Vista - market forces trade-offs impacting European ATM performance
Delgado, L., Gurtner, G. and Cook, A.J.

This is an electronic version of a paper presented at the COCTA Workshop: Improving Performance in ATM – Innovative institutions, mechanisms and incentives, Frankfurt, Germany, 27 September 2017.

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: (http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk
Vista
Market forces trade-offs impacting European ATM performance

Drs Luis Delgado, Gérald Gurtner & Andrew Cook
University of Westminster, London

COCTA Workshop –
Improving Performance in ATM
Overview of presentation

• Objectives of Vista

• Overview of the model
 • principles and construction
 • The tactical layer
 • most mature – presented elsewhere
 • The pre-tactical layer
 • key bridge
 • The strategic layer
 • setting up objectives

• Trade-off analysis

• Discussion
 • not conclusions, rather an open dialogue
Objectives of Vista
Objectives of Vista

KPIs established for 2015 (all in SES PS, RP2)

- Current
- 2035
- 2050

(+ airports)
Objectives of Vista

• Market/business forces working with/against regulation – unintended consequences?
 • cheaper to cancel a flight? (Reg. 261)
 • delay recovery v. emissions impact? (ETS; Directive 2008/101)
 • ANSP delay levels driven too low? (SES PS; Reg. 549/2004)

• Impact metrics
 • classical (e.g. average delay) & complexity (e.g. community detection)
 • monetised (e.g. cost of delay) and quasi-cost (NO$_x$, σ^2_{arr})
Objectives of Vista

WP3 Market forces
- Business forces
- Regulatory forces
- Scenarios

WP4 Evaluation framework
- Passengers
- Airlines
- ANSPs
- Airports
- Environment

WP5 Impact trade-offs
- Full cost
- Quasi-cost

WP6 Stakeholder assessment & dissemination
Overview of the model
Overview of the model

• The forces/factors considered are subdivided into two main categories:
 • **Business factors (37):** cost of commodities, services and technologies, volume of traffic, etc. => demand and supply
 • **Regulatory factors (22):** from EC or other bodies, e.g. ICAO, => ‘rules of the game’; some of these are enablers of the business factors

• 85 references consulted

<table>
<thead>
<tr>
<th>Id</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROR1</td>
<td>Passenger provision schemes</td>
</tr>
<tr>
<td>BTO4</td>
<td>Passengers reaccomodation tool</td>
</tr>
<tr>
<td>BTO3</td>
<td>Virtual control centre</td>
</tr>
</tbody>
</table>
Overview of the model

• The forces/factors considered are subdivided into two main categories:
 • **Business factors (37)**: cost of commodities, services and technologies, volume of traffic, etc. => demand and supply
 • **Regulatory factors (22)**: from EC or other bodies, e.g. ICAO, => ‘rules of the game’; some of these are enablers of the business factors
• 85 references consulted
• Further split into ‘background’ and ‘foreground’ factors:
 • **Background** (often drive fundamental system evolution)
 • expected small impact on the system
 or
 • highly consensual/less interesting *per se*
 • **Foreground**
 • factors whose impact are to be studied explicitly, in more detail
Background scenarios

<table>
<thead>
<tr>
<th>Period</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>Current</td>
<td>Default</td>
</tr>
<tr>
<td>2035</td>
<td>L35: Low economic</td>
<td>Economic growth slow in Europe</td>
</tr>
<tr>
<td></td>
<td>Low Techno</td>
<td>Technological & operational changes not supported</td>
</tr>
<tr>
<td></td>
<td>M35: High economic</td>
<td>Economic growth high in Europe</td>
</tr>
<tr>
<td></td>
<td>Low Techno</td>
<td>Technological & operational changes not supported</td>
</tr>
<tr>
<td></td>
<td>H35: High economic</td>
<td>Economic growth high in Europe</td>
</tr>
<tr>
<td></td>
<td>High Techno</td>
<td>Technological & operational changes are supported</td>
</tr>
<tr>
<td>2050</td>
<td>L50</td>
<td>(As per 3035)</td>
</tr>
<tr>
<td></td>
<td>M50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H50</td>
<td></td>
</tr>
</tbody>
</table>
Overview of the model

Foreground factors

<table>
<thead>
<tr>
<th>ID</th>
<th>Business factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTS5</td>
<td>4D Trajectory Management</td>
</tr>
<tr>
<td>BTS9</td>
<td>Traffic synchronisation</td>
</tr>
<tr>
<td>BTO4</td>
<td>Passenger reaccommodation tools</td>
</tr>
<tr>
<td>BEO1</td>
<td>Fuel prices</td>
</tr>
<tr>
<td>BEO2</td>
<td>Airspace charges</td>
</tr>
<tr>
<td>BEO3</td>
<td>Airline business models (output)</td>
</tr>
<tr>
<td>BEO4</td>
<td>Smart, integrated ticketing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Regulatory factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROR1</td>
<td>Passenger provision schemes</td>
</tr>
<tr>
<td>ROR3</td>
<td>Emission schemes</td>
</tr>
<tr>
<td>ROR4</td>
<td>Noise pollution (implicit)</td>
</tr>
<tr>
<td>RAD1</td>
<td>Airport slots</td>
</tr>
<tr>
<td>RAD2</td>
<td>Regional airport development</td>
</tr>
<tr>
<td>RAA1</td>
<td>Airport access</td>
</tr>
<tr>
<td>ROR9</td>
<td>Operation of air services</td>
</tr>
</tbody>
</table>

Foreground groups

<table>
<thead>
<tr>
<th>EM: Environmental mitigation policies</th>
<th>PF: Passenger focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI: Regional infrastructures</td>
<td>SES: Single European Sky</td>
</tr>
</tbody>
</table>
Overview of the model
The tactical layer

E.g. regulations, technologies, forecasts

E.g. (near-firm) capacities and demand

E.g. uncertainty, cost of delay, reaccommodation rules

Initial Mobility State

Adjusted Behaviour

Learning Loop
Comparison with targets
Setting new initial state

Pre-tactical Layer

Passenger assignment
Flight plan generation

ATM Regulation

Strategic Layer

Economic Model

Schedule mapping

Airports

14
The tactical layer

Flight plans
ATFM delay
Passengers itineraries
The tactical layer

Door-to-door context and 2050 (also courtesy DATASET2050)

Airport access: data-driven stochastic processes

Pax profiles linked with itineraries

Confidential access to airport process times
The pre-tactical layer

- **Environment**
 - **Pre-tactical Layer**
 - **Strategic Layer**
 - **Economic Model**
 - **Schedule Mapping**
 - **Tactical Layer**
 - **Learning Loop**
 - **Comparison with targets**
 - **Setting new initial state**
 - **KPIs**
 - **Initial Mobility State**
 - **Final Mobility State**
 - **Impact Trade-offs**

- **Foreground Factors**
- **Background Factors**
- **Exogenous Variables**

- **E.g. regulations, technologies, forecasts**
- **E.g. linear-linear capacities and demand**
- **E.g. uncertainty, cost of delay, reaccommodation rules**
The pre-tactical layer

- Flight schedules
- Flight plans
- ATFM delays
- Passenger itineraries

IATA, GDS; MCTs; traffic (high effort)
The strategic layer

- Strategic layer – economic model (takes into account macro-economic factors)
- Desired outputs:
 - main flows in Europe
 - market share of different airline types
 - capacities of ANSPs and airports
 - average prices for itineraries
- Need to take into account:
 - main changes in demand (volume, pax heterogeneity)
 - major business model changes:
 - point-to-point v. hub-based (airlines)
 - competition v. cooperation (ANSP)
 - privatisation v. nationalisation (ANSP and airports)
 - capacity restrictions (congestion at airports; ATCO resource constraints)
 - major changes of commodity prices (e.g. fuel, airport and airspace charges)
The strategic layer

- Turn-based, multi-agent model
- Currently features three types of agents:
 - airport (one agent per airport)
 - airline (one agent per airline)
 - passengers (one agent per OD pair, including all possible itineraries)
 - ANSPs (coming soon; able to adjust prices after several turns -> AO choice)

- Each agent has its own objective, with a specific cost function:

 AO flight cost function
 - fuel
 - airport charges
 - ATC charges
 - delay costs

 Pax utility function
 - price
 - frequency of flight
 - income
 - delay

 Airport revenues and costs
 - aeronautical charges
 - operating cost of capacity
The strategic layer

Turns:

- **airlines**
 - estimate prices of each itinerary (based on past prices)
 - estimate delays at airports (based on past delays)
 - choose operated capacity by airport pair (based on est. delays & prices)
- **airports**
 - estimate their traffic
 - decide whether to expand capacity* (based on expected traffic, & costs)
- **passengers** choose between itineraries for given OD pairs
- **selling price** of each itinerary is updated
 - based on balance between supply & demand
- **delays** are updated (based on ‘actual’ traffic)
- **airports and airlines** compute final profit

* availability lagged by several turns
The strategic layer

Simple scenarios to test / illustrate the model

Scenario:

Increased income on high-yield leg: Increase in income of all passengers on the 0->3 leg
The strategic layer

Simple scenarios to test / illustrate the model

- ‘mainline’, hub-based
- ‘low-cost’, P2P
The strategic layer

Simple scenarios to test / illustrate the model

1

0

3

2

‘mainline’, hub-based

‘low-cost’, P2P

Airline Profit

mainline

low-cost

0 10 20 30 40

Step
Trade-off analysis
Trade-off analysis

COCTA Workshop – Improving Performance in ATM – Innovative institutions, mechanism and incentives, Frankfurt, 27 September 2017
Trade-off analysis
Discussion
Discussion

• Three stage model to capture the impact of factors at each operational level
• The objective of Vista is not the individual value of the metrics per se but the trade-off between them in different scenarios
• Produce trade-offs between metrics for different time-frames, background scenarios and factors

• At this stage in the design process, we’d very much welcome feedback
 • Prioritisation of trade-offs to measure
 • KPIs refinement
 • Archetype definition of stakeholders and their behaviour

• Workshops coming up:
 • Vista workshop – Vienna – 23 October 2017 – airspace-research@westminster.ac.uk
 • Performance Work Forum – SJU premises – 07 February 2018
Thank you