

WestminsterResearch
http://www.westminster.ac.uk/research/westminsterresearch

Intuitionistic fuzzy XML query matching and rewriting

Mohammedsharaf Alzebdi

School of Electronics and Computer Science

This is an electronic version of a PhD thesis awarded by the University of
Westminster.

This is an exact reproduction of the paper copy held by the University of
Westminster library.

The WestminsterResearch online digital archive at the University of
Westminster aims to make the research output of the University available to a
wider audience. Copyright and Moral Rights remain with the authors and/or
copyright owners.
Users are permitted to download and/or print one copy for non-commercial
private study or research. Further distribution and any use of material from
within this archive for profit-making enterprises or for commercial gain is
strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch:
(http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail
repository@westminster.ac.uk

INTUITIONISTIC FUZZY XML QUERY

MATCHING AND REWRITING

MOHAMMEDSHARAF ALZEBDI

A thesis submitted in partial fulfilment of the
requirements of the University of Westminster for the

degree of Doctor of Philosophy

December 2013

ii | P a g e

Dedication

I dedicate this thesis to my occupied country, Palestine. If I do not live in

you, you have always lived in me. One day you will be free.

I secondly dedicate it to my family, particularly to my mum and to the soul

of my father. Without you I would have not been what I am.

iii | P a g e

Acknowledgment

I would like to express my gratitude and gratefulness to my director of

studies Dr. Panos Chountas. I cannot find words to thank you with. You

were the best supervisor I could ever have. Thanks for all the good times

and memories. Also, special thanks go to Dr Andrzej Tarczynski for his

useful instructions and advices; and to Fardous Bahbouh for proofreading

this thesis.

Very special thanks to the Harath-Taha group, Ihsan Abu-Showeb, Raed

Amro, Mustafa HajMohammad and Mahmoud Alzabadi and to the Arab-

ISH group and to all my friends and well-wishers in London and all over the

world.

Finally, a big thank you to the University of Westminster for sponsoring my

PhD.

iv | P a g e

Declaration

The work included in this thesis is the author’s own. It has not been

submitted in support of an application for another degree or qualification of

his or any other university or other institution of learning.

Signed:

Date:

v | P a g e

Abstract

With the emergence of XML as a standard for data representation,

particularly on the web, the need for intelligent query languages that can

operate on XML documents with structural heterogeneity has recently gained

a lot of popularity. Traditional Information Retrieval and Database

approaches have limitations when dealing with such scenarios. Therefore,

fuzzy (flexible) approaches have become the predominant.

In this thesis, we propose a new approach for approximate XML query

matching and rewriting which aims at achieving soft matching of XML

queries with XML data sources following different schemas.

Unlike traditional querying approaches, which require exact matching, the

proposed approach makes use of Intuitionistic Fuzzy Trees to achieve

approximate (soft) query matching. Through this new approach, not only the

exact answer of a query, but also approximate answers are retrieved.

Furthermore, partial results can be obtained from multiple data sources and

merged together to produce a single answer to a query. The proposed

approach introduced a new tree similarity measure that considers the

minimum and maximum degrees of similarity/inclusion of trees that are

based on arc matching. New techniques for soft node and arc matching were

presented for matching queries against data sources with highly varied

structures.

A prototype was developed to test the proposed ideas and it proved the

ability to achieve approximate matching for pattern queries with a number

of XML schemas and rewrite the original query so that it obtain results from

the underlying data sources. This has been achieved through several novel

algorithms which were tested and proved efficiency and low CPU/Memory

cost even for big number of data sources.

vi | P a g e

Table of Contents

Dedication ……………………………………………………………. ii

Acknowledgement …………………………………………………… iii

Declaration …………………………………………………………… iv

Abstract ………………………………………………………………. v

Table of Contents ……………………………………………………. vi

List of Figures ………………………………………………………... ix

List of Tables …………………………………………………………. xii

1. Introduction ……………………………………………………… 2

1.1. Research objectives …………………………………………... 2

1.2. XML Schema Heterogeneity ………………………………… 4

1.3. IF Approximate XML Query Matching ……………………… 9

1.4. Thesis Structure ………………………………….................... 10

2. XML Data Model and XML Queries …………………………… 13

2.1. Introducing XML ………………………………….................. 13

2.2. XML Data Model …………………………………................. 15

2.3. Flexibility of XML Models …………………………………... 19

2.4. XML Query Languages …………………………………......... 21

2.5. Chapter Summary ………………………………….................. 24

3. XML Query Matching …………………………………………… 26

3.1. Overview …………………………………............................... 26

3.2. Traditional Schema Matching …………………………….….. 27

vii | P a g e

3.3. XML Schema Matching/Similarity ……………………….…. 28

3.4. XML Query Matching Approaches ……………………….…. 31

3.4.1. Tree Edit Distance …………………………………......... 32

3.4.2. Pattern Tree Matching …………………………………... 34

3.4.2.1. Twig pattern matching for query processing ……... 35

3.4.2.2. Structural Pattern Tree Matching …………………. 40

3.4.2.3. Extended Pattern tree matching …………………... 43

3.4.3. Graph Pattern Matching (GPM) …………………………. 46

3.4.4. XML Query Relaxation ………………………………….. 48

3.4.5. Tree Algebra for XML (TAX) …………………………... 52

3.4.6. Pattern Tree Mining ……………………………………... 54

3.5. XML Query Rewriting ………………………………………. 56

3.6. Chapter Conclusion …………………………………............... 59

4. Intuitionistic Fuzzy Trees ……………………………………….. 62

4.1. Intuitionistic Fuzzy Logic (IFL) ……………………………… 62

4.2. Intuitionistic Fuzzy Trees (IFT) ……………………………… 64

5. Intuitionistic Fuzzy Pattern Tree Matching ……………………. 74

5.1. Overview …………………………………............................... 74

5.2. Soft Node Matching ………………………………….............. 77

5.3. Soft Arc Matching …………………………………................. 81

5.3.1. Direct Match …………………………………................... 83

5.3.2. Inverted Match ………………………………................ 83

5.3.3. AttNode Match ………………………………….............. 84

5.3.4. Normalized Match ………………………………….......... 85

5.3.5. Separating Node Match ………………………………..... 87

5.3.6. Hybrid arc Match ………………………………............... 89

viii | P a g e

5.4. Pattern Tree Matching Matrices ……………………………… 96

5.4.1. Node Mapping Matrix (NMM) ………………………….. 96

5.4.2. Arc Mapping Matrix (AMM) ……………………………. 98

5.4.3. Query Index Matrix (QIM) ……………………………… 99

5.5. Chapter Conclusion …………………………………............... 104

6. XML Query Rewriting …………………………………………... 106

6.1. Composing Queries …………………………………............... 106

6.2. Query Rewriting Algorithms …………………………………. 109

6.3. Query Ranking …………………………………...................... 115

6.4. Chapter Conclusion …………………………………............... 116

7. Experimental Results …………………………………………… 118

7.1. Prototype …………………………………............................... 118

7.2. Mapping Phase …………………………………...................... 119

7.3. Query Filtration and Ranking ………………………………… 123

7.4. Query Rewriting Phase ………………………………….......... 126

7.5. Processing Cost …………………………………..................... 128

7.6. IFT vs. Other approaches …………………………………...... 133

7.7. Chapter Conclusion …………………………………............... 135

8. Conclusion and Further Work …………………………….…… 137

8.1. Summary …………………………………............................... 137

8.2. Contributions and Limitations ……………………………….. 139

8.3. Directions for Further Work ………………………………….. 141

References …………………………………………………………..... 143

Appendix A: Publications …………………………………………… 151

ix | P a g e

List of Figures

Figure 1: A sample of books in an online shop XML database ……. 5

Figure 2: An XQuery to return book details …….…….…….……... 5

Figure 3: Matching Pt with several data schemas …….…….……… 7

Figure 4: Departments’ info. XML as (a) document, (b) tree ……… 16

Figure 5: Departments’ info. DTD as (a) document, (b) tree ………. 18

Figure 6: Modelling a node as (a) element or (b) attribute, (c)

Treating data as meta-data …….…….…….…….……….

19

Figure 7: Different ways of connecting XML elements …….……... 20

Figure 8: Normalised vs. non-normalised XML schemas …………. 21

Figure 9: An XPATH query example ……………………………… 22

Figure 10: TED between two trees …………………………………. 32

Figure 11: An XML document indexed with T-index and E-index ... 36

Figure 12: (a) Original twig T, (b) Predicate Part Tpred (c) Output

part Tout …….…….…….…….…….…….…….………...

39

Figure 13: Twig queries with AND/OR predicates ………………… 44

Figure 14: Twig queries with (a) wildcard, (b) Not predicate and (c)

Following-sibling predicate …….…….…….…….…….

45

Figure 15: A graph model of an XML document with ID/IDREF … 45

Figure 16: Query relaxation techniques …….…….…….…….……. 49

Figure 17: (a) collection C, (b) pattern P, (c) result of σP, SL(C), (d)

result of π P, PL(C) …….…….…….…….…….…….…….

54

Figure 18: Fuzzy frequent subtrees …….…….…….…….…….… 56

Figure19: (a) Normal tree vs (b) IFT …….…….…….…….…….… 66

x | P a g e

Figure 20: Tree inclusion of T1 into T2 …….…….…….…….……. 69

Figure 21: IFT Inclusion Algorithm …….…….…….…….…….… 72

Figure 22: A pattern tree with two different schema trees …….…… 76

Figure 23: Soft Node Matching Algorithm …….…….…….…….… 79

Figure 24: Types of soft arc matching …….…….…….…….……... 81

Figure 25: Normalised arc match …….…….…….…….…….…….. 86

Figure 26(a) A pattern Pt, (b) a schema tree St …….…….…….…… 88

Figure 27: AttNode-SepNode hybrid match …….…….……..……. 90

Figure 28: Different combinations of Hybrid arc match …….….…. 91

Figure 29: Soft Arc Matching Algorithm – part 1 …….……..……. 94

Figure 29: Soft Arc Matching Algorithm – part 2 …….…….…..…. 95

Figure 30: Node Mapping …….…….…….…….…….…….….….. 97

Figure 31: The NMM for mappings in figure 30 …….…….…….… 97

Figure 32: Arc Mapping …….…….…….…….…….…….……..…. 98

Figure 33: AMM for mappings in figure 18 …….…….……..……. 99

Figure 34: (a) QIM, (b) AMM …….…….…….…….…….……..... 101

Figure 35: Generate New Queries Algorithm …….…….…….……. 102

Figure 36: Different matching twigs …….…….…….…….……..... 103

Figure 37: Sibling, parent, child, ancestor and descendant arcs …… 107

Figure 38: Joining matching twigs …….….…….…….…….……… 108

Figure 39: An XQuery example …….…….…….…….…….……… 110

Figure 40: Query Rewriting Algorithm …….…….…….…….…….. 113

Figure 41: Pt’s with different sizes …….…….…….…….…….…… 119

xi | P a g e

Figure 42: Remaining queries in QIM …….…….…….…….……... 125

Figure 43: A new query with components of FLWOR expression … 127

Figure 44: Performance results …….…….…….…….…….…….… 128

Figure 45: Memory consumption results …….…….…….………… 129

Figure 46: Heap memory usage during execution time for 10 DTDs 130

Figure 47: Heap memory usage during execution time for 50 DTDs 131

xii | P a g e

List of Tables

Table (1): Results of node and arc mapping ……………………… 120

Table (2): IFT vs. Other approaches ..

134

1 | P a g e

Chapter One: Introduction

1. Introduction

1.1. Research objectives

1.2. XML Schema Heterogeneity

1.3. IF Approximate XML Query Matching

1.4. Thesis Structure

2 | P a g e

1. Introduction

The internet is undoubtedly the biggest data source ever with huge amounts

of data from different sources following different formats. One of the main

challenges in computer science is how to make data sharing and exchange

between these sources possible; or in other words, how to develop a system

that can deal with all these differences in data representation and extract

useful knowledge from there. And since XML is the de facto standard for

representing data on the internet, XML query matching has gained so much

popularity recently [15- 26].

In this thesis, we propose a new approach for approximate XML query

matching that aims at achieving soft matching of XML queries with XML

data sources; thus overcoming the issue of querying heterogeneous XML

documents.

1.1. Research objectives:

The thesis aims at presenting a novel approach for approximate XML query

matching that can resolve high structural diversity in XML data sources.

Particularly, the research objectives of this thesis are the following:

• To propose a new graph-based approach for approximate

matching of XML queries based on matching nodes and arcs of

3 | P a g e

a pattern tree i.e. an XML query, with a set of XML data

schemas (DTDs).

• To be able to obtain partial results from multiple data sources

and join them together in order to construct an answer to a

pattern query.

• To redefine support and confidence to reflect the amount of

matching nodes and arcs respectively, resulting with a two-value

measure that indicates to the maximum degree of matching

(Fuzzy Support) and the minimum degree of matching (Fuzzy

confidence).

• To provide new techniques that softly match arcs, as basic

structural components of XML schemas, without the need of

two arcs being exactly matching, and then combine these arc

together to construct answers to the original query.

• To develop a novel algorithm for rewriting a pattern query into

new ones in the light of node and arc matchings.

• To develop a novel algorithm to rank the new queries depending

on their precision (confidence) or performance according to

users’ requirements.

4 | P a g e

1.2. XML Schema Heterogeneity

XML (eXtensible Markup Language) is W3C Recommendation considered

as the standard format for structured documents and data on the Web. It is

extensible because it is not a fixed format like HTML, which makes it

possible to define new tags. Unlike HTML, XML documents consist of data

and description of that data (Meta data) in a text format. While HTML was

designed to display data, XML was mainly developed to structure, transport

and store data [1]. Given that XML is the most common standard for data

transmissions between heterogeneous systems, it has gained great popularity

recently, especially in web applications.

As the amounts of data transmitted and stored in XML are rapidly growing,

the ability to efficiently query XML is becoming increasingly important.

Several XML query languages have been proposed for that purpose such as

XML-QL, YATL, Quilt, Lorel and XQuery[2]. Those have provided good

results; however, there are still some performance-related and structural

heterogeneity challenges that need to be addressed before these languages

can be mature enough.

5 | P a g e

Figure 1: A sample of books in an online shop XML database

Figure 1 shows the details (schemas) of 3 books each belongs to a different

data source. In order to retrieve data from those sources using XQuery, a

general query is formed according to the user’s understanding of the domain,

without being aware of the underlying schemas. For example, a query that

returns the book titles, authors and categories will look like this:

Figure 2: An XQuery to return book details

Unfortunately, the query will only return details of books 2 and 3 but not

book 1 because books 2 and 3 have matching structures with the query,

books

 genre

@id=1

 title
 authors

book

@id=2

 title author

book

[IFTr

“222”@i

 title
 author

book

 author
 author

“the

“data mining”

“scientific”
“J. Han”

“M. Kamber”

“scientific”
“Easy PC” “P.

 “K. Mole”

Td1

Td2 Td3

for $bin (doc('books.xml')//book)
return
<book>

<title>{data($b/title)}</title><author>{data
($b/author)}</author>

<category>{data($b/genre)}</category>
</book>

6 | P a g e

whereas book 1 does not. Looking at the schema of book 1, there is no

author child for that book. Additionally, the book category is labelled as

“genre” and the XQuery engine cannot recognise that it is a synonym for

“category”.

The above example is one form of heterogeneity in XML schemas, however,

many other forms can be identified (see page 8), and those are in need of

XML Query languages to address them. Suppose that we are interested in

finding information about university departments with research groups along

with any projects and/or publications of these groups. According to our

understanding of that domain, and without knowing the structure of

underlying data sources, we might form a query that looks like Pt in Figure 3

below. Nodes with single circle shape indicate structural nodes that are not

part of the output, whereas double-circled ones refer to output nodes. Node

labels that are underlined, e.g. dname and @id, signify ID nodes acting as

Primary Keys.

In some cases, it might not be possible to find an answer to your query based

on one data source. In our motivating example shown in Figure 3, an answer

to Pt needs to be obtained from three different sources s1, s2 and s3 with

schemas (DTDs). These represent information about departments, projects

and publications respectively. The challenge now is how to match Pt to

7 | P a g e

different parts of the data sources, and how to rewrite the query so that it

retrieves data from these sources.

Figure 3: Matching Pt with several data schemas

Looking at how subtrees (twigs) of Pt are matched to the data sources

(schemas) s1.DTD, s2.DTD and s3.DTD, we can see that twig 1,

department’s information, can be matched to s1. However, the element node

location in Pt needs to be matched to the attribute node @location in S1.

For twig 2, it can be noticed that the arc (group, project) in Pt is structured

as (project, group) in s2. Lastly, twig 3 can be fully and directly matched to

the correspondent twig in s3; however, we cannot determine which

publication belongs to which group because the arc (group, publication)

8 | P a g e

does not have a match. Nevertheless, there is an indirect connection between

the group and publication using the ID/IDREF directives.

To sum up, the forms of heterogeneity in XML data schemas can be:

• Representation of a certain domain can be scattered in multiple

schemas instead of one single schema.

• A node, such as ‘location’, can be modelled either as an element

node or attribute node, and this is mainly due to flexibility of XML.

However, if the node is planned to have child(ren) then it has to be

an element node.

• Many-to-many relationships between two nodes, such as group and

project, can be modelled as an arc (group, project) or (project,

group). Even in case of one-to-many relationships, two nodes can

still be modelled differently.

• Sometimes separating node(s) can be found between a parent and a

child node e.g. the arc (dept, group) in Pt can be matched with the

arc (dept, group) in S1 even though there is a separating node

(groups) between the parent and the child.

• Some XML documents are normalised i.e. ID/IDREF are used to

connect “entities” together, just like primary and foreign key

connections in relational databases.

9 | P a g e

The above forms of heterogeneity in XML schemas can often be found in

reality, especially when schemas belong to different sources. Everyone has

his own perception of a certain domain, and s/he models it in a different

way. Even though the literature is full of studies presenting approaches to

handle heterogeneity in XML schemas, some of the above forms of

diversity have not been addressed yet, to the best of our knowledge.

1.3. Intuitionistic Fuzzy XML Query Matching

Because of heterogeneity in XML schemas, traditional crisp querying

techniques are not efficient for analysing XML data, because they require

exact query matching. Therefore, there is a need for new approaches that

can achieve approximate query matching instead. Through these new

approaches, not only the exact answer of a query, but also approximate

answers will be retrieved.

Even though many studies have addressed approximate query matching in

the literature [15-20, 23, 26, 30]; we believe that their approaches have

some limitations, while an Intuitionistic Fuzzy approach is very useful to

achieve approximate XML query matching by considering matching a

pattern tree with multiple data sources and then joining sub-results together

in order to construct a complete answer to a query. The focus of this thesis

is on matching schemas rather than contents of XML documents, based on

10 | P a g e

Soft Node Matching as well as Soft Arc Matching. The degree of query

matching is specified by redefining two measures, support and confidence.

Matching Pt is mainly based on the primitive tree structure, arc, meaning

that an answer of a query can be constructed from different arcs or twigs,

probably from different sources, by joining these twigs together. New

methods of matching arcs are presented in this research along with new

algorithms to rewrite the original query so that it can return data from

multiple data sources based on the matching output.

1.4. Thesis Structure

This thesis is structured as follows. The first chapter presents an overview of

the problem domain, research objectives and the proposed solution. In

chapter 2, the XML model and XML Queries are addressed along with a

review of XML’s main features. A comprehensive literature review is

demonstrated in chapter 3 covering traditional schema matching with main

focus on XML similarity and XML pattern tree matching approaches,

particularly structural matching approaches. Additionally, relevant query

rewriting approaches are presented and discussed thoroughly. In chapter 4,

IFT is introduced together with a set of formal definitions to illustrate a

novel approach of approximate similarity matching between two trees. The

main contribution of this thesis is in chapter 5 where a novel approach for

soft node and arc matching is introduced. Formal definitions were presented

11 | P a g e

for different type of soft arc matching. Furthermore, node and arc mapping

matrices are introduced. In chapter 6, novel algorithms are developed for

efficient rewriting of the original query based on the output of arc matching.

The proposed approach is implemented and tested in chapter 7 and results

are demonstrated. Finally, in chapter 8, a summary of the thesis is shown

accompanied by the main contributions, limitations and further research

directions.

12 | P a g e

Chapter Two: XML Data Model and XML Queries

2. XML Data Model and XML Queries

2.1. Introducing XML

2.2. XML Data Model

2.3. Flexibility of XML models

2.4. XML Query Languages

2.5. Chapter Summary

13 | P a g e

2. XML Data Model and XML Queries

In this chapter, we present the XML model and XML queries along with the

main features of XML. Section 2.1 introduces an overview of XML and its

applicability whereas section 2.2 addresses the XML data model and XML

schemas. Section 2.3 reviews the flexibility in XML and points out its main

benefits and pitfalls. Finally, in section 2.4 XML Query languages are

discussed.

2.1. Introducing XML

When XML was first invented in 1998, its main purpose was mostly to be a

format for web pages and other narrative documents intended to be read by

people [3]. The main advantage was that data was stored separately from

web page templates, allowing development of web pages on the fly by

storing data in changeable XML documents that can be updated at any time

without updating the actual HTML web page design.

Not long after, XML became of more significance, much more than just

being storage for changeable web data. First and most of all, XML has

become the solution of the biggest challenge in data sharing and integration,

platform incompatibility. Because it has both data and semantics of the data

(meta-data), XML has made data more portable and allowed different

14 | P a g e

software applications and systems to exchange data easily. Before XML, the

typical solution was writing a custom code to transfer the data from one

system to another, which was inefficient.

Furthermore, many applications on the internet, as well as on local

computers, use XML documents to manage certain processes, For example,

XML files are used to perform installation and maintenance tasks for

Microsoft Office 2010 [4]. For internet applications, web services operate

heavily on XML content to communicate with other different

applications[5].

It is worthwhile mentioning that XML is a semi-structured language,

meaning that it neither structured nor unstructured, it is somehow structured.

Consequently, XML documents can be classified into two types according to

the degree of structure: Document-centric and data-centric[6, 7]. The former,

is less structured and it is a rich-text document; therefore, it is not developed

to exchange, store or analyse data. It is mainly there for human consumption,

not to be read by computers. Examples can be found in publications, reports,

and web-pages with textual data. Data-centric documents on the other hand,

are more structured and they use XML to represent data that is stored or

transported between systems. Because they have good level of structure,

data-centric documents are intended to be understood by computers.

15 | P a g e

Overall, XML has gained a big amount of popularity, mainly because of the

following reasons:

• Simplicity of its syntax: this made it easy to learn and use.

• Flexibility: it allows developers to choose their own tags

(semantics) and plan data schemas according to their needs.

• Complex structures can be represented easily, including

hierarchical structures.

• Easy to develop and debug: since it is text-based, an XML

document can be opened and edited using any basic text editor.

• Language and platform independent: It is now supported by most

of the platforms including internet browsers, database systems and

even mobile phones. These consist of tools to read, write and

manipulate XML.

2.2. XML Data Model

XML documents have a tree-like structure; however, in computer science

literature, it is mostly referred to as simply tree [8].This is due to the

hierarchical structure of XML documents where each element (parent) can

be composed of a number of elements (children) and each element can have

no more than one parent. Some authors, however, argue that XML

documents should be treated as graphs, rather than trees[9-11]. The reason

16 | P a g e

behind that stems from the different interpretations of the ID/IDREF

connections in XML documents. The graph model supporters consider those

connections as edges (arcs) and treat them just as any other edge. Having

said that, the majority of previous studies treat XML documents as trees.

In figure 4, a snippet of XML document holding information about

departments, staff and publication is shown along with a tree representation.

(a)

(b)

Figure 4: Departments’ information XML as (a) document, (b) tree

<?xmlversion="1.0"encoding="ISO-8859-1"?>
<university> <dept>
<dname> IS Dept</dname>
 <staff>
 <sname>Patrick</sname>

<specialty> DB Systems</specialty>
 </staff>
 <publicationid="111">
 <title> IF OLAP </title>
 </publication>
 <publicationid="222">

<title>IFT Matching </title>
 </publication>
</dept> </university>

 publication

dept

title

[IF OLAP]

@id = “111”

 staff

sname

[Patrick]
speciality

[DB systems]

university

dname

[IS Dept]
 publication

title

@id =

17 | P a g e

XML documents consist of data and data about the data (meta-data). The

latter provides semantics as well as schematic information about the

meanings and relationships between different parts of XML documents

(elements). However, due to the flexibility of XML e.g. optional elements,

two documents representing the same domain might have different structures

(schemas). Therefore, XML schema definitions were presented to specify

precisely which elements should appear, where in the document and what the

elements’ contents and attributes are. Using a parser, each XML document is

compared (validated) against a schema document, and if any difference

found, the document will be considered invalid.

There are two types of XML schema definitions, DTD (Document Type

Definition) and XSD (XML Schema Definition).DTDs were introduced first

and they are still in use. A DTD can be within the XML document (Internal),

or as a separate document (External). Written in a formal syntax (not XML

syntax), DTDs describe the general structure of XML document with less

constraints that of XSDs. Overall, the main differences between the two

types can summarised by the followings:[5, 6]

• XSDs use XML syntax where DTDs do not.

• In XSDs, elements hierarchies are explicitly specified unlike

DTDs.

18 | P a g e

• XSDs have data typing capabilities whereas DTDs only use the

text data type (PCDATA).

• XSDs can define precise cardinality constraints on elements

whereas DTDs offer limited capabilities.

Figure 5 shows the DTD of the XML document in figure 4. Not only XML

documents, but also DTDs can be modelled as trees.

(a)

(b)

Figure 5: Departments’ information DTD as (a) document, (b) tree

<!ELEMENTuniversity(dept*)>
<!ELEMENTdept
 (dname,publication*,staff+)>
<!ATTLISTpublicationid ID #REQUIRED>
<!ELEMENTpublication (title)>
<!ELEMENTstaff (name,speciality)>
<!ELEMENTdname (#PCDATA)>
<!ELEMENTtitle (#PCDATA)>
<!ELEMENTname (#PCDATA)>
<!ELEMENTspeciality(#PCDATA)>

 publication*

dept*

 project+

@id

staff+

name Speciality

university

19 | P a g e

2.3. Flexibility of the XML model

One of the main reasons of XML popularity is the flexibility it offers for

choosing tag and attribute names, cardinality and element nesting.

Developers are allowed to choose their own tag and attribute names; they

even have the freedom to model a data field as an attribute node or as an

element node (Figure 3 (a) and (b)). Although allowing users to define their

own tags sounds positive, it might result in users mixing between data and

meta-data. For example, in an online auction website, the XML schema in

figure 6 - (c) can be seen. The nodes Asia, Africa, S. America and N.

America are modelled as meta-data (element nodes) even though they

represent data referring to the continent where the auction had taken place.

Figure 6: Modelling name as (a) element node or (b) attribute node, (c) Treating

data as meta-data

Furthermore, the cardinality of each element can be specified, which allows

for optional and multiple elements to be defined. This can cause two XML

documents following the same schema to be highly different. For example, in

auctions

 Asia
N. America

Africa
S. America

auction

. . .
auction

item

name

@name

item

(a) (b) (c)

20 | P a g e

figure 7-(a), a dept element can have at least one or more group elements.

The followings are the options XML offers for children cardinality:

• ?: zero or one element is allowed

• *: zero or more element is allowed

• +: one or more element is allowed

• If no suffix exists, then the cardinality of the element is one and

only one.

Moreover, XML allows us to connect (nest) elements with no restrictions

e.g. in figure 7 below, the dept element can be related to group element as

either parent-child or child-parent. Whether the relationship between two

elements is 1-1, 1-n or n-n, they still can be modelled differently according to

the users perception, or point of interest.

Figure 7: Different ways of connecting XML elements

Moreover, one might choose to have normalised or non-normalised XML

documents. For small or medium size XML documents, it is acceptable to be

un-normalised. For big size XML documents, in contrast, it is preferable to

dept

 group

dept

group

or

(a) (b)

21 | P a g e

use ID/IDREF connections in order to reduce redundancy and enable

information integrity. Figure8 shows a normalised versus an un-normalised

XML schema representing the same domain.

Figure 8: Normalised vs. non-normalised XML schemas

In essence, XML flexibility is a double-edged sword; it gives the option to

model a certain domain according to user’s perception, but it may result in

schematic heterogeneity in XML documents as people tend to model the

same information in different ways.

2.4. XML Query Languages

As the amounts of data transmitted and stored in XML are growing, the

ability to efficiently query XML is becoming increasingly important. Several

XML query languages have been proposed for that purpose such as XML-

 pubREF

group

gname

 Publication

 @id year @pID

title

group

gname

Publication

 @id year

title

(a) Normalised (b) Un-normalised

22 | P a g e

QL, YATL, Quilt, Lorel, XPATH and XQuery[2]. Being recommendations

of W3C, XPATH and XQuery are now the most predominant languages for

XML queries.

XPATH is defined as a non-XML language for retrieving parts of XML

documents [3]. In the XPATH data model, each document is represented as a

tree of nodes, where there is one node called “root” and other nodes that have

parent-child and ancestor-descendant relationships. XPATH expressions are

used to navigate through this tree and retrieve nodes matching that

expression in terms of structure and predicates. XPATH can support both

simple and complex queries. For example, figure 9 below shows the result of

applying an XPATH query on the books XML documents in figure 1.

Figure 9: An XPATH query example

In 2007, XQuery, which is an extension of XPATH, was recommended by

W3C making it the most popular language for querying XML data.

According to [6], “XPATH2.0 and XQuery 1.0 support all of the same

functions and operators, and they share the same data model”. XQuery is

designed to allow the construction of concise, flexible and easily understood

XPATH query: /book[author=”P. Coelho”]/title

Result: <?xml version="1.0" encoding="UTF-8"?>
<title>the alchemist</title>

23 | P a g e

queries that can operate on diverse XML data sources, including both

databases and documents [2].

XQuery provides high capabilities to analyse data-centric XML documents,

such as huge XML databases, offering the ability to filter, merge and order

data. This can be beneficial for analysing “application logs, transaction logs

and audit logs to identify potential application errors and security issues, and

so on” [5]. Additionally, XQuery is an excellent solution for transforming

data from internal application-specific formats to standard exchange format.

XQuery works by scanning through an XML document, applying predicates

to the query and returning parts that match the query as a new XML

document. Even though it is not yet finalised by W3C (World Wide Web

Consortium) as a standard, XQuery is nowadays implemented in industry.

To query XML documents, a number of expressions can be used, the most

powerful one is called FLWOR (for-let-where-order by-return) which is

similar to the (select-from-where) clauses in relational SQL. Figure 2 in the

previous chapter shows an example of an XQuery using FLWOR expression.

Hence, FLWOR expressions consist of the following parts:

• For: specifies a list of XML nodes to iterate over, similar to the

FROM clause of a SELECT statement

• Let: allows user to declare variables

http://www.w3.org/
http://www.w3.org/

24 | P a g e

• Where: contains expressions that perform filtering, similar to the

WHERE clause in SQL.

• Order by: allows user to order results by a node(s) in ascending or

descending order.

• Return: specifies the nodes that will be returned by the query.

Using FLWOR expressions, we can do much more than just retrieving

elements from XML documents; we can join two parts (sub-trees) of an

XML document or even of more than one document based on an equi-join.

Furthermore, FLWOR expressions supports aggregate functions such as

sum(), count() and all others supported by relational SQL.

2.5. Chapter Summary

This chapter introduced the XML data model, XML features and XML query

languages. Additionally, it presented a review of the significance of XML

and its main features. The next chapter consists of literature review of related

work.

25 | P a g e

Chapter three: XML Query Matching

3. XML Query Matching

3.1. Overview

3.2. Traditional Schema Matching

3.3. XML Schema Matching/Similarity

3.4. XML Query matching approaches

3.4.1. Tree Edit Distance

3.4.2. Pattern Tree Matching

3.4.2.1. Twig pattern matching for query processing

3.4.2.2. Structural Pattern Tree Matching

3.4.2.3. Extended Pattern tree matching

3.4.3. Graph Pattern Matching (GPM)

3.4.4. XML Query Relaxation

3.4.5. Tree Algebra for XML (TAX)

3.4.6. Pattern Tree mining

3.5. XML Query Rewriting

3.6. Chapter conclusion

26 | P a g e

3. XML Query Matching

This chapter presents a comprehensive literature review of related work. It

starts with traditional schema matching studies and then moves to XML

schema and query matching. XML query matching and rewriting

approaches are classified according to the purpose and the adopted

technique. All relevant research is critically evaluated and pitfalls are

highlighted.

3.1. Overview

The issue of having different data structures (schemas) representing the same

data is a very common problem in the world of information systems. Solving

this problem has been one of the main subjects of research; especially that it

has lot of applicability in several database application domains such as

schema integration, data warehousing, E-commerce, semantic query

processing, schema mediation and others[7]. The most common approach in

the literature about previous works on addressing schema heterogeneity is

Schema Matching (Mapping). However, other approaches such as Schema

Mediation[12, 13]and Query Matching[14-20]are also common. Since XML

Queries have been modelled as trees (schemas), the literature of XML Query

matching and Schema matching have a lot in common.

27 | P a g e

3.2. Traditional Schema Matching

Schema matching (mapping) is an operation that takes two schemas as input

and produces a mapping between the elements of the two schemas that

correspond semantically to each other[21]. Many schema matching

approaches have been proposed and those have been classified into different

categories based on the level of matching; whether it is instance-based

(content)matching, schema-based(structure) matching or a combination of

both[21, 22].Moreover, the schema-based matching can be classified into

element-level and structure-level matching.

Element-level matching techniques deal with mapping individual elements

(attributes) together based on certain criteria. In a survey done by authors of

[22], the following techniques were identified:

• String-based: those depend on the element labels similarity for

mapping

• Language-based: those use Natural Language Processing to

analyse morphological properties of the input words

• Constraint-based: those consider constraints on elements such as

data types, cardinality and keys to determine whether two

elements are matching.

28 | P a g e

• Linguistic resources: such as lexical ontologies. Those provide

semantics to element labels and compare how close these

semantics are to each other (e.g. synonyms and hyponyms).

Structure-level techniques, on the other hand, deal with matching

combinations of elements i.e. structures; and this approach is more common.

To be able to obtain data from different sources, it is necessary to know the

structure as well as the semantics used in each one. A typical solution was to

develop a global schema, map it to local schemas and apply a set of

transformations (translations) to translate a global query into a set of local

queries, and finally merge the local results together and return it as one

answer. A slightly different approach was to compare local schemas against

each other and map elements of two schemas that are semantically equivalent

to each other, which is common in P2P (Peer to Peer) applications where two

systems exchange data in both ways, sending and receiving.

Schema matching approaches provided good results for relational database

environments where local schemas are known. However, there are still a lot

of challenges in the way of automating such solutions.

3.3. XML Schema Matching/Similarity

There are, obviously, a lot of commonalities between traditional schema

matching and XML schema matching approaches. However, XML has its

29 | P a g e

own speciality as a hierarchical data model having tree structure. Building on

traditional approaches, some researchers tried to adapt relational schema

matching approaches to work on XML models, other came out with new

ones.

XML schema matching, also referred to as “XML similarity”, has been a hot

topic of research in the last decade leveraged by the increasing role of XML

as the best choice for data interoperability, especially on the web. Finding the

similarity between two XML documents can be of great applicability in

many domains such as version control and change management, data

integration, document clustering, and IR (Information Retrieval) [23].

Version control and change management is one of the main areas where

XML document similarity can be beneficial. It provides a means to detect

change between different versions of a document, and represent this change

as an XML document instead of having a new modified copy of the same

document. This enables users to view any version of the original document at

any time by simply applying some edit scripts (Deltas). Additionally, one can

monitor an XML document and by using query subscription and notification

systems, s/he can be notified about any change (e.g. a new item has been

added to a catalogue). Moreover, deltas can be used for archiving purposes

by simply storing a sequence of deltas along with the correspondent XML

document. Furthermore, XML similarity can be used in mirroring

30 | P a g e

applications to reduce network traffic by computing and propagating only the

different between the document version at the server and that at a mirror site.

Another application for XML similarity is classification and clustering.

XML classification refers to relating XML documents collected from the

internet to a set of XML schemas (such as DTDs) in an XML database. This

can be useful in the case of having a number of XML databases exchanging

XML documents among each other. A new XML document is compared

against schemas within a database using XML similarity algorithms, and the

document is assigned to the schema that best matches it. XML clustering, on

the other hand, is a process that groups similar XML documents together

which can improve data storage indexing [23], and thus speed up data

retrieval. Clustering can also be utilized in XML schema extraction by

allowing the construction of more accurate and specific XML schemas in

each cluster.

Data integration is one of the most beneficial areas of XML similarity

approaches. Even though XML is popular for sharing and exchanging data

between heterogeneous data sources, two XML documents representing the

same information can be structured differently. Therefore, it is curtail for

data integration to compare XML documents and determine the similarity

and difference between each pair.

31 | P a g e

Lastly, XML similarity is very popular in IR systems where XML queries

are modelled as schemas/structures called pattern trees. To retrieve data from

a certain XML document, a query (pattern tree) is compared against the

underlying XML schema, and only if it is similar (matching), a result is

returned. Next section (3.4.) addresses XML Query matching approaches

thoroughly.

3.4. XML Query matching approaches

Since XML Queries are modelled as Query Patterns or Pattern Trees (Pt) in

computer science literature, XML Query matching research cannot be

separated from XML schema matching. However, it is worthwhile to point

out that a Pt is usually compared to part of an XML document which is

sometimes referred to as Tree Inclusion instead of Tree Matching because a

Pt is expected to be included within a Schema tree (St), without the need to

be fully matching/similar to it. In this section we present the most common

approaches of XML Query/Schema matching in both database and IR

communities. There are plenty of surveys on previous approaches [23-26]

where they were classified into different groups according to different

criteria. In this section we classify previous works according to the technique

used to achieve query matching.

32 | P a g e

3.4.1. Tree Edit Distance

Tree Edit Distance (TED) is one of the earliest approaches of schema

matching/similarity. In addition to its applicability in database and IR

systems, it is also used in computational biology, image analysis, automatic

theorem proving, and compiler optimization[27]. TED measures the distance

(or similarity) between two labelled trees T1 and T2 by calculating the cost

of transforming T1 into T2. The cost is determined by a sequence of edit

operations (S) required to turn T1 into T2. Those operations are performed

on tree nodes and can be relabel, delete or insert a node. Figure 10 below

shows the TED between two trees T1 and T2. The node document is

relabelled to book, the node category is deleted and finally, the node authors

is inserted into T1 so that it matches T2. Overall, three edit operations were

needed, thus the TED between T1 and T2 is 3.

Figure 10: TED between two trees

33 | P a g e

Based on TED, Tree Inclusion is defined as follows[27]: T1 is said to be

included in T2 if and only if T1 can be obtained from T2 by deleting some

nodes from the latter.

Some previous studies used TED to compare XML documents and find

similarity between them. In [28], authors used a TED based approach to

compare pairs of XML documents within a collection and then cluster them

according to the distance. In particular, their study addressed the case where

two XML documents following the same DTD have different sizes due to

optional and repeated XML elements. Using traditional TED approaches,

such a pair of documents will have a big distance, and therefore will not be

clustered together. The authors proposed a new approach that is based on

edit operations not just on the node level, but also on the tree level. In

addition to relabel, insert and delete node operations, insert tree and delete

tree operations were proposed.

Chen and Chen [29] presented a new approach for tree inclusion that is

based on deleting nodes from a target tree (T) in order to obtain a pattern

tree (P). Deleting a non-leaf node can change T significantly by making two

nodes parent-child instead of ancestor-descendant. Overall, authors claimed

that their algorithm achieved significant improvement on performance as it

needs less time than previous approaches without the need of extra space.

34 | P a g e

Where the aforementioned studies focused on XML structural similarity,

some studies addressed the problem of XML content similarity. This is of

great applicability in data cleansing, particularly in duplicate detection. In

[30], authors proposed a study for resolving both XML instance and schema

heterogeneity aiming at fuzzy duplicate detection. String Edit Distance

similarity was utilized to calculate similarities between pairs of string

values; whereas TED was used to address schematic similarity. To improve

efficiency, three comparison (traversal) strategies were involved: i) Top-

down comparisons: those are limited to XML elements having the same

ancestors. ii) Bottom-up comparisons: because the XML data is usually

stored in leafs, this might give a better performance. iii) Relationship-aware

comparisons: those consider the elements influence on each other in both

directions.

3.4.2. Pattern Tree Matching

Many studies have been done on matching query patterns, some called it

Tree Pattern (or Pattern Tree); others called it Twig Pattern. Therefore, the

two terms will be used interchangeably hereafter. The proposed approaches

vary significantly according to the intended purpose whether it is XML query

optimisation i.e. cutting CPU and I/O cost[31-40], fuzzy query matching[41,

42] or structural query matching[43-50].

35 | P a g e

3.4.2.1. Twig pattern matching for query processing

Research on efficient pattern tree matching against XML data trees i.e.

including structure and content matching focused on reducing CPU and I/O

cost. Most of the previous work used indexing techniques to speed up query

processing, particularly Inverted Index [39] with some enhancements. The

classic inverted index maps a text word to a list, which enumerates

documents containing the word and its position within each document.

Zhang et al. [40]extended that by presenting a new algorithm, Multi-

Predicate Merge Join (MPMGJN), which works on XML documents. Two

types of indexes were introduced: T-index (from Text), which is similar to

the aforementioned inverted index, and E-index (from Element) which maps

XML elements to inverted lists that contain element names and positions

within documents. Figure 11 shows an example of XML document indexed

in that way. T-index has the format (docno, wordno, level), whereas E-index

has the format (docno, begin:end, level), where docno is the document

number; wordno is a number indicating to the word location; begin and end

can be found by counting the start and end locations of a word (tag) in the

document. For example, in figure 11, the node (tag) dname has an index

value of (1, 3:5, 2) which indicates that dname is in document number 1,

starting position is 3, ending position is 5 and in level 2.

36 | P a g e

(a)

(b)

Figure 11: An XML document indexed with T-index and E-index

Zhang et al. [40] paved the way to two main studies [31, 32], which then led

the research in that area. In [31], authors proposed matching pattern tree

queries by decomposing them into basic binary structural relationships,

Parent-Child (PC) or Ancestor-Descendant(AD), match each part separately

and then combine them together to construct an answer to the query. Two

families of algorithms were proposed: tree-merge, and stack-tree join

algorithms. Those algorithms focused on improving performance by

<university>
<dept>

<dname> IS Dept</dname>
<publication>
 <title> IF OLAP </title>
 <year> 2010 </year>
</publication>
</dept>
</university>

37 | P a g e

reducing the time required to find matchings between binary structures of

pattern and data trees. Two input lists are extracted from Pt, AList[a1,

a2,…] (list of ancestors or parents) and DList[d1,d2,…] (list of descendants

or children)are used by the algorithms above to generate an output list

OutputList=[ai, dj] which consists of a list of pairs of ancestors and

descendants. Overall, tree-merge algorithms have good performance

sometimes but Stack-tree joins often provide optimal CPU and I/O

performance. However, this approach has a disadvantage of producing big

size of intermediate results even when the input and final result sizes are

small.

The second main leading study[32]presented stack-based algorithms to

achieve good performance and memory usage. A Pattern tree is decomposed

into a number of paths (root-to-leaf) and those are processed using two main

algorithms: PathStack and TwigStack. The former computes answers to a Pt

by repeatedly constructing stack encodings of partial and total answers to the

query path pattern. A stack Sq is created for each node q in Pt, and an answer

is calculated by iterating through these stacks and matching the nodes from

root to leaf. TwigStack, however, extends PathStack by including a phase for

merge-joining the computed root-to-leaf paths in order to compute answers

to the twig pattern. Authors claim that their approach does not produce a lot

of intermediate results thus providing optimal performance.

38 | P a g e

More studies on efficient holistic twig joins built followed [32] and tried to

improve it. Jiang et al. [33] states that the aforementioned approach can be

improved by skipping elements that do not participate in the final twig match

by using indexed XML documents and presented an approach to achieve

that. More recently, Grimsmo et al. [34-36] proposed twig join algorithms

that achieve worst-case optimality without affecting average performance.

Particularly, the study addressed the effect of different filtering methods on

performance and presented new data structures to improve filtering and thus

yielding worst-case optimal performance.

A different approach of indexing XML documents was presented by Praveen

in [37, 38] where XML documents and pattern twigs were transformed into

sequences of labels by using Prufer’s method which constructs a one-to-one

correspondence between trees and sequences. Twigs are matched by simply

matching the aforementioned sequences and finding all occurrences of a twig

pattern sequence into an XML document sequence. Unlike some previous

approaches, twigs are matched holistically i.e. without breaking them into

root-to-leaf paths. Authors claim that the proposed approach results in

correct answers as well as good performance.

While the above aforementioned studies focused on indexing techniques to

improve query processing, a new approach based on using twig semantics

was introduced by Bao et al. [51]. The approach utilises the schema

39 | P a g e

information (semantics) of XML documents as well as the twig query

structure to speed up the query processing. Semantics of XML documents

are captured from DTD/XSD and those can be identifier constraints (unique

and key constraints) and participation constraints (?, *, +). These constraints

are used to derive functional dependencies which are used to optimise query

processing by stopping the query once the required match is achieved. The

other optimisation technique works by breaking the query twig into two

parts i) Predicate twig: This consists of nodes representing structural and

content predicates that are not part of the output ii) Output twig: this

consists of the nodes to be returned by the query. Figure 12 shows a twig

query that is split into two parts.

Figure 12: (a) Original twig T, (b) Predicate Part Tpred (c) Output part Tout

In addition to approaches based on crisp XML databases, some authors

presented new ideas for processing twig patterns on fuzzy XML data.

Inspired by PathStack algorithm of Bruno et al.[32], Liu et al. [41, 42]

40 | P a g e

extended the indexing algorithm proposed in [40] to include fuzzy values to

indicate the possibility of an XML element or a value. Authors point out

two types of fuzziness in XML documents i) fuzziness in elements

(structure): an XML element can be fuzzy if it is not a real element e.g.

<Val> that does not exist in the non-fuzzy version of the document. In other

words, it indicates to the degree of membership of an element in an XML

document. ii) Fuzziness in attribute values (content): a certain value can

have a fuzzy possibility e.g. <age><Val poss=0.8> 27</Val></age> means

that the possibility of having age=27 is 80%.

Overall, the studies presented in this section considered different query

matching approaches for the purpose of improving query performance rather

than for matching pattern trees against source schemas. The next section

presents approaches for schema-based pattern tree matching.

3.4.2.2. Structural Pattern Tree Matching

Some studies focused on matching the structure of a query pattern against the

structures of a set of data sources in order to get over the structural

heterogeneity of these sources. In this case, the pattern query is written based

on one’s common knowledge about the domain in hand without necessarily

knowing the structure of the underlying sources. This is one of the biggest

challenges for data interoperability between different systems.

41 | P a g e

While a great amount of research was dedicated to twig matching for query

processing and optimisation purposes, less effort was focused on structural

pattern matching. Tree Edit Distance based approaches were considered for

calculating XML tree similarity and inclusion (See section 3.4.1); however,

there were few attempts to calculate tree similarity by considering the

number of common nodes and/or arcs. In this section we present few IR-style

approaches on approximate structural matching of pattern trees.

Polyzotis[43] was one of the first researchers to address that problem. He

proposed a study that focused on approximate answers for twig queries

considering the structural part of the problem. His approach is based on a

novel type of XML synopses called TreeSketches, which captures the key

properties of the underlying path distribution and enables low error

approximate answers. A new XML similarity metric, termed Element

Simulation Distance (ESD), was proposed which, according to the author,

outperforms previous syntax-based metrics by capturing regions of

approximate similarity between XML trees. It considers both overall path

structure and the distribution of document edges when computing the

distance between two XML trees. According to that metric, two elements are

considered to be more similar if they have more matching children, and less

similar if they have fewer children in common. This can be reasonable when

tree nodes have close semantics to each other. However, this is not always

42 | P a g e

the case. It is common to find nodes with weak semantic connections such

as publication, group and department in figure 12-(a).

In other studies [44, 45], Sanz et al. proposed tree similarity measures

between a pattern tree and sub-trees within an XML document as a solution

for approximate XML query matching. Similarity is calculated based on the

number of matching nodes without considering the semantics of parent-

child connections. The process consists of two steps: first, identifying the

portions of documents that are similar to the pattern (fragments and regions

identification). Second, the structural similarity between each of these

portions and the pattern is calculated. The proposed node similarity metric

does not only depend on the label, but it also depends on the depth of the

node “distance-based similarity”. Therefore, similarity linearly decreases as

the number of levels of difference increase. However, when matching a

pattern tree to an XML data tree, the hierarchical organization of the pattern

and the region are not taken into account [45] i.e. matching is only on the

node level but not on the arc/edge level.

Another significant study addressed element similarity metrics in structural

pattern matching [46]. Authors introduced two types of element similarity

measures, internal and external. The internal similarity measure depends of

feature similarity which includes i)Node name similarity: this in turn can be

classified into syntactic (label) and semantic (meaning) similarity. Node

43 | P a g e

names are first normalised into tokens that are compared using different

string similarity approaches such as string edit distance. Semantic similarity,

on the other hand, is calculated by using measures from WordNet ii) Data

type similarity measure, iii) Constraint similarity measure, mainly

cardinality constraint, and iv) Annotation similarity measure, which

considers the provided annotations for tree nodes.

External similarity measure, on the other hand, considers the position

(context) of the element in the schema tree i.e. it considers the element’s

relationship with the surrounding elements, descendants, ancestors, and

siblings. A function was used to combine internal and external measures and

give the overall similarity measure between two nodes.

Following a totally different approach, Agarwal et al. [47], proposes

XFinder, a system for top K XML subtree search that works on exact and

approximate pattern matching with focus on approximate structural matching

between ordered XML trees.XML query trees as well as document trees

were transformed into sequences which are then compared against each

other. This technique was adopted in other studies as well[48-50].

3.4.2.3. Extended Pattern Tree Matching

Some studies proposed extending the expressiveness of pattern trees by not

only including node labels and arcs, but also other features such as negation

functions, wildcards and logical predicates. In [52], an approach for holistic

44 | P a g e

processing of twigs with AND/OR predicates was presented. Such twigs

consisted of ‘AND’ and ‘OR’ nodes that can have multiple child nodes as

shown in figure 13.Novel algorithms were developed to efficiently evaluate

these twig queries on XML data that are either sorted or indexed for

achieving high performance. Xu et al. [53] extended the previous study by

proposing a twig query with AND/OR/NOT predicates, which they called

XPattern. Authors proposed a path-partitioned indexing scheme to capture

the path information of XML documents and used two relational tables for

that purpose, one for encoding paths and another for encoding elements. A

novel holistic algorithm called MPTwig was developed based on both path-

partitioned encoding scheme and XPattern.

Figure 13: Twig queries with AND/OR predicates

In addition to twigs with logical operators, some studies considered further

extensions. In [54], a framework for processing twigs with wildcards,

negation functions and order restriction was introduced. Figure 14 shows

three different extended twigs where in (a) a twig with wild card represents a

45 | P a g e

query for all nodes that have an author and title child nodes, (b) returns

books with title child nodes but with no discount child nodes and (c) returns

articles with a title child node and an author child node with order

restriction. The main aim of the study is to achieve optimal XML pattern

tree matching that outperforms TwigStack algorithm presented in [32].

Authors claim that TwigStack has a shortcoming in some cases where a

choice has to be made between having possible intermediate results and

missing potential correct answers, and that their algorithm overcomes this

shortcoming. According to the authors, experimental results showed that

their algorithms can correctly process extended XML twigs while keeping

high performance and low size intermediate results.

Figure 14: Twig queries with (a) wildcard, (b) Not predicate
and (c) Following-sibling predicate

Zeng et al. [55]proposed an extended pattern approach called Generalised

Tree Pattern Queries (GPTQs) to handle XML documents with ID/IDREF

connections, which were treated as graphs. Pattern tree nodes were classified

into backbone nodes (specifying nodes with no predicates) and predicate

nodes (nodes with value predicates) and functions were defined to process

each type. Authors introduced pruning algorithms to reduce the size of

46 | P a g e

intermediate results and the number of required join operations in addition to

an indexing technique for finding reachability between graph nodes.

3.4.3. Graph Pattern Matching (GPM)

Whereas most of previous works on XML query matching treated XML

documents as tree structures, others argued that node-labelled graph

structure, particularly Directed Acyclic Graphs (DAGS), is more appropriate.

This was mainly due to ID/IDREF connections between XML elements,

which makes it have a graph shape, as shown in figure 15. Therefore, some

studies proposed extending Tree Pattern matching to Graph Pattern

matching. In addition to its applicability in query matching, Graph Pattern

matching can be useful in other areas such as keyword search in XML

documents [56], finding patterns in web-services connection, relationships in

social networks, research collaboration patterns, publication citation

connections [10] and even in gene ontology research [57].

47 | P a g e

Figure 15: A graph model of an XML document with ID/IDREF

Researchers proposed different approaches for implementing GPM. Chen et

al. [57] extended the twig join approach of [32] to work on DAGs and used

that to present extensions to XPATH queries. Authors of [57] developed a set

of stack-based algorithms to handle path, twig and DAG patterns to achieve

exact query matching. In a different GPM study, Kimelfeld et al. [9]

proposed a query language that incorporated filtering (excluding

semantically weak matches) and ranking mechanisms while preserving the

simplicity and efficiency of twig queries. Another two-step approach was

presented in [10, 11] but it consisted of a filter step and a fetch step.

Algorithms were developed based on R-join (reachability join) and they

included optimisation techniques to optimise R-joins. In [58], a labelling

schema was proposed to judge the reachability relationships between nodes

of XML documents and two new structural join algorithms where developed

based on that. Moreover, authors proposed sub-graph queries that are able to

process queries with cycles.

48 | P a g e

The main focus of these studies was the case where XML elements

transitively reference each other (without cycles) such as publications citing

each other. Therefore, extra computations are required to find reachability

between each two nodes which is handled by calculating the transitive

closure of the correspondent graph [59]. However, it is not often the case

where there are transitive references between XML elements, which means

that GPM techniques are not appropriate in this case because they produce

significant overhead that is not required in addition to increasing the overall

complexity of the system [60].

3.4.4. XML Query Relaxation

One of the earliest methods proposes for approximate query matching is

Query Relaxation or Tree Pattern Relaxation (TPR) which is based on

modelling a query as a tree. TPR is used to describe the process of

generalising a Pattern Tree Pt so that it returns more results that do not fully

match the structure of Pt. The most popular study in TPR was conducted by

[14] which paved the way to many others. Relaxation can be any

combination of the following techniques [14] as shown in figure16:

• Node generalisation: a node can be generalised using a type

hierarchy e.g. a node “book” in a query can be generalised to a

node “document” so that journal articles and other types of

documents are also included.

49 | P a g e

• Edge relaxation: a parent-child edge between two nodes can be

generalised into an ancestor descendant edge.

• Making a leaf node optional: a leaf node in Pt can be made

optional so that if it does not have a matching node in the data

source, Pt is still considered as matching.

• Sub-tree promotion: this is where a sub-tree (of Pt) is disconnected

from its parent and connected (as a child) to the parent node of its

parent.

Figure 16: Query relaxation techniques

The more relaxations applied to a Pt, the more results it is likely to return.

However, those results returned through relaxations are approximate or

50 | P a g e

similar but not exact results. Authors proposed having weighted queries in

order to measure the degree of relaxation. Each node and edge in Pt is

assigned a weight and the total score for a Pt is the total of score of all of its

nodes and edges. Users can define thresholds and only relaxed Pt’s with

higher score are considered. In a further study [15], Amer-Yahia et al.

extended structural query relaxation by introducing contains-relaxation

which is a relaxation of the contains predicate used for keyword search in

XML documents. The study combined both structure and keyword search

aiming at joining two major paradigms for XML querying, database-style

querying and IR-style querying.

Even though query relaxation was adopted is some IR-systems, it turns out

that it is not the best solution. According to [17], not all relaxations are

appropriate for all pattern trees. For example, the sub-tree promotion in

figure 9 (e) will result in confusion about the node promoted node name as it

might be thought of as the publisher name instead of the author name.

Additionally, blind relaxation i.e. a relaxation that is not based on knowledge

of the underlying schema, results in a number of relaxed queries and each of

these needs to scan the whole data set, which is inefficient.

In a recent work, Liu et al. [16] presented adaptive relaxation, a schema-

aware approach that considers the schema of the data source before running

queries against it. For a pattern tree, a set of relaxed queries is generated and

51 | P a g e

then compared against the schemas of underlying data sources. A relaxed

query will be executed only if it satisfies the structural constraints imposed

by the conformed schema, thus avoiding blind relaxation.

More studies on improving query relaxation were carried out. Fuzzinga et al.

[18] extended previous techniques by introducing textual predicate

relaxations such as Relaxation of Equality Predicate and Predicate deletion

and used that to achieve approximate XPATH query matching. The proposed

approach consisted of a new idea for combing partial answers from more

than one data source and joining them based on key constraints. Authors

claimed that their approach guarantees full automation as users do not need

to be aware of underlying schemas and no mappings are provided. A

different approach was presented by the same authors, Fazzinga et al., in [19,

20] where user requirements captured by a pattern tree were split into sub-

patterns p1, p2 .. pn each represents a condition in the query. Un-matching

sub-patterns are relaxed by replacing them with more relaxed ones so that

more answers are retrieved. New relaxation techniques where proposes such

as step cloning (duplicated a predicate on a node). In essence, Fazzinga’s

relaxations seem to be efficient especially that they were schema-aware

relaxations.

52 | P a g e

3.4.5. Tree Algebra for XML (TAX)

Jagadish et al. [61] proposed TAX, an algebraic framework for XML query

matching, which is an extension to relational algebra. Authors compared two

approaches for XML query processing. The first works by transforming a

collection of trees representing XML documents into a set of relational

tuples, and then manipulating the resulting tuples using pure relational terms.

Finally, answers are re-transformed into XML. However, this would need a

lot of relational construction and deconstruction operations which will add

significant overhead. Additionally, this approach does not leave an

opportunity for query optimisation. The second approach is manipulating

XML data as pure trees. This would avoid the pitfalls of the previous

approach but it will face a challenge due to the heterogeneity in XML

structures. TAX is proposed to address the challenges of the second

approach.

A comprehensive set of XML operators were presented; mainly, selection,

projection, and product (join), set operations, grouping, aggregation and

others. The TAX selection operation is the analogue for relational selection

which indicates that data trees that satisfy selection predicates specified in

the pattern should be returned. Formally, a TAX selection is defined by σP,

SL(C). It takes a collection C of XML documents (trees) as input, a pattern

tree P and an adornment list SL as parameters, and returns a collection of

53 | P a g e

trees as output. Each data tree in the output, called witness tree, induced by

an embedding of P into C, modified as prescribed in SL. The adornment list

SL lists the nodes from P for which all the descendants will be returned. This

is a main extension of relational selection operation that applies only to XML

due to its complex structure.

Projection is formally defined as π P, PL(C), it takes a collection C of XML

documents (trees) as input, a pattern tree P and a projection list PL as

parameters. A projection list PL consists of node labels appearing in the

pattern P.

While selection and projection operations choose rows and columns in

relation algebra, they are defined differently in TAX algebra in a way that

makes them independent. Figure17 shows a collection of XML data trees C,

a pattern P along with the result of a selection and projection operations on

the collection. The selection list for the selection operation is assumed to be

empty while the projection list PL for the projection operation consists of the

nodes (book, author). In addition to selection and projection, authors

presented details of other operators, but for the purpose of this thesis and

because of space limitations, we only addressed the two main operators,

selection and projection.

54 | P a g e

Figure 17: (a) collection C, (b) pattern P, (c) result of σP, SL(C), (d) result of π P, PL(C)

In addition to defining TAX operators, authors defined Pattern Trees. A

Pattern Tree was formally defined as a piar P=(T, F) where T=(V, E) is a

noded and edged tree and F is a formula representing predicates (conditions)

that apply to nodes. A Witness Tree was defined as the embedding of a

pattern tree P into a collection C as a mapping h:PC from the nodes of T to

those of C such that h reserves the structure of T i.e. all nodes and edges are

matching and h satisfies the formula F.

3.4.6. Pattern Tree mining

Some researchers proposed a different approach for information extraction

from heterogeneous XML data sources based on frequent pattern mining,

which is an extension to the frequent itemset discovery problem in

55 | P a g e

association rule mining [12, 13, 62]. In [62], authors studied the problem of

discovering frequent patters (that have a minimum support) in a given

collection of semi-structured (XML) data, which can be used for

discovering structural patterns from large collections of semi-structured data

(called semi-structured data mining). A pattern mining algorithm called

FREQT was introduced where a technique called “right most expansion”

was used to grow a tree by adding nodes to the rightmost branch only.

Matching a pattern tree Pt to a schema tree St was defined based on

matching the nodes of Pt to the nodes of St such that the parent child

relations, sibling relations and node labels are preserved.

In [12, 13], an approach was proposed for mining XML mediator schemas

from a set of heterogeneous XML databases, which they called “schema

mining“. Frequent subtrees were extracted and then merged in order to build

a mediator schema. The new idea in these works was Fuzzy Tree Inclusion,

which means that a tree does not have to be fully included in another, it can

be partially included. An algorithm was used to calculate the degree a Tree

S is included in a tree T based on four parameters: a) Fuzzy vertical paths: a

fuzzy approach was proposed to soften classical ones. If the number of

nodes separating the ancestor from descendant is less or equal to 5 then S is

considered as embedded in T with a degree from 0 to 1 depending on the

number of separating nodes. b) Fuzzy horizontal paths: the proportion of

nodes that are included and well-ordered is considered as the degree of

56 | P a g e

inclusion (from 0 to 1). c) Partial inclusion: if part of nodes from tree S is

included in tree T then this proportion is related to a fuzzy quantifier which

is then used as input to the function Fuzzy_Inclusion_Degree, a function

that calculated inclusion degree. d) Similarity between nodes: fuzzy

ontologies are used to specify to which extent two nodes are similar to each

other depending on the semantics of their labels. In [13], authors introduced

Fuzzy Links which provides more information about the link between two

nodes whether it is very shared, middle shared, or little shared as shown in

the figure18 below. The thinker the line (edge) connecting two nodes, the

more it is common in data sources e.g. the edge (b, c) in the same figure, is

the most common one.

Figure 18:Fuzzy frequent subtrees

3.5. XML Query Rewriting

While most of the research on addressing structural heterogeneity in XML

documents was focused on pattern tree matching, few studies suggested

query rewriting mechanisms to overcome that heterogeneity. The most

57 | P a g e

popular one was conducted by Yu and Popa [63], where authors proposed a

framework for answering queries through a virtual target schema. It was

assumed that a set of formally defined mappings between source schemas

and this target schema was provided, and that the data was indeed at the

sources. It was also assumed that some constrains, such as key constraints,

were defined on the target schema. Two algorithms were developed, a Query

Rewriting Algorithm which rewrites the target query into a set of source

queries based on the mappings; and a Query Resolution Algorithm that

merges data from multiple sources by making use of the defined target

constraints.

The proposed query rewriting algorithm consists of four phases i) Rule

generation: creates a set of mapping rules based on the given mappings

between the target schema and local data sources. ii) Query translation: it

uses the rules defined from the previous phase to reformulate target queries

into unions of source queries. iii) Query optimisation: unmatched source

queries are removed and the matched ones are minimised, and iv) Assembly:

reassembles decorrelated source queries back into queries with nested sub

queries.

A similar solution was proposed in [64], but it was for query translation

between P2P XML databases based on pre-defined informal mappings

(linking arrows). Authors develop algorithms for inferring mapping rules

58 | P a g e

between schemas based on the provided informal mappings, as well as a

language to express these mapping rules. The query translation algorithm can

translate XML queries along and against the direction of mappings; and it is

composed of four phases i) Expansion: a Pt is expanded so that it matches

the mapping rules. Correspondences between original Pt and expanded Pts

are kept track of. ii) Translation: expanded Pts are translated based on the

mappings while keeping the query constraints. iii) Stitching: translated

partial matchings are stitched together by making use of key constraints, and

iv) Contraction: nodes that appear in the mapping rules but do not have

matching nodes in Pts are called dummy nodes and are dropped from the

translated query.

Overall, the pitfalls of the proposed algorithms in [63, 64] are that they are

complex and they depends on manually defined mappings, which is not

efficient when it comes to query matching.

Another interesting approach was introduced in [65]. Authors proposed a

rewriting algorithm for integrated views over heterogeneous XML

documents. XML schemas were modelled with ORA-SS model, a model that

captures the semantic information of XML schemas. The proposed approach

utilizes two tables: a mapping table that consists of mappings from an

integrated schema to local schemas, and a query allocation table that stores

the path information of XQuery selection and return parts. An algorithm was

59 | P a g e

developed to decompose the main query into a number of subqueries and

join results from different local schema based on the information in the

mapping and query allocation tables.

3.6. Chapter Conclusion

In this chapter, a wide range of studies on XML schema matching/similarity

and query matching were summarised and presented. Some of them

addressed the structural heterogeneity of data sources, others focused on

matching structure and content (query evaluation) aiming at achieving high

performance and less use of memory.

The main focus of this chapter is on XML Query Matching studies,

particularly the approximate structure-based matching, which is the subject

of this thesis. Different approaches for tree similarity and inclusion were

thoroughly discussed. TED is one of the earliest approaches used in IR

communities for computing the similarity degree between two trees, one

representing a query and the other representing a data source. Soon after, the

terms Pattern Tree and Twig Patterns have become the most popular terms

referring to graphic representations of queries over data trees.

Most of the research in that area was directed to query processing aiming at

reducing access to data sources which in turn improves performance. Those

studies assumed that schemas of underlying sources were already known,

60 | P a g e

therefore, they did not offer solutions to the structural heterogeneity problem.

Other studies, however, proposed various approaches for structure-based

pattern matching. Some of them were based on TED similarities; others

considered the number of matching nodes as the basis of similarity. On the

node (element) similarity level, some studies proposed techniques based on

node labels, semantics, constraints and even positions in some cases.

A different solution to structural heterogeneity is query relaxation. This

refers to a set of techniques used to generalise a query so that it retrieve more

results that do not exactly match the structure of a query. Query relaxation

has been widely adopted in IR systems especially for top-k queries.

Overall, the aforementioned studies provided techniques that solved certain

types of structural diversity in data sources, but none of them proposed

solutions for cases where data schemas are highly diverse. In particular, no

studies addressed the case were two nodes in an XML schema are modelled

as parent-child instead of child-parent, or where a node is modelled as an

attribute instead of an element node. Furthermore, the proposed approaches

for approximate matching of parent-child paths to ancestor-descendant do

not always provide correct results. In addition, no solutions were proposed

for efficient matching of a pattern against normalised XML documents i.e.

documents with ID/IDREF connections.

61 | P a g e

Chapter Four: Intuitionistic Fuzzy Trees

4. Intuitionistic Fuzzy Trees

4.1. Intuitionistic Fuzzy Logic (IFL)

4.2. Intuitionistic Fuzzy Trees (IFT)

62 | P a g e

4. Intuitionistic Fuzzy Trees

In this chapter we present Intuitionistic Fuzzy Trees (IFT) which extends

previous works on Intuitionistic Fuzzy Graphs. We redefine support and

confidence, which are used in association rule mining to reflect frequent

itemsets, to represent the degree of structural similarity/inclusion between

two trees. Moreover, we present a novel algorithm for calculating these

similarity measures.

4.1. Intuitionistic Fuzzy Logic (IFL)

Before introducing fuzzy logic, it is necessary to start from the classic or

binary logic which consists of two values, True and False (or 1 and 0

respectively) e.g. a variable such as pass can be given a value of 1 (success)

or 0 (failure). Fuzzy logic, however, allows variables to have values ranging

from zero to one (0-1). Firstly introduced by Zadeh[66], fuzzy logic can be

used for linguistic variables i.e. variables whose values are words in a natural

language e.g. age, beauty, height etc. For example, a person who is 25 years

old can have the variable young=0.80 whereas someone who is 30 years old

would probably have young=0.50.

Zadeh[66]states that a fuzzy subset A of a universe of discourse U is

characterized by a membership function µA: U[0, l] which associates

63 | P a g e

with each element u of U a number , µA (u) in the interval [0, 1], with

µA (u) representing the grade of membership of u in A.

Building on Zadeh’s work, Atanassov presented an extension to fuzzy sets he

called Intuitionistic Fuzzy Sets (IFS)[67]. In addition to a degree of

membership µ(x), IFS elements consist of functions for the degree of non-

membership ν(x) and indeterminacy/uncertainty π(X). Thus, an IFS is

defined as follows:

Let a set E be fixed. An IFS (Intuitionistic Fuzzy Set) A in E is an object of

the following form:

Where functions μA: E → [0, 1] and vA : E → [0, 1] determine the degree of

membership and the degree of non-membership of the element x ∈ E,

respectively, and for every x ∈ E:

1)()(0 ≤+≤ xvx AAµ

To make it clearer, suppose that we have E as the set of presidential

candidates (Bush, Obama) and we define μ() as people who voted for the

candidate Bush and ν() as people who voted for someone else. Suppose that

30% of the voters voted for Bush and 55% voted for Obama. This means

that:

}|)(),(,{ ExxvxxA AA ∈><= µ

64 | P a g e

μ (Bush)= 0.30 and ν(Bush)=0.55

Someone might argue that ν(Bush) should be 0.70 instead of 0.55 which is

not right because ν(Bush) represents the percentage of people who voted for

someone else rather than Bush. It is known for sure that 55% voted for

Obama but the missing 15% (i.e. 1-0.30-0.55=0.15) did not vote for Obama,

those might have voted with blank or invalid forms. Thus the 15% are

referred to as π(Bush) i.e. the uncertainty of people voting for Bush.

4.2. Intuitionistic Fuzzy Trees (IFT)

Intuitionistic Fuzzy Graphs (IFG) was first introduced by Shannon and

Atanassov in 1994 [68]. As a Tree is a special case of a Graph, the concept

of IFT is defined as a restriction on the IFG [69-71]. Below we introduce a

number of definitions to illustrate the IFT properties as by [72].

Definition 1: Intuitionistic Fuzzy Graphs (IFG)

Let the oriented graph G = (V, A) be given, where V is a set of vertices and

A is a set of arcs. Every graph arc connects one or two graph vertices.

},|),(),,(,,{* VVwvwvvwvwvA AA ×∈= µ

65 | P a g e

The set A* is called an IFG if the functions μA: V ×V→ [0, 1] and νA : V

×V→ [0, 1] define the respective degrees of membership and non-

membership of the element VVwv ×∈, and for all VVwv ×∈, :

1),(),(0 ≤+≤ wvvwv AAµ

Definition 2: Intuitionistic Fuzzy Trees (IFT)

An IFT is a restricted form of an IFG, with additional features. Same as the

difference between traditional graphs and trees, IFTs are directed IFGs with

parent-child connections and no cycles, where there is no more than one

parent for each child. Additionally, the membership (μ), non-membership (ν)

and hesitation (π) functions of IFGs are also adopted in IFTs, along with

additional features. Fuzzy Support and Fuzzy Confidence measures (See

definition 5) have been introduced in IFTs to indicate to the degree of

membership (Belief) and non-membership (Disbelief) of a tree being similar

to or included in another tree.

Let V be a fixed set of vertices. Given that (ν⊂V) and (A ⊂VxV), An IFT T

over V will be the ordered pair T = (V*, A*), where

}|)(),(,{* VvvvvvV vv ∈= µ

}),)(,(|)(),(,{* AwvgVwvgvggA AA ∈=∈∃= µ

66 | P a g e

Where)(vvµ and)(vvv are degrees of membership and non-membership of

the element Vv∈ and

1)()(0 ≤+≤ vvv vvµ .

)(gAµ and)(gvA are degrees of membership and non-membership of the

element

Awvg ∈= , and 1)()(0 ≤+≤ gvg AAµ

Figure19: (a) Normal tree vs (b) IFT

To clarify the definition of IFT, figure 19 shows a normal tree along with the

correspondent IFT. In addition to the node labels, the IFT has functions that

define the degree of membership and non-membership of each element of

 c b

Normal tree

IFTr
)(),(, avaa vvµ

)(),(, bvbb vvµ)(),(, cvcc vvµ

),(),,(),,(caAvcaAca µ),(),,(),,(baAvbaAba µ

(a)

(b)

a

67 | P a g e

the tree into another tree. For calculating IFT Inclusion we present a set of

properties.

• If n is a node in a tree T then label(n) is a function that defines the

label of n.

• If m, n are nodes in T such that n is a child of m, then A(m, n) will be

the arc connecting m to n.

• N(T) = a set of all nodes in T

• A(T) = a set of all arcs in T

• parent (n) = the parent node of n

• children(n)= the child nodes of n

• desc(n)= the descendant nodes of n

• anc(n): the ancestor nodes of n

• ⊥ = Null

Definition 3: Full Tree Inclusion

Let T1 and T2 be labeled trees. We define Full Tree Inclusion (∅, T1, T2) as a

function ∅:N(T1) →N(T2) such that for all nodes m, n ∈N(T1)

• label(n) = label(∅ (n))

• A(m, n) =A(∅ (m), ∅ (n))

Definition 4: Partial Tree Inclusion

68 | P a g e

Let T1 and T2 be labeled trees. We define Partial Tree Inclusion (∅, T1, T2)

as a function ∅:N(T1) →N(T2) such that for all nodes m, n ∈N(T1),

• label(n) = label(∅(n) or ∅(n)= ⊥

• A(m, n) =A(∅(m), ∅(n)) or A(∅(m), ∅(n)) = ⊥

In other words, T1 can be partially included in T2when there are some nodes

(and arcs) of T1that do not exist in T2.

Definition 5: Support and Confidence

The degree of inclusion of a tree T1 in another tree T2 is δ (T1, T2). We

define two factors that determine to which degree T1 is included in T2:

• Support (S) = (# of nodes in T1 that are included in T2) / |T1|

• Confidence (C) = (# of arcs in T1 that are included in T2+1) / |T1|

Such that: |T1| is the size (number of nodes)of T1.

In other words, Support represents the percentage of nodes in T1 that are

included in T2 individually (on the element level) without considering the

node position (structure) whereas Confidence represents the percentage of

nodes in T1 that are included in T2in the right structure (on the structure

level).The basic unit of structure that is considered here is arc, which

connects two nodes with a parent-child relationship. Therefore, the total

number of included (matched) arcs is considered as part of the measure

69 | P a g e

Confidence (C). For calculation precision, the value 1 is added to the

number of matching arcs and the total is divided by |T1|. This is because (the

number of matching arcs + 1) equals the number of matching nodes

(considering the position/structure of the nodes). For example, for the two

trees, T1 and T2 shown in figure 13, the inclusion of T1 into T2, δ (T1, T2),

can be calculated by finding S and C as follows:

S=5/5=1 (100%) which means that all nodes of T1are individually

included in T2

C=4/5=0.8 (80%) which means that 4 out of 5 nodes in T1 are included

and structured properly in T2. These are {b, c, d, e}. Notice that even though

the node a is included in T2, it is not structured properly. In T1, a is the

parent of b, whereas in T2 a is a sibling of b.

Figure 20: Tree inclusion of T1 into T2

Definition 6: Belief, Disbelief and Hesitation

Based on the previous terms, S and C, we define the followings:

70 | P a g e

• Belief (µ) = belief of T1 being included in T2. S.t.µ = C

• Disbelief (ν) = disbelief of T1 being included in T2.S.t.ν = 1-S

• Hesitation (π) = hesitation of T1 being included in T2. S.t.π= S-C

• Maximum belief (µmax) = the maximum believe of T1 being included

in T2.µmax = C + π

• Believe (µ) + Disbelief(ν) + Hesitation (π) = 1

Definition 7: Node and Arc similarity functions

• sim (n, n’) = Similarity between two node labels, label(n) and

label(n’), which has a value range from [0,1]. If labels are identical,

then sim (n, n’)=1, else sim(n, n’) determines the similarity between

the semantics of the two labels. This can be obtained by using a

semantic lexicon such as WordNet [73] or Linguatools [74]. Overall,

sim (n, n’)is equivalent to the membership function)(nvµ , which

indicates to the degree of belief that n is similar to n’.

For example, suppose that label(n)= “quantity” and

label(n’)=“amount”, by using the semantic lexicon Linguatools [74],

sim(n, n’)=0.72 which means that the semantics of the two

labels“quantity”and“amount”are relatively close.

71 | P a g e

• sim (A(m, n) ,A(m’, n’)) = Similarity between two arcs A(m, n)and

A(m’,n’)ranges from [0,1] which is equivalent to)(AAµ .

Definition 8: Intuitionistic Fuzzy Support and Confidence

• Intuitionistic Fuzzy Support (Sf): for every node n ∈N(T1) and its

correspondent node n’∈N(T2)

(Sf) = Σ)(nvµ / |T1|

Where)(nvµ is the maximum degree of similarity (membership)

between n and n’.

• Intuitionistic Fuzzy Confidence (Cf): for every arc A (m, n) ∈ A(T1)

and A(m’, n’) ∈ A(T2)

(Cf) = (Σ)(AAµ +1) / |T1|

Where)(AAµ is the maximum degree of similarity (or membership) of an

arcA (m, n) ∈A(T1) and A(m’, n’) ∈ A(T2).

To calculate the composite similarity measure <Sf, Cf>, an IFT Inclusion

Algorithm was developed (Figure 21)[75, 76].It takes two trees T1 and T2

as input and calculates Sf andCf as output. The algorithm calls a function

called mapNodes() which iterates though nodes of T1 comparing each

against nodes of T2and resulting in a Node Mapping Matrix (NMM). In this

72 | P a g e

process, each node from T1 is mapped to a node (or more) from T2 based

on label or semantics similarity provided that the similarity exceeds a

predefined threshold. The algorithm iterates through node mappings and

considers the node mapping with the highest similarity for calculating Sf.

The same applies to arc matching when calculating Cf. An Arc Mapping

Matrix (NMM) is returned by the function mapArcs(), which compares arcs

of T1 to those of T2. Again, an arc A(m, n) from T1 can have one or more

matching arcs in T2, probably with different matching degrees. An arc

matching threshold can be used to filter out weak arc mappings. In case of

one-to-many arc mapping, the IFT Inclusion Algorithm considers the

mapping with the highest arc similarity for calculating Cf.

73 | P a g e

Figure 21: IFT Inclusion Algorithm

IFT Inclusion Algorithm

// This algorithm calculates Sf and Cf which imply the //inclusion degree
of T1 inT2.
Input: Two trees T1 and T2, NMM and AMM
Output: Sf, Cf
Begin
Sf=Cf= matchedNodes= matchedArcs=0; //initialization

// calculate Sf
mapNodes(T1, T2); // generates Node Mapping Matrix (NMM)
For each nϵN(T1){

maxSim=0;
For each mϵN(T2)such that nm ϵ NMM{
 If sim(n, m)>maxSim
 maxSim=sim(n, m);
}
matchedNodes+=maxSim;

}
Sf = matchedNodes / |T1|;

// calculate Cf
mapArcs(T1, T2); //generates Arc Mapping Matrix (AMM)
For each Arc A(m,n) in T1

maxSim=0;
For eachA(m’,n’) in T2 such thatA(m,n)A(m’,n’)ϵAMM{
 If sim(A(m,n),A(m’,n’))>maxSim

maxSim=sim(A(m,n),A(m’,n’));
}
matchedArcs+=maxSim;

}

74 | P a g e

Chapter Five: Intuitionistic Fuzzy Pattern Tree Matching

5. Intuitionistic Fuzzy Pattern Tree Matching

5.1. Overview

5.2. Soft Node Matching

5.3. Soft Arc Matching

5.3.1. Direct Match

5.3.2. Inverted Match

5.3.3. AttNode Match

5.3.4. Normalized Match

5.3.5. Separating Node Match

5.3.6. Hybrid Arc Match

5.4. Pattern Tree Matching Matrices

5.4.1. Node Mapping Matrix (NMM)

5.4.2. Arc Mapping Matrix (AMM)

5.4.3. Query Index Matrix (QIM)

5.5. Chapter Conclusion

75 | P a g e

5. Intuitionistic Fuzzy Pattern Tree Matching

In this chapter, the IFT approach is applied to Pattern Tree Matching. An

illustrative example is given in section 5.1 to further explain the benefits of

the proposed approach. Soft node and arc matching techniques are presented

in sections 5.2 and 5.3 along with explanatory definitions. Section 5.4

introduces the matrices required to hold node and arc matching results.

5.1. Overview

The additional benefit of using IFT is that it gives more information about

how much a pattern tree Pt matches an underlying schema tree St. It provides

the confirmed minimum degree to which Pt is included in St (Cf) , the

maximum degree of inclusion in the best case (Sf), the degree of exclusion

(1- Sf) and the hesitation (π) which implies to which extent we are not sure

that Pt is included in St.

To clarify the above, we calculate Sf and Cf for Pt in St1 and St2 (figure 22).

Let Sf1 and Cf1 denote the Intuitionistic Fuzzy Support and Confidence for

St1, respectively; Sf2 and Cf2 denote the same for St2. Obviously, Sf1is 1.0

as all the nodes of Pt are included in St1. However, Sf2 will be less than 1.0

as the node pname in Pt does have a match. Therefore:

Sf2 = (# of nodes in Pt that are included in St2) / |Pt|

76 | P a g e

 = 5/7 = 0.71

Cf1 (µ1) and Cf2 (µ2) are calculated as follows: (See definition

Cf1=(# of arcs in Pt that are included in St2+1) / |Pt|

 = 5+1/7= 0.86

Cf2= 4+1/7 = 0.71 (See algorithm in figure 21)

Figure 22: A pattern tree with two different schema trees

Having calculated the support and confidence, the hesitation (π) of

considering Pt included in St1 and St2 can now be calculated as follows:

π1= Sf1- Cf1

= 1.0 -0.86

= 0.14 i.e. there is hesitation of considering 14% of Pt included in St1

π2= Sf2 - Cf2

= 0.71 – 0.71

77 | P a g e

= 0.0 i.e. there is no hesitation of considering some part of Pt included in

St2

Also the disbelief (ν) can be calculated as follows:

ν1= 1- Sf1= 0 i.e. there is no confirmation that some part of Pt is not

included in St1

ν2= 1- Sf2 =0.29 i.e. 29% of Pt is certainly not included in St2.

As shown from the calculations, Pt is more included in St1 than of St2. Sf is

high in both of them, however Cf achieved different results. 5 out of 6 arcs

of Pt were included in St1 which scores high confidence indicating that Pt is

included in St1 with 86% belief. The score of Cf2, on the other hand, was

not high, which indicates that Tp is included in Td2 with 58% belief. The

big difference between Sf2 and Cf2 causes hesitation (π2) to be high (28%).

Also the disbelief (ν) can be calculated to indicate to which degree Tp is

NOT included in a data tree. While ν1 is zero, ν2 has a score of 14%, which

indicates that 14% of Tp is certainly not included in Td2. Adding the

measures of Td2 together will sum up to 1.0.

µ2 + ν2 + π2 = 0.58 + 0.14 + 0.28 = 1.0

By using three values to calculate the level of matching between a query and

a set of XML schema trees, IFT has the ability to provide more information

on the matching degree than previous works do, which is expected to return

better query answers.

78 | P a g e

Once the degree of inclusion is calculated by finding <Cf, Sf>, if the degree

of inclusion is higher than a predefined threshold then the schemas are

semantically close and Pt counts as a witness tree. The reason of using

Intuitionistic Fuzzy techniques is to soften the traditional constraints on

finding the degree of inclusion. The “source” tree does not need to be

completely included in the “destination” one; it can be partially included.

Here we try to make it even more flexible by considering cases where nodes’

labels and arcs that are not fully matching. Formally, if n and m are two

nodes in Pt forming an arc A(m, n), the correspondent Arc in St is A(m`, n`)

such that

nn` and mm` where the symbol ‘’ reads “maps to”

We propose two ways of softening matching rules: soft node matching

and soft arc matching.

5.2. Soft Node Matching

An algorithm is developed to softly match nodes of a Pt with nodes of

St’s (figure23). Two nodes do not necessarily need to have the same label in

order to be considered matching. If label() is a function that defines node

labels then for each node n, it is not necessary that:

label(n) = label(n`)

79 | P a g e

A linguistic (lexical) ontology is utilised to add semantics to node labels and

then a function is invoked to compare these semantics and calculates the

similarity (Semantic closeness) according to the distance between them. This

is defined as:

semantics (n)≈semantics(n′) where the symbol ‘≈’reads “close to”

Additionally, any two nodes can be matched together even if they do not

have the same node type. Stated differently, an element node in a Pt can be

matched to an attribute node in St provided that the element node is a leaf

node (See AttNode arc matching in Figure24).

Pt nodes can be classified into different types according to their role in the

query tree or the schema tree. In addition to element nodes (e.g. dept) and

attribute nodes (e.g. @dname) in figure 24 (d), we define the following node

types: Pattern nodes, Schema nodes, ID nodes, Output nodes, Intermediate

nodes and Join nodes.

80 | P a g e

Figure 23: Soft Node Matching Algorithm

Definition 9: Pattern Node

A pattern node n is any node within a pattern tree Pt i.e. n ϵ N(Pt)

Definition 10: Schema Node

A schema node n’ is any node within a schema tree St i.e. n’ ϵ N(St)

Soft Node Matching Algorithm

Input: Two trees Pt and St, Node similarity threshold ϴN
Output: Node Mapping Matrix (NMM)

Begin
For each node n in Pt {
For each node m in St {

If label(n)= label(m)
addNodeMapping(n, m, 1) //add n and m to NMM, 1 is for exact

match
Else If semSim(label(n), label(m)) >ϴN

 addNodeMapping(n, m, semSim(label(n),label(m)))
 }
}
End

Function semSim (label(n), label(m))
It calculates the semantic similarity between labels of nodes n and m by
mapping the labels to a linguistic ontology (WordNet) and then calculating the
distance between them according to the shortest path connecting them within
the taxonomy.

81 | P a g e

Definition 11: ID Node

A node can be an ID node if it can uniquely identify any instance of its

parent node. For optimum query matching results, each parent node in Pt has

to have an ID node. The reason is that it enables joining sub-trees from

different schemas based on the ID of the common node. The labels of ID

nodes are underlined in pattern trees to signify their role as a ‘Primary key’

of their parents.

Definition 12: Output Node

An Output node is a node whose value is to be returned in the query. It is

distinguished by having a shape of double circles in pattern trees. An output

node is either a leaf element node or an attribute node.

Definition 13: Intermediate Node

A node is said to be intermediate if it is neither a root node nor a leaf node

i.e. it is a node that has a parent node and one or more child nodes.

Definition 14: Join Node

An intermediate node that has a child ID node and that is used to join two

twigs together.

82 | P a g e

Definition 15: PtNodes Matrix

The Pt Nodes Matrix is a matric that consists of all node of a pattern tree Pt

and all information about these nodes including: node labels, parent-child

relationships, node type and role in Pt.

5.3. Soft Arc Matching

As arc is the fundamental unit of structure in data schemas, we propose

different ways of approximate matching of a pattern arc with a schema arc.

The main idea is to adapt to the different ways of modelling a parent-child

relationship in different data sources. Figure 24 shows six different ways of

matching the arcs (group, publication) and (dept, dname).

Figure 24: Types of soft arc matching

83 | P a g e

Before we proceed to the discussion of these types, we present few

definitions on types of arcs: Leaf arc, Non-leaf arc, Pattern arc and Schema

arc.

Definition 16: Leaf Arc

A leaf arc is an arc whose child node is a leaf e.g. A(dept, dname) in Figure

24 (a).

Definition 17: Non-leaf Arc

A non-leaf arc is an arc whose child node is not a leaf e.g. A (group,

publication) in Figure 24 (a).

Depending on whether the arc is a leaf or non-leaf arc, different arc

matching techniques (types) apply. In the following sections, we present

different types of arc matching along with formal definitions and we explain

to which types of arcs they apply.

Definition 18: Pattern Arc

A pattern arc A(m, n) is an arc within a pattern tree Pt i.e. A(m, n) ϵ A(Pt).

Definition 19: PtArcs Matrix

PtArcs is a matric of all pattern arcs.

84 | P a g e

Definition 20: Schema Arc

A schema arc A(m’, n’) is any arc within a schema tree St i.e. A(m’, n’) ϵ

A(St)

Definition 21: ID Arc

An ID arc is an arc whose child node is an ID node.

The following subsections present different types of soft arc matching as

published in [77]. A proposed value of membership (Aµ) is presented and

values for non-membership (Av) can be calculated by this formula:

Av =1- Aµ

5.3.1. Direct Match

In this type of match, a pattern arc A(m, n), where m is the parent of n, is

matched to an identical schema arc A(m`, n`) where mm` and nn`. This

type of matching applies to both leaf arcs and non-leaf arcs which means

than n can be either an element or an attribute node. Figure 24(b) shows an

arc matched in that way. Formally, direct arc match is defined as:

A(m, n)DA(m`, n`)iff mm’ and n n’ and n’.parent()=m’

Since this is an exact match, Aµ will be equivalent to 1.0.

85 | P a g e

5.3.2. Inverted Match

Unlike direct match, inverted match occurs when a pattern arc A(m, n) maps

to a schema arc A(m`, n`) where mn` and nm`. This mismatch of

modelling a relationship between two nodes m & n is common in XML

documents depending on the modeller’s perception, or point of interest. Arcs

matching in this way should be non-leaf arcs because a leaf node cannot be

modelled as child in one tree and as parent in another e.g. the arc A(dept,

dname) in figure 24 (a) cannot be found as A(dname, dept) because the node

dname is a leaf node that is correspondent to a text XML element, which

cannot have children. However, if the arc is a non-leaf arc, such as A(group,

publication) in figure 24 (a), it can be modelled as A(publication, group) in

other schemas such as in figure 24 (c).Formally, inverted arc match is

defined as:

A(m, n)IA(m`, n`)iff m n’ and n  m’

Since this is not an exact match, Aµ will be less than 1.0. For the proposed

approach, 10% of belief is deducted as a result i.e. Aµ =0.9 to distinguish this

match from Direct match. The 10% penalty is user defined and therefore it

can be modified according to user’s estimation.

5.3.3. AttNode Match

86 | P a g e

In relational databases, an entity type such as dept (department) has attributes

such as name, location etc. In XML, however, a department name can be

modelled either as an attribute node(@dname) or an element node (dname).

However, since attribute nodes cannot have children, this type of arc match

only applies to leaf arcs such as the one shown infigure 24 (d).Formally,

AttNode arc match is defined as:

A(m, n)AA(m`, @n`)iff mm’ and n  @n’

Again, 10% of belief is deducted as a result non exact match. Thus, Aµ =0.9.

5.3.4. Normalized Match

This match can be found in cases where an XML document is normalized i.e.

each entity is modelled as a sub-tree (twig) within the document which can

be referenced by using IDREF instructions. This can be thought of as

analogy of the primary and foreign keys in relational modelling. To return

data from more than one twig, an XML query joins the correspondent twigs

based on a common node while having an attribute or element that acts as the

ID of the common node. In Figure 25the node pubREF is a reference node

that refers to publication node within the same document. Consequently, we

can say that the pattern arc (group, publication) is matching with (group,

pubREF) using normalized arc match. Obviously, arcs matched in this way

87 | P a g e

should be non-leaf arcs because the child node (e.g. publication) should have

a child ID node on which the join will take place.

Figure 25: Normalised arc match

This type of match is complicated and it requires more processing resources

i.e. time and memory. This is mainly because it is not enough to achieve this

type of match based on the data schema only; the actual XML data document

is also required because it is not possible to know to which element an

IDREF attribute is referring without traversing the actual XML document.

For our approach, we use a function that picks an instance of an IDREF

element, such as pubREF, from the XML document, and scans it to find the

parent of that ID e.g. publication node in our example. Formally, normalised

arc match is defined as:

A(m, n)NA(m`, n`)iff mm’ and n  de-ref(n’)

Where de-ref(n’) is a function that returns the node referenced by n’.

88 | P a g e

Same as previous types of approximate matching, 10% of belief is deducted

making Aµ =0.9.

5.3.5. Separating node (SepNode) match

In some cases, when trying to match A(m, n), an exact match might not be

possible because of having separating nodes between the parent and the

child. In this case the arc still can be matched if the number of separating

nodes does not exceed a predefined threshold. Formally, A(m, n) can be

matched with A(m`, n`) using this method if m is an ancestor of n, not

necessarily a parent.

This matching has been proposed by many previous studies [17, 29].

However, it can result in getting the wrong result especially that this type

applies to both leaf and non-leaf arcs. For example, suppose that we have a

leaf arc A(dept, location), that is to be matched with a schema as in figure

26. Clearly, there is no matching arc in St because the node dept does not

have a child location. However, using the separating node arc match, dept

has a descendant node called location, which means that the arc can be

approximately matched. But the problem is that the node location does not

refer to the location of department, it refers to the location of the project.

Thus, blind approximate matching using this technique can return wrong

matchings.

89 | P a g e

To solve this dilemma, we consider that intermediate nodes are strong nodes

as they usually represent independent entities (concepts) in relational models.

Leaf nodes, however, usually represent attributes of their parents, and

therefore they are weak nodes. If an arc A (m, n) is to be matched, m is a

strong node and n is a weak node, any separating nodes between them can

induce weak semantics. In other words, the weak node is more likely to have

strong semantics with its parent e.g. the node location in figure26 refers to its

parent (project) but not to it anc (dept). On the other hand if both nodes (m

and n) are strong nodes e.g. (dept, publication), then an intermediate node,

such as group in our example, is unlikely to affect the semantics. In the same

example, the arc A(dept, publication) in Pt can be matched against St even if

there is a separating node (group). This can be explained because a

department consists of research groups, and these have publications. Thus,

we can say that those publications belong to the department.

Figure 26(a) A pattern Pt, (b) a schema tree St

90 | P a g e

Formally, separating node match is defined as:

A(m, n)SA(m`, n`)iff mm’ and n n’ and m’ ϵ desc(n’) and m’ is not

the parent of n’

Unlike previous types of approximate matching, belief of this type depends

on the number of separating nodes. Therefore, it is not correct to just deduct

10% of the belief; the amount deducted has to be proportional to the number

of separating nodes. Belief of this type is defined by the following equation:

Aµ =1/(1+∂/2) where ∂ is the number of separating nodes.

The reason why ∂ was divided by 2 is to reduce the effect of increasing

number of nodes and make the belief reasonable.

5.3.6. Hybrid arc match

Not only can an arc be matched using the aforementioned approaches

individually’ but it can also be matched using combinations of them.

Depending on the arc type, different combinations apply. For Leaf arcs, two

types of approximate (indirect) match apply, AttNode and SepNode match.

Thus, a Hyprid arc match for this type of arcs can be a combination of both

AttNode and SepNode(AS) match. An example of this can be seen in

figure27 where the pattern arc A(dept, location) is matched to the schema arc

A(dept, @location) while having a separating node (info) that separates the

91 | P a g e

parent and child nodes. Formally, AttNode-SepNode hybrid match is defined

as:

A(m, n)ASA(m`, n`)iff mm’, n n’, m’ ϵ anc(n’) and n’ is an attribute

node

Figure 27: AttNode-SepNode hybrid match

Since the aforementioned type is hybrid, the amount deducted from belief is

going to be the total of penalties applied for each type. Thus, the following

equation defines belief for this type:

Aµ =90% x1/(1+∂/2) where ∂ is the number of separating nodes.

The above equation is simply the same as of the one for SepNode match but

multiplied by 90%. The 10% is the penalty for AttNode match.

Non-leaf arcs, on the other hand, can be matched using Inverted, SepNode,

Normalised match or any combination of the three (or two) of them.

Therefore, the following combinations can be found in a Hybrid arc match

for non-leaf arcs: Inverted-SepNode (IS), Inverted-Normalised (IN),

92 | P a g e

SepNode-Normalised (SN) and finally Inverted-SepNode-Normalised (ISN)

match. Figure28 shows examples of all of these combinations.

Figure 28: Different combinations of Hybrid arc match

The first combination is the Inverted-SepNode Hybrid (IS)match e.g.

figure28- (b). In this type, a pattern arc A(m, n) is matched to a schema arc

A(m’, n’)where mn` and nm` and n’ is an ancestor (not parent) of m’.

Formally, Inverted-SepNode hybrid match is defined as:

A(m, n)IS A(m`, n`)iff m n’, n  m’, n’ ϵ anc(m’) and n’ parent(m’)

93 | P a g e

Similar to the AttNode-SepNode match, Inverted-SepNode belief is deducted

twice as in the following equation:

Aµ =90% x 1/(1+∂/2) where ∂ is the number of separating nodes.

The second combination is the Inverted-Normalised Hybrid (IN) match e.g.

figure28-(c). There, an arc A(m, n) is matched inversely and the child node

of the matching schema arc is a reference to the correspondent node. Stated

formally, this type of match is defined as:

A(m, n)INA(m`, n`)iff mderef(n’), n  m’ and n’ ≠ parent(m’)

Belief of Inverted-Normalised match is deducted twice, 10% penalty for each

type in the hybrid match i.e. Aµ =80%. The number of separating nodes is not

considered here because it not applicable to this type.

The third combination is the SepNode-Normalised Hybrid (SN) match e.g.

figure 28-(d) where a pattern arc A(m, n) is matched to a schema arc A(m’,

n’) having mm’, nderef(n’) and m’ is an ancestor but not parent of n’.

Formally, this match is defined as:

A(m, n)SN A(m`, n`)iff mm’, n deref(n’), n’ϵ desc(m’) and m’ ≠

parent(n’)

The SepNode-Normalised match causes belief to be deducted twice as in the

following equation:

94 | P a g e

Aµ =90% x 1/(1+∂/2)

The last combination is the Inverted-SepNode-Normalised Hybrid (ISN)

match e.g. figure28-(e) which consists of all types of individual arc matching

types for non-leaf arcs. In this type, a pattern arc A(m, n) is matched to a

schema arc A(m’, n’) where nm’, mderef(n’), m’ ϵ anc(n’) and m’ is not

parent(n’). Formally, this match is defined as:

A(m, n)ISNA(m`, n`)iff n m’, m deref(n’), m’ϵ asc(n’) and m’ ≠

parent(n’)

The ISN match consists of 3 types of anomalies; therefore its belief will be

deducted three times as in the following equation:

Aµ =80% x 1/(1+∂/2) where the 80% represent the remaining after deducting

20% for Normalised and Inverted matching and the rest of the equation

deducts from belief proportional to the number of separating nodes (∂).

Obviously, those combined hybrid matches are more complex to identify

than individual ones and they might be subject to uncertainty in some cases.

All the previous types of soft arc matching can be identified using a novel

algorithm developed for that purpose as shown in figure 29.

Overall, the aforementioned types of matching, both individual and

combined, are saved in several matrices so that they are used as input to the

95 | P a g e

query rewriting algorithm in order to rewrite the original query into a new

one that is able to construct an answer based on the matchings. Next section

presents the matrices used to process these matches.

96 | P a g e

Figure29: Soft Arc Matching Algorithm – part 1

97 | P a g e

Figure29: Soft Arc Matching Algorithm – part 2

98 | P a g e

5.4. Pattern Tree Matching Matrices

The result of matching a Pt against a number of St’s is a set of mappings,

node mappings and arc mappings. These are implemented using a number

of matrices where each node and arc in Pt is correlated to its correspondent

in St. figure30 shows the node mapping process where a one dimensional

matrix (also a list can be used) is created for the Pt and for each St. The

mapping cardinality between Pt nodes and St nodes is one-to-many e.g. in

figure18, the node b in Pt is mapped to two nodes in St1 with the same

label.

5.4.1. Node Mapping Matrix (NMM)

Node mapping between a pattern tree Pt and a schema tree St is defined as a

function ϕN(Pt, St) such that:

ϕN(Pt, St) = <(n, m)|n ϵ Pt, m ϵ St and nm>

99 | P a g e

Figure 30: Node Mapping

Results of mappings are kept in a matrix called Node Mapping Matrix

(NMM) which consists of linked lists with width equal to the size of Pt i.e.

number of nodes, and height is unknown. The reason of using linked lists

instead of using 2-dimensional matrices is that linked lists allow dynamic

extension of the list size depending on the number of matching nodes.

Figure 31 shows the NMM for the example in figure 30.

Figure 31: The NMM for mappings in figure 30

100 | P a g e

5.4.2. Arc Mapping Matrix (AMM)

AMM’s are created in the same way as of NMM’s. First, arcs of a Pt are

extracted and encoded using a 2-dimentional matrix having the first row for

parent nodes and the second row for child nodes. Arc mapping can be

thought of as pairs of node mappings in which two node mappings are

performed for each arc. However, nodes that are mapped in NMM will not

necessarily be included in AMM. For example, in figure32, the Pt arc (a, c)

is mapped to the nodes a (St2[2]) and c (St2[4]) but NOT c(St2[1]). That is

because the latter does not form an arc with the node a (St2[2]).

Figure 32: Arc Mapping

Arc mapping between a pattern tree Pt and a schema tree St is defined as a

function ϕA(Pt, St) such that:

ϕA(Pt, St)=<[(np, nc), (m, k), ρ]|(np, nc)ϵ A(Pt) and m, k ϵ N(St)).

Where:

101 | P a g e

• np is the parent node

• nc is the child node

• ρ is the arc matching type and ρ ϵ {D, I, A, N, S, IS, SA, IN, NS,

ISN}

Where D, I, A, N, S, IS, SA, IN, NS and ISN refer to Direct, Inverted,

AttNode, Normalised, SepNode, InvertedSepNode, SepNodeAttNode,

InvertedNormalised, NormalisedSepNode and InvertedSepNodeNormalised

arc matching, respectively.

Therefore, AMM is a two dimensional matrix where the first raw represents

the pattern arcs and the following rows represent the matched schema arcs.

For the example in figure30, the AMM will look like the one in figure33.A

matched schema arc is a triple <Stx[j], Stx[k], ρ> where Stx[j] and Stx[k]

are nodes in the schema Stx and ρ is the type of arc match.

Figure 33: AMM for mappings in figure 18

5.4.3. Query Index Matrix (QIM)

Since each pattern arc can be matched to more than one schema arcs, it is

possible to have more than one answer to a certain query. Referring to the

102 | P a g e

AMM in figure33, there are three pattern arcs: PtArcs[0] which has three

matching schema arcs, PtArcs[1] which has two matching arcs and

PtArcs[2] which also has two matching arcs. Therefore, the final number of

output queries will be equivalent to the total number of combinations of the

matching schema arcs. i.e.

Total number of output queries=# of matching arcs of PtArcs[0] x # of

matching arcs of PtArcs[1] x # of matching arcs of PtArcs[2]

=3x2x2=12 queries

Definition 22: Number of output queries

For a given pattern tree Pt , the number of output queries is given by:

of output queries =|ϻ(PtArcs[0])|x|ϻ(PtArcs[1])|x.. |ϻ(PtArcs[i])|

Where:

i= number of arcs in Pt, ϻ() is a function that return the matching schema

arcs and |ϻ()| is the number of matching schema arcs.

An index matrix is created to keep an index of matching arcs for each new

query i.e. arcs that are used to construct each new query. The width of the

matrix will be the size of PtArcs[] i.e. number of pattern arcs, and the height

will be the number of output queries. For the previous example, and using

103 | P a g e

the AMM in figure34 (b) as input, the Query Index Matrix (QIM) will look

like the one shown in figure34 (a).

Figure 34: (a) QIM, (b) AMM

Thus, elements of QIM refer to elements of AMM. For example, Q4 is

based on elements {0, 1, 1} which means that the new query Q4 will be

constructed by joining the arcs <St1[0], St1[1], D>, <St2[2], St2[4], D> and

<St2[2], St2[5], D>. It is assumed here that only full queries are considered

i.e. queries that have matching schema arcs for all pattern arcs.

An algorithm is developed to generate indexes of new queries in QIM

(figure35) and to filter out any intermediate (useless) queries. Eliminating

intermediate queries is essential to obtain good performance, especially in

case of big Pt’s where the number of output queries can reach thousands.

104 | P a g e

Figure 35: Generate New Queries Algorithm

The query filtration process described in the algorithm above passes by

several stages to identify undesired queries. These stages are:

• Stage 1: Delete any query where one arc only of any schema tree is

mapped. If the only referenced arc is an ID arc, then it is not useful

because it needs to be joined with other twigs based on that ID arc

which means that the same arc exists in other twigs of St’s e.g. the

arc A(dept, dname) of St1 in figure36. On the other hand, if it is not

an ID arc e.g. A(dept, location) of St2 in the same figure, then we

cannot join it with other twigs unless there is an ID arc in the same

twig such as A(dept, dname).

• Stage 2: Even if there is more than one matching arc in the same

twig and none is an ID arc then it will not be useful as it cannot be

Generate New Queries Algorithm

Input: AMM
Output: Filtered QIM

Begin
For each combination of mapping arcs in AMM

addQueryIndex() // insert index of participating arcs into QIM

For each record in QIM {
 If the query references one arc only of any St // not useful
 Delete query; // delete the record
 If the query reference two or more arcs of any St and non has an ID
node
 Delete query; // delete the record
End

105 | P a g e

joined with other twigs e.g. St2 in figure36 has the group and

location of departments but it does not have a dname node as an ID

node for twig joins i.e. it is not possible to identify to which

department the location and group nodes should be assigned.

• Stage 3: Up to this point, more than 90% of the queries in the QIM

are filtered out. Even though the remaining queries are meaningful,

most of them are repetitive. For example, the resultant QIM of the

case in figure 36 will have, among the new queries, two queries; one

with A(dept, dname) from St3 and the other with the same arc from

St4. Since that is an ID arc, it is required to be in both twigs if they

are to be joined together; and the same output is obtained whether

that arc is returned from St3 or St4. Therefore, one of these two

queries is kept and the other is deleted. As a general rule, for any two

queries in QIM, if the ID arcs composing the two queries are

different and the non-ID arcs are similar, then the two queries are

equivalent and one of them should be deleted.

Figure 36: Different matching twigs

106 | P a g e

By eliminating these intermediate queries, the number of remaining queries

will be much less and therefore more manageable.

5.5. Chapter conclusion

To conclude, different techniques were presented in this chapter to soften the

rules of matching a pattern tree Pt against a set of schema trees St’s on the

element level (node matching) as well as on the structure level (arc

matching). To the best of our knowledge, the proposed techniques of soft arc

matching are novel and they are able to address the problem of querying and

integrating heterogeneous data sources, particularity the structure of the data.

A number of matrices were developed to process the node and arc mappings

and the results were passed to an algorithm to rewrite the original query into

a new one, which is the subject of the next chapter.

107 | P a g e

Chapter Six: XML Query Rewriting

6. XML Query Rewriting

6.1. Composing Queries

6.2. Query Rewriting Algorithms

6.3. Query Ranking

6.4. Chapter conclusion

108 | P a g e

6. XML Query Rewriting

The output of mapping pattern nodes and arcs with schema trees (DTDs) is

stored in several matrices. Those are passed to an algorithm that rewrites the

original query into a new query(s) according to the mappings. In this chapter

we discuss our approach of joining softly matched schema arcs and twigs to

construct answers to a pattern query. Additionally, we present novel

algorithms for rewriting pattern queries based on mappings.

6.1. Composing Queries

Mappings provide information on where an answer of a Pt can be found. To

compose an answer query, partial results from different sources need to be

merged (joined) together. In other words, the matching schema arcs in the

AMM (see previous chapter) need to be joined together in order to construct

an answer (witness) tree. Before discussing the process of joining matching

twigs, we present few definitions.

Definition 23: Parent arcs and Child arcs

An arc A(m, n) is said to be the parent of an arc A(k, l) if and only if the two

arcs are in the same tree and n=k i.e. if the child node of the parent arc is the

parent node of the child arc.

109 | P a g e

Definition 24: Ancestor arcs and Descendant arcs

An arc A(m, n) is said to be an ancestor of an arc A(k, l) if and only if the

two arcs are in the same tree and n ϵ anc(k) i.e. if the child node of the

parent arc is an ancestor (or parent) of the parent node of the child arc.

Definition 25: Sibling arcs

Two arcs A(m, n) and A(k, l) are said to be siblings if and only if they are in

the same tree and m=k i.e. the two arcs have the same parent node.

Figure 37 shows examples on the aforementioned three definitions.

Figure 37: Examples on sibling, parent, child, ancestor and descendant arcs

For a pattern tree Pt with size x nodes, i.e. (x-1) arcs, a maximum of(x-2)

arc joins are required in order to construct a witness tree. However, it is

often the case where more than one pattern arc are matched against the same

schema i.e. a pattern twig is matched. Figure26shows an example of

matching twigs. The number of required joins equals the number of

matching twigs-1 i.e. three joins.

110 | P a g e

Two or more matching schema arcs form a matching twig if they are sibling

arcs, parent-child arcs, ancestor-descendant arcs or any combination of these

relationships. Figure 38 shows examples of matched twigs in schema trees

St2 and St3. In some cases, the matching schema arcs cannot form a single

twig; they can result in more than one. In this case, the matching twigs are

treated as if they belong to different schemas and they are joined together

internally e.g. the schema St1 in figure 38.

Matching twigs are joined together via a common node that we call a Join

node (see Definition 14). Generally, join nodes are found by anchoring the

root of a matching twig into a node in another twig. However, if the root of

a twig is part of an arc that has been matched using inverted arc matching,

e.g. A(project, group) in St2 (figure 26), anchoring will be based on the

child of that arc. In case of a normalized arc matching, a join within the

schema is performed to de-normalized the matching twig i.e. to revert the

ID/IDREF connection. Figure 26shows how twigs are joined.

Figure 38: Joining matching twigs

111 | P a g e

Definition 26: Twig Join

If Pt is partially matched against a set of twigs Ƭ= Ƭ1, ..,Ƭn , then each twig

Ƭi has to be joined with at least one twig Ƭj via a join node jNode such that:

Ƭi//jNode/[ID Node] = Ƭj// jNode/[ID Node]

Where jNodeϵN(Ƭi) and jNodeϵ N(Ƭj) and jNode has a child ID node.

Definition 27: Witness Tree

Joining a set of Twigs Ƭ results in an answer to the original query, called

Witness Tree (Wt) given by:

Wt = Ƭ1 ∞Ƭ2 ∞ .. ∞Ƭn

The result of our matching approach is a set of mappings, node mappings

and arc mappings, in addition to the matrix QIM. These are all passed to the

next stage, query rewriting, where the original query is rewritten into a new

one (or more) that is able to retrieve data from the matching data sources.

6.2. Query Rewriting Algorithms

Pattern queries are designed blindly based on a virtual target schema i.e.

without being aware of the structure of underlying data sources. As such, and

in order to return data from different local XML data sources, pattern queries

need to be rewritten. For this study, we use an XQuery-like notation that

112 | P a g e

imitates the FLWOR expressions (see section 2.4.), the most common

XQuery expression syntax. Figure39shows a snippet of an XQuery that

returns department name, group name, project name and publications of

research groups from two data sources s1.xml and s2.xml.

Figure39: An XQuery example

Definition 28: XML Query

Inspired by the definition presented in [63], an XML query is a query of the

following form:

for G = {$x1 in g1, $x2 in g2, .. ,$ xn in gn}

where C={$xi/[ID]=$xj/[ID]} where 1<= i,j<=n

return R={$xi/[p]}

Where:

for $d in doc("s1.xml")/dept, $g in doc("s2.xml")//group

where $d/group/gname=$g/gnameand $d/location="London"

return

<group>

<depatmentName>{data($d/dname)}

</depatmentName>

{$g/gname}

{$d/dept/group/project/pname}

{$g/publication}

</group>

113 | P a g e

• G is a set of Generators; and a generator is a pair written as ($xn in

gn) where $xn is a variable assigned to the XPath expression gn.The

latter usually represents the root of a matching schema twig.

• C is a set of Constraints C1, C2, .. ,Ck where Ci can be either a Join

constraint of the form ($xi/[ID]=$xj/[ID]), Or a filter constraint of the

form ($xi/[path] “operand” [value])

• O is a set of Outputs returned by the query, with each result has the

form ($x/[path])

An algorithm is developed to translate mappings of pattern tree queries with

local data sources into new queries that will be able to get data from these

sources. The input of the algorithm is a set of matrices including i) pt Arcs: a

matrix of pattern arcs and ii) AMM: a matrix of schema arcs matching

correspondent pattern arcs and iii) QIM: an index matric for new queries.

The algorithm shown in figure 40 derives the three main components of

FLWOR expressions: Generators, Constraints and Outputs. Generators are

the roots of matching twigs. Going back to the example in figure 26,

generators will be the following:

• St1//group

• St1//pub

• St2//project

114 | P a g e

• St3//dept

As a query can be rewritten into more than one new query, generators are

identified for each new query by investigating the correspondent arcs in the

AMM. The algorithm starts by considering the parent of the first matching

arc, say A1, as a generator and then iterates through the AMM. If the next

arc, say A2, is not within the same schema tree (St), then the parent of A2 is

added as a new generator. If A2 is in the same St, there are four possible

cases:

• A1 and A2 are sibling arcs: in this case, no generators are added

because the two arcs have the same parent node.

• A1 is an ancestor of A2: in this case, again no generators are

added because the parent of A1 is an ancestor of the parent of A2.

• A2 is an ancestor of A1: in this case, the parent of A2 should be

the generator and not the parent of A1; therefore, the parent of A1

is deleted from the generators and the parent of A2 is added.

• None of the above: in this case another generator with the parent

of A2 is added, which means that there are two generators that

belong to the same schema tree e.g. St1//group and St1//pub in

figure 26.

115 | P a g e

Figure 40: Query Rewriting Algorithm

Query Rewriting Algorithm

Inputs: A matrix of Pattern tree arcs ptArcs[], a matrix of arc mappings AMM[],
and an index matrix of new queries QIM[] .
Output: A set of Generators (G), Constraints (C) and Outputs (O).

Begin
generators[] = an array of linked lists of generators.
conditions[]=an array of linked lists of conditions.
outputs[] = an array of linked lists of outputs.

// derive generators
For each new query Qi {
Generators.add(arcMatchList[i].get (0).parentNode) //add parent of the first arc
For each arc Aj in the arcMatchList[i]
 For each generator gk in G

If (arc.parentNode) is an ancestor of gi{ // if the arc is ancestors of
the generator node

 Generators.delete(gi); //delete the old generator
Generators.add (arc.parentNode);// insert the arc’s parent node

as a new generator
}

}
// derive constraints
For each combination of generators (gi, gj){
 Search for a join node (nj);
 If generators are related i.e. there is nj {

addConstraint(gi +”//nj/”+getNodeID(nj) =”+gj+ ”//nj/”+ getNodeID(nj));
 }
}
// deriveoutputs
For each node m in the patterNodes where node.returned=’true’ {
 For each generator in G
 If gi is ancestor of m
calculateRelativePath(m);// relative to the generator
outputs.add(m.relativePath);

116 | P a g e

It is not necessarily that there is only one generator per St. For example, in

St1(figure38), there is a normalized match where we have two matching

twigs one of them is referencing the other using ID/IDREF. In this case, two

generators are created, one for each twig.

Constraints, particularity join constraints, specify how matching twigs are

joined together. For that, the algorithm takes an array of generators, an arc

mapping matrix AMM and Pt nodes information as input; and for each two

generators, a constraint is formed based on several factors. First, depending

on the type of arc match (Direct, Inverted, AttNode, Normalized, SepNode or

Hybrid),the constraint is generated differently. For each couple of twigs, a

“join node” is identified, and it is not necessarily the same node defined by

the generator (i.e. the root of the matching twig), it might be a child of the

generator node in case of inverted match e.g. St2 in figure38. Additionally,

in case of normalised arc match, e.g. St1 in figure 38, a constraint is formed

to join internal twigs in order to de-normalise the ID/IDREF connections.

Finally, the ID of each node involved in the join constraint is obtained in

order to form an equi-join between join nodes of different twigs.

The last part is the set of Outputs. These are obtained by making use of

the AMM, which links nodes and arcs of a Pt to their correspondents in St’s.

From Pt information, it can be verified whether a node is an output node or

117 | P a g e

not and then the relative path to that node is calculated by making use of the

generators defined earlier.

6.3. Query Ranking

As mentioned in section 5.3.3, the Generate New Queries Algorithm

(figure35) filters the queries in QIM in order to eliminate intermediate ones

which removes around 90% of them. What remains (around 10%) are not all

similar in terms of performance and confidence (Belief). Therefore, these

queries can be ranked in order to meet users’ requirements in terms of these

two features.

Performance varies depending on the number of joins required for a certain

query. By checking the remaining queries in QIM, a simple algorithm can

determine the number of joins required for each one. For best performance,

queries with minimum number of joins are selected.

For confidence, the arc matching degrees (µA) depends on the arc match

type and therefore the total confidence of a query (𝜇𝑄𝑖) can be calculated as

the total confidence for the arcs composing that query. More formally:

𝜇𝑄𝑖 = �𝜇𝐴𝑘

𝑛

𝑘=0

Where the query Qi is composed of the arcs A0, A1..Ak.

118 | P a g e

6.4. Chapter conclusion

In this chapter, the process of joining matching twigs was illustrated. In

addition, novel algorithms were presented for XML pattern query rewriting.

These use the outputs of the mapping phase as input in order to infer a new

query(s). As XQuery is the standard language for XML queries, and because

FLWOR is the most common XQuery expression, some FLWOR-like

expressions where adopted as the format for both the original query and the

new queries.

119 | P a g e

Chapter Seven: Experimental Results

7. Experimental Results

7.1. Prototype

7.2. Mapping phase

7.3. Query filtration and ranking

7.4. Query rewriting phase

7.5. Processing Cost

7.6. IFT vs. Other approaches

7.7. Chapter conclusion

120 | P a g e

7. Experimental Results

In this chapter, results of testing the proposed framework are presented.

Testing was based on a set of synthetic data representing the research

groups’ information case study discussed in previous chapters. The main

aspects covered by the testing are :i) ability of the proposed solution to

identify all types of soft arc matching and to rewrite the original pattern

query properly i.e. to provide the correct output ii) Processing cost i.e. CPU

and memory usage and iii) scalability. Furthermore, testing was performed

separately for the arc mapping phase and the query rewriting phase; and

finally, for the two phases together.

7.1. Prototype

To test the proposed ideas, a prototype was developed with Java NetBeans

IDE 6.8 on a 1.86 GHz PC with 3.0 GB of RAM. Pattern trees were

modelled as XML documents which were parsed using the Java DOM

Parser. Even though FLWOR expressions are not in XML format, an XML

document representing a Pt can be extracted from there; however, this is

beyond the scope of this study. Modelled as DTDs, schema trees were parsed

using org.xmlmiddleware.schemas.DTDs.* package [78], which was

developed with Java classes.

121 | P a g e

The testing sample consisted of 3 different Pts with different sizes, as shown

in figure (41) below, and 50 DTDs, each of size 85 (nodes). Only 7 out of the

50 DTD had matching nodes with the Pts, the rest are random nodes from

unrelated DTDs. This aims to test the scalability of the system by checking

the cost (I/O and Memory) when matching a Pt against different sets of

DTDs. Additionally, all types of soft arc matching addressed in section 5.2.

are covered in the aforementioned DTDs.

Figure 41: Pt’s with different sizes

In the following sections, different features of the proposed solution are

tested for the mapping phase, query writing phase and for the entire solution.

7.2. Mapping phase

In this part, each Pt is compared against different sets of DTDs starting from

10 DTDs and adding 10 each time up to 50 DTDs. For each DTD, the fuzzy

support (Sf) and fuzzy confidence (Cf) are calculated and soft node and arc

122 | P a g e

matching is performed. Results of matching (mappings) are kept in the

correspondent mapping matrices which will be passed to next phase, query

rewriting.

To start with, we show that all of the proposed types of soft arc matching

were detected by the matching algorithm. We chose to match Pt3 against the

7 related DTDs so that all types of soft arc matching are tested. Each DTD is

modelled as a schema tree and displayed alongside the matching arcs as in

table1. In the left hand side of the table, each matching Pt arc is mapped to its

counterpart in the correspondent St. The letters between the tags ‘<>’

indicate to the arc match type as discussed in section 5.2. A null tag, <null>,

indicates that no matching is found.

Table(1): Results of node and arc mapping

Result from Java Netbeans IDE

(Soft arc matching)

Schema Tree

--- FuzzyMatch.matchs()- c:/schemas/St1.dtd ----

Pt[dept, dname]--> St [dept, dname]<D>

Pt[dept, location]--> St [dept, @location]<A>

Pt[dept, group]--> St [dept, group]<S>

Pt[group, gname]--> St [group, gname]<D>

123 | P a g e

--- FuzzyMatch.matchs()- c:/schemas/St2.dtd ----

Pt [dept, dname]--> St [dept, @dname]<A>

Pt [dept, group]--> St [dept, group]<null>

Pt [group, gname]--> St [group, gname]<D>

Pt [group, project]--> St [group, project]<I>

Pt [project, pname]--> St [project, pname]<D>

--- FuzzyMatch.matchs()- c:/schemas/St3.dtd ----

Pt [group, gname] --> St [group, gname]<D>

Pt [group, publication] --> St [group, publication]<N>

Pt [publication, year] --> St [publication, year]<D>

Pt [publication, title] --> St [publication, title]<D>

--- FuzzyMatch.matchs()- c:/schemas/St4.dtd ----

Pt [group, gname]--> St [group, gname]<D>

Pt [group, publication]--> St [group, publication]<IN>

Pt [publication, title] --> St [publication, title]<D>

124 | P a g e

--- FuzzyMatch.matchs()- c:/schemas/St5.dtd ----

Pt[dept, dname]--> St [dept, @dname]<AS>

Pt[dept, group]--> St [dept, group]<null>

Pt[group, gname]--> St [group, gname]<D>

Pt[group, project]--> St [group, project]<IS>

Pt[project, pname]--> St [project, pname]<D>

--- FuzzyMatch.matchs()- c:/schemas/St6.dtd ----

Pt [group, gname]--> St [group, gname]<D>

Pt[group, publication]--> St [group, publication]<SN>

Pt[publication, year]--> St [publication, year]<D>

Pt[publication, title]--> St [publication, title]<D>

--- FuzzyMatch.matchs()- c:/schemas/St7.dtd ----

Pt[group, gname]--> St [group, gname]<D>

Pt[group, publication]--> St [group,

publication]<ISN>

Pt[publication, title]--> St [publication, title]<D>

125 | P a g e

7.3. Query filtration and ranking

The output of the mapping phase, particularly the AMM, is passed as input to

the Generate New Queries Algorithm (figure 35) along with PtNodes matrix.

The algorithm generates indexes of new queries (QIM), including

intermediate ones and then filters out the latters.

Following the same testing case study presented in section 7.2., the total

number of output queries in QIM will be the result of multiplying the number

of matching schema arcs for each pattern arc in Pt as follows: (See Definition

22)

Number of output queries=|ϻ(A(dept, dname))|x|ϻ(A(dept, location))| x

|ϻ(A(dept, group))| x |ϻ(A(group, gname))|x |ϻ(A(group, project))|x |ϻ(A(group,

publication))|x |ϻ(A(project, pname))|x |ϻ(A(publication, title))| x |ϻ(A(publication,

year))|

=3x1x1x7x2x4x2x4x2

=2,688

After performing stage one of filtration (see section 5.3.3.), which deletes

any query where one arc only of any schema tree is mapped, only 76 out of

2,688 queries remained. In other words, 94% of the queries were deleted.

126 | P a g e

The remaining 76 queries went in the second stage where queries with twigs

that do not have an ID arc are excluded. This left only 64for the next stage.

Now in the final stage, if the ID arcs composing any two queries are

different and the non-ID arcs are similar, then the two queries are equivalent

and one of them should be deleted. By doing that, only 12 queries remained.

Overall, the filtration algorithm kept 16 queries out of 2,688 i.e. almost

0.6% of the queries in QIM. Index of these queries is shown in figure 42.

127 | P a g e

Figure 42: Remaining queries in QIM

(dept, dname) (dept, location)(dept, group) (group, gname) (group, project) (group, pub) (project, pname) (pub, year) (pub, title) # sources μ

Q[1] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [0]: s2.dtd [0]: s3.dtd [0]: s2.dtd [0]: s3.dtd [0]: s3.dtd 3 93%

Q[2] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [0]: s2.dtd [2]: s6.dtd [0]: s2.dtd [1]: s6.dtd [1]: s6.dtd 3 90%

Q[3] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [1]: s5.dtd [0]: s3.dtd [1]: s5.dtd [0]: s3.dtd [0]: s3.dtd 3 90%

Q[4] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [1]: s5.dtd [2]: s6.dtd [1]: s5.dtd [1]: s6.dtd [1]: s6.dtd 3 87%

Q[5] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [2]: s3.dtd [0]: s2.dtd [0]: s3.dtd [0]: s2.dtd [1]: s6.dtd [1]: s6.dtd 4 93%

Q[6] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [2]: s3.dtd [0]: s2.dtd [2]: s6.dtd [0]: s2.dtd [0]: s3.dtd [1]: s6.dtd 4 90%

Q[7] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [2]: s3.dtd [1]: s5.dtd [0]: s3.dtd [1]: s5.dtd [1]: s6.dtd [1]: s6.dtd 4 90%

Q[8] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [2]: s3.dtd [1]: s5.dtd [2]: s6.dtd [1]: s5.dtd [0]: s3.dtd [1]: s6.dtd 4 87%

Q[9] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [3]: s4.dtd [0]: s2.dtd [1]: s4.dtd [0]: s2.dtd [0]: s3.dtd [0]: s3.dtd 4 90%

Q[10] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [3]: s4.dtd [0]: s2.dtd [1]: s4.dtd [0]: s2.dtd [1]: s6.dtd [1]: s6.dtd 4 90%

Q[11] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [3]: s4.dtd [1]: s5.dtd [1]: s4.dtd [1]: s5.dtd [0]: s3.dtd [0]: s3.dtd 4 87%

Q[12] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [3]: s4.dtd [1]: s5.dtd [1]: s4.dtd [1]: s5.dtd [1]: s6.dtd [1]: s6.dtd 4 87%

Q[13] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [6]: s7.dtd [0]: s2.dtd [3]: s7.dtd [0]: s2.dtd [0]: s3.dtd [0]: s3.dtd 4 89%

Q[14] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [6]: s7.dtd [0]: s2.dtd [3]: s7.dtd [0]: s2.dtd [1]: s6.dtd [1]: s6.dtd 4 89%

Q[15] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [6]: s7.dtd [1]: s5.dtd [3]: s7.dtd [1]: s5.dtd [0]: s3.dtd [0]: s3.dtd 4 86%

Q[16] [0]: s1.dtd [0]: s1.dtd [0]: s1.dtd [6]: s7.dtd [1]: s5.dtd [3]: s7.dtd [1]: s5.dtd [1]: s6.dtd [1]: s6.dtd 4 86%

As shown in the figure, the top row consists of the pattern arcs and the rows

below contain an index of the schema arc that maps to the pattern arc

between brackets ‘[]’ as well as the schema name e.g. s1.dtd. The column

titled “# sources” indicated to how many schemas the query is composed

from. Finally the column μ indicates to the degree of Belief or matching

degree of that query, which is the total of beliefs for all composing arcs

divided by the number of arcs.

As mentioned before, the proposed solution allows users to choose between

high performance and confidence. For best performance, queries Q[1]-Q[4]

are the best choices as the number of required joins will be two joins only

whereas for the other queries 3 joins are required. Number of required joins

is simply the number of data sources-1. Even though the difference between

the above queries is one join only, it does make a difference when dealing

with big data sources.

In case users’ priority is precision rather than performance, they can choose

queries with high μ. For the queries in the previous figure, Q1 and Q5 have

belief of 93% which make them the most trusted queries.

7.4. Query rewriting phase

The remaining queries in QIM are passed to the following stage, query

rewriting. In fact, what is left in QIM are just mappings of pattern arcs with

129 | P a g e

correspondent schema arcs. Only the first seven DTDs had matching arcs

whereas the rest are dummy DTDs for the purpose of testing the scalability

of the system. After running the prototype on the first 10 DTDs and filtering

and rewriting the queries in QIM, the final output i.e. the new queries are

produced. For space limitations, we just show the result of rewriting the first

query (Q1) in figure 43 below.

Figure 43: A new query with main components of FLWOR expression

The new query, shown in the previous figure, is not shown as a FLWOR

expression. It is shown as a set of Generators, Filters and Outputs which are

the main parts required for constructing a FLWOR expression.

------------ XQueryRewrite.printNewQueries() ----------
Query [1]
Generators...
$x1 in doc('c://schemas//all//s1.dtd')/site/university/dept
$x2 in doc('c://schemas//all//s2.dtd')/site/university/project
$x3 in doc('c://schemas//all//s3.dtd')/site/group
$x4 in doc('c://schemas//all//s3.dtd')/site/publication

Constraints…
$x1//group/gname=$x3//gname
$x1//group/gname=$x2//group/gname
$x3//pubREF/@pID=$x4//@id

Outputs…
$x1/dname
$x1/@location
$x3/gname
$x2/pname
$x4/title
$x4/year

130 | P a g e

7.5. Processing Cost

It is of great importance to test how much resources i.e. CPU and memory

are consumed by the proposed solution. For that purpose, NetBeans Profiler

was utilized. Pt3in figure 41was compared against 10, 20, 30, 40 and 50

DTDs (each is of 85 nodes size); and performance was analysed in terms of

CPU time (seconds) and memory usage (Mega Bytes). Additionally,

processing cost was analysed for individual tasks such as query matching and

query rewriting as well as for the entire solution. Figure 44 and 45 show line

charts for performance and memory consumption respectively.

Figure 44: Performance results

0

1

2

3

4

5

6

7

8

9

5 10 15 20 25 30 35 40 45 50

CP
U

 T
im

e
(s

)

Number of DTDs

Performace

Query Matching

Query Matching and
Rewriting

131 | P a g e

Figure 45: Memory consumption results

The performance figure shows that the CPU time increases almost linearly as

the number of DTDs increases for both query matching and query rewriting

tasks. Most of the processing time is spent on the query matching part. This

can be noticed clearly as the curves of query matching and the curve of query

matching and writing are very close.

The memory cost figure, on the other hand, shows that memory consumption

increases reasonable with the increment in number of DTDs. Starting with

around 5.0 MB for 5 DTDs, memory consumption is doubled (i.e. 10 MB)

when the DTDs are increase by 10 times (50 DTDs) which indicates that the

system is highly scalable. The query matching (Red curve) and query

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40 45 50

M
em

or
y

(M
B)

Number of DTDs

Memory cost

Query Matching

Query Matching and
Rewriting

132 | P a g e

matching and rewriting (Green curve) curves are very close; they are actually

intersecting each other at some points. For the 10 DTDs point however, the

green curve goes below the red one, which is a testing anomaly caused by the

Java profiler. Overall, the figure implies that query rewriting does not require

any extra memory and that the query matching consumes most of the heap

memory allocated to the system.

The aforementioned memory cost refers to the maximum used heap at any

time during the prototype execution; the average memory usage is always

less than that. Figure 46 and 47 below show the amount of used heap

memory at each moment of the execution for 10 DTDs and 50 DTDs

respectively.

Figure 46: Heap memory usage during execution time for 10 DTDs

133 | P a g e

Figure 47: Heap memory usage during execution time for 50 DTDs

7.6. IFT vs. Other approaches

IFT has been compared against previous approaches according to a number

of features as shown in table (2). First, approaches were compared against

different types of arc matching. Obviously, they all support direct arc

matching while few of them support other types such as Normalised and

SepNode matching. However, the Inverted, AttNode and Hybrid match

types are only supported by IFT and cannot be identified using any other

approach.

Next, the approaches were compared against a set of features. Those are:

• Partial results: an indicator to whether the approach can obtain

partial results (matchings) from multiple data sources and then join

these sub-results to construct a full answer to a query.

134 | P a g e

Table (2): IFT vs. Other approaches

 Arc match type Other features

Approach/ Feature Direct Inverted Normalised SepNode AttNode Hybrid
Partial
results

Ranking
Logical

Operators
Purpose

/Style
Content/Schema

match

TED [28-30] Yes No No Yes No No No No No Similarity
[28-29] schema

[30] Both
Twig Patterns [31-38,
40, 51]

Yes No No No No No Yes No No Evaluation Both

Query Relaxation [14-
20]

Yes No No Yes No No No Yes No IR Schema

Fuzzy PTs [41, 42] Yes No No No No No No No No Matching Both

Extended PTs [52-55] Yes No No No No No No No Yes Matching Schema

Graph Patterns [57-
58]

Yes No Yes No No No Yes No No Matching Schema

Tree Algebra [61] Yes No No No No No No No No Matching Schema

Tree Mining [12,13,
62]

Yes No No No No No No No No Similarity Schema

Query Rewriting [63,
64]

Yes No Yes Yes No No Yes Yes No Rewriting Schema

IFT matching Yes Yes Yes Yes Yes Yes Yes Yes No
Similarity,

Matching &
Rewriting

Schema

135 | P a g e

• Ranking: refers to whether the approach contains ranking

functionality for the query results.

• Logical operators: does the approach support logical operators such

as OR, AND and negation function.

• Purpose/style: it can be either Tree similarity, query evaluation,

query matching, query rewriting or IR(Information Retrieval)

• Content/schema match: refers to whether the scope is to match

content, schema or both.

As shown, IFT supports main features such as partial results and ranking

and covers many purposes such as similarity, matching and rewriting.

7.7. Chapter conclusion

The chapter described the prototype developed to verify the proposed

solution. Different aspects where investigated by testing individual parts of

the prototype and then testing the whole system all together. Results showed

that the system was able to identify different types of soft arc matching,

assign appropriate belief/matching degree to each one of them and use these

matchings to generate new queries. Additionally, it was proved that the

proposed algorithms do not consume a lot of resources even with big

numbers of data sources.

136 | P a g e

Chapter Eight: Conclusion and Further Work

8. Conclusion and Further Work

8.1. Summary

8.2. Contributions and limitations

8.3. Directions for further work

137 | P a g e

8. Conclusion and Further Work

In this chapter, a summary of this thesis is presented. In addition, the

contributions and limitations of this research are pointed out. Directions for

further research are also addressed in the last section.

8.1. Summary

This thesis addressed the issue of approximate matching and rewriting of

XML queries using IFT. It started by introducing the XML data model and

its features and critically evaluated the benefits and drawbacks of that model.

The most popular XML query languages were discussed briefly with main

focus on XQuery as a W3C recommendation.

A comprehensive literature review of XML similarity and pattern tree

matching was presented. Traditional schema matching approaches were

discussed as well as XML schema matching (or similarity) approaches. XML

query matching approaches such as Tree Edit Distance, Pattern Tree

Matching and others were thoroughly evaluated and classified. Great

attention was given to studies on structural pattern tree matching and their

limitations were pointed out. Additionally, relevant XML query rewriting

approaches were investigated. Overall, the previous studies revealed limited

138 | P a g e

ability of efficiently querying XML documents from different data sources

with different schemas.

After that, Intuitionistic Fuzzy Logic and IFT were presented. A set of

definitions and formal equations on fuzzy tree similarity/inclusion were

introduced. A new similarity measure based on Fuzzy Support and Fuzzy

Confidence was demonstrated along with a novel algorithm for calculating it.

Moreover, a novel approach for soft node matching and soft arc matching

was demonstrated along with formalism for all different types of soft

matching and matrices for holding results of matching. Furthermore, original

algorithms were developed to use the results of soft arc matching in order to

rewrite the original pattern query into new queries that can return data from

available data sources even if they have different structures. More

interestingly, the proposed algorithms were developed to obtain partial

results from different sources and merge/join these results together in order

to return a unified answer to the pattern query.

A prototype of the proposed solution was implemented and tested using Java

NetBeans API. All different aspects of the solution such as the ability of

matching pattern queries with heterogeneous XML documents and rewriting

the original query in the light of matching results, were tested. In addition,

performance and memory consumptions were tested for different sets of

139 | P a g e

DTDs and it proved that the proposed solution performs very well and does

not consume a lot of resources even in case of big number of XML schemas.

8.2. Contributions and limitations

The proposed solution presented a new approach to approximate XML query

matching and rewriting which proved to be more efficient than previous

ones. This was achieved by a number of novel algorithms for soft matching

of XML pattern trees and schema trees. Overall, the author claims the

following contributions:

a) Presenting IFT, a new approach for fuzzy tree similarity/inclusion

based on considering the number of common nodes as well as the

number of common arcs as basic units of data schema (structure)

along with a two-value measure <Cf, Sf> that indicates to what

degree a tree is included in another.

b) Introducing new types of fuzzy arc matching that can match a

pattern arc to a schema arc as long as the correspondent parent and

child nodes are there and have reachability between each other.

c) Defining membership degrees for different types of soft arc

matching and use these to calculate the degree of confidence of

the composing query and rank new queries according to that.

140 | P a g e

d) Proposing a novel algorithm to join matching arcs from different

XML schemas based on ID constraints and uses these to construct

new queries. Additionally, the algorithm consists of filtering new

queries by removing intermediate ones.

e) Producing a novel algorithm that takes arc mapping matrices as

input and produces new queries in XQuery format, particularly in

FLWOR expressions.

To the best of the author’s knowledge, the above contributions are novel and

no other previous studies proposed any similar contribution.

In regards to limitations, the proposed approach was limited to XML query

(or schema) matching because both XML queries and XML documents can

be modelled as trees and the approach applies to matching models that have

tree structures including comparing XML schemas together for integration

and clustering purposes.

Moreover, the proposed approach cannot handle all sorts of structural

heterogeneity. In cases where one node such as “name” is modelled as two

nodes “first name” and “last name”, this cannot be resolved by our approach.

Furthermore, the study is focused on matching the structures of XML queries

and documents; matching contents is not in the scope of this research nor

query processing and optimisation are.

141 | P a g e

8.3. Directions for further work

In this thesis, a number of contributions have been achieved towards solving

the issue of querying XML data sources with heterogeneous schemas.

However, there is still a lot of work to be done before the issue is resolved

efficiently. This can be summarised by the following:

• Integrate or query XML documents with different schemas where

data and meta-data are mixed e.g. the tag <Africa> refers to a

name of area i.e. it is data; however, it is treated as meta-data in

this example.

• Develop query rewriting algorithms for different types of XML

query languages such as XPath and for P2P schema translation.

• Extend IFT query matching approach to match contents in addition

to structures. This can be useful in identifying and removing

duplications.

• There is potential to improve the current approach by using

semantic web technologies such as using reasoning to improve soft

arc matching approaches.

These are few suggestions for research directions that the author thinks are

worthwhile investigating. The way to efficient XML query languages that

142 | P a g e

can come over the high diversity in data representation is still far, but it is

essential that a great amount of effort is invested in this area especially that

XML is becoming the backbone of online data sources.

143 | P a g e

References

[1] W3C. (2012, 20 June 2011). Introduction to XML. Available:
http://www.w3schools.com /xml/xml_whatis.asp

[2] W3C. (2010, 21 June 2011). An XML Query Language (Second
Edition) Available: http://www.w3.org/TR/xquery/#id-introduction

[3] E. Harold and W. Means, XML in a Nutshell: O'Reilly Media,
Incorporated, 2004.

[4] Microsoft. (2011, 20 June 2012). Config.xml file in Office 2010
Available: http://technet.microsoft.com/en-us/library/cc179195.aspx

[5] B. Evjen, K. Sharkey, T. Thangarathinam, M. Kay, A. Vernet, and S.
Ferguson, Professional XML: Wiley, 2007.

[6] G. Powell, Beginning XML Databases: Wiley, 2007.

[7] F. Ravat, O. Teste, R. Tournier, and G. Zurfluh, "Finding an
application-appropriate model for XML data warehouses,"
Information Systems, vol. 35, pp. 662-687, Sep 2010.

[8] B. Bos. (2005, 16/04/2012). The XML data model. Available:
http://www.w3.org/XML/Datamodel.html

[9] B. K. Y. Sagiv, "Twig Patterns: From XML Trees to Graphs "
presented at the Ninth International Workshop on the Web and
Databases (WebDB 2006), Chicago, Illinois., 2006.

[10] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang, "Fast Graph
Pattern Matching," presented at the Proceedings of the 2008 IEEE
24th International Conference on Data Engineering, 2008.

[11] C. Jiefeng, J. X. Yu, and P. S. Yu, "Graph Pattern Matching: A
Join/Semijoin Approach," Knowledge and Data Engineering, IEEE
Transactions on, vol. 23, pp. 1006-1021, 2011.

[12] F. D. R. Lopez, A. Laurent, P. Poncelet, and M. Teisseire,
"FTMnodes: Fuzzy tree mining based on partial inclusion," Fuzzy
Sets Syst., vol. 160, pp. 2224-2240, 2009.

[13] A. Laurent, M. Teisseire, and P. Poncelet, "Chapter 12 Fuzzy data
mining for the semantic web: Building XML mediator schemas," in

http://www.w3schools.com/
http://www.w3.org/TR/xquery/#id-introduction
http://technet.microsoft.com/en-us/library/cc179195.aspx
http://www.w3.org/XML/Datamodel.html

144 | P a g e

Capturing Intelligence. vol. Volume 1, S. Elie, Ed., ed: Elsevier,
2006, pp. 249-264.

[14] S. Amer-Yahia, S. Cho, and D. Srivastava, "Tree Pattern Relaxation,"
presented at the Proceedings of the 8th International Conference on
Extending Database Technology: Advances in Database Technology,
2002.

[15] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit, "FleXPath:
flexible structure and full-text querying for XML," presented at the
Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, Paris, France, 2004.

[16] C. Liu, J. Li, J. X. Yu, and R. Zhou, "Adaptive relaxation for
querying heterogeneous XML data sources," Inf. Syst., vol. 35, pp.
688-707, 2010.

[17] N. Wiwatwattana, H. V. Jagadish, L. V. S. Lakshmanan, and D.
Srivastava, "X^ 3: A Cube Operator for XML OLAP," in Data
Engineering, 2007. ICDE 2007. IEEE 23rd International Conference
on, 2007, pp. 916-925.

[18] B. Fazzinga, S. Flesca, and A. Pugliese, "Retrieving XML data from
heterogeneous sources through vague querying," ACM Trans.
Internet Technol., vol. 9, pp. 1-35, 2009.

[19] B. Fazzinga, S. Flesca, and F. Furfaro, "On the expressiveness of
generalization rules for XPath query relaxation," presented at the
Proceedings of the Fourteenth International Database Engineering
\&\#38; Applications Symposium, Montreal, Quebec, Canada, 2010.

[20] B. Fazzinga, S. Flesca, and F. Furfaro, "XPath Query Relaxation
through Rewriting Rules," IEEE Trans. on Knowl. and Data Eng.,
vol. 23, pp. 1583-1600, 2011.

[21] E. Rahm and P. A. Bernstein, "A survey of approaches to automatic
schema matching," The VLDB Journal, vol. 10, pp. 334-350, 2001.

[22] P. Shvaiko and J. Euzenat, "A Survey of Schema-Based Matching
Approaches Journal on Data Semantics IV," in Journal on Data
Semantics IV. vol. 3730, S. Spaccapietra, Ed., ed: Springer Berlin /
Heidelberg, 2005, pp. 146-171.

145 | P a g e

[23] J. Tekli, R. Chbeir, and K. Yetongnon, "An overview on XML
similarity: Background, current trends and future directions,"
Computer Science Review, vol. 3, pp. 151-173, 2009.

[24] G. Gang, "Efficiently Querying Large XML Data Repositories: A
Survey," IEEE Transactions on Knowledge and Data Engineering,
vol. 19, pp. 1381-1403, 2007.

[25] M. M. Sukomal Pal, "XML Retrieval: A Survey " Internet Policies
and Issues, vol. 8, pp. 229-272, 2006.

[26] H. Marouane, "A Survey of XML Tree Patterns," IEEE Transactions
on Knowledge and Data Engineering, vol. 99, 2011.

[27] P. Bille, "A survey on tree edit distance and related problems," Theor.
Comput. Sci., vol. 337, pp. 217-239, 2005.

[28] A. Nierman and H. V. Jagadish, "Evaluating Structural Similarity in
XML Documents," in Proceedings of the Fifth International
Workshop on the Web and Databases (WebDB 2002), 2002.

[29] Y. Chen and Y. Chen, "A new tree inclusion algorithm," Inf. Process.
Lett., vol. 98, pp. 253-262, 2006.

[30] L. L. P. C. M. Weis, "Structure-based inference of xml similarity for
fuzzy duplicate detection," presented at the Proceedings of the
sixteenth ACM conference on Conference on information and
knowledge management, Lisbon, Portugal, 2007.

[31] H. V. J. Shurug Al-Khalifa , Nick Koudas , Jignesh M. Patel , Divesh
Srivastava , Yuqing Wu, "Structural Joins: A Primitive for Efficient
XML Query Pattern Matching," presented at the Proceedings of the
18th International Conference on Data Engineering, 2002.

[32] N. Bruno, N. Koudas, and D. Srivastava, "Holistic twig joins: optimal
XML pattern matching," presented at the Proceedings of the 2002
ACM SIGMOD international conference on Management of data,
Madison, Wisconsin, 2002.

[33] H. Jiang, W. Wang, H. Lu, and J. X. Yu, "Holistic twig joins on
indexed XML documents," presented at the Proceedings of the 29th
international conference on Very large data bases - Volume 29,
Berlin, Germany, 2003.

[34] N. Grimsmo, "Bottom Up and Top Down – Twig Pattern Matching
on Indexed Trees," NTNU, 2011.

146 | P a g e

[35] N. Grimsmo, T. A. Bj\, \#248, rklund, and M. L. Hetland, "Fast
optimal twig joins," Proc. VLDB Endow., vol. 3, pp. 894-905, 2010.

[36] N. Grimsmo, "Faster path indexes for search in XML data,"
presented at the Proceedings of the nineteenth conference on
Australasian database - Volume 75, Gold Coast, Australia, 2007.

[37] P. R. Rao, "Indexing xml data for efficient twig pattern matching,"
University of Arizona, 2007.

[38] P. Rao and B. Moon, "Sequencing XML data and query twigs for fast
pattern matching," ACM Trans. Database Syst., vol. 31, pp. 299-345,
2006.

[39] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval: McGraw-Hill, Inc., 1986.

[40] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman, "On
supporting containment queries in relational database management
systems," SIGMOD Rec., vol. 30, pp. 425-436, 2001.

[41] J. Liu, Z. M. Ma, and L. Yan, "Efficient processing of twig pattern
matching in fuzzy XML," presented at the Proceedings of the 18th
ACM conference on Information and knowledge management, Hong
Kong, China, 2009.

[42] J. Liu, Z. M. Ma, and L. Yan, "FTwig: Efficient algorithm for
processing fuzzy XML twig pattern matching," presented at the
FSKD, 2010.

[43] N. Polyzotis, M. Garofalakis, and Y. Ioannidis, "Approximate XML
query answers," presented at the Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, Paris,
France, 2004.

[44] I. Sanz, M. Mesiti, G. Guerrini, and R. Berlanga, "Fragment-based
approximate retrieval in highly heterogeneous XML collections,"
Data Knowl. Eng., vol. 64, pp. 266-293, 2008.

[45] I. Sanz, M. Mesiti, G. Guerrini, and R. B. Llavori, "Approximate
subtree identification in heterogeneous XML documents collections,"
presented at the Proceedings of the Third international conference on
Database and XML Technologies, Trondheim, Norway, 2005.

147 | P a g e

[46] A. Algergawy, R. Nayak, and G. Saake, "Element similarity
measures in XML schema matching," Information Sciences, vol. 180,
pp. 4975-4998, 2010.

[47] N. Agarwal, M. G. Oliveras, and Y. Chen, "Approximate Structural
Matching over Ordered XML Documents," presented at the
Proceedings of the 11th International Database Engineering and
Applications Symposium, 2007.

[48] P. Rao and B. Moon, "PRIX: Indexing And Querying XML Using
Prüfer Sequences," presented at the Proceedings of the 20th
International Conference on Data Engineering, 2004.

[49] H. Wang and X. Meng, "On the Sequencing of Tree Structures for
XML Indexing," presented at the Proceedings of the 21st
International Conference on Data Engineering, 2005.

[50] H. Wang, S. Park, W. Fan, and P. S. Yu, "ViST: a dynamic index
method for querying XML data by tree structures," presented at the
Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, San Diego, California, 2003.

[51] Z. Bao, T. W. Ling, J. Lu, and B. Chen, "SemanticTwig: a semantic
approach to optimize XML query processing," presented at the
Proceedings of the 13th international conference on Database systems
for advanced applications, New Delhi, India, 2008.

[52] H. Jiang, H. Lu, and W. Wang, "Efficient processing of XML twig
queries with OR-predicates," presented at the Proceedings of the
2004 ACM SIGMOD international conference on Management of
data, Paris, France, 2004.

[53] X. Xu, Y. Feng, and F. Wang, "Efficient Processing of XML Twig
Queries with All Predicates," presented at the Proceedings of the
2009 Eigth IEEE/ACIS International Conference on Computer and
Information Science, 2009.

[54] J. Lu, T. W. Ling, Z. Bao, and C. Wang, "Extended XML Tree
Pattern Matching: Theories and Algorithms," IEEE Trans. on Knowl.
and Data Eng., vol. 23, pp. 402-416, 2011.

[55] Q. Zeng, X. Jiang, and H. Zhuge, "Adding logical operators to tree
pattern queries on graph-structured data," Proc. VLDB Endow., vol.
5, pp. 728-739, 2012.

148 | P a g e

[56] B. Chen, J. Lu, and T. W. Ling, "Exploiting ID references for
effective keyword search in XML documents," presented at the
Proceedings of the 13th international conference on Database systems
for advanced applications, New Delhi, India, 2008.

[57] L. Chen, A. Gupta, and M. E. Kurul, "Stack-based algorithms for
pattern matching on DAGs," presented at the Proceedings of the 31st
international conference on Very large data bases, Trondheim,
Norway, 2005.

[58] H. Wang, J. Li, W. Wang, and X. Lin, "Coding-based Join
Algorithms for Structural Queries on Graph-Structured XML
Document," World Wide Web, vol. 11, pp. 485-510, 2008.

[59] Z. Vagena, M. M. Moro, and V. J. Tsotras, "Twig query processing
over graph-structured XML data," presented at the Proceedings of the
7th International Workshop on the Web and Databases: colocated
with ACM SIGMOD/PODS 2004, Paris, France, 2004.

[60] H. Wu, T. W. Ling, G. Dobbie, Z. Bao, and L. Xu, "Reducing graph
matching to tree matching for XML queries with ID references,"
presented at the Proceedings of the 21st international conference on
Database and expert systems applications: Part II, Bilbao, Spain,
2010.

[61] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and K.
Thompson, "TAX: A Tree Algebra for XML," presented at the
Revised Papers from the 8th International Workshop on Database
Programming Languages, 2002.

[62] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S.
Arikawa, "Efficient Substructure Discovery from Large Semi-
structured Data," in SDM, 2002.

[63] C. Yu and L. Popa, "Constraint-based XML query rewriting for data
integration," presented at the Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, Paris,
France, 2004.

[64] A. Bonifati, E. Chang, T. Ho, L. V. Lakshmanan, R. Pottinger, and
Y. Chung, "Schema mapping and query translation in heterogeneous
P2P XML databases," The VLDB Journal, vol. 19, pp. 231-256,
2010.

149 | P a g e

[65] X. Yang, M. L. Lee, T. W. Ling, and G. Dobbie, "A semantic
approach to query rewriting for integrated XML data," presented at
the Proceedings of the 24th international conference on Conceptual
Modeling, Klagenfurt, Austria, 2005.

[66] L. A. Zadeh, "The concept of a linguistic variable and its application
to approximate reasoning—I," Information Sciences, vol. 8, pp. 199-
249, 1975.

[67] K. T. Atanassov, Intuitionistic fuzzy sets: theory and applications:
Physica-Verlag, 1999.

[68] K. Atanassov, "On Intuitionistic fuzzy graphs and Intuitionistic fuzzy
relations," IFSA World Congress, vol. 1, pp. 551-554, July 1995
1995.

[69] K. Atanassov, "Temporal intuitionistic fuzzy graphs," Notes on
Intuitionistic Fuzzy Sets, vol. 4, pp. 59-61, 1998.

[70] K. T. Atanassov, "Intuitionistic Fuzzy Sets," in Studies in Fuzziness
and Soft Computing. vol. 35, ed Berlin: Springer, 1999, pp. 121-324.

[71] K. Atanassov, "On index matrix interpretations of Intuitionistic fuzzy
graphs," Notes on Intuitionistic Fuzzy Sets, vol. 8, pp. 73-78, 2002.

[72] M. A. P. Chountas, A. Shannon, K. Atanassov, "On Intuitionistic
fuzzy trees," presented at the Notes on Intuitionistic Fuzzy Sets,
2009.

[73] U. Zernik, Lexical Acquisition: Exploiting On-line Resources To
Build A Lexicon: Taylor & Francis, 1991.

[74] P. K. a. P. Prochazkova. (2010, 14/12/2011). Linguatools. Available:
http://www.linguatools.de/disco/disco_en.html

[75] M. Alzebdi, P. Chountas, and K. Atanassov, "Intuitionistic Fuzzy
XML Query Matching," in Flexible Query Answering Systems. vol.
7022, H. Christiansen, G. Tré, A. Yazici, S. Zadrozny, T. Andreasen,
and H. Larsen, Eds., ed: Springer Berlin Heidelberg, 2011, pp. 306-
317.

[76] M. Alzebdi, P. Chountas, and K. T. Atanassov, "An IFTr approach to
approximate XML query matching," presented at the SMC, 2011.

http://www.linguatools.de/disco/disco_en.html

150 | P a g e

[77] M. Alzebdi, P. Chountas, and K. Atanassov, "Approximate XML
Query Matching and Rewriting Using Intuitionistic Fuzzy Trees,"
presented at the IEEE IS Sofia, 2012.

[78] R. Bourret. (2009, 12-08-2011). DTD Parser. Available:
http://www.rpbourret.com/xmldbms/docs20/org.xmlmiddleware.sche
mas.dtds.html

http://www.rpbourret.com/xmldbms/docs20/org.xmlmiddleware.schemas.dtds.html
http://www.rpbourret.com/xmldbms/docs20/org.xmlmiddleware.schemas.dtds.html

151 | P a g e

Appendix A: Publications

The author has published the following publications in relation to this thesis:

Conference Papers:

• M. Alzebdi, P. Chountas, K. Atanassov, “Approximate XML Query

Matching and Rewriting Using Intuitionistic Fuzzy Trees”, IEEE IS

2012. Vol. II, pp. 200-205, 2012.

• M. Alzebdi, P. Chountas, K. Atanassov, “An IFTr Approach to

Approximate XML Query Matching”, IEEE SMC 2011, pp. 2425-

2430, 2011.

• M. Alzebdi, P. Chountas, K. Atanassov, “Enhancing DWH Models

with the Utilisation of Multiple Hierarchical Schemata”, IEEE SMC

2010, pp. 488-492, 2010.

• P. Chountas, M. Alzebdi, A. Shannon, K. Atanassov, “On

Intuitionistic Fuzzy Trees”, Notes on Intuitionistic Fuzzy Sets, Vol.

15, No. 2, pp. 30-32, 2009.

Book Sections:

• M. Alzebdi, P. Chountas, K. Atanassov, “Intuitionistic Fuzzy XML

Query Matching”, Springer LNCS 2011. Vol. 7022, pp. 306-317,

2011.

