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The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important
predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For
such a microbiota, ‘normobiosis’ characterises a composition of the gut ‘ecosystem’ in which micro-organisms with potential health
benefits predominate in number over potentially harmful ones, in contrast to ‘dysbiosis’, in which one or a few potentially harmful
micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both
academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim
to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and
expand the original idea of the prebiotic concept (that can be translated in ‘prebiotic effects’), defined as: ‘The selective stimulation
of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health
benefits to the host.’ Thanks to the methodological and fundamental research of microbiologists, immense progress has very
recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed
that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the com-
position of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact.
The more data are accumulating, the more it will be recognised that such changes in the microbiota’s composition, especially
increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the
major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The pre-
biotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the
studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut micro-
biota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH,
SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the
incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one
of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of
particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical
activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary
studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated
with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota
composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers
after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported
that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria).
Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively
in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both
from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic proper-
ties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these
studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate
metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive,
that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the pre-
biotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research
activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective
modification in the gut microbiota’s composition and/or activity(ies) and thus strengthens normobiosis could either induce
beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of
dysbiosis and associated intestinal and systemic pathologies.

The main author of this section is Professor Roberfroid. In the
1980s, Japanese researchers(1,2) had already demonstrated
that specific non-digestible oligosaccharides (especially
fructo-oligosaccharides) were selectively fermented by bifido-
bacteria and had the capacity, upon feeding, in stimulating
their growth in human faeces. These observations were
confirmed and further expanded by Gibson & Roberfroid(3)

who introduced the concept of prebiotics and have recently
published a review of the research which includes the most
recent development(4) (Table 1). During the last 15 years,
this concept has attracted the interest of many academic
as well as industrial scientists and it has become a
popular research topic in nutrition and, more recently, in the
biomedical fields.

Early research in the mid-1990s on prebiotics has contribu-
ted towards the development and validation of new molecular

biology-based methods resulting in easy-to-handle, sensitive,
and highly specific methods to identify and quantify the
large variety of micro-organisms composing the gut micro-
biota(5 – 16). The application of such methods has improved
our knowledge of the gut microbiota composition in terms
of variety, classification, identity and relative concentrations
of genera or species of micro-organisms, as well as in
terms of their properties and interactions/co-operations with
each other and with intestinal epithelial cells. This has led
the International Scientific Association for Probiotics and Pre-
biotics (ISAPP) (6th meeting in Ontario, Canada, November
2008) to propose the concept of ‘normobiosis’ to characterise
a normal gut microbiota in which genera/species of micro-
organisms with potential health benefits predominate in
number over potentially harmful ones as opposed to ‘dysbiosis’
which characterises a gut microbiota in which one or a few
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potentially harmful genus(era)/species of micro-organisms are
dominant, thus creating a disease-prone situation.

A large part of the research activity has concentrated and
still does focus on the in vitro and in vivo abilities of selective
modification in the composition of the complex gut micro-
biota, in particular research has focused on the selective stimu-
lation of growth of mainly bifidobacteria, but also lactobacilli.
In the future, it is likely that this may be expanded
towards other genera, e.g. Eubacterium, Faecalibacterium
and Roseburia. It has become clear that products, causing
such a selective modification in gut microbiota’s composition
and/or activity(ies), could, in addition, either induce beneficial
physiological effects not only in the colon but also within the
whole body and/or contribute towards reducing the risk of
miscellaneous intestinal and systemic pathologies. These
effects are summarised in Table 2 and have been discussed,
on a regular basis, at international conferences(17 – 19) and
were, more recently, reviewed in a handbook(20). They are
also topics for the present document.

The intensive research of the past 15 years has contributed
towards an improved understanding of the complexity of the
gut microbiota. This includes the discovery of new phyla/
genera, their relative concentration in the gut microbiota, the
key role of diet in modulating its composition, the changes
associated with ageing or chronic diseases and the individual
character of gut microbiota composition. In addition, past
research has given us insights into its roles in human physi-
ology and miscellaneous pathophysiological conditions.
The gut microbiota is thus now perceived as a key player in
health and well-being with, as a principal condition, a compo-
sition in which potentially health-promoting dominant
micro-organisms (especially the saccharolytic genera/species,
e.g. bifidobacteria) are elevated and/or more active than the
potentially harmful ones (especially the proteolytic/putrefac-
tive genera/species)(3,21), a situation known as ‘normobiotic’
or ‘eubiotic’. It is now well recognised that, within such a
potentially health beneficial dominant microbiota, the genus
Bifidobacterium plays an important role although future
research may show different genera/species to also be import-
ant. Indeed, it has been hypothesised that increasing bifidobac-
teria in gut microbiota might improve health status and reduce
disease risk.

As a result of discussions with both academic and industry
experts (in the ILSI Europe Prebiotic Expert Group and Pre-
biotic Task force, respectively), the present document does
not aim at proposing a new definition of a prebiotic nor at
identifying which food components/ingredients/supplements
classify as prebiotic but rather to validate and expand the
original idea of the prebiotic concept, as

The selective stimulation of growth and/or activity(ies)
of one or a limited number of microbial genus(era)/
species in the gut microbiota that confer(s) health
benefits to the host,

with ‘selectivity’ being the key condition that needs to be
demonstrated, in vivo, in the complex human (animal) gut
microbiota by applying the most relevant and validated
methodology(ies) to quantify a wide variety of genera/species
composing the gut microbiota;

‘activity(ies)’ meaning a metabolic profile(s), molecular
signalling, prokaryote–eucaryote cell–cell interaction linked
to one specific microbial genus/species or resulting from
the coordinated activity of a limited number of microbial
genus(era);

‘confer(s)’ referring to one or a limited number of selec-
tively stimulated genus(era)/species in the gut microbiota.

In this concept, the use of ‘gut microbiota’ is limited to the
application to food/feed components.

Moreover, it is implicit that ‘health benefit(s)’ must be
linked/correlated, directly or indirectly, with the presence in
relatively high concentrations and/or activity(ies) of one or

a limited number of selectively stimulated micro-organisms
in the gut microbiota. Indeed, such a conceptual approach

emphasises the link between ‘selective stimulation of growth
and/or activity(ies) of one or a limited number of specific bac-

teria genus/species’ and ‘health benefit(s)’. Consequently,
only food components/ingredients/supplements for which

both such a selective stimulation has been scientifically sub-
stantiated and health benefits have been evaluated are included

Table 1. Developing definitions of the prebiotic concept

‘A non-digestible food ingredient that beneficially affects the host
by selectively stimulating the growth and/or activity of one or a
limited number of bacteria in the colon, and thus improves host
health’

Gibson GR & Roberfroid MB (1995) Dietary modulation of the human
colonic microbiota: introducing the concept of prebiotics. J Nutr 125,
1401–1412.

‘A selectively fermented ingredient that allows specific changes,
both in the composition and/or activity in the gastrointestinal
microflora that confers benefits upon host well being and health.’

Gibson GR, Probert HM, Van Loo JAE, et al. (2004) Dietary modulation
of the human colonic microbiota: updating the concept of prebiotics.
Nutr Res Rev 17, 259–275.

‘A dietary prebiotic is a selectively fermented ingredient that
results in specific changes, in the composition and/or activity of
the gastrointestinal microbiota, thus conferring benefit(s) upon
host health.’

ISAPP (2008) 6th Meeting of the International Scientific Association of
Probiotics and Prebiotics, London, Ontario.

Table 2. Summary of the main physiological and patho-physiological
targets for prebiotic effects, i.e effects associated with a selective stimu-
lation of growth and/or activity(ies) of one or a limited number of gut
microorganisms

Improvement and/or stabilization of gut microbiota composition
Improvement of intestinal functions (stool bulking, stool regularity,

stool consistency)
Increase in mineral absorption and improvement of bone health

(bone Ca content, bone mineral density)
Modulation of gastro-intestinal peptides production, energy

metabolism and satiety
Initiation (after birth) and regulation/modulation of immune functions
Improvement of intestinal barrier functions, reduction of metabolic

endotoxemia
Reduction of risk of intestinal infections
and tentatively
Reduction of risk of obesity, type 2 diabetes, metabolic syndrome, etc.
Reduction of risk and/or improvement in the management of

intestinal inflammation
Reduction of risk of colon cancer
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in the review process. The expression ‘prebiotic effect(s)’ will be

used to identify or refer to selective changes in gut microbiota

composition as well as specific (patho-) physiological effects

both in experimental and in human intervention studies.

However, it must be kept in mind that to substantiate a

‘prebiotic’ effect will require the demonstration that such an

effect is likely to be ‘causally’ linked to or at least correlated

with selective change(s) in gut microbiota composition.
Currently and mostly for historical reasons, the majority of

the scientific data (both experimental and human) on prebiotic

effects have been obtained using food ingredients/supplements

belonging to two chemical groups namely inulin-type fructans

(ITF) and the galacto-oligosaccharides (GOS) (for more details

on the chemistry, nomenclature and abbreviations used in the

present review see Table 3). These have repeatedly demon-

strated the capacity to selectively stimulate the growth of bifido-

bacteria and, in some cases, lactobacilli leading to a significant

change in gut microbiota composition. Concurrently, most of

the health benefits possibly associated with the prebiotic effects

were discovered and demonstrated using the same food ingredi-

ents/supplements. This, by no means, precludes other products

of demonstrating such prebiotic effects with the same or other

health benefits. However, since the aim of the present review

is, primarily, to expand and validate the prebiotic concept, it

will neither emphasise nor identify which specific products

can be classified as ‘prebiotic’. A precise list of potential candi-

dates for such a classification would require a detailed review of

all published studies using each potential candidate as well as
the evaluation of their validity and their relevance. This was
not the mandate given to the group of experts who collectively
wrote the manuscript. For such a discussion, the reader should
consult the different chapters in the recently published Hand-
book of Prebiotics (20). It is important to emphasise the fact
that the prebiotic effect and the dietary fibre effect have two
different attributes. Being resistant (partly or totally) to diges-
tion and being fermented (at least the so-called soluble dietary
fibres) both may concern gut microbiota composition and
activity. What makes them different is the selectivity of the pre-
biotic effect as described earlier.

In the concluding chapter, tentative answers to the above ques-
tions will be presented and discussed with the main objective to
prospectively prioritise topics for further research in the field.

Prebiotic effects in the gut

Microbiota of the gastro-intestinal tract

The main authors of this section are Professor Gibson,
Dr Hoyles and Dr McCartney and specifically Professor
Rastall for the in vitro subsection.

The microbiota of the human gastro-intestinal (GI) tract
inhabits a complex ecosystem(22). Factors such as pH, peristal-
sis, nutrient availability, oxidation–reduction potential within
the tissue, age of host, host health, bacterial adhesion, bac-
terial co-operation, mucin secretions containing Igs, bacterial

Table 3. Description and usual nomenclature of the main products with established prebiotic effect

Generic name and structural characteristics
(abbreviation used in text*) Usual names and average DP (DPav)

INULIN-TYPE FRUCTANS
Linear b(2 ! 1) fructosyl-fructose Inulin
GpyFn and/or FpyFn

ITF

Short to large size polymers
(DP 2-60)

Inulin (especially chicory inulin)
(DPav 12)

ITF-DPav12

Short Oligomers
(DP 2-8)
ITF-DPav3-4

Fructo-oligosaccharides (FOS)
FOS scFOS
(enzymatic synthesis from sucrose)
(DPav 3·6)

Oligofructose
(enzymatic partial hydrolysis of inulin) (DPav 4)

Large size polymers
(DP 10-60)
ITF-DPav25

High molecular weight inulin
(physical purification)
(DPav 25)
lcFOS

Mixture Mixture of oligomers and large size polymers
(DP 2-8) þ (DP 10-60)
ITF-MIX

GALACTANS
Mixture of b(1 ! 6); b(1 ! 3); b(1 ! 4) galactosyl-galactose
GOS
Galn-Gal and/or Galn-Glc
(DP 2-8)

Galacto-oligosaccharides,
trans-galacto-oligosaccharides
(enzymatic transgalactosylsation of lactose)

MIXTURE of GALACTANS and INULIN-TYPE FRUCTANS Galacto-oligosaccharides and high
molecular weight inulin

GOS–FOS Usually known as GOS–FOS or scGOS–lcFOS

DP, degree of polymerisation; ITF, inulin-type fructans; lcFOS, long-chain fructo-oligosaccharides; GOS, galacto-oligosaccharides; Gal, galactose;
Glc, glucose; scGOS, short-chain galacto-oligosaccharides.

* The abbreviations mentioned in this table will be used throughout the documents to identify the different compounds used in the studies.
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antagonism and transit time influence the numbers and
diversity of bacteria present in the different regions of the
GI tract(23). Until 20 years ago, our knowledge of the GI
microbiota relied upon cultivation-based methods and recov-
ery of bacteria from faecal samples. However, with the
advent of molecular techniques and their application to
biopsy and faecal samples, our knowledge of the GI micro-
biota has increased dramatically(5 – 16). An understanding of
the bacteria making up the GI microbiota is important due
to its involvement in the development of the GI mucosal
immune system, maintenance of a normal physiological
environment and for providing essential nutrients(24).

The stomach. Although the bacterial load in the stomach
is low in healthy adults (approximately 102 colony forming
unit (CFU) (per ml contents)(25)), the walls of the stomach
are colonised with bacteria. In the healthy adult stomach,
the predominant organisms isolated include lactobacilli, enter-
ococci, ‘catenabacteria’ and bacilli(26). Of the bacteria that
inhabit the stomach, Helicobacter species have been studied
most intensively due to their association with various gastric
complaints. Helicobacter pylori is present in the stomach of
a subset of the population (10 % of those between 18 and
30 years of age; 50 % of those age 60 and over), where it
resides in the mucous layer next to the gastric epithelium(23).
Colonisation with Helicobacter pylori can be asymptomatic,
but the organism is known to cause symptoms such as acute
gastritis (i.e. pain, bloating, nausea and vomiting) and/or
chronic gastritis; it has also been associated with peptic
ulcers and gastric carcinomas(23).

The small intestine (duodenum, jejunum and ileum).
The environment of the duodenum is acidic (pH 4–5) with
lactobacilli and streptococci predominating, and numbers
of bacteria are higher than those found in the stomach
(102–104 CFU (per ml contents);(27)).

Cultivation studies have shown that lactobacilli, strepto-
cocci, veillonellae, staphylococci, actinobacilli and yeasts
to be the most prominent in the duodenum and jejunum(23).
However, due to limitations in cultivation techniques and
the ethical issues surrounding the obtention of biopsy samples
from human subjects, our knowledge of the microbiota of the
small intestine was poor until recently. Table 4 gives details of
the results of recent molecular studies that have provided
additional understanding of the microbiota of the small intes-
tine. But these studies are only informative, because only one
or a few donors have been used in each study, and their
ages have not been representative of the general population.
However, the results of the molecular studies appear to
confirm those of cultivation-based work.

The microbiota changes markedly from the duodenum to the
ileum, as the velocity of the intraluminal content decreases, pH
increases and oxidation–reduction potentials lower, with
bacterial loads increasing to 106–108 CFU (per ml contents)(23).
As transit time in the small intestine is rather rapid (2–4 h) and
the bacterial density relatively low, its impact in terms of overall
fermentation is low compared with the large intestine (see later).
The small intestine is also the site of many bacterial infections,
such as salmonella and some Escherichia coli. For this reason,
the small intestine is also a target for probiotics known to com-
pete with pathogens. Similarly, sialylated acidic oligosacchar-
ides from human milk can block the adhesion of pathogens on
the epithelial surface.

The large intestine. The combination of increased transit
time of the large intestine, increased nutrient availability
(i.e. undigested food material from the upper GI tract,
sloughed-off bacterial cells, microbial cell debris and by-pro-
ducts of microbial metabolism) and a more neutral pH ensures
that the large intestine is a highly favourable environment
for microbial colonisation. As the environment is strictly
anaerobic (.100 mV), in particular obligate anaerobes
prevail. Table 5 gives details of some bacteria that have
been isolated from the GI microbiota. Table 6 gives details
of molecular studies on biopsies from different regions of
the large intestine. In addition to characterising the mucosa-
associated microbiota, Zoetendal et al.(11) demonstrated
that the faecal microbiota differs from that inhabiting the
GI mucosa.

Even today, due to the difficulty of obtaining samples from
the different regions of the intestine, much of the work done in
relation to the ecology and activity of bacteria within the GI
tract is carried out using faecal samples. However, the
faecal microbiota is not representative of that of the GI tract
as a whole(11,14), and inferences made from in vitro studies
in relation to specific GI diseases, particularly those involving
the more-proximal regions of the intestine, should always be
made with this in mind. However, a study examining the GI
microbiota of sudden-death victims has shown that the
faecal microbiota reflects that of the luminal contents of the
descending colon in terms of the culturable component(28).
Molecular-based methods have been used to examine the
faecal microbiota in recent years. Identification of specific
strains isolated from faecal samples has become more accurate
due to the use of 16S ribosomal ribonucleic acid gene
sequence analysis and has improved taxonomic schemes and
our understanding of the bacteria involved in specific meta-
bolic processes (e.g. the role of Roseburia spp. in butyrate pro-
duction(29), and the identification of the mucin-degrading
bacterium Akkermansia muciniphila (30)). This improved
characterisation of viable bacteria has also aided in the
design of probes for use in fluorescence in situ hybridisation
analysis (e.g. Rrec584 for Roseburia spp.(31)).

Early cloning studies examined relatively small numbers of
clones to generate a phylogenetic inventory of the faecal
microbiota of healthy adults. Wilson & Blitchington(22) gener-
ated two clone libraries (one from a 9-cycle PCR (fifty clones,
twenty-seven operational taxonomic units) and the other from
a 35-cycle PCR (thirty-nine clones, thirteen operational taxo-
nomic units)) from a faecal sample from a healthy 40-year-old
male. Of the clones they analysed, 35 % were related to the
Bacteroides group, 10 % to the Clostridium coccoides group
(Clostridium cluster XIVa) and 50 % to the Clostridium
leptum group (Clostridium cluster IV). Less than a quarter
of the sequences analysed were derived from a known bac-
teria. Suau et al.(5) found that of the 284 clones they generated
from a faecal sample from a 40-year-old male, the majority of
the sequences fell into three phylogenetic groups: Bacteroides
(31 %), C. coccoides (44 %) and C. leptum (20 %). The
remaining clones were derived from Streptococcus salivarius
and Streptococcus parasanguinis and bacteria related to
Mycoplasma spp., clostridia, the Atopobium group, Verruco-
microbium spinosum and the Phascolarctobacterium faecium
subgroup. Seventy-six per cent of the clones analysed were
derived from previously unknown bacteria. Blaut et al.(32)
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Table 4. Microbial diversity of the mucosa of the human small intestine as determined by 16S ribosomal ribonucleic acid gene sequence analysis

Subject Biopsy
No. of clones

examined

No. of operational
taxonomic units

identified Phylum: species identified* Reference

35-year-old
healthy female

Distal ileum Unknown Unknown Bacteroidetes: Bacteroides vulgatus, uncultured Bacteroides sp. adhufec51 and Parabacteroides spp.
Firmicutes: Clostridium cluster XIVa (uncultured bacteria mpn group 24 and 66·25) and Streptococcus

salivarius

Wang et al.(12)

54-year-old
healthy female

Jejunum 88 22 Actinobacteria: Micrococcus mucilaginosus (1 %)
Bacteroidetes: Prevotella sp. oral clone and P. melaninogenica (3 %)
Firmicutes: Streptococcus mitis, S. salivarius, S. oralis, S. parasanguis and S. anginosus (68 %);

Clostridium clusters XI (Mogibacterium neglectum and Peptostreptococcus anaerobius) and IX
(Veillonella atypica and V. parvula) (3 and 7 %, respectively)

Fusobacteria: Fusobacterium sp. BS011 (3 %)
Proteobacteria: Haemophilus parainfluenzae, Pseudomonas putida, Acinetobacter johnsonii, A. lwoffii

and A. haemolyticus and
Neisseria subflava (13 %)
Others (2 %)

Wang et al.(13)

Distal ileum 85 33 Bacteroidetes: B. vulgatus, Bacteroides spp., B. thetaiotaomicron, B. ovatus, B. uniformis and Alistipes
putredinis (49 %)

Firmicutes: Streptococcus mitis and S. oralis (2 %); Clostridium clusters XIVb (Clostridium lactatifermen-
tans), IX (Dialister invisus), IV (Faecalibacterium prausnitzii, Oscillospira guilliermondii and Clostridium
orbiscindens) and XIVa (Clostridium spp., Clostridium symbiosum, Coprococcus catus, Dorea formici-
generans, Ruminococcus gnavus, R. obeum, Ruminococcus spp. and Roseburia intestinalis) (5, 5, 7
and 20 %, respectively)

Fusobacteria: Fusobacterium varium (1 %)
Proteobacteria: Sutterella wadsworthensis (1 %)
Verrucomicrobia: Verrucomicrobium spp. (5 %)
Others (5 %)

74-year-old
male at autopsy

Jejunum 92 9 Firmicutes: Veillonella parvula (4 %), Lactobacillus reuteri (1 %), L. lactis (11 %), L. mali (73 %),
Streptococcus salivarius (4 %) and S. pneumoniae (1 %)

Proteobacteria: Actinobacillus actinomycetemcomitans (5 %)

Hayashi et al.(15)

Ileum 89 17 Firmicutes: Veillonella parvula (15 %), Clostridium lituseburense (1 %), Abiotrophia sp. (1 %),
Lactobacillus reuteri (1 %), L. mali (20 %), L. lactis (14 %), Streptococcus salivarius (9 %),
S. constellatus (1 %) and S. pneumoniae (9 %)

Fusobacteria: Leptotrichia buccalis (1 %) and Fusobacteria spp. (1 %)
Proteobacteria: Neisseria gonorrhoeae (1 %) and Actinobacillus actinomycetemcomitans (22 %)
Others (1 %)

85-year-old
female at autopsy

Jejunum 90 13 Bacteroidetes: B fragilis (1 %)
Fusobacteria: Phascolarctobacterium faecium (1 %), Eubacterium ventriosum (1 %), E. cylindroides

(1 %), Clostridium purinolyticum (3 %), C. leptum (1 %) and Enterococcus group (5 %)
Proteobacteria: Escherichia coli (4 %) and Klebsiella subgroup (67 %)
Others (2 %)

Hayashi et al.(15)

Ileum 94 4 Firmicutes: Enterococcus group (13 %)
Proteobacteria: Klebsiella subgroup (85 %)

87-year-old
female at autopsy

Jejunum 91 3 Firmicutes: Enterococcus group (7 %)
Proteobacteria: Actinobacillus actinomycetemcomitans (1 %) and Klebsiella planticola (92 %)

Hayashi et al.(15)

Ileum 89 15 Firmicutes: Rumincococcus gnavus (2 %), Peptostreptococcus anaerobius (6 %), P. micros (2 %),
Enterococcus group (33 %), Streptococcus salivarius (8 %) and Clostridium leptum (3 %)

Proteobacteria: Actinobacillus actinomycetemcomitans (1 %), Escherichia subgroup (16 %),
Klebsiella subgroup (2 %), Klebsiella planticola (21 %) and Xenorhabdus subgroup (5 %)

No., number.
* Numbers in parentheses represent proportion of clones ascribed to a particular phylum/genus/cluster where known. Names of nearest phylogenetic relatives are given.
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used a cloning approach to demonstrate that microbial diver-
sity in faeces increases with age. It was found that the
number of operational taxonomic units corresponding to
known molecular species was highest in infants and lowest
in the elderly subjects, with 92 % of sequences from the
elderly subjects corresponding to previously unknown
bacteria.

As molecular methods have become more widely available
and less time consuming and their relative costs have
decreased, more ambitious cloning studies in which thousands
of sequences have been examined have been carried out(14,33).
The results of these studies in terms of the groups of bacteria
represented by the largest number of clones and the identifi-
cation of previously unknown bacteria are in accordance
with those of Wilson & Blitchington(22) and Suau et al.(5),
but are notable for the characterisation of several actinobacter-
ial and proteobacterial sequences from human faecal samples.

Techniques such as temperature gradient gel electrophoresis
and denaturing gradient gel electrophoresis (DGGE) allow
higher numbers of samples from more donors to be examined
than traditional cloning studies. Temperature gradient gel elec-
trophoresis was used by Zoetendal et al.(9) to examine the total
bacterial communities of faecal samples from sixteen adults.
Host-specific fingerprints were generated, demonstrating inter-
individual variation in the composition of the faecal micro-
biota and confirming the results of cultivation studies. Some
bands were seen in fingerprints from multiple donors,
suggesting that species of the predominant microbiota were
common across individuals. In addition, by obtaining samples
from two donors over a 6-month period, the authors showed
that the profiles of these donors did not differ significantly
over time, demonstrating that predominant microbial species
were relatively stable without dietary intervention. Excision
and sequencing of bands of interest allowed the authors to per-
form a phylogenetic analysis on their samples, the results of
which demonstrated that the majority of bacteria represented
in their fingerprints did not correspond to known bacterial
species. Of the prominent bands identified in almost all
samples, most belonged to different Clostridium clusters,
with the remainder identified as Ruminococcus obeum,
Eubacterium hallii and Faecalibacterium prausnitzii. Zoetendal

et al.(10), using DGGE, demonstrated that host genotype
affects the composition of the faecal microbiota. In that
study, the authors examined faecal samples from fifty donors
of varying relatedness. A higher similarity was seen between
fingerprints from monozygotic twins living apart than between
those of married couples or pairs of twins. There was a signifi-
cant difference between the fingerprints of unrelated people
grouped by either gender or living arrangements, and no
relationship between the fingerprints generated and the
age difference of siblings. Temporal temperature gradient
gel electrophoresis and DGGE studies examining the faecal
microbiota of children and infants have confirmed the
impact of host genotype on the composition of the faecal
microbiota(34). Other studies employing DGGE have used
primer sets that allow examination of the composition and
dynamics of specific groups of bacteria (Table 7). The detec-
tion limit seems to be the main barrier to overcome in these
studies, particularly when examining populations such as bifi-
dobacteria and lactobacilli – the commonest prebiotic targets.

With respect to the prebiotic concept, it is important to
understand that apart from knowledge on the complexity of
the gut microflora, it is also known that certain bacteria are
associated with toxin formation and even pathogenicity
when they become dominant. Others are associated with car-
cinogen generation and the metabolism of other xenobiotics.
These potentially harmful bacteria belong to species within
groups such as clostridia and bacteroides. Whereas knowledge
on overt or latent pathogens has advanced markedly, due to
the symptoms they can cause, there is less consensus on
what characterises potentially harmful bacteria (without
direct pathogenicity) and potentially healthy bacteria. Still
potentially healthy bacterial groups are characterised by a ben-
eficial metabolism to the host through their SCFA formation,
absence of toxin production, formation of defensins or even
vitamin synthesis. They may also inhibit pathogens through
a multiplicity of mechanisms. Their cell wall is devoid of lipo-
plysaccharides or other inflammatory mediators (i.e. mainly
Gram positive). Some may also compete with receptor sites
on the gut wall and inhibit pathogen persistence and thus
reduce the potential risk of infection. They may also compete
effectively for nutrients with pathogens. One subject of

Table 5. Bacteria, their substrates and products in the human large intestine Taken from Salminen et al.(377)

Bacteria Gram reaction
Mean concentration

(log10 per (g dry weight faeces)) Mode of action on substrate(s)
Fermentation

product(s)

Bacteroides 2 11·3 Saccharolytic Ac, Pr, Su
Eubacteria þ 10·7 Saccharolytic, some aa-fermenting species Ac, Bu, La
Bifidobacteria þ 10·2 Saccharolytic Ac, La, f, e
Clostridia þ 9·8 Saccharolytic, some aa-fermenting species Ac, Pr, Bu, La, e
Lactobacilli þ 9·6 Saccharolytic La
Ruminococci þ 10·2 Saccharolytic Ac
Peptostreptococci þ 10·1 Saccharolytic, some aa-fermenting species Ac, La
Peptococci þ 10·0 aa-fermentation Ac, Bu, La
Methanobrevibacter þ 8·8 Chemolithotrpohic CH4

Desulfovibrio 2 8·4 Various Ac
Propionibacteria þ 9·4 Saccaharolytic, lactate fermentation Ac, Pr
Actinomyces þ 9·2 Saccharolytic Ac, Pr
Streptococci þ 8·9 Carbohydrate and aa-fermentation La, Ac
Fusobacteria 2 8·4 aa-fermentation, assimilation of carbohydrates Bu, Ac, La
Escherichia 2 8·6 Carbohydrate and aa-fermentation Mixed acids

aa, amino acid; Ac, acetate; Pr, propionate; Su, succinate; Bu, butyrate; La, lactate; f, formate; e, ethanol.
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Table 6. Microbial diversity of the mucosa of the human large intestine as determined by 16S ribosomal ribonucleic acid gene sequence analysis

Subject Biopsy
No. of clones

examined

No. of operational
taxonomic units

identified Phylum: species identified* Reference

35-year-old
healthy
female

Ascending
colon

27 Bacteroidetes: Bacteroides vulgatus, Bacteroides spp.
Firmicutes: Clostridium cluster XIVa (uncultured bacteria mpn group 24 and 66·25,

Ruminococcus gnavus)

Wang et al.(12)

Descending
colon

27 Bacteroidetes: Bacteroides vulgatus, uncultured Bacteroides sp. adhufec51 and Parabacteroides spp.
Firmicutes: Clostridium cluster XIVa (uncultured bacteria mpn group 24 and 66·25)

68-year-old
female with
mild sigmoid
diverticulosis

Descending
colon

190 Bacteroidetes (17·3 %): Bacteroides vulgatus, uncultured Bacteroides sp. HUCC30 and Parabacteroides spp.
Firmicutes (1 %): Streptococcus pneumoniae
Proteobacteria (39·6 %): Shigella flexneri, S. sonnei, Stenotrophomonas maltophila, Leptothrix cholodnii,

Herbaspirillum lemoignei, Methylobacterium sp., Sphingomonas sp. and Haemophilus influenzae
Firmicutes: Bacillus–Lactobacillus–Streptococcus (1·3 %); Clostridium cluster I (Clostridium perfringens),

IV (Faecalibacterium prausnitzii, Ruminococcus spp., Anaerofilum spp. and uncultured bacterium CB25),
IX (Veillonella atypica) and XIVa (uncultured bacteria mpn group 24 and AF54, Lachnospira pectinoschiza
and Clostridium xylanolyticum) (1·3, 17·9, 1·8, and 15·3 %, respectively)

Wang et al. (12)

54-year-old,
healthy
female

Ascending
colon

86 37 Bacteroidetes: Bacteroides vulgatus, Bacteroides spp., B. thetaiotaomicron, B. ovatus, B. uniformis and
Alistipes putredinis (27 %)

Firmicutes: Clostridium clusters XIVb (Clostridium lactatifermentans), IX (Dialister invisus and
Propionispira arboris), IV (Faecalibacterium prausnitzii, Clostridium sporosphaeroides, C. orbiscindens
and Oscillospira guilliermondii) and XIVa (Eubacterium halii, E. elegans, E. ramulus, Dorea
formicigenerans, Ruminococcus lactaris, R. gnavus, Ruminococcus sp., Clostridium symbiosum,
Clostridium spp., C. xylanolyticum and Roseburia intestinalis) (6, 9, 13 and 33 %, respectively)

Fusobacteria: Fusobacterium varium (1 %)
Proteobacteria: Escherichia coli, Acinetobacter johnsonii and Sutterella wadsworthensis) (4 %)
Verrucomicrobia: Verrucomicrobium spp. (5 %)
Others (1 %)

Wang et al. (13)

Rectum 88 32 Bacteroidetes: Bacteroides vulgatus, Bacteroides spp., B. thetaiotaomicron, B. uniformis and Alistipes
putredinis (44 %)

Firmicutes: Clostridium clusters XI, XIVb, IX, IV and XIVa (Clostridium spp.,
Eubacterium halii, Dorea formicigenerans, Ruminococcus lactaris, R. torques, Ruminococcus spp. and
Roseburia intestinalis) (1, 1, 5, 8 and 29 %, respectively)

Fusobacteria: Fusobacterium varium (1 %)
Proteobacteria: Escherichia coli (2 %)
Verrucomicrobia: Verrucomicrobium spp. (9 %)

74-year-old
male at
autopsy

Caecum 90 41 Bacteroidetes: Bacteroides fragilis (3 %) and Prevotella nigrescens (1 %)
Firmicutes: Veillonella parvula (2 %), Clostridium xylanolyticum (2 %), C. polysaccharolyticum (2 %),

C. leptum (23 %), C. lituseburense (1 %), C. glycolicum (1 %), Ruminococcus hansenii (8 %), R. gnavus
(4 %), Butyrivibrio fibrisolvens (22 %), Eubacterium ventriosum (1 %), Lachnospira multipara (4 %),
Lactobacillus reuteri (1 %), Streptococcus salivarius (1 %), S. pneumoniae (3 %) and unclassified (14 %)

Proteobacteria: Actinobacillus actinomycetemcomitans (3 %)

Hayashi et al.(15)

Recto-sigmoid
colon

90 38 Bacteroidetes: Bacteroides fragilis (4 %) and unclassified (1 %)
Firmicutes: Veillonella parvula (1 %), Phascolarctobacterium faecium (3 %), Ruminococcus hansenii

(9 %), R. gnavus (6 %), Butyrivibrio fibrisolvens (4 %), Eubacterium ventriosum (4 %), Clostridium
polysaccharolyticum (2 %), C. leptum (30 %), unclassified (6 %)

Proteobacteria: Desulfovibrio desulfuricans (2 %) and Escherichia subgroup (13 %)
Other (2 %)

85-year-old
female at
autopsy

Caecum 91 11 Bacteroidetes: Bacteroides fragilis (3 %)
Firmicutes: Ruminococcus gnavus (2 %), Clostridium lituseburense (2 %), Enterococcus group (35 %)
Proteobacteria: Klebsiella subgroup (36 %)
Actinobacteria: Bifidobacterium infantis (2 %)

Hayashi et al.(15)
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intensive research is their stimulation of immunological
defence systems, as discussed in section ‘Prebiotic effects
and immune system’ of the present paper. Acknowledged
examples are bifidobacteria and lactobacilli – known as useful
probiotics. Intermediate genera like streptococci, enterococci,
eubacteria and bacteroides can be classified as potentially
beneficial to health or potentially harmful, depending on the
species. With regard to some of the most recently identified
genera in the major phylla (Firmicutes, Actinobacteria and
Bacteroidetes), classification as potentially beneficial to
health or potentially harmful still remains to be made.
A scheme describing the hypothesis of a balanced microbiota
has been proposed by Gibson and Roberfroid(3) and recently
endorsed by ISAPP (2008) even though it is stillsubject of
ongoing discussion. A revised version of that scheme includ-
ing the most recent knowledge on gut microbiota composition
is presented in Fig. 1.

The prebiotic concept is based on the selective stimulation
of the host’s own beneficial microflora by providing specific
substrate for their growth and metabolism. Today, the effect
is measured by using bifidobacteria or lactobacilli as markers,
but may include others in the future, if their positive nature
can be confirmed.

It has been shown by several studies (see section ‘Human
studies showing prebiotic effects in healthy persons’ of the
present paper) that dietary intervention can selectively modu-
late the indigenous composition of the gut microbiota. This is
the basis of a prebiotic effect and this has been assessed
through reliable molecular-based analyses.

Prebiotic effects and fermentation and physiology

Bacterial fermentation in the large gut. It is clear that a
complex, resident gut microflora is present in human subjects.
While the transit of residual foodstuffs through the stomach
and small intestine is probably too rapid for the microbiota
to exert a significant impact, this slows markedly in the
colon. Colonic micro-organisms have ample opportunity to
degrade available substrates(35,36). These may be derived
either from the diet or by endogenous secretions(37).

Due to the high residence time of colonic contents, as well
as a diverse and profuse flora, the colonic microbiota plays a
more important role in host health and well-being than is the
case in the small intestine. Beneficial effects can be related to
their metabolism (i.e. fermentation profiles and end products),
capacity for producing vitamins, antioxidants (reduction
equivalents), defensins against potentially harmful competi-
tors, exchange of molecular signals between the different
genera/species but also with the eukaryotic epithelial cells.
Potentially beneficial bacteria are further characterised by
the absence of secondary metabolic pathways leading to
toxic metabolites of, for example xenobiotics or
phytochemicals.

The prebiotic concept emphasises the specific stimulation of
such a microbiota leading to a reduction of the metabolic
activity of potentially harmful bacterial. This section focusses
essentially on primary metabolism, whereas the following
ones deal with adverse effects and their prevention.

Substrate utilisation in the large intestine. The colonic
microflora derive substrates for growth from the human diet
(e.g. non-digestible oligosaccharides, dietary fibre andT
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Table 7. Details of some TGGE and denaturing gradient gel electrophoresis studies of the faecal microbiota

Target population Subject Investigation Overall results Reference

All bacteria Seven males, nine females Interindividual variation; stability over
6 months monitored for two subjects

Differences in fingerprints among individuals demonstrated that each
individual harboured a unique microbiota (interindividual variation);
TGGE profiles were highly consistent over time for individuals,
demonstrating intraindividual stability

Zoetendal
et al.(9)

Lactic acid bacteria Two males, two females

Two adults on probiotic trial

Development and validation of group-
specific primers for human studies

Monitor changes in LAB population during
Lactobacillus feeding

Detection of Lactobacillus at . 1 £ 105 cfu per (g wet weight faeces);
interindividual variation; intraindividual variation over 6 months

Amplicon for the probiotic strain only seen during feeding period; one
donor had stable fingerprint over time, while the other showed variation

Walter
et al.(382)

Bifidobacteria Three males, three females Stability of bifidobacterial population over
4 weeks

Multiple bifidobacterial biotypes seen in five of six subjects; no amplicon
could be generated for one of the subjects

Satokari
et al.(383)

Lactobacilli,
leuconostocs
and pediococci

Twelve adults One baby boy Lactobacillus population stability over time
(0, 6 and 20 months for adults; 0–5
months for baby boy)

Interindividual variation and variable intraindividual stability in adults
(stable in some individuals, but more dynamic in others); no ampli-
cons prior to day fifty-five for baby, indicating that Lactobacillus were
below the detection limit, but complexity of fingerprint increased after
introduction of solid foods to the diet

Heilig
et al.(384)

All bacteria Fifty adults of varying related-
ness plus four different
primates

Impact of genetic relatedness on compo-
sition of the faecal microbiota

Positive linear relationship between host genetic relatedness and simi-
larity of fingerprints; significantly higher similarity between unrelated
humans when compared with other primates

Zoetendal
et al.(11)

All bacteria Thirteen pairs of identical twins,
seven pairs of fraternal twins
and twelve unrelated control
pairs (4 months–10 years of
age)

Examine faecal samples from related
and unrelated children

Profiles for the unrelated group had the lowest similarity; highest levels
of similarity seen between profiles from genetically identical twins;
significant differences between profiles from fraternal and paternal
twins, strongly suggesting a genetic influence over the composition
of the faecal microbiota

Stewart
et al.(34)

Clostridium leptum group
(cluster IV)

Six adults (23–43 years of
age) and five children
(5·5–10 years of age)
Seven faecal samples from
a 10-year-old child over
3 years

Investigate the diversity of the Clostridium
leptum subgroup in human faeces

Showed host-specific profiles for the adults, but at least four bands
were seen in eight of eleven subjects Demonstrated structural suc-
cession of the over the first 2 years, with stabilization in the third year

Shen
et al.(385)

All bacteria
Bacteroides fragilis subgroup
Clostridium coccoides/
Eubacterium rectale group

(cluster XIVa)
Clostridium lituseburense

group (cluster XI)

Three groups of ten healthy
humans

Effect of a prebiotic substrate and a
probiotic organism and their synbiotic
combination on the faecal microbiota
over 120 d

All populations examined remained fairly stable over the course of the
study, with interindividual variation observed; intraindividual stability,
with minor changes attributed to diet; one band appeared or intensi-
fied in the universal profiles after ingestion of lactulose (attributed to
Bifidobacterium adolescentis)

Vanhoutte
et al.(386)
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un-digested proteins reaching the colon) as well as from
endogenous sources such as mucins, the main glycoprotein
constituents of the mucus which lines the walls of the GI
tract(38). The vast majority of the bacteria in the colon are
strict anaerobes and thus derive energy from fermentation.
The two main fermentative substrates of dietary origin are
non-digestible carbohydrates (resistant starch, NSP, dietary
fibres, non-digestible oligosaccharides of plant origin) and
proteins which escape digestion in the small intestine(39,40).
Of these, carbohydrate fermentation is more energetically
favourable, leading to a gradient of substrate utilisation
spatially through the colon(41). The proximal colon is a sac-
charolytic environment with the majority of carbohydrate
entering the colon being fermented in this region. As digesta
moves through to the distal colon, carbohydrate availability
decreases, proteins and amino acids become increasingly
important energy sources for bacteria(41).

The main substrates for bacterial growth are dietary
non-digestible carbohydrates that evade upper intestinal
hydrolysis and absorption. Non-digestible carbohydrates com-
prise resistant starch and resistant dextrins, NSP (e.g. pectins,
arabinogalactans, gum Arabic, guar gum and hemicellulose),
non-digestible oligosaccharides (e.g. raffinose, stachyose,
ITF, galactans and mannans) as well as undigested portions
of disaccharides (e.g. lactose) and sugar alcohols (e.g. lactitol
and isomalt)(37,42,43). Resistant starch, NSP, most dietary fibres
but also some non-digestible oligosaccharides are fermented
by a wide range of the colonic bacterial although the degree
of their breaking down might vary(44). However, some non-
digestible oligosaccharides entering the colon are rapidly
and quantitatively but selectively fermented (e.g. raffinose,

ITF and galactans) by a small number of bacteria (e.g. bifido-
bacteria and lactobacilli)(45).

The overall intake of non-digestible carbohydrate in a
Western diet is estimated between 20 and 30 g/d(46). Endogen-
ous carbohydrates, chiefly from mucins and chondroitin
sulphate, contribute about 2–3 g/d of fermentable substrate(47).
The main saccharolytic species in the colonic microflora
belong to the genera Bacteroides, Bifidobacterium, Rumino-
coccus, Eubacterium, Lactobacillus and Clostridium.

The second important group of substances for bacterial
growth are proteins, peptides and amino acids: Approximately,
25 g of protein enters the colon daily(48). Other sources of
proteins in the colon include non-digestible food components,
bacterial secretions, sloughed off epithelial cells, bacterial
lysis products and mucins. The main proteolytic species
belong to the genera Bacteroides and Clostridium.

Products of microbial fermentation in the colon and their
effects on the host. Carbohydrates in the colon are fermented
to SCFA, mainly, acetate, propionate and butyrate(49 – 51) and a
number of other metabolites such as the electron sink products
lactate, pyruvate, ethanol, succinate as well as the gases H2,
CO2, CH4 and H2S(52). As a whole, SCFA acidify the luminal
pH which suppresses the growth of pathogens(53), they also
influence intestinal motility(54). They are rapidly absorbed by
the colonic mucosa and contribute towards energy require-
ments of the host(49,55,56). Acetate is mainly metabolised in
human muscle, kidney, heart and brain propionate that is
cleared up by the liver, is a possible gluceogenic substrate
and it might contribute to inhibition of cholesterol synthesis.
It might also play a role in the regulation of adipose tissue
deposition(57,58).
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Fig. 1. Schematic representation of an adult gut microbiota. Major phylla and genera are located on a logarithmic scale as no. of CFU/g of faeces. Genera on the

left site are likely to be potentially harmful whereas those on the right site are potentially beneficial to health. Those that sit both on the left site and the right site

either contain species that are potentially harmful and species that are potentially beneficial to health or contain genera/species that still need to be classified.

Indeed many of these have only recently been identified in the gut microbiota and their activity(ies) is/are still largely unknown.
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Butyrate on the other hand is largely metabolised by
the colonic epithelium where it serves as the major energy
substrate as well as a regulator of cell growth and differen-
tiation(50,59). It is also acknowledged that it may reduce the
risk of colon cancer through stimulating apoptosis. Evidence
for the role of butyrate in relation to the administration of
ingredient showing a prebiotic effect is described later in the
present paper. Rectally administered butyrate was also
shown to relieve subjects from inflammatory bowel disease
(IBD) symptoms(60).

Proteins reaching and/or produced in the colon are fermented
to branched chain fatty acids such as isobutyrate, isovalerate
and a range of nitrogenous and sulphur-containing compounds.
Unlike carbohydrate fermentation products which are recog-
nised as beneficial to health, some of the end products of
amino acids metabolism may be toxic to the host, e.g. ammonia,
amines and phenolic compounds(48). Consequently, excessive
fermentation of proteins, especially in the distal colon, has
been linked with disease states such as colon cancer and IBD,
which generally start in this region of the large intestine
before affecting more proximal areas. Thus, it is favourable
to shift the gut fermentation towards saccharolytic fermentation
over a prolonged period of time into the distal parts.

Conclusions

(1) Overall, saccharolytic fermentation leads to the formation
of end products (SCFA) that are recognised as being ben-
eficial to the host.

(2) Protein degradation on the other hand is likely to give rise
to toxic substances such as ammonia and amines.

(3) Non-digestible carbohydrates with prebiotic effects selec-
tively stimulate the growth of bacterial genera/species
characterised exclusively, or preferably, by saccharolytic
fermentation. Such a selective effect on gut microflora
composition is likely to be more beneficial to host
health than the one which would favour the metabolism
of both carbohydrates and proteins. This is well estab-
lished today for prebiotic effects favouring the growth
of bifidobacteria and lactobacilli. Emerging genera are
Eubacterium, Faecalibacterium and Roseburia –
although more evidence is needed on their physiological
properties.

In vitro tests for prebiotic effect

In vitro models aim at studying prebiotic effects independently
from their passage through the upper parts of the GI tract even
if digestion is sometimes partly simulated. These models are
thus only indicative of a potential prebiotic effect, however,
they do not prove the prebiotic attribute of a particular
product as in vivo studies need to be performed to definitively
demonstrate that the compound under investigation selectively
stimulates the growth and/or activity(ies) of one or a limited
number of microbial genus(era)/species in the gut microbiota
that confers health benefits to the host. Since, as discussed
earlier, the aim of the present paper is not to provide a list
of food ingredients/supplements that classify as prebiotics,
the following sections will only refer to a few examples to

illustrate the potentials and the limits of in vitro tests as
well as the advantages and disadvantages of the different
experimental models.

Batch culture (pH or non-pH controlled) studies where
different substrates are incubated with either pure culture of
selected bacteria or faecal slurries subsequently analysed for
microbial composition can be used:

(1) to study the selectivity of fermentation (including
possible mechanism of selectivity) by, for example, bifi-
dobacteria, lactobacilli of different substrates (e.g. main
oligosaccharides contained in soyabeans are raffinose
and stachyose which have been found to be good
growth promoters of Bifidobacterium infantis but not
E. coli, Streptococcus faecalis or Lactobacillus
Lactobacillus acidophilus (61)) or similar substrates differ-
ing in molecular weights (e.g. wheat arabinoxylans)
showing, e.g. that molecular weight can be an important
factor in selectivity(62).

(2) to show changes in faecal microbiota (e.g. increase
in bifidobacteria) but also to compare the efficacy of
different substrates (e.g. ITF, starch, polydextrose,
fructose and pectin, galactans, xylo-oligosaccharides,
soyabean oligosaccharides(63 – 65)).

(3) to measure and to compare the evolution of gas
and SCFA production as a result of the fermentation of
different substrates(64).

Single-stage chemostat studies with ITF were used to compare
differing techniques to analyse microbiota composition,
demonstrating that discrepancies might exist between classical
microbiological techniques and molecular approaches. Agar
plate counts showed an increase in the combined populations
of bifidobacteria and lactobacilli reaching 98·7 % of the total
bacterial flora by steady state. However, 16S ribosomal ribo-
nucleic acid genus-specific probes indicated an initial increase
in the bifidobacteria population which decreased after
6 d, while lactobacilli thrived in the low pH fermenter
(pH 5·2–5·4) maintaining a high population at steady state.
Changes observed in the SCFA profile corresponded well
with the population data obtained through probe methods(66).

Continuous culture systems inoculated with faecal slurries
can be used to investigate fermentation profiles showing, for
example that in accordance with earlier studies, bifidobacteria,
and to a lesser extent lactobacilli preferred ITF to glucose,
whereas bacteroides could not grow on these substrates(67,68).
By varying parameters in the chemostat, the conditions
for growth of bifidobacteria and inhibition of bacteroides,
clostridia and coliforms can be further analysed showing
that low pH (pH 5·5), high culture dilution rate (0·3 h21)
and 1 % (w/v) concentration of carbohydrate (i.e. similar to
the physico-chemical environment of the proximal colon)
are optimum.

The three-stage gut model reproduces the three segments of
the colon (proximal/ascending, transverse and distal/descend-
ing). It is used to confirm the effects observed in the previous
models. Studies using this model show enhanced proliferation
of bifidobacteria and/or lactobacilli by ITF and galactans in
conditions resembling the proximal/ascending colon(67,69,70).
Whereas studies using models of vessels two and three
(modeling transverse and descending colon respectively)
displayed very little change in microbiota when fermenting
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galactans(70). In the same model, changes in enzyme activities
(b-glycosidase, b-glucuronidase, azoreductase and arylsulpha-
tase) can also be monitored showing their suppression after
fermentation of galactans(70) or soyabean–oligosaccharides(71).
Investigating the effect of pH and substrate concentration on
the fermentation selectivity of galactans alongside other
products, Palframan et al.(72) reported a strong bifidogenic
effect at pH 6 and at 2 % (w/v) and suggested that they may
be well fermented in the distal colon. In another study,
galactans of rather low molecular weight (1 % w/v) had a
strong bifidogenic effect which showed good persistence
through the first two vessels, with a weaker response in
the third(73).

The simulator of the human intestinal microbial ecosystem
model consists of a series of five temperature and pH-con-
trolled vessels that simulate the stomach, small intestine,
ascending, transverse and descending colons, respectively.
It can be fed with a complex growth medium containing
selected substrates (e.g. ITF) to study their fermentation
including the monitoring of metabolites and to analyse their
effect on enzyme activities and composition of the microbiota
by using a multiphase approach consisting of plate counting,
quantitative PCR and DGGE(74). Results have shown a signifi-
cant increase in lactobacilli in the transverse and descending
colon vessels. Low levels of bifidobacteria were recorded in
the colon vessels. DGGE analysis revealed that bacteria
in the ascending colon vessel grouped together as the bacteria
in the other colon vessels did. Bifidobacteria clustered
according to the time point rather than the vessel. Quantitative
PCR, however, revealed a significant increase in bifidobacteria
population in all three-colon vessels. ITF feeding also resulted
in an increase in the production of SCFA, particularly propio-
nate and butyrate, indicating a shift towards a more saccharo-
lytic fermentation. The same model system and metabolic
analysis can also be used to investigate the effect of different
composition of the same substrates (e.g. of ITF with different
molecular weight) on fermentation properties(75).

A more sophisticated in vitro model of fermentation in
the proximal large intestine is the TNO-intestinal model-2
model(76,77). This consists of a series of linked glass vessels
containing flexible walls. This arrangement allows simulation
of peristalsis together with temperature regulation by means of
pumping water through the space between the glass and flexible
walls. The flow is controlled by computer to more accurately
simulate peristalitc mixing. The vessels are further equipped
with a hollow fibre membrane in the lumen to simulate absorp-
tion of water and SCFA. TNO-intestinal model-2 has been
used to investigate the population changes on the fermentation
of lactulose using culture-based methods coupled with
DGGE(77). Increases in lactobacilli and enterococci were seen.

Conclusions

(1) In vitro models allow comparative studies on fermenta-
tion by and/or effects of ingredients showing a potential
prebiotic effect on isolated or mixture of bacterial strains,
including faecal flora, as well as identification and
eventually quantification of the resulting fermentation
products especially the SCFA. They also allow comparative

analysis of the different analytical methods available to
identify and quantify the various genera/species.

(2) They further allow the analysis of the potential/absence
of toxin formation or change in enzyme activities
potentially associated with beneficial or harmful effects.

(3) The multi-stage models that are designed to mimic the
different segments of the intestine, especially the proxi-
mal/ascending, transverse and distal/descending colon,
are useful in localising the site of the selective stimulation
of bacterial growth.

(4) The results can be used to select potential candidate
showing prebiotic effect(s) for in vivo studies especially
in human volunteers, which remain the obligatory steps
to definitively prove the prebiotic effect attribute.

Human studies showing prebiotics effect in healthy persons

By reference to the prebiotic concept as defined earlier,
criteria for classification as a prebiotic are(4)

(1) resistance to gastric acidity, hydrolysis by mammalian
digestive enzymes and GI absorption;

(2) fermentation by intestinal microflora;
(3) selective stimulation of the growth and/or activity(ies) of

one or a limited number of intestinal bacteria beneficially
associated with health and well-being.

Any dietary component that reaches the colon intact (or partly
so) is a potential candidate for prebiotic attribute, however, it
is the latter of the three above criteria which is crucial but still
the most difficult to fulfil (and which is often ignored when
citing ingredients as ‘prebiotics’). Even if in addition to ITF
and GOS, several dietary carbohydrates (e.g polydextrose,
soyabean oligosaccharides, lactosucrose, isomalto-oligosac-
charides, gluco-oligosaccharides, xylylo-oligosaccharides,
gentio-oligosaccharides, mannan-oligosaccharides, lactose,
hemicellulose, resistant starch, resistant dextrins, oat bran,
oligosaccharides from melibiose, b-glucans, N-acetylchito-
oligosaccharides, sugar alcohols such as lactitol, sorbitol and
maltitol) show some fermentation selectivity when tested in
laboratory systems (see section ‘In vitro tests for prebiotic
effect’ in the present paper). However, the ultimate test for
prebiotic activity (i.e. human volunteer trials) is lacking for
the majority of these compounds. As for today, ITF and
GOS are the compounds the most extensively tested in
human trials that have confirmed their prebiotic effects as evi-
dence by their ability to change the gut flora composition after
a short feeding period at reasonably low doses(20) (Table 8).
ITF, the most extensively tested forms in the literature,
occur naturally in several foods such as leek, asparagus, chic-
ory, Jerusalem artichoke, garlic, artichoke, onion, wheat,
banana and oats, as well as soyabean. However, these foods
contain only trace levels of ITF, so developments have
taken the approach of removing the active ingredient from
such sources (especially chicory roots) and adding them to
more frequently consumed products in order to attain levels
whereby a prebiotic effect may occur, e.g. cereals, confection-
ery, biscuits, infant foods, yoghurts, table spreads, bread,
sauces, drinks(4). Other food ingredients/additives with poten-
tial prebiotic effects are already under investigations and will
certainly be further developed in the future from dietary fibres
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Table 8. Example of human studies (healthy persons) designed to determine the prebiotic effect of short-chain fructo-oligosaccharides (scFOS), fructo-oligosaccharides (FOS), galacto-oligosaccharides
(GOS) and inulin

Prebiotic Subject Dose (g/d) Duration Effect References

Inulin Eight healthy humans, placebo controlled 34 64 d Significant increase in bifidobacteria established by FISH Kruse et al.(387)

scFOS Forty healthy humans 2·5–20 14 d Significant increase in bifidobacteria levels without excessive
gas production

Bouhnik et al.(388)

Inulin and FOS Four or eight healthy humans 15 45 d Bifidobacteria becoming predominant in faeces with both inulin
and oligofructose

Gibson et al.(389)

Inulin Thirty-five elderly constipated humans 20 and 40 19 d Significant increase in bifidobacteria, decreases in enterococci
and fusobacteria

Kleessen et al.(390)

FOS in biscuits Thirty-one healthy humans, double blind
placebo controlled

7 42 d Significant increase in bifidobacteria established via FISH.
No change in total bacterial levels

Tuohy et al.(391)

FOS Twelve healthy adult humans 4 42 d Significant increase in bifidobacteria, no change in total
bacteria levels

Buddington et al.(392)

FOS Eight healthy humans, placebo controlled 8 5 weeks Significant increase in faecal bifidobacteria and decrease
in fecal pH

Menne et al.(393)

GOS Twelve healthy humans 15 Significant increase in faecal lactic acid bacteria Teuri et al.(394)

GOS plus FOS Ninety term infants, placebo controlled 0·4 and 0·8 28 d Dose-dependent stimulating effect on the growth of bifidobacteria
and lactobacilli and softer stool with increasing dosage of
supplementation

Moro et al.(395)

scFOS or GOS Forty healthy adults, controlled, double
blind, parallel group

10 6 weeks Significant increase in faecal bifidobacteria Bouhnik et al.(396)

scFOS Twelve healthy persons, þ 65 year 8 4 weeks Well tolerated and lead to a significant increase in faecal
bifidobacteria in healthy elderly subjects

Bouhnik et al.(397)

Inulin Fourteen healthy adults 9 2 weeks FISH probes show increased bifidobacteria Harmsen et al.(8)

Inulin Forty-five healthy adults 7·7 then 15·4 3 weeks Increased bifidobacteria and decreased bacteroides Kleesen et al.(398)

Inulin Forty adults 8 2 weeks FISH showed an increase in bifidobacteria Tuohy et al.(399)

Inulin/FOS Nineteen adults 10 4 weeks Bifidobacteria increased De Preter et al.(157)

scFOS Nineteen elderly persons 8 3 weeks Increased bifidobacteria Guigoz et al.(108)

scFOS Ten healthy adults 4 2 weeks Increased bifidobacteria and lactobacilli Williams et al.(400)

Inulin Thirty healthy volunteers 5 or 8 2 weeks Both doses increased bifidobacteria, a higher percent of
volunteers responded to 8 g/d

Kolida et al.(198)

GOS Thirty healthy adults 3·6 or 7 7 d Selective bifidogenic effect Depeint et al.(401)

FISH, fluorescent in situ hybridization.
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and other non-digestible food ingredients. Very preliminary
data already exist for some but many more replicate human
studies including the quantitative analysis of a wide variety
of bacterial genera in faecal microbiota using the more
recent methodologies (as described in section ‘Microbiota of
the gastro-intestinal tract – the large intestine’ of the present
paper) are needed before this can be the case. Human trials
may be carried out on volunteers who are on controlled
diets, or are free living. To ensure consistency and exclude
incidental findings, more than one human trial is needed and
the totality of several human studies for a candidate prebiotic
should be considered.

When evaluating a potential prebiotic effect it must be kept
in mind that a dose–effect relationship and consequently
a minimum effective dose are difficult to establish. Indeed,
the major determinant that quantitatively controls the prebiotic
effect is the number of targeted bacteria genus/species per
gram of faeces the volunteers have before the supplementation
with the compound presumed to show a prebiotic effect.
This issue has been extensively discussed previously(78).

Conclusions

Apart from protein fermentation, harmful substances may
arise from bacterial secondary metabolism.

A prebiotic effect should not lead to stimulate the
proteolytic microbiota and thereby reduce overall formation
of bacterial metabolism.

Prebiotic effects and immune system

Outline of benefit area

The main authors of this section are Professor Watzl and
Dr Wolvers. To provide optimal resistance against a large var-
iety of pathogenic encounters, the immune system has evolved
to comprise multiple, functionally differing cell types enabling
the development of an immune response that is specifically
tailored to clear the pathogen involved. Consequently, a
large spectrum of immune parameters involved in various
types of responses exist, of which comprehensive descriptions
can be found in many textbooks (e.g. Janeway’s Immunobi-
ology by Murphy et al.(79)). Some of these may be measurable
in human subjects and can be divided into innate v. adaptive,
mucosal v. systemic, pro-inflammatory v. anti-inflammatory,
etc. Modulating aspects of the immune system may, in
theory, serve several clinical purposes. First, boosting or
restoring the very purpose of immune function, i.e. the resist-
ance against infections, may serve as a clinical tool to prevent
or treat infectious diseases. Secondly, preventing or treating
consequences of an aberrant or undesired immune response,
such as those occurring with an allergic response or during
chronic inflammatory diseases, are other targets with high
clinical relevance.

Although there is no single immune marker that accurately
reflects or predicts an individual’s resistance to infection,
parameters can be identified that play a more prominent role
in certain types of infections or conditions than others.
For instance, if resistance against the common cold, i.e. a
viral upper respiratory tract infection, is the topic of interest,

it seems appropriate to investigate natural killer (NK) cell and
CD8 þ lymphocyte activity, whereas in case of IBD the
balance between pro-inflammatory and immuno-regulatory
cytokines will be of interest (see section ‘Prebiotic effects and
IBD’ of the present paper). Moreover, in a previous ILSI
Europe activity, the suitability of immune markers to measure
immuno-modulation by dietary intervention in human
subjects was assessed, leading to the identification of four
high-suitability markers that are the result of an integrated
immune reaction (vaccine-specific serum antibody production,
delayed-type hypersensitivity response, vaccine-specific or
total secretory IgA in saliva, the response to attenuated
pathogens). In addition, a range of medium and low-suitability
markers, such as functional activity of cells of the innate
immune system (NK cell activity, phagocytosis, T-cell prolifer-
ation and various cytokines), were identified(80). Although the
combined measurement of high- and medium-suitability
markers may be a way to address aspects of immune status,
the ultimate proof of accurate or even improved immune
function in practice is a change in the incidence, severity or
duration of infectious episodes or conditions with a prominent
immune component such as allergies and chronic inflammation.

That modulation of certain aspects of the immune system
may result from prebiotic effects and is based on the pivotal
interaction between the intestinal microbiota and the host
immune system. From several studies in germ-free and gnoto-
biotic animals, it is clear that the microbiota is essential for an
optimal structural and functional development of the immune
system(81 – 84). The interactive co-existence of the immune
system and the microbiota is especially apparent in the intes-
tinal tract where the gut-associated lymphoid tissue (GALT)
has evolved to provide optimal defense against intestinal
pathogens, while at the same time tolerating dietary and
self-antigens, as well as large populations of commensal
non-pathogenic microbes.

Although specialised cells such as the M-cells and, as
discovered more recently, also dendritic cells sample material
directly from the intestinal lumen(85), enterocytes are key
intermediates that convey signals from the intestinal lumen
to the mucosal immune system(86,87) and are thus a target
for a prebiotic effect on the immune system.

Prebiotic effects may influence the immune system directly
or indirectly as a result of intestinal fermentation and
promotion of growth of certain members of the gut micro-
biota. First, the mere presence of increased numbers of a
particular microbial genus or species, or a related decrease
of other microbes, may change the collective immuno-interac-
tive profile of the microbiota. Through pattern-recognition
receptors, such as the toll-like receptors (TLR), both immune
cells and enterocytes interact with the so-called pathogen-
associated molecular patterns, such as lipopolysaccharides
(LPS, a membrane component of Gram-negative bacteria),
lipoteichoic acids and unmethylated C-phosphate-G (CpG)
DNA that are in fact present on all the micro-organisms
surface regardless of pathogenicity. These interactions,
possibly in combination with contextual cues of pathogenicity,
result in a variety of downstream events eventually leading
to cytokine production steering towards an appropriate
immune response for the microbial event(88 – 90).

Secondly, microbial products such as SCFA may interact
with immune cells and enterocytes and modify their activity.
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G-protein-coupled receptors (GPR) 41 and GPR 43 are ident-
ified as receptors for SCFA and are expressed on leukocytes,
especially polymorphonuclear cells(91,92), as well as on enter-
ocytes and enteroendocrine cells in the human colon(93,94).
SCFA modulate chemokine expression in intestinal epithelial
cells(86), differentially affect pro-inflammatory IL-2 and inter-
feron (IFN)-g and immuno-regulatory IL-10 production by rat
lymphocytes in vitro (95), and a recent publication shows the
importance of ligation to GPR43 in mice to maintain intestinal
homeostasis(96).

Thirdly, the potential direct ligation of pattern recognition
receptors on immune cells by prebiotic carbohydrate structures
may result in immunomodulation, although there is currently
very little evidence for the presence of, for example, a fruc-
tose-receptor on immune cells.

In summary, there are plausible mechanisms by which
prebiotic effects can modulate immune function parameters.
The inaccessibility of the human GI immune system compli-
cates the investigation in this area and most human studies
rely on the measurement of ex vivo systemic immune markers,
of which the predictive value for overall resistance to infec-
tions or outcome of immune-related disorders is limited.

Summary of key studies

Several comprehensive reviews have summarised the present
knowledge of the immunomodulatory potential of prebiotic
effects (especially ITF)(97 – 101). A limited number of human
studies have been performed but most have limitations as
they investigated prebiotic effects in combination with the
administration of other ingredients or did not include an
appropriate control group.

The prebiotic effects on immune markers that represent a
more or less integrated immune response, such as response
to vaccination, were investigated in only a few studies
(Table 9). Bunout et al.(102) supplemented healthy elderly
with an oligofructose/inulin mix (6 g/d) in combination with
a nutrient supplement, while the control group received
maltodextrin with the nutrient supplement. No significant
differences were observed in antibody titers after vaccination
or on secretory IgA levels(102). In a second study, the
same authors investigated the effect of a supplement with
oligofructose on various immune markers including delayed
type hypersensitivity and vaccination. Elderly subjects
attending a clinic received oligofructose as part of a complex
nutritional supplement including Lactobacillus paracasei.
Elderly subjects attending another clinic not receiving this
supplement served as controls. Delayed type hypersensitivity
response and antibody titres after vaccination did not differ
between groups(103).

In infants aged 6–12 months (87 % breast-fed), the intake
of oligofructose as part of an infant cereal had no effect on
diarrhoea prevalence (see section ‘Use of prebiotic effects
for paediatric disorders – diarrhoeal diseases’ of the present
paper) and on vaccination-induced antibody titres to Haemophilus
influenza when compared with the infant cereal alone(104).
Besides, the fact that a rather low dose of oligofructose was
supplemented, breast-feeding may already have provided ade-
quate amounts of human milk oligosaccharides in the present
study. Also in infants at high risk for allergies, supplemen-
tation with a GOS/fructo-oligosaccharides (FOS) mixtures

did not change antibody levels after a standard vacci-
nation(105). In contrast, early-life exposure of non-breast-fed
infants to oligosaccharides had an effect on natural Ig
production, as a mixture of GOS/FOS was shown to result
in significantly higher faecal secreteory Immunoglobulin A
(sIgA) concentrations as a consequence of the prebiotic
effect(106,107). Overall, there are currently no data that support
beneficial prebiotic effects on the response to vaccination, but
data on faecal secretory IgA in infants are promising when
supplemented with a specific combination of compounds
showing prebiotic effects.

In addition to the effects on integrated immune responses,
the prebiotic effect on specific immune markers has
been tested in a few studies of varying quality with diffe-
rential outcomes (Table 9). In healthy elderly people receiving
ITF-DPav3-4 (6 g/d), a decrease in phagocytosis and IL-6
mRNA expression in peripheral blood mononuclear cell was
found(108). The present study was a one-arm study using base-
line for comparison. Whether the tested ingredient induced the
observed immunological changes cannot be answered from the
present study. Increased NK cell activity and IL-2 production
by peripheral blood mononuclear cell (Lymphokine pro-
duction by mononuclear cells) were found in a synbiotic
study in elderly(103). As this was a synbiotic intervention, a
causal conclusion about an immunomodulation of the prebio-
tic intervention cannot be drawn. No effect was observed
on secretion of IL-4, IFNg and lymphocyte proliferation in
cultured peripheral blood mononuclear cell(102).

A study investigating the application of ingredients showing
a prebiotic effect in pregnant women showed no effect on the
composition of lymphocyte subsets or cytokine secretion pat-
terns in circulating lymphocytes of the off-spring as assessed
in cord-blood(109). For safety reasons, the dosage was rela-
tively low in the present study.

A well-designed and controlled human intervention study
investigated the effect of a mixture of galactans on the
immune system of healthy elderly volunteers. The present
study reported that intake of such GOS (galactans) (5·5 g/d)
for 10 weeks significantly increased phagocytosis, NK cell
activity and the production of the anti-inflammatory cytokine
IL-10, while the production of pro-inflammatory cytokines IL-
1b, IL-6, TNFa was reduced(110). A clear positive correlation
between numbers of bifidobacteria in faecal samples and both,
NK cell activity and phagocytosis, was observed. The present
study suggests that a mixture of galactans beneficially affects
the immune system and that the achieved effects may be indirect
and mediated via a prebiotic effect, i.e. a change in microbiota
composition. A few of the trials described earlier also show
changes in immune markers alongside changes in the faecal
microbiota, mainly increase in bifidobacteria. These studies
thus provide data for the suggested link between a change in
the flora and immunomodulation, but more studies showing cor-
relative findings are required for convincing evidence.

Only a few studies that investigated the prebiotic effect on
immune-related clinical end points such as resistance to infec-
tions, allergies and IBD have also included measurements on
immune markers. Combining clinical end points with such
functional markers may provide a possible mechanistic expla-
nation for the observed effects. In a small number of patients
with moderately active Crohn’s disease, consumption of 15 g
ITF/d reported positive clinical outcomes (see section
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Table 9. The prebiotic effect on immune markers

Subject Trial design Groups N Duration
Key findings of the prebiotic intervention on immune

parameters and effect on microbiota Reference

Healthy elderly
(.70 years)

R, PC
parellel

(a) Daily vitamin & protein supplement with
6 g oligofructose/inulin

(b) Daily vitamin & protein supplement

(a) 23
(b) 20

28 weeks No effect on secretory IgA, No effect on serum titers after
vaccination (influenza A and B and pneumococcus) No
effect on secretion of IL-4, IFNg, and lymphocyte prolifer-
ation in cultured PBMC stimulated with phytohemagglutinin
and influenza antigen

Bunout
et al.(102)

Newborn
non-breastfed
infants

R, DB, PC
parallel

(a) Standard infant formula
(b) Prebiotic formula containing mixture

of 0·6 g GOS/FOS)/100 ml formula
(c) Probiotic formula containing

6·0 £ 109 cfu B. animalis/100 ml formula

(a) 19
(b) 19
(c) 19

32 weeks Trend towards higher fecal sIgA (significant at week 16)
Trend towards higher percentage of fecal bifidobacteria
Significantly lower fecal pH(402)

Bakker-
Zierikzee
et al.(106)

Peruvian breast-
fed infants
(6–12 months)

1) R, DB, PC
parallel

2) Idem

(a) Cereal supplemented with oligofructose
with of average 0·67 g OF/d

(b) Control cereal
(a) Cereal supplemented 1 mg Zn/d and

with oligofructose (average 0·67 g OF/d)
(b) Cereal supplemented 1 mg Zn/d

(a) 141
(b) 141
(a) 174
(b) 175

6 months

6 months

No effect on antibody titres after Haemophilus influenza B
vaccination No effect on antibody titres after H. influenza B
vaccination Effect on microbiota not adressed

Duggan
et al.(104)

Nursing home
elderly
(77–97 years)

Uncontrolled 8 g oligofructose/d 19 3 weeks Compared to baseline: Increase in % CD4 and CD8 lympho-
cytes Decrease in phagocytic activity (mean fluorescence)
in granulocytes and monocytes Reduced IL-6 mRNA
expression in PBMC Increase in fecal bifidobacteria and
Bacteroides No effect on fecal Enterobacteriae, Enterococci
and Lactobacilli

Guigoz
et al.(108)

Newborn healthy
infants

R, DB, PC
parallel

(a) Infant milk formula with 6 g/l Short-
chain GOS and long-chain FOS ratio 9:1

(b) Infant formula without prebiotics

(a) 21
(b) 25

26 weeks Increase in fecal sIgA in those exclusively formula fed
Increase in % of fecal bifidobacteria and decrease in % of

fecal Clostridia

Scholtens
et al.(107)

Elderly
(64–79 years)

DPRPC, CO (a) galacto-oligosaccharide 5·5 g/d
(b) maltodextrin

44 10 weeks with
4 weeks
washout

Increase in ex vivo NK cell activity; Increase in ex vivo
phagocytosis; Increase in ex vivo IL-10 production by
PBMC; Decrease in ex vivo IL-6, TNFa and IL-1 b
production by PBMC; Positive correlation between
numbers of Bifidobacterium spp., Lactobacillus-
Enterococcus spp., and the C. coccoides–E. rectale group
with % and total number of phagocyting cells; Negative
correlation between numbers of Bacteroides spp. and
E. coli with % and total number of phagocyting cells

Vulevic
et al.(110)

Pregnant
women

R, DB, PC (a) GOS/lcFOS (9 g/d)
(b) Maltodextrin

48 From week 25
of gestation
until delivery

No change of fetal (cord-blood) immune parameters
(lymphocyte subsets, cytokine secretion); Increased
proportions of bifidobacteria in maternal fecal samples;
No change in the proportion of lactobacilli; No change in
bifidobacteria and lactobacilli percentages in infants

Shadid
et al.(109)

Newborn
infants at risk
for allergy

R, DC, PC (a) Hypoallergenic whey formula with 8 g/l
GOS/FOS in a 9:1 ratio

(b) Hypoallergenic whey formula with 8 g/l
maltodextrine (placebo)

(a) 41
(b) 43

6 months Significant reduction in plasma levesl of total IgE, IgG1, IgG2
and IgG3; No effect on IgG4; Cows milk protein-specific
IgG1 was significantly decreased. No effect on response to
DTP vaccine; Significant increase in the number of fecal
bifidobacteria; No effect on fecal lactobacilli counts(113)

Van Hoffen
et al.(105)

R, PC, randomised, placebo-control; IFNg, interferon g PBMC, peripheral blood mononuclear cell; R, DB, PC, randomised, double-blind, placebo-control; GOS, galacto-oligosaccharides; FOS, fructo-oligosaccharides; NK, natural killer;
CD, Crohn’s disease; CO, crossover; OF, oligofructose; DPRPC, double-parallel, randomised, placebo-control; DTP, diphteria, tetanus, polio.

Human studies are detailed that allow interpretation of the effect of prebiotics alone, not of the combination of prebitocs with other ingredients.
Studies describe the effect on immune markers; studies that focus on clinical endpoints are summarized elsewhere in this paper (pediatrics, inflammatory bowel disease).
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‘Prebiotic effects in Crohn’s disease’ of the present paper),
while IL-10 production by mucosal dendritic cells isolated
from biopsies was increased as did expression of TLR-2 and
TLR-4(111). Although some of the findings correlate with
those found in animals studies(112), the open label character
of the study needs to be considered.

In infants at high risk of allergies, a mixture of GOS/FOS
supplemented for 6 months reduced plasma level of total
IgE, IgG1, IgG2 and IgG3, whereas no effect on IgG4 was
observed. In addition, cow’s milk protein-specific IgG1 was
significantly decreased(105). This may be beneficial change in
infants at risk of allergies, and although no direct correlations
were reported, the same study found a significant reduction
in the incidence of atopic dermatitis in a subpopulation of
the GOS/FOS group(113).

Experimental data from animal studies indicate that, besides
the systemic immune system, the GALT may be the primary
target of immunomodulatory prebiotic effects. Biomarkers to
assess functional changes in the GALT include sIgA, cytokine
production and lymphocyte numbers. Prebiotic effects have
been shown to increase sIgA concentration in the intestinal
lumen, to increase B cell numbers in Peyer’s patches, and,
in intestinal tissues, to enhance IL-10 protein secretion and
to decrease mRNA expression and protein concentrations of
pro-inflammatory cytokines(98 – 101). Genes related to intestinal
immune responses seem to be a primary target of the prebiotic
effects(114). Further, functional activities of NK cells and pha-
gocytes isolated from various immune tissues were signifi-
cantly increased but depending on the source of immune
cells (Peyer’s patches, mesenteric lymph nodes, intraepithelial
lymphocytes) the prebiotic effects may differ(115 – 117).
This illustrates the need to differentially study the prebiotic
effects of on various immune compartments. The lack of suf-
ficient tools to investigate prebiotic effects in the human
GALT hampers insights into the possible differential impact
on the mucosal v. the systemic immune system.

Key points

(1) Plausible hypotheses exist that ingredients showing a pre-
biotic effect may potentially affect the immune system as
a direct or indirect result of the change in the composition
and/or fermentation profile of the microbiota.

(2) There is currently limited, yet promising evidence
that such ingredients modulate immune markers in
human subjects. Well-designed human intervention
studies are few.

(3) Data that show increased faecal sIgA levels in infants are
promising and need to be confirmed.

(4) While several studies report changes in the faecal
microbial composition alongside with changes in
immune markers, only one study so far has correlated
these findings. More studies addressing such correlation
are needed to establish a firm link between changes in
the microbiota and immune markers.

(5) Despite the wealth of evidence that compounds with pre-
biotic effects affect the intestinal microbiota, and modu-
late immune parameters, it is of importance to know
whether these immunomodulatory effects result in a

clinically relevant outcome, i.e. improved resistance
against infections, or impairment of allergies and inflam-
mation. Preliminary yet promising clinical end point
studies exist which integrate the measurement of
immune markers as possible explanation of prebiotic
efficacy.

(6) Animal studies indicate that immunological effects may
vary depending upon the anatomical site of origin of
the immune cell (e.g. Peyer’s patches v. intraepithelial
lymphocytes). However, as the human GALT as primary
target of the prebiotic effects cannot be easily addressed
in human intervention studies, insights are difficult to
obtain and thus still limited.

Recommendations

Data from well-designed, controlled human intervention
studies with healthy subjects do not allow a final conclusion
about the effects of ingredients showing a prebiotic effect on
the immune system. Data so far are available for ITF and
GOS, but few studies have been published so far. Therefore,
further studies with adequate methodology, investigating
immune parameters such as laid out by the ILSI Task Force
on Nutrition and Immunity in Man(80), are warranted to
obtain further insights on how prebiotic effects may modify
immune function markers. Furthermore, tools should be devel-
oped to measure the impact of prebiotic effects on the GALT
in human subjects, so an understanding of the tissue-specific
effects can be achieved. Findings of such immunomodulation
should lead to hypotheses on the potential use of compounds
with prebiotic effects in relevant health-related conditions,
which could then be tested in well-designed clinical end
point studies. In addition, effects of different prebiotic
chemical structures of prebiotics, dosing and timing of
supplementation have to be studied.

Prebiotic effects in paediatrics

Oligosaccharides and prebiotic effects in infant formulae

The main authors for this section are Professor Szajewska and
Dr Stahl. The use of non-digestible carbohydrates in infant
formulae and follow-on formulae has been commented on
by the Committee on Nutrition of the European Society for
Paediatric Gastroenterology, Hepatology and Nutrition(118).
Based on the evidence obtained in a search up to January
2004, the Committee concluded that only a limited number
of studies have evaluated the effects of the addition of sub-
stances with prebiotic effects to dietetic products for infants.
Only one type of oligosaccharide mixture of galactans and
ITF consisting of GOS and a high molecular weight fraction
of inulin in a ratio of 9:1 (GOS/FOS) was evaluated. The
Committee stated that although the administration of oligosac-
charides with prebiotic effects has the potential to increase the
total number of bifidobacteria in faeces and may also soften
stools, there is no published evidence of any clinical benefits
after addition of oligosaccharides with prebiotic effects to die-
tetic products for infants. No general recommendation on the
use of oligosaccharide supplementation in infancy for preven-
tive or therapeutic purposes can be made. The available data
on the oligosaccharide mixtures in infant formulae do not
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demonstrate adverse effects. Validated clinical outcome
measures of prebiotic effects in infants should be characterised
in further well designed and carefully conducted randomised
controlled trials (RCT), with relevant inclusion/exclusion cri-
teria and adequate sample sizes. Such trials should also
define the optimal quantities, types and intake durations.

A number of studies have been published thereafter on the
addition of ingredients showing a prebiotic effect to dietetic
products for infants and recently reviewed(119). These ingredi-
ents have been used either as one compound(120 – 123) or as a
mixture of different neutral and acidic oligosaccharides(124).
Collectively, these studies confirm that the administration of
oligosaccharides with prebiotic effects in dietetic products
have the potential to increase dose dependently the total
number of bifidobacteria in faeces, although at present, it is
not possible to define the number of bifidobacteria that
would constitute normal/optimal microbiota and to soften
stools. Furthermore, prebiotic effects modulate stool pH,
SCFA pattern similar to those of breast-fed infants. Whether
any of these effects per se is of benefit is currently not well
established. Clinical outcomes related to the use of dietetic
products for infants supplemented with prebiotic effects are
discussed in the forthcoming sections (e.g. effect on allergic
diseases, infections).

Currently, the Directive 2006/141/EC on infant formulae
and follow-on formulae specifically allows the addition of
GOS–FOS in a ratio of 9/1 and in a quantity of 0·8 g/100 ml
prepared product(125). The GOS and FOS were specified as
‘a combination of 90 % oligogalactosyl-lactose and 10 %
high molecular weight oligofructosyl-saccharose’. This Direc-
tive also states that other combinations and maximum levels
of FOS and GOS may be used if they satisfy the nutritional
requirements of infants in good health as established by gen-
erally accepted scientific data.

Use of prebiotic effects in complementary foods for children

One controlled trial (RCT)(126) conducted in fifty-six healthy,
term infants aged 4–12 months evaluated the tolerance and GI
effects of an infant cereal supplemented with either ITF or pla-
cebo for 28 d. Compared with the control group, stool consist-
ency was less often described as ‘hard’ and more likely to be
described as ‘soft’ or ‘loose’ in the ITF-supplemented group.
There was no difference between the groups in crying, spit-
ting-up or colic. No difference in stool pH between the
groups was found. There was also no significant difference
in growth between the two groups. Clinical outcomes were
not reported. The limitations of the present study include the
use of non-validated tool for parental assessment of stool
consistency, a small sample size and a short follow-up period.

Another double-blind RCT(127) involving thirty-five infants
aged 4–6 months studied the effect of adding GOS/FOS to
solid foods results in an increase in the faecal proportion of
bifidobacteria in the intestinal microbiota. Intention-to-treat
analysis revealed no significant difference between the two
study groups. Only per-protocol analysis involving twenty
children who complied with the protocol showed that the
faecal percentage of bifidobacteria increased from 43 to
57 % (P¼0·03) from weeks 0 to 6 but did non-significantly
change in the control group (36 and 32 %, respectively,

P¼0·4). There were no statistically significant differences in
stool frequency and consistency.

More recently an indication for a prebiotic effect with
ITF-fortified milk in children aged 7–8 years has also been
reported(128).

Use of prebiotic effects for paediatric disorders

The effect of prebiotics in paediatric diseases has to be seen
under the different aspect either of treatment or of prophy-
laxis. Theoretically, – and also clearly demonstrated in this
part of the manuscript – prebiotics are more effective in
prophylaxis more than in treatment. That seems logically
because the prebiotic effect can only be seen after a certain
period of time which is needed for the development of the
microbiota (and which is significantly longer than the duration
of an acute diarrhoea). In consequence, prebiotics are ideal
candidates for prophylaxis but not for treatment.

Diarrhoeal diseases. It can be hypothesised that the
continuous use of products with prebiotic effects might, by
providing an immunologic stimulus (see section ‘Prebiotic
effects and immune system’ of the present paper), be useful
in preventing infectious diseases commonly encountered
by young children.

In a large well-designed RCT performed in infants aged
6–12 months (n 282), Duggan et al.(104) compared an infant
cereal supplemented with oligofructose with a non-sup-
plemented cereal. There was no difference in the number of
diarrhoeal episodes, episodes of severe diarrhoea or episodes
of dysentery. No significant difference was found in the
mean duration of diarrhoea. During a second part of the
same trial involving 349 subjects, Zn was added to both oligo-
fructose-supplemented and control cereals(104). Again, no
significant difference was found in any of the outcomes
studied between the groups. In the both trials, post-immunis-
ation titres of the antibody to Haemophilus influenzae
type B were similar in all groups, as were gains in height
(no data on weight), number of visits to the clinic, hospitalis-
ations and use of antibiotics. The prebiotic dose was with
0·25 g/kg d lower that the prebiotic level mentioned in
the EC directive with 0·8 g/100 ml – assuming an intake
of 150–200 ml/kg and day – thus resulting in 1·2–1·6 g
prebiotics/kg and day(125).

More recently, Bruzzese et al.(129) evaluated the effect of an
infant formula containing the prebiotic mixture GOS/FOS
compared with a standard infant formula in an open pla-
cebo-controlled involving 342 healthy infants with 12
months follow-up. Compared with the controls, the use of pre-
biotic-supplemented formula was associated with a significant
reduction in the incidence of gastroenteritis (0·12 ^ 0·04 v.
0·29 ^ 0·05 episodes/child per 12 months; P¼0·015), and in
the rate of children with $1 episode of acute diarrhoea
(10/96 v. 26/109, Relative Risk (RR) 0·44 (95 % CI 0·22,
0·86)). The findings regarding the prevention of GI infections
are promising for efficacy. However, there are some methodo-
logical limitations to the study, including no allocation con-
cealment, no blind control and no intention-to-treat analysis
(this analysis aims to test for effectiveness under field con-
ditions); this may result in selection, performance and/or attri-
tion biases. The impact on respiratory tract infections is
discussed under section ‘Respiratory tract infections’.
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One RCT(130) found similar number of episodes of diar-
rhoea in the group of infants fed extensively hydrolysed
whey formula supplemented either with 0·8 g GOS/FOS or
with maltodextrin as placebo.

Acute infectious gastroenteritis. The efficacy and safety of
administering a mixture of non-digestible carbohydrates,
including soya polysaccharide 25 %, a-cellulose 9 %, gum
Arabic 19 %, oligofructose 18·5 %, inulin 21·5 % and resistant
starch 7 %, as an adjunct to oral rehydration therapy in the treat-
ment of acute infectious diarrhoea was assessed in one RCT
involving 144 boys with mild-to-moderate dehydration. It was
hypothesised that with the incorporation of non-digestible
carbohydrates, some of them (e.g. galactans and ITF) with pre-
biotic effects might promote fermentation in the colon, and thus,
decrease faecal volume and the duration of the diarrhoeal illness.
Intention-to-treat analysis (relevant for effectiveness) did not
show a significant difference in the mean 48-h stool volume,
the duration of the diarrhoea after randomisation, the duration
of hospital stay and unscheduled intravenous rehydration. No
significant adverse effects were noted(131). An explanation that
no effects could be detected could originate from the type and
the amount of non-digestible carbohydrates added to the oral
rehydration solution. An average dose of 10–15 g per episode
in relatively mild diarrhoea may be simply insufficient to
achieve a shorter duration of diarrhoea. Furthermore, it is
possible that the timing of the intervention was inappropriate,
making the addition of non-digestible carbohydrates to exclu-
sive oral rehydration therapy an insufficient measure.

Antibiotic-associated diarrhoea. The rationale for the use
of ingredients showing a prebiotic effect for the prevention
of antibiotic-associated diarrhoea is based on the assumption
that the use of antibiotics leads to intestinal dysbiosis and
that this is a key factor in the pathogenesis of antibiotic-
associated diarrhoea(132). In contrast to probiotics(133 – 137),
there is a paucity of data on the prebiotic effects in preventing
antibiotic-associated diarrhoea. One paediatric double-blind
RCT(138) involved 140 children (1–2 years of age) who
were treated with amoxicillin for acute bronchitis. The present
study revealed no significant difference in the incidence
of diarrhoea in children receiving ITF administered in a
milk formula (4·5 g/l) for 21 d after completion of antibiotic
treatment compared with placebo (10 % v. 6 %, RR 0·6,
95 % CI 0·2–1·8). However, ingredients showing a prebiotic
effect in a milk formula increased faecal bifidobacteria early
after amoxicillin treatment.

Respiratory tract infections. In the most recent RCT by
Bruzzese et al.(129) described earlier, it was found that com-
pared with controls, the use of an infant formula with GOS/
FOS was associated with a similar number of episodes of
upper respiratory tract infections (P¼0·4), similar number of
children with greater than three episodes upper respiratory
tract infections (17/60 v. 29/65; P¼0·06), although the
number of children with multiple antibiotic courses per year
was lower in children receiving ingredients showing a prebio-
tic effect (24/60 v. 43/65; P¼0·004).

One RCT(130) found that infants fed extensively hydrolysed
whey formula supplemented with 0·8 g GOS/FOS compared
with the placebo group had fewer episodes of physician-diag-
nosed overall and upper respiratory tract infections (P,0·01),
fever episodes (P,0·00 001) and fewer antibiotic prescrip-
tions (P,0·05).

Prebiotic effects and atopy

Atopic eczema is an itchy inflammatory skin condition with
associated epidermal barrier dysfunction. Therapeutic options
(emollients and topical steroids for mild-to-moderate eczema;
topical or systemic calcineurin inhibitors, UV phototherapy, or
systemic azathioprine for moderate-to-severe eczema) are
relatively limited and often unsatisfactory, prompting interest
in alternative treatment methods.

The rationale for using prebiotic effects in preventing atopic
disorders is based on the concept that prebiotic effects modify

the intestinal flora of formula-fed infants towards that of
breast-fed infants. The intestinal flora of atopic children has

been found to differ from that of controls with atopic subjects
having more clostridia and tending to have fewer bifidobac-

teria than non-atopic subjects(139). Thus, there is indirect
evidence that differences in the neonatal gut microbiota may

precede or coincide with the early development of atopy.
This further suggests a crucial role for a balanced commensal

gut microbiota in the maturation of the early immune system.
The Cochrane Review published in 2007(140) aimed at

determining the effect of different ingredients showing a

prebiotic effect (GOS/FOS, only FOS, GOS together with
polydextrose and lactulose) on the prevention of allergic dis-

ease or food hypersensitivity in infants. Only two RCT of
reasonable methodological quality according to the reviewers

and involving 432 infants reported outcomes related to allergic
disease. The reviewers concluded that there is insufficient

evidence to determine the role of prebiotic supplementation
of infant formula for the prevention of allergic disease and

food hypersensitivity.
One of the included RCT(140) investigated the effect of the

prebiotic mixture (GOS/FOS; dosage: 8 g/l) on the intestinal

flora and the cumulative incidence of atopic dermatitis
during the first 6 months of life in infants at risk for allergy

(with at least one parent with documented allergic disease con-
firmed by physician). Of the 259 infants, 206 (79·5 %) infants

who were randomly assigned to receive extensively hydrolysed
whey formula supplemented either with 0·8 g GOS/FOS

(experimental group, n 102) or with maltodextrin as placebo
(control group, n 104) were included in the per-protocol

analysis. The frequency of atopic eczema in the experimental
group was significantly reduced compared with the placebo

group (9·8 % v. 23·1 %, RR 0·42 (95 % CI 0·2, 0·8)), number
needed to treat eight (95 % CI 5, 31). In a subgroup of

ninety-eight infants, the parents provided fresh stool samples
for microbiological analysis using plating techniques; the

faecal counts of bifidobacteria were significantly higher in
the group fed the GOS/FOS formula compared to the placebo

group. No significant difference was found for the lactobacilli
count between groups. Follow-up of the present study showed

that at 2 years the cumulative incidences of atopic dermatitis,
recurrent wheezing and allergic urticaria were higher in the

placebo group (27·9, 20·6 and 10·3 %, respectively) than
in the intervention group (13·6, 7·6 and 1·5 %) (P,0·05).

This is the first observation that prebiotic effects are able to
reduce the incidence of atopic diseases and that this effect

persists beyond the intervention period. This assessment is
based on a per protocol evaluation which aims at testing effi-

cacy; due to the high drop-out rate (20 % at 6 months and
48 % at 2 years of age) and lacking intention-to-treat analysis,

Prebiotic concept and health S19

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n



effectiveness for field practice needs to be
confirmed(141) (see section ‘Prebiotic effects and mineral
absorption’ of the present paper).

Conclusions

(1) Only two dietary non-digestible oligosaccharides fulfil
the criteria for prebiotic classification. These are galac-
tans and ITF. Only a limited number of RCT evaluating
the efficacy and safety of in paediatric population are
available. Some of these studies had methodological
limitations.

(2) Typically, the studies could show efficacy, i.e. statistical
effects based on per protocol analysis. However, they
may need to be confirmed by effectiveness using inten-
tion-to-treat analysis.

(3) Supplementation with such ingredients has the potential
to increase the total number of bifidobacteria in faeces
and reduce some pathogens. It also can reduce stool
pH, increase the concentrations of faecal SCFA like
observed in breast-fed infants. The clinical meaning of
these findings is still under debate.

(4) There is evidence from controlled trials that effects are
able to reduce the incidence of atopic diseases and
that this effect persists beyond the intervention period.
Confirmation of these data for effectiveness is needed.

(5) A reduction in the risk of some infectious diseases is
likely, but needs to be confirmed for effectiveness.

(6) The available data on prebiotic effects do not demonstrate
adverse effects.

Prebiotic effects and gastro-intestinal disorders

Prebiotic effects and gastro-intestinal infections

The main authors for this section are Professor Guarner and
Dr Respondek (IBS), Dr Whelan (IBD) and Professor Row-
land (colon cancer and bacterial activities). In adults, the use
of ingredients showing a prebiotic effect in the fight against
infections has hardly been studied. A few studies, dealing
with different infectious problems, have been reported.

One study dealing with traveller’s diarrhoea reports that
consumption of 10 g ITF/d for a 2-week pre-travel period con-
tinued during a 2-week travel period to high and medium risk
destinations had no effect on the prevention of traveller’s diar-
rhoea, although the sense of ‘well-being’ was improved(142).
Furthermore, a study of patients consuming 12 g ITF/d while
taking broad-spectrum antibiotics for 7 d, followed by another
7 d of the same treatment reported no difference from the
placebo group regarding diarrhoea incidence, Clostridium
difficile infection and hospital stay, while the number of
faecal bifidobacteria increased significantly(143). In contrast,
continued consumption of 12 g ITF/d for 30 d after the cessa-
tion of C. difficile-associated diarrhoea reduced the relapse
rate, while increasing bifidobacteria levels(144).

Overall, the number of studies on the efficacy of ingredients
showing a prebiotic effect in the prevention of infectious dis-
eases is limited. Some positive outcomes exist alongside
studies reporting no-effects. Clearly, a rationale is present

for the use of such ingredients. However, any direct effect
of the studied ingredients on the immune system cannot be
excluded and the measurement of the putative associated
effect on the microbiota is not always included in these
studies, hindering the formation of any conclusions on poss-
ible underlying mechanisms.

Prebiotic effects and irritable bowel syndrome

The irritable bowel syndrome (IBS) is a functional bowel
disorder manifested by chronic, recurring abdominal pain or
discomfort associated with disturbed bowel habit, in the
absence of structural abnormalities likely to account for
these symptoms(145). The symptomatic array may include
abdominal pain, discomfort, distension, cramping, distress,
bloating, excess flatulence and variable changes in frequency
and form of stools. Such symptomatic episodes may be experi-
enced by almost every individual, and in order to separate
IBS from transient gut symptoms, experts have emphasised
the chronic and relapsing nature of IBS and have proposed
diagnostic criteria based on the recurrence rate of such symp-
toms(146). IBS is one of the most common intestinal disorders
both in industrialised and in developing countries, and it is
known to generate significant health care costs(145).

A precise aetiology for IBS is not recognised. However,
epidemiological studies have identified a series of pathoge-
netic factors, including genetic and early environmental
conditioning, cognitive/emotional adaptation, altered response
to stress and inflammatory post-infectious processes of the
gut mucosa, etc.(145). It has been shown that IBS patients
have abnormal reflexes and perception in response to gut stim-
uli(147). In subsets of patients, the underlying defects appear to
be altered GI motility, visceral hypersensitivity, small bowel
bacterial overgrowth, excess gas production, abnormalities
in the composition of the gut microbiota (Table 10) or combi-
nations of them(148).

Among the modifications of the gut microbiota, a decrease
of bifidobacteria and more specifically Bifidobacterium
catenulatum has been observed in IBS patients in comparison
to healthy subjects(149 – 155).

Hypothetically, some of these disturbances may be cor-
rected or counteracted by prebiotic effects. Indeed, compounds
showing such effects are known to modulate the digestive
microbiota and particularly to stimulate the growth of
bifidobacteria especially when the initial level is low(64).
Furthermore, human studies with ITF or lactulose have
shown that such prebiotics modulate gut transit(148,156),
decrease putrefactive activity within the gut lumen(157),
prevent GI infections(142,144) and mitigate inflammatory
responses(111,158,159).

Indirect evidence for beneficial effects of ingredients show-
ing a prebiotic effect on abdominal well-being was initially
obtained in human trials addressing other primary end
points. For instance, Cummings et al.(142) tested the effective-
ness of ITF in preventing diarrhoea in 244 healthy subjects,
travelling to high and medium risk destinations for travellers’
diarrhoea (see section ‘Prebiotic effects and gastro-intestinal
infections’ of the present paper for discussion of the effects
on risk of intestinal infections). This randomised, double-
blind, placebo-controlled study showed that consumption
of 10 g ITF daily gave a significantly better sense of
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‘well-being’ during the holiday, as recorded in post-study
questionnaires. Likewise, Casellas et al.(159) performed a
prospective, randomised, double-blind, placebo-controlled
trial to test the effect of ITF (12 g/d) in patients with active
ulcerative colitis (UC). Interestingly, the study observed a
significant decrease in abdominal symptoms with treatment
but not with placebo, as assessed with the validated question-
naire of dyspepsia-related health scale(160).

Few studies have investigated the effect of ingredients
showing a prebiotic effect in patients with IBS. The study
by Olesen & Gudmand-Hoyer(161) tested a high dose of finally
20 g ITF during 12 weeks. The authors hypothesised that IBS
symptoms may be provoked by large quantities of fermentable
carbohydrates in the colon. After 4–6 weeks on treatment,
IBS symptoms worsened, as expected, in patients on 20 g
ITF/d and improved in patients on placebo. However, continu-
ous treatment for 12 weeks resulted in adaptation and there
were no differences between groups: symptoms improved in
58 % of the ITF group and in 65 % of the placebo group,
and symptoms worsened in 8 % of the ITF group and in
13 % of the placebo group. Large doses of any fermentable
carbohydrates should not be recommended to IBS patients.

Hunter et al.(162) found no effect of 2 g ITF (three times daily)
against placebo in a reduced group of IBS patients studied in a
double-blind crossover trial. The Rome team of experts on func-
tional bowel disorders do not recommend the use of a crossover
design for IBS treatment trials as they have the potential disad-
vantages of carryover effects and unmasking the study product
by differences in taste and palatability(163). Dughera et al.(164)

reported a positive effect of a synbiotic (including short-chain
ITF at 2·5 g/d) on clinical manifestations and intestinal function
in patients with IBS. However, this was an open-label and
uncontrolled study, and IBS studies with subjective outcomes
are prone to study bias(148).

To date, there are two published studies of adequate study
design reporting the effects of an ingredient showing a prebio-
tic effect in IBS. The first study screened 2235 subjects and
recruited and randomised 105 patients with IBS fulfilling
Rome II criteria with minor intensity of symptoms as assessed
by an initial questionnaire. Treatment with short-chain ITF
at 5 g/d for 6 weeks reduced incidence and intensity of symp-
toms as compared to the placebo product. Prebiotic treatment
also improved functional digestive disorders related quality
of life(165).

The second study randomised forty-four subjects according
to Rome II criteria into three groups either receiving 7 g/d
placebo, 3·5 g/d of ingredient showing a prebiotic effect and
3·5 g/placebo and 7 g/d of the tested ingredient for 6 weeks.
The prebiotic treatment significantly improved flatulence,
bloating and composite score of symptoms as well-subjective
global assessment. It also increased the proportion of bifido-
bacteria in faecal samples(166).

In summary, the two available studies with up to date
standard provided positive outcomes for both the ITF and
GOS tested up to 7 g. Results with less positive outcomes
used either higher or lower doses.

Recommendations

Ingredients showing a prebiotic effect are likely to play a role
in the symptomatic control of IBS. Evidence accumulated soT
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far in well-designed clinical studies is limited, but suggests
possible benefits at moderate doses. Further studies with ade-
quate methodology are warranted.

Key points

(1) The IBS is a functional bowel disorder manifested by
chronic, recurring abdominal pain or discomfort in the
absence of structural abnormalities.

(2) The symptomatic array includes abdominal distension,
cramping, distress, bloating, excess flatulence and
variable changes in frequency and form of stools. Such
symptomatic episodes may be experienced by almost
every individual.

(3) The underlying defects appear to be altered GI motility,
visceral hypersensitivity, small bowel bacterial over-
growth, excess gas production and abnormalities in the
composition of the gut microbiota or combinations of
these.

(4) Ingredient showing a prebiotic effect may counteract
these disturbances as they were shown to modulate gut
transit, decrease putrefactive activity within the gut
lumen, prevent GI infections and mitigate inflammatory
responses.

(5) To date, there are only two published studies of adequate
study design testing such ingredient in IBS. Both studies
improved the subjects’ symptoms.

Prebiotic effects and inflammatory bowel disease

IBD is a chronic relapsing and remitting disorder characterised
by inflammation, ulceration and stricturing of the GI tract.
UC and Crohn’s disease (CD) are the two main types of
IBD. In Europe, the incidence ranges from 1·5 to 20·3 cases
per 100,000 person-years for UC and from 0·7 to 9·8 cases
per 100,000 person-years for CD, meaning that up to 2·2
million people in Europe currently live with IBD(167).

UC causes continuous mucosal inflammation that is
restricted to the colon, whereas CD causes discontinuous
transmural inflammation anywhere throughout the GI tract,
although it most frequently affects the terminal ileum(168).
Symptoms common to both UC and CD include diarrhoea,
faecal urgency and incontinence. Severe abdominal pain and
rectal bleeding are common and complications such as fissur-
ing and abscesses may occur. These symptoms can have a
profound impact on patients, with evidence of impaired nutri-
tional status(169) and quality of life(170).

The primary treatment approach in IBD is usually drug
therapy. Patients can be treated with a variety of drugs, includ-
ing 5-ASAs (e.g. mesalazine), steroids (e.g. prednisolone) and
immunosuppressants (e.g. azathioprine). In addition, patients
with CD may also receive new biological drugs such as mono-
clonal antibodies (e.g. the anti-TNF-a antibody infliximab)
when standard drug treatment fails(171). Despite their general
efficacy, such drugs can carry a significant burden. They are
not only expensive but also side effects are common, with
an incidence of 28 % for immunosuppressants, rising to
50 % for steroids(172). In addition, approximately 30 % of
patients with UC and 50 % of patients with CD will require

surgery at some point in their life(172). In the case of UC,
a colectomy and formation of an ileo-anal pouch may be
curative. However, following this procedure, a minority of
patients will experience relapsing, remitting pouch inflam-
mation, described as pouchitis.

Nutritional approaches to treating IBD have been investi-
gated. In clinical trials, enteral nutrition has been shown to
induce remission in 60–85 % of patients with CD, however,
it remains less effective than steroids(173) and patients report
problems with palatability and abstinence from food(174).
In view of these findings, safe and effective interventions
that induce and maintain remission in IBD with a low inci-
dence of side effects are urgently needed.

In order to identify potential therapeutic targets for IBD,
examination of its pathogenesis is required. Although the
precise mechanisms are not yet known, it appears that IBD
results from a heightened mucosal immune response to the
GI microbiota in genetically susceptible individuals.

The immunological processes underlying IBD involve
alterations in the balance of proinflammatory and immuno-
regulatory cytokines within the mucosal immune system.
Much of the inflammation is mediated via cytokines released
by activated Th1/Th17 lymphocytes. In addition, TNF
(TNF)-a has been shown to play a key role, exerting its effects
via stimulation of other proinflammatory cytokines such as IL
(IL)-1, IL-6 and IFN-g. Each of these proinflammatory cyto-
kines have been shown to be elevated during active
IBD(175), and biological therapies such as anti-TNF-a-anti-
bodies directly target this immunological cascade. Other
proinflammatory cytokines include IL-12 and IL-18, both
of which are involved in IFNg production. In contrast,
the immuno-regulatory response is mediated by cytokines
such as IL-10, which down-regulates IFNg production(176).
Furthermore, some animal studies have indicated immuno-
regulatory roles for IL-4 and transforming growth factor
(TGF)-b in IBD(177).

There is convincing evidence that the inflammation
observed in IBD is driven by the GI microbiota. For example,
it has been shown that animal models of IBD do not develop
inflammation when reared in germ-free conditions, whereas
they subsequently develop inflammation once transferred
to non-sterile conditions or are artificially colonised with
bacteria(178). Similar observations have been described
in human subjects with IBD. In patients with colonic CD,
formation of an ileostomy, which diverts the faecal stream
away from the site of inflammation, results in disease remis-
sion in 65 % of patients, while reversal of this procedure
results in disease relapse in 60 %, implying that the content
of the faecal stream is in part responsible for driving inflam-
mation(179). Patients with active IBD also have elevated GI
permeability, thereby increasing the exposure of the mucosal
immune system to the resident microbiota(180). An underlying
pathogenic mechanism linking CD and the GI microbiota was
realised when it was found that mutations in the caspase-
activating recruitment domain 15 (CARD15) gene, involved
in bacterial recognition, were found to result in a 38-fold
increase in risk for CD(181). Interestingly, this mutation does
not result in a higher risk of UC and further genome wide
association studies have identified numerous other mutations
associated with increased risk of either UC or CD but
that are unrelated to bacterial recognition or sensing(182).
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Therefore, there are clearly genetic and environmental triggers
related to the onset of IBD other than those involving the GI
microbiota.

Despite the evidence that the GI microbiota is necessary
to drive the inflammation in IBD, some bacteria may indeed
protect the mucosa from such inflammation. Studies in both
animals models and patients with IBD have shown that
some bacteria decrease abnormal GI permeability(183,184),
thereby reducing exposure of the mucosal immune system to
the GI microbiota. Meanwhile, some probiotics, in particular
bifidobacteria, up-regulate immuno-regulatory IL-10
production by dendritic cells(185,186), the production of which
is therapeutic in animal models of IBD(176). In view of this,
studies have shown some success of both antibiotics and
probiotics in the management of IBD and these have been
extensively reviewed elsewhere(187,188).

Components of the GI microbiota therefore drive proinflam-
matory and/or immuno-regulatory cytokine production during
IBD. Interestingly, numerous studies demonstrate alterations
in the GI microbiota of patients. Such studies are varied,
utilising a wide variety of microbiological techniques (e.g. tra-
ditional culture and molecular microbiology) in different
samples (i.e. faeces, inflamed mucosa, non-inflamed mucosa).
Comparisons have been made between UC and/or CD and/or
healthy controls, and these vary as to whether patients were in
relapse or remission. Consequently, studies of the GI micro-
biota in IBD are too varied to review in detail here. However,
some conclusions can be drawn regarding the alterations in
GI microbiota in IBD that suggest that ingredients showing
a prebiotic effect may be of potential benefit in its treatment
or maintenance.

In general, studies adopt two different approaches to inves-
tigating the microbiota in IBD. Some investigate differences
in concentration, proportion or diversity of microbial commu-
nities (i.e. dysbiosis theory), whereas others investigate the
presence or absence of selected species (i.e. single strain
theory). For example, patients with inactive CD have been
shown to have lower proportions of faecal bifidobac-
teria(189,190), whereas both patients with active UC or active
CD have lower faecal bifidobacteria, C. coccoides and
C. leptum compared with healthy controls(190). Lower concen-
trations of bifidobacteria(191,192) and higher concentrations of
bacteroides(193) have also been found in the mucosa of both
patients with UC or CD. Meanwhile, another study has
shown that some patients with CD or UC have lower numbers
of mucosal Firmicutes and Bacteroidetes(194). Increased pre-
sence of E. coli has been demonstrated in patients with UC
or CD(195,196) and more recently, lower concentrations of
F. prausnitzii were found in the faeces of patients with CD
or UC compared with controls(190). This is important as
F. prausnitzii is immuno-regulatory and higher mucosal con-
centrations are associated with longer maintenance following
surgically induced remission of CD(197).

In view of the role of the certain components of the GI
microbiota in driving intestinal inflammation, combined with
the apparent dysbiosis in IBD, the use of ingredients showing
a prebiotic effect as an approach to modifying the microbiota
in order to induce or maintain remission in IBD has been
investigated.

The prebiotic concept is defined as the selective stimulation
of growth and/or activity of one or a limited number of

microbial genera, species or strains in the gut microbiota
that confers health benefits to the host. Ingredients showing
a prebiotic effect have been shown to increase faecal and
mucosal bifidobacteria in healthy subjects(198,199). This is
relevant because bifidobacteria are present in lower concen-
trations in the faeces and mucosa of patients with
IBD(190,192), while in vitro experiments have shown that
some species of bifidobacteria stimulate IL-10 production,
potentially via interaction with TLR on lamina propria dendri-
tic cells(185). In addition, prebiotic ITF have recently been
shown to increase concentrations of F. prausnitzii in healthy
subjects(200), although this has not yet been confirmed in
patients with IBD. Furthermore, SCFA, produced through
the fermentation of such ingredients, modulate inflammation,
with cell-culture studies showing that butyrate inhibits
pro-inflammatory IL-2 and IFNg production and acetate and
propionate increases immuno-regulatory IL-10 production(95).
In addition, mucin production is stimulated by both propionate
and butyrate(201). Mucins (such as MUC2) are required for
the maintenance of the mucous layer that enables epithelial
protection and which may be lower in patients with IBD(202).

Numerous experiments have been conducted to investigate
the impact of these ingredients on chronic intestinal inflam-
mation in animal models of IBD, and these have been
reviewed elsewhere(203). However, at the current time, their
use among patients with IBD remains relatively low(204).
However, over the last decade, there has been an increase in
the number of clinical trials investigating their use in inducing
or maintaining remission in IBD (Table 11).

Prebiotic effects in pouchitis. Two studies have been
identified that investigate the use of ingredients showing a
prebiotic effect in patients with pouchitis. The first, published
in abstract form only, involved ten patients with active pouchi-
tis who were treated with a synbiotic combination of
Lactobacillus rhamnosus GG and ITF in an open label study
in whom ‘all patients experienced complete clinical and
endoscopic remission’(205). Unfortunately, further details of
the outcomes are limited and the cause of any benefit, be it
a placebo effect, the probiotic, a prebiotic effect or a combi-
nation, is unclear. In a larger, controlled study, twenty patients
with inactive pouchitis were randomised to consume 24 g/d
ITF or placebo for 3 weeks in a crossover study(206).
There was a significant reduction in pouchitis disease activity
index during the ITF intervention, despite nobody having
active disease. In addition, there was a reduction in faecal
Bacteroides fragilis and an increase in butyrate. Interestingly,
bifidobacteria remained unchanged, perhaps due to the
absence of a colon preventing the complete fermentation
and prebiotic effects of the ITF to be realised. Clearly,
larger parallel controlled trials in both active and inactive
pouchitis are warranted.

Prebiotic effects in ulcerative colitis. Two trials have
used ingredients showing a prebiotic effect to investigate
their efficacy in the management of UC. The first was a
pilot study of eighteen patients with active UC, who were
randomised to receive either a synbiotic (6 g/d of ITF and
Bifidobacterium longum) or a placebo. Only fourteen
completed the study (eight intervention and six control) and
there was no difference in clinical scores between the inter-
vention and control groups, but there was a lower degree
of inflammation(158). In addition, there was an increase in
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Table 11. Clinical trials on the prebiotic effect in inflammatory bowel disease

Subjects Trial design* Groups N* Duration Key findings Reference

Pouchitis (active) Open label (a) FOS (1 tablet/d)
L. rhamnosus GG (1 tablet/d)

(a) 10 – ‘Clinical and endoscopic remission’ Friedman
et al.(205)

Pouchitis (remission) DB-RCT, CO (a) Inulin (24 g/d) contained in drink
(b) Placebo drink

(a/b) 20 3 weeks Compared with baseline, the prebiotic:
Reduced pouchitis activity
Reduced B. fragilis
Had no effect on bifidobacteria
Increased faecal butyrate

Welters
et al.(206)

UC (active) DB-RCT (a) Oligofructose/inulin (12 g/d)
B. longum (4 £ 1011 cells/d)

(b) Maltodextrose placebo (12 g/d)

(a) 9
(b) 9

1 month Compared with placebo, the synbiotic:
Reduced sigmoidoscopy score

Compared to baseline, the synbiotic:
Increased mucosal bifidobacteria
Reduced human beta defensin mRNA
Reduced TNF-a, IL-1a
Reduced mucosal inflammation

Furrie
et al.(158)

UC (active) DB-RCT (a) Oligofructose/inulin (12 g/d)
(b) Maltodextrose placebo (12 g/d)

Both groups started Mesalazine 3 g/d

(a) 10
(b) 9

2 weeks Compared with placebo, the prebiotic:
Did not result in greater reduction in disease activity
Reduced faecal calprotectin

Compared to baseline, the prebiotic:
Reduced disease activity
Reduced dyspepsia

Casellas
et al.(159)

CD, paediatric
(active)

Open label (a) Oligofructose/inulin (mean 8·4 g/d)
Enteral nutrition (semi-elemental)

(a) 10 6 weeks Compared with baseline, the prebiotic enteral formula:
Reduced disease activity
Reduced inflammation (ESR, leucocytes scan)
Increased quality of life

Hussey
et al.(210)

CD (active) Open label (a) Oligofructose/inulin (15 g/d) (a) 10 3 weeks Compared with baseline, the prebiotic:
Reduced disease activity
Increased faecal bifidobacteria
Did not affect mucosal bifidobacteria
Increased dendritic cell IL-10
Increased dendritic cell TLR-2 and TLR-4

expression

Lindsay
et al.(111)

CD (remission) DB-RCT (a) Synbiotic 2000
(inulin, resistant starch, pectin,
b-glucans, 2·5 g each, P. pentoseceus,
L. raffinolactis, L. paracasei,
L. plantarum)

(b) Placebo

(a) 20
(b) 10

24 months Compared with placebo, the synbiotic:
Did not influence relapse rates

Chermesh
et al.(212)

CD (active) DB-RCT (a) Oligofructose/inulin (15 g/d)
(b) Maltodextrose placebo (15 g/d)

(a) 54
(b) 49

4 weeks Compared with placebo, the prebiotic:
Did not lower disease activity
Did not result in greater reduction in disease activity
Did not result in greater numbers in remission

Benjamin
et al.(211)

FOS, fructo-oligosaccharides; DB-RCT, double-blind randomised controlled trial; CO, crossover; UC, ulcerative colitis; CD, Crohn’s disease; ESR, erythrocyte sedimentation rate; TLR-2, toll-like receptor 2.
* Numbers recruited to each group.
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mucosal bifidobacteria and decrease in TNF-a, IL-1a and
antimicrobial human b-defensin peptides in the synbiotic
group. Although this data suggest promising effects, the use
of a synbiotic combination makes it difficult to ascertain the
specific effects of the prebiotic on clinical outcome.

In another pilot study in active UC, nineteen patients were
randomised to receive either an ingredient showing a prebiotic
effect (12 g/d of ITF) or a placebo, in conjunction with 3 g/d
mesalazine for 2 weeks(159). Only fifteen patients completed
the study (seven intervention and eight control) and although
there was a reduction in disease activity, this occurred in
both groups, potentially due to them both starting concomitant
drug therapy. However, compared with the placebo, the inter-
vention group had significantly lower concentrations of the
inflammatory marker faecal calprotectin. This trial provides
the first indicator that a prebiotic alone may be of benefit in
treating active UC. Its major limitations include low numbers
in each group, that increase the chance of type 2 errors, and a
short treatment duration that may be insufficient to allow a
prebiotic effect to translate into a clinical effect(159).

In addition to these, a number of studies in UC have investi-
gated the use of compounds that although described as
prebiotic are not generally considered to be so. Trials of these
fibre compounds have therefore not been included in Table 11.
For example, a series of studies have shown that germinated
barley foodstuff increases remission rates when used to treat
active UC(207) and results in longer remission when used in
maintenance of UC(208). More recently a trial of psyllium or
the probiotic B. longum did not result in a significant improve-
ment in quality of life or reduction in serum C-reactive protein,
whereas when used together they did(209).

There remains little data on the clinical, microbiological
and immunological effects of prebiotics specifically in main-
taining remission in UC.

Prebiotic effects in Crohn’s disease. In a small, open-label
study a semi-elemental enteral formula containing ingredients
showing a prebiotic effect (4 g/l of ITF) was fed via nasogas-
tric tube as a sole source of nutrition for 6 weeks to ten
children with active CD(210). There was a reduction in disease
activity alongside improvements in markers of inflammation
including reduced erythrocyte sedimentation rate and
improved white cell scans. In light of the evidence for the
efficacy of enteral nutrition in inducing remission in active
CD(173), the present study design does not allow the clinical
consequences of the prebiotic effect to be separated from
those of the enteral nutrition.

A small open label study of ingredients ITF (15 g/d) in
patients with active CD demonstrated a significant reduction
in disease activity after 3 weeks, with four out of ten patients
entering disease remission(111). In addition, faecal, but not
mucosal, bifidobacteria increased and there was an increase
in dendritic cell IL-10 production together with TLR-2 and
TLR-4 expression. Clearly caution is required in interpreting
and applying the results of this small uncontrolled trial.

The same group have recently presented the clinical data
from a large double-blind, randomised, placebo-controlled
trial of ITF (15 g/d) in 103 patients with active CD(211).
Analysed on an intention-to-treat basis, there were no signifi-
cant differences in disease activity or the numbers entering
disease remission between groups. However, as the data
have only been presented as a conference abstract, there is

currently limited clinical data and no microbiological and
immunological data published.

Finally, one study has investigated the effect of ingredients
showing a prebiotic effect on preventing relapse in thirty
patients following surgically induced remission of CD.
The present study supplemented a synbiotic (Pediacoccus
pentoseceus, Lactobacillus raffinolactis, L. paracasei susp
paracasei 19, Lactobacillus plantarum, 2·5 g b-glucans, 2·5 g
ITF, 2·5 g pectin, 2·5 g resistant starch) or a placebo for
24 months(212). In view of the long follow-up period, only
nine patients completed the study (nine intervention and two
control) and there were no differences in relapse rates between
groups. It is noteworthy that the amount of the used ingredient
contained within the synbiotic was relatively low.

Limitations of existing studies on prebiotic effects in inflam-
matory bowel disease. Of the identified clinical trials of
ingredients showing a prebiotic effect in IBD, numerous
limitations in their reporting and trial design have been high-
lighted. First, a number have only been published as
conference abstracts(205,210,211), therefore impeding detailed
data extraction. Many of the studies used different compounds,
some with unconfirmed prebiotic properties, and in different
doses. In addition, many of the studies use a synbiotic combi-
nation, making it unclear whether the probiotic, the prebiotic
or the combination is effective. The majority of the studies
have poor study design, with numerous small pilot studies,
some of which do not have control groups. Where
control groups are used they do not always receive a placebo,
making subjective outcomes such as patient reports of disease
activity or quality of life difficult to interpret. This is import-
ant in view of the high placebo rates reported in clinical trials
of IBD(213,214). Furthermore, of the trials in CD none have
analysed the influence of disease location, which may
be important as ingredients showing a prebiotic effect may
have different efficacy in colonic and ileal disease, due to
the site of fermentation and augmentation of bacterial growth.

Key points. IBD results from a heightened mucosal
immune response to the GI microbiota in genetically suscep-
tible individuals.

Patients with IBD have a GI dysbiosis characterised
by, among other things, lower concentrations of luminal and
mucosal bifidobacteria, suggesting potential for prebiotic
intervention. Prebiotic effects have potential benefits in IBD
by increasing luminal and mucosal bifidobacteria and SCFA
concentrations and stimulating immuno-regulatory cytokine
production.

Numerous small pilot studies have been conducted in
pouchitis, UC and CD indicating potential benefit in treating
active disease.

Although some larger trials have been conducted, they are
generally limited in study design, interpretation and analysis,
therefore definitive conclusions regarding the clinical efficacy
of the prebiotic effect in IBD are not yet possible. One large
RCT has demonstrated no clinical benefit of treating active
CD with ingredients showing a prebiotic effect.

So far, results are substance and study specific, but do not
warrant a conclusion for prebiotic effects in general.

None of the trials conducted thus far have reported concerns
regarding the safety of ingredients showing a prebiotic effect
in patients with IBD, and so their use at the doses used
would appear safe.
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Recommendations. Further large, multi-centre random-
ised, double-blind, placebo-controlled trials of ingredients
showing a prebiotic effect in IBD are required. There is a
particular lack of research on maintenance of remission of
IBD and for the treatment colonic IBD (either UC or colonic CD).

Inter-disciplinary research is required that addresses
clinical, as well as mechanistic, outcomes that are validated
and relevant to this patient population.

In vivo and in vitro research is also required to further
understand the mechanisms by which ingredients showing a
prebiotic effect may achieve their potential benefit.

Health care professionals should keep informed of the latest
evidence relating prebiotic effect in IBD. Not only is this an
emerging area of research, with clinical trials currently under-
way, but it is also an area of interest to patients.

Prebiotic effects and colon cancer

Colon carcinogenesis – the role of diet and gut microbiota.
Evidence suggests that diet plays an important role in the
aetiology of colorectal cancer, However, identifying conclus-
ively which constituents (e.g. vegetables, meat, fibre, fat and
micronutrients) exert an effect on risk has been more proble-
matic due to inconsistent data. The 2007 World Cancer
Research Fund report(215) concluded that the epidemiological
evidence was convincing or probable for associations between
overweight and obesity (in particular waist circumference),
processed meat, alcohol and increased risk of colorectal
cancer. Fibre, garlic, milk and Ca are associated with
decreased risk. There are no published epidemiological studies
on ingredients showing a prebiotic effect and cancer risk.

Evidence from a wide range of sources supports the view
that the colonic microbiota is involved in the aetiology of
cancer(216) and that bacterial metabolism of unabsorbed
dietary residues and endogenous secretions is the origin of
many of the genotoxic and tumour-promoting agents found
in faeces(217).

Prebiotic effects and colorectal cancer. It follows from
the above that modification of the gut microbiota may inter-
fere with the process of carcinogenesis, and this opens up
the possibility for dietary modification of colon cancer risk.
Prebiotic modulation of the microbiota by increasing numbers
of lactobacilli and/or bifidobacteria in the colon has been a
particular focus of attention in this regard. Evidence that
such an effect can influence carcinogenesis is derived from
a variety of sources:

(1) Effects on bacterial enzyme activities.
(2) Antigenotoxic effects in vivo.
(3) Effects on pre-cancerous lesions in laboratory animals.
(4) Effects on tumour incidence in laboratory animals.
(5) Epidemiological and experimental studies in human

subjects.

Prebiotic protective effects and bacterial activities

Prebiotic effects and secondary bacterial enzyme activities.
The ability of the colonic microbiota to generate a wide
variety of mutagens, carcinogens and tumour promoters
including N-nitrosocompounds, secondary bile acids, ammo-
nia, phenols and cresols from dietary and endogenously

produced precursors is well documented(216,218). In addition,
the bacterial enzyme b-glucuronidase is involved in the
release in the colon from their conjugated form of a number
of dietary carcinogens, including polycyclic aromatic
hydrocarbons.

Ingredients showing a prebiotic effect should not stimulate
bacteria capable for such metabolism. During in vivo exper-
iments, this should result in an overall decrease in toxic
substances.

In general, species of Bifidobacterium and Lactobacillus
have low activities of enzymes involved in carcinogen
formation and metabolism by comparison to other major
anaerobes in the gut such as bacteroides, eubacteria and
clostridia(219). This suggests that increasing the proportion
of these two lactic acid bacteria in the gut could modify,
beneficially, the levels of xenobiotic-metabolising enzymes.
It may lead to decrease in certain bacterial enzymes purported
to be involved in the synthesis or activation of carcinogens,
genotoxins and tumour promoters. Such manipulations have
been suggested to be responsible for decreased levels or
preneoplastic lesions or tumours in animal models(220,221)

and suggest a reduction in the damaging load.
In general, studies in laboratory animals have shown that

ITF and galactans decrease caecal enzyme activities(222,223).
However, human studies have yielded inconsistent or negative
results on such enzyme activities or on production of toxic
bacterial metabolites such as ammonia and phenols(65,224,225).

Prebiotic and synbiotic effects on pre-cancerous lesions
in laboratory animals. Aberrant crypts (AC) are putative
pre-neoplastic lesions seen in the colon of carcinogen-treated
rodents. In many cases, a focus of two or more crypts is
seen and is termed an aberrant crypt focus (ACF). AC are
induced in colonic mucosa of rats and mice by treatment
with various colon carcinogens such as azoxymethane
(AOM) and dimethylhydrazine (DMH)(226).

Ingredients showing a prebiotic effect alone appear to give
inconsistent results on carcinogen-induced ACF which may be
partly a consequence of differences in carcinogen and treat-
ment regimes used. For example, Rao et al.(227) reported
that ITF (10 % in diet) had no significant effect on total
ACF in colon, or their multiplicity, in F344 rats, although cur-
iously a significant decrease in ACF/cm2 of colon was
reported. A study by Gallaher et al.(228) on Bifidobacterium
spp and FOS (2 % in diet) gave inconsistent results with
only one out of three experiments showing a decrease in
DMH-induced ACF. In contrast, Verghese et al.(229) reported
a dose-dependent decrease in the incidence of ACF and total
crypts (P,0·01) after ITF supplementation (0, 2·5, 5 and
10 g/100 g diets) in AOM-challenged rats.

The effects of prebiotics on ACF may be dependent on the
chain length of the ITF, since a number of studies report
more potent inhibition by longer than by shorter
chains(230 – 232). For example, Buddington et al.(231) reported
that inulin (10 % in diet), but not oligofructose fed mice,
had significantly lower ACF numbers than the controls.

Some studies have found that ITF have differential effects
on ACF and tumours. For example, Jacobsen et al.(233)

reported that oligofructose or long-chain inulin (15 % in
diet) increased the number of ACF but significantly reduced
the tumour incidence. A study by Caderni et al.(234) showed
similar results when rats were fed the synbiotic-containing
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ITF alongside Lactobacillus GG, L. delbrueckii subsp.
Rhamnosus and Bifidobacterium lactis Bb12. Supplementation
caused increased ACF multiplicity after 16 weeks, however,
significantly reduced tumour incidence following 32 weeks
in AOM-challenged rats.

There are limited studies on ingredients showing a prebiotic
effect other than ITF in this area. Challa et al.(235) demon-
strated a small reduction (22 %) in total ACF in AOM-treated
F344 rats when the synthetic, non-digestible disaccharide
lactulose was incorporated in the diet at 2 %. Hsu et al.(236)

compared the influence ITF (60 g/kg) and xylo-oligosacchar-
ides supplementation on DMH-induced AC in ratsreporting
a decrease in the mean number of multicrypt clusters of AC
by 56 and 81 %, respectively (P,0·05). Wijnands et al.(237)

compared AOM-induced ACF in F344 rats fed diets contain-
ing low or high GOS (5 v. 20 % w/w of a GOS syrup compris-
ing 38 % GOS). There were no significant differences
between the dietary groups in total ACF after 7 or 13 weeks of
treatment although there was a significant decrease in ACF
multiplicity in the high GOS fed group (4·4 v. 3·07; P,0·5).

Both Challa et al.(235) and Rowland et al.(221) studied the
effect of combined treatment of probiotic and prebiotic on
ACF numbers. The combination of B. longum and lactulose
resulted in a 48 % inhibition of colonic ACF, which was
significantly greater than that achieved by either B. longum
or lactulose alone(235). Similarly Rowland et al.(221) reported
a decrease in total ACF of 74 % in rats given B. longum þ ITF
(by comparison to 29 and 21 % reduction achieved by
B. longum or ITF alone). Importantly, the combined adminis-
tration of probiotic and prebiotic reduced large ACF by 59 %,
whereas the individual treatments had no effect. Nakanishi
et al.(238) showed that supplementation with C. butyricum
(CB) in AOM-challenged rats had no significant effect on
ACF occurrence. However, CB supplemented alongside high
amylose maize starch (a poorly digestible carbohydrate)
decreased the number of ACF significantly (P,0·05) indicat-
ing a degree of synbiotic activity.

Prebiotic effects and colon tumour incidence in laboratory
animals. There are fewer reports on prebiotic and synbiotics
than on probiotics in terms of tumour incidence but overall
the studies indicate protective effects. Jacobsen et al.(233)

compared the incidence of tumours in AOM-challenged rats
following consumption of ITF (15 % diet w/w). Significantly
less rats developed colon tumours in the treated group
(P,0·05) compared to the control diet. The total number of
tumours developed per rat was significantly reduced following
both oligofructose (P,0·01) and inulin (P,0·05) supplemen-
tation. However, supplementation had no effect on the
malignancy of the tumours. Wijnands et al.(239) compared
the effect of cellulose and GOS syrup on induction of
DMH-induced colorectal tumours in Wistar rats consuming
basal diets containing low-, medium- or high-fat content.
The cellulose diets contained 4·5–5·2 % w/w (low cellulose)
or 22·6–24·5 % (high cellulose) and the GOS syrup diets
8·3–9·5 % (low GOS) or 26·3–28·7 % (high GOS). The
GOS syrup used comprises 38 % GOS with additional lactose,
glucose and galactose, thus the high GOS diets contained
about 10·5 % dry weight GOS. The cellulose content of the
diet had no effect on total tumours, but high cellulose
increased adenomas and significantly decreased carcinomas.
There were no significant effects of high GOS diets on

tumour incidence. Multiplicity of tumours (i.e. number per
tumour-bearing animal) both adenoma and carcinoma, was
significantly decreased in the high-GOS-fed group.

Femia et al.(240) investigated the protective effects of
prebiotic (ITF), probiotic (B. lactis Bb12 and L. rhamnosus
GG, (5 £ 108 CFU/g diet) or synbiotic combination of the
two against AOM-induced colon tumours in rats. Prebiotic-
fed groups (prebiotic and synbiotic groups) resulted in lower
adenoma (P,0·001) and adenocarcinoma (P,0·05) incidence
than in the rats not given prebiotic (probiotic and control).
Interestingly, in the groups treated with probiotics (probiotic
and synbiotic groups) the proportion of cancers relative
to the total number of tumours was significantly lower
(P¼0·04) (nine cancers out of eighty-four tumours (11 %))
than in the control and prebiotic groups (nineteen cancers
out of eighty-three tumours (23 %)), suggesting a protective
effect of probiotics, but not ingredients showing a prebiotic
effect, on development of malignant tumours.

In the transgenic Min mice model, the mice develop spon-
taneous adenomas throughout the small intestine and colon
within a few weeks. Results from studies on ITF in this
model have been conflicting, with both inhibitory and stimu-
latory effects on tumours reported. In one study, Min mice
were fed various diets containing wheat bran, resistant
starch or oligofructose (5·8 % in diet) for 6 weeks. Tumour
numbers remained unchanged from the control (low (2 %)
fibre diet) in the mice fed either wheat bran or resistant
starch, but a significant reduction in colon tumours was
observed in rats receiving the diet supplemented with oligo-
fructose. Furthermore, four out of the ten oligofructose fed
animals were totally free of colon tumours(241). These results
contrast with those of Mutanen et al.(242) using the same
model. In the first of their studies, Min mice fed a purified
high-fat diet (40 % energy) with 2·5 % ITF showed NS
increases in adenomas in the small and large intestines
compared with the control animals fed the high-fat, fibre-
free diet alone. A subsequent study(243) using a higher ITF
dose (10 %) confirmed these results with increases, again
NS, being seen in the number of adenomas in the small intes-
tine and colon and significant increases in tumours in the distal
small intestine after 9 weeks of treatment. Interestingly,
although the adenoma size in the small intestine was signifi-
cantly increased in the inulin-fed mice, in the colon the size
was reduced from 3·72 to 2·54 mm (non significant). In some
articles, it has been suggested that the reasons for the discre-
pancies in the Min mouse studies are due to major differences
in the basal diet fed: high-fat, high glucose diet in the Mutanen
studies and high-starch diet in the studies of Pierre et al.(78,244).

Taper & Roberfroid(245) investigated the effects in mice of
ITF or pectin (15 % in the diet) on the growth of intramuscularly
transplanted mouse tumours, belonging to two tumour lines –
TLT (a mammary tumour) and EMT6 (a liver tumour). The
growth of both tumour lines was significantly inhibited by
supplementing the diet with non-digestible carbohydrates. In
subsequent studies, the same authors demonstrated that ITF
(15 % in diet) reduced the incidence of mammary tumours
induced in Sprague–Dawley rats by methylnitrosourea and
decreased the incidence of lung metastases of a malignant
tumour implanted intramuscularly in mice(246).

Prebiotic effects in human intervention studies. For human
intervention trials, cancer is an impractical end point in
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terms of numbers of subjects, cost, study duration and ethical
considerations. An alternative strategy employed in recent
studies is to use early or intermediate biomarkers of cancer
such as DNA damage and cell proliferation in colonic
mucosa and genotoxic activity of faecal extracts (‘faecal
water’)(247).

In a larger scale, randomised, double-blind, placebo-
controlled trial, patients with resected polyps (n 37) or colon
cancer (n 43) were given a synbiotic food supplement
composed of ITF and the probiotics L. rhamnosus GG and
B. lactis Bb12 for 12 weeks(248). The effect of synbiotic
consumption on a battery of intermediate biomarkers for
colon cancer was examined. The intervention significantly
reduced colorectal proliferation as assessed by in vitro (3H)
thymidine incorporation and autoradiography in colorectal
biopsy samples. Given the correlation between colorectal
proliferativeactivity and colon cancer risk, these results
suggest that synbiotics might be beneficial for patients with
an increased risk of colon cancer. In addition, in the polyp
patients, the synbiotic intervention was associated with a
significant improvement in barrier function as assessed by
trans-epithelial resistance of Caco-2 cell monolayers after
exposure to faecal water samples. This anti-promotion effect
may reflect changes in the balance of SCFA and secondary
bile acids (deoxycholic acid and lithocholic acid) in the
samples because these gut microbial metabolites have trans-
epithelial resistance, beneficially and adversely respectively,
in this system. Genotoxicity assays of colonic biopsies and
faecal water indicated a decreased exposure to genotoxins in
the polyp patients at the end of the intervention period.

Thus, several colorectal cancer biomarkers were altered
favourably by the intervention and the results show consist-
ency with animal studies conducted in parallel(240).

Also of interest was the observation that the polyp patients
and cancer patients appeared to respond differently to the
synbiotic, as evidenced by the different effects observed on
each biomarker. This may have been due to the fact that
the intestinal microbiota was more refractory to changes
induced by the synbiotic in the cancer patients than in the
polyp patients.

Mechanisms of anticarcinogenicity and antigenotoxicity

Prebiotic effects and in vivo prevention of genotoxicity.
More direct evidence for protective properties of probiotics
and ingredients showing a prebiotic effect has been obtained
by assessing the ability to prevent DNA damage and mutations
(which are considered to be early events in the process of
carcinogenesis) in cell cultures or in animals.

Using the technique of single-cell microgel electrophoresis
(Comet assay), the prebiotic effect of lactulose on DNA
damage in the colonic mucosa has been evaluated. Rats that
were fed a diet containing 3 % lactulose and given DMH,
exhibited less DNA damage in colon cells than similarly
treated animals fed a sucrose diet. In the latter animals, the per-
centage of cells with severe DNA damage comprises 33 % of the
total compared with only 12·6 % in the lactulose-fed rats(249).

Klinder et al.(250) also showed that the prebiotic effect of
ITF and probiotic supplementation (8 months) caused a
reduction in the genotoxicity of faecal and caecal samples
obtained from AOM-treated rats.

Rafter et al.(248) investigated the influence of 12 weeks
synbiotic supplementation (L. rhamnosus GG (LGG) þ B.
lactis Bb12 þ ITFmix) on selected cancer biomarkers in
patients with resected colonic polyps or cancer. Synbiotic
supplementation resulted in significant reductions in DNA
damage in the colonic mucosa of polyp patients. The results
provide evidence that both supplementation of lactic acid
bacteria and prebiotic effects may be protective against the
early stages of colon cancer.

Another important aspect to be considered in relation to
the anti-toxic potential associated with a prebiotic effect is
the formation of reducing equivalents, such as glutathione.
Food-borne carcinogens such as heterocyclic amines and
polycyclic aromatic hydrocarbons are often conjugated with
glutathione and thus inactivated. The enzyme involved, gluta-
thione transferase, is found in the liver and in other tissues
including the gut. Challa et al.(235) showed in a study of
the effect of a synbiotic (B. longum and lactulose) on
AOM-induced AC foci (ACF) in the rat colon that glutathione
transferase in the colonic mucosa was inversely related to
the ACF numbers and higher with the synbiotic intervention
Such an effect would be effective against a wide range of
oxidative damage.

Effects on bacterial enzymes and metabolite production.
As described in section ‘Microbiota of the gastro-intestinal
tract’ of the present paper, the increase in concentration of
lactic acid bacteria in the gut as a consequence of consumption
of ingredients showing a prebiotic effect leads to decreases
in certain bacterial enzymes purported to be involved in
synthesis or activation of carcinogens, genotoxins and
tumour promoters. This would appear to be due to the low-
specific activity of these enzymes in lactic acid bacteria(219).
Such changes in enzyme activity or metabolite concentration
have been suggested to be responsible for the decreased
level of preneoplastic lesions or tumours seen in carcinogen-
treated rats given probiotics and prebiotics(220,221). Although
a causal link has not been demonstrated, this remains a plaus-
ible hypothesis.

Production of anti-cancer metabolites. Luminal SCFA,
in particular butyrate, are potential anti-carcinogenic agents
within the gut. Butyrate is the preferred energy source of
colonocytes and has been implicated in the control of the
machinery regulating apoptosis and cellular differentiation.
Perrin et al.(251) studied the effect of different forms of dietary
fibre, a starch-free wheat bran, a type three-resistant starch and
ITF on the prevention of ACF in rats. Their hypothesis was
that only fibres capable of releasing butyrate in vitro would
be capable of preventing colon cancer. The resistant starch
diet and the ITF diet both produced large quantities of butyrate
and inhibited ACF formation, in contrast to the wheat bran diet
that neither generated large amounts of butyrate nor protected
against ACF formation.

Stimulation of protective enzymes. Many of the food-
borne carcinogens such as heterocyclic amines and polycyclic
aromatic hydrocarbons are known to be conjugated to gluta-
thione, which appears to result in inactivation. The enzyme
involved, glutathione transferase, is found in the liver and in
other tissues including the gut. Challa et al.(235) investigated
the effect of B. longum and lactulose on AOM-induced
ACF in the colon and showed that the activity of glutathione
transferase in the colonic mucosa was inversely related to

M. Roberfroid et al.S28

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n



the ACF numbers. Such a mechanism of protection would be
effective against a wide range of dietary carcinogens.

Apoptotic effects. The control of gene expression, cell
growth, proliferation and cell death in multi-cellular organ-
isms is dependent upon the complex array of signals received
and transmitted by individual cells. Apoptosis or programmed
cell death is one of the primary mechanisms by which multi-
cellular organisms control normal development and prevent
aberrant cell growth. Up-regulation of apoptosis has received
some attention recently as a potential mechanism of action
of probiotics and ingredients showing a prebiotic effect.

Hughes & Rowland(252) fed three groups of rats with one of
the three diets: basal, basal with oligofructose (5 % w/w) or
basal with long-chain inulin (5 % w/w), for 3 weeks. All the
animals were then dosed with 1,2-DMH and sacrified 24 h
later. The mean number of apoptotic cells per crypt was
significantly higher in the colon of rats fed oligofructose
(P¼0·049) and long-chain inulin (P¼0·017) as compared
with those fed the basal diet alone. This suggests that such
ingredients exert protective effects at an early stage in the
onset of cancer, as the supplements were effective soon after
the carcinogen insult. Comparison of the apoptotic indices
between the two oligosaccharide diets showed no significant
difference even though the mean apoptotic index was higher
in animals fed long-chain inulin.

Effects on tight junctions. Other studies have looked
at cellular and physiological events associated with tumour
promotion in the colon. For example, one feature of colonic
tumour promotion is a decrease the in epithelial barrier
integrity.

Commane et al.(253) showed using an in vitro model of tight
junction integrity (trans-epithelial resistance) that metabolic
products (probably SCFA) derived from probiotics and ingre-
dients showing a prebiotic effect fermentations were capable
of improving tight junction integrity, suggesting that synbio-
tics may have anti-tumour-promoting activity.

Summary and conclusion

(1) Data from animal models as well as preliminary evidence
in human study suggest reduction in the risk of colon
cancer development associated with the prebiotic effects.

(2) Data from animal models, with endpoints such as DNA
damage, AC foci and tumours in the colon, suggest that
reduction in the risk of colon cancer development is
associated with prebiotic effects.

(3) Limited animal studies also indicate that combinations of
prebiotics and probiotics may be more effective than
either agent alone.

(4) A prebiotics and probiotics study in human subjects using
putative biomarkers of cancer risk showed improvements
in some, including a reduction in DNA damage and cell
proliferation in colon biopsies. Further studies are
needed.

(5) A number of potential mechanisms for reduction in
cancer risk by prebiotic effect, including changes in gut
bacterial enzyme activities, up-regulation of apoptosis
and induction of protective enzymes have been explored
in animal models, but currently evidence for such effects
in human subjects is lacking.

Prebiotic effects and mineral absorption

The main authors of this section are Dr Coxam, Dr Davicco,
Dr Léotoing and Dr Wittrant.

Accumulating knowledge prompted the scientific commu-
nity to consider compounds showing prebiotic effects as a
source for putative innovative dietary health intervention for
the improvement of mineral retention. This particular effect
of ingredients showing a prebiotic effect is indeed especially
challenging because, among the bone builders, Ca is critical
in achieving optimal peak bone mass and modulating the rate
of bone loss associated with ageing, and is the most likely to
be inadequate in terms of dietary intakes. Consequently, this
specific property of prebiotics has been investigated exten-
sively because if the mineral is inadequate during growth,
the full genetic programme for skeletal mass acquisition
cannot be achieved. Then, if Ca intake is not enough to
offset obligatory losses, acquired skeletal mass cannot be
maintained, leading to osteoporosis, a major public health
problem.

Moreover, biological properties of ingredients showing a
prebiotic effect could extend far beyond, with potential
improvement of other minerals bioavailability, including
Mg, Fe or Zn.

Rationale behind the prebiotic effects on mineral absorption

Calcium. The most compelling data have demonstrated that
ingredients showing a prebiotic effect lead to increased
Ca absorption. As such ingredients are resistant to hydrolysis
by small intestinal digestive enzymes, they reach the colon
virtually intact, where they are selectively fermented by the
microbiota(254,255). This colonic fermentation produces SCFA
and other organic acids that contribute to lower luminal
pH in the large intestine which, in turn, elicits a modification
of Ca speciation and hence solubility in the luminal phase
so that its passive diffusion is improved(256 – 258). SCFA are
also likely to contribute directly to the enhancement of
Ca absorption via a cation exchange mechanism (increased
exchange of cellular Hþ for luminal Ca2þ)(259).

Further, these ingredients may also modulate transcellular
active Ca transport by increasing calbindin D9K expression
in the cecum and colorectum (the intracellular carrier protein
involved in the translocation of Ca to the basolateral
membrane of mucosal epithelial cells)(260,261).

Another way to contribute to the enhanced mineral absorp-
tion is the trophic effect of prebiotics on the gut (cell growth
and functional enhancement of the absorptive area)(262).
It has been suggested that this is mediated by an increased
production of butyrate and/or certain polyamines(254).
Remesy et al.(256) have shown that inulin is able to stimulate
ornithine decarboxylase, the rate-limiting enzyme for polya-
mine synthesis. Nevertheless, Scholz-Ahrens & Schrezenme-
ier(263) failed to show that polyamines mediate this effect.

In summary, ingredients showing a prebiotic effect help
to increase Ca bioavailability by extending the site of mineral
absorption (through the tight junctions between mucosal cells
in the small intestine) towards the large intestine.

Other minerals. With regard to Mg, most of the potential
of ingredients showing a prebiotic effect on its absorption are
similar to those described for Ca. They include increased Mg
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solubility and absorption due to reduced colonic pH(264).
Nevertheless, significant effects on Mg retention have been
demonstrated in dogs, despite the lack of any change
in faecal pH(265). It is also possible that SCFA affect Mg
absorption(266), butyrate being more efficient than propionate
or acetate(267), probably via a cation exchange mechanism.
Indeed, butyric acid is able to enhance the intestinal
uptake by activation of an apical Mg2þ/2Hþ antiport through
the provision of protons within the epithelial cell.

Fe and Zn balance can be improved by consumption of
these ingredients however, animal studies have failed to show
any significant effect on Cu bioavailability(268).

Summary of key studies

Table 12 provides the list of review papers dealing with the
effect of prebiotics on mineral metabolism.

Animal study. Animal studies targeting the effect of
prebiotics on Ca absorption are listed in the Tables 13 and
14. The points arising from these studies are the following:

(1) Different types of molecules have been studied, including
ITF-Dpav 3-4, ITF-Dpav12, ITF-Dpav25, ITF-MIX, GOS, lactu-
lose or resistant starch.

(2) Dietary supplementation with ITF enhances the uptake of
Ca, improves bone mineral content (BMC) in growing
rats and alleviates the reduction in bone mineral content
and bone mineral density (BMD) which follows ovari-
ectomy or gastrectomy in rats.

Clinical trials

In infants. The only available study targeting the prebiotic
effect on mineral metabolism in infants was conducted
in 6–12 months healthy formula-fed babies (Tables 15 and
16). Even though, ITF did not elicit any modulation of
faecal SCFA concentration, a beneficial effect on both Fe
and Mg absorption and retention was reported. No significant
difference was observed for Ca, Cu or Zn(269).

In adolescents. As far as adolescents are concerned, in
1999, van den Heuvel et al.(270) demonstrated that a daily
consumption of 15 g of ITF for 9 d stimulated fractional Ca
absorption by 10 % in young boys (14–16 years). Later on,
Griffin et al.(271) provided the evidence that modest intake
of ITFMIX, corresponding to 8 g/d, stimulated Ca absorption
in sixty girls at or near menarche. The increase reached
about 30 % after 3 weeks of consumption, when compared
with oligofructose only or placebo intakes.

This effect was mostly observed in girls with lower
Ca absorption status(272). Moreover, when given for 36 d to
adolescent girls (12–14 years), 10 g of ITF-Dpav 3-4 were
able to stimulate Mg absorption (18 %), without affecting
Ca absorption, vitamin D or parathyroid hormone (PTH)
serum concentration or urine concentration which are used
as markers of bone resorption(273).

The longest and most compelling study is a 1-year interven-
tion trial on pre-pubertal girls and boys (n 100) that found
significantly increased Ca absorption in the group receiving
ITF-MIX (8 g/d) after 8 weeks. The effect lasted throughout
the intervention period resulting, after 1 year, in improved
whole body bone mineral content and significantly increased

BMD, compared with the controls(274). This demonstrates a
beneficial effect on long-term use of this particular mixture
on Ca absorption and bone mineralisation in young adoles-
cents(275). A further study by Abrams et al.(276) showed that
responders to the ‘treatment’ had greater Ca absorption and
increased accretion of Ca to the skeleton, and thus concluded
on the importance of such a strategy to enhance peak bone
mass, as the extra absorbed Ca is deposited in bones.

In adults. It has been previously shown, using the meta-
bolic balance methodology, that addition of up to 40 g/d of
ITF and sugarbeet fibres to a normal mixed diet for 28 d
improved Ca balance, without adverse effects on the retention
of other mineral(277). However, a study carried out by van
den Heuvel et al.(278) in healthy young adults found no signifi-
cant differences in mineral absorption, irrespective of
the treatment (which consisted of a constant basal diet
supplemented for 21 d with 15 g/d ITF, or GOS, or not
supplemented) followed by a 24 h urine collection. It was
hypothesised that a 24 h period of urine collection, used in
the study, was too short to include the colonic component of
Ca absorption and thus to make up a complete balance necess-
ary to detect the effect of ITF. In a similar way, Teuri et al.(279)

investigated a combination of 15 g of ITF and 210 mg of
Ca added to 100 g of cheese given at breakfast to fifteen
adult healthy women with an average age of 23 years old.
The study failed to show any significant influence of the
diet on blood ionised Ca or parathyroid concentration over
the 8 h assessment period. Nevertheless, measuring serum
parathyroid and ionised Ca do not provide direct information
about Ca absorption, as do isotope techniques, and it has
been suggested that the length of the trial was probably too
short. Moreover, the addition of 1·1 g ITF-Dpav3-4 or caseino-
phosphopeptides to Ca-enriched milks, a valuable source
of well-absorbed Ca, did non-significantly increase Ca absorp-
tion in adults (25–36 years), independently of sex(280).
Finally, Abrams et al.(281) gave a supplementation containing
8 g of ITF-MIX for 8 weeks to thirteen young adults
(average age of 23 years). Eight of the thirteen volunteers
were classified as responders, based on their level of Ca
absorption.

In postmenopausal women. Ducros et al.(282) carried out a
clinical trial in postmenopausal women (age between 50 and
70 years with at least 2 years of menopause). The volunteers
were provided with 10 g/d ITF-Dpav3-4 or a placebo for
5 weeks using a crossover design. They demonstrated that
consumption of ingredients showing a prebiotic effect was
associated with increased Cu absorption, while no significant
effect could be demonstrated on Zn or Se bioavailability.

In a similarly designed double-blind randomised, cross-
over design, post-menopausal women without hormone
replacement therapy were given 10 g of ITF-Dpav3-4 daily for
5 weeks. Mg absorption and status was determined using
mass spectrometer analysis in faeces, urine and blood. Results
showed that the ITF-Dpav3-4-enriched diet increased Mg
absorption by 12·3 %, compared to the placebo sucrose
control group(283). In the same experiment, Tahiri et al.(284)

showed that over 5 weeks of a moderate daily dose (10 g) of
ITF-Dpav3-4 failed to modify intestinal Ca absorption in the
early postmenopausal phase, while in the subgroup of late
phase (women who had been going through menopause for
more than 6 years), an increase in Ca absorption was observed.

M. Roberfroid et al.S30
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Table 12. Published reviews on the prebiotic effect on mineral metabolism

Model Dietary fibres Mineral Main biological target References

Human
Rat

Fibres
Phytic acid

Ca, Mg, Fe, Zn Mineral metabolism Walker et al.(404)

Rat Prebiotics (FOS, GOS, SOS) Ca Bioavailability Roberfroid(405)

Human
Rat

Oligosaccharides Ca, Mg, Fe, Zn Ca absorption
Ca absorption Methodology concerns

Coudray et al.(406)

Human Prebiotics (oligofructose) Ca Bioavailability Van den Heuvel et al.(278)

Human
Rat

Prebiotics
(inulin, oligofructose, lactulose, resistant starch)

Ca, Mg, P, Fe, Zn Mineral metabolism Schaafsma et al. (407)

Human
Rat

Prebiotics (inulin, oligofructose)
Synbiotics

Ca, Mg, Fe, Zn Bioavailability
Functional foods

Roberfroid(255)

Human
Rat

Prebiotics (fibre, inulin, oligofructose)
Probiotics

Ca, Mg, Fe, Zn Bioavailability Fairweather-tait et al.(408)

Human Prebiotics
(oligofructose, inulin)

Ca, Mg, Fe, Zn Mineral absorption Carabin et al.(409)

Human
Rat

Prebiotics (inulin, oligofructose) Ca Ca absorption Franck(410)

Human
Rat

Prebiotics
(FOS, GOS)

Ca, Mg, Fe, Zn Mineral absorption Van Dokkum et al.(411)

Human
Rat

Prebiotics
(oligofructose, oligosaccharides)

Ca, Mg, Fe, Zn Mineral metabolism
Ca metabolism
Bone structure
Mechanisms of action

Scholz-Ahrens et al.(294)

Human Prebiotics
(oligofructose, inulin)

Ca Ca absorption Roberfroid(412)

Human
Rat

Prebiotics
(oligofructose, inulin)

Ca Ca absorption
Functional foods

Cashman(413)

Human
Rat

Prebiotics
(oligofructose, inulin)

Ca, Mg, P Ca bioavailability Kaur & Gupta(414)

Rat Prebiotics
(oligofructose, inulin, TOS)

Ca, Mg Mineral metabolism
Bone structure
Mechanisms of action

Scholz-Ahrens & Schrezenmeir(296)

Rat
Human

Prebiotics
(oligofructose, inulin, GOS)

Ca Ca bioavailability
Bone structure
Mechanisms of action

Cashman(415)

Human Prebiotics (inulin, oligofructose) Ca Ca bioavailability Cashman(413)

Human
Rat

Prebiotics (inulin, oligofructose) Mineral and trace elements Mineral absorption, mechanisms of action Bongers & Van den Heuvel(416)

Human
Rat

Prebiotics
(inulin, oligofructose, resistant starch, lactulose)

Ca Ca absorption, Bone health, Mechanisms of action,
Osteoporosis

Cashman(417)

Human
Rat

Prebiotics (inulin, oligofructose) Ca Ca absorption Caers(418)

Human
Rat

Prebiotics
(FOS, GOS, oligofructose, inulin)

Mg Mg absorption Coudray et al.(419)

Human Prebiotics (FOS, GOS, oligofructose, inulin) Mg Mg absorption Coudray(420)

Human
Rat

Prebiotics
(oligofructose, ITF þ oligofructose)

Ca Ca balance, Bone health, Osteoporosis Coxam(299)

Rat Prebiotics
(oligofructose, inulin)

Ca, Mg Ca absorption, Mg retention, Bone health Weaver(421)

Human
Rat

Prebiotics
(oligofructose, inulin)

Ca Ca absorption, Bone health, Osteoporosis Abrams et al.(274)
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Table 12. Continued

Model Dietary fibres Mineral Main biological target References

Human
Rat

Prebiotics
(oligofructose, inulin)

Ca Ca absorption, Bone health Franck(422)

Human
Rat

Prebiotics
(oligofructose, inulin)

Ca Ca absorption, Bone health, Osteoporosis Bosscher et al.(423)

Human Prebiotics (inulin, olgofructose) Ca Ca absorption, Bone mineralization, Mechanisms of action Cashman(275)

Human Prebiotics
(oligofructose, inulin)
Phytoestrogens

Ca Ca Bioavailability, Bone health, Phytoestrogens bioavailability Coxam(424)

Rat Prebiotics
(oligofructose, inulin)
(impact of polymerization degree of prebiotics)

Ca, Mg, P, Fe, Zn Mineral metabolism, Ca metabolism, Bone health,
Mechanisms of action

Scholz-Ahrens & Schrezenmeir(425)

Human
Rat

Prebiotics (oligofructose)
Probiotics (Bifidobacterium, lactobacillus)
Synbiotics

Ca Ca absorption, Bone health, Mechanisms of action Scholz-Ahrens et al. (426)

Human
Rat

Prebiotics
(oligofructose, inulin)

Ca, Mg Ca absorption, Bone health Alexiou & Franck(427)

Human
Rat

Prebiotics
(oligofructose, inulin)

Ca Ca absorption, Bone health, Osteoporosis Gibson & Delzenne(428)

Human Prebiotics (inulin, oligofructose, GOS) and Probiotics
(L casei, bifidobacteria, Lactobacillus, L reuteri,

rhamnosus GG)

Ca Ca absorption De Vresse & Schrezenmeir(429)

Rat
Dog

Prebiotics (inulin, oligofructose) Ca Ca absorption Griffin & Abrams(430)

Human
Rat

Prebiotics (inulin) Ca Ca absorption, Bone mineralization Hawthorne & Abrams(431)

Human Prebiotics
(oligofructose, inulin)

Ca, Mg, Fe, Zn Mineral metabolism, Bone remodelling, Mechanisms of action Kelly(432)

Human Prebiotics (inulin, oligofructose)
Probiotics (Lactobacillus, Bifidobacterium)

Ca Ca absorption, Osteoporosis De Vrese(433)

FOS, fructo-oligosaccharides; GOS, galacto-oligosaccharides; SOS, soy-oligosaccharides; TOS, transgalacto-oligosaccharides; ITF, inulin-type fructans.

M
.

R
o

b
erfro

id
et

a
l.

S
3

2

British Journal of Nutrition



Table 13. The prebiotic effects on bone metabolism in the rat

Substance

Amount
(g/100 g diet

length of treatment) Bone effect Study design/animals (n)/method analysis References

GOS 20 d " Tibia Ca content OVX Wistar rats
AAS

Chonan et al.(434)

FOS 5
60 d

" Femoral Ca content
" Bone volume

Growing Wistar rats (sixteen males)
AAS
Histomorphometric method

Takahara et al.(435)

Oligofructose or
Inulin

10
13 weeks

Both " femoral Ca content Growing Fisher rats (thirty males, 4 weeks old)
ICPMS

Richardson et al.(436)

Ca þ Inulin 0·2 þ 5 or
0·2 þ 10 or
0·5 þ 5 or
0·5 þ 10 or

1 þ 5 or
1 þ 10 or

From 4 to 22 weeks

" Whole body BMC
" Whole body BMD
NS whole body bone area
In each case (whatever Ca concen-

tration and at all stage)

Growing Wistar rats (thirty-six males, 4 weeks old)
DEXA

Roberfroid et al.(412)

Ca þ FOS 0·5 þ 2·5 or
0·5 þ 5·0 or
0·5 þ 10 or
1·0 þ 50 or
16 weeks

Ns L1-L4 Ca content
" trabecular tibial thickness
Ns L1-L4 Ca content
" trabecular tibial perimeter
" L1-L4 Ca content
" trabecular tibial perimeter
" L1-L4 Ca content
" trabecular number

OVX Fisher 344 rats (96 females, 6 week-old)
AAS
Histomorphometric method

Scholz-Ahrens et al.(296)

Oligofructose FOS (DP2-8) or
Inulin þ FOS (DP2-8)
Inulin (DP . 23)

5
5

4 weeks

NS femoral BMC
NS femoral BMD
" Spine BMC
" Femoral BMD
" Spine BMC
# Bone resorption

Growing Sprague–Dawley rats (forty males, 7 weeks old)
DEXA
ELISA

Kruger et al.(297)

HP inulin (DPav25) þ ITF-MIX (OF)
HP inulin (DPav25) þ Oligofructose
HP inulin (DPav25)
ITF-MIX

BC (branched –chain) inulin

5 þ 5
5 þ 5

10
10
10

28 d

NS tibial Ca content
NS tibial Ca content
NS tibial Ca content
NS tibial Ca content
NS tibial Ca content

Growing Wistar rats (ten males, 6 weeks old)
AAS

Coudray et al.(298)

ITF-MIX 5·5
21 d

" Femoral BMC
" Distal femur BMD

OVX Sprague–Dawley rat (twenty-six females,
6 month-old) Ca45 kinetics method

AAS

Zafar et al.(437)

Inulin
Inulin þ ITF

5
5 þ 0·8

21 d

NS femoral Ca content
" Femoral bone Ca content

v. inulin

Growing Sprague–Dawley rats (forty-eight males,
6 weeks old)

Ca45 kinetics method
AAS

Zafar et al.(305)
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Table 13. Continued

Substance

Amount
(g/100 g diet

length of treatment) Bone effect Study design/animals (n)/method analysis References

ITF þ FOS 10(mg/gwt/d) þ 7·5
20 þ 7·5
40 þ 7·5
80 þ 7·5
3 months

" Femoral BMD v. ITF
" Femoral BMD v. ITF
" Femoral failure load
# urinary DPD
" Femoral BMD v. ITF
" Femoral failure load
# Urinary DPD
" " Femoral BMD v. ITF v.

(ITF10 þ FOS)
" Femoral failure load
# Urinary DPD

Intact or OVX Wistar rat (eighty-eight females,
3 month-old)

DEXA
Three-point bending test
RIA

Mathey et al.(303)

Difructose anhydride III (DFAIII) 1·5 or 3
8 weeks

In intact rats
NS maximum breaking force
NS distal femoral BMD
In OVX rats
" (Femoral Ca content
" Distal femoral BMD with 3 %

DFAIII
" Maximum breaking force
# Urinary DPD in DFAIII groups

(trend)

Intact or OVX Sprague–Dawley rats (fifty females,
6 weeks old) DEXA, 3-point bending test

ELISA

Mitamura & Hara(438)

Difructose anhydride III (DFAIII)
DFAIII þ vitamin D deficient

1·5
8 weeks

In intact rats
NS femoral Ca content
In OVX rats
" Femoral Ca content

Intact or OVX Sprague–Dawley rats (sixty-four females,
6 weeks old, vitamin D deficient or not)

AAS

Mitamura & Hara(439)

Oligofructose
Inulin

5
5

3 months

" Femur BMD
" Cancellous tibia area
" Femur BMD
" Femoral BMC
" Cancellous L3 area
# CTX1

Growing Wistar rats (thirty-eight males, 6 weeks old)
DEXA (pQCT)
ELISA

Nzeusseu et al.(440)

FOS 5
23 d

NS femur BMD
" Femur biomechanical properties

Growing Wistar rats (sixteen males, 4 weeks old)
DEXA
Three-point bending test

Lobo et al.(441)

FOS or
ITF þ FOS

4 months " Whole body BMD v. control OVX
" Tibial BMC v. control OVX
" Lumbar BMD and BMC v. control

OVX
(no additive effects with ITF þ FOS)
" Tibial microarchitectural proper-

ties in ITF þ FOS ( " trabecular
number v. OVX control)

OVX Sprague–Dawley rat (sixty-nine females,
9 month-old) DEXA

Tomography

Devareddy et al.(304)

Lc inulin 5
8 weeks

NS BMD
" Femoral BMC
NS bone markers
(OC, CTX1)

Growing Sprague–Dawley rats (forty-eight females,
3 weeks old) DEXA

ELISA

Jamieson et al.(442)
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Twelve older postmenopausal women (of at least 5 years
past the onset of menopause) drank 100 ml of water containing
5 or 10 g of lactulose or a reference substance at breakfast for
9 d. True fractional Ca absorption was calculated using Ca
isotope ratios, and consumption of lactulose was found to
increase Ca absorption in a dose–response way(285).

In a crossover trial, twelve postmenopausal women were
given a 200 ml yogurt to drink twice a day (at breakfast and
lunch) containing either GOS (20 g) or sucrose for 9 d;
a greater true Ca absorption (16 %) was observed after
consumption of a product rich in GOS. In addition, no
increased urinary Ca excretion was observed, suggesting that
GOS could also indirectly increase the uptake of Ca by
bones and/or inhibit bone resorption(286).

Adolphi et al.(287) tested the hypothesis that, in postmeno-
pausal women (between 48 and 67 years and who had been
postmenopausal for 10·5 (SEM 0·7) years consumption of
fermented milk (supplemented with Ca) at bedtime could
prevent the nocturnal peak of bone resorption by decelerating
its turnover and that this effect could be improved by adding
Ca absorption enhancers. Actually, they showed that indeed
such a practice can reduce the nocturnal bone resorption
and that supplementation with Ca had no additional effect
unless absorption enhancers such as ITF and caseinphospho-
peptides were added.

Kim et al.(288) who investigated the effects of ITF sup-
plementation (8 g/d for 3 months) in postmenopausal women
(mean age: 60 year) showed that apparent Ca absorption
was significantly increased by 42 % in the ITF group, while
a 29 % decrease was observed in the placebo group.
This was associated with lower alkaline phosphate plasma
levels (a parameter which is actually not specific of bone
formation) and a trend towards a slight reduction in urinary
deoxypyridinolin (a biomarker for bone resorption).
As expected, due to the very short length of exposure, BMD
was not modified by the treatment.

Finally, fifteen women (who were a minimum of 10 year
past the onset of menopause and had taken no hormone repla-
cement therapy for the past years) were treated with 10 g/d
of a specific mixture of ITF for 6 weeks, according to
a double-blind, placebo-controlled crossover design. True
fractional Ca absorption, measured by dual isotopes before
and after treatment, was significantly increased (þ7 %) in
women with lower initial BMD(289).

In institutionalised patients. Bone resorption, used as indi-
cator of Ca retention, remained unchanged in institutionalised
adults after 3 weeks of treatment with 13 g/day of ITF-fortified
beverages(290).

Outline of general rules

Involvement of the colon. The main points arising from the
available studies are that the Ca sparing effect elicited by
a prebiotic effect involves colonic absorption. Indeed, using
in vitro Ussing chambers, Raschka & Daniel(262) provided
the evidence of the effect of ITF-MIX on transepithelial Ca
fluxes in large intestine of rats.

Levrat et al.(291) showed that dietary ITF given in the range
of 0–20 % in the diet-stimulated intestinal Ca absorption in a
dose-dependent manner, coinciding with a progressiveT
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Table 14. The prebiotic effects on mineral absorption in the rat

Substance

Amount
g/100 g diet length

of treatment (n) Mineral absorption
Study design Animals (n)
Method analysis References

FOS 5
3 d

" Fractional Ca47 absorption Fisher 344 (forty males, 38 weeks old)
Ca47 method
Sc47 method
Gamma counter

Brommage et al.(295)

FOS 5
28 d

" Apparent Ca and Mg absorption in
intact rats

" Apparent Mg absorption in
cececomized rats

Intact or cececomized rats
AAS

Ohta et al.(292)

FOS
(low Mg, high Ca and high P)

1
5

" Apparent Mg absorption Mg-deficient rats
AAS

Ohta et al.(307)

FOS 5
2 weeks

" Apparent Ca, Mg and Fe absorption
Improve recovery from anemia

Fe-deficient rats for 3 weeks
(anaemic rats)
AAS

Ohta et al.(308)

FOS
(Cr-mordanted cellulose as an

unabsorbable marker)

5
1 d

" Apparent Ca and Mg absorption
and

Colorectal absorption of Ca and Mg

Growing Sprague–Dawley rats (twenty-eight males,
6 weeks old)

(colon and rectum)
AAS

Ohta et al.(257)

GOS 20 d " Apparent Ca absorption OVX wistar rats
AAS

Chonan et al. (434)

TOS (transgalactosylated
oligosaccharides)

5
10

10 d

" Apparent Ca absorption Growing Wistar rats (males)
AAS

Chonan & Watanuki(446)

FOS or
Chicory inulin Raftiline ST

10
24 d

Both " apparent Ca, Mg and Zn retention
NS on Cu absorption
Raftilose " apparent Fe

Wistar rats (thirty males, 100 g)
ICPMS

Delzenne et al.(268)

Lactitol-oligosaccharide (LO)
Galacto-oligosaccharides
(GOS)

5
2 weeks

" Apparent Ca absorption in LO
" Apparent Mg absorption in LO and GOS

Growing Sprague–Dawley rats (males, 8 weeks old)
AAS

Yanahira et al.(447)

FOS 10
10 d

" Apparent Ca absorption Growing gastrectomised Sprague–Dawley rats
(seventeen males, 4 weeks old)

AAS

Ohta et al.(260)

FOS 5
3 d

" True and apparent Ca absorption
" Ca balance

Growing Wistar rats (sixteen males, 6 weeks old)
Ca45 kinetics study
AAS

Morohaschi et al.(448)

FOS short–chain
(normal and Ca deficient diet)

10
10d

" CaBP levels
Independent of 1,25(Oh)2D3 action

Rats (intestinal CaBP levels)
AAS

Takasaki et al. (261)

FOS (DP3–50)
FOS þ phytic acid (PA)

10
10 þ 7

21 d

" Apparent Ca, Mg, Fe, Cu absorption
" Cecal Ca, Mg
NS Ca status
" Cecal Ca
NS cecal Ca v. PA

Growing Wistar rat (thirty-two males, 6 weeks old)
AAS

Lopez et al.(258)

FOS 5
60 d

" Apparent Ca absorption
" Fractional Ca absorption

Growing Wistar rats (sixteen males, 6 weeks old)
AAS

Takahara et al.(435)

Inulin
Inulin þ resistant starch

10
5

21 d

" Apparent Ca absorption
" Ca retention
(higher effect with inulin þ resistant starch)

Adult Wistar rats (thirty-two males, 8 weeks old)
AAS

Younes et al.(449)
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Table 14. Continued

Substance

Amount
g/100 g diet length

of treatment (n) Mineral absorption
Study design Animals (n)
Method analysis References

Difructose anhydride III (DFAIII)
DFAIII

3
4 weeks

1·5
3

4 weeks

" Apparent Ca absorption
" Ca absorption rate was higher in

cecolonectomized rats

Intact or OVX growing Sprague–Dawley rats (twenty
females, 6 weeks old)

OVX or OVX cecocolonectomy growing Sprague–
Dawley rats (twenty females, 6 weeks old)

AAS

Mitamura et al.(450)

Ca þ Oligofructose 0·5 þ 2·5
0·5 þ 5·0
0·5 þ 10
1·0 þ 50

(16 weeks)

# Apparent Ca absorption (after 4 weeks)
NS apparent Ca absorption
" Apparent Ca absorption
v. OVX (week 8)
" Apparent Ca absorption
v. OVX (week 4)
v. OVX (week 8)
v. OVX (week 16)

OVX Fisher 344 rats (ninety-six females, 6 weeks old)
AAS

Scholz-Ahrens et al.(296)

HP inulin (DPav25) þ ITF-MIX (OF)
HP inulin (DPav25) þ oligofructose
HP inulin (DPav25)
ITF-MIX

Branched chain (BC) inulin

5 þ 5

5 þ 5
10
10
10

28 d

" Apparent Ca and Mg absorption
" Ca and Mg balance
OF þ HP: additive effect

Growing Wistar rats (ten males, 6 weeks old)
AAS

Coudray et al.(298)

Oligofructose FOS (DP2-8) or
Inulin (DP . 23)
Inulin þ FOS (DP2-8)

5
5
5

4 weeks

NS urinary Ca excretion
NS urinary Ca excretion
" Ca bioavailability
" Urinary Ca excretion

Growing Sprague–Dawley rats (forty males,
7 weeks old) ICPOES

(vista model inductively coupled plasma optical
emission spectroscopy)

Kruger et al.(297)

ITF-MIX 5·5
21 d

" True Ca absorption
" Ca balance

OVX Sprague–Dawley rat (twenty-six females,
6 month old)

Ca45 kinetics method
AAS

Zafar et al.(437)

Inulin
Inulin þ ITF

5
5 þ 0·8

21 d

NS true Ca absorption v. ITF Growing Sprague–Dawley rats (forty-eight males,
6 weeks old) AAS,

Ca45 kinetics method

Zafar et al.(305)

FOS short – chain
Four non-digestible saccharides
FOS short-chain
Four non-digestible saccharides
FOS short-chain
Four non-digestible saccharides

3
4 weeks

Measurement
after 10–14 d

3
4 weeks

Measurement
after 24–28 d

3
5 weeks

" Apparent Ca, Mg, Fe absorption
" Apparent Ca, Mg absorption
Higher effect with DFAIII
DFAIII " Fe absorption
NS apparent Ca absorption in OVX rats
" Apparent Ca absorption v. FOS in OVX rats

Growing Sprague–Dawley rats (forty-eight males)
AAS
Growing OVX Sprague–Dawley (sixty-eight females,

6 weeks old)
AAS

Asvarujanon(451)

Difructose anhydride III 1·5 or 3
8 weeks

Both doses restore the reduced Ca absorption
in OVX rats and Mg absorption in both OVX
and SH rats

Intact or OVX Sprague–Dawley rats (fifty females,
6 weeks old)

AAS

Mitamura & Hara(438)

ITF-MIX 10
21 d

" Net transepithelial Ca transport (large
intestin)

" Ca absorption rate (caecum)

Growing Sprague–Dawley rats (forty-eight males)
(transepithelial Ca in vitro)

AAS

Raschka(262)
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Table 14. Continued

Substance

Amount
g/100 g diet length

of treatment (n) Mineral absorption
Study design Animals (n)
Method analysis References

Ca þ inulin 0·25 þ 10
0·50 þ 10
0·75 þ 10

40 d

After 13 d
" Apparent Ca absorption
Higher effect when Ca is low (0·25) or high

(0·75)
After 40 d
" Apparent Ca absorption
Higher effect when Ca is low (0·25)

Growing rats, 10 weeks (ten males wistar)
AAS

Coudray et al.(452)

Inulin 7·5
3 weeks " True Ca absorption

Higher effect in 10 and 20 months old animals
v. those aged 2 and 5 months old

Wistar rats (eighteen males)
2 months old
5 months old
10 months old
20 months old
Ca44 method, AAS
ICPMS

Coudray et al.(453)

Difructose anhydride III (DFAIII)
FOS

3
3

4 weeks

" Fe absorption
DFAIII restores gastrectomy-induced Fe

malabsorption

Growing Sprague–Dawley rats (eighteen males,
4 weeks old)

Growing gastrectomized Sprague–Dawley rats
(thirty-two males, 4 weeks old)

AAS

Shiga et al.(454)

Shoyu polysaccharides
(SPS)

" Fe absorption in organs Anemics rats
(in vivo, in vitro)

Kobayashi et al.(309)

FOS 5
23 d

" Apparent Ca absorption
" Apparent Mg absorption

Growing Wistar rats (sixteen males, 4 weeks old)
AAS

Lobo et al.(441)

Oligofructose (chicory roots,
Inulin (chicory roots)

5
5

3 months

" Apparent Ca absorption
(Higher effect with inulin which could be

related to an " calbindin-9K)

Growing Wistar rats (thirty-eight males, 6 weeks old)
AAS

Nzeusseu et al.(440)

Difructose anhydride III (DFAIII)
DFAIII þ vitamin D-deficient

1·5
8 weeks

In intact rats
NS apparent Ca absorption
" Apparent Ca absorption in vitamin D-

deficient rats
In OVX rats
" Apparent Ca absorption (higher effect in

vitamin D-deficient rats)

Intact or OVX Sprague–Dawley rats (sixty-four
females, 6 weeks old, vitamin D deficient or not)

AAS

Mitamura & Hara(439)

Inulin 7·5
3 weeks " True Cu and Zn absorption

Lower effect in 10 and 20 months old animals
v. those aged 2 and 5 months old

Wistar rats (eighteen males)
2 months old
5 months old
10 months old
20 months old
Cu65 Zn67 method, AAS
ICPMS

Coudray et al.(455)

Inulin long – chain
or
Inulin short – chain
Chicory

7·5
3 months

" Apparent Ca absorption (1 month)
NS 3 month

Growing Wistar rats (forty males, 3 months old) AAS Demigne et al.(443)

Inulin 10
2 weeks

" Mg absorption C57B16J mice (twenty-four males, 4 months old)
AAS

Rondon et al.(445)
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Table 14. Continued

Substance

Amount
g/100 g diet length

of treatment (n) Mineral absorption
Study design Animals (n)
Method analysis References

GR inulin
Artichoke inulin
ITF-MIX

Artichoke þ P95 oligofructose

0·1
(0·82 g/d human
equivalent dose)

75 d

NS on calcemia level
" Calcemia
NS on calcemia level
NS on calcemia level

Growing Sprague–Dawley rats (thirty-six females,
6 weeks old)

Colorimetric assay

Azorin-Ortuno(456)

Soyabean oil (SO) þ ITF-MIX

SO þ Fish oil þ ITF-MIX

15 þ 10·87
15 þ 11·5 þ 10·87

15 d

" Apparent Ca absorption
" Apparent Ca absorption (higher effect)

Growing Wistar rats (twenty-four males rats,
6 weeks old)

AAS

Lobo et al.(444)

Inulin HPX 2·5
5 d

NS apparent Ca absorption Wistar rats (twenty-four males, 6 weeks old)
AAS

Klobukowski et al.(457)

FOS
FOS þ phytic acid (PA)

0·08 or 0·25
0·08 þ 1 or 0·25 þ 1

4 weeks

FOS " apparent Ca, Mg and Fe absorption
and counteract the deleterious effects of PA

Kung-Ming mice (sixty males, 4 weeks old)
AAS

Wang et al.
(with mice)(458)

FOS, fructo-oligosaccharides; GOS, galacto-oligosaccharides; TOS, transgalactosylated oligosaccharides; OF, oligofructose; AAS, atomic absorption spectrometry; ICPOES, inductively coupled plasma optical emission spectroscopy;
DP, degree of polymerisation; ITF, inulin-type fructans; ICPMS, inductively coupled plasma MS; OVX, ovariectomized.

Apparent absorption: Ca intake (I) 2Ca fecal excretion (F).
Net retention: Ca intake (I) 2 (Ca fecal excretion (F) þ Ca urinary excretion (U)).
True intestinal Ca absorption: (Ca45 Ca44) ¼ (I 2 F) þ f (endogenous net Ca excretion).
Fractional Ca absorption: Ca47, Sc49 ratio (I 2 F).
Ca balance: 4–7 d balance period (I, F, U using metabolic cages) % Ca45 absorption: % Ca45 oral dose/% Ca45 IP dose £ 100.
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Table 15. The prebiotic effects on mineral absorption in the human

Substance
Amount (g/d)
length of treatment (n) Mineral absorption Study design/subjects (n) Reference

Sc inulin (infant formula) 0·75, 1 or 1·25 NS apparent Ca absorption
( " Apparent and net Fe retention with 1 g/d)
( " Apparent and net Mg retention with 0·75 &

1·25 g/d)

R study
Formula-fed infants (6–12 months old) (36)
AAS

Yap et al.(269)

Oligofructose 15
9 d

" True fractional Ca absorption R, DB, CO study
Male adolescents (24)
Kinetic technique (Ca44, Ca48)
ICPMS

Van den Heuvel et al.(270)

Oligofructose or
ScFOS þ ITF-MIX

8
3 weeks

NS with oligofructose
" True Ca absorption with ITF-MIX

DB, CO study
Young girls (29)
Kinetic technique (Ca46, Ca42)
TIMMS

Griffin et al.(271)

ScFOS þ

ITF-MIX

8
3 weeks

" True Ca absorption R, CO study
Young girls (54)

Kinetic technique (Ca46, Ca42)
TIMMS

Griffin et al.(272)

ScFOS þ

ITF-MIX

8
1 year

" Fractional Ca absorption DB study
Male and female adolescents (48)
Kinetic technique (Ca46, Ca42)
TIMMS

Abrams et al.(274)

ScFOS þ

ITF-MIX

8
1 year

" True fractional Ca absorption
(thiry-two responders and sixteen non-responders)

DB, PC, sex stratification study
Male and female adolescents (48)
Kinetic technique (Ca46, Ca42)
TIMMS

Abrams et al.(276)

ScFOS 10
37 d

NS true fractional Ca absorption
( " true Mg absorption)

R, DB, CO study
Adolescent girls (14)
Low Ca intake
(Ca44, Ca48) ICPMS

Van den Heuvel et al.(273)

Inulin (Chicory roots) 40
28 d

" Apparent Ca
absorption

3 £ 3 Latin square
Young men (9)
AAS

Coudray et al.(277)

Inulin
OF

17
3 d

NS mineral (Ca, Mg, Zn, Fe) excretion because of
ileostomy

DB, CO study ileostomised patients
(five men and five women)

AAS

Ellegard et al.(293)

Inulin, FOS, or GOS 15
21 d

NS true fractional Ca or Fe absorption
(Methodologic concern: analysis after 24 h urines)

DB, CO study
Young men (12)
Kinetic technique (Ca44, Ca48)
ICPMS

Van den Heuvel et al.(278)

Inulin þ Ca (210 mg/d) 15
5 d

NS urinary Ca excretion
(lower iPTH lower ! later increase in Ca absorption)

R, DB, CO study
Young woman (50)
AAS
IRMA

Teuri et al.(279)

Shoyu polysaccharides
(SPS)

0·6
4 weeks

" In plasma Fe in the SPS group R, DB, PC parallel study
Young woman (45)
AAS

Kobayashi et al.(309)

FOS in milk 0·75 g/100 ml
1 d

NS true fractional Ca absorption R, DB, CO study
Young men (8) and women (7)
Kinetic technique (Ca44, Ca42)
ICPMS

Lopez-Huertas et al.(280)
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Table 15. Continued

Substance
Amount (g/d)
length of treatment (n) Mineral absorption Study design/subjects (n) Reference

ScFOS þ

ITF-MIX

8
8 weeks

" True fractional Ca absorption
(responders/non responders)
Colonic absorption

Young adults (13)
Kinetic technique (Ca42, Ca46)
TIMMS

Abrams et al.(281)

Lactulose 5 or 10
9 d

NS true fractional Ca absorption with 5 g/d
" True Ca absorption with
10 g/d

R, DB, CO study
POM (12)
Kinetic technique (Ca44, Ca48)
ICPMS

Van den Heuvel et al.(285)

Transgalacto-oligosaccharide
(TOS)

20
9 d

" True Ca absorption R, DB, CO study
POM (12) Kinetic technique (Ca44, Ca48)
ICPMS

Van den Heuvel et al.(286)

ScFOS 10
35 d

" Mg absorption, accompanied by an " In plasma
Mg25 and higher Mg excretion

R, DB, CO study
POM (12) Kinetic technique (Mg25)
ICPMS

Tahiri et al.(283)

ScFOS 10
35 d

NS true Ca absorption
Trend for
" In women . 6 years POM subgroup

R, DB, CO study
POM (12) Kinetic technique (Ca44)
ICPMS

Tahiri et al.(284)

Chicory fructan fiber 8
3 months

" Apparent Ca absorption
" Apparent Fe absorption

DB parallel design
POM (13)
AAS

Kim et al.(288)

ScFOS 10
35 d

" Cu absorption
No effect on ZN and Se

R, DB, CO study
POM (12)
Kinetic technique (Cu65 Zn67 Se74)
ICPMS

Ducros et al.(282)

ScFOS þ

ITF-MIX

10
6 weeks

" Fractional Ca absorption R, DB, PC, CO study
POM (50)
Kinetic technique (Ca46, Ca42)
ICPMS

Holloway et al.(289)

ScFOS þ

ITF-MIX

þ Ca þ CPP þ fermented milk

1·75 g/cup
14 d

" Intestinal absorption
with ITF-MIX þ Ca þ CPP

Parallel DB, PC study
POM (85)
HPLC
Colorimetric assay (Kone)

Adolphi et al.(287)

Sc, short chain; R, randomized; DB, double-blind; AAS, atomic absorption spectrometry; CO, crossover; OF, oligofructose; ICPMS, inductively coupled plasma MS; ScFOS, short-chain fructo-oligosaccharides; ITF, inulin-type fructans;
TIMMS, thermal ionisation magnetic sector MS; PC, placebo control; CPP, casein phosphopeptide.

Fractional Ca: (Ca44, Ca43) ratio; (Ca46, Ca42) ratio.
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Table 16. The prebiotic effects on human bone health

Substance

Amount
(g/d length of
treatment (n)) Bone effect Study design/subjects (n)/method analysis References

ScFOS þ ITF-MIX 8
1 year

" BMC
" BMD

DB, PC, Sex stratification study
Male and female adolescents (48)
DEXA

Abrams et al.(274)

ScFOS þ ITF-MIX 8
1 year

Higher Ca accretion in responders (Ca absorption
" by at least 3 %)

DB, PC, Sex stratification study
Adolescents (48)
32 responders and 16 non-responders
DEXA

Abrams et al.(276)

ScFOS 10
37 d

NS bone resorption
(DPD)
NS PTH
NS vitamin D

R, DB, CO study
Adolescent (40)
HPLC

Van den Heuvel
et al.(273)

Inulin þ Ca (210 mg/d) 15
5 d

NS PTH R, DB, CO study
Young woman (50)
IRMA

Teuri et al.(279)

ScFOS 10
35 d

NS bone turnover (OC-DPD)
d 1,25(OH)2D in early POM subgroup

R, DB, CO study
POM (12)
Kinetic technique (Ca44)
ICPMS, RIA

Tahiri et al.(284)

Chicory fructan fiber 8
3 months

NS lumbar spine or femoral neck BMD
(short term study)

NS bone turnover markers
Trend to d DPD

DB parallel study
POM (13)
DEXA, IRMA, ELISA

Kim et al.(288)

ScFOS þ ITF-MIX 10
6 weeks

" Bone turnover
(OC-DPD)

R, DB, PC, CO design
POM (50)
IRMA–ELISA

Holloway et al.(289)

Isoflavones þ prebiotics or
Isoflavones þ scFOS

7
30 d

NS bone formation (b-ALP)
d bone resorption (DPD) compared to when

isoflavones are given alone
Higher effects in early POM v. late POM

Parallel DB, PC study
POM (39)
IRMA-RIA

Mathey et al.(459)

ScFOS þ ITF-MIX

ITF-MIX þ Ca þ CPP þ fermented milk
1·75 g/cup
14 d

Fermented milk d nocturnal bone turnover ( d DPD)
Additional effect of ITF-MIX þ Ca þ CPP

Parallel DB, PC study
POM (85)
HPLC

Adolphi et al.(287)

Inulin 15
3 weeks

NS bone resorption (urinary NTx) DB, CO study
Institutionalized adults (, 60 year old) (15)
ELISA

Dahl et al.(290)

ScFOS, short-chain fructo-oligosaccharides; ITF, inulin-type fructans; BMC, bone mineral content; BMD, bone mineral density; DB, double-blind; PC, placebo control; DEXA, dual-energy X-ray absorptiometry; DPD, deoxypyridinoline;
CO, crossover; PTH, parathyroid hormone; IRMA, immunoradiometric assay; POM, postmenopausal women; ICPMS, inductively coupled plasma MS; OC-DPD, osteocalcin deoxypyridinoline; PP, caseinophosphopetide;
b-ALP, bone specific alkaline phosphatase; ELISA, enzyme-linked immunosorbent assay; CPP, casein phosphopeptide; NTx, N-Telopeptide.
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decrease in caecal or ileal pH, hypertrophy of caecal walls and
a rise in caecal pool of SCFA.

Moreover, Ohta et al.(257) demonstrated that in rats fed a
ITF-containing diet, but not in those given a control diet,
the ratio of Ca or Mg to Cr (Cr being used as an unabsorbable
marker to calculate apparent absorption of Ca and Mg) were
correlated with the fractional length of transit along the
colon and rectum, indicating linear disappearance of Ca and
Mg during the colorectal passage. Consequently, in cececto-
mised rats, ITF failed to increase Ca absorption(292).

Similarly, in patients with conventional ileostomy, data
analysis of ITF effects on mineral absorption and excretion
(Mg, Zn, Ca, Fe) showed no significant influence(293).

This offers an explanation as to why Van den Heuvel
et al.(278) found no significant differences in mineral absorp-
tion in healthy young adults, irrespective of the treatment
they received (consisting of a constant basal diet
supplemented for 21 d with 15 g/d ITF, or GOS, or not
supplemented), as the 24 h period of urine collection used
in the present study was too short to include the colonic
component of Ca absorption and thus to make up a complete
balance necessary to detect the effect of fructans.

Indeed, Abrams et al.(281) gave 8 g of ITF-MIX to young
adults (average age of 23 years) for 8 weeks and confirmed
that Ca absorption after treatment occurred principally in the
colon (69·6 ^ 18·6 %).

Nevertheless, it is still unclear whether the Ca-sparing effect
results from induction of specific bacterial strains or from their
‘colonic food’ activity(294).

Dose effect. Various doses of ITF have been investigated
ranging from 1·1 to 17 g/d (and even 40 g/d in one case).
A minimum level of 8 g/d seems to be required to elicit an
improvement on both Ca absorption and bone mineralisation.
Indeed, Lopez-Huertas et al.(280) explained the lack of effect
of the addition of 1·1 g ITF or caseinophosphopeptides to
Ca-enriched milks in adults by the very low dose provided
in the diet.

However, with regard to animal studies, ITF appears to
exhibit a dose-dependent effect on Ca absorption, as well.
Levrat et al.(291) showed that dietary ITF given in the range
of 0–20 % in the diet-stimulated intestinal Ca absorption in
a dose-dependent manner. Similarly, in the study carried out
by Brommage et al.(295), a near linear increase in Ca absorp-
tion was demonstrated in rats fed a 5 and 10 % lactulose-
containing diet. Nevertheless, it appears that when a minimum
is reached, Ca absorption enhancement occurs whatever
maybe the dose, as a diet supplemented with either 10 % of
ITF(268) or 5 % of oligofructose or other non-digestible carbo-
hydrates(295) leads to a similar increase (about 60–65 %) of
the apparent absorption of Ca, even though, raising the content
of oligofructose in the diet from 2·5 to 10 % in ovariectomised
rats, a bone-sparing effect has been shown, independent of the
dose by Scholz-Ahrens et al.(296).

Test substances. Various substances such as the different
types of ITF, GOS, soya-oligosaccharides, lactulose, or resist-
ant starch have provided evidence of a positive effect on
Ca absorption, at least in the rat. However, the biological
effect is likely to be related to the rate of fermentation
which is mainly dependent on the degree of polymerisation
(DP), as well as the solubility and the structural arrangement
of the carbohydrates. In rats fed ITF with different degrees

of polymerisation (ITF-Dpav3-4, ITF-Dpav25, ITF-MIX),
Kruger et al.(297) showed that the various ITF do not have
the same effect on Ca retention, femoral bone density,
bone Ca content and excretion of collagen degradation
products in the urine.

From the available data, it can be concluded that the
higher biological effects were elicited by a combination of
ingredients showing a prebiotic effect with different chain
length. Indeed, ITF-MIX outperformed the traditional
molecules given alone with regard to Ca absorption. Indeed,
in adolescent girls, such a combination increased the true
Ca absorption by almost 20 %, while oligofructose alone did
not show any significant effect(271). This conceptual rule is
even more apparent in animal experiments. Coudray
et al.(298) compared different types of fructans which differed
in both sugar chain length and chain branching, and found a
synergistic effect of a combination of ITF with different
chain lengths in adult male rats.

A potential mechanism for the improved efficiency of such
a mixture could be the larger distribution of fermentation
along the colon, depending on the chain length, which is criti-
cal to obtain maximum efficacy at low daily doses.
Actually, the short-chain components such as oligofructose
are most active in the proximal part of the colon, while
the long-chain molecules have their effect in the distal part.
The combination of both molecules offers a synergistic
effect on Ca absorption, the fermentation process taking
place over the full length of the colon, thus maximising
the mucosal surface through which the extra solubilised Ca
can migrate(299).

Influence of physiological status. It appears that some
subjects are more likely to benefit from consumption of
inulin, according to their physiological status.

Initial status in calcium. First, of all, Griffin et al.(272)

demonstrated that the most consistent identifiable determinant
of a beneficial effect on Ca absorption was the fractional Ca
absorption at baseline with those individuals with lower
absorption during placebo period showing the greatest benefit.
These data were corroborated by data published by Holloway
et al.(289) who showed that, in fifteen postmenopausal women
(who were a minimum of 10 year past the onset of meno-
pause) treated with 10 g/d of ITF-MIX for 6 weeks, true frac-
tional Ca absorption, measured by dual isotopes before and
after treatment, was significantly increased only in those
with lower initial BMD.

Oestrogen permeation. From human data, we can
conclude that an improvement in Ca absorption is possible in
adolescents or young adults. Similarly, a positive effect has
been reported in older women. However, ITF failed
to modulate Ca absorption during the first 5 years after the
onset of menopause, a period, actually, predominantly charac-
terised by hormonal disturbances. In fact, menopausal status
is the overriding factor in determining bone loss in women in
their early fifties. Thus, given the tremendous impact of gonadal
hormones on bone health, a high- Ca intake will not offset
osteopenia that occurs immediately following menopause.

However, ITF could still remain a source for putative inno-
vative dietary health intervention to prevent post-menopausal
osteoporosis by modulating phytoestrogens bioavalability.
Setchell et al.(300) have found that intestinal metabolism of
isoflavones (the major class of phytoestrogens) would be
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the more important clue to the clinical efficacy of soya
foods in preventing osteopenia. Thus, because a greater
efficacy of phytoestrogens can be expected if converted into
equol by the intestinal microbiota, there is a good rationale
for considering non-digestible carbohydrates with prebiotic
effects, targeting an increase of isoflavones bioavailability.
Nevertheless, available data are still conflicting. In animal
studies, it has been shown that dietary oligofructose may
increase b-glucosidase activity in the large intestine, leading
to an enhancement of the large intestinal absorption of these
compounds(301). Furthermore, in ovariectomised mice(302) or
rats(303), two experimental models for postmenopausal osteo-
porosis, oligofructose consumption has been shown to aug-
ment the bone sparing effect of isoflavones by improving
equol production. Again, Devareddy et al.(304) demonstrated
that although the combination of ITF and soya had no additive
effect on BMD, it had a greater effect in reversing the loss of
certain microarchitectural parameters such as tibial trabecular
number, separation and thickness. By contrast, from a rat
experiment, Zafar et al.(305) concluded that isoflavones could
enhance Ca absorption, without synergy from ITF, and that
actually ITF decreased equol production.

In postmenopausal women, Piazza et al.(306) showed that
the presence of ITF in the diet (3·6 g twice a day) facilitated
the absorption of isoflavones. As far as bone metabolism is
concerned, Mathey et al.(303) demonstrated that ITF consump-
tion was able to improve the protective effect of isoflavones
on bone resorption.

From mineral absorption to health benefits

The key question of whether the extra absorption of minerals
may exhibit substantial benefits needs to be addressed.

Minerals. Ohta et al.(307) showed that, in rats fed
ITF-Dpav3-4 (1 or 5 %in the diet), apparent Mg absorption
was increased, as compared with controls. The highest dose
(and sufficient Mg in the diet, i.e. 0·5 mg/g) resulted in a
reduction of auricular and facial peripheral hyperaemia and
hemorrhage and improved inflammation in Mg-deficient rats.
Similarly, in Fe-deficient animals, ITF-Dpav3-4 feeding not
only increased Fe, Ca and Mg absorption but also improved
recovery from anaemia, as well(308). Kobayashi et al.(309)

also found that soya polysaccharides could enhance Fe absorp-
tion and improve anaemia.

Consequently, these studies provide the evidence that ITF
are able to elicit health improvement by enhancing mineral
and Ca absorption. Further studies are necessary to assess
this possibility.

Calcium and bone health. The adequate consumption of
Ca in conjunction with optimisation of its absorption is
likely to optimise bone mass. It is thus necessary to prove
that the benefits of ingredients showing a prebiotic effect on
Ca absorption persist and can be translated into benefits to
bone health, in other words, whether the extra absorbed Ca
is deposited in bones, as such a substantial bone benefit may
have important implications for future preventative strategies
for osteoporosis.

Even though animal data provide promising results on the
role of ingredients showing a prebiotic effect on bone
health, they need to be confirmed by human intervention
trials. Most of the scientific evidence of the bone sparing is

based on the animal studies, in which they not only improve
Ca absorption but also prevent bone loss in conditions of oes-
trogen deprivation. Actually, the major available data come
from the Abrams’s team(274) and the study with ITF-MIX is
the only published data dealing with long-term effect. Thus,
because when targeting bone mineralisation process, Ca is
the most likely to be inadequate in terms of dietary intake,
the enhancement of Ca accretion in bones, and hence BMD,
in adolescents given ITF-MIX for 1 year, is very interesting.
Indeed, adequate Ca intake in childhood is critical for the for-
mation and retention of a healthy skeleton. However, if those
molecules may help to optimise peak bone mass, their effect
in older people, when bone turnover is increased, needs to
be ascertained.

Moreover, because bone strength is the ultimate hallmark of
bone quality, the issue of persistence of the beneficial effect on
the skeleton is another issue important to consider, in order to
assess their potential in the prevention of the risk of fracture.

Key points

(1) Ingredients showing a prebiotic effect are able to improve
mineral absorption (and especially Ca) in the animals.

(2) Most data are available for ITF, in particular ITF-Dpav3-4

as well asITF-MIX.
(3) ITF have been found to increase Mg absorption in human

subjects, nevertheless available data are very limited.
(4) These ingredients are able to enhance Ca absorption

in human, depending on their physiological status
(no effect in early postmenopausal women).

(5) The benefits on Ca absorption can be translated into
benefits to bone health in animals.

(6) More interestingly, ITF-MIX given for 1 year to adoles-
cents was able to elicit not only an enhancement of Ca
accretion in bones but also BMD. In this light, such
or similar may have important implications for future
preventative startegies for osteoporosis.

(7) A combination of molecules with different degrees of
polymerisation appears to be more efficient as shown
with the research on ITF-MIX in comparison with the
small and high MW fractions given alone.

Recommendations (future targets for research)

(1) Further studies are required to investigate the underlying
mechanisms of the prebiotic effects on absorption of
minerals, with special attention to the role of the specific
changes in gut microbiota. Indeed the question still
remains open of whether these effects are due to the
changes in colonic microbiota composition (prebiotic
effect) or any other mechanisms. In this regard, high-
throughput methodologies such as metabolomics,
for example, are warranted.

(2) Results from ITF, in particular ITF-MIX, need to be
confirmed in other ingredients showing a prebiotic
effect for a generalisation.

(3) Further long-term well-designed clinical trials need to
be implemented to prove that the benefits of these

M. Roberfroid et al.S44

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n



ingredients persist in the longer term (because bone
strength is the ultimate hallmark of bone quality, the
issue of persistence of the effect of ITF-DPav3-4 on the
skeleton is important to consider) to assess their potential
in the prevention of the risk of fracture.

(4) With regards to the bone target, it is interesting to
focus on relevant populations, i.e. during childhood and
during ageing.

(5) It is still challenging to investigate the potential synergy
between the prebiotic effect and other nutrients (such as
phytoestrogens) endowed with bone-sparing effect.

Prebiotic effects in weight management and obesity-related
disorders

The main authors of this section are Professor Delzenne,
Dr Cani and Dr Neyrinck.

Several reviews report the interest of non-digestible
carbohydrates – which are prone to be fermented by the
gut microbiota in the control of obesity and related
metabolic disorders (Table 17). Carbohydrates showing a
prebiotic effect have received special attention in this context,
since they have been shown – mostly in experimental
animal studies – to regulate food intake and weight gain,
as well as metabolic disorders associated with obesity,
such as liver steatosis, dyslipidemia, diabetes and/or even
hypertension(310). Most of the data published to date
have been obtained through the supplementation with ITF as
prebiotics. The relevance of changes in gut microbiota in
the modulation of obesity and related disorders is discussed,
taking into account both animal and human studies
published so far.

Description of the prebiotic effects on obesity and related
metabolic disorders

Prebiotic effects and regulation of food intake, fat mass and
body weight
Animal studies. Numerous data have described the effect of
prebiotics (5–10 % in feed) feeding on the evolution of body
weight and fat mass in experimental animal models (Table 17).
The observed decrease in fat mass had sometimes occurred
without significant effect on body weight and has been
observed in all the types of white adipose tissue (epididymal,
visceral and or subcutaneous). In numerous studies of rodent
models (lean, genetic or nutritional induced obese mice or
rats), this decrease in fat mass following feeding with ingredi-
ents showing a prebiotic effect was associated with a reduction
of food/energy intake. The decrease in food/energy intake is
not observed when ITF prebiotics are substituted by non-fer-
mentable dietary fibre (microcrystalline cellulose), suggesting
that at least the colonic fermentation plays a role in the modu-
lation of food intake(311,312).

Potential mechanism. The decrease in food intake associ-
ated with prebiotics feeding in animals might be linked to
the modulation of GI peptides involved in the regulation of
food intake. Endocrine cells present in the intestinal mucosa
secrete peptides involved in the regulation of energy
homeostasis. Among those peptides, glucagon-like peptide
(GLP)-1, peptide Y Y (PYY), ghrelin and oxyntomodulin

have recently been proposed as important modulators of
food intake and energy expenditure(313 – 316).

Several data obtained in rats and mice show that ITF-DPav3-4

reduce food intake, body weight gain and fat mass develop-
ment, these features being associated with a significant
increase in the portal plasma levels of anorexigenic peptides
GLP-1 and PYY; some data also report a decrease in the
serum level of orexigenic ghrelin upon prebiotics feed-
ing(317 – 321). Dietary intervention with ingredients showing a
prebiotic effect in postnatal diets causes a rapid increase
in GLP-1 in rats, and this influences fat mass and glycaemia
in adulthood(322).

Prebiotics feeding promotes GLP-1 synthesis (mRNA
and peptide content) in the proximal colon namely by a mech-
anism linked to the differentiation of precursor cells into
enteroendocrine cells(323). The overproduction of GLP-1 of
mice supplemented with short-chain ITF could constitute
a key event explaining several systemic effects of prebiotics,
since the decrease in food intake and in fat mass after
fructans treatment is abolished in GLP-1. Receptor knock-k
out mice or in mice treated chronically with a GLP-1 receptor
antagonist – Exendin 9–39(320).

Human data. In healthy human subjects, feeding 16 g/d
of ITF-DPav3-4 (short-chain ITF) promotes satiety following
breakfast and diner, and reduces hunger and prospective
food consumption after the dinner. This is accompanied by a
significant 10 % lower total energy intake(324). Similarly,
Archer et al.(325) have demonstrated that the gut microbiota
fermentation of ITF, added to food as fat-replacer, is able to
lower energy intake during a test day. ITF feeding (20 g/d)
increased plasma GLP-1 in one interventional study performed
in patients presenting gastric reflux. The present study was
not aimed at demonstrating an effect on food intake and/or
satiety(326). The authors suggested that the ‘kinetics’ of
fermentation – assessed by H breath test – is important to
take into account when assessing the influence of fermented
nutrients on circulating gut peptides. The increase in H
expired (marker of fermentation) correlates with the modu-
lation of plasma GLP-1 level, which could explain the link
between intestinal fermentation and gut peptide secretion.

According to this observation, we have recently demon-
strated that the prebiotics-induced gut microbiota fermentation
was associated with increased postprandial GLP-1 and PYY
and subsequent changes in appetite sensations(327).

A recent study demonstrated that supplementation with
ITF-MIX not only benefited bone mineralisation, but also had
a significant benefit on the maintenance of an appropriate
BMI, and fat mass in primarily non-obese young adoles-
cents(328). Daily intake of yacon syrup, allowing to bring
0·14 g FOS/kg per day, over 120 d, resulted in an increase in
satiety sensation and a decrease in body weight, waist circum-
ference and BMI in obese pre-menopausal women(329). Inter-
estingly, the relevance of gut hormone modulation in the
management of obesity and metabolic syndrome in human
subjects is supported by some data. A recent clinical trial sup-
ports the evidence that ITF-DPav3-4 (short-chain ITF) decrease
food intake, body weight gain and fat mass development in
obese subjects. The authors found a higher plasma PYY
levels as well as a drop in ghrelin following meal, however,
they failed to observe an increase GLP-1 plasma concen-
trations over a 6-h meal tolerance test(330). The effect of
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Table 17. Experimental data supporting the prebiotic effects on body weight and fat mass development

Animal model Study design Results References

Male Wistar rats 10 % FOS or GOS – 50 d # BW gain (NS) Sakaguchi et al.(460)

Male obese Zucker rats 10 % FOS – 7 weeks # BW gain Daubioul et al.(344)

Male Wistar rats 10 % FOS – 3 weeks Daily BW gain ¼ Younes et al.(449)

Male obese Zucker rats 10 % fructan (ITF-MIX) – 8 weeks # BW gain Daubioul et al.(311)

Male Wistar-Han rats fed either high fructose
diet or starch-based diet

10 % FOS – 4 weeks # BW gain (NS) Busserolles et al.(332)

Male Wistar rats 10 % FOS or FOS þ inulin or inulin alone – 3 weeks # BW gain (NS)
# EAT for FOS and inulin

Cani et al.(317)

Male Wistar rats fed a HF–HC diet Pretreatment with standard diet or FOS-enriched (10 %)
standard diet for 35 d followed by 15 d of HF-HC diet
with or without FOS (10 %)

# BW gain
# EAT

Cani et al.(334)

Male Wistar rats 5 % high and low-molecular inulin v. 5 % cellulose– 4 weeks BW gain ¼ Juskiewicz et al.(461)

Male C57Bl/6J mice fed a HF– carbohydrate free diet 10 % FOS – 4 weeks # BW gain
# EAT

Cani et al.(320)

Male Wistar rats 5 % or 10 % inulin – 4weeks # final BW (NS) Zdunczyk et al.(462)

Male C57Bl/6J mice fed a HF–carbohydrate free diet 10 % FOS – 4 weeks # BW gain
# EAT

Delmee et al.(335)

Male C57Bl/6J mice fed a HF–HC diet 10 % FOS – 4 weeks # BW gain (NS)
EAT ¼

Male Wistar rats fed a HF and HC diet 5 % inulin – 8 weeks # final BW Sugatani et al.(463)

Male Wistar rats 10 % FOS – 4 weeks # BW gain
# EAT, IAT, VAT

Cani et al.(323)

Male C57Bl/6J mice fed a HF–carbohydrate free diet 10 % FOS – 14 weeks # BW gain
# EAT, VAT, SAT

Cani et al.(312)

Male obese (cp/cp) James C Russell corpulent rats 9 % inulin – 3 weeks # final BW Reimer et al.(321)

Male C57Bl/6J mice 10 % FOS or inulin-type fructans from Agavae – 5 weeks # BW gain
# EAT for fructans from

Agave tequilana Gto

Urias-Silvas et al.(319)

Female Sprague–Dawley rats 5 % inulin þ 5 % cellulose v. 10 % cellulose – 4 and 8 weeks # BW gain (NS)
# whole body fat mass

Jamieson et al.(442)

Male obese ob/ob mice 10 % FOS – 5 weeks # EAT, VAT, SAT Cani et al.(312)

FOS, fructo-oligosaccharides; GOS, galacto-oligosaccharides; BW, body weight; HF, high fat; HC, high carbohydrate; EAT, epididymal adipose tissue; IAT, inguinal adipose tissue; VAT, visceral adipose tissue; SAT, subcutaneous
adipose tissue; wk, weeks.
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acute treatment with 8 g ITF with or without 0·3 g b-glucans
over 2 d did not have any effect on appetite, satiety or food
intake, suggesting that an adaptative process (linked to the
modulation of gut microbiota?) may be necessary to observe
the satietogenic effect of prebiotics(331).

Prebiotic effects and glucose homeostasis

Animals. An improvement of glucose homaeostasis by ingre-
dients showing a prebiotic effect has been observed in rats or
mice in several nutritional, genetic or toxic conditions leading
to glucose intolerance and/or diabetes: high-fructose(332) or
high-fat diet-fed animals(320,333 – 335), genetically obese or dia-
betic mice(312), streptozotocin-induced diabetic rats(336). The
improvement of glycaemic response can be explained on
either increasing insulin secretion or insulin
sensitivity, depending on the model.

In streptozotocin-treated rats, characterised by a diabetes
linked to the destruction of b-cells, prebiotics feeding
improves glucose tolerance and increases plasma insulin.
In this model, the treatment with ITF allows a partial restor-
ation of pancreatic insulin and b-cells mass. Endogenous
GLP-1 production is increased in diabetic rats received ITF
as compared to other groups(336). This GLP-1 overproduction
might be part of the protective effect of dietary ITF because:

(1) It has been shown that in diabetes prone-BB rats that are
characterised by a default of production of gut peptides,
no effect of ITF was shown(337);

(2) GLP-1 has been shown to increase b-cells differentiation;
and

(3) that beneficial effect of ITF is not due to the satieto-
genic effect alone, since the improvement of glucose
tolerance and pancreatic b-cell mass observed in strep-
tozotocin-ITF fed rats is not reproduced through the
sole pair-feeding restriction.

It is likely that a more direct effect of GLP-1 could be due to
its effect on pancreatic b-cells differentiation.

ITF improve hepatic insulin sensitivity and increase plasma
insulin in diet-induced diabetes and obesity (high-fat fed
mice)(320). As shown by an increase in food intake and body
mass, genetic and pharmacological disruption of the GLP-1
receptor action abolished the beneficial effect of the treatment
on both glucose tolerance and insulin sensitivity, suggesting a
key role for this gut peptide(320). In diet-induced obese dogs,
1 % short-chain fructans given in the diet for 6 weeks resulted
in a decrease in insulin resistance assessed by euglycaemic/
hyperinsulinaemic clamp, and these effects occurred in
parallel with changes in the expression of genes involved in
glucose and lipid metabolism in the adipose tissue(338).

Altogether, these data support the relevance of the prebiotic
modulation of gut microbiota by using dietary in the control
of glucose homeostasis in different models of diabetes.
The implication of gut peptides may be involved in this
effect, however, other metabolic mechanisms, such as a
decrease in inflammatory tone, could also contribute to the
improvement of glucose homeostasis upon treatment with
ingredients showing a prebiotic effect (see later).

Human studies. Several papers have been published,
which have focused on the influence of ingredients showing
a prebiotic effect on glucose homeostasis in human subjects.

Luo et al.(339) have shown that 20 g short-chain fructans
given for 4 weeks to healthy subjects decreased basal hepatic
glucose production, but had no detectable effect on insulin-
stimulated glucose metabolism. They tested the same
approach in type 2 diabetic patients but no significant modifi-
cation of glucose homeostasis (plasma glucose level,
hepatic glucose production) occurred in the prebiotics-treated
patients(340). In a similar study conducted in hypercholestero-
laemic patients, prebiotics (short-chain fructans) treatment
reduced the postprandial insulin response, but the clinical
relevance of this effect remains unclear(341). In a recent
study, a 2-week supplementation with 16 g/d ITF, compared
with the same amount of maltodextrin used as placebo,
increased GLP-1 production and lessen the postprandial
glucose response after a standardised breakfast(327).

Prebiotic effects and lipid homeostasis, including steatosis
and hepatic alterations

Animal studies. Ingredients showing a prebiotic effect are
able to modulate hepatic lipid metabolism in rats or hamsters,
resulting in changes in either TAG accumulation in the liver
(steatosis) or serum lipids(342). In non-obese rats and/or ham-
sters fed a high carbohydrate diet, a decrease in hepatic and
serum TAG was observed, when ITF were added to the diet
at concentrations ranging from 2·5 to 10 % for several weeks
(from 2 to 12 weeks)(343). In animals, reduced triglyceridaemia
or steatosis is often linked to a decrease in de novo lipogenesis
in the liver(343). In rats fed a lipid-rich diet containing fructans,
a decrease in triglyceridaemia also occurs without any protec-
tive effect on hepatic TAG accumulation and lipogenesis,
suggesting a possible peripheral mode of action(333).
By contrast, in obese Zucker rats, dietary supplementation
with ITF lessens hepatic steatosis, with no effect on postpran-
dial triglyceridaemia when added to the standard diet(344).
This effect is likely to be mainly of a lower availability of
NEFA coming from adipose tissue, since fat mass and body
weight are decreased by the treatment. In obese dogs, a
6 weeks treatment with short-chain fructans was able to
increase uncoupling protein 2 and carnitine palmitoyltransfer-
ase 1 expression in the adipose tissue, thereby suggesting
a higher substrate oxidation in adipocyte that occurred without
any significant change in triglyceridemia(338).

The decrease in TAG synthesis and accumulation of dietary
prebiotics compounds could be linked to several events.
First, a decrease in glycaemia could be part of the process,
since glucose (together with insulin) is a driver of lipogenesis.
Secondly, the SCFA produced through the fermentation
process could play a role in the regulation of lipid metabolism.
The high proportion of propionate produced in the caecum,
which reaches the liver through the portal vein, is, at least
in animals, a key event in explaining a lower hepatic TAG
synthesis(345,346). Interestingly, acetate, when supplied in the
diet of diabetic mice at a dose of 0·5 % for 8 weeks, activates
AMPkinase in the liver, a phenomenon that is related to the
inhibition of de novo lipogenesis(347). The incubation of rat
hepatocytes with acetate (0·2 mM) activates AMPkinase and
decreases sterol response element binding protein-1c
expression, two factors clearly implicated in the regulation
of lipogenesis. Therefore, the classical deleterious role attrib-
uted to acetate as a precursor of lipogenesis might be modu-
lated taking into account its regulatory effect on key
molecular factors involved in fatty acid synthesis in the liver.
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Several studies have also reported a decrease in total serum
cholesterol after dietary supplementation with inulin (10 %) in
mice or rats(343,348 – 351). Experiments in apoE-deficient mice
support the fact that dietary inulin (mainly long-chain
inulin) significantly lowers total cholesterol levels by about
one third. This is accompanied by a significant decrease in
the hepatic cholesterol content. The authors suggest that
the decrease in serum cholesterol could reflect a decrease in
TAG-rich lipoproteins which are also rich in cholesterol
in apo-E deficient animals(350).

With regard to the hypocholesterolaemic effect of prebio-
tics, several mechanisms have been proposed. The modulation
of the intestinal metabolism of bile acids, (e.g. steroid-binding
properties) may be involved, which are independent of the
fermentation of the ingredient showing a prebiotic effect
in the lower intestinal tract(343,352,353). A recent study, per-
formed in rats supplemented with GOS/FOS, did not support
the involvement of changes in the bile salt pool size and
kinetics in the modulation of lipid and energy metabolism(354).

Human data. Reported effects of prebiotics on circulating
blood lipids in both normo- and moderately hyperlipidaemic
human subjects are variable(355). Both positive and negative
outcomes have been obtained from a small number of
well-designed human studies, devoted to analyse the effect
of dietary supplementation with fructans (doses ranging
from 8 to 20 g/d) exhibiting prebiotic properties. The effect
of ITF supplementation on lipogenesis has been shown in
human volunteers: the hepatic capacity of TAG synthesis is
lowered by this ingredients showing a prebiotic effect as
previously shown in rats(356). In patients with non-alcoholic
steatohepatitis, short-chain ITF supplementation leads to a
decrease in serum activity of amino-transferases, suggesting
an improvement of hepatic alterations in those patients(357),
thereby suggesting that a prebiotic approach could be
useful in the management of hepatic disease associated
with obesity.

Prebiotic effects and obesity-associated inflammation.
Obesity and insulin resistance are associated with a low-
grade inflammation (for review, see Cani & Delzenne(310,358).
The gut microbiota takes part of this component of the meta-
bolic disorder associated with obesity. In fact, LPS has been
considered to be the triggering factor for the early develop-
ment of inflammation and metabolic diseases(359). The exces-
sive intake in dietary fat facilitates the absorption of highly
pro-inflammatory bacterial LPS from the gut, thereby increas-
ing plasma LPS level leading to ‘metabolic endotoxemia’(359).
Interestingly, several reports have shown that obesity induced
following dietary manipulations (high-fat feeding)(359 – 362) or
genetic deletion (leptin-deficient models)(363) is characterised
by changes in gut microbiota towards a decreased number of
bifidobacteria. Importantly, this group of bacteria has been
shown to reduce intestinal LPS levels in mice and to improve
the mucosal barrier function(364 – 367). Feeding mice with
ITF-\av3-4 restores the number of intestinal bifidobacteria and
reduces the impact of high-fat diet induced-metabolic endo-
toxaemia and inflammatory disorders(320,361). With regard to
the possible mechanism of action of these ingredients, data
obtained in obese ob/ob mice showed that they increase the
production of a gut peptide secreted by endocrine cells of
the colon, namely GLP-2, which plays a role on the intestinal
tissue itself, by restoring tight junction protein expression and

repartition, and thereby decreasing gut permeability, endotox-
emia, and associated metabolic disorders(312).

The relevance of endotoxemia on metabolic disorders due
to fat excess, and diabetes in human is supported by several
recent studies. However, the impact of the prebiotic approach
on endotoxemia and inflammation in obese and diabetic
patients has not yet been demonstrated. This area of research
may be very interesting and important, since inflammation is
considered as an important event that drives a lot series of
metabolic alterations linked to obesity (CVD, non-alcoholic
steato hepatitis, insulin resistance, etc.).

Relation between prebiotic effects and improvement of obesity
and associated disorders

Relative specificity of prebiotics effects v. other ‘dietary
fibres’ on physiological targets regulating appetite and meta-
bolic disorders. It has been proposed before that the
secretion of gut peptides might be part of the effects of
fermentable carbohydrates with prebiotics properties. Some
of those effect can also been driven by dietary compounds
for which a prebiotic effect has not yet been shown.
Resistant starch has also been shown to increase GLP-1
and PYY in several rodent studies, with consequences on
fat mass development(368,369).

An increase in the postprandial response of GLP-1 was
observed after ingestion of b-glucan-rich rye bread by healthy
subjects(370). The administration of guar gum (together with
galactose) promoted the increase in GLP-1 in women, and
this was related to a significant increase in satiety(371).
An increase in the level of non-ndigestible carbohydrates
(barley-kernel bread) in the evening meal resulted in an
increase in satiety and in a decrease glucose response follow-
ing breakfast, an event that can be linked to an increase in
GLP-1, to the extent of fermentation (assessed through the
H breath test) and which is related to a lower proinflammatory
cytokine level (IL6)(372).

These data suggest that some effect described for ‘well-
established’ prebiotics can also be the attribute of other
non-digestible/fermentable carbohydrates. The relevance of
the gut microbiota composition and activity in this process
remains poorly explored. In that view, recent data suggest
that butyrate is able to improve insulin sensitivity and
energy expenditure in rodents(373) thereby supporting the
hypothesis that besides the changes in the composition of
the microbiota, the gut microbiota and the pattern of fermen-
tation could also be important to take into account.

What is the contribution of changes in gut microbiota
composition in the improvement of metabolic alterations by
prebiotics? A recent study has shown, for the first time
in human subjects, that differences in specific ‘healthy’
bacteria in gut microbiota may precede the development
of becoming overweight(374). The authors found that
Bifidobacterium spp. during the first year of life was higher
in number in children who exhibited a normal weight at
7 years than in children becoming overweight. More
importantly, and according to the results obtained in
experimental models, they found that the faecal numbers of
Staphylococcus aureus were lower in children remaining
normal weight than in children becoming overweight. These
results unequivocally imply that the gut microbiota profile
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in favour of a higher number bifidobacteria and a lower
number of S. aureus in infancy may provide protection
against overweight and obesity development. The authors
proposed that S. aureus may act as a trigger of low-grade
inflammation(375), contributing to the development of obesity.
Experimental data in mice suggest that the promotion of
bifidobacteria by the intake of ingredients showing a
prebiotic effect – may be helpful per se. On the one hand,
intervention studies relating concomitantly the changes in
gut microbiota composition (and activity), and, on the other
hand, behavioural (appetite) or physiological changes are
therefore necessary to proof the relevance of the gut microbial
changes in the effects.

Methodological aspects

Key questions remain open concerning the adequacy of the
experimental protocol to estimate the relevance of ingredients
showing a prebiotic effect in the management of obesity
and associated disorders. The choice of a placebo is rather
difficult, and the type of placebo compounds is different
when experiments are conducted in animals or in human
subjects. There may also be differences when considering
end points such as fat mass development or satiety, or
glucose/lipid homeostasis.

In animal studies, the authors often add ingredients showing
a prebiotic effect at a relatively high dose (1–10 % wt/wt in
the diet) to compare the data obtained in animals receiving
the basal diet alone. The interpretation of results would then
require the difference in energy/nutrients intake and/or an
experimental group with the same intake of energy upon the
treatment (pair-fed animals) to be taken into account. Other
authors propose to replace the amount of ingredients showing
a prebiotic effect by a non-digestible–non fermentable carbo-
hydrate such as microcrystalline cellulose as placebo.
This allows a comparison based on differential fermentation
properties.

For human studies, the dose of ingredients showing a
prebiotic effect is much lower (from 1 to 30 g/d). The organo-
leptic and physico-chemical properties of the placebo are very
important to take into account. Several placebos are proposed
in the literature, e.g. a digestible carbohydrate, such as
maltodextrin – i.e. alone(324,327), or in combination with
aspartame(341) – or saccharose(339,340), dietary fibres such as
oat fibre(331).

The choice of the adequate placebo is really difficult and
will depend on the end point and duration of the treatment.
When estimating the influence on glucose/lipid metabolism,
one must consider a placebo that does not change postprandial
glucose level or has a minor impact as lipogenic substrate,
for example.

For studies aiming at controlling appetite and energy,
one has to choose an adequate placebo which does not exert
an effect per se. When estimating a long-term effect on body
weight composition, the consequence of placebo treatment on
global energy intake must be taken into account.

There are, therefore, several possibilities and the interpret-
ation and discussion of the results might also take into account
the differences that could be due to the placebo effect in a
specific context.

Conclusions and future trends

Collectively, these studies provide support for the beneficial
effect of prebiotics on energy homeostasis and body weight
gain. Only a few human studies are available to date, but
some of them support a role of gut peptide modulation by
ingredients showing a prebiotic effect as a potential mechan-
ism occurring in the gut, and appetite regulation. The question
of the relevance of gut microbiota modulation in these effects
remains unexplored in most of the studies performed in human
subjects. In mice, an inverse relationship has been established
between the level of faecal bifidobacteria and some features
of the metabolic alterations linked to obesity (endotoxemia,
fat mass, glucose intolerance). Some other non-digestible
carbohydrates or dietary fibres (i.e. resistant starch, insoluble
fibre form barley) – for which prebiotic effect has not yet
been established – would be able to modulate gut peptides
production with consequences on appetite, inflammation and
other components of the metabolic syndrome. The analysis
of the gut microbiota changes will be crucial in further
research and clinical approach, in order to clearly relate
those changes with the improvement of metabolic alterations
of the host. This will be the way to propose a ‘targeted
approach in the modulation of gut microbiota by ingredients
showing a prebiotic effect’ as relevant in the context
of obesity.

Conclusion and perspectives

Which data to support the hypothesis of a causal relationship
between a prebiotic effect and health effects/benefits?

The author of this section is Professor Marcel B. Roberfroid.
A prebiotic effect exists and is now a well-established
scientific fact. A large number of human intervention studies
have demonstrated that dietary consumption of food
products/ingredients/supplements results in statistically
significant changes in the composition of the faecal (and in
some cases, the mucosal) gut microbiota. Most of the available
data concern the selective stimulation of bifidobacteria (but
also lactobacilli). Other purportedly beneficial genera such
as Roseburia and Eubacterium may be more fully investigated
in the future – although further evidence of their beneficial
effects is required. Some, but not all, studies have reported a
reduction in the concentration of pathogenic bacteria such as
clostridia and salmonella. The more data are accumulating,
the more it will be recognised that such changes in the
composition of the faecal microbiota, especially increase in
bifidobacteria can be regarded as a marker of intestinal
health. This is already supported by scientific publi-
cations(376 – 380).

Research on the impact of the prebiotic effect on the
activity (metabolic, regulatory and signalling) of the micro-
biota is ongoing and appropriate relevant methodologies are
being developed, validated and applied.

(1) Results from experimental models but also in a few
human studies, food products/ingredients/supplements
with a demonstrated prebiotic effect have been shown
to modulate certain immunological biomarkers and
affect activity(ies) of the immune system. Whether
changes in immune function markers or immune-health
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benefits are related to a prebiotic-induced change in the
composition of the gut microbiota is an area for future
investigation. While several studies report changes in
the faecal microbial composition alongside changes in
immune markers, only one study sofar has correlated
these findings. Although these observations make the
link between immuno-modulation and microbiota
changes likely, convincing evidence needs to be estab-
lished by further studies showing clear correlations
between parameters of immune function and changes in
the microbiota. Although a causal relationship is virtually
impossible to establish in human subjects, current plaus-
ible hypotheses and future correlative findings will
help to establish the correlation between prebiotic modu-
lation of the intestinal microbiota and changes in
immune function.

(2) The effect of breast-feeding on infant gut microbiota
composition is well established and mother’s milk is
known to contain a complex mixture oligosaccharides
with prebiotic (especially bifidogenic) effects, therefore,
infant formulae/foods have been supplemented with pre-
biotics. Confirming the studies in adults, it has been
demonstrated that such supplementation increases the
faecal concentration of bifidobacteria. This concomitantly
improves stool quality (soft and loose stools), reduces the
risk of gastro-enteritis, improves general well-being and
reduces the frequency of atopic eczema. It is plausible
that these effects were microbiota-induced changes.

(3) Changes in the gut microbiota composition are classically
considered as one of the many factors involved in the
pathogenesis of either IBD or IBS. The use of particular
food products/ingredients/supplements with prebiotic
effects has thus been tested in clinical trials with the
objective to improve the well-being of patients with
such disease states. Promising beneficial effects have
been demonstrated in some but still preliminary studies
with changes in gut microbiota composition (especially
increase in bifidobacteria concentration) being associated.
Again, it is feasible to conclude that the mechanism of
these effects is linked to the prebiotic effect.

(4) Colon cancer is another pathology for which a possible
role of gut microbiota composition has been hypoth-
esised. Numerous experimental studies in mice and
rats have reported reduction in incidence of tumours
and cancers after feeding specific food products/ingredi-
ents/supplements with prebiotic effects. Some of these
studies (including one human trial) have also reported
that, in such conditions, gut microbiota composition
was modified (especially due to increased concentration
of bifidobacteria), however, role of such changes
in the eventual anti-cancer effect of these specific food
products/ingredients/supplements remains to be defini-
tively proven.

(5) Dietary intake of particular food products/ingredients/sup-
plements with a prebiotic effect has been shown, especially
in adolescents, but also tentatively in postmenopausal
women to increase Ca absorption as well as bone Ca accre-
tion and BMD. No correlation has been reported between
such a beneficial effect and changes in gut microbiota com-
position – although this is plausible but not exclusive.
However, other food products/ingredients/supplements

that do not show prebiotic effect (e.g. lactose,
miscellaneous dietary fibres) have also been reported to
exert similar effects. Moreover, a study in adolescents
revealed the existence of a genetic component in response
(with one-third of non-responders) to increased Ca
absorption. It is thus likely that improved Ca absorption is
not uniquely caused by changes in gut microbiota
composition and might be a consequence of a combination
of different effects. Preliminary data have reported, mainly
in experimental models, that specific food products/
ingredients/supplements with prebiotic effects could also
increase the absorption of other minerals (e.g. Mg, Fe).
More research is needed to confirm these data and,
eventually, to demonstrate if their mechanism involves
changes in gut microbiota composition.

(6) Recent data, both from experimental models and from
human studies, support the beneficial effects of particular
food products/ingredients/supplements with prebiotic
properties on energy homeostasis, satiety regulation
and body weight gain. Together with data that correlate
obesity with differences in gut microbiota composition,
these studies have led to hypothesise that gut microbiota
composition (especially the number of bifidobacteria)
may contribute to modulate metabolic processes associ-
ated with syndrome X, especially obesity and diabetes
type 2. In a study on the mechanism of action of a
prebiotic food ingredient in reducing obesity, an inverse
correlation between bifidobacteria faecal concentration,
and gut permeability and metabolic endotoxemia (plasmatic
LPS), has been reported. However, non-prebiotic dietary
fibres have also shown some similar effects, the question
of the specific benefits that can specifically be attributed
to prebiotic effects remains open.

(7) By reference to the present knowledge (mostly based on
the data obtained with the various ITFs and the GOS) on
the prebiotic effect and its possible multiple physiological
consequences, it appears likely that different compounds
(food ingredients or food supplements) including chemi-
cally identical compounds with e.g. different chain
lengths (like in the ITF group) will have:

(a) different prebiotic effects will influence differ-
ently the composition of the microflora in the
different segments of the intestine, especially in
the large bowel;

(b) different physiological effects and thus will not
affect similarly the same functions (as this is
clearly the case for Ca absorption, a function
that is more influenced by ITF-MIX than by the
different ITFs given separately.

Any effect of one particular compound with a prebiotic effect
can never be generalised to another compound, unless this
has been scientifically substantiated for each particular food
ingredient/supplement(78).

The majority of successful human trials on the prebiotic
effects show significantly increased intestinal levels of bifido-
bacteria. Often, these are associated with improvement
in well-characterised and accepted markers of health as
shown by the extensive and growing body of evidence,
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outlined in this report. This strongly associates prebiotic-
induced increases in numbers of bifidobacteria in the gut
with a range of GI and systemic health benefits. Although it
could be argued that these studies alone do not necessarily
indicate causality, when considered with the results of trials
in human subjects and animals supplemented with live bifido-
bacteria they do indeed provide compelling evidence that the
relationship between intestinal bifidobacteria and health might
well be causal(376 – 380).

Even so, key questions still remain such as

(1) Which effect(s) (see Table 2) is/are causally linked to
selective change(s) in gut microbiota composition?

(2) Which of the physiological and/or pathophysiological
well-being and health benefits are directly linked with
a particular composition of the gut microbiota or
(a) selective change(s) therein?

(3) Which, among the physiological and/or pathophysio-
logical well-being and health benefits, is (are) not
linked to a particular composition of the gut microbiota
or (a) selective change(s) therein but is (are) the conse-
quence(s) of other mechanism(s) of the product claimed
to have a prebiotic effect?

(4) Which protocol(s) is (are) now validated to demonstrate
change(s) in microbiota composition?

(5) Which protocol(s) and methodology(ies) is (are) now
available and validated to demonstrate links between a
particular composition of the gut microbiota or a selective
change therein and a particular physiological and/or
pathophysiological well-being and health benefit?

Over the last two decades, data have and continue to
accumulate improving our knowledge of the gut microbiota
composition but also, through the metabonomic approaches,
gut microbiota activities. It has convincingly demonstrated
that particular food products/ingredients/supplements can,
upon feeding, selectively modulate that composition and poss-
ibly these activities. Dietary consumption of some of these
specific food products/ingredients/supplements has also been
reported to exert a series of beneficial health effects that
may justify improved function and/or reduction of disease
risk claims(21,381). A causal relationship between the induced
change(s) in gut microbiota composition and/or activity(ies)
and these health effects is more than plausible – given our
knowledge that prebiotics are known to be specifically metab-
olised by the gut microbiota. The more we understand the
complexity of the gut microbiota, its interactions with the
gut epithelium, its roles in modulating epithelial cell differen-
tiation and epithelial cell functions and, beyond, in the whole
body, the more we will be in a position to recommend these
food ingredients for their health-promoting values. It is
becoming more and more clear that gut microbiota plays
key roles in modulating human/animal physiology even far
beyond the GI tract. Specific food products/ingredients/sup-
plements with prebiotic properties are unique tools to study
such effects but also offer unique opportunity to develop
new functional foods/food ingredients/food supplements to
improve host health. One major contribution of this review
article summarising the state of the art in the research
on the metabolic and health effects of these compounds is to
recommend where research efforts should be concentrated to
improve understanding of the activities and the physiological

roles of the gut microbiota and in particular the importance
of its qualitative composition and the consequences of
that modulation. Through this, it should be possible to better
address the continuing burden of gastro-intestinally
mediated disorders. Importantly, tools exist to underpin this
with mechanistic explanations of effect leading to effective
hypothesis-driven research.
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