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input/output function may change during a neuron's lifetime. This process results in
high variability in the peak specific conductance of ion channels in individual neurons.
The mechanisms responsible for this variability are not well understood, although there
are clear indications from experiment and modeling that degeneracy and correlation
among multiple channels may be involved. Here, we studied this issue in biophysical
models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-
driven simulation workflow and starting from a set of experimental recordings and
morphological reconstructions obtained from rats, we built and analyzed several
ensembles of morphologically and biophysically accurate single cell models with
intrinsic electrophysiological properties consistent with experimental findings. The
results suggest that the set of conductances expressed in any given hippocampal
neuron may be considered as belonging to two groups: one subset is responsible for
the major characteristics of the firing behavior in each population and the other
responsible for a robust degeneracy. Analysis of the model neurons suggested several
experimentally testable predictions related to the combination and relative proportion of
the different conductances that should be expressed on the membrane of different
types of neurons for them to fulfill their role in the hippocampus circuitry.
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Dear Editor,  

in this paper we investigate the channel density variability among hippocampal CA1 neurons. The 

mechanisms responsible for this variability are not well understood, although there are clear indications from 

experiment and modeling that degeneracy and correlation among multiple channels may be involved. In this 

work, using a unified data-driven simulation workflow we study this issue, for the first time, in data-driven 

single cell models of hippocampal CA1 pyramidal neurons and interneurons with intrinsic electrophysiological 

properties consistent with experimental findings. The results suggest that the set of conductances expressed 

in any given hippocampal CA1 neuron may be considered as belonging to two groups: one subset is 

responsible for the major characteristics of the firing behavior in each population and the other is responsible 

for a robust degeneracy. An analysis of the models suggests several experimentally testable predictions 

related to the combination and relative proportion of the different conductances that should be expressed 

on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry. We 

think that these results can be of great interest to the broad community of readers of this journal.  

 

Cover Letter



Responses to Reviewers 
 

We thank the reviewers for the constructive comments. We have taken into account all points by 
revising the text as explained below. A new figure (#7) has been added. 
 

Reply to Reviewer: 1 
Reviewer #1: General comments: 

Excellent paper/study showing parameter degeneracy in pyramidal and interneurons of the 

hippocampus that will be of wide interest to the readers of PCBIO. Availability of 

tools/software/data further strengthen the paper. Authors find that there are two subsets of 

parameters, one which contributes to firing, other which enables degeneracy. Modeling/data is 

state-of-the-art. However, some of the arguments could use clarification, e.g. the definition of 

degeneracy, and how it realtes to stability is often not clearly specified, particularly early on in the 

paper. The authors could also more extensively explore how the geometry of the neurons relates to 

degeneracy - for example, if they are optimizing a population of models with different geometries, is 

there a way to first quantify the geometry (e.g. dendrite properties), and then to predict what the 

channel conductance levels would be? This type of distinguishing between the role of geometry and 

channel densities would allow better understanding of where a neuron's dynamics come from - so if 

the authors can add some analysis/discussion of this, it would improve clarity/interestingness of the 

paper. Further framing of discussion would help as well (see detailed comments below). 

 

Detailed comments: 

● Line 42: "Both within and between neurons, individual ion channel peak conductance is highly 

variable." What does it mean conductance variability within a single neuron? Variability across 

time or across different locations within the neuron at the same time? Please clarify which 

meaning you intended 

The sentence has been revised as: “The peak conductance of many ion channel types measured 

in any given animal is highly variable across neurons, both within and between neurons 

populations”. We hope this clarifies that we intended variability across individual neurons from 

the same population in the same animal.  

● line 52: "robust degeneracy" - what is the value of robust degeneracy? 

the sentence has been revised, and it now reads “...and the other more involved with 

degeneracy” 

● line 66: "is the high variability for the current generated by specific ion channels in individual 

neurons, " - clarify again whether the variability refers to variability across time? Should the 

authors replace "by specific ion channels" with "by specific types of ion channels"? 

The sentence has been revised, and it should now be clearer that we meant “the high variability 

for the current generated by specific types of ion channels measured across individual neurons,”  

● lines 69-71: If degeneracy is a way for a neuron to maintain the same function through different 

means, then how is it tunable? Wouldn't tuning the function by definition change the function? 

The definitions need to be clarified. Correlation in the function of a variety of conductances - 

this needs to be more clearly explained as well; what is the value of having correlated 

conductance values? 

Several sentences in this paragraph have been revised/rewritten, to take also into account a 

comment by the other reviewer on the same issue. We hope that this point is now clearer. 

Response to Reviewers



● line 77: "biochemical processes" - which processes? Please spell out a few examples by name 

“...such as activation of protein kinase A and C, or Ca/calmodulin dependent kinase II” has been 

added to the sentence. 

● 88-90: how can you cleanly separate out the two sets of ion channels - if some channels are 

responsible for firing activity, wouldn't they influence the ability of the other channels to 

contribute degeneracy? For example, fast na/k channels will contribute to firing but even at rest 

they will have some non-zero conductance. Altering their densities slightly might require other 

channel densities to shift to maintain the activity. so the na/k channels will contribute to both 

firing properties as well as the exact mechanism of degeneracy. The whole argument needs to 

be clarified. 

The sentence has been deleted and a new one has been added to clarify this point. 

● 97: superposed -> superimposed  

DONE 

● Figure 1 caption: " 990803, oh140807_A0_idJ," <- what are these? Names/identifiers of 

individual neurons? Please clarify 

Correct. These names identify the different cell reconstructions. The caption of figure 1 has 

been slightly revised. 

● line 120: briefly define "continuous accomodating cells (cAC)." vs cNAC; e.g. firing rate 

changes during the current injection vs. ~constant firing rate 

 

We added two shorts sentences to clarify that firing patterns with “an increasing inter-spike-

interval (ISI)” are classified as cAC while “traces, whose firing rate is constant,” as cNAC.  

● line 140: "classified as classic adapting cells (cAC);" - previously cAC was defined as 

continuous accomodating cells. Use consistent terminology or explain that they're identical. 

We have revised the text to consistently use “continuous accommodating”, “continuous non-

accommodating”, and “bursting accommodating” as in Markram et al., Cell 2015 [18]. 

● figure 3 - please show the absolute membrane potential so readers can see the resting 

membrane potential level and whether it differs from experiments shown in figure 2. 

Following the referee suggestion, we have modified both fig 3 and fig 2 so the readers can 

compare the resting membrane potential of the experimental traces and the simulated ones.  

● lines 145 - 147: can the authors clarify if there are a set of models produced from every set of 

voltage traces and individual morphology used in the optimization procedure? Or a single 

model from the set of voltage traces + morphology? Or is the procedure explicitly fitting a 

whole population at once rather than fitting individuals? 

The sentences relative to this comment have been revised to hopefully make it more clear that: 

“The whole set of somatic voltage traces obtained from all cells classified as belonging to any 

given e-type, were used to extract a set of electrophysiological features, one for each e-type (see 

S1-S4 Tables and Methods). All the pyramidal cell morphologies were used to implement cAC 

models, whereas interneuron morphologies were used to obtain cAC, cNAC, and bAC models 

following the known firing behavior of each type of morphology (see legend of Fig 1 and S5 

Table). Features and morphologies were then used to obtain a set of optimized models for each 

e-type, by a heuristic parameter optimization process employing multi-objective genetic 

algorithms.” 



The fit was thus relative to a whole population, not to individual cells. 

● line 164: "havingreached" -> having reached DONE 

● figure 4 : for the voltage traces show the absolute levels so readers can infer the RMP and 

whether model RMPs are similar the shapes of the interspike intervals look very different; is ISI 

voltage one of the objective functions? if so, why do they differ so much? 

Fig.4 has been revised by adding axes to both model and exp traces.  

The voltage between spikes was not among the optimized features (see Supplementary Tables 

S1-S4). Its accurate reproduction would require to also optimize channel kinetics, and this was 

outside the scope of this work. 

● lines 228-229: "The optimization process generates many of these models (termed 

“individuals”), because of ion channel degeneracy [2]." can the authors explain if it is only due 

to degeneracy or also because there are different morphologies used for a fixed set of voltage 

traces? in either case, the authors should clarify if they see the same morphology producing the 

same response with different channel densities. 

A sentence has been added to clarify that the 10 best individuals for each optimization run were 

obtained from the same morphology with different channel densities.  

A new figure (fig. 7) has been added to show that degeneracy can also be obtained using 

different morphologies equipped with identical peak channels conductance. A deeper analysis of 

this issue however was not further considered in this work. 

● line 240: "highlighted in red" ; mention that the text label is highlighted in red, confusing since 

red colors are used in the figure's heatmap 

The sentence “using a red label in the y axis” has been added to clarify this point.  

● discussion - 343 - the discussion would be enhanced by comparing to not only somatograstric 

ganglion cell parameter degeneracy but to some other recent papers that showed similar results 

with regards to parameter degeneracy in layer 5 cortical pyramidal neurons and in motor 

cortex network levels: 

J Neurophysiol 117:148-162, 2017 

Front Pharmacol 7:157, 2016 

The relevant paragraph has been extended to include these papers. 

● Lines 369-376: How does the optimization approach differ from other recent modeling studies 

such as those used in Nature Communications 9 (1), 710, 2018 

and J Neurophysiol 117:148-162, 2017? 

A new paragraph has been added to the Methods section, to compare the approaches used in 

these papers with that used in this work.  

 

Reply to Reviewer: 2 
 
Reviewer #2: The manuscript describes an interesting approach to the study of cellular mechanisms 

that might give rise to degeneracy phenomena in vertebrate neurons. For the most part its methods 

and results are clearly spelled out and are reasonable, but some issues need to be resolved. 

 



● Figure 1--This is cosmetic, but important. The interneurons in the bottom half of the figure are 

very difficult to see and are likely to disappear in a published article's crude bitmap. Converting 

the background, or even the entire image, to a negative might make them more salient. 

Fig.1 has been revised by using a negative background  

● line 47-48 

"we systematically generated a range of morphologically and biophysically accurate single cell 

models" seems an overstatement in light of the actual procedures. The models' morphology 

came straight from morphometric data obtained under light microscopy (good). However, the 

biophysical parameters were tuned by an algorithm that involved heuristic adjustments so that 

model responses to injected currents approximate multiple experimental objectives well enough 

for the sum of standard deviations over all objectives to be less than some (unspecified) value. 

What is that value? For any objective a standard deviation < 2 was considered acceptable, and 

a model cell "with an acceptable score for all objectives" was considered "plausible" (lines 

152-157). That's not a close match to what readers might regard as the ordinary meaning of 

"accurate." 

We apologize for the confusion. The term “biophysically accurate” in the Author Summary 

refers to the type and distribution of ion channel kinetics. It is a widely used way to indicate 

models in which the active properties of a cell are directly based on experimental data, as 

opposed to models using artificial or simplified conductances. The sentence has been revised, 

trying to avoid any possible confusion with the optimization process. 

In regards to the point on the acceptable individual, the paragraph has been rewritten in such a 

way to make it clear that: “The final choice to accept an individual as a plausible representation 

of a given e-type, was based on the error obtained for each objective. An individual with a sd<2 

for all objectives was considered acceptable”.  

● lines 69-71 

"Degeneracy, in particular, is thought to be a fundamental mechanism to allow a neuron to 

adjust its firing properties in a robust and tunable manner". Degeneracy is no more a 

mechanism than is stability. Edelman and Gally defined degeneracy as "the ability of elements 

that are structurally different to perform the same function or yield the same output" 

(Degeneracy and complexity in biological systems Gerald M. Edelman and Joseph A. Gally 

PNAS November 20, 2001. 98 (24) 13763-13768). They referred to it as a property of complex 

biological systems, but not as a mechanism in and of itself. It would be correct to say that "the 

phenomenon of degeneracy enables the robust and tunable adjustment of a neuron's firing 

properties." 

We agree with the reviewer. The related sentences have been revised, to take also into account a 

point raised by the other reviewer on the same issue. 

● lines 165-167 

Unless I'm completely misinterpreting Fig. 3, it does not show that "in most cases, the 

associated error . . . was below 2 sd." It shows only the score for an individual model cell. 

The sentence has been revised as: “for most features (n=60 for pyramidal cells and n= 47 for 

cAC interneurons, see S1-S4 Tables), the associated error was below 2 sd 

● The top two sets of plots of v vs. t in Fig. 3 have a peculiar artifact near the end of current 

injection, where the traces loop back in time and then decay linearly with time. 

We thank the reviewer for spotting this problem. We removed the artifacts.  



● line 265 

Instead of using the oxymoronic phrase "relatively constant," why not just say that some 

parameters were found to lie in a narrow range? 

Done 

● The radar plots in Fig. 8 don't add much--too many overlapping, zigzagging lines, with no 

obvious correlations. 

We would like to keep this figure, because it indeed conveys an immediate, and visually 

impressive, representation of the lack of correlation among the different conductances, in spite 

of being able to concur to essentially equivalent electrophysiological properties  

● line 358 "no cell type showed the same set of pairwise correlations" as what? 

The sentence has been revised as “...no cell type showed conductances with the same set of 

pairwise correlations.” 

● line 372 optimize -> optimizing DONE 

 

● 388 explanation on -> explanation for DONE 

 

● 400 and involved -> and is involved DONE 

 

● 493 run -> running  explore -> exploring DONE 
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Abstract 23 

Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal 24 

synaptic input patterns into a single spiking output. This function is specified by the particular shape 25 

and passive electrical properties of the neuronal membrane, and the composition and spatial 26 

distribution of ion channels across its processes. For a variety of physiological or pathological 27 

reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results 28 

in high variability in the peak specific conductance of ion channels in individual neurons. The 29 

mechanisms responsible for this variability are not well understood, although there are clear 30 

indications from experiment and modeling that degeneracy and correlation among multiple channels 31 

may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal 32 

neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of 33 

experimental recordings and morphological reconstructions obtained from rats, we built and analyzed 34 

several ensembles of morphologically and biophysically accurate single cell models with intrinsic 35 

electrophysiological properties consistent with experimental findings. The results suggest that the set 36 

of conductances expressed in any given hippocampal neuron may be considered as belonging to two 37 

groups: one subset is responsible for the major characteristics of the firing behavior in each population 38 

and the other responsible for a robust degeneracy. Analysis of the model neurons suggests several 39 

experimentally testable predictions related to the combination and relative proportion of the different 40 

conductances that should be expressed on the membrane of different types of neurons for them to 41 

fulfill their role in the hippocampus circuitry.  42 
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Author Summary 43 

The peak conductance of many ion channel types measured in any given animal is highly variable 44 

across neurons, both within and between neuronal populations. The current view is that this occurs 45 

because a neuron needs to adapt its intrinsic electrophysiological properties either to maintain the 46 

same operative range in the presence of abnormal inputs or to compensate for the effects of 47 

pathological conditions. Limited experimental and modeling evidence suggests this might be 48 

implemented via the correlation and/or degeneracy in the function of multiple types of conductances. 49 

To study this mechanism in hippocampal CA1 neurons and interneurons, we systematically generated 50 

a set of morphologically and biophysically accurate models. We then analyzed the ensembles of peak 51 

conductance obtained for each model neuron. The results suggest that the set of conductances 52 

expressed in the various neuron types may be divided into two groups: one group is responsible for 53 

the major characteristics of the firing behavior in each population and the other more involved with 54 

degeneracy. These models provide experimentally testable predictions on the combination and 55 

relative proportion of the different conductance types that should be present in hippocampal CA1 56 

pyramidal cells and interneurons.  57 
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Introduction 58 

Any given neuron in the brain is part of a network, in which it exerts its action by transforming the 59 

input it receives into an output. This function is specified by the particular shape and passive electrical 60 

properties of the neuronal membrane, the composition and spatial distribution of ion channels across 61 

its processes, and the functional properties of the synaptic inputs themselves. During development 62 

and during the entire lifetime of a neuron, its input/output function is adapted to realize ongoing 63 

refinement of the function of the neuron and circuit, or maintain functional robustness in the face of 64 

constant protein turnover or an evolving pathological condition. Such adaptability of individual 65 

neurons can be achieved through a myriad of dynamic mechanisms, including structural, intrinsic, 66 

and synaptic plasticity.  A direct experimental evidence for these mechanisms is the high variability 67 

observed for the current generated by specific types of ion channels measured across individual 68 

neurons, from either a homogeneous population or different cell populations (e.g. [1]). The 69 

mechanisms responsible for this variability are not well understood, although there are clear 70 

experimental and modeling indications that correlation and degeneracy among a variety of 71 

conductances can be involved [2,3]. The phenomenon of degeneracy allows the possibility, for a 72 

complex biological system, to perform the same function using structurally different elements [4]. In 73 

the context considered in this paper, it refers to the robust and tunable adjustment of a neuron's firing 74 

properties [5]. For example, a neuron can be tuned to perform a given function by expressing in the 75 

membrane a specific set conductances with a specific dendritic distribution (Migliore (2003)); 76 

degeneracy can result in this tuning being robust, by implementing the same function with many 77 

different configurations of the same set of conductances.  This property has been systematically 78 

studied in crab stomatogastric ganglion neurons [2, 6] and in Globus Pallidus neurons of the rat [7]. 79 

In the present study, we investigate this issue for neurons of the hippocampal CA1 region. These 80 

neurons are important because they have a critical position as the main output stage of the 81 

hippocampal circuitry [8]. The hippocampal CA1 pyramidal neurons, in particular, exhibit a peculiar 82 

ensemble and distribution of conductances (reviewed in [9]), subject to significant changes following 83 
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activity-dependent biochemical processes, such as activation of protein kinase A and C, or 84 

Ca/calmodulin dependent kinase II [10, 11, 12], pathological conditions (e.g. [13, 14]), or traumatic 85 

brain injuries [15, 16]. There must then be an extremely robust compensatory mechanism in these 86 

neurons, or in the network, which maintains or re-establishes the physiological activity within an 87 

operation range, in spite of a potentially large change in its intrinsic properties or synaptic input. Here 88 

we study the mechanism of robustness of intrinsic properties by using a unified data-driven workflow 89 

and open source analysis and simulation tools. From a set of experimental recordings and 90 

morphological reconstructions, we implemented many morphologically and biophysically accurate 91 

models for CA1 pyramidal neurons and interneurons, with intrinsic electrophysiological properties 92 

constrained by and consistent with the experimental findings. The results indicate that a few currents 93 

need to be expressed at a relatively stable level, whereas others can be expressed within a much wider 94 

range. The analysis of the model neurons suggests many specific experimentally testable predictions 95 

on the combination and relative proportion of the different ionic conductances, and their relationship 96 

to robustness of intrinsic properties.  97 

 98 

Results 99 

Experimental data used for modeling 100 

To implement a set of data-driven neuron models, we start from a set of morphological 101 

reconstructions of neurons and somatic voltage traces obtained from in vitro slice preparations of rat 102 

hippocampal tissue to use as constraints (see Methods). In Fig 1 we show several examples of the 34 103 

morphologies used in this work (19 pyramidal cells and 15 interneurons), superimposed on a rat 104 

hippocampal slice stained for parvalbumin for illustrative purposes. 105 

 106 

Fig 1. The 3D reconstructions of CA1 cells in rat hippocampus used in this study.  107 

(Top) Pyramidal cells; dendrites are shown in black, axons in red; cell identifier, from left: 990803, 108 

oh140807_A0_idJ, oh140807_A0_idH, oh140807_A0_idG, oh140807_A0_idF, 050921AM2, 109 
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oh140807_A0_idC, oh140807_A0_idB, oh140807_A0_idA; (Bottom) Interneurons, from left to 110 

right: basket cell (dendrites in black, axon in pink [Cell number 990111HP2]); bistratified cell 111 

(dendrites in black, axon in blue [Cell number 980513B]); axo-axonic cell (dendrites in black, axon 112 

in purple [Cell number 970911C]); OLM cell (dendrites in black, axon in dark blue [Cell number 113 

011017HP2]); Ivy cell (dendrites in black; axon in light pink [Cell number 010710HP2]); perforant 114 

path associated cell (dendrites in black, axon in red [Cell number 011127HP1]); Schaffer collateral-115 

associated cell (dendrites in black, axon in green [Cell number 990827IN5HP3]). Reconstructions by 116 

Joanne Falck and Sigrun Lange. SO Stratum Oriens, SP Stratum Pyramidale, SR Stratum Radiatum, 117 

SLM Stratum Lacunosum-Moleculare. 3D reconstructions of the PPA, OLM, axo-axonic cells and of 118 

other examples of different types of cells are available in Supplementary figure 1 of Mercer and 119 

Thomson [17].  120 

 121 

A total number of 1456 experimentally obtained somatic voltage traces for a range of 122 

stimulation protocols were used in the optimization pipeline to constrain the models (see Methods). 123 

Collections of traces for individual neurons were manually assigned to four electrical types (e-type), 124 

according to the firing pattern exhibited during increasing somatic current injections [18], and using 125 

the classification proposed in the Petilla convention [19]. The 832 traces from pyramidal neurons, 126 

with an increasing inter-spike-interval (ISI), were all classified as continuous accommodating cells 127 

(cAC). For interneurons, 240 traces were classified as cAC, 160 traces as bursting accommodating 128 

cells (bAC), and 224 traces, whose firing rate is constant, as continuous non-accommodating cells 129 

(cNAC). Typical examples illustrating the physiological variability observed for these e-types are 130 

shown in Fig 2. A more quantitative analysis and comparison of their features will be presented 131 

elsewhere (Bologna et al., manuscript in preparation). Different pyramidal neurons (Fig 2, pyr cAC) 132 

exhibited significantly different responses to the same input. For example, a near-threshold 0.4 nA 133 

somatic current injection may or may not generate a few action potentials, whereas a 0.8nA input can 134 

result in a 2-fold range for the number of elicited action potentials (APs) (Fig 2, pyr cAC, blue traces). 135 
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Interneurons classified as cAC also exhibited a large inter-cell variability, with different cells 136 

responding to the same stimulus with a wide range of spike patterns, such as tonic firing (Figure 2, 137 

int cAC plots, cell 970428A1), stuttering (cell 970509HP2), and depolarization block (cell 138 

980205FHP).  The other two interneuron e-types, bAC and cNAC, also exhibited a large variability 139 

among different cells (Fig 2, bottom plots). This variability can be the result of different morphologies 140 

and/or a different density and distribution of the conductances expressed on the membrane of the 141 

different neurons. In the following sections, we will explore in more detail this issue by implementing 142 

and analyzing cellular level models that are able to reproduce these results. 143 

 144 

Fig 2. Experimental voltage traces used for the optimization pipeline. 145 

(Top) Typical somatic traces obtained during a step current stimulation protocol (-0.4, 0.4 and 0.8 nA 146 

for 400 ms) from intracellular recordings performed using sharp electrodes on CA1 pyramidal cells 147 

(left) and interneurons (right) classified as continuous accommodating cells (cAC); (bottom) typical 148 

traces from interneurons classified as bursting accommodating, bAC, (left) and continuous non-149 

accommodating, cNAC, (right) cells [18].  150 

 151 

Model Optimization  152 

For each e-type (see S1-S4 Tables and Methods), a set of electrophysiological features were extracted 153 

from all voltage traces belonging to that e-type. All the pyramidal cell morphologies were used to 154 

implement cAC models, whereas interneuron morphologies were used to obtain cAC, cNAC, and bAC 155 

models following the known firing behavior of each type of morphology (see legend of Fig 1 and S5 156 

Table). Features and morphologies were then used to obtain a set of optimized models for each e-157 

type, using a heuristic parameter optimization process that employed multi-objective genetic 158 

algorithms. Each optimization run (see Methods for details) returned a number of viable 159 

“individuals”, each one with a specific ensemble of peak ion channel conductance and passive 160 

properties consistent with the chosen “objectives” (i.e. a set of experimental features). As a cost 161 



8 
 

function for the optimization process we used a score defined by the total error associated with each 162 

individual, calculated as the sum of the absolute deviations of model features from the experimental 163 

mean, in units of the experimental standard deviation (sd) obtained for the value of each objective. A 164 

score=0 would correspond to an individual with all parameters equal to the average value of the 165 

corresponding experimental electrophysiological feature. The total error thus gave an idea of how 166 

good the individual was in representing the neuron’s overall expected behavior under a series of 400 167 

ms long somatic current injection steps. The final choice to accept an individual as a plausible 168 

representation of a given e-type was based on the error obtained for each objective. An individual 169 

with a sd<2 for  all objectives was considered acceptable. 170 

Typical optimization results for pyramidal and interneuron cAC e-types are shown in Fig 3. 171 

Traces obtained for different somatic current injections from three individuals (Fig 3, traces on top 172 

left graph of each panel), showed that the optimization process was able to take into account the 173 

experimental variability. Different individuals exhibited significantly different responses to the same 174 

stimulus, as in the experiments. The evolution of the total score as a function of the number of 175 

generations in the optimization process (bottom graph in each panel), showed that the optimization 176 

converged nearly monotonically in relatively few iterations, having reached a relatively stable 177 

minimum within approximately 60 generations. The list of objective scores for the best individual in 178 

each case (Fig 3 right graph in each panel) showed that for most features (n=60 for pyramidal cells 179 

and n= 47 for cAC interneurons, see S1-S4 Tables) the associated error was below 2 sd. Similar results 180 

were obtained for the optimizations of bAC and cNAC interneurons (data not shown). Taken together, 181 

these results show that the overall optimization process is a robust way to obtain a number of 182 
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biophysically accurate neuron models of hippocampal CA1 pyramidal cells and interneurons, which 183 

are able to reproduce many of the properties observed experimentally in different types of neurons. 184 

 185 

Fig 3. Model optimization. 186 

Typical optimization results for cAC pyramidal cells (top) and interneurons (bottom). The top left 187 

graph of each panel shows a few examples of model traces from three individuals during a current 188 

injection of -0.4, 0.4, and 0.8 nA (black, red, and blue traces, respectively). The right graph of each 189 

panel reports the objective scores for the best individual. The bottom left graph in each panel shows 190 

a typical evolution of the total score during an optimization run. 191 

 192 

A more direct comparison between experimental and modeling traces for the different e-types 193 

is shown in Fig 4A, revealing a very good qualitative agreement between the modeling results and 194 

experimental traces. The optimization enabled the production of models that correctly reproduced 195 

many characteristics of the firing patterns, such as the strong accommodation observed in cAC 196 

interneurons (Fig 4A, cAC int @0.4nA), the high firing frequency of bAC interneurons at the 197 

beginning of a current injection (Fig 4A, bAC @0.6nA), and the progressive reduction in the AP 198 

amplitude during the first part of stronger stimuli (Fig 4A, bAC @1nA). The pyramidal cell models 199 

also exhibited a typical property often observed experimentally in this type of cells, i.e. the decrease 200 

in the peak amplitude of an AP backpropagating into the apical dendrites [20]. This effect has been 201 

shown to depend on the high density of A-type potassium channel in the apical dendrites [21], but 202 

not all CA1 pyramidal neurons exhibit this effect [22, 23].  It is important to note that this feature was 203 

not used to constrain the optimization but, interestingly, the optimized models were able to reproduce 204 

it, as shown in Fig 4B, for a few cases using morphologies from both young adult (cells 050921AM2, 205 

and 990803) and P14-23 animals. The dichotomy in AP backpropagation observed in the experiments 206 

[22] was also reproduced by the model neurons, with the AP amplitude either strongly decreasing 207 

beyond ~150 µm from the soma or limited to ~50% of the maximum, with very few cases in between. 208 
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Taken together, this comparison between experiments and models at the individual trace level, 209 

suggests that the optimization process was able to correctly capture and explain both intra- and inter-210 

cell variability in firing behavior in terms of different combinations of active and passive membrane 211 

properties.  212 

 213 

Fig 4. Optimization results.  214 

(A) Comparison between typical experimental and model traces for each e-types under different 215 

somatic current injection. (B) Peak amplitude of an AP backpropagating in the main apical dendritic 216 

trunk of different pyramidal cell models, as a function of the distance from the soma. Each trace refers 217 

to a different morphology, as indicated. Abbreviations: cAC, continuous accommodating cells; cAC, 218 

bursting accommodating cells; cNAC, continuous non-accommodating cells. 219 

 220 

An indication of how the optimized models may capture the variety of experimental 221 

input/output properties can be drawn from Fig 5, where the number of spikes for each e-type was 222 

plotted against the somatic current injection, for experimental (blue lines) and modeling traces (red 223 

lines). In all cases, experimental traces exhibited a rather large inter-cell variability in the number of 224 

spikes elicited by any given input current. It is quite common to see up to a ~5-fold difference in the 225 

number of spikes elicited in different cells under the same current injection. In most cases, the models 226 

were in quantitative agreement with the average number of spikes generated as a function of the input 227 
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current (Fig 5, insets, Mann Whitney Rank Sum test p>0.05 in all cases except for 1nA injection in 228 

pyramidal neurons).  229 

 230 

Fig 5. Input/Output properties.  231 

Number of spikes as a function of the input current from experiments (blue traces) and models (red 232 

traces) for the various e-types. The insets show the corresponding average values. Abbreviations as 233 

in Fig 4. 234 

 235 

Degeneracy within a population  236 

With the set of data-driven neuron models obtained for each e-type, we can now analyze how different 237 

combinations of peak conductances can result in models able to reproduce equally well the firing 238 

properties observed experimentally under different current injection steps. The optimization process 239 

generates many of these models (termed “individuals”) because of ion channel degeneracy [5]. As 240 

discussed in the Introduction, this phenomenon is thought to allow a neuron to adjust its firing 241 

properties in a robust and tunable manner.  242 

 243 

Fig 6. Degeneracy in CA1 pyramidal neurons. 244 

Optimized values for all parameters, obtained for the 10 best individuals from each optimization. The 245 

X-axis represents the individual optimizations (each composed by 10 individuals), the Y-axis is the 246 

parameter’s name. The pixel colors represent the value of the parameter, normalized to the maximum 247 

value obtained from all optimizations of a given e-type. The color scale is shown on the right. 248 

Abbreviations as in Fig 4. In all cases the total error was in the range of 29-42 sd. 249 

 250 

To obtain further insight into on how degeneracy is achieved in hippocampal CA1 neurons, 251 

we analyzed all the individuals obtained from the optimization runs. For each optimization run, the 252 

10 best individuals were considered based on their total score (see Methods). Note that these 253 
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individuals were obtained from the same morphology with different channel densities. In Fig 6, the 254 

value of the optimized parameters, normalized to the maximum value chosen for each conductance, 255 

were plotted for each optimization run (10 individuals for each run, opt id). For clarity, in each graph 256 

the values obtained for any given parameter were placed on the Y-axis according to the corresponding 257 

average value calculated from all optimizations. In this way, the bottom rows in each graph 258 

correspond to parameters with an average low value whereas top rows correspond to parameters with 259 

higher values. Furthermore, parameters that were relatively stable across all optimizations (i.e. with 260 

a sd<0.2) for any given e-type are highlighted using a red label in the y axis. For pyramidal cells (Fig 261 

6, pyr cAC) the most stable parameters were some of the passive properties, Ih, KM, Calcium, and Ca-262 

dependent K currents. Interestingly, we noted that whereas passive properties were consistently 263 

optimized with a stable value across the optimizations for all e-types (Fig 6, see top rows in all 264 

graphs), conductances were shown to be somewhat different depending on e-types. For example, for 265 

interneurons, Ih, somatic KM and dendritic KDR were the most stable for all e-types, whereas   dendritic 266 

KA was stable for cAC and Cagk for cNAC. These results suggested that each e-type has specific 267 

active properties that may be particularly important to obtain the appropriate firing pattern in response 268 

to a given input. While these properties need to be well constrained for each e-type, degeneracy can 269 

be achieved by combining the other conductances in a relatively large number of ways. The functional 270 

consequences of this situation will be discussed below. 271 

To explore whether a cell’s morphology can also be related to degeneracy, we fixed the peak 272 

conductance values to those found for the best overall individual (obtained for morphology 273 

oh140521_B0_Rat_idA) and calculated the total error by using different morphologies. The results 274 

are shown in Fig 7A. We found that the total error using the same set of conductances on different 275 

morphologies was within the range obtained for each cell’s optimization for 10 out of 16 276 

morphologies. For these cases, there was no correlation between the total error and the main 277 

morphological properties, such as soma area, total cell volume, or number of sections (Fig 7B, 278 

Spearman correlation, p>0.05 in all cases). These results suggest that degeneracy can also be obtained 279 
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using different morphologies equipped with identical peak channels conductance. A deeper analysis 280 

of this issue however was not further considered in this work. 281 

   282 

Fig 7. Degeneracy from different morphologies. 283 

(A) (Black symbols): the total error calculated from the best individual obtained for each morphology; 284 

the dotted line identifies the maximum total error. (Open symbols): total error calculated from all 285 

morphologies equipped with the set of conductances obtained for oh140521_B0_Rat_idA. (B) Soma 286 

area, total cell volume, and number of sections of all morphologies.  287 

 288 

For a more detailed analysis of the configuration of peak conductance values for all models, 289 

we first considered the results for pyramidal neurons. In Fig 8A we show a typical distribution of 290 

normalized values obtained for membrane properties where optimizations yielded a relatively narrow 291 

range (somatic KM, Ih, and Ra), or a wider range of values across individuals (dendritic Na). Note that 292 

two of the conductances with a narrow distribution are, in pyramidal CA1 neurons, the dominant 293 

factors in controlling major properties such as excitability and accommodation (KM, reviewed in 294 

[24]), and synaptic integration (Ih, [25]). The paramount importance of these two types of conductance 295 

for reproducing the experimental traces, suggested by their value lying in a narrow range across 296 

individuals, emerged from the optimization process without any specific constraint.  297 

 298 

Fig 8. Degeneracy in CA1 pyramidal neurons.  299 

(A) Distribution of the normalized values obtained for the somatic KM, dendritic Na, Ih and Ra. (B) 300 

Radar plot with the values obtained for a subset of conductances. Parameters’ values were sorted for 301 

those obtained for Cagk (black line); Traces on the left are model traces from individuals #30, 46, 50 302 
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and 102 under a 0.4 nA somatic current injection. (C) Number of spikes elicited by a 0.4 nA current 303 

injection in each individual. Abbreviations as in Fig 4. 304 

 305 

An insight on degeneracy in these neurons can be obtained by considering correlation between 306 

parameter pairs. In most cases, we found no statistically significant correlation (see S6 Table for the 307 

Spearman correlation coefficients). However, for several cases a significant correlation between 308 

selected parameters was found (S6 Table, grey cells). The conductance which was most correlated 309 

with others was Cagk, a Ca- and voltage-dependent K+ conductance that is one of the major 310 

determinants for accommodation in these neurons. The inverse correlation with the KM is particularly 311 

interesting, since it supports the experimental finding that these channels operate in combination to 312 

control intrinsic hyperexcitability [26], and modeling results suggesting how they must both be 313 

involved to obtain a strong accommodation [27, 28]. 314 

To explore the configuration of the conductances in a more qualitative and intuitive way, we 315 

arranged a radar plot of the conductances most correlated with Cagk (Fig 8B), and one of those 316 

showing little variability (in this case the reversal potential of the leakage current in the dendrites, 317 

e_pas d). The different individuals were sorted with respect to Cagk (Fig 8B, thick black line) and, 318 

for clarity, we plotted only 40 of the 160 individuals. The highly jagged and intermixed lines represent 319 

the different peak conductance type and value for different individuals giving equally good 320 

representations of 60 electrophysiological features experimentally observed in these neurons (see S1 321 

Table). Examples of model traces from a few individuals (all obtained with a 0.4nA somatic current 322 

injection) displayed the same number of spikes obtained with very different channel configurations. 323 

The number of spikes elicited for each individual is plotted in Fig 8C.  324 

These results give a clear indication that degeneracy in CA1 pyramidal cells can easily emerge 325 

from many different combinations of many, but not all, channels. The reason for the lack of pairwise 326 

correlation between most parameters does not exclude that the parameter space may be shaped by 327 
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higher order correlations that can be ultimately responsible for degeneracy. However, a full 328 

quantitative study of higher order correlations was outside the scope of this study. 329 

The results obtained for interneurons are shown in Fig 9. In this case, to allow an easier 330 

comparison of the parameters among the different e-types, individuals were sorted according to the 331 

somatic Na conductance (Fig 9, thick black lines), which was among the most correlated with all the 332 

others (see Supplementary S7-S9 Tables). The models suggest a few distinct differences among the 333 

different e-types. Note, for example, the distribution of values obtained for the peak conductance of 334 

dendritic KDR or KA in the various e-types (Fig 9, dark red and blue lines, respectively), or the 335 

difference in the overall values of dendritic Na (Fig 9, orange lines) between cAC and cNAC. In 336 

general, however, the distribution of values were analogous to those obtained for pyramidal cells, 337 

with each individual characterized by a highly variable combination of values for many conductances. 338 

 339 

Fig 9. Degeneracy in CA1 interneurons.  340 

Radar plot with the values obtained for a subset of conductances. Parameters were sorted for the 341 

somatic Na values (black line); the bar graph on the right of each radar plot represents the 342 

corresponding spike count from each individual.  343 

 344 

Differences in channel proportions among hippocampal CA1 e-types 345 

Finally, one important factor in determining the firing characteristics of different neurons, in 346 

addition to a substantial change in morphology [29] and/or gene expression profile [30], is the relative 347 

proportion with which specific channels are expressed on the membrane. For this reason, from the 348 

optimized models we calculated the relative contribution of each channel in each e-type, by 349 

considering the average value of each peak conductance calculated across all individuals. The results 350 

are presented in Fig 10A. In all cases, we found that Na, KA and KDR could account for most of the 351 

channels expressed on the membrane. Interestingly, each e-type showed a distinct proportion of these 352 

channels, with axonal Na channels playing a relatively large role in all e-types, axonal KA being 353 
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relatively more important in pyramidal neurons than in interneurons, and dendritic KDR being 354 

significantly higher in cNAC e-types. An analysis of the relative level of each conductance in the 355 

various e-types (Fig 10B) also showed significant differences in several cases (Pairwise Multiple 356 

Comparison Procedure, p<0.05). From the results it is clear, for example, that dendritic Na should be 357 

higher in pyramidal cells than in any type of interneuron, cAC interneurons should have a higher 358 

dendritic Na among interneurons (Fig 10B, dark blue squares for Na d), and that the axonal KM is 359 

essentially independent from cell type. In summary, these results suggest the experimentally testable 360 

prediction that different e-types can be characterized by a different combination of the same set of 361 

conductances.    362 

 363 

Fig 10. Differences among CA1 neuron populations  364 

(A) Pie charts showing for the different e-types the proportion of each conductance with respect to 365 

the total average peak conductance calculated across all individuals. (B) Schematic representation of 366 

a Pairwise Multiple Comparison Procedure (Dunn's Method), between each pair of e-types. The 367 

colored boxes indicate cases for which p<0.050. Dark blue or cyan indicates that the average value 368 

of the first component is significantly lower or higher, respectively, than the second one. An empty 369 

box indicates no statistically significant difference. 370 

 371 

  Discussion 372 

It has been shown that any individual neuron can express a distinct combination of many 373 

channel types [30] determining its electrical properties [31]. Furthermore, several seminal papers 374 

demonstrated that each cell type could exhibit specific correlation between channels expression [32], 375 

which may emerge from a homeostatic rule [2]. The overall picture is one in which many different 376 

conductances coincide to produce the electrophysiological patterns that characterize the operating 377 

range of any given population of neurons, and they do so in such a way to compensate for relatively 378 

large changes in individual channel density or synaptic connectivity [33]. The robustness of this 379 
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mechanism relies on degeneracy [4], which can be practically implemented through a large and flat 380 

parameter space for channel conductance. This issue has been studied in the crab pyloric neurons [3], 381 

stomatogastric ganglion neurons (e.g. [2, 6]), in the Globus Pallidus neurons of the rat [7]. The 382 

presence of degeneracy had yet to be studied in hippocampal neurons. Two recent modeling studies, 383 

in the mouse corticospinal neurons and motor cortex, have explicitly shown how degeneracy in 384 

cortical neurons can work to implement some electrophysiological features but not others [34], and 385 

that degeneracy can also generate multitarget routes from pathological to physiological network 386 

dynamics [35]. The first finding was particularly relevant for our study, and it was among the reasons 387 

why we choose not to include the voltage between spikes among the optimized features. Its accurate 388 

reproduction would have required us to additionally optimize channel kinetics, which was not within 389 

the scope of this work. 390 

The analysis of the modeling results presented in this paper provides many experimentally 391 

testable predictions on the possible co-regulation of ion currents in hippocampal CA1 neurons. 392 

Correlation between pairs of specific conductances has been found for cells in the stomatogastric 393 

ganglion of the crab (STG, [32]) and in the pyloric network of the spiny lobster [36]. These 394 

experiments found that several pairwise correlations between the same conductances can be present 395 

in different type of cells, but no cell type showed conductances with the same set of pairwise 396 

correlations. Our optimized models confirmed this result also for the hippocampal CA1 neurons. The 397 

models also confirmed pairwise correlations already observed in STG, such as that between KA and 398 

Ih, Na, KDR, and Cagk, and between Na and Cagk. Like in the STG, these correlations were observed 399 

in different combinations among different cell types.  It is important to stress that the optimization 400 

process did not bias the parameter values against each other. Correlations thus emerged naturally 401 

from the optimization process, and reflected a better reproduction of the experimental features. The 402 

models predict several additional pairwise correlations between conductances (see S6-S9 Tables), 403 

which are specific for each e-type. All predictions can be tested experimentally, by directly measuring 404 
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and comparing peak ion currents or (better) channel densities in different neurons or by a genetic 405 

perturbation of channel expression [36, 37].  406 

A limitation of this work is that the optimization process was not able to generate a population 407 

of models reproducing the very large experimental variability. The reason for this effect is that, in 408 

this work, we choose to optimize the different e-types using for each feature the average and standard 409 

deviation calculated from all traces, rather than independently optimizing models constrained by 410 

traces from an individual cell. A partial explanation for this choice was the limited availability of 411 

experimental data on individual cells. Nevertheless, we think that these results offer a significant 412 

improvement on the current state of the art, and a necessary step towards building a full-scale cellular 413 

model of the rat hippocampus CA1 circuit (Romani et al., in preparation). 414 

Another experimentally testable prediction of the models is that each type of cell should have 415 

a small number of channel types that would be expressed at the same density in the same neuronal 416 

population. There is already some experimental indication that this is the case for STG cells in the 417 

crab [1], where it has been found that KDR is relatively constant among the lateral pyloric neurons of 418 

different animals, whereas KA and Cagk varied more than threefold. In this study, we found that 419 

passive properties, KM, and Ih were among the most stable intrinsic membrane properties in any given 420 

neuron population, together with dendritic KDR for interneurons. 421 

The models also predict that a different combination of axosomatic Na, KA, and KDR channels 422 

may dominate the distribution of channels on the membrane of a neuron belonging to a given e-type. 423 

This is also experimentally testable, by directly measuring the density of the different channels 424 

expressed on the membrane of different type of neurons.  425 

Our analysis suggests a physiological plausible explanation for why single channel mutations 426 

can have more or less pathological consequences. A clear example stands out for KM and Ih channels 427 

in pyramidal cells. We found that these channels must be expressed with a relatively stable density; 428 

they do not appear to contribute to degeneracy. This may explain why specific mutations of KM 429 

channels can result in neonatal epilepsies in humans [38], or why the decrease in Ih caused by 430 
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experimental models for temporal lobe epilepsy can result in major changes in the 431 

electrophysiological mechanisms related to cognitive functions [39].  432 

Finally, the modeling effort presented and discussed in this work is part of a larger modeling 433 

workflow currently underway in the framework of the EU Human Brain Project 434 

(https://www.humanbrainproject.eu/en/), with the main goal to implement a cellular data-driven 435 

model of the entire hippocampus. The Hippocampus is a complex brain structure, deeply embedded 436 

into the temporal lobe, with a paramount importance for higher brain functions such as learning and 437 

memory, and spatial navigation, and is involved in several major brain diseases. In spite of intensive 438 

experimental and computational studies, the mechanisms underlying these functions (and 439 

dysfunctions) are still poorly understood. A model implementation and analysis at the cellular level 440 

may pave the way for a deeper understanding of the diverse and complex functions of this brain 441 

region, and of its levels of organization. One of the major steps towards this goal is the 442 

implementation of morphologically and biophysically accurate single cell models for the main 443 

neuronal populations, equipped with a set of axonal, somatic, and dendritic currents consistent with 444 

many experimentally measured electrophysiological features, in such a way as to be able to capture 445 

the main I/O properties observed experimentally. Here we have used a general, robust, and flexible 446 

tool able to produce, using reasonable computational resources, ensembles of this type of models for 447 

CA1 pyramidal cells and interneurons.  448 

 449 

Methods 450 

Experimental procedures for interneurons and pyramidal cells 050921AM2, and 990803 451 

Electrophysiology 452 

All procedures used throughout this study were carried out according to the British Home Office 453 

regulations with regard to the Animal Scientific Procedures Act 1986. Hippocampal slices were 454 

prepared as described previously [40, 41]. Briefly, young adult male rats (Sprague-Dawley, body 455 

weight 90–180 g) were deeply anaesthetised with Fluothane (inhalation) and sodium pentobarbitone 456 

https://www.humanbrainproject.eu/en/
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(Sagatal, 60 mg kg-1, Rhône Mérieux, Harlow, UK) and perfused transcardially with ice-cold 457 

modified artificial cerebrospinal fluid) containing in mM: 248 Sucrose, 25.5 NaHCO3, 3.3 KCl, 1.2 458 

KH2PO4, 1 MgSO4, 2.5 CaCl2, 15 D-Glucose, equilibrated with 95% O2/5% CO2. 450 to 500 μm 459 

coronal sections were cut (Vibroslice, Camden Instrument, Loughborough, UK) and transferred to an 460 

interface recording chamber. They were maintained in modified ACSF solution for 1 hour, and then 461 

in standard ASCF (in mM: 124 NaCl, 25.5 NaHCO3, 3.3 KCl, 1.2 KH2PO4, 1 MgSO4, 2.5 CaCl2, and 462 

15 D-glucose, equilibrated with 95% O2/5% CO2) for another hour at 34–36°C before commencing 463 

electrophysiological recordings. Intracellular recordings were made using sharp microelectrodes (tip 464 

resistance, 90–190 MΩ) filled with 2% biocytin in 2M KMeSO4 under current-clamp (Axoprobe; 465 

Molecular Devices, Palo Alto, CA). Current-voltage characteristics of CA1 pyramidal cells and 466 

interneurons were obtained from their responses to 400 ms current pulses and recorded with pClamp 467 

software (Axon Instruments, USA). Individual neurons were recorded and biocytin-filled for up to 3 468 

hours. 469 

 470 

Histology  471 

The histological procedures have been described previously [42]. Briefly, the 450-500 μm slices were 472 

fixed overnight (4% paraformaldehyde (PFA), 0.2% saturated picric acid solution, 0.025% 473 

glutaraldehyde solution in 0.1 M Phosphate buffer). Slices were then washed, gelatin-embedded and 474 

50-60 μm sections were cut. Sections were cryoprotected with sucrose, freeze-thawed, incubated first 475 

in ABC (Vector laboratories) and then in DAB (3, 3' diaminobenzidine, Sigma) to visualise the 476 

biocytin and reveal the morphology of the recorded neurones. Sections were then post-fixed in 477 

Osmium Tetroxide, dehydrated, mounted on slides (Durcupan epoxy resin, Sigma) and cured for 48 478 

h at 56°C. The calcium-binding protein and peptide content of some interneurons was investigated 479 

by immunofluorescence. Sections were cut and permeabilised with sucrose and freeze-thawed. They 480 

were then incubated in 1% Sodium Borohydride (NaBH4) for 30 minutes, in 10% normal goat serum 481 

for another 30 min and then incubated overnight in a primary antibody solution (mouse monoclonal 482 
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anti-Parvalbumin (Sigma) or rabbit polyclonal anti-calbindin (CB) (Baimbridge & Miller, 1982)) 483 

made up in ABC solution. Sections were then incubated for 2h in a solution of fluorescently labelled 484 

secondary antibodies (anti-mouse fluorescein isothiocyanate (FITC) and/or goat anti-rabbit Texas 485 

Red (TR), and Avidin-7-Amino-4-methylcoumarin-3-acetic acid (Avidin-AMCA) made up in PBS). 486 

Sections were mounted on slides in Vectashield (Vector laboratories) and studied by fluorescence 487 

microscopy. Subsequently, sections were incubated in ABC (Vector laboratories) and then in DAB 488 

(3, 3' diaminobenzidine, Sigma) to visualise the biocytin, post-fixed, dehydrated, mounted on slides 489 

and cured for 48 h at 56°C. All CA1 neurons were then reconstructed using a Neurolucida software 490 

(MBF Bioscience). 491 

 492 

Histological procedures for pyramidal cells, except cells 050921AM2, and 990803 493 

For all the other pyramidal cells, ex-vivo coronal preparations (300 μm thick) were obtained for the 494 

hippocampus of wild type rats (Wistar) brains, post-natal 14– 23 days. The project was approved by 495 

the Swiss Cantonal Veterinary Office following its ethical review by the State Committee for Animal 496 

Experimentation. All procedures were conducted in conformity with the Swiss Welfare Act and the 497 

Swiss National Institutional Guidelines on Animal Experimentation for the ethical use of animals. 498 

All ex-vivo brain slices were cut in ice-cold aCSF (artificial cerebro-spinal fluid) with low Ca2+ and 499 

high Mg2+. The intracellular pipette solution contained (in mM) 110 Potassium Gluconate, 10 KCl, 4 500 

ATP-Mg, 10 Phosphocreatine, 0.3 GTP, 10 HEPES and 13 Biocytin, adjusted to 290–300 mOsm/Lt 501 

with D-Mannitol (25–35 mM) at pH 7.3. Chemicals were from Sigma Aldrich (Stenheim, Germany) 502 

or Merck (Darmstadt, Germany). A few somatic whole cell recordings (not available for this work) 503 

were performed with Axopatch 200B amplifiers in current clamp mode at 34 ± 1°C bath temperature. 504 

After the recordings, cells were left in whole cell mode for 45mins for biocytin to fill up the cell. The 505 

pipette was then carefully removed and the brain slice placed in PFA 4% overnight. Slice were then 506 

placed in PBS 1X, biocytin revealing protocol was performed prior to mounting. Reconstruction made 507 

by eye with assistance of camera Lucida. 508 
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Computational Methods 509 

The models have been implemented using three-dimensional morphological reconstructions. 510 

Electrophysiological features of interest (see next paragraph) were extracted from experimental traces 511 

using custom code exploiting the open source Electrophysiological Feature Extraction Library (eFEL, 512 

https://github.com/BlueBrain/eFEL). Extracted features were then used for multi-objective model 513 

parameter optimizations performed using the open source Blue Brain Python Optimization Library 514 

(BluePyOpt, [43]). Both are part of a set of tools integrated into many online use cases of the Brain 515 

Simulation Platform (BSP) of the Human Brain Project (https://www.humanbrainproject.eu/en/brain-516 

simulation/). The optimizations were carried out using HPC systems, accessible from the BSP, at 517 

either the Neuroscience Gateway (https://www.nsgportal.org/), CINECA (Bologna, Italy), or JSC 518 

(Jülich, Germany). On a KNL-based HPC system, a typical optimization run for a pyramidal cell, 519 

configured to generate 128 individuals/generation, required approximately 1 hour/generation using 520 

128 cores. Typical production runs for each optimization required approximately 60 generations to 521 

reach an equilibrated state. 522 

 The overall optimization approach, of using a genetic algorithm, was similar to other studies 523 

(e.g. [35, 44]), but with important qualitative differences: for example, in [35] only one detailed 524 

morphology was used, whereas in [44] the authors tested many detailed morphologies but with the 525 

soma as the only active compartment. In our case, we used many detailed morphologies and, in all of 526 

them, we distributed dendritic conductances constrained by experimental findings. This allowed us, 527 

for example, to also reproduce experimental dendritic recordings. We believe that for studying 528 

degeneracy of ionic currents in hippocampal pyramidal neurons, known to have active dendrites with 529 

fundamental roles in signal integration, our choice can give better results.   530 

All experimental and model files will be publicly available upon paper publication, under the 531 

BSP Hippocampus model collab (https://collab.humanbrainproject.eu/#/collab/594/nav/5317). 532 

Complete model and simulation files will also be available on the ModelDB section of the Senselab 533 

suite (https://senselab.med.yale.edu/modeldb/). 534 

https://github.com/BlueBrain/eFEL
https://www.humanbrainproject.eu/en/brain-simulation/
https://www.humanbrainproject.eu/en/brain-simulation/
https://collab.humanbrainproject.eu/#/collab/594/nav/5317
https://senselab.med.yale.edu/modeldb/
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Readers interested in running their own optimization can also access the public “Online Use 535 

Cases” of the BSP directly related to single cell modeling 536 

(https://collab.humanbrainproject.eu/#/collab/1655/nav/28538). A number of tools with an intuitive 537 

graphical user interface will guide the user through all steps, from selecting experimental data to 538 

constrain the model, to running an optimization to generate a model template and, finally, to exploring 539 

the model with in silico experiments.  540 

Electrophysiological features 541 

Thousands of electrophysiological features may be used to constrain a model’s optimization process 542 

and many hundreds of parameters to optimize. Ideally, all of them should be used. In practice, 543 

however, this is essentially impossible. The amount of missing information will make the problem 544 

ill-defined, and the sheer number of parameters that would be required will result in a substantial 545 

overfitting. For this reason, we decided to take into account a selected set of electrophysiological 546 

features for each e-type, listed in S1-S4 Tables. They include features that are particularly important 547 

in shaping the I/O properties of a neuron, such as the spike count and spike times, and those associated 548 

with the resting potential and the input resistance. Their average (±sd) value was calculated from 549 

experimental traces, using a custom version of the feature extraction tool. 550 

A total of 225 experimental features were used to constrains the optimization process. 551 

 552 

Models configuration 553 

Given the experimentally known differences between pyramidal cells and interneurons, we used 554 

different channels’ configuration and distribution, as schematically illustrated in S1 Fig. Channel 555 

kinetics were based on those used in many previously published papers on hippocampal neurons [45, 556 

46], and validated against a number of experimental findings on CA1 pyramidal neurons. The 557 

complete set of active membrane properties included a sodium current (Na), four types of potassium 558 

(KDR, KA, KM, and KD), three types of Calcium (CaN, CaL, CaT), the nonspecific Ih current, and two 559 

types of Ca-dependent K+ currents, KCa and Cagk. A simple Calcium extrusion mechanism, with a 560 

https://collab.humanbrainproject.eu/#/collab/1655/nav/28538
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single exponential decay of 100 ms, was also included in all compartments containing Calcium 561 

channels. In general, channels were uniformly distributed in all dendritic compartments except KA 562 

and Ih, which in pyramidal cells are known to increase with distance from the soma [20, 25]. The 563 

values for the peak conductance of each channel were independently optimized in each type of 564 

compartment (soma, axon, basal and apical dendrites). The parameters’ range, independently for 565 

pyramidal cells and interneurons, was defined with preliminary simulations, and it covered a range 566 

of at least one order of magnitude. 567 

 568 
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Figure S1: CA1 pyramidal neuron and interneuron active properties. Morphologies of a 708 

pyramidal neuron (left) and an interneuron (right), with a schematic indication of channels’ 709 

distribution on the soma, axon, and dendrites. 710 

Table S1: Electrophysiological features used for optimization of pyramidal neurons 711 

Table S2: Electrophysiological features used for optimization of int cAC cells 712 

Table S3: Electrophysiological features used for optimization of int bAC cells 713 

Table S4: Electrophysiological features used for optimization of int cNAC cells 714 

Table S5: Morphological classes and e-types of the optimized pyramidal cells (left) and 715 

interneurons (right).  716 

Table S6: Spearman correlation coefficient between peak conductance values from pyramidal cell 717 

models. Only conductances with at least one significant correlation coefficient >|0.25|  (gray cells) 718 

are shown. The p value corresponding to each coefficient is indicated in italics. 719 

Table S7: Spearman correlation coefficient between peak conductance values from cNAC 720 

interneuron models. Only conductances with at least one significant correlation coefficient >|0.25| 721 

(gray cells) are shown. The p value corresponding to each coefficient is indicated in italics. 722 

Table S8: Spearman correlation coefficient between peak conductance values from bAC 723 

interneuron models. Only conductances with at least one significant correlation coefficient >|0.25| 724 

(gray cells) are shown. The p value corresponding to each coefficient is indicated in italics. 725 

Table S9: Spearman correlation coefficient between peak conductance values from cAC 726 

interneuron models. Only conductances with at least one significant correlation coefficient >|0.25| 727 

(gray cells) are shown. The p value corresponding to each coefficient is indicated in italics. 728 
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