiphos and 3PBA, at total 

concentrations of 0.1 – 400 mg/L (0.05 – 200 mg/L of each VM). Results from a one-way ANOVA 

with Tukey’s post-hoc test shows that a significant increase in A. fischeri cell inhibition from the 

control started at 60 mg/L (P <0.001) total concentration through to 400 mg/L total concentration 

of mixture A (P <0.001) (figure 3.9). One way ANOVA of curves shows there is a significant 

difference between measured curve and the predicted curves calculated using CA (equation 3.1) 

and IA (equation 3.20) (P <0.0001). 

 

Figure 3.9 Acute toxicity of mixture A (1:1 ratio of azamethiphos and 3PBA; 0.1 – 400 mg/L total 

concentration) on A. fischeri, after 30 minutes incubation (15 °C),  compared with the predicted 

standard curves of mixture A using CA (equation 3.1) and IA (equation 3.2). Cell death was 

measured by percentage of death when compared to control. Bars show standard error (n=3) (IA 

and CA were calculated so error is not shown).  
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A. fischeri was exposed to mixture B, which was a 1:1 ratio of azamethiphos and emamectin 

benzoate, at total concentrations of 0.1 – 400 mg/L (0.05 – 200 mg/L of each VM). Results from a 

one-way ANOVA with Tukey’s post-hoc test shows that a significant increase in A. fischeri cell 

inhibition from the control started at 100 mg/L (P = 0.005) total concentration through to 400 

mg/L total concentration of mixture B (P <0.001). Bioluminescence was significantly higher in A. 

fischeri exposed to mixture B beginning at a concentration of 0.1 mg/L (P <0.001) through to 20 

mg/L (P <0.001) (figure 3.10). One way ANOVA of curves shows there is a significant difference 

between measured curve and the predicted curves calculated using CA (equation 3.1) and IA 

(equation 3.21) (P <0.0001). 

 

Figure 3.10 Standard curves showing the acute toxicity of mixture B  (1:1 ratio of azamethiphos 

and emamectin benzoate; 0.1- 400 mg/L total concentration) on A. fischeri, after 30 minutes 

incubation (15 °C),  compared with the predicted standard curve of mixture B using CA (equation 

3.1) and IA (equation 3.2). Cell death was measured by percentage of death when compared to 

control. Bars show standard error (n = 3) (IA and CA were calculated so error is not shown).  

A. fischeri was exposed to mixture C, which was a 1:1 ratio of 3PBA and emamectin benzoate, at 

total concentrations of 0.1 – 400 mg/L (0.05 – 200 mg/L of each VM). Results from a one-way 

ANOVA with Tukey’s post-hoc test shows that a significant increase in A. fischeri cell inhibition 

from the control started at 200 mg/L (P <0.001) total concentration through to 400 mg/L total 

concentration of mixture C (P <0.001). Bioluminescence was significantly higher in A. fischeri 

exposed to mixture C beginning at a concentration of 0.1 mg/L (P <0.001) through to 40 mg/L (P 

<0.001) (figure 3.11). 
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Figure 3.11 Standard curves showing acute toxicity of mixture C (1:1 ratio of 3PBA and emamectin 

benzoate) on A. fischeri, after 30 minutes incubation (15 °C),  compared with the standard curve 

of the predicted mixture C using CA (equation 3.1) and IA (equation 3.2). Bars show standard 

error (n = 3) (CA and IA were calculated so error is not shown).  

A. fischeri was exposed to mixture D, which was a 1:1:1 ratio of azamethiphos, 3PBA and 

emamectin benzoate, at total concentrations of 0.15 – 300 mg/L (100 –0.05 mg/L of each VM). 

Results from a one-way ANOVA with Tukey’s post-hoc test shows that a significant increase in A. 

fischeri cell inhibition from the control started at 60 mg/L (P <0.001) total concentration through 

to 300 mg/L total concentration of mixture D (P <0.001). Bioluminescence was significantly higher 

in A. fischeri exposed to mixture D beginning at a concentration of 0.15 mg/L (P = 0.001) through 

to 3 mg/L (P = 0.008) (figure 3.12). One way ANOVA of curves shows there is a significant 

difference between measured curve and the predicted curves calculated using CA (equation 3.1) 

and IA (equation 3.20) (P <0.0001). 
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Figure 3.12 Standard curves showing acute toxicity of mixture D  (1:1:1 ratio of 3PBA, 

azamethiphos and emamectin benzoate) on A. fischeri, after 30 minutes incubation (15 °C),  

compared with the standard curve of mixture D prediction using CA (equation 3.1) and IA 

(equation 3.2). Bars show standard error (n = 3) (IA and CA were calculated so error is not shown).  

An EC50 value for each of the mixtures was calculated, as were the predicted EC50 values using the 

equations CA (equation 3.1) and IA (equation 3.2) (table 3.2). 

Table 3.2 EC50 calculations for actual measured mixtures (A-D) and for predictions IA (A-D) and CA 

(A-D).  The value for mixture C CA EC50 (mg/L) was unable to be calculated as predicted inhibition 

using this model did not reach 50%.  

Mixture name Actual EC50 (mg/L) IA EC50 (mg/L) CA EC50 (mg/L) 

Mixture A 61.82 ± 0.03 22.36 27.88 

Mixture B 130.1 ± 1.02 22.22 2736 

Mixture C 123.5 ± 1.16 34.93 Not calculated 

Mixture D 44.93 ± 0.34 5.345 97.18 

   

Measured inhibition and predictions using CA (equation 3.1) and IA (equation 3.2) of all four 

mixture combinations were pooled. Statistical analysis using linear regression and Pearson’s 

correlation was performed using GraphPad Prism to determine the reliability of each prediction 

model. Both prediction models were significantly correlated to actual measured effect, however 

IA (figure 3.13) had a stronger correlation with actual measured effect than CA (figure 3.14).  
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Figure 3.13 Pearson’s correlation between measured values of mixtures A-D and predicted values 

using IA (equation 3.2)  Linear regression (continuous line) with 95% confidence intervals (dashed 

lines) R2 = 0.8257; P <0.001.   

 

 

Figure 3.14 Pearson’s correlation between measured values of mixtures A-D and predicted values 

(n = 31) of mixtures using CA. Linear regression (continuous line) with 95% confidence intervals 

(dashed lines). R2 = 0.1691; P = 0.0215. 
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3.4 Discussion  

3.4.1 Single compound toxicity 

Of the six compounds tested, azamethiphos was the most potent giving an EC50 of 41.25 mg/L, 

3PBA had an EC50 of 281 mg/L the EC50 for emamectin benzoate, deltamethrin, cypermethrin and 

teflubenzuron could not be calculated as at the highest concentration (400 mg/L, 200 mg/L for 

deltamethrin) cell inhibition was lower than 50%. Ernst et al. (2001) found when using the 

commercial A. fischeri kit Microtox the EC50 for azamethiphos was 11 mg/L. When comparing 

ecotoxicology data of the test compounds, A. fischeri appears to be less sensitive than other test 

species (table 3.3). 

Table 3.3 Available EC50 or LC50 data on D. magna, O. mykiss and various algal species on the six 

test VMs along with the EC50 results from this study.  

Compound D. magna 

EC50 (mg/L) 

O. mykiss LC50 

(mg/L) 

Algal species EC50 

(mg/L) 

A. fischeri EC50 

(mg/L) (This study) 

Azamethiphos 0.00067 >0.115 - 41.25 ± 0.04 

Cypermethrin 0.0003 0.0028   >0.01 (P. subcapita) >400 

Deltamethrin 0.00056 0.00056 - >200 

Emamectin 

benzoate 

0.001 0.174 0.0072 (P. subcapita) >400 

Teflubenzuron 0.0028 0.0186 >0.02 (S. subipicatus) >400 

3PBA 0.05 >99 0.10 (Adetus inaequalis) 281 ± 0.02 

Source: VSDB 

Cypermethrin and deltamethrin had no significant effect on A. fischeri at the concentrations 

tested (0.4 – 400 mg/L for cypermethrin and 0.2 - 200 mg/L for deltamethrin). Teflubenzuron 

caused significant cell inhibition at the lowest concentration, 0.4 mg/L but there was no 

difference at higher concentrations (see figure 3.5). When testing organic chemicals used in 

aquaculture on A. fischeri, Hernando et al. (2007) found that the EC50 for deltamethrin was >39.9 

mg/L, but there was 30% inhibition at 5 mg/L. This corresponds with other literature as Ernst et al. 

(2001) found the EC50 for cypermethrin was >4.95 mg/L. Hernando et al. (2007) found that 

emamectin benzoate had no effect on A. fischeri at concentrations up to 6.3 mg/L. Information on 

the ecotoxicity of 3PBA and teflubenzuron on A. fischeri is not available.  From the plate counting 

assay a concentration of 100 mg/L of emamectin benzoate caused a significant decrease in cell 

viability, however these concentrations are much higher than reported sediment MECs presented 

in chapter 2 (section 2.3.2; table 2.4 and 2.5) and therefore it is unlikely that emamectin benzoate 

would cause adverse effects on A. fischeri in the environment. 
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While the acute toxicity for cypermethrin and deltamethrin was too high to obtain an EC50 

measurement, there was a toxic effect on A. fischeri from their degradation product 3PBA (figure 

3.3; table 3.1). 3PBA gave an EC50 of 281 mg/L, where the EC50 for cypermethrin and deltamethrin 

were >400 mg/L and >200 mg/L respectively. VMs need to pass ecotoxicology testing before they 

are put on the market. In the EU, VMs are first subject to tier A testing to determine the predicted 

environmental concentration (PEC) of a parent substance (see chapter 1; section 1.4 for 

information on testing of VMs). If the resulting risk quotient (RQ) is >1 then PEC is refined to 

include information on degradation products. If a degradation product exceeds 10% of the total 

dose then the degradation product will go through phase II testing alongside the parent 

compound (Directive 91/414/EEC) (see chapter 1, section 1.4 for more about phase II testing). 

Cypermethrin and deltamethrin are highly hydrophobic and degradation in water is rapid (Crane, 

2007). One of the major degradation products of synthetic pyrethroids, 3PBA, is formed by 

hydrolysis, photolysis, microbial degradation and animal metabolism which when metabolised 

forms approximately 15% of cypermethrin (Jones, 1995).  

The acute toxicity results obtained from the A. fischeri assay show that none of the VMs, and 

degradation products, tested would cause an acute toxicity effect at environmentally relevant 

concentrations, as the results shown here are much higher than the sediment MECs presented in 

the previous chapter (see chapter 2; section 2.3.2; tables 2.4 and 2.5).  

3.4.2 Mixture toxicity 

IA and CA were calculated for the prediction of mixtures A-D on A. fischeri. Dose response curves 

and EC50 were calculated for predictions and for experimental measurements (figures 3.9 – 3.12). 

Overall IA appeared to be a more effective model for the prediction of effects of VM mixtures 

(figures 3.12 and 3.13). Villa et al. (2012) compared the robustness of both IA and CA against a 

number of complex mixtures of chemicals to determine which model is a more suitable predictor. 

They found that both the IA and CA models were effective at predicting acute mixture effects, of 

compounds with differing mode of action (MOAs), on A. fischeri. In their case, the CA model 

provided a better indicator than IA on the dose response of the tested mixtures.  

IA overestimated the toxicity for all four mixtures, by giving a lower EC50 value while CA gave 

more varied results, with underestimation of toxicity for mixtures B and D, and an overestimation 

of toxicity for mixture A. Using linear regression IA proved to be an effective tool for the 

prediction of mixture toxicity on A. fischeri, giving a prediction accuracy of 82.6% and a significant 

correlation (P <0.001) (figure 3.13). While linear regression of CA against actual inhibition of 

mixtures showed a significant positive correlation (P = 0.0215), prediction accuracy was 

substantially lower than that of IA, at 22.6% (figure 3.14). CA is generally considered a model for 

compounds with a similar MOA, in this case IA proved to be a better indicator for the prediction 
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of mixture toxicity since the MOA is different for all of the VMs tested (apart from cypermethrin 

and deltamethrin) (see table 2.1; chapter 2). Cedergreen et al. (2008) reviewed the effectiveness 

of IA and CA. They pooled information on the ability of each model to predict the toxicity of a 98 

different mixtures tested against seven test systems from a number of published studies; they 

found that IA was slightly more effective overall for predicting toxicity than CA (47% and 36% 

effective prediction respectively). 

3.4.3 Exposure to emamectin benzoate and increases in bioluminescence of A. fischeri  

While there was no effect on A. fischeri at concentrations up to 150 mg/L, emamectin benzoate 

appeared to increase bioluminescence of A. fischeri at higher concentrations, with 200 mg/l, 300 

mg/L and 400 mg/L having a significantly higher luminescence than the DMSO control (figure 3.7). 

While emamectin benzoate showed an increase in bioluminescence for the 30 minute A. fischeri 

inhibition assay, plate counts showed an opposite response and inhibited growth at 100 mg/L, 

200 mg/L and 400 mg/L (figure 3.8). Some chemicals are known to exhibit chemiluminescent 

properties, such as luminol a chemical which emits a blue light when it comes into contact with 

blood (Barni et al., 2007). By testing emamectin benzoate for luminescence without the addition 

of A. fischeri, it was not found to exhibit any chemiluminescence. A potential explanation for the 

increased luminescence, despite a toxic effect on cells, could be an interaction between 

emamectin benzoate and the organic solvent all of the substances were dissolved in, DMSO. 

Organic solvents, such as DMSO, are known to activate luminescence at low concentrations and 

inhibit luminescence at higher concentrations (Sukovataya and Tyulkova, 2001). To correct for 

this, DMSO was also added to the control at 2% (the highest concentration). There have been a 

few other reports of chemical enhancement of bioluminescence on A. fischeri. There are reports 

that interactions between organic solvents and heavy metals, which have been demonstrated to 

result in an even higher activation of luminescence than an organic solvent alone. When 

investigating the impact of heavy metals dissolved in organic solvents on the bioluminescence 

bacteria Vibrio harveyi Mariscal et al. (2003) found that organic solvents, such as DMSO could 

increase the bioluminescence of V. harveyi. When using organic solvents to dissolve heavy metals, 

Mariscal et al. (2003) found that while the addition of DMSO increased the expected toxicity of 

cadmium, they also found that DMSO at a concentration of  32000 and 16000 mg/L with mercury 

at a concentration of 0.5 mg/L, caused a considerable increased luminescence. Concentrations in 

the Mariscal et al. (2003) study were between 8000 and 32000 mg/L, whereas the highest 

concentration of DMSO in the current study was 2%, or 2000 mg/L this could be a reasonable 

explanation as to why the addition of emamectin benzoate showed an elevated level of 

luminescence in this study. There is little evidence for what mechanisms could be involved in this 

phenomenon as it has scarcely been reported, however it is speculated that changes in cellular 

permeability may play a role in the activation of luminescence, this may be what is happening 
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with emamectin benzoate, however there is little evidence to support this in the literature. 

Dissolving substances in organic solvents that have low solubility in water is common practice, 

however in light of these results dissolving test substances in DMSO and other organic solvents 

should be taken with care.  

3.4.4 Conclusions 

In conclusion while the A. fischeri test for bioluminescence is a rapid test to determine the acute 

toxicity of singular aquatic pollutants and mixtures of aquatic pollutants, it does not appear to be 

a species with high sensitivity to the specific VMs in this study. Comparing the current 

concentrations reported in the environment (chapter 2, section 2.3.2, tables 2.4 and 2.5), it is 

unlikely that the VMs used would cause an adverse effect on A. fischeri. Furthermore, dissolving 

substances in DMSO may increase luminescence especially through interaction with other 

substances. As discussed in section 3.4.3 of this chapter, the addition of DMSO and other solvents 

should be carefully taken into consideration when using this assay for the prediction of the 

toxicity of VMs.  

In this study, IA is a more suitable model for the prediction of mixture toxicity on A. fischeri than 

CA, which has been found previously (Cedergreen et al., 2008). This may have occurred as the 

substances tested did not have similar MOAs and did not produce synergistic effects. In other 

studies CA has been shown to be a better predictor of mixture toxicity, even for mixtures whose 

compounds have different MOAs (Villa et al. 2012).   
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Chapter 4  

Molecular Docking to Predict the Xenoestrogenic Potential of 

Veterinary Medicines 

4.1. Introduction 

There has been a shift in recent years towards the reduction in vertebrate testing in toxicology 

through the adoption of alternative testing methods such as in vitro and in silico (Eisenbrand et 

al., 2002). Despite pressures to reduce the amount of animal testing, and growing evidence that 

crustaceans amongst other invertebrates may experience pain-like responses, ecotoxicology 

largely still uses invertebrate and fish models (see chapter 1; section 1.5) (Elwood, 2011; Elwood 

et al., 2009). The current OECD ‘Guidelines for the testing of Chemicals’ section 2 ‘Effects on 

Biota’, (OECD, 2012b) sets out the 40 most common tests for ecotoxicology, of these 19 are acute 

toxicity tests, 9 are reproduction tests, 7 are tests on microorganisms, bacteria, algae or plants, 3 

assess EDCs and one measures growth (OECD, 2012b). All the recommended tests are in vivo with 

11 of these designed to test the effects on fish. The OECD (2012a) suggests five levels for 

assessing the endocrine disrupting ability of a chemical. Level one refers to existing data and non-

test information, for example physical and chemical properties, any available ecotoxicology or 

toxicology data, quantitative structure-activity relationship (QSARs), and absorption, distribution, 

metabolism, and excretion (ADME) predictions. Levels two focuses on specific endocrine 

pathways using in vitro assays whilst levels three, four and five focus on the use of in vivo assays 

to confirm any findings from levels one and two. This chapter will explore the use of in silico 

molecular docking to assist with level one testing of EDCs using the oestrogen receptor alpha 

(ERα) as the receptor of interest. 

One of the primary stages of the environmental risk assessment (ERA) is to assess the QSAR of 

new substances. QSARs are computational methods which make predictions on a compounds 

toxicity by comparing the molecular structure and physico-chemical properties, such as the 

octanol/water partition coefficient (log Kow) to compounds of a known (eco)toxic effect (Schultz et 

al., 2003) (chapter 1; section 1.4; tables 1.2 and 1.3).  QSARs were originally adopted as a high 

throughput method of drug discovery but are now being applied to other uses such as 

ecotoxicology (de Roode et al., 2006) (see section 1.6; chapter 1). Another in silico method being 

used for drug discovery is molecular docking (Deng et al., 2014; Gschwend et al., 1996). 

Increasingly molecular docking is being utilised to predict binding of ligands to protein targets, 

and is being proposed as an alternative method of in silico predictions on protein targets and 

interactions with various toxic substances, such as VMs. Molecular docking is being suggested as 
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an additional component in QSARs, to complement the assessment of the structure relationships 

of ligands.  

The regulation of ecotoxic compounds is moving to more intelligent, informed testing and 

beginning to incorporate new non-destructive techniques. However, there are disadvantages of in 

vitro testing.  In particular, the biological and protein targets need to be known before testing can 

be conducted.  

Molecular docking is a computational method to investigate interactions between ligands and 

receptors and is proposed as a suitable method to incorporate in the QSAR data set (see above). 

Docking programs can make predictions on binding affinity, hydrogen bonds and Van der Waals 

interactions (Huey et al., 2007). There are a number of programs that can be used to dock ligands 

to larger molecules, from open source software such as AutoDock Tools, rDock and SwissDock to 

commercial programs such as FlexX, hint!® and Discovery Studio. If a mode of action (MOA) is 

established beforehand then testing can be conducted. However in silico has the advantage that 

multiple receptors from multiple organisms can be tested in a high throughput manner, so that in 

silico methods have the potential to identify targets. This is potentially a powerful adjunct to 

existing testing methods and deserves further investigation. 

The open source docking program AutoDock 4, was used in this study due to its use in a number 

of studies and open source availability (McCullough et al., 2014; Walker and McEldowney, 2013). 

AutoDock uses four algorithms to assess and make predictions on the binding efficiency of ligands 

to receptors. Firstly empirical binding free energy force fields are combined with Lamarckian 

genetic algorithms using Monte Carlo methods. Genetic algorithms attempt to simulate natural 

selection using computational techniques. Monte Carlo methods are a set of repeated 

randomised sampling algorithms. AutoDock 4 also allows for flexible docking of both the ligand 

and protein. Rotatable torsions allow for the flexibility of rotatable bonds within the ligand while 

flexibility of certain residues within the binding pocket can also be activated within the receptor 

(Morris et al., 2009). 

Molecular docking provides information on the free energy of binding in kilocalories per mole 

(kcal/mol). This measurement of energy can be converted into the inhibition constant (Ki). Ki is 

the concentration of a given substance (in this case a VM) that causes 50% inhibition of the 

receptor in question. In drug discovery this provides useful information on target receptors and 

non-target receptors. If the Ki for a target receptor is considerably lower than that of the non-

target receptor then the dose of drug needed to elicit a response in the target receptor should 

not cause serious side effects in the non-target receptor. Therefore, in the context of 

ecotoxicology regulation if the measured environmental concentration (MEC) and bioavailability 
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of a VM is a higher concentration than the Ki there could be cause for concern for the exposed 

species. 

Affinity of the ligand-protein complex can be assessed in terms of different intramolecular forces 

within the complex. AutoDock produces these outputs as free energy binding, measured in 

kilocalories per molecule (kcal/mol), as well as inhibition constants (Ki) and ligand/receptor 

interactions such as hydrogen bonds and other non-covalent interactions such as Van der Waals 

forces (Huey et al., 2007) . Hydrogen bonds are formed in ligand protein complexes when a donor 

breaks its bond with a water molecule and in exchange forms a new bond with an acceptor which 

has also broken its bond with water (Zhao and Huang, 2011). Although this type of binding is 

more unstable than covalent bonding, it is one of the most stable bonds within a ligand-protein 

complex. A number of studies using AutoDock to investigate ligand-protein interactions have 

relied not only on free energy of binding, but also on position of binding and possible 

intermolecular interactions such as hydrogen bonds and Van der Waals interactions (Cui et al., 

2013; McCullough et al., 2014). A limitation of using AutoDock to predict ligand/protein 

interaction is that the software only provides estimates on binding energy and position but does 

not provide information on whether the ligand could be an agonist or an antagonist. To overcome 

this limitation it is proposed that hydrogen bond interactions between ligands and residues 

thought to be involved in activation or deactivation of a receptor will be investigated. 

4.1.1 Binding of Oestrogens to the Oestrogen Receptor 

The oestrogen receptor (ER) is a ligand dependent nuclear hormone receptor, which primarily 

binds to the native steroid 17β-oestradiol (E2) (Kumar et al., 2011; Kumar and Chambon, 1988; 

Webb et al., 1998). While two other oestrogens, oestrone (E1) and oestriol (E3), also bind to the 

ER, E2 is the most potent and most common. There is evidence that the binding of E1, E2 and E3 

is tissue specific (Nelson and Habibi, 2013). The two hydroxyl groups on either end of E2, 11 

angstroms (Å) apart (see figure 4.9 [1a]), enable binding positioned between the conserved 

arginine (Arg), glutamic acid (Glu) and histidine (His) within the ligand binding domain (LBD) (see 

figure 4.1) (McCullough et al., 2014). The timing and concentration of oestrogens is an important 

part of sexual and reproductive development in organisms, therefore foreign oestrogenic 

substances that disrupt the balance of native oestrogens in the body can result in developmental 

and reproductive abnormalities (Jobling et al., 1998). All vertebrates and some invertebrates have 

at least one isoform of ER. There are two ER subtypes in humans, α and β (Kumar et al., 2011), 

while three have been found in Actinopterygii fish (the class under which most bony fish fall), α, 

β1 and β2 (Menuet et al., 2004; Nagler et al., 2007; Nelson and Habibi, 2013). 

The ER is a complex receptor which when activated modulates several genes in fish including 

vitellogenin (vtg); growth hormone (gh); insulin like growth factor (igf1); the thyroid hormone 
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receptors α and β (thra and thrb) amongst others (Filby et al., 2006). Gene transcription due to 

increases in E2 and xenoestrogens has been shown to vary between tissue and sex, for instance in 

a study by Filby et al. (2006) in the presence of 35 ng/L of E2 the fat head minnow showed 

upregulation of igf1 in the brain for both sexes but downregulation in the gill in both males and 

females. VTG is the precursor protein for egg laying vertebrates and has been used as a biomarker 

in fish for environmental oestrogens, especially as male fish possess the vtg gene but it is not 

normally expressed unless the ER has been activated in the presence of an increase of either 

natural oestrogens or xenoestrogens (Jobling and Tyler, 2003). 

The ER has five distinct domains, these are the N-terminus which includes the activation function 

1 (AF-1), the DNA binding domain (DBD), followed by a hinge region, then the ligand binding 

domain (LBD) which includes the activation function 2 (AF-2) and finally the C-terminal domain 

(figure 4.1). All subtypes of the ER have the same five domains with varying degrees of similarity 

between the domains. The DBD and the LBD are well conserved between subtypes and species, 

whereas the N terminus, hinge region and C terminus are less conserved (Sumida and Saito, 

2008). 

 

Figure 4.1 Five domains of the ER . The N terminus (N) containing activation function 1 (AF-1); the 

DNA binding domain (DBD); the hinge region (H); the ligand binding domain (LBD) containing 

activation function 2 (AF-2) and the COOH terminus (C). Adapted from Kumar et al. (2011).  

Prior to ligand binding, the ER is held in the nucleus by a complex of heat shock proteins. Once the 

ER has bound to a ligand folding at the hinge region (see figure 4.1) takes place, changing the 

shape of the ER resulting in breaking free of the heat shock protein complex (Webb et al., 1998). 

The folding of the ER at the hinge region enables the AF-1 within the N-terminus to connect with 

AF-2 within the LBD. Once the ER is ligand bound and its shape has changed, it can then form a 

homo or hetero dimer and bind to a section in the DNA called the oestrogen response element 

(ERE) where downstream transcription can take place to modulate a number of genes with the 

assistance of co-regulatory proteins (Kumar et al., 2011; Webb et al., 1998). The ERE is a short 

palindromic sequence (15 basepair) which is activated through binding to the dimerised ER 

complex (Schwabe et al., 1995). 

Antagonists bind to the LBD but block the connection between the LBD and DBD thereby 

preventing DNA binding (Dayan et al., 2006). The LBD of ER binds to a number of foreign ligands, 

which can have either an agonistic or antagonistic effect on the ER. The function of ER is essential 

N (AF1) DBD H LBD (AF2) C 
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to reproductive health, couple this with the promiscuity of the ER, and it is easy to see why it is of 

such interest in ecotoxicology research.  

The appearance of oestrogenic compounds in the environment is of interest to both human and 

ecosystem health. Prevalent cases of xenoestrogens in the environment include bisphenol A 

(BPA), a common component of plastics, and the synthetic oestrogen 17α-ethinylestradiol (EE2), a 

pharmaceutical used in the birth control pill, and their impacts on wild populations of fish 

downstream from sewage effluent containing these xenoestrogens (Van den Belt et al., 2003). 

Reported alterations resulting from an increase in oestrogenic substances in the environment 

include altered sexual development (Jobling et al., 1998); reduced fertility (Jobling et al., 2002); 

reduction in gonadosomatic growth index (Filby et al., 2007); reduced osmoregulation (Carrera et 

al., 2007; Lerner et al., 2012); reduced immune functions (Casanova-Nakayama et al., 2011); and 

altered embryonic development (Jobling et al., 2003). On a wider scale, declines in populations 

have also been attributed to the increase of xenoestrogens in the environment (Kidd et al., 2007). 

The reported effects of xenoestrogens on the environment are further described in chapter 1 

section 1.2. 

4.1.2 Selection of VMs to be included in Study 

Five substances were used as controls for this study. Agonist controls were the native steroid E2; 

the synthetic oestrogen EE2, two known xenoestrogens, dichlorodiphenyltrichloroethane (DDT) 

and BPA. Tamoxifen was used as an antagonist control (table 4.1).  
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Table 4.1 Therapeutic effects of a natural oestrogen, synthetic oestrogen, two xenoestrogens and 

the anti-oestrogen tamoxifen. 

 

Fifteen VMs were used in this study to investigate the effects of VMs on the ERα. The rationale for 

choosing the VMs in this study differed depending on the VM. All of the sea lice control 

treatments (azamethiphos, cypermethrin, deltamethrin, emamectin benzoate, teflubenzuron and 

3PBA) were used in this chapter for continuity. Cypermethrin, deltamethrin and emamectin 

benzoate are also included as they appear on the 56 high priority list of VMs likely to enter the 

environment by Boxall et al. (2003). Cypermethrin, deltamethrin and 3PBA have also been 

previously included in in vitro studies suggesting they either have an agonistic or antagonistic 

effect on the ERα (Chen et al., 2002; Kojima et al., 2004). Fenbendazole, a broad spectrum 

anthelmintic used as a wormer used in both intensively farmed and companion animals; was 

included due to evidence of endocrine disruption in invertebrates (Park and Kwak, 2012) and also 

due to its inclusion on the high priority list by Boxall et al. (2003).  Diazinon, an organophosphate 

previously used as a sheep dip, was included due to evidence of its endocrine disrupting potential, 

and its inclusion on the high priority list (Boxall et al., 2003). Diazinon has reportedly measured in 

salmon spawning tributaries at concentrations of 18.5 – 35 μg/L, despite the average annual EQS 

being 0.01 μg/L and MAC being 0.1 μg/L (Moore and Waring, 1996). Diazinon can disrupt the 

olfactory system of male salmon, inhibiting their ability to detect female pheromones during 

mating, having a negative impact on reproduction at a concentrations as low as 0.4 μg/L (Moore 

Class Substance  Therapeutic effect/use 

Oestrogens E2 A natural oestrogen that binds to ERα for gene activation. 

Plays a role in growth, ovulation, pregnancy and lactation in 

females (Kumar et al., 2011; Webb et al., 1998). The 

dissociation constant (kd) value for E2 to the ERα is estimated 

to be between 0.02 and 2 nM (Barkhem et al., 1998; Gangloff 

et al., 2001) 

EE2  A synthetic oestrogen used in the contraceptive pill to mimic 

E2 (Dhont, 2010). 

Xenoestrogens  DDT An organochloride that acts on the voltage-gated sodium 

channel, primarily used as an insecticide to eradicate malaria.  

Banned in the 1970s due to high persistence in the 

environment (Davies et al., 2007). 

BPA A synthetic bisphenol which is found in plastics. It has been 

reported as a xenoestrogen in a number of studies (Ben-

Jonathan and Steinmetz, 1998; Levy et al., 2004) 

Anti-oestrogens Tamoxifen An anti-cancer agent that binds to ERα ligand binding domain 

and prevents binding to ERE due to bulky side-chains blocking 

DNA binding (Dayan et al., 2006).  
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and Waring, 1996). Amitraz, an ectoparasiticide, was included due to its inclusion on the high 

priority list by Boxall et al. (2003) and because there is some evidence that it is an anti-oestrogen 

(Ueng et al., 2004). Sulfadiazine, an antimicrobial used in aquaculture, and ivermectin, an 

ectoparasiticide, were also included in the high prioritisation list by Boxall et al. (2003), however 

there is no experimental data on their potential to affect the ER. 

The other VMs that were chosen were not included on the prioritisation list set out by Boxall et al. 

(2003). Diclofenac, a non-steroidal anti-inflammatory drug (NSAID), has some evidence that it 

may be an endocrine disruptor in the Mediterranean mussel Mytilus galloprovincialis by the 

increased production of VTG when exposed to concentrations as low as 250 ng/L (Gonzalez-Rey 

and Bebianno, 2014; Schmidt et al., 2011). More recently, diclofenac has also shown to increase 

VTG production in the Nile tilapia Oreochromis niloticus at concentrations as low as 4 nM (or 1.18 

μg/L) (Gröner et al., 2015). Diclofenac has also been recently added to the WFD priority 

substances watch list (under directive 2008/105/EC) (see chapter 1; section 1). Diflubenzuron, a 

chitinase inhibitor, was chosen as there is some experimental evidence that it can affect fecundity 

and development in some invertebrates (Depledge et al., 1999). 
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Table 4.2 The class and therapeutic effect of the 15 selected VMs. 

Class Substance  Therapeutic effect/use 

Synthetic 

pyrethroids 

α-

cypermethrin 

α-cypermethrin and deltamethrin used as a control for sea lice (see chapter 2). 

Also used as a sheep dip to control blowflies and tics. They are neurotoxins 

that act on the voltage-gated sodium channel while modulating the level of 

gamma-aminobutyric acid (GABA). Was synthesised as an alternative to DDT as 

it is much less persistent in the environment (Singh et al., 2012). 

Deltamethrin 

3PBA Major metabolite of synthetic pyrethroids including deltamethrin and α-

cypermethrin. MOA is unknown (Zhao and Huang, 2011). 

Antibiotics Sulfadiazine Broad spectrum antimicrobials often used in veterinary medicine in 

combination with other compounds such as trimethoprim or neomycin. Blocks 

DNA and RNA production in bacteria (Hammesfahr et al., 2008). 

Sulfapyridine 

Nalidixic acid Synthetic quinoline used to treat urinary tract infections. Works by inhibiting 

DNA gyrase in Gram-positive bacteria (Changkwanyeun et al., 2015). 

Benzoylurea 

insecticides 

Diflubenzuron Used as a sea lice control in Norway, not currently registered in the UK. Used 

as a plant protection product in the UK. Similar to teflubenzuron in that it is a 

chitinase inhibitor (Selvik et al., 2002).  

Teflubenzuron Used as a sea lice control (see chapter 2).  Chitinase inhibitor (SEPA, 1999).  

Benzimidazole 

anthelmintic 

Fenbendazole  Used in livestock and domestic pets to treat gastrointestinal worms. Works by 

inhibiting the formation of microtubules by binding to β-tubulin, restricting 

cytoskeleton growth (Martin, 1997). 

Formadine 

pesticide 

Amitraz Primarily used as a topical treatment for dogs in the UK, however it is used in 

the EU on cattle, sheep and pigs to control ectoparasites. The MOA of amitraz 

works by binding to the octopamine. Octopamine controls endocrine activity in 

invertebrates, it has been documented that amitraz is a weak antagonist of 

ERα in studies performed with MCF-7 cells and immature rats (Ueng et al., 

2004). 

Avermectins Emamectin 

benzoate 

Used as a sea lice control (see chapter 2).  Agonist of GABA and the glutamate 

gated chloride channel (Jansson et al., 1997).  

Ivermectin Used in a variety of livestock including cattle, sheep and pigs. Acts on the GABA 

receptors in both invertebrates and vertebrates, however it is documented to 

alter gene mutation in the P-glycoprotein drug pump (mdr1) and has been 

found to cross the blood brain barrier. The unspecific action of azamethiphos 

means that it has been found to cause lethal and chronic effects to a number 

of non-target organisms (Geary, 2005). 

Non-steroidal 

anti-inflammatory 

(NSAIDs) 

Diclofenac Not registered for use in the UK, is registered for use in Spain and Italy to treat 

cattle. Inhibitor of COX-1 and COX-2. Caused mass mortality of Gyps sp. 

vultures in India and Pakistan after secondary feeding on previously treated 

carrion (Taggart et al., 2007).  

Organophosphate Azamethiphos Used as a sea lice control (see chapter 2). Acts by inhibiting 

acetylcholinesterase (AChE). (Ernst et al., 2001) 

Diazinon Diazinon was registered for veterinary use as a sheep dip, but it is no longer 

approved in the EU. It is a cholinesterase inhibitor. It was also used as a plant 

protection product. There is some evidence for diazinon being a xenoestrogen 

(Maxwell and Dutta, 2005). 
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4.1.3 Chapter objectives 

In order to address objective 4 (chapter 1; section 1.9.3) the objectives for this chapter are as 

follows: 

 To investigate whether VMs bind differently against ten ERα proteins. 

 To determine whether 3 dimensional (3D) structure and binding affinity are correlated for 

both protein structure and ligand structure.  

 To examine evidence for any relationships between binding affinities and experimental 

chronic data found in the literature. 

 To determine whether binding conformation can identify between potential 

xenoestrogens and potential anti-oestrogens. 

4.2 Methods 

4.2.1 Obtaining the 3D Structure for ERα 

The 622 amino acid (AA) sequence for the rainbow trout O. mykiss ERα (accession number 

P16058) was obtained from UniProt  (The UniProt Consortium, 2015). This sequence was then put 

into SwissModel (Arnold et al., 2006; Kiefer et al., 2009; Peitsch, 1995) ‘template mode’ to find 

the pdb file with the highest similarity with O. mykiss ERα. This was 3ERT chain A, the ligand 

binding domain of the H. sapiens ERα with a length of 261 AA (Shiau et al., 1998). The accession 

number for the UniProt reference sequence for the pdb file 3ERT was P03372 with a length of 595 

AA. A clustalW (Goujon et al., 2010; Larkin et al., 2007; McWilliam et al., 2013) sequence 

alignment was performed using the two full-length sequences P16058 and P03372. A clustalW file 

was made and fed into SwissModel alignment mode, to determine that 3ERT chain A was the 

template structure. The same method was applied to the other test species using the most 

suitable crystal structure, of the LBD of the human ERα, pdb entry as a model (table 4.3). 

The ERα from nine aquatic species (table 4.3) were used to examine whether there is intra species 

differentiation in regards to the potency of xenoestrogens, the pacific oyster Crassostrea gigas 

was used as a negative control (see below). With the exception of H. sapiens (positive control) 

and C. gigas, which had suitable pdb files thanks to the availability of the crystallography of these 

structures on the research collaboratory for structural bioinformatics (RCSB)(URL  www.rcsb.org; 

Berman et al., 2000) , ERα structures were modelled using the modelling software SwissModel.   

 

 

 

http://www.rcsb.org/
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Table 4.3 Details on modelling of the ERα of the ten test species. 

 

Ten ERα homologs were considered during the current study. Aside from H. sapiens, the positive 

control, all other species were a mix of freshwater and marine aquatic organisms (table 4.3). The 

ERα of C. gigas was used as a negative control, as there is evidence that although C. gigas possess 

an ERα there is a semi conserved amino acid mutation from a histidine to a phenylalanine in 

Species Common 

Name and 

habitat(s) 

Accession 

number 

Modelled 

on (RCSB 

PDB 

entry) 

Number 

of 

Amino 

Acids 

Similarity 

with 

modelled 

structure 

% 

QMEAN4 

score 

RMS 

from H. 

sapiens 

(3ERT) 

H. sapiens 

(positive 

control) 

Human, 

terrestrial 

P03372 3ERT 595 N/A N/A N/A 

C. gigas 

(negative 

control) 

Pacific 

oyster, 

marine 

K1QUU5 4N1Y  485 N/A N/A 14.411 

 

D. rerio Zebrafish, 

freshwater 

P57717 3ERT.1.A 569 61.57 -2.08 4.587 

 

G. 

aculeatus 

Three 

spined 

stickleback, 

marine 

G3P1N4 1L2I.1.A 623 64.52 -0.62 1.626 

 

O. mykiss Rainbow 

trout, 

freshwater 

P16058 3ERT.1.A 622 63.27 -1.79 4.714 

 

P. 

promelas 

Fathead 

minnow, 

freshwater 

A9XE64 2OCF.1.A 602 59.85 -1.31 4.726 

 

R.  rutilus Common 

roach, fresh 

and brackish 

water 

Q5CCT6 3Q97.2.A

  

588 58.20 -0.46 6.945 

 

Salmo 

salar 

Salmon, 

marine and 

freshwater 

P50242 3ERT.1.A 535 62.86 -1.88 5.549 

 

Sparus 

aurata 

Gilt-head 

bream, 

marine 

Q9PVZ9 1L2I.1.A 581 63.67 -0.21 5.588 

 

Xenopus 

laevis 

African 

clawed frog, 

freshwater 

and 

terrestrial 

P81559 3Q97.2.A 586 81.18 -0.23 1.952 
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position 450, which is conserved in the other species (figure 4.2). This mutation is thought to 

contribute to the inability of C. gigas ERα to bind to oestrogens and therefore has been selected 

as a suitable negative control (Bannister et al., 2013). The eight test species consisted of seven 

bony fish from the class Actinopterygii including two salmonids O. mykiss and S. salar; three 

cyprinids D. rerio, R. rutilus and P. promelas; one Sparidae S. aurata and one Gasterosteidae G. 

aculeatus. The seven species were chosen as the sequences for their ERα was readily available on 

UniProt, and because their distribution (with the exception of D. rerio and P. promelas) is in and 

around the UK. D. rerio and P. promelas were also included because of their close relationship 

with the selected fish and they are often used as test species in ecotoxicology. The ERα of the 

amphibian X. laevis was also included as it is a commonly used test organism in ecotoxicology 

tests. It is important to note that ecotoxicology tests are only usually carried out on one fish that 

will act as a model organism for other species within this general class. The reason seven fish 

species, with such a high similarity, were chosen was therefore to test whether there are any 

major differences in binding of the test VMs to the different ERα.  
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Figure 4.2 Multiple sequence alignment of the ligand binding domain of ERα for the ten test 

species using clustalW2. Highlighted in green are the residues important for the binding of the 

native ligand E2, these are glutamic acid (E) (position 354 in H. sapiens); arginine (R) (position 394 

in H. sapiens) and histidine (H) (position 524 in H. sapiens). Highlighted in blue is aspartic acid (D) 

in position 351 (H. sapiens), which is important for binding to anti oestrogens such as tamoxifen. 

These residues are conserved in all ten species apart from in C. gigas where the aspartic acid has 

been replaced by glutamic acid (E) in position 288 and the histidine has been replaced by a 

phenylalanine (F) in position 450 and (highlighted in pink).  
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4.2.2 Obtaining the 3D Structure for Ligands 

The Simplified Molecular-Input Line-Entry System (SMILES) codes for the ligands used in this 

chapter (see tables 4.1 and 4.2) were found using chemspider (URL - www.chemspider.com). 

These SMILES were made into smi files, and converted to pdb files with 3D coordinates using the 

program open babel (O'Boyle et al., 2011). E2 and EE2 did not convert correctly using open babel, 

possibly because of their polycyclic structure. As a result E2 and EE2 were downloaded directly 

from the RCSB website. The pdb file for E2 was made using the pdb file 1QKU and E3 was made 

using the pdb file for 1X8V. 

4.2.3 Docking Ligands to ERα 

All pdb files were uploaded to the python molecular viewer program PMV (version 1.5.6) (Sanner, 

1999) with the AutoDock tools add-on (Morris et al., 2009). All hydrogens were added to the 

molecules, polar hydrogens were merged and Gasteiger charges were added. Gasteiger charges 

the empirical partial charges calculated for atoms within molecules in order to compute the 

electrostatic interaction energy (Gasteiger and Marsili, 1978; Gasteiger and Marsili, 1980).  The 

literature (Gangloff et al., 2001; Shiau et al., 1998) shows that the binding pocket surrounds the 

three residues Glu 353, Arg 394 and His 524 in H. sapiens ERα, therefore the grid box 

incorporated these three residues in the H. sapiens ERα and homologous residues. The clustalW 

result (figure 4.2) shows that these residues are highly conserved across all the test species; apart 

from the negative control C. gigas where the histidine was replaced with phenylalanine. The grid 

box was positioned to incorporate the three identified residues (figure 4.3). The pdb files were 

then saved as pdbqt files ready to be docked with the control and test ligands. The ligand pdb files 

were also uploaded to PMV-1.5.6 with the AutoDock Tools add-on, where the adding of Gasteiger 

charges and the merging of non-polar hydrogens were automatically calculated. The ligands were 

then saved as pdbqt files. 

Fifteen drugs of interest were determined in preliminary studies using AutoDock Vina and through 

data mining of the literature. The five sea lice treatments (chapter 2) were also included, as well 

as the synthetic pyrethroid degradation product, 3PBA (also investigated in chapter 3). These 

were: 3PBA, α-cypermethrin, amitraz, azamethiphos, diazinon, diclofenac, diflubenzuron, 

emamectin benzoate, fenbendazole, ivermectin, nalidixic acid, sulfadiazine, sulfapyridine and 

teflubenzuron (table 4.2). Controls for AutoDock 4 were the native ligand E2, the synthetic 

oestrogen, EE2, and the established xenoestrogens BPA and DDT. Tamoxifen was used as 

antagonist control (table 4.1).  

Each model was generated as a 3D .pdb format. A .pdb file is a universal file in which a number of 

programs can read in order to generate a 3D model of a structure. This includes the name of each 

residue in the structure and details of each atom that the structure is built from, such as spatial 
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coordinates. For AutoDock 4 to run, .pdb files needs to be converted into .pdbqt files. A .pdbqt 

file is a .pdb file with added partial charges and codes for atom types that AutoDock can read 

(Huey et al., 2007). 

Once .pdbqt files were generated, a grid parameter file (.gpf) was made (see appendix E for 

example .gpf file). The .gpf contains information on where AutoDock should focus ligand binding. 

The ten ERα grids were set up to surround the three amino acids that are thought to be crucial to 

binding (highlighted in table 4.4 and figure 4.2, see above). A grid of 60 Å3 using a spacing of 0.325 

Å was created for all receptors (see figure 4.3). Then a docking parameter file (.dpf) was made for 

each ERα (see appendix F for example .dpf file). The .dpf holds information on how the ligand 

should move within the grid box, using information set up in the .gpf file previously. The .dpf also 

determines which search algorithm has been selected, the distances of Van der Waals and 

hydrogen bonds, how the energy binding (kcal/mol) is calculated and how many energy 

evaluation runs to complete. Once all of these files were in order AutoDock 4 was run on each 

receptor for each ligand with 100 energy evaluation runs completed for each experimental 

scenario. Results were given as docking log output files, or .dlg files. The .dlg output contains 

information on 3D coordinates and position of the bound ligand; binding in kcal/mol; Ki in nM and 

the number of conformations within a 2 Å from the reference ligand; these are referred to as 

binding clusters. Interacting residues with VMs were investigated and compared with the native 

ligand E2 and the antagonist control tamoxifen (table 4.4). Results were visualised and images 

were made using PyMOL, Version 1.7.6 (Schrodinger, 2015). The results on binding were 

expressed as the lowest binding energy (highest affinity) within the biggest binding cluster. For 

example docking runs produced 100 bound conformations, some ligands (such as E2) had 100 

bound conformations that were within 2 Å of one another, in this case the lowest bound ligand 

was taken (see figure 4.4). However some ligands had a number of clusters, with the biggest 

cluster not necessarily containing the lowest bound ligand (for example see 3PBA bound to S. 

aurata; figure 4.5). In this case the lowest bound conformation within the biggest cluster was 

taken. Binding was split into three categories, those with a high likelihood of binding, those with a 

medium likelihood of binding and those with a low likelihood of binding. When comparing the 

free binding energy of docked ligands to receptors there is some contention as to what is a ‘good 

hit’ (Leach et al., 2006). In reference to others work, correlations between binding and in vitro 

conformation of agonists has been found as low as -7.48 kcal/mol (McCullough et al., 2014; 

Pavani et al., 2008) therefore ligands that had a binding energy of <-7 kcal/mol were given the 

status ‘high likelihood’ of binding. The standard error of docking studies with autodock 4 is given 

as 2 - 3 kcal/mol (Huey et al., 2007) therefore ligands that bound with a free binding energy of -5 

to -7 kcal/mol were put into the medium likelihood of binding category.  Finally ligands that 
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bound with a free binding energy of > -5 kcal/mol were put into the low likelihood of binding 

category.  

 

 

Figure 4.3 Ligand binding domain of the human ERα (ribbon structure, pink α helices, yellow β 

sheets) bound to E2 (blue ligand within box). Box highlights the grid search space around the 

active site. 

 

Figure 4.4 E2 bound to All 100 conformations of E2 (multi-coloured ligands) bound to the ERα of 

P. promelas (yellow residues) forming one cluster. 

His 535 

Arg 364 

Asp 362 

Glu 405 
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Figure 4.5 3PBA bound to S. aurata ERα in six different clusters. Cluster 1 (green ligand) contained 

one binding conformation and had a binding energy of -6.13 kcal/mol. Cluster 2 (blue ligand) 

contained 25 binding conformations in the cluster and the lowest binding energy was -5.78 

kcal/mol. Cluster 3 (dark pink ligand) contained 19 binding conformations and the lowest binding 

energy was -5.71 kcal/mol. Cluster 4 (yellow ligand) contained 14 binding conformations and the 

lowest binding energy was -5.62. Cluster 5 (light pink ligand) had a total of 34 binding 

conformations and the lowest binding energy was -5.48. Cluster 6 (purple ligand) had a total of 7 

binding conformations and the lowest binding energy was -5.32. 

Each of the lowest bound conformations within the biggest cluster for each VM and each species 

ERα was examined for possible hydrogen bonding sites using PyMOL as a visualisation tool. Four 

residues were the main focus of hydrogen bonding, these were the three residues thought to be 

important for ligand activation glutamic acid (position 353 in the control H. sapiens); the arginine 

(position 394 in H. sapiens); and histidine (position 524 in H. sapiens). Binding to aspartic acid 

(position 351 in H. sapiens) was also investigated as this residue is thought to be an important 

residue for antagonistic binding (see table 4.4).  
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 Table 4.4 Residues important for binding within the LBD of ERα. Glutamic acid (Glu), arginine 

(Arg) and histidine (His) are important for binding to the native ligand E2, while binding to aspartic 

acid (Asp) prevents binding to DNA binding domain. In C. gigas His was replaced with a 

phenylalanine (Phe) and Asp was replaced with a Glu, these changes are highlighted with a *. 

 Glu Arg His Asp 

H. sapiens 353 394 524 351 

C. gigas 290 331 *Phe 450 *Glu 288 

D. rerio 321 362 492 319 

G. aculeatus 350 391 521 348 

O. mykiss  366 407 537 364 

P. promelas♮ 364 405 535 362 

R. rutilus 345 386 516 343 

S. aurata♮ 315  356 486 313 

S. salar 279 320 450 277 

X. laevis 345 386 516 343 

Organisms with ♮ are those shown in figures 4.4 (P. promelas) and 4.5 (S. aurata).  

Table 4.5 Property table for amino acids important in binding in the LBD of the ERα for all ten test 

species. 

Amino acid Arg Asp Glu His Phe* 

pKa 12.5 3.9 4.2 6 - 

Side chain 

polarity 

Positively charged Negatively 

charged 

Negatively 

charged 

Polar Hydrophobic 

Volume (A°3) 173.4 111.1 138.4 153.2 189.9 

Hydrogen 

donor or 

acceptor 

Donor Acceptor Acceptor Donor and 

acceptor 

Neither 

Side chain 

linear formula 

(CH2)3NHC(=NH)NH2 CH2CONH2 (CH2)2CH2H CH2(4-imidazolyl) CH2Ph 

pKa = the pH at which half of the side chain is charged. * Phe is present in the LBD of the negative 

control C. gigas only. Information included in property table taken from Jones (2002). 

4.2.4 Statistical analysis of results 

Statistical analysis was performed using IBM SPSS. Two-way ANOVA was performed to determine 

significant differences between ligands and between species. Tukey’s post hoc was also 

performed to determine where variance lies. Dendrograms were created using hierarchical 
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clustering and squared Euclidian distance (see equation 4.1). Tanimoto coefficient (Rogers and 

Tanimoto, 1960), a measurement of structural distance, was calculated for ligands using open 

babel software.  A dendrogram was built using the information on similarity from the tanimoto 

coefficient results. Results of dendrogram clusters will be referred to as ‘groups’ from this point 

on, to avoid confusion with clusters of binding conformations in docking results. 

Equation 4.1                    Squared Euclidean Distance 

𝑑 =  ∑(𝑥𝑖 −  𝑦𝑖)2

𝑛

𝑖=1

 

Where 𝑑 = distance, 𝑥 = point 𝑥 and 𝑦 = point 𝑦 

Determining the number of groups within a dendrogram can be interpreted in a number of ways. 

Therefore a mathematical method (equation 4.2) was employed to find the optimal number of 

groups within each dendrogram, to avoid bias. Groups were then compared between each 

dendrogram in order to determine structural and binding differences. The number of groups 

within a dendrogram was determined by using the variance ratio criterion (VRC) as described by 

Caliński and Harabasz (1974). VRC was determined by calculating the K-means grouping, with an 

ANOVA table calculated for each step, for each number of possible groups (for example, if ten 

groups were possible, the F ratio for 2-10 groups was calculated). The F ratios were summed to 

determine the VRCk. The optimum number of groups, ωk, was calculated as follows: 

Equation 4.2         Variance ratio criterion 

ωk = (VRCk+1 − VRCk) − (VRCk − VRCk−1)  

The ωk with the second lowest value was used to determine the groups while the ωk with the 

lowest value was used to determine the sub-groups. 

Predicted oestrogenic potency (PEP) was calculated as a measure of how potent each VM was in 

comparison to the native ligand, E2. The calculated PEP was then compared to PEPs found in the 

literature to determine whether AutoDock 4 can efficiently predict oestrogenic potency of 

ligands. This equation does not distinguish between agonists and antagonists.  The PEP was 

calculated using equation 4.3. 

Equation 4.3      Predicted oestrogenic potential (PEP) 

𝑎

𝑏
× 100 = 𝑃𝐸𝑃 

Where a is the predicted Ki in nM of E2 and b is the predicted Ki of the VM in question. 
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4.3 Results 

4.3.1 Structural relationships 

Sequence similarity between each of the ten ERα was compared with one another. Sequence 

similarity tool, ClustalW Emboss water (Goujon et al., 2010; Larkin et al., 2007; McWilliam et al., 

2013) was used to determine the sequence similarity between species ERα (table 4.5). This 

information was then used to create the dendrogram in figure 4.6. 

Table 4.5 Sequence similarity of the ten ERα using ClustalW EMBOSS Water. Percentage sequence 

similarity is shown, with percentage sequence identity shown in brackets. 

 C. 

gigas 

D. 

rerio 

G. 

aculeatus 

H. 

sapiens 

O. 

mykiss  

P. 

promelas 

R. 

rutilus 

S. 

salar 

S. aurata X. 

laevis 

C. gigas 100 53.6 

(38.7) 

50.6 

(37.6) 

52.8 

(36.8) 

52.5 

(38.9) 

51 (37) 52.9 

(36.7) 

51.4 

(37.5) 

51.9 

(37.6) 

54.7 

(37.4) 

D. rerio 53.6 

(38.7) 

100 74 (63.9) 66.3 

(53.6) 

73.2 

(63) 

90.8 

(86.7) 

58 

(45.7) 

75.6 

(65.4) 

75.2 

(64.2) 

65.9 

(52) 

G. 

aculeatus 

50.6 

(37.6) 

74 

(63.9) 

100 65.2 

(51.3) 

73.4 

(65.4) 

70.1 

(60.4) 

56 

(43.5) 

77.0 

(69.8) 

79.2 

(71.2) 

64.4 

(49.7) 

H. 

sapiens 

52.8 

(36.8) 

66.3 

(53.6) 

65.2 

(51.3) 

100 63.6 

(50.3) 

63 (51.4) 58.9 

(44.1) 

66.5 

(53.5) 

65.8 

(50.9) 

81.5 

(69.9) 

O. mykiss  52.5 

(38.9) 

73.2 

(63) 

73.4 

(65.4) 

63.6 

(50.3) 

100 70.1 

(60.4) 

56 

(43.5) 

97.7 

(97.2) 

79.2 

(71.2) 

64.4 

(49.7) 

P. 

promelas 

51 (37) 90.8 

(86.7) 

70.1 

(60.4) 

63 

(51.4) 

70.1 

(60.4) 

100 58.1 

(44.8) 

74.6 

(64.7) 

70.7 

(59.9) 

64.4 

(50.8) 

R. rutilus 52.9 

(36.7) 

58 

(45.7) 

56 (43.5) 58.9 

(44.1) 

56 

(43.5) 

58.1 

(44.8) 

100 59.3 

(46) 

61.6 

(48.6) 

60.9 

(46.7) 

S. salar 51.4 

(37.5) 

75.6 

(65.4) 

77.0 

(69.8) 

66.5 

(53.5) 

97.7 

(97.2) 

74.6 

(64.7) 

59.3 

(46) 

100 80.7 

(72.8) 

68.3 

(53.8) 

S. aurata 51.9 

(37.6) 

75.2 

(64.2) 

79.2 

(71.2) 

65.8 

(50.9) 

79.2 

(71.2) 

70.7 

(59.9) 

61.6 

(48.6) 

80.7 

(72.8) 

100 67 

(52.3) 

X. laevis 54.7 

(37.4) 

65.9 

(52) 

64.4 

(49.7) 

81.5 

(69.9) 

64.4 

(49.7) 

64.4 

(50.8) 

60.9 

(46.7) 

68.3 

(53.8) 

67 (52.3) 100 

A dendrogram was developed using SPSS and the information on sequence similarity (table 4.5) to 

determine groups of related receptors. In theory those receptors which have sequence and 

structure similarity should bind with a similar affinity to tested drugs (figure 4.6). Four distinct 

groups could be determined from this dendrogram. Group 1, which had three sub-groups, 

consisted of six species in total. These were O. mykiss and S. salar (figure 4.6 [1a]) G. aculeatus 

and S. aurata (figure 4.6 [1b]); and D. rerio and P. promelas (figure 4.6 [1c]). Group 2 contained 

two species; H. sapiens and X. laevis (figure 4.6 [2]); Group 3 contained one species, R. rutilus 

(figure 4.6 [3]). Group 4 had one species the negative control C. gigas (figure 4.6 [4]).  
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Figure 4.6 Dendrogram showing the evolutionary distance between ERα receptors of ten selected 

aquatic species. 

When lowest binding energy within the biggest cluster was used to find relationships between the 

species tested six distinct groups appeared. The avermectins ivermectin and emamectin 

benzoate, were excluded due to their high binding affinity. Group 1 contained four species O. 

mykiss , S. salar and D. rerio and S. aurata  (figure 4.7 [1]). Group 2 contained the two species R. 

rutilus and X. laevis (figure 4.7 [2]). Group 3, which had two sub-groups, contained the positive 

control H. sapiens, G. aculeatus (figure 4.7 [3a]) and P. promelas (figure 4.7 [3b]). Group 4 

contained the negative control C. gigas. Group 4 was not shown in figure 4.7 as the distance of 

the relationship for the negative control, C. gigas, would have skewed results. 
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Figure 4.7 Dendrogram representing groups of species with the largest relationship in terms of 

lowest binding energy (highest affinity) in the biggest cluster for all test substances, excluding 

emamectin benzoate and ivermectin. The negative control C. gigas was excluded from this 

dendrogram. 

Tanimoto coefficient was determined to show percentage structural similarity of the test ligands. 

Hierarchical clustering with a squared Euclidean distance was performed to produce a 

dendrogram (figure 4.8) based on the hypothesis that structurally similar drugs will bind with a 

similar affinity to receptors. Five main groups of structures were determined. Group 1, which had 

two sub-groups, consisted of the oestrogens E2 and EE2; the known xenoestrogens BPA and DDT 

and tamoxifen (figure 4.8 [1a]); and the pyrethroids α-cypermethrin, deltamethrin and their 

metabolite 3PBA (figure 4.8 [1b]).  Group 2, which consisted of two sub-group, contained the 

benzoylurea insecticides, teflubenzuron and diflubenzuron (figure 4.8 [2a]); the formadine 

pesticide, amitraz and the NSAID, diclofenac (figure 4.8 [2b]). Group 3 consisted of the antibiotics, 

sulfadiazine and sulfapyridine and the benzimidazole anthelmintic, fenbendazole (figure 4.8 [3]). 

Group 4, which was split into two sub-groups, contained the organophosphates, azamethiphos 

and nalidixic acid (figure 4.8 [4a]) and the antibiotic, diazinon (figure 4.8 [3b]). Group 5 contained 

the two avermectins, emamectin benzoate and ivermectin (figure 4.8 [4]). 
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Figure 4.8 Dendrogram based on structural relationships of test VMs, E2 and EE2; known 

xenoestrogens DDT and BPA; and the anti-oestrogen tamoxifen using the tanimoto coefficient to 

determine structural similarity. 

Figures 4.8 – 4.12 show the 2D structures of the 20 ligands used in the present study, sorted into 

the groups given by the dendrogram based on tanimoto coefficient for structural similarity (figure 

4.9). Group 1a (figure 4.9 [1a]) contains the five control substances. All of these structures have a 

phenolic ring (except DDT which has a chlorobenzene ring instead) which is thought to contribute 

to strong binding within the binding pocket (McCullough et al., 2014). Group 1b contains the 

synthetic pyrethroids deltamethrin, α-cypermethrin and their metabolite 3PBA. These three 

structures all have diphenyl ether in common (figure 4.9 [1b]).  

 

1. 

2. 

3. 

5. 

a. 

b. 

a. 

b. 

4. a. 

b. 
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Figure 4.9 2D structures of VMs and controls in group 1a and group 1b according to dendrogram 

based on structural similarity (figure 4.8). Source: ChemSpider. 

Group 1a 

DDT 

E2 Tamoxifen 

BPA 

EE2 

Group 1b 

3PBA 

Cypermethrin 

Deltamethrin 
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Group 2a contains the two benzoylurea VMs, teflubenzuron and diflubenzuron which both share 

a 2,6-difluorobenzamide (figure 4.9 [2a]). Group 2b contained amitraz and diclofenac, which were 

not closely related (figure 4.8), they share two benzene rings and a nitrogen (figure 4.10 [2b]). 

 

Figure 4.10 Structures of VMs in group 2a and group 2b according to dendrogram based on 

structural similarities (figure 4.8). Source: ChemSpider. 

Group 3 contained the antibiotics sulfadiazine and sulfapyridine as well as benzimidazole 

anthelmintic, fenbendazole. These three VMs share a phenylsulfanyl (figure 4.10). 

Group 2a 

Amitraz 

Teflubenzuron Diflubenzuron 

Diclofenac 

Group 2b 
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Figure 4.11 Structures of VMs in group 3 according to dendrogram based on 2D structural 

similarities (figure 4.8). Source: ChemSpider. 

Group 4 (figure 4.12) contained three VMs that were not that closely related (figure 4.8). 

Azamethiphos and diazinon share a phosphorothioate group. While azamethiphos and nalidixic 

acid share a nitrite group. 

Group 3 

Fenbendazole 

Sulfapyridine Sulfadiazine 



111 
 

 

Figure 4.12 Structures of VMs in group 4a and group 4b according to dendrogram based on 2D 

structural similarity (figure 4.8). Source: ChemSpider. 

Group 5 contained the avermectins which both have a (16) annulene (C16N16) at their core (figure 

4.13). 

Group 4a 

Diazinon 

Azamethiphos Nalidixic acid 

Group 4b 
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Figure 4.13 Structure of the VMs in group 5 according to dendrogram based on 2D structural 

similarity (figure 4.8). Source: ChemSpider. 

A further dendrogram was constructed to examine whether a structural relationship was related 

to lowest binding energy (highest affinity) within the biggest cluster. This was determined by 

taking the average of the lowest binding energy (highest affinity) in the biggest cluster from all 

test species (excluding the negative control C. gigas).  Five distinct groups were observed from 

this dendrogram (figure 4.14).  Group 1, which had two sub-groups, contained the oestrogen E2, 

synthetic oestrogen EE2, the anti-oestrogen tamoxifen (figure 4.14 [1a]) and the synthetic 

pyrethroids α-cypermethrin and deltamethrin (figure 4.14 [1b]). Group 2 contained the known 

Group 5 

Emamectin benzoate 

Ivermectin 
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xenoestrogens DDT and BPA and the benzimidazole anthelmintic, fenbendazole (figure 4.14 [2]). 

Group 3, which had two sub-groups, contained the organophosphates azamethiphos and 

diazinon, the NSAID diclofenac, the antibiotics sulfadiazine and sulfapyridine (figure 4.14 [3a]); the 

formadine pesticide, amitraz and benzoylurea insecticide diflubenzuron (figure 4.14 [3b]). Group 

4, which had two sub-groups, contained the synthetic pyrethroid degradation product, 3PBA; the 

antibiotic nalidixic acid (figure 4.14 [4a]); and the benzoylurea insecticide, teflubenzuron (figure 

4.14 [4b]). Group 5, which is not included in figure 4.6, contained the avermectins, emamectin 

benzoate and ivermectin. These compounds were not included in figure 4.6 as their binding was < 

-5, which would have significantly skewed the dendrogram results.  

 

Figure 4.14 Dendrogram representing the relationship between substances between the eight 

test species and the positive control H. sapiens in terms of lowest binding energy (highest affinity) 

in the biggest cluster. Emamectin benzoate and ivermectin have been excluded due to them 

skewing the result. 

4.3.2 Binding affinity 

The VM with the lowest average binding energy (highest affinity) to the eight test receptors was 

deltamethrin with an average binding energy of -9.55 (±0.71) kcal/mol; this was closely followed 

by fellow pyrethroid α-cypermethrin which had an average binding energy of -9.42 (±0.65) 

kcal/mol (see tables 4.6a and 4.6b). Two VMs had an average binding affinity that was higher than 

1. 

2.  

3. 

4. 

a. 

b. 

a. 

b. 

a. 

b. 
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the cut off energy for a potential binder (tables 4.6a and 4.6b). These two VMs were emamectin 

benzoate which had an average binding energy of 338.38 (± 147.18) kcal/mol and ivermectin 

which had an average binding energy of 477.9 (± 203.93) kcal/mol. Since binding of emamectin 

benzoate and ivermectin is unlikely further investigation using these two VMs was discontinued 

and they were not included in statistical analysis. 

The test VMs were sorted by lowest binding energy (highest affinity) in the biggest cluster. 

Although binding energy in deltamethrin and α-cypermethrin was lowest for all test receptors, 

docking produced a number of clusters with the largest cluster for α-cypermethrin being 35% of 

all binding conformations of α-cypermethrin to the P. promelas ERα. For deltamethrin the species 

which had the biggest cluster in terms of binding energy was the control H. sapiens with the 

biggest cluster having 26% of conformations followed by G. aculeatus which had a cluster of 24% 

of conformations. 

4.3.2.1 Predicted oestrogenic potency (PEP) 

The PEP of each drug to the ten ERα was calculated using equation 4.2. α-cypermethrin, 

deltamethrin and tamoxifen were predicted to be more potent than the native ligand E2 to the 

ERα of all ten species. EE2 was predicted to be more potent than E2 in C. gigas, D. rerio, X. laevis, 

R. rutilus and G. aculeatus. Fenbendazole was shown to have a more than 10% PEP for five of the 

ten species, O. mykiss, S. salar, D. rerio, X. laevis and S. aurata which was higher than the PEP for 

the known xenoestrogens DDT and BPA in these species (figure 4.15).  
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Figure 4.15 Predicted oestrogenic potency (PEP) of 18 of the test compounds. Emamectin benzoate and ivermectin were excluded due high binding 

and a lack of information on Ki values. PEPs were estimated using equation 4.2 using the lowest binding energy in the biggest cluster for E2 as the 

baseline for each species.    
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4.3.3 Binding affinities of selected VMs to ERα  

Binding affinity of the 15 test VMs and the 5 control compounds varied between species ERα. 

Results on the lowest binding energy (kcal/mol) were taken from the lowest bound conformation 

within the biggest cluster (see figures 4.4 and 4.5). VMs and controls were categorised into 

compounds with a high likelihood of binding to the ERα (those with a binding energy of <-7 

kcal/mol), those with a medium likelihood of binding to the ERα (those with a binding energy 

between -5 and -7 kcal/mol) and those with a low likelihood of binding to the ERα (those with a 

binding energy of > -5 kcal/mol) (table 4.6 a and 4.6b).  

Emamectin benzoate and ivermectin were the only VMs that were in the low likelihood category 

for all ten of the tested ERα. Teflubenzuron was the only VM that appeared in all three of the 

likelihood categories. Teflubenzuron was in the low likelihood category for D. rerio, S. aurata, O. 

mykiss S. salar, R. rutilus and the negative control C. gigas. Teflubenzuron had a high likelihood of 

binding in the ERα of G. aculeatus and H. sapiens and a medium likelihood of binding for P. 

promelas and X. laevis. Three VMs were in the high likelihood of binding category for all species 

(excluding the negative control C. gigas) these were deltamethrin, α-cypermethrin and 

fenbendazole. All of the control substances, E2, EE2, BPA, DDT and tamoxifen were in the high 

likelihood of binding category for all ERα (excluding the negative control C. gigas).  Sulfapyridine 

was in the high likelihood of binding category for all species ERα excluding G. aculeatus. Amitraz 

had a high likelihood of binding to five of ERα, D. rerio, S. aurata G. aculeatus, H. sapiens, and P. 

promelas (see tables 4.6a and 4.6b). Sulfadiazine was in the high likelihood of binding category for 

three species ERα, these were R. rutilus, P. promelas and the negative control C. gigas. Diclofenac 

was in the high likelihood of binding category for the ERα of R. rutilus and diflubenzuron appeared 

in the high likelihood of binding category for the ERα of P. promelas. 
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Table 4.6a Lowest binding energy (highest affinity) in the biggest cluster for the ERα for D. rerio, S. aurata, O. mykiss and R. rutilus . Highlighted in red are the VMs and 

controls that pose a high liklihood of binding to the ERα; highlighted in orange are the VMs and controls that pose a medium liklihood of binding to the ERα and 

highlighted in green are the VMs and controls that pose a low likelihood of binding to the ERα. 

D. Rerio 
 

S. aurata 
 

O. mykiss 
 

S. salar 
 

R. rutilus 
 Deltamethrin -10.58 Deltamethrin -10.4 Deltamethrin -10.5 Deltamethrin -10.64 Deltamethrin -10.54 

α-cypermethrin -10.3 α-cypermethrin -10.32 α-cypermethrin -10.44 α-cypermethrin -10.39 α-cypermethrin -10.39 

Tamoxifen -9.86 Tamoxifen -9.74 Tamoxifen -9.89 Tamoxifen -10.02 Tamoxifen -10.2 

EE2 -9.63 EE2 -9.65 E2 -9.74 E2 -9.74 EE2 -9.77 

E2 -9.62 E2 -9.64 EE2 -9.71 EE2 -9.72 E2 -9.67 

Fenbendazole -8.56 Fenbendazole -8.57 Fenbendazole -8.27 Fenbendazole -8.71 DDT -8.77 

DDT -7.92 DDT -7.96 DDT -7.93 DDT -7.92 BPA -7.77 

Amitraz -7.51 BPA -7.5 BPA -7.53 BPA -7.53 Fenbendazole -7.64 

BPA -7.49 Amitraz -7.47 Sulfapyridine -7.01 Sulfapyridine -7.02 Sulfapyridine -7.37 

Sulfapyridine -7.03 Sulfapyridine -7.07 Sulfadiazine -6.75 Sulfadiazine -6.75 Diclofenac -7.1 

Diflubenzuron -6.59 Sulfadiazine -6.75 Diflubenzuron -6.65 Diflubenzuron -6.65 Sulfadiazine -7.06 

Sulfadiazine -6.55 Diflubenzuron -6.58 Diclofenac -6.34 Diclofenac -6.35 Diazinon -6.54 

Diclofenac -6.34 Diclofenac -6.33 Amitraz -6.31 Amitraz -6.31 Amitraz -6.16 

Diazinon -6.28 Diazinon -6.24 Diazinon -6.21 Diazinon -6.28 Azamethiphos -6.01 

Azamethiphos -5.85 Azamethiphos -5.85 Azamethiphos -5.91 Azamethiphos -5.94 3PBA -5.92 

3PBA -5.49 3PBA -5.48 3PBA -5.43 3PBA -5.43 Nalidixic acid -5.28 

Nalidixic Acid -4.97 Nalidixic acid -4.96 Nalidixic Acid -4.99 Nalidixic Acid -4.99 Diflubenzuron -4.92 

Teflubenzuron -4.84 Teflubenzuron -4.95 Teflubenzuron -4.55 Teflubenzuron -4.78 Teflubenzuron -4.77 

Emamectin Benzoate 79.02 Emamectin Benzoate 269.09 Emamectin Benzoate 87.57 Emamectin Benzoate 87.87 Ivermectin 153.72 

Ivermectin 231.51 Ivermectin 278.53 Ivermectin 238.85 Ivermectin 246.74 Emamectin Benzoate 394.06 

 

 



118 
 

Table 4.6b Lowest binding energy (highest affinity) in the biggest cluster for the ERα for X. laevis, G. aculeatus, H. sapiens, P. promelas and C. gigas. Highlighted in red are 

the VMs and controls that pose a high likelihood of binding to the ERα; highlighted in orange are the VMs and controls that pose a medium likelihood of binding to the 

ERα and highlighted in green are the VMs and controls that pose a low likelihood of binding to the ERα. 

X. laevis 
 

G. aculeatus 
 

H. sapiens 
 

P. promelas 
 

C. gigas 
 Deltamethrin -11.14 Tamoxifen -10.63 Tamoxifen -11.29 α-cypermethrin -11.95 Sulfapyridine -8.04 

Tamoxifen -10.81 Deltamethrin -10.44 Deltamethrin -10.66 Deltamethrin -10.69 BPA -7.76 

EE2 -10.69 α-cypermethrin -10.41 α-cypermethrin -10.28 E2 -10.35 Sulfadiazine -7.76 

α-cypermethrin -10.68 EE2 -9.84 E2 -10.02 Tamoxifen -10.23 Diazinon -7.4 

E2 -10.05 E2 -9.51 EE2 -9.96 EE2 -10.13 Azamethiphos -6.85 

Fenbendazole -8.87 DDT -8.35 DDT -8.55 Amitraz -8.22 3PBA -6.74 

DDT -8.7 BPA -7.87 Fenbendazole -8.14 DDT -8.22 Diclofenac -6.63 

BPA -7.83 Fenbendazole -7.72 Amitraz -7.69 BPA -7.84 E2 -6.51 

Sulfapyridine -7.33 Teflubenzuron -7.33 BPA -7.44 Fenbendazole -7.79 Nalidixic Acid -4.73 

Sulfadiazine -6.99 Amitraz -7.29 Sulfapyridine -7.3 Diflubenzuron -7.32 DDT -1.82 

Diclofenac -6.95 Diclofenac -6.84 Diflubenzuron -7.26 Sulfapyridine -7.27 Deltamethrin -1.55 

Diazinon -6.43 Sulfapyridine -6.73 Teflubenzuron -7.01 Sulfadiazine -7 Fenbendazole -1.09 

Amitraz -6.35 Diflubenzuron -6.66 Sulfadiazine -6.94 Diclofenac -6.91 α-cypermethrin 0.31 

3PBA -6 Sulfadiazine -6.5 Diclofenac -6.56 Teflubenzuron -6.81 EE2 1.89 

Azamethiphos -6 Diazinon -6.38 Diazinon -6.37 Diazinon -6.62 Tamoxifen 10.61 

Diflubenzuron -5.77 Azamethiphos -6.1 Azamethiphos -6.25 Azamethiphos -6.37 Amitraz 12.65 

Nalidixic Acid -5.49 3PBA -5.88 3PBA -5.53 3PBA -6 Diflubenzuron 16.99 

Teflubenzuron -5.03 Nalidixic acid -5.32 Nalidixic Acid -5.27 Nalidixic Acid -5.76 Teflubenzuron 21.15 

Emamectin Benzoate 77.03 Ivermectin 197.5 Ivermectin 78.97 Emamectin Benzoate 244.89 Ivermectin 964.53 

Ivermectin 368.1 Emamectin Benzoate 434.03 Emamectin Benzoate 125.93 Ivermectin 368.4 Emamectin Benzoate 1772 
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In order to determine whether binding of selected VMs showed intra-species variation to the ten 

ERα statistical analysis was performed. Using SPSS a one-way ANOVA was completed to 

determine any statistical differences in energy binding (kcal/mol) between VMs and between 

species ERα. A two-way ANOVA was performed to determine any differences between the two 

variables VM and species ERα. Tukey’s post hoc was performed to determine if there were 

statistical differences in binding of each VM to each ERα. 

Statistical analysis was performed on the ligands that had a sufficiently low binding energy (< -5 

kcal/mol) to the ten ERα receptors. Ivermectin with an average binding affinity of 477.9 (± 203.93) 

kcal/mol, and emamectin benzoate with an average binding affinity of 338.38 (± 147.18) kcal/mol 

were excluded from statistical analysis since their binding was far higher than the cut off of  -5 

kcal/mol and therefore, as outliers, the addition of these two VMs in statistical analysis would 

have substantially skewed results.  

Two-way ANOVA was performed with binding affinity as a dependent variable of species and 

drug. There was a statistical difference between binding affinity and species (P < 0.001), binding 

affinity and VM (P < 0.001) and binding affinity when compared with species by VM (P < 0.001). 

Tukey’s post hoc test was run to establish which of the species had statistically different binding 

affinity to individual drugs. Of the drugs tested (excluding emamectin benzoate and ivermectin) 

11 had statistically different binding depending on which species ERα was targeted (table 4.7) 

(appendix G for full results).  

Eleven ligands showed statistically different binding between at least two species (excluding the 

negative control C. gigas and the positive control H. sapiens). These were 3PBA, amitraz, DDT, 

diazinon, diclofenac, diflubenzuron, E2, EE2, fenbendazole, tamoxifen and teflubenzuron. The 

results of the highest and lowest binding energy of each VM along with the species ERα is 

presented in table 4.7.  
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Table 4.7 Highest average binding energy and lowest average binding energy (kcal/mol) for each 

VM and control ligands that had statistical difference in average binding energy between at least 

two species using Tukey’s post hoc test (excluding the negative control C. gigas and the positive 

control H. sapiens). 

Test VM Highest average 

binding energy 

(kcal/mol); species 

ERα 

Lowest average 

binding energy 

(kcal/mol); species 

ERα 

Number of species 

with a statistical 

difference in 

average binding 

energy (n = 8) 

P value 

3PBA -5.5; S. salar -5.99; P. promelas 2  0.048 

Amitraz -5.10; R. rutilus -7.36; S. aurata 8 < 0.001 

DDT -7.49; O. mykiss -8.74; R. rutilus 8 < 0.001 

Diazinon -5.74; S. aurata -6.41; P. promelas 5 0.007 

Diclofenac -6.29; S. aurata -6.94; R. rutilus 7 0.008 

Diflubenzuron -4.77; R. rutilus -6.62; G. aculeatus 8 < 0.001 

E2 -9.51; G. aculeatus -10.35; P. promelas 8 0.001 

EE2 -9.63; D. rerio -10.69; X. laevis 8 < 0.001 

Fenbendazole -7.6; G. aculeatus -8.23; X. laevis 5 0.01 

Tamoxifen -8.25; P. promelas -10.10; G. aculeatus 8 < 0.001 

Teflubenzuron -4.14; R. rutilus -7.09; G. aculeatus 8 < 0.001 

 

4.3.3.1 E2 and Tamoxifen 

E2, the native ligand to ERα acted as one of the controls. Binding of E2 to seven of the eight test 

ERα were in a similar conformation and affinity to the control H. sapiens which had the lowest 

binding in the biggest cluster of -10.02 kcal/mol (figure 4.16). Binding energy of E2 to G. aculeatus 

ERα was significantly higher than the binding energy of H. sapiens ERα (-9.51 kcal/mol; P = 0.039). 

Binding energy of E2 was significantly higher in the negative control C. gigas than all test ERα and 

H. sapiens (-6.47 kcal/mol; P <0.001) (figure 4.17).  
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Figure 4.16 The native ligand E2 (blue ligand) bound to the control H. sapiens ERα (khaki green 

receptors). The binding energy was -10.02 kcal/mol for all 100 conformations. Yellow dashed line 

shows hydrogen bonds. 

 

Figure 4.17 The native ligand E2 (blue ligand) bound to the negative control C. gigas ERα (brown 

receptors).  All 100 conformations bound forming one cluster, lowest binding (highest affinity) 

was -6.51. Yellow dashed lines represent hydrogen bonds.  
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Tamoxifen was used as an antagonist, or anti-oestrogen control. Tamoxifen bound to the H. 

sapiens ERα with a significantly lower binding energy than all other test ERα (-11.29 kcal/mol) 

(figure 4.18). 

 

Figure 4.18 Lowest binding in the biggest cluster of tamoxifen (blue ligand) bound to H. sapiens 

ERα (khaki green resides).  Binding energy, -11.29 kcal/mol.  
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4.3.3.1 Deltamethrin 

Deltamethrin bound with a ‘high likelihood’ to all ERα (excluding C. gigas) (tables 4.6a and 4.6b). 

Deltamethrin was the VM that had the lowest binding energy to all of the test receptors. Despite 

the low binding energy, the biggest cluster of deltamethrin within one docking run was 26% of all 

binding conformations in H. sapiens and 24% in G. aculeatus which could suggest unspecific 

binding, which could suggest that deltamethrin has both agonistic and antagonistic properties. 

Lowest binding in the biggest cluster showed conformations between receptors that were 

variable, leading to the possibility of unspecific binding (figure 4.19). 

 

Figure 4.19 Lowest binding (highest affinity) within the biggest cluster for deltamethrin in ERα for 

S. salar (light pink residues, blue ligand) and O. mykiss (dark pink residues, green ligand). The 

binding energy for deltamethrin to S. salar ERα was -10.64 kcal/mol and for O. mykiss ERα was -

10.5 kcal/mol. 
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4.3.3.2 α-cypermethrin 

α-cypermethrin bound with a ‘high likelihood’ to all ERα (excluding C. gigas) (tables 4.6a and 

4.6b). The VM with the second lowest binding energy to ERα for all species, apart from the 

negative control C. gigas was α-cypermethrin (figure 4.20). The largest binding cluster for 

cypermethrin was 35% of binding conformations; this was in the P. promelas ERα. As with 

deltamethrin (figure 4.19), the unspecific nature of α – cypermethrin binding could suggest that 

the VM has both agonistic and antagonistic properties. 

 

Figure 4.20 Lowest binding energy (highest affinity) within the biggest cluster for α-cypermethrin 

in ERα for P. promelas (yellow ligand), S. salar (light pink ligand) and R. rutilus (dark pink ligand). 

Glu 279, Arg 320 and His 450 are included to show context and are S. salar residues (faded pink). 

The binding energy for α-cypermethrin to P. promelas ERα was -11.95, to S. salar ERα was -10.39 

and to R. rutilus ERα was -10.39 
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4.3.3.3  Teflubenzuron 

Teflubenzuron had the biggest range of binding between receptors and was the only VM to be 

included in all three likelihood categories (tables 4.6a and 4.6b). The highest average binding 

affinity was for R. rutilus at -4.14 (± 0.43) kcal/mol which did not show hydrogen bonds with 

amino acid side chains (see table 4.14).  The lowest average binding affinity was for G. aculeatus 

at -7.09 (± 0.16) kcal/mol, which showed hydrogen bonding with the polar amino acid threonine 

in position 334 (table 4.11). Despite the differences in binding energy, teflubenzuron bound to the 

ERα of both G. aculeatus and R. rutilus in a similar conformation (figure 4.21).  

 

Figure 4.21 Teflubenzuron bound to G. aculeatus (purple ligand, orange residues) and R. rutilus 

(blue ligand, dark pink residues). Conformations shown are the lowest energy within the biggest 

cluster. 
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4.3.3.4 Fenbendazole 

The receptor with the highest average binding to fenbendazole was that of G. aculeatus -7.6 (± 

0.13) kcal/mol. There was no evidence of hydrogen bonds between fenbendazole and any of the 

residues within the binding pocket of G. aculeatus ERα (table 4.11). The binding of fenbendazole 

to G. aculeatus was significantly higher than the binding energy in O. mykiss, S. salar and X. laevis 

(P < 0.05). The receptor with the lowest binding energy (highest affinity) to fenbendazole was X. 

laevis at -8.23 (± 0.44) kcal/mol. There was evidence for hydrogen bonding between fenbendazole 

and Arg 386 and Glu 345 in the X. laevis ERα (figure 4.22; table 4.17).  

 

Figure 4.22 Fenbendazole bound to G. aculeatus (purple ligand, orange residues) and X. laevis 

(blue ligand, green residues).  Conformations shown are the lowest energy within the biggest 

cluster. 
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4.3.3.5 Amitraz 

Amitraz bound with a ‘high likelihood’ affinity to ERα LBD of P. promelas, G. aculeatus, D. rerio 

and H. sapiens (see table 4.6a and 4.6b). There were significant differences in the energy binding 

of amitraz to a number of the ERα (see table 4.6a, 4.6b and 4.7), including a significant difference 

in binding between two species with a highly conserved ERα (P <0.001), these were S. salar and D. 

rerio which had a whole sequence similarity of 75.6% (identity of 65.4%) (see table 4.5) and a LBD 

sequence similarity of 90.6% (identity of 82.8%) (figure 4.2). Amitraz bound to the D. rerio ERα 

with an average energy of -7.35 kcal/mol (± 0.11). There was no evidence of hydrogen bonds 

between amitraz and any of the residues within the binding pocket of D. rerio (table 4.10). 

Amitraz bound to the S. salar ERα with an average energy of -6.03 kcal/mol (± 0.54) (figure 4.23). 

There was no evidence of hydrogen bonding between amitraz and any residues within the binding 

pocket for S. salar ERα (table 4.15).  

 

 

Figure 4.23 Amitraz bound to D. rerio (purple ligand; overlapping dark blue residues) and S. salar 

(light blue residue; overlapping pink residues).  The position of the residues in the LBD of D. rerio 

and S. salar are so similar that the residues overlap making it difficult to distinguish between the 

two. 
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4.3.4 Hydrogen bonding 

Nine of the twenty tested compounds (7 of 15 VMs; 2 of 5 controls) showed hydrogen bonding 

capabilities with the negative control C. gigas. Of these, azamethiphos, E2 and EE2 bound to both 

Glu 290 and Arg 331. α-cypermethrin, sulfadiazine and sulfapyridine bound to Glu 290. 

Emamectin benzoate, ivermectin and 3PBA bound to other residues within the binding pocket. 

None of the tested VMs had hydrogen bonding with Phe 450 (table 4.8). The VMs that did not 

have any evidence of hydrogen bonding to C. gigas ERα were: amitraz, BPA, DDT, deltamethrin, 

diazinon, diclofenac, diflubenzuron, fenbendazole, nalidixic acid, tamoxifen and teflubenzuron.  

Table 4.8 Residues with hydrogen bonding for VMs and controls to C. gigas ERα  (negative 

control). All results are from the lowest bound conformation in the biggest cluster. 

VM Glu 

290 

Arg 

331 

Phe 

450 

Glu 

348 

Others Binding energy 

(kcal/Mol) 

3PBA - - - - Gly 447 -6.74 

Azamethiphos + + - - Leu 283, 324 -6.85 

α-cypermethrin + - - - Phe 342 0.31 

E2 + + - - Gly 447 -6.51 

EE2 + + - - Phe 342 1.89 

Emamectin benzoate - - - - Ala 287 1772 

Ivermectin - - - - Leu 324, 325 964.53 

Sulfadiazine + - - - Phe 342 -7.76 

Sulfapyridine + - - - Phe 342 -8.04 
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Thirteen of the twenty tested compounds (15 VMs and 5 controls) showed hydrogen bonding 

with residues within the control ERα of H. sapiens. Of these, fenbendazole showed hydrogen 

bonding with Asp 351, a residue thought to be important for antagonistic effects (Heldring et al., 

2007). Azamethiphos, 3PBA and ivermectin bound to Arg 394; EE2 bound to Glu 353; emamectin 

benzoate, sulfadiazine and sulfapyridine bound to His 524; E2 bound to both Arg 394 and His 524; 

nalidixic acid bound to both Glu 353 and Arg 394. BPA, deltamethrin, and teflubenzuron bound to 

other residues within the binding pocket (table 4.9). The VMs that did not have any evidence of 

hydrogen bonding to H. sapiens ERα were: amitraz, α-cypermethrin, DDT, diazinon, diclofenac, 

diflubenzuron, and tamoxifen. 

Table 4.9 Residues with hydrogen bonding for VMs and controls to H. sapiens ERα  (positive 

control). All results are from the lowest bound conformation in the biggest cluster. 

VM Glu 

353 

Arg 

394 

His 

524 

Asp 

351 

Others Binding energy 

(kcal/Mol) 

3PBA - + - - Phe 404 -5.53 

Azamethiphos - + - - - -6.25 

BPA  - - - - Leu 346 -7.44 

Deltamethrin - - - - Gly 420 -10.66 

E2 - + + - - -10.02 

EE2 + - - - Thr 347 -9.96 

Emamectin 

benzoate 

- - + - Ala 350, Gly 420, 

Met 421 

125.93 

Fenbendazole - - - + Thr 347 -8.14 

Ivermectin - + - - Met 388  78.97 

Nalidixic acid + + - - - -5.27 

Sulfadiazine - - + - Gly 521 -6.94 

Sulfapyridine - - + - Gly 521 -7.3 

Teflubenzuron - - - - Thr 347 -7.01 
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D. rerio ERα showed hydrogen bonding with eleven of the tested VMs. None of the tested VMs 

bound to D. rerio ERα Asp 319. Emamectin benzoate and ivermectin bound to Glu 321; 3PBA, BPA 

and EE2 bound to Arg 362; deltamethrin, sulfadiazine and sulfapyridine bound to His 492; 

fenbendazole bound to both Glu 321 and Arg 362. E2 did not bind to any of the residues thought 

to be important within the LBD of ERα, it did however, form a hydrogen bind with the residue Leu 

353 (table 4.10). The VMs that did not have any evidence of hydrogen bonding to D. rerio ERα 

were: amitraz, azamethiphos α-cypermethrin, DDT, diazinon, diclofenac, diflubenzuron, tamoxifen 

and teflubenzuron. 

Table 4.10 Residues with hydrogen bonding for VMs and controls in D. rerio ERα. All results are 

from the lowest bound conformation in the biggest cluster. 

VM Glu 

321 

Arg 

362 

His 

492 

Asp 

319 

Others Binding energy 

(kcal/Mol) 

3PBA - + - - Glu 345 -5.49 

BPA  - + - - Leu 355 -7.49 

Deltamethrin - - + - - -10.58 

E2 - - - - Leu 353 -9.62 

EE2 - + - - Leu 353 -9.63 

Emamectin 

benzoate 

+ - - - Leu 352, 355 79.02 

Fenbendazole + + - - Leu 355 -8.56 

Ivermectin + - - - - 231.51 

Nalidixic acid - - - - Leu 314 -4.97 

Sulfadiazine - - + - Gly 489 -6.55 

Sulfapyridine - - + - Gly 489 -7.03 
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Fourteen test VMs showed hydrogen bonding to residues within the G. aculeatus ERα. 

Fenbendazole and ivermectin formed hydrogen bonds with Asp 348, the residue thought to be 

important for antagonistic binding to the ERα (Heldring et al., 2007). E2 bound to Glu 350; 3PBA, 

BPA and diazinon bound to Arg 391; EE2, nalidixic acid, sulfadiazine and sulfapyridine formed 

hydrogen bonds with Glu 350 and Arg 391. Deltamethrin, diclofenac, and teflubenzuron did not 

form hydrogen bonds with any of the residues important for binding with the G. aculeatus ERα. 

None of the tested VMs bound to His 521 (table 4.11). The VMs that did not have any evidence of 

hydrogen bonding to G. aculeatus ERα were: amitraz, BPA, α-cypermethrin, DDT, diflubenzuron 

and tamoxifen. 

Table 4.11 Residues with hydrogen bonding for VMs and controls in G. aculeatus ERα.  All results 

are from the lowest bound conformation in the biggest cluster. 

VM Glu 

350 

Arg 

391 

His 

521 

Asp 

348 

Others Binding energy 

(kcal/Mol) 

3PBA - + - - Leu 384 -5.88 

Azamethiphos - + - - Leu 384 -6.1 

Deltamethrin - - - - Gly 417 -10.44 

Diazinon - + - - - -6.38 

Diclofenac - - - - Leu 343 -6.84 

E2 + - - - Glu 350, Phe 401 -9.51 

EE2 + + - - Phe 401 -9.84 

Emamectin 

benzoate 

- - - - Met 339, 340; Phe 

401 

434.03 

Fenbendazole - - - + Leu 343 -7.72 

Ivermectin - - - + Thr 344, Leu 343, 

384; Ala 347, Met 

385 

197.5 

Nalidixic acid + + - - - -5.32 

Sulfadiazine + + - - Leu 384 -6.5 

Sulfapyridine + + - - Leu 384 -6.73 

Teflubenzuron - - - - Leu 343, Thr 344 -7.33 
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Eleven VMs showed hydrogen bonding with O. mykiss  ERα. EE2 bound to Glu 366; fenbendazole, 

ivermectin and tamoxifen bound to Arg 407; sulfadiazine and sulfapyridine bound to His 537; 

emamectin benzoate bound to Glu 366 and Arg 407; 3PBA, E2 and nalidixic acid did not bind to 

any of the residues thought to be important for binding. None of the VMs formed a hydrogen 

bond with Asp 364 (table 4.12). The VMs that did not have any evidence of hydrogen bonding to 

O. mykiss ERα were: amitraz, azamethiphos, α-cypermethrin, BPA, DDT, diazinon, diclofenac, 

diflubenzuron and teflubenzuron. 

Table 4.12 Residues with hydrogen bonding to VMs and controls in the O. mykiss ERα.  All results 

are from the lowest bound conformation in the biggest cluster. 

VM Glu 

366 

Arg 

407 

His 

537 

Asp 

364 

Others Binding energy 

(kcal/Mol) 

3PBA - - - - Gly 534 -5.43 

Deltamethrin - - + - - -10.5 

E2 - - - - Leu 400, Gly 534  -9.74 

EE2 + - - - Leu 400 -9.71 

Emamectin 

benzoate 

+ + - - Met 401 87.57 

Fenbendazole - + - - - -8.27 

Ivermectin - + - - Met 401 238.85 

Nalidixic acid - - - - Leu 359 -4.99 

Sulfadiazine - - + - Leu 359, Gly 534 -6.75 

Sulfapyridine - - + - Leu 359, Gly 534 -7.01 

Tamoxifen - + - - - -9.89 
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Fifteen of the tested VMs bound to P. promelas ERα. Amitraz, EE2, emamectin benzoate, nalidixic 

acid, tamoxifen and teflubenzuron bound to Arg 405; E2, sulfadiazine and sulfapyridine bound to 

His 535; BPA, diflubenzuron and fenbendazole bound to both Glu 364 and Arg 405; 3PBA, 

azamethiphos and ivermectin formed hydrogen bonds with other residues surrounding the 

binding pocket. None of the VMs bound the Asp 362 (table 4.13). The VMs that did not have any 

evidence of hydrogen bonding to P. promelas ERα were: α-cypermethrin, DDT, deltamethrin, 

diazinon and diclofenac. 

Table 4.13 Residues with hydrogen bonding to VMs and controls in the P. promelas ERα. All 

results are from the lowest bound conformation in the biggest cluster. 

VM Glu 

364 

Arg 

405 

His 

535 

Asp 

362 

Others Binding energy 

(kcal/Mol) 

3PBA - - - - Thr 358 -6 

Amitraz - + - - Leu 398 -8.22 

Azamethiphos - - - - Gly 532 -6.37 

BPA + + - - Leu 398 -7.84 

Diflubenzuron + + - - Pro 336 -7.32 

E2 - - + - Leu 398, Gly 532 -10.35 

EE2 - + - - Leu 398 -10.13 

Emamectin 

benzoate 

- + - - Pro 336 244.89 

Fenbendazole + + - - - -7.79 

Ivermectin - - - - Ile 435 368.4 

Nalidixic acid - + - - Leu 398 -5.76 

Sulfadiazine - - + - Gly 532, Leu 357  -7 

Sulfapyridine - - + - Gly 532, Leu 357  -7.27 

Tamoxifen - + - - - -10.23 

Teflubenzuron - + - - - -6.81 
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Fourteen of the tested VMs and control substances bound to R. rutilus ERα. Amitraz, 

cypermethrin, deltamethrin, sulfadiazine and sulfapyridine formed a hydrogen bond with Glu 345; 

azamethiphos bound to Arg 386; 3PBA, BPA, E2, EE2, ivermectin and nalidixic acid formed a 

hydrogen bond with both Glu 345 and Arg 386; diclofenac, diflubenzuron and emamectin 

benzoate formed hydrogen bonds with other residues within the binding pocket. None of the VMs 

or controls formed hydrogen bonds with His 516 or Asp 343 (table 4.14). The VMs that did not 

have any evidence of hydrogen bonding to R. rutilus ERα were: amitraz, DDT, diazinon, 

fenbendazole, tamoxifen and teflubenzuron. 

Table 4.14 Residues with hydrogen bonding to VMs and controls in the R. rutilus ERα.  All results 

are from the lowest bound conformation in the biggest cluster. 

VM Glu 

345 

Arg 

386 

His 

516 

Asp 

343 

Others Binding energy 

(kcal/Mol) 

3PBA + + - - - -5.92 

Azamethiphos - + - - - -6.01 

BPA + + - - Phe 396 -7.77 

α-cypermethrin + - - - - -11.95 

Deltamethrin + - - - - -10.54 

Diclofenac - - - - Leu 338 -7.1 

Diflubenzuron - - - - Leu 338 -4.92 

E2 + + - - Gly 513 -9.67 

EE2 + + - - - -9.77 

Emamectin 

benzoate 

- - - - Ala 342 394.06 

Ivermectin + + - - Met 380 153.72 

 

Nalidixic acid + + - - Leu 379 -5.28 

Sulfadiazine + - - - Leu 338 -7.06 

Sulfapyridine + - - - Leu 338 -7.37 
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Twelve VMs and control substances formed hydrogen bonds to S. salar ERα. Emamectin benzoate 

and ivermectin bound to Glu 279; EE2 and tamoxifen bound to Arg 320; azamethiphos, 

sulfadiazine and sulfapyridine bound to His 450; fenbendazole bound to both Glu 279 and Arg 

320; 3PBA, BPA and nalidixic acid did not bind to any of the key residues, but formed hydrogen 

bonds with other residues within the binding pocket. None of the VMs or controls bound to Asp 

277 (table 4.15). The VMs that did not have any evidence of hydrogen bonding to S. salar ERα 

were: Amitraz, BPA, α-cypermethrin, DDT, deltamethrin, diazinon, diclofenac, diflubenzuron and 

teflubenzuron. 

Table 4.15 Residues with hydrogen bonding to VMs and controls in the S. salar ERα.  All results are 

from the lowest bound conformation in the biggest cluster. 

VM Glu 

279 

Arg 

320 

His 

450 

Asp 

277 

Others Binding energy 

(kcal/Mol) 

3PBA - - - - Gly 447 -5.43 

Azamethiphos - - + - Gly 447, Leu 451 -5.94 

E2 - - - - Leu 313, Gly 447 -9.74 

EE2 - + - - Leu 313 -9.72 

Emamectin 

benzoate 

+ - - - Leu 313 87.87 

Fenbendazole + + - - Leu 313 -8.71 

Ivermectin + - - - Leu 313 246.74 

Nalidixic acid - - - - Leu 272 -4.99 

Sulfadiazine - - + - Leu 272, Gly 447 -6.75 

Sulfapyridine - - + - Leu 272, Gly 447 -7.02 

Tamoxifen - + - - - -10.02 
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Ten VMs and control substances formed hydrogen bonds with S. aurata ERα. EE2 and tamoxifen 

bound to Arg 356; sulfadiazine and sulfapyridine bound to His 486; fenbendazole bound to both 

Glu 315 and Arg 356; 3PBA, E2, Emamectin benzoate and nalidixic acid bound to residues within 

the LBD but not those that are thought to be important for ligand binding. None of the VMs or 

controls bound to Asp 313 (table 4.16). The VMs that did not have any evidence of hydrogen 

bonding to S. aurata ERα were: amitraz, azamethiphos, α-cypermethrin, BPA, DDT, deltamethrin, 

diazinon, diclofenac, diflubenzuron and teflubenzuron. 

Table 4.16 Residues with hydrogen bonding to VMs and controls in the S. aurata ERα.  All results 

are from the lowest bound conformation in the biggest cluster. 

VM Glu 

315 

Arg 

356 

His 

486 

Asp 

313 

Others Binding energy 

(kcal/Mol) 

3PBA - - - - Gly 483 -5.48 

E2 - - - - Leu 349 Gly 483 -9.64 

EE2 - + - - Leu 349 -9.65 

Emamectin 

benzoate 

- - - - Gly 483 269.09 

Fenbendazole + + - - Leu 349, -8.57 

Ivermectin - + - - Leu 349, Met 350 278.53 

Nalidixic acid - - - - Leu 308 -4.96 

Sulfadiazine - - + - Gly 483 -6.75 

Sulfapyridine - - + - Gly 483 -7.07 

Tamoxifen - + - - - -9.74 
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Thirteen VMs and control substances bound with hydrogen bonds to at least one residue within 

the X. laevis ERα. Ivermectin bound to Glu 345; 3PBA and tamoxifen bound to Arg 386; 

azamethiphos, α-cypermethrin, sulfadiazine and sulfapyridine bound to His 516; BPA, 

diflubenzuron, E2, EE2, fenbendazole and nalidixic acid bound to both Glu 345 and Arg 386 (table 

4.17). The VMs that did not have any evidence of hydrogen bonding to X. laevis ERα were: 

amitraz, DDT, deltamethrin, diazinon, diclofenac, emamectin benzoate and teflubenzuron. 

Table 4.17 Residues with hydrogen bonding to VMs and controls in the X. laevis ERα. All results 

are from the lowest bound conformation in the biggest cluster. 

VM Glu 

345 

Arg 

386 

His 

516 

Asp 

343 

Others Binding energy 

(kcal/Mol) 

3PBA - + - - Leu 379 -6 

Azamethiphos - - + - - -6 

BPA + + - - Phe 396 -7.83 

α-cypermethrin - - + - Gly 513 -10.68 

Diflubenzuron + + - - - -5.77 

E2 + + - - - -10.05 

EE2 + + - - - -10.69 

Fenbendazole + + - - Leu 379 -8.87 

Ivermectin + - - - Leu 379 368.1 

Nalidixic acid + + - - Leu 338 -5.49 

Sulfadiazine - - + - Leu 338, Gly 513 -6.99 

Sulfapyridine - - + - Leu 338, Gly 513 -7.33 

Tamoxifen - + - - - -10.81 
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4.4 Discussion 

4.4.1 Structural relationships 

4.4.1.1 ERα relationships 

A dendrogram illustrating the evolutionary distance between the ten ERα receptors shows that six 

of the seven bony fish ERα are closely related and highly conserved (figure 4.6 [1] page 105).  The 

seventh bony fish, R. rutilus, appears to have a less conserved ERα when compared to the other 

bony fish (figure 4.6 [4]), and is more distant to these than both H. sapiens and the African clawed 

frog X. laevis (figure 4.6 [2]; table 4.5 page 104). Published data on the evolutionary distance 

between Actinopterygii, or bony fish, by Li et al. (2007) found that the Salmonid O. mykiss and the 

Gaterostedae G. aculeatus were more closely related than the Cyprinid D. rerio. The results from 

Li et al. (2007) are comparable to the relationship dendrogram in this study where the Salmonids 

O. mykiss and S. salar were more closely related to the Gasterostedae G. aculeatus than the 

Cyprinids D. rerio, R. rutilus and P. promelas (figure 4.6). Ecotoxicology testing focuses on model 

species or the most ‘sensitive’ species and makes the presumption that closely related species will 

interact in the same way to substances. Traditionally only one species from each group of animals 

is used in regulatory ecotoxicology testing. It is speculated that highly conserved receptors will 

bind to ligands in a similar manner to one another (Wass and Sternberg, 2009). To check this 

theory, ligands bound to each ERα and their binding affinities were compared with the species 

phylogeny. Comparing the sequence identity dendrogram (or phylogenetic tree) (figure 4.6) to a 

dendrogram built using lowest binding energy (highest affinity) within the biggest cluster of 

ligands to each ERα (figure 4.7), showed that groups do not match as expected. Four of the six 

bony fish, which were found in the same group as one another when checking for phylogeny 

(figure 4.6 [1]), were within the same group in the dendrogram; these are O. mykiss, D. rerio, S. 

aurata and S. salar (figure 4.7 [1a]). However the other two bony fish that are closely related in 

terms of phylogeny, G. aculeatus and P. promelas are much more distant than other species in 

terms of ligand binding affinity. The ERα of P. promelas, which shares 90.8% sequence similarity 

with the ERα of D. rerio (table 4.5), was the most distant of the ERα in terms of lowest binding 

energy (highest affinity)  in the biggest cluster (excluding the negative control C. gigas).  There has 

been some evidence to support these results.  Well known xenoestrogens such as the 

alkylphenols 4-tert-octylphenol and nonylphenol have displayed significant differences in their 

oestrogenic potency between D. rerio and O. mykiss, which share 73.4% similarity (table 4.5), with 

O. mykiss being 5 times more sensitive to the oestrogenic effects of nonylphenol than D. rerio 

when VTG production was used as a biomarker (Van den Belt et al., 2003). 

This finding would suggest that although the two receptors are highly conserved, even a small 

percentage of different amino acids can cause significant changes in terms of binding affinity. This 
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is especially concerning as ecotoxicology testing, based on the assumption that related species 

will respond similarly, may miss impacts. This finding further confirms that testing should focus on 

native species rather than model species and that molecular docking could serve as a useful tool 

for screening and selection of sensitive species.  

4.4.1.2 Ligand structure relationships 

When the VM ligands were ordered in a dendrogram based on their structural relationships using 

the tanimoto coefficient, they appeared to be grouped in a logical order depending on their 

chemical properties (figure 4.8). Group 1 containing E2 and EE2 (figure 4.8 [1a]) also contained 

the known xenoestrogens BPA and DDT as well as tamoxifen (figure 4.7 [1b]). This was expected, 

as it is known that all of these compounds bind to the ERα, and also have a phenolic ring (apart 

from DDT which has a chlorobenzene). Group 1 also contained α-cypermethrin, deltamethrin and 

3PBA (figure 4.8 [1c).  Comparatively, the dendrogram which was made of the lowest binding 

energy (highest affinity) in the biggest cluster for each ligand, shows that group 1 contains E2, 

EE2, tamoxifen, deltamethrin and α-cypermethrin (figure 4.14 [1]). This suggests whilst structure 

is not directly linked to binding affinity, it does play a part and that structural similarity between 

ligands is more likely to be a factor in binding affinity than sequence similarities between 

receptor. The structure of the native ligand E2 is comprised of two hydroxyl groups on either end 

of the ligand that are 11 Å apart, a lot of xenoestrogens share a hydroxyl group (Baker, 2014; 

McCullough et al., 2014). However not all xenoestrogens have this hydroxyl group, DDT is a 

known xenoestrogen (Fu et al., 2007; Oien et al., 1997) and it does not have this quality (figure 

4.9).  Group 2 contained the known xenoestrogens BPA and DDT as well as fenbendazole (figure 

4.7 [2]). Although there are no current reports on fenbendazole being a xenoestrogen in 

vertebrates, it has been reported as being an EDC in the invertebrate Chironomus riparius (Park 

and Kwak, 2012). Structurally fenbendazole does not possess a hydroxyl group (figure 4.11) unlike 

many xenoestrogens, the molecular docking results indicate that fenbendazole is worthy of 

significantly more investigation to determine its xenoestrogenic impacts. 

4.4.2 Ligand binding affinity 

The two ligands that had the lowest binding energy (highest affinity) for all ERα molecules, 

excluding the negative control C. gigas, were deltamethrin and α-cypermethrin. The lowest 

binding energy (highest affinity) within the biggest cluster of these two VMs did not significantly 

differ between any of the species. There have been mixed reports on whether deltamethrin is a 

xenoestrogen or an anti-oestrogen. 

McCullough et al. (2014) used AutoDock 4 alongside a commercial in vitro cell culture assay and 

found that there was a correlation between binding energy and oestrogenic potential. 

Compounds with a binding energy of ≤ -8.22 (kcal/mol) in the LBD of the human ERα were 
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inhibitors in the in vitro assay whereas those compounds with a binding energy of ≥ -7.37 

possessed no oestrogenic activity in vitro. McCullough et al. (2014) chose to select the lowest 

binding energy (highest affinity) within the biggest cluster, which gave them the estimates on 

binding. The results from the McCullough et al. (2014) study suggest using results on binding 

energy from the biggest cluster is a good indicator of oestrogenic compounds within the ERα. In 

Chinese hamster CHO cells, Kojima et al. (2004) reported deltamethrin as being an anti-oestrogen. 

In contrast other studies have shown deltamethrin to be a xenoestrogen in human MCF-7 cells 

(Andersen et al., 2002). In studies on pregnant rats Presibella et al. (2005) showed that 

deltamethrin, in combination with the xenoestrogen endosulfan did not have an endocrine 

disrupting effect at oral concentrations up to 4 mg/kg body weight per day. It would appear that 

deltamethrin is both an ERα agonist and antagonist, this could explain why deltamethrin had such 

a high affinity to the test ERα in this study, but binding was fairly unspecific with various possible 

binding positions (see figure 4.19).  

4.4.3 Hydrogen bonding 

Interactions between VMs and the possible binding site for agonistic and antagonistic substances 

within the ERα were investigated by looking at residues that formed hydrogen bonds.  Amitraz 

has been reported as being an EDC and appears to be a weak agonist on the α2-adrenergic 

receptor in mammals. It reduces gonadotropin-releasing hormone (GnRH) and noradrenalin 

secretion altering growth and reproduction (Altobelli et al., 2001). Amitraz has also been reported 

as being a weak antagonist of the ERα in human MCF-7 cells (Ueng et al., 2004). The findings from 

the present study do not suggest that amitraz is an antagonist, as there is no evidence of 

hydrogen bonding to aspartic acid (position 351 in H. sapiens) in any of the binding 

conformations. As a consequence, at this stage, it is difficult to say whether amitraz is an agonist 

or antagonist. Only two VMs showed hydrogen bonding to aspartic acid, these were fenbendazole 

in H. sapiens (table 4.7) and G. aculeatus (table 4.8). The binding of fenbendazole to aspartic acid 

in this position suggests that this VM could have an antagonistic effect on the H. sapiens and G. 

aculeatus ERα. If this is the case then this finding further highlights the complexity of the affinity 

of certain VMs to different species. Ivermectin also had hydrogen bonding with aspartic acid in G. 

aculeatus (table 4.11). As ivermectin bound with such a high binding energy (197.5 kcal/mol), it is 

unlikely that it would have an antagonistic effect on the ERα of G. aculeatus. There is no evidence 

that it is a xenoestrogen and the high binding energy shown in this study also strongly indicates 

this (see tables 4.6b and 4.11). Fenbendazole had a strong affinity to both H. sapiens (-8.14 

kcal/mol) and G. aculeatus (-7.72 kcal/mol). Therefore it is possible that fenbendazole could have 

mixed agonistic and antagonistic effects on the ERα.This suggests once again (see section 4.4.1.2) 

that the lack of evidence in the literature about the endocrine disrupting effects of fenbendazole 

does not necessarily imply it is not an EDC but rather that there is a substantial knowledge gap for 

this VM that should be remedied.  
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4.4.4 Sea lice treatments 

Of the five sea lice treatments, emamectin benzoate did not demonstrate affinity to any of the 

ten ERα receptors (see tables 4.6a and 4.6b). Deltamethrin and α-cypermethrin showed high 

affinity to all the ERαs investigated, apart from the negative control C. gigas (see table 4.6b) and 

were categorised as ‘high likelihood’ VMs (see tables 4.6 a and 4.6b). The use of cypermethrin is 

decreasing in Scottish salmon farms while the use of deltamethrin is increasing (chapter 2; section 

2.3.1; table 2.3). However, data on the sediment MEC of cypermethrin and deltamethrin from 

2008 – 2012 show that both VMs were under the level of detection. This does not mean that they 

were not present in concentrations that could cause harm, especially as it has been documented 

that mixtures of xenoestrogens in concentrations below the LOEC have elicited an oestrogenic 

response (Silva et al., 2002). Teflubenzuron showed a high likelihood of binding to the three-

spined stickleback G. aculeatus ERα. In chapter 2 (section 2.3; table 2.4) it was shown that use of 

teflubenzuron dramatically increased between 2008 – 2012 going from 72.73 kg total use in 2002 

to 261.96 kg total use in 2013. G. aculeatus is an anadromous (lives in fresh, marine and brackish 

water) fish and is distributed  in and around UK coastal waters, as this is where Scottish salmon 

farms are based then it is likely that G. aculeatus would be exposed to concentrations of 

teflubenzuron that could cause an endocrine disrupting effect. 

Azamethiphos showed a medium likelihood of binding to all ten of the tested ERα. Since 

azamethiphos is the most hydrophilic of the sea lice treatments and is more likely to remain in the 

water column rather than adsorb to sediment (see chapter 2; section 2.1; table 2.1) then 

exposure to fish living in the water column is high. Since the likelihood of binding is medium, but 

the exposure likelihood is high then it is recommended that azamethiphos also be tested for 

oestrogenic activity using an in vitro assay. 

4.4.5 Binding affinity  

Nine of the fifteen VMs appeared in the high likelihood of binding category for binding to the ERα 

for at least one species (see tables 4.6a and 4.6b). Fenbendazole was in the high likelihood of 

binding category for all of the ERα (excluding the negative control C. gigas) and was chosen to be 

investigated because there is evidence of its endocrine disrupting properties. For example, C. 

riparius ribosomal gene RpS3 when exposed to fenbendazole showed significant upregulation of 

the ribosomal protein gene RpS3 (Park and Kwak, 2012). Fenbendazole has been included on 

several lists for the prioritisation of veterinary pollutants in the aquatic environment in the UK 

(Boxall et al., 2003; Boxall et al., 2002), Korea (Kim et al., 2008) and Spain (Guillén et al., 2012). 

Fenbendazole is on the priority list for these countries because use is high but information on 

effects on non-target organisms is lacking (Boxall et al., 2003). From the results of this study 

fenbendazole is likely to have an effect on the ERα on all of the test species, suggesting that the 
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oestrogenic potential of this VM is investigated further with an in vitro reporter assay such as a 

modified YES.  

Teflubenzuron had a wide binding range between the species, with the lowest binding energy 

(highest affinity) in the biggest cluster for R. rutilus at -4.77 (average binding was -4.14 ± 0.43) 

kcal/mol (figure 4.21; table 4.6b) and the lowest binding energy (highest affinity) in the biggest 

cluster for G. aculeatus at -7.33 (average binding was -7.09 ± 0.16) kcal/mol (figure 4.21; table 

4.7b). This difference in binding energy could indicate that teflubenzuron is a mild xenoestrogen 

in G. aculeatus but does not act on the ERα of R. rutilus. Deciding on what is a good binding ‘hit’, 

is something of a grey area. However, from other studies and from the AutoDock user guidelines, 

it is generally accepted that anything below -7 kcal/mol is worthy of further investigation 

(McCullough et al., 2014; Pavani et al., 2008). In this study the results for teflubenzuron indicate 

that even in conserved proteins binding can differ vastly, resulting in the need for more species 

specific testing in both chronic and lethal effects of substances. 

4.4.6 Predicted oestrogenic potency (PEP) 

A number of in vitro assays, when testing for oestrogenicity, compare the compounds being 

tested with oestrogens to determine the compounds potency related to native ligands (Nagel et 

al., 1999; Segner et al., 2003). In the present study, deltamethrin, α-cypermethrin and tamoxifen 

gave PEPs that were orders of magnitude higher than E2. For example deltamethrin was 110x 

more potent than E2 in the S. aurata ERα (see figure 4.19 and tables 4.6a and 4.6b). Whilst α-

cypermethrin has been shown to possess some xenoestrogenic properties, deltamethrin has been 

reported to have both mild oestrogenic and anti-oestrogenic properties (Kojima et al., 2004). In 

this study, α-cypermethrin bound with a high affinity to all ERα receptors (excluding the negative 

control C. gigas) however binding was not consistently in the same position within the receptors. 

This unspecific binding could be an indicator of how α-cypermethrin and deltamethrin can be 

both agonistic and antagonistic to the ERα as shown in in vitro studies (Chen et al., 2002; Kojima 

et al., 2004). Although the PEPs calculated in the present study have often been in agreement 

with which ligands have been found to cause an effect in other studies, it wildly overestimates the 

oestrogenic potential for some. This suggests that PEP calculations based on molecular docking 

cannot be used as a reliable measure of potency; at best it may provide an indication of 

substances that might have a potential oestrogenic effect. In the present study BPA had a PEP 

ranging between 1.28% in H. sapiens and 6.28% in G. aculeatus whereas in other studies the PEP 

of BPA varies between 0.00006 – 0.01% depending on the assay (Nagel et al., 1999; Segner et al., 

2003). 

When investigating 200 pesticides for their xenoestrogenic potential, Kojima et al. (2004) found 

that deltamethrin was a possible anti-oestrogen and had a 20% relative inhibitory concentration 

(RIC20) of 8.1 x 10-6 (equivalent to 4.09 mg/L) compared with the RIC20 for tamoxifen with a 
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reported RIC20 of 3.2 x 10-9 (equivalent to 1.19 µg/L). Cypermethrin was reported as being a mild 

xenoestrogen, with a 28% PEP being measured as 8.1 x 10-6 (equivalent 3.37 mg/L). According to 

this study, α-cypermethrin had a stronger affinity to the ERα of all tested species (apart from the 

negative control C. gigas). It would seem that α-cypermethrin does pose a risk to aquatic wildlife. 

Cypermethrin has been detected in surface freshwater at concentrations up to 85.1 µg/L (Boxall 

et al., 2002). When comparing the reported concentrations that would cause a response in 

Chinese hamster ovary (CHO) cells with MECs it seems that α-cypermethrin and deltamethrin 

would not reach the effect threshold. From the Kojima et al. (2004) study it shows that 

deltamethrin and α-cypermethrin would cause little effect at environmentally relevant 

concentrations, however it does not mean that they are unable to cause an effect within the 

aquatic environment. As these compounds generally occur in mixtures and may be present in the 

environment along with other xenoestrogens their incidence in the aquatic environment should 

be closely monitored. 

4.4.7 Predictions on mixtures of VMs in the environment 

In a study using the YES as a reporter assay Silva et al. (2002) showed that a mixture of eight mild 

xenoestrogens at concentrations below their NOEC or EC01 caused an oestrogenic response. When 

using the prediction equations CA (see chapter 3, equation 3.1) and IA (see chapter 3, equation 

3.1) they found that the equation IA gave EC50 results that underestimated the effects of the 

mixture, however CA results were in line with their findings. The reliability of CA in this 

experiment was to be expected.  CA is an equation which favours similar MOA effects, and since 

in this case only one pathway was available for measurement CA would inevitably be the equation 

that fits the best. In chapter 3 (equation 3.2; section 3.1) IA gave the best prediction in terms of 

mixture effects, however the MOA of the VMs tested in chapter 3 were different to one another. 

This further confirms that in order to effectively predict the effects of mixtures on non-target 

organisms the equation used should be carefully selected with consideration of MOA similarity or 

dissimilarity in order to maximise the potential of the predictive equations. If molecular docking 

were to be used as a tool to aid the predictions of mixture effects on a specific target, in this case 

the ERα, then CA would be the equation to best fit this task. It should be noted, however, that this 

equation does not take into account synergistic effects. 

4.5 Conclusion 

It appears that molecular docking can serve as a useful pre-screening tool in order to distinguish 

which species may be more sensitive than others to different compounds. Binding affinity of 

ligands between the ERα of the ten species in this study has shown profound differences, even 

between species with very high ERα similarity (up to 90.8% sequence identity) (see figure 4.23). 

Previously it was assumed that species with high phylogenetic similarities would interact with 

compounds in a similar enough way that ecotoxicology testing was only needed on a model 
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species (Brooks et al., 2008). These results highlight the need for more intelligent ecotoxicology 

testing.  

This study has also highlighted two VMs that may hold xenoestrogenic or anti-oestrogenic 

properties to certain species of bony fish that have not been tested for their xenoestrogenic 

properties before. These are fenbendazole, which has previously been described as having an 

endocrine disrupting effect on the invertebrate C. riparius and teflubenzuron, which currently has 

not been tested for xenoestrogenic properties. The uncertainty surrounding binding and whether 

a substance is an antagonist or agonist is a significant problem for molecular docking, therefore it 

is proposed that substances with low binding affinity should be further tested using in vitro 

reporter assays such as YES, ER-Calux ®, or VTG induction assays (these in vitro assays are 

discussed in full in chapter 5, section 5.1). In vitro reporter assays are preferable at the stage to in 

vivo assays to reduce the number of animals used and because in vitro reporter assays can give 

information on specific targets. However it has been documented that in vitro assays are not as 

sensitive at detecting the toxicity of compounds as in vivo assays (Segner et al., 2003). It appears 

however that molecular docking cannot offer any information at this stage as to whether a VM is 

an antagonist or agonist. In order to provide a more comprehensive assessment it is 

recommended that in vitro assays are performed afterwards to identify whether a VM is an 

antagonist or agonist. 

One problem with molecular docking is the analysis of results. It is not obvious which docking 

conformation is the best to choose in an experiment. If out of 100 docking conformations there is 

only one cluster of results (see figure 4.4) then the conformation with the lowest binding energy 

and highest affinity can be chosen. However, there is often more than one cluster of binding 

conformation (see figure 4.5) and sometimes the lowest bound conformation does not appear in 

the biggest cluster. This is where analysis becomes difficult. There is not much information on 

analysing results in peer-reviewed papers, however according to the AutoDock website FAQ 

section inspection by eye may be the most suitable form of identification for the ‘right’ 

conformation (The Scripps Research Institute, 2007). Ideally, for this technology to be of use in 

ecotoxicology testing, docking should be usable as an automated process to optimise screening 

potential. It is not only binding energy (kcal/mol) that should be considered when analysing 

docking results, but also clusters and the orientation of bound molecules, hydrogen bonding and 

Van der Waals interactions. While the orientation and type of bonds are important in binding (Cui 

et al., 2013), inspecting each conformation is a time consuming process and not a practical 

proposition if this method is to be employed as a high throughput technique as part of 

ecotoxicology screening. Although molecular docking can be useful for identifying ligands that 

may be problematic, a lot more research is needed to fully understand whether it can be a viable 

option for structure based estimates on ligand binding.  
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Pharmaceuticals are designed to have a biological target, or MOA. Some VMs and pesticides have 

targets that are specific to invertebrates, making them relatively safe for non-target vertebrates. 

With the advance of molecular docking, however, it may be possible to identify alternative 

targets. The results from this study show that no matter what the intended MOA may be, a VM 

can still be a target for the ERα. This technology can therefore serve to identify alternative 

biological targets, which may have an adverse chronic effect on a number of species. With the 

increase in sequencing data and as 3D models improve molecular docking can become a stronger 

tool in the identification of sensitive species across a greater diversity of organisms.  

Molecular docking may provide important insights into chronic effects of VMs on a variety of 

species. It also has the ability to make predictions on compounds with relatively little background 

information. Although there are limitations to the capabilities of molecular docking as a prediction 

method, it may be able to assist in ecotoxicology testing as a precursor for the identification of 

VMs capable of binding to the ERα causing a chronic effect on the reproductive system in a variety 

of aquatic organisms without the need for using living organisms. With the increase in sequencing 

data, molecular docking may prove to be a useful tool for focusing on more sensitive species as 

well as identifying possible molecular targets that were previously unknown. 
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Chapter 5 

In vitro Yeast Oestrogen Screen 

5.1 Introduction 

In order to confirm the results from the molecular docking in chapter 4 an in vitro assay was 

proposed. In vitro assays may not be as accurate as in vivo assays but they do have some 

advantages over their whole body counterpart. While in vitro assays do not mimic adsorption, 

distribution, metabolism and excretion (ADME) in the way that in vivo assays do their advantages 

include rapid high-throughput results, reproducibility, insights in to specific mechanism of action 

and a lack of animal testing (Segner et al., 2003). There are numerous in vitro reporter assays that 

can be used to examine and measure the impacts of xenoestrogens. These include biomarker 

studies using liver cells measuring hepatic vitellogenin (VTG) induction, where hepatic cells are 

exposed to media containing the test chemical for 72 hours and then samples are analysed for 

VTG using enzyme-linked immunosorbent assay (ELISA) (Hultman et al., 2015). Cell line 

fluorescent labelled reporter gene assays (Cosnefroy et al., 2009; Cosnefroy et al., 2011) also can 

be used in which a plasmid containing the ER gene co-transfected with a plasmid is containing a 

gene for a florescent protein such as green florescent protein (GFP). Recombinant yeast assays 

such as the yeast oestrogen screen (YES) (described in more detail below) have been used as well. 

There are also commercial kits that can measure the oestrogenic potential of compounds or field 

samples such as ER-calux® which is a dual reporter luciferase similar to cell line fluorescent 

labelled reporter gene assays, except with luciferase as the reporter. 

A recombinant YES was selected to validate  the results from the molecular docking in this study 

in part due to its reproducibility but also because of results from a study by Segner et al. (2003). 

This study compared four in vitro xenoestrogen reporter assays, YES was the assay that gave 

results that had the greatest similarity to in vivo experiments. YES was developed by Routledge 

and Sumpter (1996) and has been widely used to test for xenoestrogenic substances (Arnold et 

al., 1996; Beck et al., 2006; Fu et al., 2007; Le Grand et al., 2015; Rehmann et al., 1999). 

Recombinant DNA from the human oestrogen receptor alpha (ERα) is transformed into an 

auxotrophic strain of Saccharomyces cerevisiae along with the oestrogen response element (ERE) 

and the lacZ gene. Once the transformed yeast comes into contact with an oestrogenic compound 

(either synthetic or natural) the ERα will be activated thereby binding to the ERE which acts a 

promotor to transcribe the lacZ gene which in turn releases the enzyme β-galactosidase, which 

catalyses the hydrolysis of the  chlorophenol red-ß-D-galactopyranoside (CPRG) substrate, turning 

the yellow media red (Routledge and Sumpter, 1996). The colour change can then be measured 

using a spectrophotometer, and oestrogenic activity can be determined by comparing the 
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compound to a control oestrogen such as E2 (see figure 5.1). By inserting the ERα cDNA of D. rerio 

and O. mykiss species variation can be measured, as well as direct comparisons with the 

molecular docking work, as described in chapter 4.   

 

Figure 5.1 S. cerevisiae cell transfected with ER gene (purple box) and reporter plasmid containing 

ERE and lacZ gene (blue, orange and green circle). ER gene transcribes ERα (purple ¾ circle) which 

is released into the cytoplasm. Upon binding to an oestrogenic substance (in this case E2, blue ¼ 

circle) the ERα binds to the ERE (orange section within the ERE-lacZ plasmid). Activation of the 

ERE causes downstream transcription of the lacZ gene (green section within the ERE-lacZ plasmid) 

which produces the β-galactosidase enzyme (black circle). S. cerevisiae excretes β-galactosidase 

into the media containing CPRG, where β-galactosidase converts the yellow substrate in the CPRG 

to red. Adapted from Rutledge and Sumpter (1996). 

5.1.1 Chapter objectives 

In order to address objective 4 (chapter 1; section 1.9.3) the aims of this chapter were: 

 To compare the oestrogenic potential of VMs investigated in chapter 4. 

 To identify species variation between the ERα of D. rerio and the ERα of O. mykiss. 

 To apply CA and IA (previously used in chapter 3; equations 3.1 and 3.2) to determine 

which equation, if any is supported by this assay. 

ERα 



 148 

 Determine which VMs are ERα agonists, which are ERα antagonists and which VMs have 

no effect on the ERα. 

5. 2 Methods 

5.2.1 Cloning of plasmids  

Three plasmids were constructed, pESC-TRP-rtERα (using O. mykiss ERα); pESC-TRP-zfERα (using 

D. rerio ERα) and pYES2-lacZ-ERE (see figures 5.1a and b; 5.2) using the commercial vector 

backbones pESC-TRP (Agilent Technologies, Stockport, UK) and pYES2 (ThermoScientific, 

Loughborough, UK). Mammalian compatible plasmids (pCMV5) containing cDNA rtERα (O. mykiss) 

and zfERα (D. rerio) were kindly donated by Dr. F Pakdel at Rennes University. In order to 

transform into the genetically modified Saccharomyces cerevisiae yeast strain INVSc1 (Invitrogen, 

Loughborough, UK), cDNA had to be digested out of mammalian vectors and inserted into yeast 

compatible vectors (see below). 

5.2.1.1 Polymerase Chain Reaction (PCR) 

As the mammalian plasmids containing zfERα and rtERα did not have complementary restriction 

sites to pESC-TRP, primers (Eurofins, Abington, UK) were designed, using mRNA sequences from 

GenBank, online software to convert mRNA to cDNA sequence, and the online software primer 

designer program primer3 (Koressaar and Remm, 2007; Untergasser et al., 2012). In order to 

ensure successful ligation into yeast vectors, the restriction sites EcoRI and PacI which are 

complementary to the yeast plasmid pESC-TRP were added on either end of primers. An overhang 

of 2 base pair (bp) was added to the end of restriction sites to decrease the chance of 

asymmetrical cleavage. cDNA was then amplified using polymerase chain reaction (PCR). 

Amplified DNA was then digested and inserted into relevant backbones (see table 5.1). 
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Table 5.1 PCR primers for rtERα and zfERα.  Restriction sites are bold and underlined. Overhang is 

to the 5’ end of restriction sites and cDNA specific primer directly after the restriction sites. 

PCR Primers for rtERα 

Direction Primer Sequence 

Forward 5’ AGGAATTCATGCTGGTCAGACAGTCCCA 

Reverse 5’ CATTAATTAATCACGGAATGGGCATCTG 

PCR Primers for zfERα 

Direction Primer Sequence 

Forward 5’ AGGAATTCATGTACCCTAAGGAGGAGCACA 

Reverse 5’ CATTAATTAATCAGGGGTCAGGGCTATG 

 

PCR reaction contained in (0.2 ml) tubes (Eppendorf, Stevenage, UK): 1 µg of plasmid DNA, 10 µl 

of KAPA HiFi HotStart ReadyMix DNA polymerase master mix (containing DNA polymerase, buffer 

and dNTPs) (Kapa Biosystems, London, UK), 5 µM of forward primer, 5 µM of reverse primer and 

RNAase free water (Qiagen, Manchester, UK) made up to 20 µl. PCR reaction tubes (5 tubes in 

total, two samples, two controls containing primers and one blank) were placed in a PCR machine 

(BioRad). The PCR cycle was as follows: initial denaturation was at 95°C for 3 minutes, followed 

by 20 cycles of denaturation of 98°C for 20 seconds, annealing at 67°C for 15 seconds and 

extension of 72°C for 30 seconds. After 20 cycles of denaturation, annealing and extension, there 

was a final extension of 72°C for 1 minute. Following these steps the reaction was held at 4°C 

until analysis by gel electrophoresis  (see below) was carried out (no longer than 16 hours). 

5.2.1.2 Construction of pESC-TRP-zfERα 

The 3 kb PCR product of zfERα insert (as described in section 5.2.1.1) was digested using the 

restriction enzymes EcoRI and PacI (New England Biosciences, Hitchin, UK). The empty plasmid 

vector pESC-TRP was also digested using the restriction enzymes PacI and EcoRI. Approximately 

300 ng of cDNA or empty vector DNA was added to separate 1.5 ml Eppendorf tubes (Eppendorf, 

Stevenage, UK), 0.5 µl of each enzyme was added along with 2 µl of 10X cutsmart buffer to each 

tube (New England Biosciences, Hitchin, UK) and left to digest for 2 hours at 37°C. The reaction 

was then heat inactivated at 65°C for 10 minutes. Once digested both insert and vector were run 

on a 0.4% agarose gel for 90 minutes at 120V. The digested insert (~3 kb) and the digested vector 

(~6.5 kb) were cut out of the gel and a gel DNA extraction was performed using the GeneJET gel 

extraction kit (ThermoFisher Scientific, Loughborough, UK). Insert and vector were ligated at a 

molar ratio of approximately 3:1, 36 ng of digested rtERα, 36 ng of digested pESC-TRP, 2 µl of 10X 

ligase buffer (New England Biosciences, Hitchin, UK), 1 µl of T4 DNA ligase (New England 

Biosciences, Hitchin, UK) and 10 µl of sterile dH2O was added to an Eppendorf tube and left at 4°C 
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to ligate overnight (see figure 5.2a for construct map of pESC-TRP-zfERα). The ligation, now 

referred to as pESC-TRP-zfERα was immediately transformed into TOP10 Escherichia coli cells as 

described below (section 5.2.2). 

5.2.1.3 Construction of pESC-TRP-rtERα 

The 2 kilobase (kb) PCR product of rtERα (as described in section 5.2.1.1) insert was digested using 

the restriction enzymes EcoRI and PacI (New England Biosciences, Hitchin, UK). The same method 

as in the construction of pESC-TRP-zfERα (section 5.2.1.2) was applied. The ligation, from now on 

referred to as pESC-TRP-rtERα, was transformed into TOP10 Escherichia coli cells as described in 

section 5.2.2 (see figure 5.2b for construct map of pESC-TRP-rtERα). 

 

 

Figure 5.2 Construct maps of pESC-TRP containing either (a) the zfERα (creating pESC-TRP-zfERα) 

or (b) rtERα (creating pESC-TRP-rtERα). 

5.2.1.4 Construction of pYES2-LacZ-ERE 

LacZ was digested out of the plasmid PCSLZW using the restriction enzymes BamHI and NotI (New 

England Biosciences, Hitchin, UK). Each reaction was made up to 20 µl using sterile dH2O. To 

remove LacZ from PCSLZW the following reaction was prepared: 0.5 µl BamHI, 0.5 µl NotI, 2 µl 

cutsmart buffer and 269 ng of PCSLZW were added to a sterile Eppendorf tube To digest pYES2 

273 ng of the plasmid was digested using 0.5 µl of BamHI, 0.5 µl of NotI, 2 µl cutsmart buffer and 

made up to 20 µl using sterile dH2O. Both reactions were left to incubate at 37°C for 2 hours and 

heat inactivated at 65°C for ten minutes. To isolate DNA to be ligated the reaction was run on a 

0.4% agarose gel stained with GelRed (10 µl of reaction mixture per well) for 90 minutes at 120V. 

LacZ was identified as a ~3 kb band whereas pYES2 was identified as a ~5.9 kb band. Bands were 

cut out of the gel and a gel extraction was performed using a gel extraction kit according to the kit 

(a) (b) 
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protocol (ThermoScientific, Loughborough, UK). Following digestion and gel extraction ligation 

was performed at a 3:1 inset to vector molar ratio. Insert LacZ  (76ng) was added to an Eppendorf 

tube with 52.8 ng of digested pYES2, 1 µl T4 DNA ligase, 2 µl ligase buffer and brought up to 20 µl 

using sterile dH2O. The reaction was left at 4°C overnight and heat inactivated at 70°C for 20 

minutes. The ligation, from now on referred to as pYES2-LacZ, was transformed into TOP10 E. coli 

cells as described below (section 5.2.2). 

Following the construction of pYES2-LacZ the addition of the ERE was needed to make pYES2-

LacZ-ERE. ERE was made by annealing two oligonucleotides that incorporated the 16 base pair 

(bp) palindromic ERE and the restriction sites HindIII and BamHI were added to the end in order to 

create sticky ends when digested.  

ERE Forward 5' AAGCTTAGGTCACAGTGACCTGGATCC 

ERE Reverse 5' GGATCCAGGTCACTGTGACCTAAGCTT 

The two ERE strands were annealed by adding 9 µl of each synthetic oligonucleotide (at a 

concentration of 2 µg/µl) and 2 µl of 10 X ligase buffer to total volume of 20 µl. The reaction was 

heated to 95°C for 5 minutes and left to cool to room temperature. This reaction was then run on 

a 2% agarose gel (containing 0.001% GelRed Nucleic acid stain [Biotium, Hayward, USA]) at 120V 

for 30 minutes. The 27 bp band was cut out and a gel extraction was performed as described 

previously. Approximately 200 ng of the now double stranded synthetic ERE was digested using 

0.5 µl of the restriction enzymes HindIII and BamHI.  pYES2-lacZ (~200 ng) was also digested using 

HindIII and BamHI at 37°C for 2 hours; the reaction was inactivated at 65°C for ten minutes. 

Digested ERE was run on a 2% agarose gel using electrophoresis at 120V for 30 minutes while 

digested pYES2-lacZ was run on a 0.8% agarose gel containing GelRed at 120V for 90 minutes. 

Both bands were cut out and a gel extraction was performed on each as described before (see 

figure 5.3 for construct map of pYES2-LacZ-ERE). 
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Figure 5.3 Construct map of pYES2 with inserts ERE and LacZ to create pYES2-ERE-lacZ.  

5.2.2 Transformation of Plasmids into E. coli 

For each transformation, 50 µl of competent Top10 E. coli cells were used (ThermoFisher. 

Scientific, Loughborough, UK). Cells were taken out of the -80°C freezer and left on ice for 5 

minutes to thaw.  Ligated plasmid (5 µl) was added to 50 µl of cells. Tubes were left on ice for a 

further 15 minutes. Cells were then heat shocked at 42°C for 45 seconds before being placed on 

ice for a further 5 minutes. SOC broth (Sigma, Poole, UK) (250 µl) was added to the cells, which 

were then incubated at 37°C at 250 rpm for 60 minutes. Selective ampicillin Lysogeny broth (LB) 

agar plates (see appendix D for constituents) were spread with 100 µl of transformed E. coli and 

left to incubate at 37°C overnight (approximately 16 hours).  

Colonies were picked from plates the following day. Five colonies in total were added to separate 

falcon tubes containing 2ml of ampicillin LB broth (see appendix D for constituents) and grown at 

37°C at 150 rpm for 16 hours. Once grown each tube was centrifuged at 3000 rpm for 5 minutes 

and a plasmid miniprep was completed using the GeneJETTM Plasmid Miniprep Kit as instructed 

(ThermoFisher Scientific, Loughborough, UK).  

Once the mini prep was completed, an aliquot of each sample, was re-digested and run on an 

agarose gel. Samples were then sent for sequencing (GATC Biotech, Konstanz, Germany) to 

confirm the digestion and ligation had worked.  
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Samples (n = 5) were digested to test whether the rtERα had successfully ligated into the pESC-

TRP plasmid showed evidence of ligation (figure 5.4). All five samples showed signs of digestions, 

samples in lanes 5 and 7 were sent for sequencing. 

 

Figure 5.4 Electrophoresis gel of uncut pESC-TRP-rtERα  (lane 2); and samples of plasmid DNA 

containing pESC-TRP-rtERα digested with the restriction enzymes EcoRI and PacI (lanes 3-7) and 

uncut rtERα insert (lane 8). Using a 1kb molecular weight DNA ladder (lane 1) (New England 

Biosciences, Hitchin, UK). All digested samples showed signs of successful transformation and the 

samples in lanes 5 and 7 were sent for sequencing. Samples in lanes 3-7 come from different 

bacterial colonies transformed with pESC-TRP-rtERα. 
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Samples (n = 5) were digested to test whether the zfERα had successfully ligated into the pESC-

TRP plasmid (figure 5.5). Three out of five samples showed signs of digestions, samples in lanes 6, 

7 and 8 were sent for sequencing. 

 

Figure 5.5 Electrophoresis gel of uncut pESC-TRP-zfERα  (lane 2); uncut zfERα insert (lane 3) and 

samples of plasmid DNA containing pESC-TRP-zfERα digested with the restriction enzymes EcoRI 

and PacI (lanes 4-8). Lane 1, 1kb molecular weight DNA ladder Digested plasmids in lanes 6, 7 and 

8 indicate successful transformation. Samples in lanes 4-8 come from different bacterial colonies 

transformed with pESC-TRP-zfERα. 

Samples (n = 5) were digested to test whether the lacZ gene had successfully ligated into the 

pYES2 plasmid. Four out of five showed evidence of ligation (figure 5.6). Samples 2 and 4 were 

sent for sequencing.  
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Figure 5.6 Electrophoresis gel of digested pYES2-lacZ (lanes 2-6) using the restriction enzymes 

BamHI and NotI; and uncut lacZ (lane 8). Uncut plasmid was not included in this picture; lane 1, 

1kb molecular weight DNA ladder (lane 1). Samples in lanes 2-6 come from different bacterial 

colonies transformed with pYES2-lacZ. 

5.2.3 Transformation into INVSc1 using Lithium Acetate (LiAc) method 

5.2.3.1 INVSc1 competency  

Plasmids were transformed into INVSc1 (Invitrogen, Loughborough, UK), an auxotrophic strain of 

S. cerevisiae.  A sample of INVSc1 was spread onto yeast peptone dextrose (YPD) (see appendix D 

for constituents) agar plates and incubated at 30°C for 72 hours. A colony of INVSc1 was added to 

1ml YPD broth (see appendix D for the constituents) and vortexed; this volume was added to 50ml 

YPD broth and grown on a shaking incubator (250rpm) at 30o C for 16 hours. The OD600 after 16 

hours was ~4; 15ml of this culture was added to 300ml YPD to dilute to an OD600 of 0.2 and grown 

on a shaking incubator at 250 rpm at 30oC for 3 hours until the OD600 was 0.4. Cells were 

centrifuged at 1000 xg for 5 minutes at room temperature. The supernatant was removed and 

cells were pooled and re-suspended in 10ml sterile dH2O and centrifuged at 1000 xg for 5 minutes 

at room temperature.  The supernatant was removed and the cells were re-suspended in 1.5ml 1X 

T.E/LiAc solution (Sigma-Aldrich, Poole, UK) at room temperature. Competent cells were used 

immediately.   

5.2.3.2 Transformation 

To each 1.5 ml Eppendorf tube, 10 µl (or 0.1 mg) of carrier DNA, ~100 ng of each plasmid DNA 

(see table 5.2 for concentrations and plasmid details) and 100 µl of competent INVSc1 was added 

and vortexed. To each Eppendorf tube, 600 µl of plate buffer was added and vortexed again. 

Tubes were incubated at 30°C shaking at 150 rpm for 30 minutes. DMSO (70 µl) was added to 

each tube and inverted 6-8 times. Cells were then heat shocked on a heat block for 15 minutes at 
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42°C. Tubes were then spun at 3000 rpm for 5 seconds and re-suspended in 500 µl of sterile dH2O. 

Synthetic dextrose (SD) plates (see appendix D for constituents) (see table 5.2 below for 

appropriate SD plates) were spread with 100 µl of each transformation and incubated at 30°C for 

4 days until colonies appeared (see table 5.2 for colony numbers).   

Table 5.2 Information on the plasmids added to each transformation tube, which selective media 

was used and the number successful of colonies grown. 

Plasmids  added Amount in µl to make ~100 

ng 

SD media Number of colonies 

pYES2-lacZ-ERE and 

pESC-TRP-rtERα 

1 µl of pYES2-lacZ-ERE  

0.45 µl of pESC-TRP-rtERα 

Yeast nitrogen 

base (YNB) – 

Uracil (URA) – 

tryptophan (TRP) 

7 

pESC-TRP-rtERα 0.45 µl of pESC-TRP-rtERα YNB -TRP 147 

pYES2-lacZ-ERE 1 µl of pYES2-lacZ-ERE  YNB - URA 214 

Control plasmid – 

pRS316 

0.4 µl of pRS316 YNB - URA 236 

pESC-TRP-zfERα 1.5 µl of pESC-TRP-zfERα YNB - TRP 0 

pYES2-lacZ-ERE and 

pESC-TRP-zfERα 

1 µl of pYES2-lacZ-ERE  

1.5 µl of pESC-TRP-zfERα 

YNB - URA - TRP 0 

Negative control – no 

plasmid 

N/A N/A 0 

 

INVSc1 that was successfully transformed with pYES2-lacZ-ERE and pESC-TRP-zfERα was used in 

the assay to determine the oestrogenicity of VMs and will from now on be referred to as INVSc1-

rtERα. 

5.2.4 Assay for determination of oestrogenicity of VMs 

Due to complications with cloning the YES could not be completed. The methods below are how 

the YES assay should be carried out. Test VMs are dissolved in either absolute EtOH or DMSO. 

Solutions are to be made up on the day of use. Each assay should include an E2 standard curve 

from 0.25 nM – 50 nM. Chemicals dissolved in absolute EtOH should be serially diluted and a 

volume of 10 µl should be added to each well. EtOH should be allowed to evaporate to dryness 

before cells are added. VMs diluted in DMSO should be added at a volume of 4 µl before cells are 

added. A row of blanks and a row of negative controls (cells with EtOH or DMSO and no test 

substance) are to be added to each 96 well plate. Glassware should be scrupulously scrubbed with 
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laboratory grade washing up liquid, rinsed with EtOH twice and then autoclaved to ensure there 

was is contamination between experiments.  

Add a colony of INVSc1-rtERα to 50ml of YNB-URA-TRP and shake at 30°C at 200 rpm for 24 hours, 

until the OD600 reaches 5. Add 500 µl of CPRG, at a concentration of 10 mg/ml, to 50 ml of YNB-

URA-TRP. CPRG is the substrate for β-galactosidase and can therefore be used to measure the 

expression of β-galactosidase from the reporter gene lacZ. Inoculate 50 ml of fresh YNB-URA-TRP 

with CPRG with INVSc1- zfERα to reach an OD600 of ~1 (or 3 x 107 cells per ml). Seed cells at a 

concentration of 6 x 106 cells per well or a volume of 200 µl per well. Once cells are added to the 

96 well plates, put on a plate shaker for two minutes to ensure thorough mixing and incubate at 

32°C. Shake once a day for three days, return plates to the incubator after shaking. On the fourth 

day left for one hour for cells to settle after shaking. Read the plate at 540 nm for CPRG and 620 

nm for turbidity. The following equation should be used to correct for turbidity. 

Equation 5.1 

R = A540nm - (A620nm – B620nm) 

Where A is the absorbance of the test VM and B is the average absorbance of the blank wells and 

R is the result.   

5.3 Results and Discussion 

Due to difficulties in cloning the ERE insert into pYES2-lacZ (see appendix H for sequence), the two 

hybrid recombinant YES was in this instance, not successful. Although co-transformation of pYES2-

TRP-zfERα and pYES2-lacZ into INVSc1 was successful, without the ERE to act as a promotor to the 

lacZ gene, expression in the YES assay failed. There are a number of solutions to rectify this 

problem however due to time constraints this was not possible. There are companies that offer 

the commercial construction of synthetic plasmids such as ThermoFisher’s GeneArtTM.  

Synthetically constructed plasmids are offered in a generic backbone, digestion and ligation is still 

needed and it is still not guaranteed to work.   

A number of reasons could explain why the cloning did not work. When performing a gel 

extraction, DNA is exposed to UV light, which can cause mutations. If mutations were present in 

one of the restriction sites then the restriction enzyme would not have digested the site properly, 

resulting in the plasmid self-ligating.  If this is the reason why the cloning did not work then it 

should have been repeated from scratch.  The sequencing data shows that there are several 

mutations within the sequence, this could be due to UV light or alternatively it could be due to 

the small size of the ERE insert. The ERE insert is relatively small (15 bp), cloning small pieces of 

DNA can be difficult due to the ratios of DNA to plasmid and ligation also can be a problem. A 

possible solution to this could have been to repeat the sequence up to four times. In some two-
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hybrid systems used by other researchers this has been done to minimise this problem 

(Ackermann et al., 2002; Katsu et al., 2006). In the study described above the ERE insert was made 

from two synthesised oligonucleotide sequences, in order to create a bigger product of around 60 

bp, double stranded DNA would have to have been synthesised which would have been more 

costly. As the ERE sequence is palindromic it is likely that it would self-anneal (Cheskis and 

Freedman, 1998), therefore the product that was inserted into the pYES2 backbone may not have 

been purely double stranded ERE, although a gel extraction was performed after annealing the 

two strands to prevent this possibility.  

5.3.1 Conclusion 

Due to technical difficulties in cloning the YES did not work, and therefore the aims of this chapter 

could not be achieved (section 5.1). However, this does not mean it is not a reasonable method 

for validating molecular docking of VMs to the ERα. In other studies (Arnold et al., 1996; Beck et 

al., 2006; Fu et al., 2007; Rehmann et al., 1999; Routledge and Sumpter, 1996) it has been a 

successful in vitro method for determining xenoestrogens and its application to validate molecular 

docking is an area to be considered in future work. 
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Chapter 6 

General Discussion 

6.1 Hypothesis Testing 

Hypothesis 1 ‘Veterinary medicines used in intensive farming enter the environment as mixtures 

with the potential to have an additive effect, impacting negatively on non-target organisms’ 

(chapter 1; section 1.9.1[1]) was addressed in chapter 2 and chapter 3. Chapter 2 showed that 

veterinary medicines were being released directly into the environment in mixtures (see chapter 

2; section 2.3; table 2.4; figures 2.6-2.8). Chapter 3 addressed the additive effect these VMs had 

on the bioluminescent bacteria A. fischeri and found that there was an additive effect, rather than 

a synergistic or antagonistic effect (see chapter 3; section 3.3.3; figure 3.12; R2 = 0.8257; P < 

0.001). Therefore hypothesis 1 (chapter 1; section 1.9.1) can be accepted. 

Hypothesis 2 ‘Molecular docking is a viable tool for determining the environmental impacts of 

veterinary medicines on non-target organisms’ (chapter 1; section 1.9.1[2]) was addressed in 

chapter 4 and chapter 5. There was evidence that molecular docking could be used to predict 

binding of VMs to specified proteins in non-target organisms and is, therefore, potentially a viable 

tool for determining the impacts of pollutants on non-target organisms (Baker, 2014; Li et al., 

2015; McCullough et al., 2014; Selvam et al., 2015). The in vitro YES assay, however, was 

unsuccessful (chapter 5) and, therefore, could not provide supportive evidence for this 

hypothesis. As a consequence hypothesis 2 cannot fully be answered. This is an area for future 

work.  

6.2 Mixtures 

6.2.1 Cypermethrin and diazinon 

Cypermethrin and diazinon were both used as sheep dip and are commonly found together in 

contaminated water and sediment. They are both reported to affect the olfactory system in male 

salmon, in low concentrations (<0.001 μg/L for cypermethrin and 0.4 μg/L for diazinon) (Moore 

and Waring, 1996; Moore and Waring, 2001). They have routinely been measured in the rivers at 

concentrations exceeding 0.85 μg/L and 35 μg/L respectively (Potter and Dare, 2003), with reports 

of cypermethrin occurring at concentrations as high as 85.1 μg/L (Boxall et al., 2002) which is 

higher than the effect concentration described above. Out of 573 freshwater sites sampled for 

cypermethrin contamination in England and Wales, 20% of sites had concentrations of 

cypermethrin higher than the PNEC of 0.1 ng/L (UK Technical Advisory Group, 2008). Molecular 

docking results gathered in chapter 4 show that α-cypermethrin is showed a high likelihood of 

binding to the ERα of all of the aquatic species tested (apart from C. gigas) (chapter 4; section 4.3; 
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table 4.6a and 4.6b). Diazinon showed a medium likelihood of binding to all of the ERα (apart 

from C. gigas where it showed a high likelihood of binding) (chapter 4; section 4.3; table 4.6a and 

4.6b). Suggesting that in waters containing diazinon and cypermethrin, an additive effect on the 

ERα of non-target organisms is possible. 

6.2.2 Cypermethrin, deltamethrin and teflubenzuron 

Three VMs that are often used together in aquaculture are cypermethrin, deltamethrin and 

teflubenzuron. In chapter 2, where the use of sea lice treatments in Scotland in the years 2007-

2011 was mapped and compared to MECs for the years 2008-2012, it was found that 

teflubenzuron was used as a treatment 12 times between the years 2007-2011, on three of those 

occasions teflubenzuron was applied in conjunction with at least one other sea lice treatment and 

on two of those occasions deltamethrin was applied alongside teflubenzuron (see appendix C; 

table C.1). Teflubenzuron is highly persistent in the environment (SEPA, 1999) (chapter 2; section 

2.3; table 2.1) so even when treatments were not applied within the same month, it is likely that 

environmental exposure by these treatments will have occurred together when applied even 

months afterwards (see chapter 2; section 2.3; table 2.1, figures 2.4 – 2.6). For example during the 

year 2008 teflubenzuron was not used as a sea lice treatment in any of the salmon farms in 

Scotland, however in 2009 two sediment samples containing teflubenzuron were detected 

(chapter 2; section 2.3; table 2.4; figure 2.12c). There were 14 occasions in the years 2008-2011 

where deltamethrin and cypermethrin were applied to the same farm within the same month 

(see appendix C). Cypermethrin is a high priority substance, which was added to a UK specific 

priority watch list (UK Technical Advisory Group, 2008). Monitoring of cypermethrin in rivers in 

England and Wales found that 7% of rivers tested were above EQS and are therefore in need of 

greater monitoring. The molecular docking work in this project (chapter 4) indicates that 

cypermethrin and deltamethrin are highly likely to disrupt the ERα of several aquatic organisms 

(apart from the negative control C. gigas). Teflubenzuron also showed evidence of being a 

possible ERα disruptor (chapter 4; section 4.3; table 4.6a, 4.6b; figure 4.21). As there is evidence 

that cypermethrin and deltamethrin have an effect on the ERα of several organisms (chapter 4) 

(Kojima et al., 2004; Presibella et al., 2005; Sun et al., 2014) and teflubenzuron (chapter 4) may 

have an effect on the ERα of some organisms, it is proposed that these three VMs be mixture 

tested to determine whether they have an additive effect on the ERα. It is also recommended that 

testing of teflubenzuron is specifically targeted on the ERα of G. aculeatus, because of its high 

binding energy (-7.33 kcal/mol) compared with the low energy binding of D. rerio and S. aurata (-

4.84 and -4.95 kcal/mol respectively) (chapter 4; figure 4.21). Such species targeting should be 

carried out in order to confirm whether this VM is capable of causing variable disruption to the 

ERα of different aquatic species. There is reasonable evidence that these VMs are entering the 

environment in mixtures and that they could be having an additive effect on the ERα, which in 

turn can have downstream impacts on sexual development (Jobling et al., 1998); fertility (Jobling 
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et al., 2002); gonadosomatic growth index (Filby et al., 2007); osmoregulation (Carrera et al., 

2007; Lerner et al., 2012); immune function (Casanova-Nakayama et al., 2011); and embryonic 

development  (Jobling et al., 2003). 

6.2.3 Azamethiphos, emamectin benzoate and 3PBA 

Mixtures of the sea lice treatments azamethiphos, emamectin benzoate and 3PBA did cause an 

acute effect (chapter 3; section 3.3.3; table 3.2; figures 3.8-3.11) and the effects could be 

effectively predicted using IA (chapter 3; section 3.3.3 figure 3.12). Although mixture effects could 

be predicted, this project has found that the concentrations of sea lice treatments in the UK 

marine environment are not high enough to cause an acute impact on the bioluminescent 

bacteria A. fischeri when compared with their MECs (chapter 3; section 3.3.1 table 3.1).  

6.3 Sea lice treatments and AutoDock 

Of the five sea lice treatments tested, emamectin benzoate did not demonstrate affinity to any of 

the ten ERα receptors (see tables 4.6a and 4.6b). Deltamethrin and α-cypermethrin showed high 

affinity to all of the ERα, apart from the negative control C. gigas (see chapter 4; section 4.3 table 

4.6b) and were categorised as having a high likelihood of binding to all species ERα  (see chapter 

4; section 4.3; tables 4.6a and 4.6b).  Teflubenzuron was showed a high likelihood of binding to 

the ERα of the three-spined stickleback G. aculeatus (chapter 4). The use of teflubenzuron 

dramatically increased from 2002 – 2013 going from 72.73 kg total use in 2002 to 261.96 kg total 

use in 2013 (chapter 2, section 2.3; table 2.4). G. aculeatus is an anadromous fish and its 

distribution is in and around UK coastal waters, as this is where Scottish salmon farms are based it 

is likely that G. aculeatus is at risk of exposure to concentrations of teflubenzuron that could 

cause an endocrine disrupting effect.  

Azamethiphos showed a medium likelihood of binding to all ten of the tested ERα (chapter 4). 

Since azamethiphos is the most hydrophilic of the sea lice treatments, and has a half-life of 10.8 

days in water, and (see chapter 2; section 2.1.2; table 2.1) levels of exposure to organisms 

dwelling in the water column is likely to be high. As the exposure is high, and the binding to the 

ERα is of a medium likelihood then it is recommended that azamethiphos also be tested for 

oestrogenic activity using an in vitro assay and ecotoxicological studies on environmentally 

relevant species (see chapter 4; section 4.4.4).   

Teflubenzuron was not included in the 56 high priority list as the toxicity of teflubenzuron was 

reported as being low (Boxall et al., 2002). The aquatic toxicity information gathered in the Boxall 

et al. (2002) document for teflubenzuron was based on the toxicity towards fish. However, 

toxicity data on teflubenzuron available since this was published indicates that concentrations 

found in the sediment (chapter 2, section 2.3; table 2.4) are higher than the chronic effects for 

some invertebrates. In a two generational study Tassou and Schulz (2011) found that the EC50 for 
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the fecundity and fertility of C. riparius was 112.7  μg/kg and 74.5 μg/kg respectively; which is 

lower than five of the MECs found around Scottish salmon farms (Chapter 2, section 2.3; table 

2.4). Tassou and Schulz (2011) also found that emergence rates of the second generation of C. 

riparius suffered the effects of teflubenzuron at a lower concentration than their parents with the 

NOEC for emergence being 62.5 μg/kg for offspring compared with a NOEC of 100 μg/kg for 

parents. Since the life cycle of C. riparius is around 25 days it is likely that teflubenzuron would 

affect more than one generation of this invertebrate and possibly other invertebrates as well 

(Weltje et al., 2009). Although C. riparius is a freshwater sediment dwelling invertebrate, there 

are no current data on sediment dwelling marine species. Teflubenzuron is more persistent in the 

environment than previously reported, although the degradation information varies vastly 

depending on the information source. The SEPA (1999) data indicates that in a ‘worst case 

scenario’ the half-life in marine sediment should be set to 115 days (see chapter 2, section 2.4.2). 

In this ‘worst case scenario’, however, the amount of teflubenzuron added to the salmon farm 

was 19.6 kg, which is almost 4 times lower than what has been applied on the site SLO1 (UK NGR  

HU28508270) in December 2010 (see chapter 2; section 2.3; table 2.3 and figure 2.6a). The impact 

of teflubenzuron applied at such a high concentration has not been fully investigated and 

therefore this is an area that needs to be reviewed. It appears from the results displayed in 

chapter 2, that teflubenzuron does persist for longer than the estimated half-life there 19 

sediment MECs which have a detectable concentration of teflubenzuron which are more than 2 

km away from the nearest farm that used the treatment in the previous year (see table 2.4). 

There are two sites in 2008 where the sediment MEC for teflubenzuron was higher than the 

sediment MAC and the nearest salmon farm using teflubenzuron was more than 94 km away. In 

2008 teflubenzuron was measured at concentrations as high as 170.1 μg/kg and 6.36 μg/kg, 94.8 

km and 95.1 km away from the nearest salmon farm declaring the use of teflubenzuron 

respectively (see chapter 2; section 2.3; table 2.4; figure 2.6a; figure 2.9). There is also evidence 

that teflubenzuron causes physical deformities to the American lobster H. gammarus as described 

in chapter 2 (section 2.4.2) (Samuelsen et al., 2014). Since the salmon culture industry is growing 

at such a fast pace (see chapter 2; section 2.1), and with the sea lice infection increasing (Costello 

2006) it is proposed that the half-life of teflubenzuron is reviewed, as increased use would lead to 

increased sediment MECs and elevated risk to non-target organisms, especially chitin producing 

invertebrates (Tassou and Schulz, 2011). 

6.4 The use of molecular docking in regulation 

The sequencing of proteins has increased almost exponentially from 1952 when Fred Sanger first 

sequenced the peptide protein insulin to the present day. There are now over 63 million protein 

sequences available on the database UniProt as of 11th April 2016 (http://www.uniprot.org/). This 

information can be used to gain a bigger picture on which molecular pathways other than the 
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MOA might be affected by different drugs. As more information becomes available on species 

that are threatened or endangered molecular docking will be a useful tool to predict the effects of 

VMs and pharmaceuticals on the more vulnerable species without the need for testing. Finding 

species specific sensitivities is of upmost importance. The vulnerability of Gyps spp. to diclofenac 

was not anticipated from the ecotoxicology testing of model species (see chapter 1, section 1), as 

tolerance of other species of birds to diclofenac was much higher than exposure levels (Naidoo et 

al., 2007; Taggart et al., 2007). It is not always feasible to undertake ecotoxicological testing on 

animals, especially vulnerable and endangered species, or practically possible to use species that 

are representative of often very distinct aquatic habitats. Moreover, sensitivities of native species 

may not accurately be predicted by using model species alone (Naidoo et al., 2007). Recently 

there has been some research supporting the sensitivity of bees to neonicotinoids with the aid of 

molecular docking (Li et al., 2015; Selvam et al., 2015). This highlights how molecular docking can 

find sensitive species and aid ecotoxicology in the future.  In a molecular docking study of the 

effects of imidacloprid and thiacloprid on the target α6 nicotinic acetylcholine receptor Selvam et 

al. (2015) found that the two neonicotinoids bound more selectively to the cockroach receptor 

than the honeybee receptor. In a separate study, Li et al. (2015) investigated the binding of 

imidacloprid to the honeybee Apis cerana, using mixed method in silico and in vitro investigations. 

They found that imidacloprid bound to the odorant binding protein, causing possible chronic 

effects of the olfactory system, which could cause implications in foraging behaviour thereby 

contributing to the colony collapse. This emphasises the importance of chronic testing as lethal 

ecotoxicology testing does not give any indication on the downstream consequences that chronic 

effects can have on a whole population. Chronic testing often focuses on reproductive testing 

which can be easier to measure than other systems such as the olfactory system. If molecular 

docking can assist in identifying impacts that environmental pollutants can have on an individual 

species level, insights on population dynamics can be anticipated.  

Since beginning this project there has been a great deal more focus on the use of molecular 

docking in regulatory ecotoxicology. The US EPA developed an in vitro high throughput screening 

of chemicals called ToxCast in 2007, this work has developed to include in silico work and in 2014 

DockScreen was developed by Goldsmith et al. (2014), a database which docks chemicals to 

known 3D structures of receptors. This database focuses on pathways and does not aim to 

compare the binding of ligands to receptors for different species.  

6.5 Veterinary Medicines of Concern 

From this study five of the VMs investigated stood out as being of high concern as xenoestrogens. 

These were deltamethrin, cypermethrin, fenbendazole, teflubenzuron and amitraz (chapter 4). 

Three of these VMs, deltamethrin, cypermethrin and teflubenzuron, are prominently used in 

aquaculture and therefore their release into the environment is direct. Fenbendazole has a high 
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use but there is relatively little ecotoxicology information about it, it also appears on a number of 

high priority lists (Boxall et al., 2003; Capleton et al., 2006; Kim et al., 2008). The evidence for 

fenbendazole as an endocrine disruptor has only been determined for invertebrates where it has 

weak interactions with the ribosomal protein gene RpS3 in C. riparius, which is essential for 

cellular growth and regulation (Park and Kwak, 2012). Amitraz has also had relatively little 

attention in its potential for interactions with the ERα but in this study interaction with the ERα of 

four of the species investigated showed there was a high likelihood of binding (see table 4.6a and 

4.6b; figure 4.23).  

Diclofenac has recently been added to the priority substances list under directive (2008/105/EC). 

This list also includes E2 and EE2. According to the information gathered in chapter 4, diclofenac 

may pose a risk to the ERα of aquatic species, especially the common roach R. rutilus (see chapter 

4, table 4.6a). Cypermethrin and diazinon were added to a UK specific list on pollutants where 

under the WFD their MACs were revaluated due to evidence of their toxic effect towards 

invertebrates (UK Technical Advisory Group, 2008). Diclofenac was showed a medium likelihood 

of binding to the ERα for all of the tested species apart from R. rutilus where it was considered a 

to have a high likelihood of binding (chapter 4). Since its inclusion in the WFD priority substances 

watch list it is recommended, to eliminate any doubt, in vitro studies on the ERα of diclofenac also 

should be carried out. In other studies it has been shown experimentally to have an effect on 

reproduction in O. mykiss and D. rerio at a concentration of 3200 µg/L with no effect at 1000 µg/L 

(Memmert et al., 2013). Memmert et al. (2013) recommends that the NOEC of diclofenac in the 

aquatic environment to be 320 µg/L, which is magnitudes higher than many recorded 

concentrations of the drug in sewage effluent in the UK where it has been recorded at a maximum  

of 2349 ng/L (Ashton et al., 2004). 

Both diazinon and cypermethrin have the ability to cause toxic effects at concentrations lower 

than their current MECs and also there is evidence that cypermethrin has the ability to cause an 

endocrine disrupting effect through the ERα as shown in chapter 4 (table 4.6a and 4.6b) and 

indicated in other reports (Kojima et al., 2004; Sun et al., 2014). There is evidence that diazinon 

has an effect on the endocrine system (Moore and Waring, 1996; Maxwell and Dutta, 2005), and 

an estimation of binding likelihood made in this thesis (chapter 4; table 4.6a and 4.6b) suggests it 

has a medium likelihood of binding to all of the species investigated. It is therefore advised that 

the effect on the ERα is investigated further for diazinon.  

6.6 Conclusion  

This project has demonstrated that sea lice controls are being used in mixtures, specifically 

cypermethrin, deltamethrin and teflubenzuron that could potentially disrupt the ERα. 

Teflubenzuron is more persistent in sediment than previously thought, and could persist in the 
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environment for longer than its half-life of 115 days (see chapter 2, section 2.4.2). Currently, 

teflubenzuron is being applied at concentrations that are almost four times higher than the worst-

case scenario proposed in 1999 (19.6 kg in 1999 compared with 75 kg in December 2010 (chapter 

2; section 2.3.1 figure 2.6a and figure 2.16); it is therefore proposed that teflubenzuron 

persistence in sediment is re-examined to establish a more accurate picture of its possible 

environmental impacts. By mapping the use of sea lice treatments (chapter 2) and comparing 

these with MEC data, it is apparent that either sea lice treatments are more persistent in the 

environment than previously thought or that salmon farms are using treatments without 

declaring their use.  

Molecular docking is a tool that can aid ecotoxicology testing and can provide insight into 

potentially sensitive species non-target species, as well as identifying molecular targets, which 

could cause chronic effects. Equations that predict the effects of mixtures, such as IA (chapter 3; 

equation 3.2; figure 3.12) and CA (chapter 3; equation 3.1; figure 3.13) can serve as useful tools 

for the prediction of mixture toxicity. Ideally it would be beneficial to combine molecular docking 

results with equations for mixture toxicity in order to predict mixture effects. While molecular 

docking appears to be able to differentiate between VMs which bind to the ERα and those which 

do not, there is no evidence that it can be used to differentiate between agonists and antagonists. 

The oestrogenic potential of the VMs in this study has not been tested in vitro and therefore 

determining whether molecular docking can assist with mixture toxicity would, at this stage, be 

speculative. This is an area that would benefit from further investigation. 

6.7 Future Work 

In order to effectively answer hypothesis 2 (chapter 1; section 1.9.1[2]) the VMs that were 

examined in chapter 4 need to be tested using an ERα in vitro reporter assay to test for both 

agonistic and antagonistic effects. This could be achieved using a yeast two hybrid system such as 

the YES described in chapter 5, section 5.2. As molecular docking evolves and develops, along with 

sequencing data libraries, databases of receptors can be prepared in order to dock chemicals of 

interest to various receptors from several species. Docking new chemicals to libraries of receptors 

would allow for rapid identification of biological pathways involved in chronic effects and also 

would be able to differentiate between possible species sensitivity. Testing can also become more 

targeted to populations that are likely to be subjected to released VMs rather than the model 

species that are currently the focus of testing. Once areas of interest have been identified (either 

specific biological pathways or sensitive species) further confirmation should be carried out with 

in vitro or in vivo work. Presently, molecular docking can predict what may cause an effect, rather 

than the extent of the effect and the possible consequences. To improve this it is suggested that 

more research is carried out with more possible target receptors such as cytochrome p450 and 

compared with pharmacology information to optimise the use of molecular docking. However, 
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predicting the actual concentration that would cause an effect would be difficult using molecular 

docking as there is a lot of contention on the scoring mechanism of these tools (Leach et al., 

2006). This is why it is proposed to be used as a tool for predicting species sensitivity and possible 

chronic effects rather than a tool to suggest doses and NOECs. The use of molecular docking as a 

tool for predicting mixture toxicity is not recommended until further testing using in vitro assays 

has been completed and directly compared. 

As mentioned above (section 6.3 and 6.6, this chapter), it is highly recommended that the 

biodegradation and persistence of teflubenzuron is re-tested to fit in with current use of 

teflubenzuron in aquaculture, which has exceeded the ‘worst case scenario’ of 1999 by almost 4 

times in an application in  (SEPA, 1999). It is also highly recommended that fenbendazole is tested 

for its effect on the ERα of several aquatic species, as this study (chapter 4, table 4.6a and 4.6b) 

suggests that fenbendazole is either an ERα agonist or antagonist. This has not previously been 

tested for endocrine disrupting effects on vertebrates.  
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Appendix A 

Salmon farms using treatments on SACs  

Table A.1 Salmon farms that are located on special areas of conservation (SACs), which used sea 

lice treatments in 2007.  

Name and NGR 

of SAC 

Name of Farm NGR of Farm Treatments 

used 

Reason for 

designation 

Firth of Lorn 

NM696089 

FFMC53 NM71400780 

 

Emamectin 

benzoate 

Reefs 

Loch Creran 

NM945428 

FFMC19 NM93074182 

 

 

Emamectin 

benzoate; 

cypermethrin 

Reefs 

Sunart 

NM665605 

 

 

 

 

INV1 NM73316102 Emamectin 

benzoate 

Reefs; Lutra lutra 

GCD1 NM67606070 

 

Emamectin 

benzoate; 

cypermethrin 

CAG1 NM64425884 

 

Emamectin 

benzoate; 

cypermethrin 

Lochs Duich, 

Long and Alsh 

Reefs 

NG845261 

SRO1 NG78402535 Emamectin 

benzoate 

Reefs 

ARDT1 NG82412420 

 

Emamectin 

benzoate 

DUI1 NG89172320 

 

Emamectin 

benzoate 

Loch nam 

Madadh 

NF924703 

CLP1 NF94866945 

 

 

Emamectin 

benzoate 

Reefs; L. lutra; 

coastal lagoons; 

shallow inlets and 

bays; mudflats and 

sandflats; sandbanks 

cover by seawater 

Loch Laxford 

NC198501 

 

ARD1 NC18895014 Emamectin 

benzoate; 

cypermethrin 

Reefs; shallow inlets 

and bays 

EAM1 NC19864961 

 

Emamectin 

benzoate; 

cypermethrin 

FOI1 NC19904920 Cypermethrin 

Yell Sound Coast 

HU467755 

SWI2 HU45717193 Emamectin 

benzoate 

L. lutra; P. vitulina 

SETW1 HU47427068 

 

Emamectin 

benzoate 
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Table A.2 Salmon farms that are located on special areas of conservation (SACs), which used sea 

lice treatments in 2008. 

Name and NGR 

of SAC 

Name of Farm NGR of Farm Treatments 

used 

Reason for 

designation 

Loch Creran 

NM945428 

FFMC20 NM93804220 Emamectin 

benzoate 

Reefs 

Sunart 

NM665605 

 

 

 

 

INV1 NM73316102 Emamectin 

benzoate; 

cypermethrin; 

deltamethrin; 

azamethiphos 

Reefs; Lutra lutra 

GCD1 NM67606070 

 

Emamectin 

benzoate; 

cypermethrin 

CAG1 NM64425884 

 

Emamectin 

benzoate; 

cypermethrin; 

deltamethrin; 

azamethiphos 

Lochs Duich, 

Long and Alsh 

Reefs 

NG845261 

SRO1 NG78402535 Emamectin 

benzoate; 

cypermethrin 

Reefs 

ARDT1 NG82412420 

 

Emamectin 

benzoate; 

cypermethrin 

DUI1 NG89172320 

 

Emamectin 

benzoate; 

cypermethrin 

Loch Laxford 

NC198501 

 

ARD1 NC18895014 Emamectin 

benzoate; 

cypermethrin 

Reefs; shallow 

inlets and bays 

EAM1 NC19864961 

 

Emamectin 

benzoate; 

cypermethrin 

FOI1 NC19904920 

 

Emamectin 

benzoate; 

cypermethrin 

Yell Sound Coast 

HU467755 

SWI2 HU45717193 Emamectin 

benzoate 

L. lutra; P. vitulina 
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Table A.3 Salmon farms that are located on special areas of conservation (SACs), which used sea 

lice treatments in 2009. 

Name and NGR 

of SAC 

Name of Farm NGR of Farm Treatments 

used 

Reason for 

designation 

Firth of Lorn 

NM696089 

FFMC53 NM71400780 

 

Emamectin 

benzoate 

Reefs 

Loch Creran 

NM945428 

FFMC20 NM93804220 Emamectin 

benzoate; 

cypermethrin; 

deltamethrin 

Reefs 

Sunart 

NM665605 

  

INV1 NM73316102 Emamectin 

benzoate; 

deltamethrin 

Reefs; Lutra lutra 

CAG1 NM64425884 

 

Emamectin 

benzoate; 

deltamethrin 

Lochs Duich, 

Long and Alsh 

Reefs 

NG845261 

SRO1 NG78402535 Emamectin 

benzoate 

Reefs 

ARDT1 NG82412420 

 

Emamectin 

benzoate 

DUI1 NG89172320 Deltamethrin 

Eileanan agus 

Sgeiran Lios mór 

NM888471 

FFMC40B NM86104520 Emamectin 

benzoate 

 

Loch Laxford 

NC198501 

FOI1 NC19904920 

 

Azamethiphos Reefs; shallow 

inlets and bays 

Yell Sound Coast 

HU467755 

SWI2 HU45717193 Emamectin 

benzoate; 

azamethiphos 

L. lutra; P. vitulina 
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Table A.4 Salmon farms that are located on special areas of conservation (SACs), which used sea 

lice treatments in 2010. 

Name and NGR 

of SAC 

Name of Farm NGR of Farm Treatments 

used 

Reason for 

designation 

Loch Laxford 

NC198501 

ARD1 NC18895014 Emamectin 

benzoate; 

azamethiphos 

Reefs; shallow 

inlets and bays 

FOI1 NC19904920 

 

Emamectin 

benzoate; 

azamethiphos 

Loch Creran 

NM945428 

FFMC19 NM93074182 

 

Emamectin 

benzoate; 

deltamethrin 

Reefs 

Sunart 

NM665605 

 

INV1 NM73316102 Emamectin 

benzoate; 

deltamethrin; 

azamethiphos 

Reefs; Lutra lutra 

GCD1 NM67606070 

 

Emamectin 

benzoate; 

deltamethrin; 

azamethiphos 

CAG1 NM64425884 

 

Emamectin 

benzoate; 

deltamethrin; 

Azamethiphos; 

cypermethrin 

Lochs Duich, 

Long and Alsh 

Reefs 

NG845261 

SRO1 NG78402535 Deltamethrin Reefs 

ARDT1 NG82412420 

 

Deltamethrin 

Eileanan agus 

Sgeiran Lios mór 

NM888471 

FFMC40B NM86104520 Emamectin 

benzoate 

P. vitulina 

Loch nam 

Madadh 

NF924703 

CLP1 NF94866945 

 

 

Emamectin 

benzoate; 

deltamethrin 

Reefs; L. lutra; 

coastal lagoons; 

shallow inlets and 

bays; mudflats and 

sandflats; 

sandbanks cover by 

seawater 

FERR1 NF93806990 Emamectin 

benzoate; 

deltamethrin 

Yell Sound Coast 

HU467755 

SWI2 HU45717193 Emamectin 

benzoate 

L. lutra; P. vitulina 

 

BOA1 HU49507100 Emamectin 

benzoate; 

deltamethrin 
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Table A.5 Salmon farms that are located on special areas of conservation (SACs), which used sea 

lice treatments in 2011. 

Name and NGR 

of SAC 

Name of Farm NGR of Farm Treatments 

used 

Reason for 

designation 

Loch Laxford 

NC198501 

ARD1 NC18895014 Emamectin 

benzoate; 

azamethiphos; 

deltamethrin 

Reefs; shallow 

inlets and bays 

FOI1 NC19904920 

 

Emamectin 

benzoate; 

azamethiphos; 

teflubenzuron 

Loch Creran 

NM945428 

FFMC19 NM93074182 

 

Deltamethrin Reefs 

Sunart 

NM665605 

 

INV1 NM73316102 Emamectin 

benzoate; 

deltamethrin 

Reefs; Lutra lutra 

CAG1 NM64425884 

 

Emamectin 

benzoate; 

deltamethrin 

Eileanan agus 

Sgeiran Lios mór 

NM888471 

FFMC40B NM86104520 Deltamethrin P. vitulina 

Loch nam 

Madadh 

NF924703 

CLP1 NF94866945 

 

 

Emamectin 

benzoate 

Reefs; L. lutra; 

coastal lagoons; 

shallow inlets and 

bays; mudflats and 

sandflats; 

sandbanks cover by 

seawater 

Firth of Lorn FFMC53 NM71400780 

 

Emamectin 

benzoate; 

azamethiphos 

Reefs 

Yell Sound Coast 

HU467755 

SWI2 HU45717193 Emamectin 

benzoate  

L. lutra; P. vitulina 

 

BOA1 HU49507100 Emamectin 

benzoate 
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Appendix B 

Number of applications of treatments 

Table B.1 The number of applications of each treatment for the year 2007. Number of individual 

farms using each treatment also shown. 

Treatment Number of applications Number of farms 

Azamethiphos 0 0 

Cypermethrin 308 87 

Deltamethrin 0 0 

Emamectin benzoate  308 147 

Teflubenzuron 8 6 

 

Table B.2 The number of applications of each treatment for the year 2008. Number of individual 

farms using each treatment also shown. 

Treatment Number of applications Number of farms 

Azamethiphos 68 34 

Cypermethrin 149 71 

Deltamethrin 77 41 

Emamectin benzoate  294 154 

Teflubenzuron 0 0 

 

Table B.3 The number of applications of each treatment for the year 2009. Number of individual 

farms using each treatment also shown. 

Treatment Number of applications Number of farms 

Azamethiphos 138 55 

Cypermethrin 91 49 

Deltamethrin 280 104 

Emamectin benzoate  209 125 

Teflubenzuron 3 3 

 

Table B.4 The number of applications of each treatment for the year 2010. Number of individual 

farms using each treatment also shown. 

Treatment Number of applications Number of farms 

Azamethiphos 124 57 

Cypermethrin 61 32 

Deltamethrin 237 94 

Emamectin benzoate  242 123 

Teflubenzuron 1 1 
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Table B.5 The number of applications of each treatment for the year 2011. Number of individual 

farms using each treatment also shown. 

Treatment Number of applications Number of farms 

Azamethiphos 153 69 

Cypermethrin 14 10 

Deltamethrin 326 114 

Emamectin benzoate  274 137 

Teflubenzuron 8 7 
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Appendix C 

The occurrence of chemical mixtures of sea lice treatments on salmon farms in 

Scotland 2007 -2011 

Table C. 1 The number of times each sea lice treatment was applied in conjunction with at least 

one other treatment within the same month on the same fish farm. 

 

 

Treatment combinations Year 

2007 2008 2009 2010 2011 Total 

Cypermethrin and teflubenzuron 1 0 0 0 0 1 

Cypermethrin and emamectin benzoate 43 26 7 3 0 79 

Cypermethrin and deltamethrin 0 5 3 3 3 14 

Cypermethrin and azamethiphos 0 15 25 38 5 83 

Deltamethrin and teflubenzuron 0 1 0 0 0 1 

Deltamethrin and emamectin benzoate 0 8 21 21 50 100 

Deltamethrin and azamethiphos  0 0 31 34 82 147 

Emamectin benzoate and teflubenzuron 0 0 0 1 0 1 

Emamectin benzoate and azamethiphos 0 0 11 12 32 55 

Azamethiphos and teflubenzuron 0 0 0 0 0 0 

Cypermethrin, azamethiphos and emamectin 

benzoate 

5 0 0 3 0 8 

Deltamethrin, azamethiphos and emamectin 

benzoate 

0 0 0 2 15 17 

Deltamethrin, cypermethrin, azamethiphos and 

emamectin benzoate 

0 2 0 0 0 2 

Total 49 57 98 117 187 508 
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Appendix D 

Media and agar constituents  

Table D.1 Media constituents for broths and agar. 

Media Reagents Sterilisation pH Agar 

Lysogeny broth 

(LB)  

LB powder 37 g (Fisher, 

Aberdeen, UK) 

121°C 15 

minutes 

7.2 15 g 

Oceanbulbus 

Broth 

Sea salts (Sigma-Aldrich, 

Poole, UK) 14 g 

Tryptone (Sigma-Aldrich, 

Poole, UK) 10 g 

Yeast extract (Sigma-

Aldrich, Poole, UK) 5 g 

NaCl 10 g 

121°C 15 

minutes 

7.2 15 g 

Yeast Extract-

Peptone-Dextrose 

(YPD) broth 

YPD broth (Sigma-

Aldrich, Poole, UK) 50 g 

121°C 15 

minutes 

6.5 15 g 

Yeast Nitrogen 

Base (YNB) 

without amino 

acids 

YNB powder (Sigma-

Aldrich, Poole, UK) 6.8 g 

Glucose (Sigma-Aldrich, 

Poole, UK) 5 g 

Filter sterilise 5.4 15 g 

YNB without 

uracil (URA) 

 

YNB powder 6.8 g 

Glucose 5 g 

Yeast Synthetic Drop-out 

Medium Supplements 

without uracil (Sigma-

Aldrich, Poole, UK) 1.92 g 

Filter sterilise 5.4 15 g 

YNB  without 

tryptophan (TRP) 

 

YNB powder 6.8 g 

Glucose 5 g 

Yeast Synthetic Drop-out 

Medium Supplements 

without tryptophan 

(Sigma-Aldrich, Poole, 

UK) 1.92 g 

Filter sterilise 5.4 15 g 

YNB without URA 

and TRP  

 

YNB powder 6.8 g 

Glucose 5 g 

Yeast Synthetic Drop-out 

Medium Supplements 

without uracil, leucine 

and tryptophan (Sigma-

Aldrich, Poole, UK) 1.46 g 

L-Leucine (Sigma-Aldrich, 

Poole, UK) 380 mg 

Filter sterilise 5.4 15 g 
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Appendix E 

Example grid parameter file (.gpf) for H. sapiens ERα 

npts 60 60 60                         

gridfld 3ERT.maps.fld 

spacing 0.375                         

receptor_types N C OA NA SA A  

ligand_types A OA C HD  

receptor 3ERT.pdbqt 

gridcenter 29.287 4.108 28.182        

smooth 0.5                            

map 3ERT.A.map 

map 3ERT.OA.map 

map 3ERT.C.map 

map 3ERT.HD.map 

elecmap 3ERT.e.map 

dsolvmap 3ERT.d.map 

dielectric -0.1465 
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Appendix F 

Example docking parameter file (.dpf) for H. sapiens ERα 

# Generated with Raccoon v.1.0c  

outlev 2 

intelec 

seed time pid 

ligand_types A OA C HD  

fld 3ERT.maps.fld 

map 3ERT.A.map 

map 3ERT.OA.map 

map 3ERT.C.map 

map 3ERT.HD.map 

elecmap 3ERT.e.map 

desolvmap 3ERT.d.map 

move 3PBA.pdbqt 

about 4.452 -2.048 -0.357 

tran0 random 

quat0 random 

axisangle0 random 

dihe0 random 

rmstol 2.0 

ga_pop_size 150 

ga_num_evals 2500000 

ga_num_generations 27000 

ga_elitism 1 

ga_mutation_rate 0.02 

ga_crossover_rate 0.8 

ga_window_size 10 

ga_cauchy_alpha 0.0 

ga_cauchy_beta 1.0 

set_ga 

sw_max_its 300 

sw_max_succ 4 

sw_max_fail 4 

sw_rho 1.0 

sw_lb_rho 0.01 

ls_search_freq 0.06 

set_psw1 

unbound_model bound 

ga_run 100 

analysis 
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Appendix G 

Tukey’s post hoc results for binding energy; two way ANOVA between species 

Table G.1 P values showing the statistical difference between species for average binding energy of 3PBA. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0 0 0 0 0.011 0.001 0 0 0 

D. rerio 0 - 0.72 0.817 0.954 0.057 0.235 0.942 0.899 0.496 

G. aculeatus 0 0.72 - 0.555 0.678 0.123 0.407 0.666 0.817 0.747 

H. sapiens 0 0.817 0.555 - 0.862 0.033 0.156 0.874 0.72 0.362 

O. mykiss 0 0.954 0.678 0.862 - 0.05 0.213 0.988 0.853 0.46 

P. promelas 0.011 0.057 0.123 0.033 0.05 - 0.475 0.048 0.076 0.222 

R. rutilus 0.001 0.235 0.407 0.156 0.213 0.475 - 0.207 0.289 0.612 

S. salar 0 0.942 0.666 0.874 0.988 0.048 0.207 - 0.841 0.451 

S. aurata 0 0.899 0.817 0.72 0.853 0.076 0.289 0.841 - 0.58 

X. laevis 0 0.496 0.747 0.362 0.46 0.222 0.612 0.451 0.58 - 
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Table G.2 P values showing the statistical difference between species for average binding energy of α-cypermethrin. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0 0 0 0 0 0 0 0 0 

D. rerio 0 - 0.806 0.484 0.933 0.531 0.794 0.633 0.888 0.101 

G. aculeatus 0 0.806 - 0.65 0.871 0.703 0.988 0.817 0.699 0.163 

H. sapiens 0 0.484 0.65 - 0.538 0.942 0.661 0.824 0.4 0.346 

O. mykiss 0 0.933 0.871 0.538 - 0.587 0.859 0.694 0.822 0.119 

P. promelas 0 0.531 0.703 0.942 0.587 - 0.715 0.881 0.442 0.31 

R. rutilus 0 0.794 0.988 0.661 0.859 0.715 - 0.829 0.687 0.167 

S. salar 0 0.633 0.817 0.824 0.694 0.881 0.829 - 0.536 0.244 

S. aurata 0 0.888 0.699 0.4 0.822 0.442 0.687 0.536 - 0.075 

X. laevis 0 0.101 0.163 0.346 0.119 0.31 0.167 0.244 0.075 - 
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Table G.3 P values showing the statistical difference between species for average binding energy of amitraz. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0 0 0 0 0 0 0 0 0 

D. rerio 0 - 0.356 0.495 0 0.789 0 0 0.962 0 

G. aculeatus 0 0.356 - 0.108 0 0.512 0 0 0.331 0 

H. sapiens 0 0.495 0.108 - 0 0.342 0 0 0.526 0 

O. mykiss 0 0 0 0 - 0 0 0.92 0 0.835 

P. promelas 0 0.789 0.512 0.342 0 - 0 0 0.752 0 

R. rutilus 0 0 0 0 0 0 - 0 0 0.001 

S. salar 0 0 0 0 0.92 0 0 - 0 0.758 

S. aurata 0 0.962 0.331 0.526 0 0.752 0 0 - 0 

X. laevis 0 0 0 0 0.835 0 0.001 0.758 0 - 
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Table G.4 P values showing the statistical difference between species for average binding energy of azamethiphos. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0.157 0.545 0.659 0.175 0.939 0.33 0.205 0.117 0.457 

D. rerio 0.157 - 0.418 0.331 0.955 0.136 0.659 0.882 0.88 0.502 

G. aculeatus 0.545 0.418 - 0.87 0.452 0.496 0.712 0.509 0.337 0.89 

H. sapiens 0.659 0.331 0.87 - 0.36 0.605 0.595 0.41 0.261 0.763 

O. mykiss 0.175 0.955 0.452 0.36 - 0.152 0.701 0.927 0.835 0.539 

P. promelas 0.939 0.136 0.496 0.605 0.152 - 0.294 0.179 0.101 0.413 

R. rutilus 0.33 0.659 0.712 0.595 0.701 0.294 - 0.77 0.554 0.818 

S. salar 0.205 0.882 0.509 0.41 0.927 0.179 0.77 - 0.765 0.601 

S. aurata 0.117 0.88 0.337 0.261 0.835 0.101 0.554 0.765 - 0.411 

X. laevis 0.457 0.502 0.89 0.763 0.539 0.413 0.818 0.601 0.411 - 
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Table G.5 P values showing the statistical difference between species for average binding energy of BPA. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0.324 0.639 0.284 0.427 0.779 0.836 0.4 0.326 0.65 

D. rerio 0.324 - 0.145 0.931 0.847 0.205 0.233 0.884 0.996 0.15 

G. aculeatus 0.639 0.145 - 0.123 0.206 0.851 0.793 0.19 0.147 0.988 

H. sapiens 0.284 0.931 0.123 - 0.781 0.176 0.201 0.817 0.928 0.127 

O. mykiss 0.427 0.847 0.206 0.781 - 0.282 0.317 0.963 0.851 0.212 

P. promelas 0.779 0.205 0.851 0.176 0.282 - 0.941 0.262 0.207 0.863 

R. rutilus 0.836 0.233 0.793 0.201 0.317 0.941 - 0.295 0.235 0.805 

S. salar 0.4 0.884 0.19 0.817 0.963 0.262 0.295 - 0.888 0.195 

S. aurata 0.326 0.996 0.147 0.928 0.851 0.207 0.235 0.888 - 0.151 

X. laevis 0.65 0.15 0.988 0.127 0.212 0.863 0.805 0.195 0.151 - 
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Table G.6 P values showing the statistical difference between species for average binding energy of DDT. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0 0 0 0 0 0 0 0 0 

D. rerio 0 - 0.025 0.003 0.252 0.045 0 0.978 0.982 0.007 

G. aculeatus 0 0.025 - 0.47 0.001 0.818 0.099 0.027 0.027 0.632 

H. sapiens 0 0.003 0.47 - 0 0.34 0.355 0.003 0.003 0.807 

O. mykiss 0 0.252 0.001 0 - 0.002 0 0.241 0.243 0 

P. promelas 0 0.045 0.818 0.34 0.002 - 0.06 0.048 0.047 0.478 

R. rutilus 0 0 0.099 0.355 0 0.06 - 0 0 0.242 

S. salar 0 0.978 0.027 0.003 0.241 0.048 0 - 0.996 0.007 

S. aurata 0 0.982 0.027 0.003 0.243 0.047 0 0.996 - 0.007 

X. laevis 0 0.007 0.632 0.807 0 0.478 0.242 0.007 0.007 - 
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Table G.7 P values showing the statistical difference between species for average binding energy of deltamethrin. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0 0 0 0 0 0 0 0 0 

D. rerio 0 - 0.876 0.281 0.754 0.059 0.84 0.898 0.795 0.31 

G. aculeatus 0 0.876 - 0.217 0.875 0.083 0.72 0.776 0.677 0.241 

H. sapiens 0 0.281 0.217 - 0.164 0.003 0.381 0.343 0.414 0.951 

O. mykiss 0 0.754 0.875 0.164 - 0.115 0.606 0.658 0.566 0.184 

P. promelas 0 0.059 0.083 0.003 0.115 - 0.036 0.044 0.032 0.004 

R. rutilus 0 0.84 0.72 0.381 0.606 0.036 - 0.941 0.954 0.416 

S. salar 0 0.898 0.776 0.343 0.658 0.044 0.941 - 0.895 0.375 

S. aurata 0 0.795 0.677 0.414 0.566 0.032 0.954 0.895 - 0.45 

X. laevis 0 0.31 0.241 0.951 0.184 0.004 0.416 0.375 0.45 - 
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Table G.8 P values showing the statistical difference between species for average binding energy of diazinon. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0.003 0.063 0.136 0.005 0.709 0.182 0.006 0.002 0.187 

D. rerio 0.003 - 0.281 0.147 0.888 0.01 0.109 0.852 0.902 0.105 

G. aculeatus 0.063 0.281 - 0.712 0.348 0.137 0.599 0.372 0.229 0.587 

H. sapiens 0.136 0.147 0.712 - 0.191 0.264 0.876 0.207 0.116 0.863 

O. mykiss 0.005 0.888 0.348 0.191 - 0.015 0.143 0.963 0.792 0.139 

P. promelas 0.709 0.01 0.137 0.264 0.015 - 0.336 0.017 0.007 0.345 

R. rutilus 0.182 0.109 0.599 0.876 0.143 0.336 - 0.156 0.084 0.987 

S. salar 0.006 0.852 0.372 0.207 0.963 0.017 0.156 - 0.757 0.151 

S. aurata 0.002 0.902 0.229 0.116 0.792 0.007 0.084 0.757 - 0.081 

X. laevis 0.187 0.105 0.587 0.863 0.139 0.345 0.987 0.151 0.081 - 

 

 

 

  



 186 

Table G.9 P values showing the statistical difference between species for average binding energy of diclofenac. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0.02 0.002 0.007 0.016 0 0 0.028 0.03 0 

D. rerio 0.02 - 0.436 0.706 0.936 0.016 0.013 0.9 0.878 0.022 

G. aculeatus 0.002 0.436 - 0.688 0.485 0.101 0.086 0.366 0.351 0.13 

H. sapiens 0.007 0.706 0.688 - 0.767 0.041 0.034 0.616 0.596 0.055 

O. mykiss 0.016 0.936 0.485 0.767 - 0.019 0.016 0.837 0.815 0.027 

P. promelas 0 0.016 0.101 0.041 0.019 - 0.94 0.011 0.01 0.9 

R. rutilus 0 0.013 0.086 0.034 0.016 0.94 - 0.009 0.008 0.84 

S. salar 0.028 0.9 0.366 0.616 0.837 0.011 0.009 - 0.977 0.016 

S. aurata 0.03 0.878 0.351 0.596 0.815 0.01 0.008 0.977 - 0.014 

X. laevis 0 0.022 0.13 0.055 0.027 0.9 0.84 0.016 0.014 - 
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Table G.10 P values showing the statistical difference between species for average binding energy of diflubenzuron. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0 0 0 0 0 0 0 0 0 

D. rerio 0 - 0.705 0.007 0.764 0.041 0 0.754 0.937 0 

G. aculeatus 0 0.705 - 0.02 0.938 0.015 0 0.948 0.765 0 

H. sapiens 0 0.007 0.02 - 0.016 0 0 0.017 0.009 0 

O. mykiss 0 0.764 0.938 0.016 - 0.019 0 0.989 0.825 0 

P. promelas 0 0.041 0.015 0 0.019 - 0 0.018 0.034 0.074 

R. rutilus 0 0 0 0 0 0 - 0 0 0.001 

S. salar 0 0.754 0.948 0.017 0.989 0.018 0 - 0.815 0 

S. aurata 0 0.937 0.765 0.009 0.825 0.034 0 0.815 - 0 

X. laevis 0 0 0 0 0 0.074 0.001 0 0 - 
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Table G.11 P values showing the statistical difference between species for average binding energy of E2. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0 0 0 0 0 0 0 0 0 

D. rerio 0 - 0.656 0.106 0.628 0.003 0.861 0.628 0.936 0.082 

G. aculeatus 0 0.656 - 0.039 0.352 0.001 0.535 0.352 0.599 0.029 

H. sapiens 0 0.106 0.039 - 0.258 0.182 0.15 0.258 0.125 0.904 

O. mykiss 0 0.628 0.352 0.258 - 0.014 0.757 1 0.686 0.21 

P. promelas 0 0.003 0.001 0.182 0.014 - 0.006 0.014 0.004 0.225 

R. rutilus 0 0.861 0.535 0.15 0.757 0.006 - 0.757 0.925 0.118 

S. salar 0 0.628 0.352 0.258 1 0.014 0.757 - 0.686 0.21 

S. aurata 0 0.936 0.599 0.125 0.686 0.004 0.925 0.686 - 0.098 

X. laevis 0 0.082 0.029 0.904 0.21 0.225 0.118 0.21 0.098 - 
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Table G.12 P values showing the statistical difference between species for average binding energy of EE2. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0 0 0 0 0 0 0 0 0 

D. rerio 0 - 0.377 0.187 0.738 0.042 0.564 0.71 0.926 0 

G. aculeatus 0 0.377 - 0.662 0.584 0.252 0.76 0.61 0.429 0.001 

H. sapiens 0 0.187 0.662 - 0.324 0.479 0.457 0.343 0.219 0.003 

O. mykiss 0 0.738 0.584 0.324 - 0.09 0.808 0.97 0.808 0 

P. promelas 0 0.042 0.252 0.479 0.09 - 0.147 0.098 0.053 0.023 

R. rutilus 0 0.564 0.76 0.457 0.808 0.147 - 0.837 0.628 0 

S. salar 0 0.71 0.61 0.343 0.97 0.098 0.837 - 0.78 0 

S. aurata 0 0.926 0.429 0.219 0.808 0.053 0.628 0.78 - 0 

X. laevis 0 0 0.001 0.003 0 0.023 0 0 0 - 
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Table G.13 P values showing the statistical difference between species for average binding energy of fenbendazole. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0 0 0 0 0 0 0 0 0 

D. rerio 0 - 0.126 0.874 0.46 0.238 0.292 0.438 0.926 0.299 

G. aculeatus 0 0.126 - 0.091 0.023 0.727 0.635 0.021 0.151 0.01 

H. sapiens 0 0.874 0.091 - 0.562 0.181 0.225 0.537 0.801 0.379 

O. mykiss 0 0.46 0.023 0.562 - 0.055 0.073 0.97 0.406 0.764 

P. promelas 0 0.238 0.727 0.181 0.055 - 0.9 0.051 0.277 0.027 

R. rutilus 0 0.292 0.635 0.225 0.073 0.9 - 0.067 0.336 0.036 

S. salar 0 0.438 0.021 0.537 0.97 0.051 0.067 - 0.385 0.793 

S. aurata 0 0.926 0.151 0.801 0.406 0.277 0.336 0.385 - 0.258 

X. laevis 0 0.299 0.01 0.379 0.764 0.027 0.036 0.793 0.258 - 
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Table G.14 P values showing the statistical difference between species for average binding energy of nalidixic acid. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0.013 0.001 0.001 0.025 0 0.005 0.021 0.02 0.001 

D. rerio 0.013 - 0.486 0.476 0.807 0.145 0.73 0.858 0.867 0.36 

G. aculeatus 0.001 0.486 - 0.988 0.346 0.448 0.725 0.381 0.387 0.827 

H. sapiens 0.001 0.476 0.988 - 0.338 0.457 0.714 0.373 0.379 0.839 

O. mykiss 0.025 0.807 0.346 0.338 - 0.089 0.555 0.948 0.939 0.246 

P. promelas 0 0.145 0.448 0.457 0.089 - 0.267 0.102 0.104 0.589 

R. rutilus 0.005 0.73 0.725 0.714 0.555 0.267 - 0.6 0.608 0.568 

S. salar 0.021 0.858 0.381 0.373 0.948 0.102 0.6 - 0.991 0.273 

S. aurata 0.02 0.867 0.387 0.379 0.939 0.104 0.608 0.991 - 0.278 

X. laevis 0.001 0.36 0.827 0.839 0.246 0.589 0.568 0.273 0.278 - 
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Table G.15 P values showing the statistical difference between species for average binding energy of sulfadiazine. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0 0 0.003 0 0.029 0.024 0.001 0 0.029 

D. rerio 0 - 0.991 0.359 0.683 0.08 0.096 0.627 0.758 0.082 

G. aculeatus 0 0.991 - 0.365 0.692 0.082 0.098 0.635 0.767 0.084 

H. sapiens 0.003 0.359 0.365 - 0.611 0.404 0.454 0.666 0.543 0.411 

O. mykiss 0 0.683 0.692 0.611 - 0.179 0.209 0.938 0.92 0.183 

P. promelas 0.029 0.08 0.082 0.404 0.179 - 0.932 0.206 0.149 0.991 

R. rutilus 0.024 0.096 0.098 0.454 0.209 0.932 - 0.238 0.175 0.941 

S. salar 0.001 0.627 0.635 0.666 0.938 0.206 0.238 - 0.859 0.21 

S. aurata 0 0.758 0.767 0.543 0.92 0.149 0.175 0.859 - 0.152 

X. laevis 0.029 0.082 0.084 0.411 0.183 0.991 0.941 0.21 0.152 - 
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Table G.16 P values showing the statistical difference between species for average binding energy of sulfapyridine. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0.001 0 0.028 0.003 0.065 0.032 0.006 0.001 0.112 

D. rerio 0.001 - 0.508 0.317 0.802 0.177 0.293 0.67 0.984 0.108 

G. aculeatus 0 0.508 - 0.097 0.362 0.044 0.087 0.277 0.521 0.023 

H. sapiens 0.028 0.317 0.097 - 0.454 0.727 0.958 0.566 0.308 0.544 

O. mykiss 0.003 0.802 0.362 0.454 - 0.272 0.423 0.861 0.786 0.175 

P. promelas 0.065 0.177 0.044 0.727 0.272 - 0.767 0.356 0.171 0.796 

R. rutilus 0.032 0.293 0.087 0.958 0.423 0.767 - 0.531 0.283 0.579 

S. salar 0.006 0.67 0.277 0.566 0.861 0.356 0.531 - 0.656 0.237 

S. aurata 0.001 0.984 0.521 0.308 0.786 0.171 0.283 0.656 - 0.104 

X. laevis 0.112 0.108 0.023 0.544 0.175 0.796 0.579 0.237 0.104 - 
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Table G.17 P values showing the statistical difference between species for average binding energy of tamoxifen. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0 0 0 0 0 0 0 0 0 

D. rerio 0 - 0 0 0.697 0.789 0.002 0.266 0.801 0 

G. aculeatus 0 0 - 0 0 0 0 0 0 0.014 

H. sapiens 0 0 0 - 0 0 0 0 0 0 

O. mykiss 0 0.697 0 0 - 0.511 0.008 0.469 0.891 0 

P. promelas 0 0.789 0 0 0.511 - 0.001 0.167 0.603 0 

R. rutilus 0 0.002 0 0 0.008 0.001 - 0.052 0.005 0.089 

S. salar 0 0.266 0 0 0.469 0.167 0.052 - 0.39 0 

S. aurata 0 0.801 0 0 0.891 0.603 0.005 0.39 - 0 

X. laevis 0 0 0.014 0 0 0 0.089 0 0 - 
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Table G.18 P values showing the statistical difference between species for average binding energy of teflubenzuron. 

Species C. gigas D. rerio G. aculeatus H. sapiens O. mykiss P. promelas R. rutilus S. salar S. aurata X. laevis 

C. gigas - 0 0 0 0 0 0 0 0 0 

D. rerio 0 - 0 0 0.631 0 0.012 0.564 0.848 0.752 

G. aculeatus 0 0 - 0 0 0 0 0 0  

H. sapiens 0 0 0.669 - 0 0 0 0 0 0 

O. mykiss 0 0.631 0 0 - 0 0.041 0.922 0.502 0.426 

P. promelas 0 0 0 0 0 - 0 0 0 0 

R. rutilus 0 0.012 0 0 0.041 0 - 0.051 0.007 0.004 

S. salar 0 0.564 0 0 0.922 0 0.051 - 0.442 0.371 

S. aurata 0 0.848 0 0 0.502 0 0.007 0.442 - 0.901 

X. laevis 0 0.752 0 0 0.426 0 0.004 0.371 0.901 - 
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Appendix H 

Sequence results for pYES2-LacZ-ERE 

gaCtaCTagcagcTgtaTACGACTCACTATAGGGAATATTAAGCTTGGCACTGGCCGTCGTTTTACAACGTCGT

GACTGGGAAAACCCTGGCGtTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAAT

AGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCT

GGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGT

CGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTGACCTATCCCATTACGGT

CAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTG

GCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCGTTAACTCGGCGTTTCATCTGTGGTGCAACGGGC

GCTGGGTCGGTTACGGCCAGGACAGTCGTTTGCCGTCTGAATTTGACCTGAGCGCATTTTTACGCGCCGGA

GAAAACCGCCTCGCGGTGATGGTGCTGCGCTGGAGTGACGGCAGTTATCTGGAAGATCAGGATATGTGGC

GGATGAGCGGCATTTTCCGTGACGTCTCGTTGCTGCATAAACCGACTACACAAATCAGCGATTTCCATGTTG

CCACTCGCTTTAATGATGATTTCAGCCGCGCTGTACTGGAGGCTGAAGTTCAGATGTGCGGCGAGTTGCGT

GACTACCTACGGGTAACAGTTTCTTTATGGCAGGGTGAAACGCAGGTCGCCAGCGGCACCGCGCCTTTCG

GCGGTGAAATTATCGATGAGCGTGGTGGTTATGCCGATCGCGTCACACTACGTCTGAACGTCGAAnACCCG

AAACTGTGGAGCGCCGAAATCCCGAATCTCTATCgtgnnggtgGTTGAACTGCACACCGCCGACGGCACGCT

GATTGAAGCAgaaGCCTGcgaTGTCGGTTtccncgaGgtgcgnaTTGAAAatggnctGCTGCTGCTGAACGGCAan

cCGTTGCTGATTcnagg 

Note: Uppercase letters are nucleotides (GATC) confirmed from sequencing; lower case letters are 

predicted but unconfirmed nucleotides (gatc), the letter n represents a nucleotide that was not 

viable and could not be sequenced. 
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