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Abstract
Background: The circumsporozoite surface protein is the primary target of human antibodies
against Plasmodium falciparum sporozoites, these antibodies are predominantly directed to the
major repetitive epitope (Asn-Pro-Asn-Ala)n, (NPNA)n. In individuals immunized by the bites of
irradiated Anopheles mosquitoes carrying P. falciparum sporozoites in their salivary glands, the anti-
repeat response dominates and is thought by many to play a role in protective immunity.

Methods: The antibody repertoire from a protected individual immunized by the bites of
irradiated P. falciparum infected Anopheles stephensi was recapitulated in a phage display library.
Following affinity based selection against (NPNA)3 antibody fragments that recognized the PfCSP
repeat epitope were rescued.

Results: Analysis of selected antibody fragments implied the response was restricted to a single
antibody fragment consisting of VH3 and VκI families for heavy and light chain respectively with
moderate affinity for the ligand.

Conclusion: The dissection of the protective antibody response against the repeat epitope
revealed that the response was apparently restricted to a single VH/VL pairing (PfNPNA-1). The
affinity for the ligand was in the µM range. If anti-repeat antibodies are involved in the protective
immunity elicited by exposure to radiation attenuated P. falciparum sporozoites, then high
circulating levels of antibodies against the repeat region may be more important than intrinsic high
affinity for protection. The ability to attain and sustain high levels of anti-(NPNA)n will be one of
the key determinants of efficacy for a vaccine that relies upon anti-PfCSP repeat antibodies as the
primary mechanism of protective immunity against P. falciparum.
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Background
Malaria threatens public health in regions of the world
where more than a third of the human population lives
[1,2]. It has been shown that immunization with radia-
tion-attenuated Plasmodium sporozoites, the infective
stage of the malaria parasite, confers protective immunity
[3,4]. The role of specific antibody in conferring protec-
tion was demonstrated with passive administration of
murine mAbs directed against the major repeat epitope of
the circumsporozoite (CS) protein [5] in a rodent model.
The corresponding epitope of the human malaria parasite
Plasmodium falciparum is contained within the repeat
tetramer peptide (Asn-Pro-Asn-Ala)n, (NPNA)n [6]. In
some studies of volunteers protected against malaria by
immunization with radiation attenuated P. falciparum
sporozoites, protected individuals had significant eleva-
tions of anti-repeat antibodies (>19 µg/ml) [7].

With the advent of recombinant combinatorial antibody
technology [8,9] and phage display [10-13] it is possible
to attempt to dissect the human antibody response
against a wide range of pathogens. In order to further
investigate the role of the human antibody response in P.
falciparum sporozoite induced protection, a phage display
library of antibody gene fragments isolated from the
peripheral blood lymphocytes of such a protected donor
(WR5) [7] was assembled. Recombinant antibodies
against the PfCSP structural repeat (NPNA)3 epitope were
selected. Recognition was restricted to a single antibody
designated PfNPNA-1, encoded by VH3 and VκI families.
This restricted humoral response has implications for
rational vaccine design and the potential use of this
human monoclonal antibody to prevent P. falciparum
infection.

Methods
RT-PCR of Immunoglobulin genes
A human volunteer (WR5), who was previously exposed
to the bites of γ-irradiated P. falciparum infected Anopheles
mosquito's and subsequently shown to be protected
against a non-irradiated parasite challenge, donated lym-
phocytes by leukophoresis five days after a booster chal-
lenge (appropriate informed consent was obtained) for
details see Egan et al., [7]. The irradiated sporozoite
immunization protocol was approved by the Naval Med-
ical Research Institute's Committee for the Protection of
Human Subjects in accordance with the US Navy regula-
tion (SECNAVINST3900.39B) governing the use of
human participants in medical research. Total RNA was
extracted from 2 ml of packed cells using an RNA isolation
kit (Stratagene, La Jolla, CA) with a modified protocol [9].
The equivalent of 2.5 µg total RNA template were used in
each cDNA synthesis reaction using reverse transcriptase
(Invitrogen, CA) with oligonucleotide oligo dT or 3
'HuVH (5'GCCCCCAGAGGTGCTCTTGGA-3', anneals in

CH1 domain) following the instructions provided by the
supplier.

The genes encoding variable heavy (VH) and the kappa
chain (κ) were accessed by RT-PCR and combined by
overlap extension PCR, resulting in shuffling of the VH
and the VL domains. The VH PCR amplification was carried
out with the cDNA template generated using the 3'HuVH
primer. The VH domains were amplified using 5'HuVHA
and 3'HuVH-Link 3' designed to anneal with the sequence
corresponding to the first β-strand of the CH1 domain
and overlap with the 5'HuVk primer. The κ chains were
amplified using 5'HuVk and the 3'Hukappa primers. The
VH and the κ chain PCR products were combined by over-
lap extension PCR using a VH flanking primer 5'HuVHB
(to introduce a NheI site) and the 3'HuKappa primer.

Oligonucleotide primer sequences
5'HuVk
5'-TATTAGCGGCCGCCCAACCAGCCATGGCCGAEFI-
JLOPETGACBCAGTCTCC-3' (where B=G+C+T, S=G+C, E
= 50%A+33%C+17%T, F = 83%A = 17%G, I =
83%T+17%C, J = 50%T+33%C+17%G, L =
67%G+17%T+17%C, O = 67%T+17%A+17%C, and P =
83%G+17%C)

3'HuKappa
5'-TCCTGAAGCTTGACGACCTTCGATCTCTCCCCTGTT-
GAAGCTCTT-3'

5'HuVHA
5'-SAGGTGCAGCTGSTGSAGTCTGG-3'

5'HuVHlink3'
5'-GGCTGGTTGGGCGGCCGCTAATATGGAGGAGGGT-
GCCAGGGGGAAGAC-3'

3'HuVHB
5'-GTTTCGCTAGCGTAGCTCAGGCTSAGGT-
GCAGCTGSTGSAGTCTGG-3' 

The procedural steps are illustrated in Figure 1.

Cloning PCR fragments into pORFES and JC-M13-88
The PCR amplified VH/κ products were digested with
restriction enzymes NheI and HindIII, and ligated into
pORFES [14]. An aliquot of E. coli transformed with the
ligation mixture was plated with and without carbenicillin
selection, to determine the number of functional inserts.
The VH/κ coding sequences are directionally inserted for
expression between an OmpA leader peptide (to direct the
polypeptide into the periplasm), and the β-lactamase.
Functional full-length VH/κ β-lactamase fusion polypep-
tide is secreted into the periplasm. Bacteria harbouring
plasmids conferring antibiotic resistance may be
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positively selected. The VH/κ coding insert may be readily
transferred as a XbaI-HindIII fragment into the JC-M13-88
phage vector to display the insert polypeptide as a gpVIII
fusion. The selected "functional" library of VH/κ inserts
were excised from pORFES using XbaI and HindIII, ligated
into pre-digested JC-M13-88 [4], and transformed into E.
coli (XL1-Blue: Stratagene). Phage was produced overnight
at 37°C in the presence of 1 mM IPTG, unless otherwise
stated. A schematic outline of the vectors is shown in Fig-
ure 2.

Phage panning
The peptide (NPNA)3C (Chiron Mimotopes Peptide Sys-
tems, San Diego, CA.) was conjugated to BSA using Imject
Activated Immunogen kit (Pierce, Rockford, IL) according
to the manufacturers guidelines. ELISA plates (Dynatech

Immunlon I, Alexandria, VA) were coated with BSA or
(NPNA)3C-BSA and used in phage panning experiments
essentially as described elsewhere [5]. To blocked antigen
coated wells a total of 4 × 1010 plaque forming units (pfu)
of the phage library in dilution buffer (PBS pH 7.2,
Tween-20 0.05%, BSA 0.1%, NaN3 0.02%) was added (1
× 1010 plaque forming units (pfu) per well). After 4 h the
wells were washed and the bound phage were eluted by
applying either 0.1 M glycine-HCl, pH2.2 or a solution of
the free peptide (NPNA)3 (~8 µM) dissolved in dilution
buffer, for 15 min at ambient temperature. An aliquot of
the phage elute was titered, and the remainder was used to
propagate phage for further rounds of panning. The three-
domain single chain antibody retains the kappa constant
domain thus permits plaques filter lifts to be probed with
anti-human kappa chain antibodies for

VH/κ library constructionFigure 1
VH/κ library construction. A schematic diagram of the steps involved in constructing a VH/κ library from mRNA isolated 
from PBL.
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immunodetection. VH and VL coding sequences were
determined by sequencing of replicative form (rf) phage
DNA prepared from κ-positive plaques, using the oligo-
nucleotides primers:

3'Seq VH-JC130 (5'-CGGCCATGGCTGGTTGGGCGGCC-
3') and

3'Seq VL-JC128 (5'TTCAACTGCTCATCAGATGGCGG-3').

Expression of PfNPNA-1 VH/k in E. coli
The expression vector pAbHIS, was constructed by modi-
fication of pUC18. The β-galactosidase coding region was
removed and XbaI-HindIII sites introduced upstream of a
sequence encoding a six histidine tail. Insertion of VH/κ
coding sequence selected by phage display as XbaI-HindIII

fragment would result in the expressed polypeptide being
secreted into the periplasmic space with a hexa-histidine
tag. The plasmid pAbHIS was constructed by PCR modifi-
cation of pUC18 using the primers PUCSpe-JC127(5'-
TCATCATACTAGTAACGACACCCGCCAACACCC-3')
and M13-JC118 (5'-AAGCTTATGATGTCTAGAGCTGTT-
TCCTGTGTGAA-3'). A pair of annealed oligonucleotides
designed to encode a 6×His tag were ligated into the Hin-
dIII digested plasmid to complete pAbHIS. The selected
PfNPNA-1 VH/κ gene was excised from the rf JC-M13-88
DNA by digestion with XbaI and HindIII and ligated into
similarly digested pAbHIS. An additional 6×His-coding
pair of oligonucleotides was ligated into the PfNPNA-1
VH/κ linker sequence as NotI-NcoI insert. The expression
of PfNPNA-1 VH/κ in E. coli D29A1 cells at 25°C, and the
isolation of bacterial periplasmic material was performed

Illustration of vectors pORFES, JC-M13-88 and pAbHISFigure 2
Illustration of vectors pORFES, JC-M13-88 and pAbHIS.
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as described [16] with modifications; Dnase I n(1 µg/ml)
and MgCl2 (20 mM) were added, the bacterial suspension
was incubated on ice for a further 20 min before final cen-
trifugation step. The periplasmic extract was passed over
Ni-NTA resin (Qiagen), washed and the PfNPNA-1 VH/κ
was eluted with 300 mM imidazole. SDS PAGE and west-
ern blotting were used to asses purity and integrity of the
expressed VH/κ polypeptide during the purification proce-
dure (data not shown). Purified PfNPNA-1 VH/κ was
quantified spectrophotometrically assuming an OD at
280 nm of 1 = 0.72 mg/ml protein.

ELISA affinity and specificity determination
ELISA Plates (Dynatech Immunlon I) were coated with
(NPNA)3C-BSA (10 µg/ml). Dilutions of the peptide
(NPNA)3 were made in dimethyl formamide (DMF)
before mixing with the PfNPNA-1 VH/κ diluted in PBST.
Aliquots of 0.1 ml were added to duplicate wells, incu-
bated for 2 h at 37°C. In all wells the final concentration
of DMF was 1% (v/v). After washing 4 times with PBST,
anti-human kappa chain alkaline phosphatase conjugate
diluted 1:1000 in PBST was added and incubated as
before. The wells were washed 4 × with PBST and rinsed
1× with PBS and substrate p-nitrophenyl phosphate was
added, the absorbance was determined at 405 nm

The binding of immune serum (WR5), non-immune
serum and PfNPNA-1 VH/κ to R32tet32, recombinant
hepatitis core containing (NANP)4 peptide sequence and
(NPNA)3C-BSA conjugate coated microtiter plate well
was determined by ELISA essentially as described above.
The serum(s) and the recombinant PfNPNA-1 VH/κ were
diluted 1/16 and 1/10 respectively.

Phage ELISA
Phage at 1 × 1012 pfu/ml in dilution buffer were applied
(0.1 ml/well) to duplicate wells coated with (NPNA)3-C-
BSA or BSA (10 µg/ml). After incubation at ambient tem-
perature for 4 h, plates were washed with PBST. The
bound phage was detected with sheep anti-M13 antibod-
ies (5'-prime 3'-prime), followed by rabbit anti-sheep
alkaline phosphatase antibodies in PBST added sequen-
tially for 1 h at 37°C. Plates were washed and developed
as described above.

Indirect immunofluorescence assay (IFA) on P. falciparum 
sporozoites
The PfNPNA-1 VH/κ was compared with a well-character-
ized murine monoclonal anti-Pf repeat antibody 2A10
[17,18] in IFA. All incubations were at 37°C in a humid
container. Printed multiwell slides coated with Plasmo-
dium falciparum NF54 strain sporozoites were either fixed
in ice cold acetone for 10 min or used unfixed. Slides were
first blocked with 4%BSA in PBS for 1 h. Antibodies
diluted in PBST were applied for 2 h, then slides were

washed 4× with PBS and fluoroscein-conjugated anti-
human kappa chain or anti-mouse immunoglobulin
(Sigma) was applied, diluted 1:25 in PBST. After 2 h slides
were washed as above and mounted in SlowFade anti-fade
reagent (Molecular Probes, Eugene, OR) and viewed by
fluorescence microscopy.

Other antibodies
The murine mAb 2A10 [17,18] (IgG2b, κ), which recog-
nizes the (NANP)3 sequence of the P. falciparum CSP was
provide as whole ascitic fluid (a kind gift from Dr P. Sinnis
New York University). Concentration of the whole IgG
was estimated using a standard antibody capture ELISA.
Immune IgG (denoted (Vol-IgG) was purified from serum
of the immune volunteer (WR5), donated at the time of
lymphophoresis using Protein A Sepharose (Pharmacia)
and quantified assuming OD at 280 nm of 1.0 represents
0.8 mg/ml IgG. Within the Vol-IgG, the proportion of
(NPNA)3 specific IgG with κ or λ light chains were deter-
mined by ELISA (data not shown).

Results
Library construction
Sera from the protected individual (WR5) [7] contained
antibodies against the PfCSP, which were predominantly
IgG/κ and against the structural repeat peptide as deter-
mined by ELISA. Gene fragments encoding VH/κ single
chain antibodies were amplified and assembled by PCR
from cDNA derived from the peripheral blood lym-
phocytes of the immune donor WR5 (as outlined in Fig-
ure 1). The library of PCR amplified VH/κ sequences were
inserted into pORFES [14] and an aliquot compared for
number of functional inserts by selecting in the presence
of either chloramphenicol (total transformation events)
or chloramphenicol and carbenicillin (functional inserts).
Approximately half of the initial library contained non-
functional domains (data not shown). The remainder of
the library was selected on 100 µg/ml carbenicillin, yield-
ing a primary library of 1.3 × 106 members, these VH/κ
sequences were transferred to the phage display vector JC-
M13-88 [15] with ten fold over representation of the pri-
mary library.

Panning
Samples of the VH/κ-phage library were subjected to four
rounds of panning on (NPNA)3C-BSA coated wells. Both
the acid and peptide elution strategies yielded signifi-
cantly greater numbers of phage after four cycles of pan-
ning on (NPNA)3C-BSA when compared to panning on
BSA alone (Table 1). Analysis of fifteen individual phage
after the fourth round of panning on (NPNA)3C-BSA
eluted with free peptide revealed, twelve kappa positive
phage, of these three clones (NP 04, 12, 13) were positive
in the phage ELISA for binding to (NPNA)3C-BSA and
were encoded by an identical sequence, henceforth
Page 5 of 12
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denoted PfNPNA-1. Prior to panning ten kappa positive
clones were randomly selected for sequencing (R 01-10;

Table 2). The PfNPNA-1 VH and VL sequences were mem-
bers of the VH3 and VκI families respectively and were not

Table 1: Phage panning experiments ELISA plates (Dynatech Immulon I) were coated with BSA or (NPNA)3C-BSA and used in phage 
panning experiments. To the blocked antigen coated wells a total of 4 × 1010 pfu of the phage library in dilution buffer were added 1 × 
l010 pfu per well. After 4 h the wells were washed and phage eluted by applying either 0.1 M glycine-HCl pH 2.2 or a solution of the free 
peptide (~8 µM) (NPNA)3 dissolved in dilution buffer for 15 min at ambient temperature. An aliquot of the phage eluate was titered and 
the output determined.

Eluate after Coating antigen / Elution method (×l05 pfu)*

panning rounds BSA / acid BSA /(NPNA)3 (NPNA)3C BSA /acid (NPNA)3C BSA /(NPNA)3

1 2.9 (0.38) 0.82 (0.032) 3.0 (0.34) 0.51 (0.024)
2 1.4(0.03) 0.24 (0.020) 3.5 (0.24) 1.5 (0.028)
3 1.2(0.06) 0.47 (0.020) 4.3 (0.024) 12 (0.68)
4 13 (0.70) 1.0(0.032) 170 (30) 370 (20)

* Figures represent the mean of the total plaque forming units eluted by either acid or excess free peptide, after repeated panning against BSA or 
(NPNA)3C-BSA. Values for the standard deviation are shown in brackets ().

Table 2: VH and VL assignments and alignment of CDR 3 sequences The selected (NP 04, 12, 13 designated Pf NPNA-1 bind to the repeat 
epitope), all other NP clones were randomly picked after the panning procedure and were subsequently shown not to be reactive with 
the repeat epitope. Non-selected (R01-10) were randomly picked from the library prior to initiating panning. The peptide sequence of 
the heavy and light chain complementarity-determining region 3 (CDR3) is shown below. VH/VL families, segments and the number of 
differences from germline segments were determined by using the V BASE sequence directory (Tomlinson, I. M., Williams, S. C., 
Corbett, S. J., Cox, J. P. L. & Winter, G., MRC Centre for Protein Engineering, Cambridge, UK) and the DNAPLOT alignment package 
(Müller, W. & Althaus, H.-H., Köln University)

clone code* VH
family

VH
Segment

Differences 
from 

germline

VHCDR3 VL
family

VL
Segment

Differences 
from 

germline

VLCDR3

PfNPNAl VH3 DP46 10 DRDSSSYFDS VkI L12a 15 QQYNSYSGLT
NP04, NP12, NP13 VH3 DP46 10 DRDSSSYFDS VkI L12a QQYNSYSGLT

R01 VH1 4M28†‡ 28(+6)* §- DSESVAQWRY VkIV DPK24 43 QQSLSPVWT
R02 VH3 COS-3‡ 27 (+3)_ GVNWCSDY VkI DPK9 10 QQSYSTSWT
R03 VH5 DP73 35 LYTSIYYFDS VkIV DPK24 7 QQYYSTPLT
R04 VH3 DP46 8 DRVTNFWSGYFDY VkIII DPK22 13 QQYGSSPGFT
R05 VH3 DP58 23 DSTVKTVTKMRYGLD V VkIII DPK22 8 QQYGSSPFT
R06 VH1 4M28† 12 DNYGDPGGGFDI VkIII DPK22 11 QQYGNSPRT
R07 VH5 DP73 9 RFWFGELYDAFDI VkIV DPK24 16 HQYYSTPQT
R08 VH5 DP73 34 LYTSIYYFDS VkIII DPK22 14 QQYGRSPWT
R09 VH3 V3-21† 34 DQGGGWSSEVDS VkIII Vg 5 QQRSNWPLT
R10 VH1 DP7‡ 21 (+9)** ALYGHDAFDI VkI DPK4 12 PKYNSALHT

NP02 VH3 DP47 36 ERPYDAFDS VkIII DPK22 23 QQYSTSPPMYN
NP03 VH5 DP73 40 LYTSIYYFDS VkIII Vg 17 KQRSKWPPIT
NP05 VH3 V3-48 14 EPRGAGTTLYFDY VkIII DPK22 22 QQYGGSPGYN
NP08 VH4 4.30† 18 DRGVSSGWTFDC VkII DPK16 32 MQLTAFPWT
NP09 VH4 DP71 17 FRGGVAAGYDY VkIII DPK22 24 QHYRESCS
NP10 VH4 DP78 29 DRVRVPYYYIDV VkIII DPK22 15 QQYGTSPYS
NP11 VH3 VH3-8† 12 DTTVTHYFDY VkI DPK9 21 QQSFSSPRT
NP14 VH1 DP88 20 GPGATIHYYYMDV VkI DPK8 18 QQLDNYPLT
NP15 VH5 DP73 36 LYTSIYYFDS VkIII DPK22 28 QQYGNSPPT

*Phage clones were either selected from the library at random (prefix R) or after four rounds of panning against (NPNA)3C-BSA, eluting with free 
(NPNA)3 peptide (prefix NP). † The segment given the best DNAPLOT match, although the segment sequence has not been verified by duplication. 
‡ Aligned after removal of the unusual sequence additions (see§,-, ‡,-, **). § Figure in brackets indicates an unusual sequence addition. - Sequence has 
two additional codons in CDR1. - Sequence has one additional codon in CDR1. ** Sequence has three additional codons in CDR2.
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found amongst the random sampling of phage prior to
panning. In an independent experiment with phage prop-
agated at 30°C, but otherwise an identical panning proce-
dure 12 out of 12 selected phage clones were identical to
PfNPNA-1. Likewise, phage selected by acid elution and
evaluated by ELISA for binding to (NPNA)3C-BSA were all
identical to PfNPNA-1. Despite extensive sampling of
phage that were positive in the phage ELISA for binding to
(NPNA)3C-BSA (n = 25), only the PfNPNA-1 sequence
was observed.

Expression and evaluation of the recombinant antibody 
fragment
The PfNPNA-1 sequence was transferred to the expression
vector pAbHIS (as outlined in Figure 2. Purification of the
VH/κ polypeptide was carried out on Ni-NTA agarose

beads, yielding 0.5 mg of the 38 kDa VH/κ polypeptide/L
bacterial culture.

Fine specificity and affinity determination
Anti-sporozoite activity of the PfNPNA-1 VH/κ molecule
was clearly evident in an immunofluorescence assay (IFA)
with P. falciparum sporozoites (Figure 3). The human sin-
gle chain monoavalent antibody (panel A) was compared
with a known in vitro protective whole murine antibody
2A10 (panel B). The murine antibody and the recom-
binant PfNPNA-1 VH/κ molecule both labelled the
parasites.

Competitive ELISA was carried out and the IC50 value used
to approximate the affinity of binding. Binding affinity of
the monovalent PfNPNA-1 for (NPNA)3 compared
favourably with values previously reported for a panel of
conventional murine monoclonal antibodies directed
against the repeat epitope [18], which also have affinities
in the µM range (Figure 4).

Analysis of the fine specificity of the antibody PfNPNA-1
revealed weak binding to the repeat based
[NVDP(NANP)15]2, R32tet32 [19], whilst binding to the
(NANP)4 epitope contained within the hepatitis B virus
nucleocapsid (C75CS2) [20] was strong. This activity pro-
file pattern was mirrored in the protected donor serum
(Figure 5). The very high binding observed with WR5
immune serum with the (NPNA)3C-BSA conjugate is
probably due to the multivalent array of the capture lig-
and (i.e. multiple peptides coupled per BSA molecule),
favouring more efficient retention of the antibody.

Indirect immunofluorescence assay (IFA) on Plasmodium falci-parum sporozoitesFigure 3
Indirect immunofluorescence assay (IFA) on Plasmo-
dium falciparum sporozoites. Panel (A) PfNPNA-1 VH/κ, 
(B) 2A10 MAb.

Competition ELISAFigure 4
Competition ELISA.
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Discussion
The recombinant antibody library construction differed
from conventional antibody phage display library assem-
bly [10-13], a pre-selection step was introduced to remove
antibody inserts that were either; prematurely terminated,
intact but did not translate well or were intact, translated
well but failed to translocate into the bacterial periplasmic
space, a prerequisite for functional display. Previously an
approach towards developing a vector to select for fully
intact functional sequences for antibody or peptide dis-
play had shown promise with model sequences [21], but
had not been applied for large-scale random antibody
library assembly. A "clean-up" vector, plasmid open read-
ing frames expression secretion (pORFES) [14] was devel-
oped and used to remove these non-functional sequences.
Up to 50% of the clones from the initial transformed
library were non-functional. Some of the non-functional
antibody fragments could in part be due to errors intro-
duced during PCR amplification resulting in frame shifts.
However it may be that some sequences either did not
express well or did not translocate into the periplasmic
space. Irrespective of the explanation, the size of the
functional library was half of the total transformation
events. An initial enhancement of the initial library by

removing most non-functional inserts may at first appear
to be a minor improvement. However, in conventional
phage display the initial expansion of the library prior to
panning results in a preferential growth of phage that do
not make and display encoded inserts, moreover phage
that lack an insert have a greater growth advantage. This
results in a phage population that is greatly biased
towards non-productive elements, which impacts directly
on the panning efficiency. Incorporation of the pORFES
step assured that only the functional (1.3 × l06) sequences
were subsequently transferred to the phage display vector.
Panning with a functionally enhanced library resulted in
very efficient enrichment and recovery. Previously it had
been demonstrated that manipulating the conditions of
phage production results in modulation of the density of
antibody display on phage [15]. The phage library was
expanded using parameters that would result in either
monovalent display (0-1 antibody/phage) or multivalent
display (0–5 antibodies/phage) [15] prior to initiating
panning. It was anticipated that a range of antibodies with
varying affinities would be present in the library, and
modulating antibody display on phage would permit
capture antibodies with a range of affinities and sequence
diversity.

Determination of specificity of PfNPNA-1Figure 5
Determination of specificity of PfNPNA-1. The binding of immune serum (WR5), non-immune serum and PfNPNA-1 VH/
κ to R32tet32, recombinant hepatitis core containing (NANP)4 peptide sequence and (NPNA)3C-BSA conjugate coated micro-
titer plate well was determined by ELISA essentially as described in Figure 4. The serum(s) and the recombinant PfNPNA-1 VH/
κ were diluted 1/16 and 1/10 respectively.
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Induction of protective immunity against sporozoite chal-
lenge by exposure to radiation attenuated malaria sporo-
zoite has been demonstrated in humans [4,7,22].
Protection is thought by most investigators to be prima-
rily cellular in nature [23], but there is no question that
antibodies with significant sporozoite neutralizing activ-
ity are elicited [22] and may play a role in protection. The
antibody response is primarily directed against the repeat
region of the PfCSP. Studies of subunit vaccines which
induce antibodies only against the repeat region demon-
strate that protective immunity can be induced in some
individuals [24,25]. At the onset of this study it was
proposed that the dissection of the anti-P. falciparum spo-
rozoite antibody response by combinatorial antibody
library phage display would permit individual selected
antibodies to be evaluated for protective potential and the
information generated could be used in vaccine design. In
particular, attention was focused on antibodies against
the structural motif (NPNA)n. Despite using two different
strategies for the elution of repeat region peptide specific
antibodies (acid and peptide specific) it would appear
that the anti-structural repeat response by this protected
individual is restricted to a single VH/VL combination
observed in the panel of selected phage (n = 25). Sequenc-
ing of randomly picked phage prior to panning revealed
that a diverse range of VH and VL families were represented
in the library as shown in Table 2. Moreover the PfNPNA-
1 VH/VL was not represented in the sampling and was only
detected after enrichment.

Comparison of the monovalent PfNPNA-1 molecule with
the conventional bivalent murine mAb, such as the in
vitro inhibitory 2A10 against P. falciparum sporozoites
indicates that they recognize the repeat epitope(s) with
equivalent affinities [18]. The sequence revealed extensive
somatic hyper mutations in both the VH and VL genes
suggesting antigen driven affinity maturation. Based on
these observations, PfNPNA-1 may be a good candidate to
develop and evaluate as a protective antibody.

Analysis of field samples in rural Gambia [26], Thailand
[27] Indonesia [28] and Kenya [29], suggest that anti-spo-
rozoite antibody is poorly developed under natural condi-
tions of exposure and does not protect against clinical
malaria. In contrast to exposure to P. falciparum sporo-
zoites under natural conditions in the field,
immunization with irradiated P. falciparum sporozoites
induces in general higher levels of antibodies against the
PfCSP repeats, and does induce sterile protective immu-
nity [4,7,30-38]. In the study by Egan et al., 3 of the 4 vol-
unteers were protected against challenge with P.
falciparum sporozoites. The generally accepted explana-
tion for the lack of protection in the one volunteer is that
the volunteer did not receive an adequate immunizing
dose of irradiated sporozoites (less than 1000 infective

bites [4,7]). However, it is of interest that this non-pro-
tected volunteer (WR1, [22])had significantly lower levels
of antibodies against the PfCSP repeat than did the pro-
tected volunteer who donated cells for this study (WR5,
[22]) (2.4 µg/ml vs 50 µg/ml of specific antibody). This
raises the question as to whether the antibodies are mark-
ers for adequate immunization or are actually major
mediators of protection. Regardless, this anti-repeat
response in this protected individual appeared to be
restricted to a single antibody. This does not preclude that
antibodies directed against non-repeat epitopes on PfCSP
and other sporozoite proteins [39] play a role in protec-
tion. It is not possible to conclude that the response
against the structural repeat epitope is restricted to a single
antibody of moderate affinity, since only a single pro-
tected donor has been used in this study. One may specu-
late that in concordance with the argument put forward by
Saul [40] that the inability to recover high affinity anti-
body, may reflect that high affinity antibodies may not be
required for protection. Due to the repetitive nature of the
antigen one can further speculate that only limited affinity
maturation is required to obtain physiologically relevant
efficacy. The restricted recovery of antibodies is unlikely to
be a technical limitation on the phage technology since
others have generated panels of very high affinity human
antibodies against a range of antigens [13]. Very few
examples of different approaches of generating human
antibodies from immune donors are described in the lit-
erature, in particular when attempting to make antibodies
against the same antigen. Currently it is not possible to
fully understand the limitations of a technology. Using an
alternative technology of engrafting immune human
PBL's directly into SCID mice from donors vaccinated
against anthrax vaccine adsorbed, boosting with protec-
tive antigen (PA), recovering immortalizing antibody-pro-
ducing cells via conventional hybridoma technology [41]
resulted in a panel of very high affinity potent neutralizing
antibodies against anthrax toxin. Independently, an anti-
body phage display library from a similar (not identical)
immune donor PBL's was constructed and panned against
PA [42] also resulted in a panel of high affinity anti-
anthrax PA antibodies. This would suggest that the meth-
odology is not limiting. However in this example, unlike
CSP, the PA antigen does not contain repeating epitopes.

Further it is speculated that antibodies directed against the
structural (NPNA)n repeat play a role in conferring protec-
tion against P. falciparum sporozoites in some of the pro-
tected volunteers and this protection may be associated
with circulating levels of this specific antibody against the
structural repeat.

Efforts are being directed towards producing a fully
human IgG based on the PfNPNA-1 VH and VL domains
for further in vitro and in vivo evaluation. The use of a
Page 9 of 12
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human monoclonal antibody as a preventive measure
against P. falciparum malaria, would be independent of
factors which hinder active vaccination, such as adjuvant
effects, the requirement to be effectively presented in a
diverse range of human leukocyte class I and II molecules,
and immunlogical antagonism [43,44]. In practice, the
utility of monoclonal antibodies as anti-infectious agents
is often negated by the presence and or the inevitable
emergence of variants with altered surface epitopes (in
particular with viral targets). Fortunately, there has never
been a P. falciparum isolate that does not contain the
(NPNA)n repeats on the PfCSP [45], and the number of
tandem array of repeats on the PfCSP reduces the likeli-
hood of variants arising which evade antibody recogni-
tion. This would suggest that an effective antibody
directed against the repeats would be effective against all
P. falciparum. If this restricted antibody response to the
repeat epitope plays a role in preventing P. falciparum
infection, PfNPNA-1 may be a useful prophylactic agent.
Moreover, if PfNPNA-1 is shown to be protective in pas-
sive immunization in humans or monkeys as previously
demonstrated for anti-P. vivax CSP murine mAb, NVS3
[46], it would provide a template that could be used in
defining the precise conformation of the structural repeat
required for the induction of desired antibodies that can
neutralize parasites.

Conclusions
Over the past 25 years the antibody response against the
PfCSP repeat epitope has been pursued as a target for
active vaccination, with encouraging results [47]. Our
attempt to dissect the protective antibody response
against the structural PfCSP repeat revealed that the
response was restricted to a single VH/VL pairing,
designated PfNPNA-1 encoded by VH3 and Vκ I families
(with evidence of somatic mutations). The affinity for the
ligand was in the µM range, which in the context of a
whole antibody may be more than sufficient for retention
on a polyvalent surface such as the P. falciparum CSP. It is
speculated that the induction and the maintenance of
high circulating levels of antibodies against the structural
PfCSP repeat may be more important than intrinsic high
affinity for the ligand for protection against P. falciparum
infection. The absence of high affinity anti-repeat anti-
bodies is in concordance with the expected response
against a multivalent antigen (i.e. sporozoite surface).
Under physiological conditions a whole IgG antibody and
a multimeric ligand result in bivalent binding. Such com-
plexes can have avidities estimated to be approaching the
product of two independent monomeric interactions. In
this case, the 1 × 10-6M monovalent affinity of PfNPNA-1
may approach a theoretical higher avidity (1 × 10-12 M) in
the context of a whole antibody. This implies that further
affinity maturation either in vivo or in vitro may not nec-
essarily increase physiological effectiveness of the whole

IgG antibody. Public health officials have acknowledged
the urgency for development of an effective anti-P. falci-
parum malaria vaccine. One of the key criteria of such a
putative vaccine may be the induction and maintenance
of high levels of anti-(NPNA)n antibodies. The fully
human PfNPNA-1 IgG could be used as a positive control
in evaluating sera from immunized donors, or possibly be
developed as a prophylactic agent that could be used
alone or in combination with various vaccination strate-
gies. One immediate hurdle for the development of such
an antibody as a prophylactic would be the anticipated
high cost of commercial manufacture in mammalian
cells. However, advances in alternative antibody produc-
tion technology may one day provide some more cost
effective solutions [48,49].

With the availability of an antibody phage display library
constructed from a protected individual immunized via
bites of irradiated P. falciparum infected Anopheles mosqui-
toes, it should be possible to further dissect the antibody
response against "other" sporozoite antigens [39].
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