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Abstract 

Insulin secretion following ingestion of a carbohydrate load affects a multitude of metabolic pathways 

that simultaneously change direction and quantity of interorgan fluxes of sugars, lipids and amino 

acids. In the present study, we aimed at identifying markers associated with differential responses to 

an OGTT a population of healthy adults. By use of three metabolite profiling platforms, we assessed 

these postprandial responses of a total of 202 metabolites in plasma of 72 healthy volunteers 

undergoing comprehensive phenotyping and of which half enrolled into a weight-loss program over a 

three-month period. A standard oral glucose tolerance test (OGTT) served as dietary challenge test to 

identify changes in postprandial metabolite profiles. Despite classified as healthy according to WHO 

criteria, two discrete clusters (A and B) were identified based on the postprandial glucose profiles with 

a balanced distribution of volunteers based on gender and other measures. Cluster A individuals 

displayed 26% higher postprandial glucose levels, delayed glucose clearance and increased fasting 

plasma concentrations of more than 20 known biomarkers of insulin resistance and diabetes previously 

identified in large cohort studies. The volunteers identified by canonical postprandial responses that 

form cluster A may be called pre-pre-diabetics and defined as “at risk” for development of insulin 

resistance. Moreover, postprandial changes in selected fatty acids and complex lipids, bile acids, amino 

acids, acylcarnitines and sugars like mannose revealed marked differences in the responses seen in 

cluster A and cluster B individuals that sustained over the entire challenge test period of 240 minutes. 

Almost all metabolites, including glucose and insulin, returned to baseline values at the end of the test 

(at 240 minutes), except a variety of amino acids and here those that have been linked to diabetes 

development. Analysis of the corresponding metabolite profile in a fasting blood sample may therefore 

allow for early identification of these subjects at risk for insulin resistance without the need to undergo 

an OGTT.       

 

 

 

 

1. Introduction 

Subjects with insulin resistance display impaired phenotypic flexibility as a consequence of a reduced 

capacity for insulin-stimulated glucose uptake into muscle and adipose tissue and insufficient 
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suppression of hepatic gluconeogenesis (Hatting et al., no date; Galgani, Moro and Ravussin, 2008). 

The oral glucose tolerance test (OGTT) is an effective assessment method for identification of an 

insulin resistant state, a pre-stage for multiple chronic diseases, including diabetes type II. Insulin by 

its pleiotropic actions affects interorgan fluxes of almost all nutrient classes and in turn, insulin 

resistance results in impaired metabolite partitioning and that may therefore contribute to metabolic 

dysregulation (Legro, Castracane and Kauffman, 2004; Krug et al., 2012).  

The application of metabolic profiling attempts in human studies are often limited to biosamples that 

can be easily collected such as urine or plasma/serum. Yet, these metabolite patterns can provide 

insights into physiological control processes or the establishment of diseases (Zhao et al., 2010; 

LaBarre, Singer and Burant, 2021). Metabolic profiling techniques applied in human studies have led 

to the identification of plasma metabolite signatures associated with insulin resistance dominated by 

branched-chain amino acids (BCAA), acylcarnitines, gluconeogenesis precursors, bile acids (BA), 

ketone bodies and specific lipid groups (Rhee et al., 2011; Würtz et al., 2012; Newgard, 2017). When 

applied together with a dietary challenge such as the OGTT these techniques may identify adaptive 

response patterns as well as biomarkers and pathways that describe the flexibility of the metabolic 

system or its impairment and role in the development of non-communicable chronic diseases (Lépine 

et al., 2022; LaBarre, Singer and Burant, 2021). Following digestion of food and absorption of 

nutrients, individual organs are provided with these substrates in processes mostly regulated by insulin. 

These processes also reveal a high individual variability with the term “metabotype” introduced to 

describe the different patterns of metabolic response or different “metabolic phenotypes” (Gavaghan 

et al., 2000; Stella et al., 2006). The characterization and classification may contribute to the 

development of new interventions in the framework of personalized nutrition (Morris et al., 2013). 

Unfortunately, most human studies that employ metabolite profiling technologies, assess subjects in 

the overnight fasting condition only, therefore lacking phenotypical information derived from the 

response to a meal. This creates a significant gap of information as humans with safe access to food 

spend most of their waking hours in the postprandial state. 

We previously identified distinct metabotypes within a healthy study population, identified based on 

their response to a mixed meal, revealing a co-regulation of different physiologic processes, allowing 

early detection of metabolic impairments and susceptibility to the beneficial effects of energy 

restriction (Fiamoncini et al., 2018). In the present study, we aimed at identifying markers associated 

with differential responses to an OGTT in the same population of healthy adults. In this exercise, we 

describe the close association of several metabolites in plasma with the insulin-dependent postprandial 
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responses employing 3 metabolite profiling platforms. The analysis enabled the identification of new 

biomarkers to be identified that are linked to the body’s insulin-responsiveness.  

 

2 Materials and methods 

2.1 Ethics approval and study registration 

The intervention study was conducted under the umbrella of the “NutriTech” project and was carried 

out at NIHR/Wellcome Trust Imperial Clinical Research Facility at Hammersmith Hospital of Imperial 

College London. The study was approved by the Brent Ethics Committee (REC ref: 12/LO/0139) and 

registered at clinicaltrials.gov record: NCT01684917. NutriTech was funded by the European Union 

Framework 7 program. 

2.2 Study population and experimental design 

The data presented here was obtained from one out of the three dietary challenges (OGTT) performed 

in the NutriTech study. Participants attended a health-screening visit at the research facility that 

included measurements of height, weight, body composition by bioelectric impedance, blood pressure, 

electrocardiogram and markers of clinical chemistry: glucose, insulin, glycated hemoglobin, plasma 

lipids, hematocrit, liver and kidney functions. A total of 72 subjects (38 women and 34 men) that 

displayed no signs of metabolic diseases judged by the clinical assessment during screening completed 

the study. All female participants were post-menopausal. The individuals were overweight/ obese, with 

BMI ranging from 24.7 to 35.5. 

All volunteers underwent an oral glucose tolerance test (OGTT). Subjects were instructed to avoid 

alcohol consumption and strenuous exercise prior to each study visit. The OGTT started at 09:00 am 

following a 12-hours fasting. Upon arrival, participants had a catheter placed in the antecubital vein by 

a trained nurse and a fasting blood sample was obtained. The test consisted in the ingestion of 75g of 

glucose dissolved in 250 mL of water and blood sampling at 0, 15, 30, 60, 90, 120 and 240 minutes. 

The cannula was flushed with saline between blood collections and 3 mL of waste was drawn first to 

allow for the saline diluted blood before the blood was taken for analysis. Plasma (from heparin coated 

tubes) and serum were separated after centrifugation at 1800 rpm and stored at -80°C for future 

analyses. 

2.4 Measurement of markers of intermediate metabolism and inflammation 

Serum insulin concentration was measured by radioimmunoassay using a Human Specific Insulin RIA 

Kit (Millipore Corporation) accordingly to manufacturer’s instructions. Glucose levels in serum were 
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measured by an enzymatic method using an Abbott Architect ci8200 analyzer. Plasma glucagon was 

measured with a RIA kit (GL-32K Sigma-Aldrich). PYY and GLP-1 were also measured using RIA, 

following previously established methods (Adrian et al., 1985; Kreymann et al., 1987). Non-esterified 

fatty acids (NEFA), albumin, ammonia, urea, creatine, aspartate aminotransferase, gamma-glutamyl 

transpeptidase, total cholesterol, HDL-cholesterol, LDL-cholesterol, triacylglycerides, and uric acid 

levels, where measured using standard enzymatic methodology according to manufacturer’s 

instructions. Leptin levels in plasma were assayed by a sandwich enzyme immunoassay (ELISA) 

(BioVendor, Czech Republic). The cytokines and other inflammation markers like CRP, IL-8, IL-10-, 

IL-18, ICAM-1, MCP-1 were measured by Vitas AS (www.vitas.no) using ELISA technology. IL-8, 

ICAM-1, IL-10, sE-selectin, TNF-α, CRP, adiponectin and IL-1β in plasma were analyzed using 

ELISA kits (Invitrogen Corporation, USA). MCP-1 and sVCAM-1 in plasma were analyzed using 

ELISA kits (Life Technologies, USA). 

Plasma fatty acids (FA) were measured by 2 independent groups with different methodologies. One of 

the groups (Vitas AS, Oslo, Norway) quantified FA in the fasting state using GC-FID providing data 

expressed as μg/mL and a FA profile expressed in percentage (Vinknes et al., 2013), while the other 

group analyzed FA concentrations in plasma sampled during the OGTT using GC-MS.  

2.5 Assessment of body composition and physical activity 

Adipose tissue content and distribution, as well as liver and muscle fat content were assessed using 

magnetic resonance imaging (MRI) and spectroscopy (MRS), on a 1.5T Phillips multinuclear system 

as previously described (Thomas et al., 2012). Briefly, single voxel spectra (2x2x2 cm3; TE/TR= 

135/1500 ms) were obtained from the liver using a PRESS sequence for measurement of 

intrahepatocellular lipid (IHCL). Spectra were also acquired from the Soleus and Tibialis muscles to 

measure intra-myocellular lipid (IMCL). Body fat was assessed using a whole-body rapid T1-weighted 

spin echo sequence. Participants were scanned from head to toes by acquiring 10 mm thick transverse 

images with 10 mm gaps between slices. 

In order to assess the level of physical activity, participants were asked to wear an accelerometer 

(BodyMedia SenseWear, USA) on the non-dominant arm for 7 days. Final value was presented as day 

average in metabolic equivalents (METs). 

2.6 Mass spectrometry-based plasma metabolite profiling 

All plasma samples were randomized to exclude batch variation. Quality control plasma samples 

(Recipe chemicals and instruments, Munich, Germany) were included into each set of samples to 

control for instrument drifting and other technical issues during measurements.  
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Acylcarnitines (24) amino acids (22), biogenic amines (12), glycerophospholipids (90), and 

sphingolipids (15) were quantified in plasma using the LC-MS/MS based AbsoluteIDQ® p180 Kit 

(Biocrates Life Sciences AG, Innsbruck, Austria), following the manufacturer’s protocol and excluding 

metabolites below the limit of detection. Additional acylcarnitines (26) were quantified after sample 

extraction with methanol in the presence of deuterated standards and butylated prior to analysis using 

LC-MS/MS coupled to a Sciex 5500 MS (Sciex, USA) following a previously described 

method(Giesbertz et al., 2015). The 13 most abundant bile acids in plasma were quantified using an 

adaptation of the method previously described. Briefly, 10 µL of plasma were mixed with deuterated 

internal standards and after methanolic extraction, the samples were evaporated to dryness, 

reconstituted in methanol:water (1:1) and injected into the LC-MS/MS system as described(Fiamoncini 

et al., 2017). 

For the GC-MS analysis, metabolites were extracted from 40 µL plasma aliquots using ice-cold 

methanol:H2O (8:1) in a ratio of 1:10 (sample:solvent). After centrifugation (13200 g, 4 minutes, 4°C), 

200 µL of supernatant was completely dried under vacuum. A 2-step derivatization was performed 

using an autosampler (Agilent 7693, Agilent Technologies, Germany) by incubating the samples with 

methoxyamine hydrochloride (20mg/mL in pyridine) for 30 minutes at 45°C, followed by the addition 

of N-methyl-N-trimethylsilyl-triflouroacetamide, and a second incubation for 30 minutes at 45°C. Each 

sample was thereafter immediately submitted to GC–MS analysis (Agilent 6890N GC coupled to an 

Agilent 5975C inert XL - Agilent Technologies, Germany). The gas chromatograph was equipped with 

a 30 m DB-35MS capillary column (Agilent J&W GC Column). Metabolites were eluted by a 

temperature gradient starting at 80°C and rising by 11°C/min to 325°C with 5 min hold at 325°C. 

Metabolite identification and quantification was accomplished using the Metabolite Detector software. 

Metabolites were identified according to their retention time and spectra similarity against the Golm 

metabolome database. 

2.7 Data analysis 

The aim of this study was to assess metabolic differences in subjects that display differential glucose 

responses to an OGTT. Our first approach was to check for different patterns of glycemic response to 

the OGTT using a hierarchical cluster analysis (HCA) based on glucose concentrations measured at 7 

time points during the test. The analysis identified 2 clear clusters of subjects or patterns of response 

(Supplemental figure 1). Cluster A was comprised of 33 subjects of whom 14 were female (42%), 

whereas cluster B had 39 subjects of whom 24 were females (61% female). A Chi-square test ruled out 

the gender discrepancy between the two groups (p=0.10, Table 1).  
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A partial least squares discriminant analysis (PLS-DA) was performed including all measured 

variables, except for glucose and insulin to compare clusters A and B and identify discriminant 

variables. A list with all metabolites and other variables used in the analysis is presented in 

Supplemental table 1. The model was built with 1222 variables classified into the following 14 

categories: bile acids, acylcarnitines, oxidative stress markers, amino acid metabolism markers, 

signaling molecules, biogenic amines, body composition, lipid metabolism markers, inflammation, 

leucocytes, markers of glucose metabolism, glycerophospholipids and sphingomyelins (Supplemental. 

Table 1). In case of variables measured in all 7 plasma samples collected during the OGTT, each data 

point was considered as an independent variable. The variables with Variable Importance in the 

Projection (VIP) value ≥ 1 were further analyzed in univariate statistical analysis, except when only 

one data point of a given metabolite measured during the OGTT received a VIP value >1. In these 

cases, the metabolite was not considered of relevance and was not further analyzed. The selected 

variables are presented as line graphs, if considered different between the clusters after a mixed-effects 

analysis. Additionally, a Pearson’s correlation analysis was performed between all selected variables 

that were statistically different between clusters A and B with the average glucose concentration during 

the OGTT (postprandial glycaemia). 

Depending on the nature of comparisons, ordinary one-way ANOVA or a mixed-effects analysis (in 

case of variables measured in samples collected during the OGTT) were used to test differences 

between the groups. Multiple comparisons were tested using Tukey’s post hoc test. Differences with 

p<0.05 were considered as significant. Shapiro-Wilk test was used to assess normality (p<0.05). In 

cases where outliers were removed, their detection was done using the ROUT method. Pearson’s 

multiple correlation analysis was performed assuming that most of the variables followed a normal 

distribution. GraphPad Prism Software (version 9.0) was used for these analyses and preparing most 

of the figures. PLS-DA was performed using SIMCA software (version16) after data scaling using unit 

variance. 
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3 Results 

The study population was considered overweight/obese according to the WHO (average BMI = 29.2), 

but did not present high blood pressure nor hyperlipidemia, despite the mean age of 59.2 years old. 

The presence of obese individuals (BMI > 29.9) was proportional in both groups: 45% in group A and 

36% in group B. There were also no differences in the plasma concentrations of thyroid hormones, 

leptin or inflammatory markers between clusters A and B (Table 1).  

The focus of this study was to identify markers of metabolic responses to an OGTT, and the chosen 

approach included a hierarchical cluster analysis considering glucose concentrations measured 

throughout the test, resulting in the identification of two groups of volunteers, named clusters A and 

B. As seen in Figure 1, cluster A displayed higher fasting and postprandial plasma glucose levels and 

an exaggerated insulin response, indicating a certain state of insulin resistance, also confirmed by the 

HOMA-IR values that were 60% higher than those of individuals in cluster B (Table 1). A PLS-DA 

model comparing clusters A and B in search of discriminant variables revealed differences between 

these 2 groups (the model has 1 component, R2=0,5 and Q2=0,27). A cross-validation performed using 

the K-fold method (Supplemental figure 1) indicates robust differences between the two groups and 

the analyses of variance of the cross-validated residuals returned a p value = 0.000028 as statistical 

significance of the model.  

The next step of our analysis was an univariate statistical test among the variables that received a VIP 

value > 1 in the PLS-DA model. Table 2 reports these variables obtained in the overnight fasting state 

only. Despite the absence of differences in the BMI between groups (Table 1), the content of intra-

abdominal adipose tissue (IAAT) was 35% higher in cluster A as well as internal body fat and liver fat 

associated with cluster A. Liver fat content appeared as particularly relevant, as it revealed a strong 

correlation with the average glucose concentrations during the test (r=0.69; p=1,77E-10) and was 3.1-

fold higher in subjects from cluster A, as compared to cluster B individuals. Interestingly, the 

proportion of non-abdominal subcutaneous adipose tissue (NASAT) to total body fat was higher in 

cluster B, suggesting that given the same amount of body fat, its higher presence in the subcutaneous 

depot may provide some protection from insulin resistance (Table 2). As expected, higher HbA1c 

concentrations were associated with cluster A, as it was also the case for malondialdehyde and s-E-

selectin concentrations.  

Several fatty acids (FA) displayed higher overnight fasting concentrations in cluster A as compared to 

cluster B subjects. Myristic acid (C14:0) deserves particular attention, as its concentration, despite 

corresponding to only ~1% of total FA, was 60% higher in cluster A and had the highest correlation 
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among FA with the average glucose concentrations during the test (r=0.44; p=0.0001). Palmitic acid 

(C16:0) revealed a similar behavior, but even oleic (C18:1c9) and linolenic (C18:3n3) acids - often 

classified as beneficial FA - were most abundant in cluster A (Table 2). In the composition of the FA 

profile (as % of total), very long chain fatty acids such as lignoceric (C24:0) and nervonic (C24:1n9) 

had around 15% higher concentration than cluster A and their level was negatively correlated (r=-0.38 

and -0.49; p<0.001) with the average glucose concentrations during the OGTT (Table 2). 

Peak plasma glucose reached Cmax at t=30 minutes in both groups but individuals in cluster A 

displayed a 77% increase in comparison to fasting values, whereas in cluster B it increased by only 

50%. After 120 minutes, plasma glucose levels in individuals from cluster B already returned to fasting 

values, whereas in cluster A these values were still 32% higher (p=0.0001) than fasting levels (Figure 

1A). Plasma insulin concentrations reached also Cmax at 30 minutes in cluster B but kept increasing 

till t=60 minutes in cluster A, reaching values 65% higher (p=0.0005) than in cluster B (Figure 1B). 

The concentrations of pyruvate, mannose, gluconic acid, threitol and meso-erythritol were also higher 

in individuals from cluster A (Figure 1 and Table 3). 

We previously reported that markers of lipid catabolism in response to mixed meal tolerance test could 

be used as the basis for the separation of individuals into different metabotypes (Fiamoncini et al., 

2018). In the present dataset, a similar observation was made. Postprandial plasma concentration of 

non-esterified fatty acids (NEFA) as well as individual FA such as palmitic and oleic acids and 3-

hydroxy-butyrate ranked highest amongst metabolites that discriminate clusters A and B (Figure 2). 

As seen in Table 3, palmitate and stearate were ~17% higher in cluster A during the OGTT and were 

positively correlated to postprandial glucose concentration (r=0,31, p=0.008). Plasma concentration of 

several acylcarnitines derived from metabolization of FA displayed similar responses. Of note, 

miristoylcarnitine (C14) and hexanoylcarnitine (C6) displayed throughout the OGTT consistently 

lower plasma concentrations in cluster B, in comparison to cluster A, but positively correlated with 

postprandial glycaemia (Figure 2 and Table 3). 

The amino acids BCAA, glutamate, tyrosine, tryptophan, alanine and phenylalanine were found at 

higher concentrations in plasma of individuals in cluster A (Figure 3) and confirm that they are linked 

to insulin action. These amino acids all displayed strong correlations with postprandial glucose 

concentration with r-values ranging from 0,3 for phenylalanine to 0,64 for glutamate (Table 3). 

Similarly, plasma concentration of those acylcarnitines that are derived from the degradation of amino 

acids such as propionylcarnitine (C3), isovaleryl-carnitine (3-M-C4) and succinylcarnitine (C4-DC) 

had higher levels in subjects from cluster A than from cluster B (Figure 4). Isovalerylcarnitine plasma 

levels were 25% higher in the plasma of subjects from cluster A and displayed a strong correlation 



Metabolomic signatures of glucose (in)tolerance 

 

with postprandial glucose levels (r=0,56, p=0,0000004) (Table 3). Finally, glutamine, glycine and 

serine, showed 8 – 17% lower plasma concentration in subjects from cluster A than B, confirming also 

previous findings in their association with insulin sensitivity (Figure 3) and Table 3. Amongst the 

biogenic amines spermidine and spermine were also found in higher concentrations in cluster A, as it 

was the case for urea, suggesting an altered amino acid handling during the OGTT in cluster A or B 

individuals. The average concentration of these metabolites across all 7 samples collected during the 

OGTT are given in Table 3. 

Several bile acids (BA) were amongst the metabolites identified in the PLS-DA model as most 

discriminant between clusters A and B. In both groups, the sum of BA reached Cmax at t=60 minutes. 

While concentrations started to decrease in cluster A participants after this time, in cluster B the 

concentration of total BA were kept at maximum levels until the end of the test, remaining 38% higher 

in comparison to cluster A (p=0.02) as shown in Figure 5. A similar pattern was observed for the sum 

of glycine-conjugated and secondary BA as well as for the unconjugated and glycine-conjugated forms 

of cholic, chenodeoxycholic, deoxycholic and ursodeoxycholic acids and the taurine-conjugated forms 

of deoxycholic and lithocholic acids. Interestingly, individuals from cluster A displayed a higher 

proportional (percentual) fraction of unconjugated BA, deoxycholic and tauroursodeoxycholic acids 

(Figure 5), and a lower fraction of glycine-conjugated BA and a lower ratio of conjugated: 

unconjugated BA (Figure 4). Glycine-conjugated BA were negatively correlated to postprandial 

glycaemia (r=-0,26, p=0.02) (Table 3). 

In addition to metabolites other differences between clusters were observed in blood cell sub-

populations during the OGTT. In both groups of subjects, the numbers of leucocytes in blood increased 

during the test, with total counts of white blood cells (WBC) reaching 23% higher counts in the 4th 

hour of the test as compared to the fasting values (p<0.0001) (Figure 6). On average across the 7 blood 

samples collected from each subject, 26% higher counts of WBC were found in cluster A and 37% and 

27% higher numbers of neutrophils and monocytes, respectively. The levels of s-E-selectin were 43% 

higher in subjects from cluster A in comparison to cluster B (p=0.018). 

Figure 7 displays summary of the major differences between groups A and B considering 

anthropometric and body composition data, markers of clinical chemistry, and metabolites assessed in 

different metabolomics platforms. It clearly indicates which metabolites or other phenotypical features 

could be used for the “diagnosis” of glucose homeostasis. It compiles well known markers such as 

glucose concentration itself and liver lipids, but also less discussed markers such as different classes 

of BA or very long chain fatty acids. 
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Discussion 

According to the Word Health Organisation, impaired fasting glycemia (IFG) is characterized by 

fasting glucose levels between 6.1 and 7 mmol/L, while impaired glucose tolerance (IGT) is diagnosed 

when glucose levels are > 7 mmol/L at fasting and between 7.8 and 11 mmol/L at t=120 minutes after 

the intake of 75 g glucose (WHO, 1999). Based on the WHO classification, only 3 subjects (4.6% of 

the study population) could be classified as impaired fasting glucose (IFG) and nobody fulfilled the 

criteria for (IGT). Nevertheless, the PLS-DA model revealed 2 clear clusters that displayed distinct 

glucose concentrations after an overnight fasting and in the postprandial state (Table 1 and Figure 1).  

All volunteers were thoroughly phenotyped including anthropometrics, clinical parameters, whole 

body MRI. The comprehensive metabolite profiling with hundreds of metabolites from various 

chemical classes revealed as one of the key findings that cluster A individuals – separated from cluster 

B solely by the glycemic response – had altered plasma levels of almost all known biomarkers of 

insulin resistance previously identified in large cohorts including increased levels of the BCAA and 

related acylcarnitines, reduced glycine levels and numerous altered lipid species.  

Other additional marker metabolites, seldom included in other metabolite platforms are sugars and 

sugar-derivatives such as mannose, meso-erythritol, threitol, gluconate and pyruvate. Mannose has 

recently been identified in an OGTT as a monosaccharide that behaving like glucose with insulin-

dependence and altered levels in prediabetic and diabetic volunteers (Mack et al., 2020). Mannose 

levels were strongly correlated with glycaemia (r=0.47, p<0.0001) and such a correlation between 

plasma mannose and glucose in the fasting state was previously described and response of plasma 

levels of mannose to an OGTT has also been reported (Sone et al., 2003; Yoshimura et al., 2017; 

Amano et al., 2018). Meso-erythritol was recently associated with adiposity gain in healthy subjects 

and pyruvate is the ultimate precursor of liver gluconeogenesis which is important for glycemic 

homeostasis in the fasting state (Hootman et al., 2017; Dimitriadis et al., 2021). In both clusters, during 

the OGTT, pyruvate reached Cmax at t=60 minutes and thus 30 minutes later than the glucose peak with 

average postprandial pyruvate concentration exceeding those in cluster B individuals by 25% in 

subjects from cluster A (Table3) as also observed by Meyer et al (1971) and Wang et al. (2019) (Meyer 

et al., 1971; Wang et al., 2019). 

The higher postprandial insulin increase as well as its delayed return to fasting concentrations in 

subjects from cluster A might have a direct effect on the postprandial concentration of markers of 

lipolysis and catabolism of fatty acids. Elevated insulin concentrations suppress lipolysis in the adipose 

tissue, leading to a decrease in NEFA levels during an OGTT that reach their nadir at t=120 minutes, 

followed by a rebound to fasting levels at t=240 minutes. This characteristic postprandial kinetic profile 
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of fatty acid and their catabolic products is due to the coordinated regulation of hormone sensitive 

lipase (HSL) and lipoprotein lipase (LPL), both timely altered in activity by insulin in the postprandial 

period (Frayn et al., 1995). Levels of NEFA, palmitic, oleic, and stearic acids were all higher in cluster 

A compared to B in the early phase of the OGTT (until t=120 minutes) whereas after reaching the 

nadir, the rebound was faster in cluster B individuals. Both observations are suggestive of a more 

efficient and precise regulation of lipolysis by insulin, or higher metabolic flexibility in cluster B 

individuals. Acylcarnitines derived from fatty acid β-oxidation and 3-OH-butyrate (Figure 2) also 

revealed this higher responsiveness in cluster B. Fatty acids and fatty acid-derived acylcarnitines in the 

fasting state were increased in patients with impaired glucose tolerance as compared to individuals 

with normal glucose tolerance (Hanefeld et al., 2003; Mai et al., 2013). Nowak et al. (2018) observed 

a decline in plasma levels of fatty acids and acylcarnitines during a glucose challenge that was blunted 

in participants with insulin resistance as compared to insulin sensitive individuals (Nowak et al., 2018). 

The increased glucose uptake into muscle, adipose tissue and liver followed by storage in glycogen 

(liver and muscle) or conversion into long-chain FA (liver and adipose) but also increased flux through 

glycolysis and TCA, cause a transient increase in plasma levels of long-chain acyl-carnitines (>16 

carbon) although levels of the corresponding free FA decline simultaneously by inhibition of lipolysis. 

The efflux of mitochondrial-derived acylcarnitines into plasma seems to represent an overflow of 

substrates for oxidation (Newgard, 2017). Although the carnitine palmitoyl transferase (CPT)-system 

in the inner mitochondrial membrane operates as an exchanger, the transport pathway for the cellular 

exit is less effective but it may also be of an exchange character as it was previously shown that free 

carnitine and acyl-carnitines in plasma under anabolic and catabolic conditions always behave mirror-

like (Krug et al., 2012). 

Elevated plasma BCAA levels and their degradation-derived acylcarnitines (C3 and C5) are established 

markers of insulin resistance, prediabetes and future onset of type 2 diabetes associated with an altered 

flux through BCAA catabolic pathways in obesity (Glynn et al., 2015; Gar et al., 2018). BCAA play a 

central role in insulin resistance and appear detrimental to insulin sensitivity in animals and humans 

(Zhou et al., 2019). Amino acids may also affect a variety of other processes involved in glucose 

homeostasis (Bröer, 2022). It has also been shown that amino acids influence the distribution of 

GLUT4-containing vesicles indicating that the insulin-dependent glucose influx mediated by an 

increase of GLUT4 density in the plasma membrane may already be compromised (Bogan, Mckee and 

Lodish, 2001). It is interesting to note that troglitazone was able to increase amino acid uptake into 

preadipocytes, suggesting that amino acid uptake into adipose tissue is under insulin control (Su et al., 

1998). The response to the OGTT is characterized by a rapid decrease in circulating BCAA levels. We 
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observed higher plasma BCAA concentrations among the individuals from cluster A compared to 

cluster B in the fasting state, which was subsequently maintained throughout the entire challenge, with 

the exception of the time point t=240 minutes, when the differences among the two groups were no 

longer visible. Yet, plasma levels 4 hours after the intake of glucose were still considerably below 

initial fasting levels. These effects may be due to a dysregulated BCAA uptake via system A 

transporters in the plasma membranes of insulin target organs and by changes in activity of BCAA 

catabolizing enzymes (Gannon, Schnuck and Vaughan, 2018). A previous study identified expression 

of genes that regulate the initial, rate-limiting steps of BCAA oxidation (including BCAA transaminase 

2 and inner-mitochondrial enzymes from the branched-chain alpha-ketoacid dehydrogenase complex) 

as dependent on the degree of insulin resistance in subjects (Sears et al., 2009). Since plasma levels of 

several amino acids decrease in circulation up to t=120 minutes and start increasing after that time 

point only in individuals from cluster B, we can speculate that the absence of a rebound in subjects 

from cluster A is a response to the higher levels of insulin. It is possible that the higher levels of insulin 

that are kept higher for a longer time in these subjects is keeping the values of some amino acids (Ile, 

Leu and Phe) at a lower concentration even at t=240 minutes. Impaired sensitivity to insulin could also 

be the reason behind such responses, given that membrane density and/or translocation of amino acid 

transporters is insulin dependent. 

The PLS-DA model also identified significantly elevated plasma levels of glutamate, tryptophan and 

phenylalanine in cluster A subjects (Figure 3). Mean glutamate concentrations during the OGTT were 

64% higher in subjects from cluster A compared to cluster B and were positively correlated with 

postprandial glycemic profile (r=0,64, p=1,39E-09) (Table 3). Aromatic amino acids in plasma are also 

related to insulin resistance, and emerged as predictors of future development of type 2 diabetes (Wang 

et al., 2011; Floegel et al., 2013). We found reduced levels of glycine and serine in cluster A as 

compared to cluster B individuals. Elevated levels of plasma glycine and serine have previously been 

linked to increased insulin sensitivity, with an association between high plasma glycine and decreased 

odds of abnormal HOMA-IR. In a recent review, White et al. (2021) postulated a mechanism 

underlying the inverse association between glycine and BCAA levels which is based on increased 

nitrogen load in tissues by elevated BCAA levels which is dissipated by using glutamate to form 

alanine from pyruvate by alanine transaminase (White et al., 2021). The depletion of pyruvate in these 

pathways can be replenished from glycine by serine dehydratase and serine hydroxymethyl transferase, 

thereby reducing glycine and serine levels during insulin resistance or obesity. 

Higher plasma triglyceride concentrations as observed in cluster A subjects confirm and extend 

previous findings with higher levels and predictive quality for insulin resistance (Khan et al., 2018; 
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Mazidi et al., 2018). Although cluster A subjects had higher concentrations (μg/mL) of NEFA in the 

fasting state, very long-chain fatty acids (VLCFA) were consistently more abundant among individuals 

from cluster B and displayed a negative correlation with the average glucose concentration during the 

OGTT (Table 2). These observations can also be extended to linoleic acid. Previous studies have 

described such an association between VLCFA and lower incidence of diabetes, but we here show that 

even in healthy individuals, the percentage of these compounds within the entire plasma fatty acid 

profile is associated with an improved glycemic response during the OGTT (Lemaitre et al., 2015; 

Fretts et al., 2019). Whereas mechanistic explanations are still missing, the higher proportion of 

VLCFA has been linked to lower de novo lipogenesis or changes in sphingolipid metabolism (Lemaitre 

and King, 2022). 

High-fat and high-carbohydrate meals can trigger an acute increase of plasma inflammatory biomarkers 

such as IL-6 and TNF-α in the first hours of the postprandial period (Herieka and Erridge, 2014; 

Meessen et al., 2019). In parallel, the number of leucocytes such as macrophages and neutrophils 

increase, probably participating in this transient inflammatory response to the meal (Margioris, 2009; 

Gregor and Hotamisligil, 2011; Kardinaal et al., 2015). This postprandial inflammation might be an 

important risk factor for the development of chronic diseases such as type 2 diabetes and cardiovascular 

disease and depends on meal composition and lifestyle factors (Margioris, 2009; Hotamisligil, 2017; 

Rogero and Calder, 2018). We report increased numbers of WBC, monocytes, lymphocytes and 

neutrophils in the subjects from cluster A compared to cluster B, suggesting increased inflammation in 

the first group. Although changes in the plasma levels of inflammatory cytokines were not observed in 

our study (Table 1), s-E-selectin concentrations were higher in subjects from cluster A in comparison 

to B, supporting the notion of an inflammatory state in cluster A individuals (Table 2). Previous reports 

identified an association between s-E-selectin with obesity, insulin resistance and metabolic 

inflexibility (Adamska et al., 2014; Mulhem et al., 2021 and Lee et al., 2019). 

BA are released from the gallbladder following a meal by contraction mediated primarily by 

cholecystokinin. That glucose can elicit as well a BA secretion with an increase in plasma that follows 

glucose appearance has been shown before and BA are now considered to play an important role in 

coordinating metabolic responses during the postprandial period (Kuipers, Bloks and Groen, 2014). In 

addition to their well-established function in facilitating dietary lipid emulsification and absorption, 

BA may be important signaling molecules able to exert pleiotropic physiological effects on different 

organs (Perino et al., 2021). Insulin resistance has been previously associated with increased plasma 

levels of deoxycholic acid and its conjugated forms and increments in the ratio of 

unconjugated/conjugated BA were attributed to subjects with high plasma concentrations of insulin, 
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NEFA, and triglyceride levels (Haeusler et al., 2013). Other studies have reported higher levels of BA 

in diabetic patients in fasting and in the postprandial state and it has been reported that BA 

hydrophobicity can influence insulin resistance. In fact, DCA (a hydrophobic secondary BA) 

administration decreased insulin signaling and endoplasmic reticulum homeostasis, exacerbating 

impaired glucose homeostasis in mice (Wewalka et al., 2014; Sonne et al., 2016; Zaborska et al., 2018). 

The relationship between BA and glucose metabolism is long known, but the mechanisms by which 

BA affect glucose homeostasis and vice versa are not yet understood. In our present study with healthy 

individuals, there were no differences in fasting plasma BA concentrations between the two groups of 

individuals, but higher concentrations of BA were observed in subjects with a better glycemic response 

in the OGTT (cluster B) beginning one hour after the start of the OGTT (Figure 5). Similar results were 

observed by Higgins et al. (2020), reporting that obese adolescents had reduced postprandial plasma 

BA concentrations in comparison to lean controls, despite similar fasting BA levels. Mantovani et al. 

(2021) demonstrated also that postprandial BA concentrations were distinctly different between 

healthy and diabetic individuals (Higgins et al., 2020; Mantovani et al., 2021). Since BA 

concentrations in plasma increased similar in both clusters in the initial phase of the OGTT (Figure 1) 

their absorption from the intestine seems not to be different between cluster. However, in cluster B 

individuals BA levels did not decline over time as fast as in cluster A subjects suggesting that either 

their removal is slower than in less healthy individuals or that there is a higher flux through the enteric-

hepatic cycle providing higher plasma BA levels higher throughout the test in more healthy volunteers. 

To find an explanation for this discrepancy more studies are needed in healthy and compromised 

individuals with proper reporting of time-dependent changes during an OGTT or a mixed meal test.  

 

Conclusion 

According to their glycaemia during an OGTT, healthy adult individuals could be classified into two 

subgroups characterized by a multitude of metabolites with altered plasma levels. These altered 

metabolite levels included many known markers of obesity, insulin resistance and type 2 diabetes, that 

were increased in cluster A individuals already in the fasting state. Most of the plasma concentrations 

of these marker metabolites remained as different during the 240 min of the test, demonstrating that 

the time-dependent measurements during the OGTT provide no particular benefit for a sub-clustering 

according to metabotype. Most of the discriminant metabolites can be linked to insulin effects on 

uptake and utilization of glucose, amino acids and fatty acids with the alterations in plasma levels given 
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as a signature of impaired insulin response. Differences between the clusters also included BA 

concentrations for which a mechanistic basis for the association cannot be provided. Moreover, higher 

number of leucocytes were observed in cluster A. These individuals also displayed major differences 

in body fat stores and fat distribution for which associations with impaired insulin signaling have been 

reported before. The present study reveals that a panel of metabolites in fasting plasma allows the 

identification of an individual as “pre-pre-diabetic” and at increased risk for diabetes that is still 

otherwise classified as healthy according to the definitions of the WHO.   
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Tables 
 
Table 1. Characteristics of the study population. As a recruitment criterion, participants of the study were 
considered healthy after a medical assessment. Data presented as mean ± standard deviation. The bottom row 
provides the gender distribution in each cluster, which was found not to be different, according to a Chi square 
test (p=0.10). AST = aspartate aminotransferase; AP = alkaline phosphatase; BMI = body mass index; CRP = 
C-reactive protein; DBP = diastolic blood pressure; GGTP = gamma-glutamyl transpeptidase; HDL = high 
density lipoproteins; HOMA-IR = Homeostatic model assessment for insulin resistance; IL-18 = interleukin 18; 
LDL = low density lipoproteins; SBP = systolic blood pressure; TAT = total adipose tissue; TNF-a = tumor 
necrosis factor-alpha; TSH = thyroid-stimulating hormone; T4 = thyroxine; VCAM = vascular cell adhesion 
molecule.  
 

  A   B   T test 
  Mean SD N   Mean SD N   p value 

Age (years) 60.2 3.26 33   58.3 4.66 39   0.063 
BMI (kg/m2) 29.39 3.02 33  29.01 2.53 39  0.565 
TAT (kg) 31.52 10.20 29  30.97 7.93 39  0.806 
TAT (%BW) 36.00 9.32 29  37.92 9.05 39  0.395 
DBP (mmHg) 77.89 6.76 33  77.31 10.14 39  0.778 
SBP (mmHg) 126.64 10.38 33  126.74 14.08 39  0.971 
Fasting glucose (mmol/L) 5.58 0.42 33  4.81 0.39 39  <0,000001 
Fasting insulin (mIU/L) 19.09 8.42 31  13.12 4.13 39  0.0002 
HOMA-IR 4.53 1.79 30  2.81 0.90 39  0.000002 
Cholesterol (mmol/L) 4.83 0.93 32  4.90 0.83 37  0.736 
HDL-chol (mmol/L) 1.62 0.15 32  1.69 0.20 37  0.088 
LDL-chol (mmol/L) 2.53 0.86 32  2.69 0.77 37  0.414 
GGTP (U/L) 28.72 21.79 32  22.22 22.08 37  0.224 
AST (U/L) 20.84 7.06 32  21.76 9.60 37  0.659 
AP (IU/L) 77.44 20.44 32  72.32 23.18 37  0.338 
Uric acid (µmol/L) 319.94 90.28 32  286.32 72.04 37  0.090 
TSH (mUl/L) 1.68 0.76 32  1.81 0.96 39  0.546 
T4 (pmol/L) 13.47 1.46 32  13.23 1.37 39  0.481 
Leptin (ng/mL) 15.72 8.32 32  14.53 8.02 38  0.547 
TNF-α (pg/mL) 3.31 1.12 33  3.57 2.08 39  0.526 
IL-18 (pg/mL) 266.42 88.40 33  235.82 105.30 39  0.191 
VCAM (ng/mL) 1909.76 980.45 33  1674.46 709.51 39  0.243 
CRP (ng/mL) 674.61 709.68 33   1198.10 2529.50 39   0.254 
Female (N) 14 (42%)   24 (61%) Χ2 p value = 0.10 

 
 
 
 
 
Table 2. Discriminant variables measured in fasting state. Only variables with a VIP value > 1 in the PLS-
DA model are depicted in this table. The differences between the two clusters were tested with a T-test and their 
correlation (Pearson) with the average glucose concentration during the OGTT presented. The right (last) 
column presents the ratio of each variable between clusters A and B individuals. Highlighted rows indicate 
variables associated with cluster B. Variables that were not considered different between the two clusters after 
the T-test are not included in the table. ASAT = abdominal subcutaneous adipose tissue; AT = adipose tissue; 
IAAT = intra-abdominal adipose tissue; IMCL = intramyocellular lipids; MDA = malondialdehyde; NAIAT = 
non=abdominal internal adipose tissue; NASAT = non-abdominal subcutaneous adipose tissue; SAT = 
subcutaneous adipose tissue. Total internal AT (Internal) was subdivided into Intra-abdominal AT (IAAT) and 
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non-abdominal internal AT (NAIAT).  Total Subcutaneous AT (SAT) was subdivided into abdominal 
subcutaneous AT (ASAT) and non-abdominal subcutaneous AT, with the abdominal region defined as the 
region between the top of the liver and the femoral heads. Adipose tissue was expressed relative to total body 
weight (%BW) or relative to total fat mass (%TBF). 
 

 A  B  t test Pearson corr x 
Glucose 

A/B 
 Mean SEM N  Mean SEM N  p value q value rho p value 

Plasma fatty acids (μg/ml) 
C14:0 37.48 2.99 33  23.49 1.79 39  0.0001 0.0007 0.44 0.0001 1.60 
C15:0 7.13 0.36 33  5.79 0.29 39  0.0040 0.0072 0.31 0.0077 1.23 
C16:0 766.45 39.79 33  606.54 22.03 39  0.0005 0.0024 0.40 0.0005 1.26 
C16:1 n-7 86.85 6.20 33  60.05 4.97 39  0.0011 0.0038 0.33 0.0044 1.45 
C18:0 218.52 8.92 33  187.38 4.94 39  0.0022 0.0056 0.31 0.0091 1.17 
C18:1 c11 61.94 3.49 33  51.18 2.20 39  0.0089 0.0131 0.30 0.0109 1.21 
C18:1 c9 707.03 38.67 33  566.62 19.66 39  0.0012 0.0038 0.40 0.0005 1.25 
C18:1 t6-11 41.58 3.19 33  32.67 2.29 39  0.0236 0.0258 0.23 0.0486 1.27 
C18:3 n-3 24.12 2.08 33  18.87 0.81 39  0.0149 0.0203 0.31 0.0081 1.28 
C20:1 n-9 5.10 0.28 33  4.33 0.17 39  0.0190 0.0220 0.33 0.0049 1.18 
C20:2 n-6 7.89 0.50 33  6.51 0.32 39  0.0190 0.0220 0.25 0.0349 1.21 
C20:3 n-6 44.21 2.17 33  38.49 1.72 39  0.0398 0.0402 0.24 0.0406 1.15 
C22:5 n-3 21.36 1.02 33  17.26 0.53 39  0.0004 0.0023 0.31 0.0081 1.24 
C22:6 n-3 80.73 4.95 33  69.13 2.82 39  0.0380 0.0394 0.14 0.2343 1.17 
Plasma fatty acids (%) 
C14:0 1.07 0.05 33  0.79 0.04 39  2.30E-05 0.0004 0.49 1.15E-05 1.37 
C16:0 22.45 0.29 33  20.77 0.25 39  2.80E-05 0.0004 0.50 9.91E-06 1.08 
C16:1,n-7 2.51 0.12 33  2.00 0.13 39  0.0057 0.0089 0.28 0.0198 1.25 
C18:1,c9 20.58 0.46 33  19.46 0.32 39  0.0458 0.0440 0.38 0.0012 1.06 
C18:2,n-6 22.24 0.52 33  25.13 0.50 39  0.0002 0.0011 -0.45 0.0001 0.89 
C20:0 0.26 0.01 33  0.28 0.01 39  0.0187 0.0220 -0.34 0.0042 0.91 
C22:0 0.58 0.02 33  0.67 0.02 39  0.0036 0.0068 -0.39 0.0008 0.87 
C23:0 0.29 0.01 33  0.34 0.01 39  0.0054 0.0088 -0.39 0.0008 0.85 
C24:0 0.63 0.02 33  0.71 0.02 39  0.0081 0.0123 -0.38 0.0011 0.88 
C24:1,n-9 1.12 0.04 33  1.38 0.04 39  4.10E-05 0.0004 -0.49 1.37E-05 0.81 
Body composition/ Anthropometric variables 
Waist (cm) 102.24 1.77 33  97.30 1.70 39  0.0489 0.0459 0.39 0.0008 1.05 
IAAT (%BW) 5.37 0.28 29  4.14 0.22 39  0.0009 0.0038 0.46 0.0001 1.30 
IAAT (%TBF) 15.78 1.02 29  11.70 0.84 39  0.0028 0.0062 0.43 0.0003 1.35 
IAAT (kg) 4.70 0.29 29  3.48 0.23 39  0.0012 0.0038 0.52 6.50E-06 1.35 
IAAT:ASAT 0.80 0.07 29  0.53 0.05 39  0.0016 0.0046 0.39 0.0010 1.51 
Internal (%TBF) 26.96 1.45 29  21.34 1.14 39  0.0030 0.0062 0.39 0.0011 1.26 
Internal (%BW) 9.19 0.36 29  7.65 0.29 39  0.0014 0.0042 0.39 0.0010 1.20 
Internal (kg) 8.04 0.42 29  6.38 0.33 39  0.0023 0.0056 0.47 0.0001 1.26 
Internal: subcutaneous 0.38 0.03 29  0.28 0.02 39  0.0032 0.0063 0.37 0.0018 1.37 
Liver lipids 7.40 1.15 29  2.38 0.28 38  0.00001 0.0004 0.69 1.77E-10 3.11 
NAIAT (%TBF) 11.18 0.56 29  9.65 0.38 39  0.0225 0.0254 0.22 0.0702 1.16 
NAIAT (kg) 3.34 0.17 29  2.90 0.13 39  0.0454 0.0440 0.27 0.0246 1.15 
Soleus m. IMCL 18.06 1.58 29  14.73 0.88 39  0.0534 0.0480 0.21 0.0950 1.23 
Tibialis m. IMCL 8.11 0.61 29  6.72 0.42 39  0.0582 0.0504 0.18 0.1507 1.21 
ASAT (%TBF) 21.08 0.70 29  22.99 0.50 39  0.0260 0.0276 -0.21 0.0931 0.92 
NASAT (%TBF) 51.96 1.01 29  55.67 1.00 39  0.0127 0.0179 -0.38 0.0014 0.93 
SAT (%TBF) 73.04 1.45 29  78.66 1.14 39  0.0030 0.0062 -0.39 0.0011 0.93 
Metabolism markers 
HbA1c (mmol/mol Hb) 37.64 0.61 28  35.53 0.43 38  0.0049 0.0084 0.38 0.0017 1.06 
MDA (µmol/L) 2.44 0.15 32  1.96 0.13 38  0.0186 0.0220 0.36 0.0025 1.24 
s-E-Selectin (ng/mL) 41.85 3.81 33  29.33 3.52 39  0.0185 0.0220 0.34 0.0032 1.43 
Adiponectin (µg/mL) 13.32 0.96 33  16.67 1.39 39  0.0589 0.0504 -0.40 0.0007 0.80 
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Table 3. Discriminant variables measured during the OGTT. The variables measured in samples 
collected during the OGTT that received a VIP value > 1 in the PLS-DA model at a minimum of two 
time points are presented with the average concentration during the test. The differences between the 
2 clusters were tested with a T-test and their correlation (Pearson) with the average glucose 
concentration during the OGTT is presented. The right (last) column presents the ratio of each variable 
between cluster A and B individuals. Highlighted rows indicate variables predominantly associated 
with cluster B. Variables not considered different between the two clusters after the T-test were not 
included in the table.  

 A  B  T test Pearson corr x 
Glucose A/B 

 Mean SEM N  Mean SEM N  p value q value rho p value 

Bile acids 

TUDCA (%) 0.33 0.06 30  0.20 0.02 35  0.021 0.087 0.06 0.6505 1.67 

Unconj. BA (%) 38.59 2.83 33  31.36 2.67 39  0.068 0.132 0.24 0.0414 1.23 

Conj./ Unconj. BA 2.95 0.41 33  4.44 0.53 39  0.034 0.088 -0.31 0.0079 0.66 

Gly-conj. BA (%) 51.85 2.26 33  60.36 2.28 39  0.011 0.068 -0.28 0.0179 0.86 

Gly-conj. BA 
(nmol/L) 1597.61 127.71 33  2345.40 273.06 39  0.022 0.087 -0.26 

0.0262 
0.68 

GCDCA (nmol/L) 853.72 79.15 33  1164.85 106.33 39  0.026 0.087 -0.25 0.0380 0.73 

Fatty acid-derived acylcarnitines 

C14 (µmol/L) 0.02 0.00 33  0.02 0.00 39  0.028 0.087 0.35 0.0028 1.18 

C16 (µmol/L) 0.11 0.01 33  0.10 0.00 39  0.033 0.088 0.39 0.0007 1.14 

C18 (µmol/L) 0.03 0.00 33  0.02 0.00 39  0.039 0.096 0.31 0.0083 1.16 

C3 (µmol/L) 0.34 0.02 33  0.26 0.01 39  0.004 0.055 0.47 3.13E-05 1.28 

C4 (µmol/L) 0.07 0.01 33  0.05 0.00 39  0.018 0.087 0.37 0.0014 1.37 

C6 (µmol/L) 0.04 0.00 33  0.03 0.00 39  0.018 0.087 0.39 0.0008 1.34 

Amino acids and amino acid-related metabolites 

Isovaleryl-carnitine 
(µmol/L) 0.08 0.01 33  0.06 0.00 39  0.011 0.068 0.56 

4.00E-07 
1.25 

Spermidine (μmol/L) 0.18 0.03 33  0.12 0.01 39  0.041 0.097 0.41 0.0004 1.53 

Spermine (μmol/L) 0.25 0.06 33  0.13 0.01 39  0.031 0.087 0.33 0.0052 1.90 

Urea (mmol/L) 5.94 0.21 33  5.34 0.20 39  0.047 0.100 0.13 0.2626 1.11 

Free carnitine 
(μmol/L) 39.65 1.49 33  35.94 1.30 39  0.064 0.129 0.26 

0.0290 
1.10 

Glu (μmol/L) 51.52 4.43 33  31.41 2.39 39  0.0001 0.0017 0.64 1.39E-09 1.64 

Ile (μmol/L) 59.61 2.20 33  53.16 1.90 39  0.029 0.087 0.56 3.31E-07 1.12 

Leu (μmol/L) 114.85 4.51 33  101.89 3.12 39  0.018 0.087 0.52 2.21E-06 1.13 
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Phe (μmol/L) 53.84 1.38 33  49.93 1.09 39  0.028 0.087 0.30 0.0114 1.08 

Trp (μmol/L) 54.19 1.26 33  49.66 1.20 39  0.011 0.068 0.33 0.0051 1.09 

Val (μmol/L) 202.08 6.18 33  186.47 4.78 39  0.046 0.100 0.53 1.30E-06 1.08 

Gln (μmol/L) 575.08 11.52 33  622.93 12.04 39  0.006 0.056 -0.29 0.0140 0.92 

Gly (μmol/L) 206.06 9.64 33  247.27 12.05 39  0.011 0.068 -0.31 0.0077 0.83 

Ser (μmol/L) 92.49 2.74 33  101.72 3.18 39  0.035 0.088 -0.22 0.0602 0.91 

Glucose metabolism 

Glucose (mmol/L) 7.62 0.21 33  5.64 0.09 39  <0.000001 <0.000001 1  1.35 

Insulin (mIU/L) 80.99 5.94 33  49.65 4.13 39  0.00003 0.00130 0.56 2.87E-07 1.63 

Mannose (AU) 0.82 0.05 33  0.69 0.05 39  0.056 0.116 0.47 2.95E-05 1.18 

Meso-Erythritol 
(AU) 1.42 0.10 33  1.18 0.05 39  0.030 0.087 0.24 

0.0413 
1.20 

Threitol (AU) 1.41 0.10 33  1.17 0.04 39  0.023 0.087 0.27 0.0225 1.21 

Pyruvate (AU) 1.22 0.10 33  0.98 0.07 39  0.042 0.097 0.37 0.0013 1.25 

Lipids 

Palmitic acid (AU) 2.35 0.12 33  2.01 0.09 39  0.029 0.087 0.31 0.0080 1.17 

Stearic acid (AU) 2.13 0.09 33  1.81 0.07 39  0.005 0.055 0.32 0.0060 1.18 

Cholesterol (AU) 2.57 0.19 33  2.09 0.14 37  0.045 0.100 0.16 0.1951 1.23 

Trigs (mmol/L) 1.52 0.08 33  1.09 0.06 39  0.0001 0.0017 0.52 0.0000 1.39 

Leucocytes 

Monocytes (giga/L) 0.50 0.03 33  0.39 0.02 39  0.005 0.055 0.25 0.0340 1.27 

Neutrophils (giga/L) 3.88 0.46 33  2.83 0.14 39  0.023 0.087 0.23 0.0518 1.37 

White blood cells 
(giga/L) 6.31 0.49 33  4.98 0.18 39  0.008 0.068 0.27 

0.0206 
1.27 
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Figure captions 
 
Figure 1. Handling of glucose and other sugars and sugar-derivatives. Plasma glucose and insulin 
concentrations during the OGTT and levels of pyruvate, gluconate, threitol, mannose and meso-
erythritol (AU = arbitrary units). Data are presented as the means and standard errors of the mean. 
Results from mixed-effects analysis indicated in each graph. 
 
Figure 2. Lipid metabolism. Plasma concentrations of the sum of non-esterified fatty acids, free 
palmitic, oleic and stearic acids, free carnitine and fatty acid-derived acylcarnitines, triglycerides, 
cholesterol and 3-hydroxy-butyric acid. (AU = arbitrary units). Data are presented as means and 
standard errors of mean. Results from mixed-effects analysis indicated in each graph. 
 
Figure 3. Amino acid metabolism. A - F) Plasma concentrations of selected amino acids that may 
serve as markers of insulin resistance. G - I) Plasma concentrations of amino acids associated with 
insulin sensitivity. Data presented as the means and the standard errors of mean. Results from mixed-
effects analysis indicated in each graph. 
 
Figure 4. Amino acid degradation. A - E) Plasma concentrations of acylcarnitines derived from the 
degradation of amino acids. F) Plasma concentrations of urea. G - H) Plasma concentration of 
spermidine and spermine. Data presented as means and standard errors of mean. Results from mixed-
effects analysis indicated in each graph. 
 
Figure 5. Bile acids postprandial kinetics. A - C) Bile acids associated with cluster A provided as % 
of the total pool of plasma bile acids. D - Q) Plasma concentrations of most abundant bile acids in 
subjects from cluster B. Data are presented as means and standard errors of the mean. Results from 
mixed-effects analysis indicated in each graph.  
 
Figure 6. Counts of circulating leucocytes. A – D) Cell counts of white blood cells, monocytes, 
neutrophils, lymphocytes; E) IL1-RA levels in postprandial blood. Data are presented as means and 
standard errors of the mean. Results from mixed-effects analysis indicated in each graph. 
 
Figure 7. Graphical representation of the phenotypical differences between cluster A and B. 
Radar plot of the variables identified in the PLS-DA model as discriminant between individuals from 
cluster A and B and whose concentration was considered different after a T-test. Data presented as z-
scores. 
 
Supplemental Figure 1. Multivariate analysis. A) Graphical representation of hierarchical cluster 
analysis that generated the classification of the individuals into clusters A and B. B) Score plot showing 
the separation of cluster A and B. C) Cross-validation, indicating the robustness of the model.  
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