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Abstract
Aims/hypothesis It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the
underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic
basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal
ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-
cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI
DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with
recently diagnosed type 2 diabetes (cohort 2: N ≤ 435).
Methods We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second
model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic
regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic
control weremodelled from frequently sampled 75 g OGTTs (fsOGTTs) andmixed-meal tolerance tests (MMTTs) in participants
without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-
worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively.
Results The TC and TC-PAmodels showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1
and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of
physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle.
Conclusions/interpretation These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mech-
anistic pathways throughwhich insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control.

Keywords Beta cell function . Ectopic fat . Glycaemic control . Insulin sensitivity . Physical activity . Prediabetes . Structural
equationmodelling . Type 2 diabetes
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NAFLD Non-alcoholic fatty liver disease
OGIS Oral glucose insulin sensitivity
RMSEA Root mean square error of approximation
TC Twin-cycle hypothesis
TC-PA Twin-cycle plus physical activity
TLI Tucker–Lewis index

Introduction

The global epidemics of type 2 diabetes and obesity [1, 2]
follow in the wake of rapid urbanisation, reduced physical
activity, and ageing populations [3]. Physical inactivity is
strongly associated with peripheral insulin resistance, abdomi-
nal obesity and glucose dysregulation [4–7]. Physical inactivity
may also predispose to non-alcoholic fatty liver disease
(NAFLD) [8], which in turn may also adversely affect glucose
homeostasis [9–11]. Indeed, recent Mendelian randomisation
studies hint at bidirectional causal relationships between
NAFLD and type 2 diabetes [12, 13]. Various mechanisms
for these relationships have been proposed [14], with chronic
positive energy balance considered a primordial modifiable
risk factor [15, 16]. This notion is articulated through the
twin-cycle model, whereby the first cycle describes liver fat
accumulation leading to reduced suppression of hepatic gluco-
neogenesis, consequential elevations in both fasting glucose
and insulin concentrations, and hepatic lipid production; the
second cycle focuses on the pancreas, where elevated circulat-
ing lipids accumulate in the pancreas, impairing endogenous
insulin secretion [15, 16]. However, the extent to which

physical activity affects blood glucose homeostasis through
mechanisms outlined in the twin-cycle model is unknown.

A better understanding of this would not only add to the
physiological understanding of diabetes but might also help
guide the design of clinical trials seeking to study the pathogen-
esis of type 2 diabetes. For example, as physical activity is a
modifiable behaviour, it is a potential target for interventions
seeking to modify processes involved in the relationships
between NAFLD and type 2 diabetes. Furthermore, studies
seeking to assess these relationships would benefit from under-
standing which factors are affected by physical activity and
mediate the effect of physical activity in glycaemic control.

Multivariate structural analyses (such as structural equation
modelling) can be a powerful way to address these putative
effects but require accurate and concurrent assessments of
glycaemic control, abdominal fat distribution and lifestyle
variables in adequately sized cohorts, few of which currently
exist. The Innovative Medicines Initiative Diabetes Research
on Patient Stratification (IMI DIRECT) cohorts [17, 18] are
well-suited for such analyses.

The purpose of this study was to test potential mechanisms
mediating the effects of physical activity in glycaemic control
before and after the onset of type 2 diabetes.

Methods

Study cohorts

These analyses were conducted in two parallel cross-sectional
cohorts of European ancestry adults from northern Europe: the
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first cohort (cohort 1) comprised of participants with blood
glucose concentrations within the normal glucose control or
prediabetes (impaired HbA1c, fasting glucose or 2 h glucose
according to ADA criteria [19]) brackets and the second
cohort (cohort 2) comprised individuals with recently diag-
nosed type 2 diabetes (within 6–36 months of study enrol-
ment). Participants underwent detailed physical examinations,
including MRI scans and carbohydrate challenge tests, diet
assessment and objective habitual physical activity assess-
ment. Approval for the study protocol was obtained from each
of the regional research ethics review boards separately and all
participants provided written informed consent at enrolment.
The research conformed to the ethical principles for medical
research involving human participants outlined in the declara-
tion of Helsinki.

The study rationale and design and core characteristics of
the IMI DIRECT cohorts are reported in detail elsewhere [17,
18]. Below, we provide a summary and describe the methods
most relevant for the present analyses.

Cohort 1 (prediabetes) was from a sampling frame of
24,196 participants nested within prospective cohorts from
Denmark (Copenhagen), Finland (Kuopio), the Netherlands
(Hoorn) and Sweden (Malmö); 2127 participants at vary-
ing risk of glycaemic deterioration were enrolled into the
study. To determine the risk of rapid glycaemic deteriora-
tion, we used the DIRECT-DETECT algorithm [20]. For
cohort 2 (diabetes), 789 participants were recruited from
health registries and primary care practices in Denmark
(Copenhagen), the UK (Dundee, Exeter, Newcastle), the
Netherlands (Hoorn) and Sweden (Lund). As neither of
the Swedish study centres undertook MRI scans, they
were not included in the current analysis.

Of these participants, 920 (cohort 1) and 435 (cohort
2) had all the necessary variables for a complete case
analysis of the twin-cycle hypothesis (TC) model and
725 (cohort 1) and 361 (cohort 2) had all the necessary
variables for the complete case analyses fitting the twin-
cycle plus physical activity (TC-PA) model. The follow-
ing variables were included in these models: fasting
plasma glucose, 2 h glucose, oral glucose insulin sensi-
tivity (OGIS), liver fat, pancreatic fat, fasting insulin
secretion rate, glucose sensitivity (insulin secretion per
glucose), age, sex, centre, metformin use, total daily
energy intake, total daily carbohydrate, protein and fat
intake, and mean daily physical activity intensity. The
characteristics of these subcohorts are shown in Table 1.

Measures

Fasting glucose was assessed from venous plasma samples
drawn in the morning following an overnight fast.
Frequently sampled 75 g oral glucose tolerance tests
(fsOGTTs) and mixed-meal tolerance tests (MMTTs) were

carried out in cohort 1 and 2, respectively. Mixed meals
(250 ml Fortisip liquid drink [18.4 g carbohydrate per
100 ml]) rather than 75 g oral glucose loads were used
in cohort 2 to minimise the risk of severe hyperglycaemia
as participants had type 2 diabetes. The 2 h glucose,
OGIS, fasting insulin secretion rate and glucose sensitivity
(dose–response slope of insulin secretion in response to
glucose) were calculated from the fsOGTT and MMTT
data, as described elsewhere [21, 22]. Liver and pancreatic
fat were measured by MRI and quantified using a multi-
echo technique described in detail elsewhere [17, 18, 23,
24]. Briefly, prone 1.5 T to 3 T images (depending on
availability at each study centre) were acquired. T1-
weighted images were obtained for the abdominal region
(between the diaphragm and acetabulum) with maximum
field of view and 10 mm slice thickness with a 10 mm
slice gap. A three-dimensional scan using 50–80 images at
slice thicknesses of 1.2–2 mm (depending on equipment)
was acquired to image the pancreas. Further axial single-
slice multi-echo images were acquired of the liver and
pancreas (10 mm slice thickness). Whole-organ pancreatic
and liver fat estimates were then inferred from these
images, where experienced radiographers manually deter-
mined organ boundaries. Physical activity was objectively
assessed using triaxial accelerometry (ActiGraph GT3X+,
ActiGraph, Pensacola, FL, USA) on the non-dominant
wrist over 10 days. Physical activity intensity was
characterised by calculating the mean high-pass filtered
vector magnitude (hpfVM) of the triaxial acceleration
signal [25, 26]; the mean of this was used to describe
overall physical activity level. Non-wear was inferred as
a vector magnitude SD of less than 4 mg for a consecu-
tive period greater than 60 min. To account for bias intro-
duced by removal of non-wear time in combination with
differential diurnal non-wear patterns between individuals,
adjustments were made for diurnal rhythm [27]. Dietary
intake was assessed using a validated multi-pass food
habit questionnaire and 24 h diet record, as previously
described [17, 18].

Statistical analysis

All continuous variables were standardised by rank-normal
transformed (mean 0, SD 1) by sex (and by lifestyle vs
metformin + lifestyle in cohort 2). Adjustment for putative
confounders was done by two-step residual regression
where, in the first step, residuals were extracted from
general linear models undertaken on the transformed
continuous variables or binary categorical variables, and
these residuals were used in subsequent models as either
outcome or predictor variables. Regression models for
residual extraction co-varied for age, study centre, total
daily energy intake and total daily intake of dietary
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carbohydrates, fats and proteins. Pearson correlation coef-
ficients were generated and plotted in a matrix to illustrate
simple pairwise relationships between all model variables.

Structural equation modelling

We used structural equation modelling to test the overall
model fit and relationships between sets of variables within
the hypothesised twin-cycle. Structural equation modelling is
a multivariate statistical method that can be thought of as a
combination of regression analysis, factor analysis and path-
way analysis. In a structural equation model a structure (a
pathway network) of relationships between variables can be
defined according to a prespecified hypothesis (such as the
twin-cycle). Based on the observed covariance between the
variables in the model, the fit of the defined model can then
be tested. In addition to this, pathway (mediation) effects with-
in the defined model can also be tested. We defined models
using measured variables only (manifest nodes) and fitted
under a maximum likelihood framework using covariance
matrices. The model definition (see Figs 1a, 2a) reflects the
hypothesised twin-cycle model, proposed elsewhere [15, 16].
Here, relationships (edge estimates) between variables are
adjusted for putative confounders (through two-step residual
regression, described above, hence fitted on covariance matri-
ces of the extracted residuals). Direct (non-mediated) edge
estimates also account for covariance of the other edges
pointing to the same outcome. In other words, edges (see
arrows in Figs 1, 2) in the model represent regression coeffi-
cients, which co-vary with edges from other variables pointing
to the same outcome node (see Text box for node and edge
abbreviations). Pathway (indirect) effects were estimated for

mediated associations of physical activity with glycaemic
control using the coefficient product method [28], where
mediation is defined using the approach described by Baron
and Kenny [29]. Pathways were tested where statistically
significant direct associations (individual, non-mediated,
edge estimates) along the whole pathway were also observed.
Relative model fit was assessed using the comparative fit
index (CFI) and the Tucker–Lewis index (TLI), with values
ranging from 0 (no fit) to 1 (perfect fit) [30]; a model with a
‘good’ fit typically requires both indices to exceed 0.95 [31,
32]. Absolute fit was assessed using root mean square error of
approximation (RMSEA). This ranges from 0 to 1, with 0
indicating a perfect fit [30]. A poorly fitting model is typically
defined by RMSEA >0.06 [33, 34]. CFI, TLI and RMSEA
were not used to formally determine adequacy of fit, as their
use in this context is controversial and there is limited consen-
sus on appropriate cut-off values because each index is affect-
ed differently by degrees of freedom, model complexity and
sample size; it is, however, standard practice to report these
along with the χ2. To overcome this, we formally tested model
fit by comparing the χ2 of the tested model with χ2 values
obtained from variable-randomised null models with identical
structures (in other words, the variables were randomly
assigned to other nodes in the same structural equation model
definition) and applied to the respective covariance matrix
used for the tested model. This process was iterated 10,000
times. To determine whether the tested model χ2 values were
lower (fitted better) than mean χ2 values, one-sample t tests
were used. We also calculated the empirical probability of the
χ2 value from the null model being lower than the χ2 value
from the tested model by expressing the tested model χ2 value
as a quantile within the iterated χ2 values.

Table 1 Characteristics of
cohort subset used in each model Characteristic Cohort 1

(no diabetes/prediabetes)
Cohort 2 (diabetes)

TC TC-PA TC TC-PA

Male sex, % 83 83 57 60

Age, years 60.6 (6.3) 60.6 (6.3) 61.5 (8.3) 61.7 (8.4)

BMI, kg/m2 27.8 (3.6) 27.8 (3.7) 30.5 (4.8) 30.4 (4.6)

Fasting glucose, mmol/l 5.8 (0.5) 5.8 (0.5) 7 (1.5) 7 (1.4)

2 h glucose, mmol/l 6 (1.7) 6 (1.7) 8.6 (2.9) 8.5 (2.8)

Fasting triacylglycerol, mmol/l 1.4 (0.6) 1.4 (0.7) 1.5 (0.9) 1.5 (0.9)

Fasting insulin, pmol/l 73 (49) 75 (51) 105 (69) 105 (68)

Fasting insulin secretion, pmol min−1 m−2 105 (40) 106 (41) 134 (49) 136 (50)

Glucose sensitivity, pmol min−1 m−2 mmol l−1 107 (50) 107 (50) 85 (54) 89 (56)

Insulin sensitivity, 2 h OGIS, ml min−1 m−2 374 (56) 374 (56) 302 (71) 302 (70)

Liver fat, % 5 (4.7) 5 (4.7) 8.6 (7.2) 8.9 (7.4)

Pancreatic fat, % 13.5 (9) 13.6 (9.1) 11.2 (7.2) 11.7 (6.9)

Values are mean (SD), except for male sex, which is % of subcohort
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Nodes (upper case) and edges 

(lower case)

FG/fg Fasting glucose 

FI/fi Fasting insulin secretion rate 

GS/gs Glucose sensitivity (insulin secretion per 

glucose) 

IS/is Oral glucose insulin sensitivity 

LF/lf Liver fat

PA/pa Physical activity 

PF/pf Pancreatic fat 

PG/pg 2 h glucose

TG/tg Fasting triacylglycerol

Multiple testing adjustmentswere not undertaken, as this anal-
ysis sought to validate a single previously hypothesised model
where direct effect estimates were nested within this single
model, reflecting a single overarching hypothesis. Moreover,
where results are consistent across the two subcohorts used here,
one might regard this as replication. However, the absence of
replication may reflect real differences in diseased and non-
diseased states, as opposed to providing evidence of type 1 error.

All statistics were computed using R version 3.5.0 [35].
Structural equation models were fitted using lavaan version
0.6-5 [36]. Models were plotted using semPlot version 1.1.2
(CRAN repository or https://github.com/SachaEpskamp/
semPlot, accessed 20 August 2019). The IMI DIRECT data
release version used for these analyses was ‘direct_29-03-2019’.

Results

Pairwise correlations

Statistically significant pairwise correlations between most of
the index metabolic outcomes and physical activity were
observed, thereby justifying the main structural equation
model analysis to test the underlying structure of these corre-
lations. An overview of the pairwise correlations is presented
in electronic supplementary material (ESM) Fig. 1. Of note, in
both cohorts, indices of reduced insulin resistance such as the
increase of OGIS and the suppression of fasting insulin secre-
tion rate correlated strongly with physical activity. However,
pairwise associations between pancreatic fat and glucose
sensitivity or fasting glucose were not observed, despite the
presence of associations between pancreatic fat and a number
of other index metabolic variables in cohort 1.

Structural equation model

Structural equationmodel results are shown in Figs 1 and 2 for
TC and TC-PA models, respectively. Effect estimates are
presented in Table 2 for direct effects for TC and TC-PA
models. Indirect (mediation/pathway) effect estimates of
physical activity in fasting glucose and 2 h glucose variation
from the TC-PA model are presented in Table 3. In the model
definition diagrams in Figs 1a and 2a, we illustrate which
direct effects (edges, depicted as arrows) were modelled with-
in the structural equation model. We also illustrate the under-
lying liver cycle and pancreatic cycle within the TC to orien-
tate the reader to the original hypothesis [16]. Below, we first
describe the overall model fit and key direct (individual edges)
effect estimates between physical activity and the index meta-
bolic outcomes within the model. We then describe indirect
(pathway) effect estimates between physical activity and
glycaemic regulation mediated by twin-cycle variables.

Model fit The TC model showed better fit than the mean fit of
the respective null model in cohort 1 (χ2 = 242 vs 1005, p < 5 ×
10−10) and cohort 2 (χ2 = 63 vs 587, p < 5 × 10−10) (see Figs 1b,
2b.). The fit from a randomised null model (10,000 iterations)
was unlikely to be better than the TC model in cohort 1 (empir-
ical p = 0.004) and cohort 2 (empirical p = 0.001). The TC-PA
model also showed better fit than the mean fit of the respective
null model in cohort 1 (χ2 = 180 vs 605, p < 5 × 10−10) and
cohort 2 (χ2 = 60 vs 369, p < 5 × 10−10). The fit from a
randomised null model was unlikely to be better than the TC
model in cohort 1 (empirical p = 0.041) and cohort 2 (empirical
p = 0.008).

Direct (non-mediated) effects Most direct effects estimates in
the TC model were statistically significant and were in a direc-
tion consistent with this hypothesis in both cohorts (Table 2).
One notable exception was the relationship between pancreatic
fat and glucose sensitivity, which was not statistically significant
in either cohort. Physical activity bore a direct positive associa-
tion with insulin sensitivity in both cohorts. An inverse direct
association between physical activity and fasting insulin secre-
tion was also observed in both cohorts. Physical activity was not
directly associated with liver fat or 2 h glucose in either cohort.
An inverse direct association between physical activity and
fasting triacylglycerol was observed in both cohorts. Physical
activity was inversely associated with glucose sensitivity in
cohort 2 only.

Indirect (pathway/mediation) effects The association of phys-
ical activity with glycaemic control was primarily mediated by
variables in the liver fat cycle. Physical activity was associated
with fasting glucose through pathway PA→IS↑→FG↓ in both
cohorts and through pathways PA→FI↓→LF↓→IS↑→FG↓,
PA→IS↑→GS↓→FG↑, in cohort 1. Consistently, physical
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activity was associated with 2 h glucose through pathway
PA→IS↑→PG↓ in both cohorts and through pathway PA→
FI↓→LF↓→IS↑→PG↓, PA→IS↑→GS↓→PG↑ in cohort 1.
However, physical activity was associated with both increased
fasting glucose and 2 h glucose through pathways PA→
GS↓→FG↑ and PA→GS↓→PG↑ in cohort 2 only. See
Table 3 for effect estimates and pathway details and Text
box for node abbreviations.

Discussion

Using structural equations to fit models describing the TC [15,
16], we found that in adults with prediabetes and type 2 diabe-
tes overall physical activity volume is associated with multiple
metabolic and abdominal ectopic fat features. We also demon-
strate that reduced whole-body insulin sensitivity and fasting
insulin secretion rate mediate the effects of physical activity in
glucose and liver fat homeostasis. This is to our knowledge

the first detailed pathway analysis of physical activity and
glycaemic regulation.

Our findings partially support the validity of the TC
proposed by Taylor [15, 16]. However, our data do not support
the hypothesised effect of pancreatic fat in beta cell function,
despite finding that pancreatic fat is associated with numerous
other metabolic features; notably, these associations were
observed both in conventional pairwise analyses (ESM Fig.
1) and within structural equation models (Figs 1, 2 and
Table 2). This is important, as these positive results mitigate
the possibility that the absence of associations between
pancreatic fat and beta cell function is due to measurement
error. A key benefit of the approach used here is that the
magnitude of the effects of physical activity on glycaemic
control is quantified (Table 3), so is likely to prove useful
for those planning interventions related to this topic.

The direct effects observed here between liver fat accumu-
lation and reduced insulin sensitivity support a central role for
the liver in mediating the effects of physical activity in

Fig. 1 TC structural equation model definition diagram, fit estimates
and effect estimate diagrams from a hypothesised model for the role of
physical activity and liver fat in glycaemic control. (a) Model definitions,
with squares representing manifest nodes and arrows indicating regres-
sion coefficients pointing towards an outcome of a respective regression.
(b) Model fit; density plot of model fit χ2 from variable-randomised
comparable structural equation models applied on respective dataset
(10,000 iterations). Dashed vertical lines indicate TCmodel χ2, solid lines

and shaded areas indicate χ2 of all null iterations. (c, d) Effect estimate
diagrams of the defined model applied on cohort 1 (no diabetes/predia-
betes, c) and cohort 2 (type 2 diabetes, d), where the arrow thickness is
weighted by effect estimate magnitude, and colours red and blue indicate
positive and negative estimates, respectively. All continuous variables are
normally transformed and adjusted for age, sex, metformin treatment
(cohort 2), study centre, total energy intake, and carbohydrate, fat and
protein intake. See Text box for node and edge abbreviations

Diabetologia



glycaemic control (see Fig. 1 and Table 2). Specifically, the
PA→IS↑, IS→FI↓, FI→LF↑, IS→FG↓ and IS→PG↓ associ-
ations were statistically robust within and between cohorts.
Indeed, pathways PA→IS↑→FG↓ and PA→IS↑→PG↓ are
consistent in direction and magnitude in both cohorts, provid-
ing reassurance that these findings are not false positives, and
suggesting that physical activity exerts effects on glucose
homeostasis via insulin sensitivity in a similar way before
and after the onset of type 2 diabetes. The pathways PA→
FI↓→LF↓→IS↓→FG↓ and PA→FI↓→LF↓→IS↑→PG↓
were only tested in cohort 1, as the direct effect estimate
LF→IS was not statistically significant in cohort 2.

A core feature of the TC relates to the role of islet triacyl-
glycerol content in beta cell lipotoxicity, leading to diminished
beta cell function [16]. As beta cells are estimated to account for

only a small fraction of total pancreatic volume (<5% [37]),
MRI imaging of the pancreas may be too insensitive to specif-
ically quantify beta cell triacylglycerol content, with the signal
instead being driven by whole pancreas fat content [38].
Furthermore, the serrations and involutions that characterise
some pancreases [39] make the accurate assessment of ectopic
fat near the boundary of the organ challenging, even using
whole-organ MRI techniques and experienced radiographers
identifying organ boundaries, as was the case here. The shape
of the pancreas may also influence (or be correlated with factors
that influence) diabetes remission following very-low-energy
diets, such that improvements in early insulin secretion are
greater in individuals with regularly rather than irregularly
shaped pancreases [40]. However, there is a clear possibility
that if pancreas shape and pancreatic fat measurement error

Fig. 2 TC-PA structural equation model definition diagram, fit esti-
mates and effect estimate diagrams from a hypothesised model for the
role of physical activity and liver fat in glycaemic control. (a) Model
definitions, with squares representing manifest nodes and arrows indicat-
ing regression coefficients pointing towards an outcome of a respective
regression. (b) Model fit; density plot of model fit χ2 from variable-
randomised comparable structural equation models applied on respective
dataset (10,000 iterations). Dashed vertical lines indicate TC-PA model

χ2, solid lines and shaded areas indicate χ2 of all null iterations. (c, d)
Effect estimate diagrams of the defined model applied on cohort 1 (no
diabetes/prediabetes, c) and cohort 2 (type 2 diabetes, d), where the arrow
thickness is weighted by effect estimate magnitude, and colours red and
blue indicate positive and negative estimates, respectively. All continuous
variables are normally transformed and adjusted for: age, sex, metformin
treatment (cohort 2), study centre, total energy intake, and carbohydrate,
fat and protein intake. See Text box for node and edge abbreviations
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Table 2 Individual edge effect estimates for the TC and TC-PA structural equation models

Outcome node/parent
node (edge)

Cohort 1
(no diabetes/prediabetes)

Cohort 2 (diabetes)

β β SE p value β β SE p value

TC model

OGIS/

LF (is1) −0.23 0.04 <0.001 −0.11 0.06 0.09

LF/

FI (lf1) 0.41 0.04 <0.001 0.44 0.05 <0.001

FI/

FG (fi1) −0.06 0.03 0.05 −0.25 0.06 <0.001

IS (fi2) −0.70 0.03 <0.001 −0.70 0.06 <0.001

FG/

IS (fg1) −0.67 0.03 <0.001 −0.73 0.03 <0.001

GS (fg2) −0.26 0.03 <0.001 −0.31 0.03 <0.001

TG/

IS (tg1) −0.31 0.03 <0.001 −0.34 0.05 <0.001

LF (tg2) 0.22 0.03 <0.001 0.13 0.05 0.006

PF/

TG (pf1) 0.14 0.03 <0.001 0.01 0.05 0.886

GS/

PF (gs1) −0.05 0.04 0.185 <0.01 0.05 0.967

IS (gs2) −0.21 0.03 <0.001 0.02 0.05 0.63

PG/

IS (pg1) −0.58 0.03 <0.001 −0.67 0.03 <0.001

GS (pg2) −0.17 0.03 <0.001 −0.38 0.03 <0.001

TC-PA model

IS/

PA (is2) 0.30 0.04 <0.001 0.21 0.05 <0.001

LF (is1) −0.20 0.04 <0.001 −0.12 0.07 0.065

LF/

PA (lf2) −0.04 0.04 0.234 −0.04 0.05 0.447

FI (lf1) 0.41 0.04 <0.001 0.44 0.05 <0.001

FI/

PA (fi3) −0.12 0.03 <0.001 −0.16 0.05 0.001

FG (fi1) −0.04 0.03 0.265 −0.23 0.07 <0.001

IS (fi2) −0.64 0.04 <0.001 −0.64 0.07 <0.001

FG/

PA (fg3) 0.11 0.03 0.001 0.06 0.03 0.061

IS (fg1) −0.70 0.03 <0.001 −0.73 0.03 <0.001

GS (fg2) −0.26 0.03 <0.001 −0.28 0.03 <0.001

TG/

PA (tg3) −0.13 0.04 <0.001 −0.13 0.05 0.012

OGIS (tg1) −0.26 0.04 <0.001 −0.30 0.05 <0.001

LF (tg2) 0.22 0.04 <0.001 0.16 0.05 0.002

PF/

PA (pf2) −0.06 0.03 0.067 −0.01 0.06 0.809

TG (pf1) 0.14 0.03 <0.001 −0.01 0.05 0.819

GS/

PA (gs3) −0.05 0.04 0.212 −0.12 0.06 0.032

PF (gs1) −0.05 0.05 0.314 0.01 0.05 0.835
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correlate, the apparent relationship of pancreas fat and beta cell
function may not be causal. Notwithstanding the difficulty in
assessing pancreatic fat, we do observe pairwise correlations
between pancreatic fat and the other metabolic outcomes in
cohort 1 (see ESM Fig. 1), consistent with observations made
by Tushuizen et al [41] who noted a relationship between
pancreatic fat and beta cell function in prediabetes but not type
2 diabetes. Thus, pancreatic fat may have a significant role in
glucose homeostasis, though we could not determine in our
analyses if this is mediated through beta cell function.

As anticipated, we also observed differences in the associ-
ation of insulin sensitivity with beta cell function between the
prediabetes and the diabetes cohorts. In the prediabetes cohort,
beta cell function and insulin sensitivity were related; this was
not the case in the diabetes cohort, probably because the
capacity to compensate for peripheral insulin resistance by
secreting more insulin is greater in prediabetes than once
diabetes is manifest [42].

Our findings should also be considered in light of those
from the ‘Primary care-led weight management for remission
of type 2 diabetes trial’ (DiRECT) in which the remission of
type 2 diabetes in response to an extended period of weight
management through restriction of energy intake was studied
[43] (note that DiRECT is a different study to IMI DIRECT).
The results from a follow-up study to DiRECT, where a
subgroup of participants (n = 88) underwent more detailed
physiological testing similar to those in the present study, is
of particular importance [44]. In this study neither liver fat nor
pancreatic fat differed statistically between responders (those
who remained free from type 2 diabetes after 12 months) and
non-responders, though it did decrease in both groups in
response to the intervention compared with the control arm.
Moreover, first-phase insulin secretion improved in the
responders whereas no difference was observed in the non-
responders. The implication of this is that a reduction in both
liver and pancreatic fat may coincide with remission of type 2
diabetes, and even be necessary, but it is not sufficient (as non-

Table 3 Pathway (mediation)
effect estimates for the association
of physical activity with
glycaemic control within the TC-
PA model (see Fig. 2)

Cohort 1 (no diabetes/prediabetes) Cohort 2 (diabetes)

Outcome node Edge path β β SE p value β β SE p value

FG PA→IS→FG −0.212 0.026 <0.001 −0.153 0.039 <0.001

PG PA→IS→PG −0.171 0.022 <0.001 −0.140 0.036 <0.001

FG PA→IS→GS→FG 0.015 0.004 <0.001

PG PA→IS→GS→PG 0.009 0.003 0.001

FG PA→FI→LF→IS→FG −0.007 0.002 0.002

PG PA→FI→LF→IS→PG −0.006 0.002 0.002

FG PA→GS→FG 0.033 0.016 0.037

PG PA→GS→PG 0.045 0.022 0.04

All continuous variables are normally transformed and adjusted for age, sex, metformin treatment (cohort 2),
study centre, total energy intake and carbohydrate, fat and protein intake

See Text box for node abbreviations

Table 2 (continued)

Outcome node/parent
node (edge)

Cohort 1
(no diabetes/prediabetes)

Cohort 2 (diabetes)

β β SE p value β β SE p value

IS (gs2) −0.18 0.04 <0.001 0.02 0.05 0.696

PG/

PA (pg3) −0.04 0.03 0.194 −0.05 0.04 0.162

IS (pg1) −0.56 0.03 <0.001 −0.67 0.03 <0.001

GS (pg2) −0.17 0.03 <0.001 −0.39 0.03 <0.001

All continuous variables were normally transformed and adjusted for age, sex, metformin treatment (cohort 2), study centre, total energy intake and
carbohydrate, fat and protein intake

See Text box for node and edge abbreviations
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responders also had a decrease in both). The lack of a rela-
tionship between pancreatic fat and glucose sensitivity in our
study could be for the same reason as in DiRECT.

A weakness of this analysis is that it is cross-sectional and,
thus, the direction of the effects between some variables in the
model cannot be easily ascertained. Nevertheless, the effects
tested here and the structure of the models were prespecified,
based on a biologically plausible hypothesis proposed previous-
ly [45]. As we have sought to test specifically the TC here we
have also limited the model to edges (and directions) reflecting
this hypothesis only. For this reason the model does not include
some commonly hypothesised direct effect edges such as beta
cell glucotoxicity and lipotoxicity (not mediated by pancreatic
fat) [46], the rate sensitivity and potentiation fraction ratio vari-
ables in beta cell function modelled from oral glucose tolerance
tests (often included alongside glucose sensitivity) [22].

Another consideration is the mathematical relatedness of
fasting insulin, fasting glucose and 2 h glucose with insulin
sensitivity, which are determined using some of the same vari-
ables derived from the fsOGTT/MMTTand are thus implicitly
correlated. Nevertheless, the OGIS method has been exten-
sively validated and the OGIS estimate has shown to be a
close representation of the gold-standard M value from a
euglycaemic–hyperinsulinaemic clamp [47]. As such, it is
also worth bearing in mind that OGIS, as a whole-body insulin
sensitivity measure, will not only reflect hepatic insulin sensi-
tivity but also skeletal muscle insulin sensitivity. This is partic-
ularly important for the results of this study where the effects
of physical activity on glycaemic control mediated through
insulin sensitivity likely reflect an insulin-sensitising effect
on skeletal muscle and not only the liver.

It is possible that the methods used here to normalise
data distributions and control for confounding reduce
statistical power to detect effects. Despite this caveat,
the approach is valuable, as it renders the effects esti-
mated within and between the two cohorts directly
comparable, minimising confounding and bias, while
also restricting the parameterisation of the model. An
important limitation of any multivariable analysis, where
‘conditioning’ variables (covariates) are on the causal
pathway between the defined exposures and outcomes,
is that effects will be underestimated owing to media-
tion [30, 48]. In the current analysis, this is unlikely to
be a cause for concern, as physical activity, for exam-
ple, does not determine sex or chronological age; thus,
neither sex nor age can mediate the effects of physical
activity on metabolic outcomes.

Conclusion This analysis highlights that peripheral insulin sensi-
tivity and liver fat are likely to be major mediators of the effects
of physical activity in whole-body glucose homeostasis, key
features of the pathogenic cycle proposed by Taylor [15, 16].
This study illustrates the value of large well-phenotyped cohorts,

where emphasis is placed on detailed phenotypic assessments
that allow structures of physiological relationships to be
modelled and complex multi-dimensional pathogenic processes
to be assessed.
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