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1. Introduction

In this article we build on recent work by the present authors, namely: He et al. (2022a,b). In 
the latter, we presented experiments demonstrating the capacity of machine learning to predict basic 
invariants of algebraic number fields. Many of the invariants studied there appear together in the 
analytic class number formula:

lim
s→1

(s − 1)ζF (s) = 2r1(2π)r2 RegF hF

w F
√|�F | , (1.1)

in which ζF (s) is the Dedekind zeta function of a number field F , and, (r1, r2) is the signature, RegF
is the regulator, hF is the class number, �F is the discriminant, and w F is the number of roots of 
unity in OF .

Recall that the set E(Q) of rational points on an elliptic curve E defined over Q defines a finitely 
generated abelian group. We will denote the rank of this group by r, and the torsion subgroup by 
E(Q)tors. Associated to an elliptic curve E over Q, one has the L-function L(E, s) which conjecturally 
vanishes to order r at s = 1 with the leading Taylor coefficient given by the following equation anal-
ogous to (1.1):

L(r)(E,1)

r!
?= #X(E/Q)�(E/Q)Reg(E/Q)

∏
p cp

(#E(Q)tors)2
, (1.2)

in which the symbol ?= indicates that the equality is conjectural, X(E/Q) is the Tate–Shafarevich 
group, �(E/Q) is the global period, Reg(E/Q) is the regulator, cp is the Tamagawa number at a 
prime p (cf. Silverman, 1992, Appendix C, Conjecture 16.5 for details).

The Hasse–Weil zeta function of a curve was introduced in the 1950’s, and is initially only de-
fined for Re(s) sufficiently large (Hasse, 1954). Therefore, to be careful, equation (1.2) requires analytic 
continuation of L(E, s) to a larger domain incorporating the value s = 1. In fact, much more was estab-
lished by Wiles and Breuil–Conrad–Diamond–Taylor in the 1990’s as a consequence of the Modularity 
Theorem, which, roughly speaking, states that the Dirichlet coefficients coincide with the Fourier co-
efficients of a holomorphic modular form on the upper half-plane. Famously, the modularity theorem 
also enabled Wiles’ proof of Fermat’s Last Theorem in 1995.

Equation (1.2) is of course the renowned conjecture of Birch and Swinnerton-Dyer (BSD), which 
emerged in the 1960’s and is an open Millennium prize problem. Aside from the BSD conjecture, there 
are many interesting open questions regarding the numbers appearing in equation (1.2). For example, 
it is unknown whether or not the Tate–Shafarevich group X(E/Q) appearing on the right-hand side 
is finite, cf. Silverman (1992, Chapter X, Conjecture 4.13), and there is no rigorous method known for 
its computation. Nevertheless, when X(E/Q) is finite, its order is known to be a square (Silverman, 
1992, Chapter X, Theorem 4.14). As for the left-hand side, it is not yet known whether or not, as E
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varies, the set of ranks r is bounded (a heuristic model suggesting that this set might be bounded was 
presented in Park et al. (2019)). Furthermore, in a suitable asymptotic sense, it is conjectured that 50% 
of elliptic curves have rank 0, 50% have rank 1, and 0% have rank ≥ 2 (Goldfeld, 1979, Conjecture B; 
Katz and Sarnak, 1999a,b). More fundamental problems in the theory of arithmetic curves will be 
discussed in Section 3.1.

In this paper, we will apply supervised machine learning techniques to predict—with varying levels 
of success—the invariants appearing in equation (1.2) and its generalisations. The generic supervised 
learning strategy is reviewed in Section 3.2, a crucial step of which is training the classifier, which 
typically involves random sampling from our database. The accuracy of the resulting classifier depends 
on this sample, and so its exact numerical value cannot be replicated. On the other hand, the exper-
imental set-up can be easily reconstructed, and repeated implementation yields classifiers of similar 
precision.

The classifiers developed are, inevitably, less than 100% accurate. Furthermore, even a perfect clas-
sifier on a finite database does not constitute a theorem in the infinite set of elliptic curves. Whilst 
it is theorems that are the intention of mathematics, we can use a classifier as a heuristic tool and 
gather insight into new structures through working towards interpreting the classifier. One example 
of this is documented in Section 4.6 and another is explored in He et al. (under review). As we ex-
plore in a future project, insight might also be gained by understanding which curves are consistently 
misclassified.

With appropriate modifications, it is possible to replace E/Q in equation (1.2) by the Jacobian 
of a smooth, projective, geometrically integral curve defined over a global field. In this paper, we 
also study genus 2 curves over Q. There are some important differences between elliptic curves and 
those of genus 2. For example, there are known to be only finitely many rational points on a genus 
2 curve. In contrast, an elliptic curve with positive rank has infinitely many rational points. On the 
other hand, the rational points on the Jacobian of a genus 2 curve form a finitely generated abelian 
group which could be infinite. By the rank of a genus 2 curve, we mean the rank of its Jacobian. For 
elliptic curves, classification by rank is essentially binary as per the conjecture mentioned above. On 
the other hand, there is a significant proportion of genus 2 curves with rank 2—thus allowing for a 
ternary classification.

For a broad introduction to machine learning, see Goodfellow et al. (2016); Hastie et al. (2001). 
In this paper we will utilise logistic regression, naive Bayes, and random forest classifiers, which are 
reviewed in Hastie et al. (2001, Sections 4.4, 6.6.3, 15). Machine learning algorithms require the train-
ing of classifiers using large sets of data, and we obtain our data sets from The LMFDB Collaboration 
(2020). Previous elliptic curve machine learning experiments were documented in Alessandretti et 
al. (in press), as part of a recent programme of machine learning various structures in mathematics 
(He, 2017, 2019, 2021). The key difference in the present article is that, whilst Alessandretti et al. (in
press) utilised Weierstrass coefficients as training data (which had enormous variation in magnitude), 
we will here lean more heavily on the Euler factors of L-functions. We observe this to be much more 
successful, allowing even for extrapolation to elliptic curves with conductors in ranges beyond those 
in the training dataset.

We remark that there is some comparison to be made with He et al. (2022a), in which we stud-
ied machine learning of a particular classification problem arising from the Sato–Tate conjecture for 
hyperelliptic curves. There, we found that naive Bayes classifiers could distinguish, with accuracies 
into 0.99 ∼ 1.00 range, the Sato–Tate groups of hyperelliptic curves with genus 1 or 2, using a small 
number of Euler-factors. The experimental results of this paper show that the same method is just as 
powerful for other invariants. It is interesting that a method as simple as naive Bayes could do so well 
for various invariants in number theory. It might be suggesting that mathematics is more workable 
with machine learning than the real world where data sets could be dimmed or distorted by various 
noises.

We conclude this introduction with an overview of what is to come. In Section 2 notation is fixed 
and complemented by a brief explanation of some concepts. In Section 3, the generation of training 
data and the experimental set-up are explained. In Section 4 we document the experimental outcomes 
for elliptic curves. In Section 5, we do the same for genus 2 curves. Finally, in Section 6, we offer some 
concluding remarks and tentative directions for further research.
480



Y.-H. He, K.-H. Lee and T. Oliver Journal of Symbolic Computation 115 (2023) 478–491
Acknowledgements

We thank Álvaro Lozano-Robledo, Andrew Sutherland and Chris Wuthrich for helpful discussions. 
YHH is indebted to STFC UK, for grant ST/J00037X/1, KHL is partially supported by a grant from the 
Simons Foundation (#712100), and TO acknowledges support from the EPSRC through research grant 
EP/S032460/1.

2. Notation

We use the following notation throughout:

Elliptic curve defined over Q is denoted by E . The set E(Q) of rational points defines a finitely 
generated abelian group;

Genus 2 curve defined over Q is denoted by C . The curve C is assumed to be smooth, projective, 
and geometrically integral. The set C(Q) of rational points is finite;

Jacobian of C is denoted by J . The Jacobian is a two-dimensional Abelian variety defined over Q. 
The set J (Q) of rational points defines a finitely generated Abelian group;

Rank of E (resp. C ) denoted by rE (resp. rC ) is the rank of the finitely generated abelian group 
E(Q) (resp. J (Q)). If the rank is 0 (resp. positive), then there are finitely many (resp. in-
finitely many) rational points;

Torsion subgroup of E(Q) (resp. J (Q)) is denoted by E(Q)tors (resp. J (Q)tors);
Cyclic Group of order n is denoted Cn . The torsion subgroup of E(Q) is a product of cyclic groups;
Good primes of a variety X defined over Q are those primes p ∈ Z such that X has an integral 

model whose reduction modulo p defines a smooth variety of the same dimension. A good 
prime for C is a good prime for J , but the converse is not necessarily true;

Bad primes of a variety X defined over Q are those primes p ∈ Z which are not good. The bad 
reduction types of an elliptic curve are reviewed in Silverman (1992, Section VII.5);

Conductor of E (resp. C ) denoted by Q E (resp. Q C ) is a positive integer of the form 
∏

pep in which 
p varies over the bad primes for E (resp. J ). The power ep to which a bad prime p appears 
depends on the reduction type, cf. Silverman (1994, Section IV.10);

Tate–Shafarevich group of E (resp. J ) denoted by X(E/Q) (resp. X( J/Q)) is a torsion Abelian 
group and measures the extent to which the Hasse principle fails to hold, cf. Silverman 
(1992, Section X.4).

3. Methodology

In this section we explain our experimental set-up. In particular, we construct the training and 
validation sets from appropriate data and overview the machine learning strategies used.

3.1. Euler factors

Let X be a smooth, projective, geometrically connected curve of genus g ∈ {1, 2}, defined over Q. 
For each good prime p of X , we define the local zeta function to be:

Z(X/Fp; T ) = exp

⎛
⎝ ∞∑

k=1

#X
(
Fpk

)
T k

k

⎞
⎠ . (3.3)

It is well-known that the local zeta function can be written in the form

Z(X/Fp; T ) = Lp(X, T )

(1 − T )(1 − pT )
, (3.4)

where Lp(T ) ∈Z[T ] is a polynomial of degree 2g with constant term 1. Given a finite set F of curves, 
and an invariant inv(X) for each X , we will associate a labelled dataset of the form:
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D = {v L(X) → inv(X) : X ∈ F}, (3.5)

where v L(X) ∈ RN is a vector to be constructed in the examples below. The co-ordinates of the 
vectors v L(X) are (conjecturally, at least) distributed like eigenvalues of random matrices in USp(2g). 
These co-ordinates are indexed by primes, and we expect them to behave as independent random 
variables.

The invariants inv(X) will generally be integers. For example, the rank or torsion order of the 
associated Mordell–Weil groups, or the Tate–Shafarevich group order. In Section 1, we mentioned 
some open problems connected to the rank and Tate–Shafarevich group. In particular, there is no 
known algorithm for their computation.

Example 1. Say X = E is an elliptic curve defined over Q. If p is a good prime for E , then:

Lp(E, T ) = 1 − ap T + pT 2, (p good), (3.6)

where

ap = p + 1 − #E
(
Fp

)
. (3.7)

For a bad prime p, we also define ap as in equation (3.7), and put

Lp(E, T ) = 1 − ap T , (p bad).

At a bad prime p for an elliptic curve written as a minimal Weierstrass equation, the integer ap can 
be seen as encoding the reduction type of E mod p. If pi denotes the ith prime number then, out of 
the infinite sequence, (ap1 , ap2 , . . . ), we define the L-function of an elliptic curve E by

L(E, s) =
∏

p: prime

Lp(E, p−s)−1.

The main idea of this paper is to take a finite sequence (ap1 , ap2 , . . . , apN ) as a feature vector to 
which we apply machine learning tools. Using SageMath (The Sage Development Team, 2020), we 
may compute a large amount of ap quickly. For i ∈ Z>0, let pi denote the ith prime. For a positive 
integer N , we introduce the vector:

v L(E) = (ap1 , . . . ,apN ) ∈ZN , N ∈Z≥1. (3.8)

In practice, we will take N to be 100 (resp. 200, 300, 500), so that pN = 541 (resp. 1223, 1987, 3571).
A vector as in equation (3.8) does not determine a unique elliptic curve. Indeed, elliptic curves 

in the same isogeny class will have the same L-function. Therefore, our datasets use representative 
curves of isogeny classes. We will discuss this again at points throughout Section 4. Furthermore, if N
is small, it can occur that non-isogenous curves have the same first N coefficients. By choosing N as 
outlined above, we typically circumvent this problem.

Example 2. If X = C is a smooth projective geometrically connected genus 2 curve defined over Q
and p is a good prime for C , then:

Lp(C, T ) = 1 + a1,p T + a2,p T 2 + a1,p pT 3 + p2T 4, a1,p,a2,p ∈Z, (p good). (3.9)

If p is a bad prime for C , then Lp(C, T ) is a polynomial of degree < 4. There are only a few bad 
primes, and since the average values of a1,p and a2,p of a generic genus 2 curve are 0 and p, respec-
tively, we will simply use the following convention:

(a1,p,a2,p) = (0, p), (p bad). (3.10)

Using SageMath (The Sage Development Team, 2020), we may compute (a1,p, a2,p). For a positive 
integer N , we introduce the vector:
482
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v L(C) = (
(a1,p2 ,a2,p2), . . . , (a1,pN+1 ,a2,pN+1)

) ∈
(
Z2

)N
, N ∈Z≥1, (3.11)

where we do not include p1 = 2 as it is always bad. In practice, we will take N = 200. As with 
equation (3.8), we can construct our databases to insure that v L(C1) = v L(C2) only occurs when 
C1 = C2. We will discuss our choices further in Section 5.

3.2. Generic experimental strategy

1. Let F be a finite set of elliptic curves (resp. smooth projective geometrically connected genus 2 
curves). The choice of F depends on the experiment. For example, F could be the set of elliptic 
curves (resp. genus 2 curves) over Q with conductor less than some bound and rank in the set 
{0, 1} (resp. {0, 1, 2}).

2. For an elliptic curve E (resp. genus 2 curve C ) in F , let inv(E) (resp. inv(C)) denote an invariant 
of interest. For example, inv(E) (resp. inv(C)) could be the rank of E(Q) (resp. J (Q)).

3. Generate datasets of the form D = {v L(X) → inv(X) : X ∈ F}, where D is as in (3.5).1 We will 
take N to be one of: 100, 200, 300, 500. We stress at this point that N is an absolute constant, 
and does not vary with the curves in D.

4. Divide the values of inv(X) into k groups according to the classification problem under consider-
ation, and decompose D into a disjoint union

D = D1 �D2 � · · · � Dk

by assigning the corresponding category label s ∈ {1, 2, . . . , k}. Almost always in this paper, we 
have #{inv(X) : X ∈F} = k ∈ {2, 3}, i.e., inv(X) naturally becomes a label and we consider a binary 
or ternary classification problem.

5. Choose a subset T ⊂ D and denote its complement by V = D − T . We will refer to T as the 
training dataset, and V as the validation dataset. It is important that the training set and vali-
dation set have no intersection so as not to over-fit the machine learning. We will not typically 
specify T , or its size relative to D, as the choice will not impact significantly on the results (see 
also step 8). Nonetheless, our most common choice is to use 70% of the dataset for T and 30% 
for V .

6. Train a classifier on the set T with a standard supervised-learning algorithm. In this paper 
we will use naive Bayes, random forests, and logistic regression - see Hastie et al. (2001, Sec-
tions 4.4, 6.6.3, 15). We implement the algorithms using Mathematica (Wolfram Research, Inc., 
2020).

7. For all curves X in V , ask the classifier to determine the category label s ∈ {1, 2, . . . , k} (or 
frequently inv(X) itself). When k = 2, we record the precision and confidence, which together 
constitute a good measure of accuracy and performance of the machine. The precision and con-
fidence are real numbers in the interval [0, 1], and the aspiration is that both are close to 1. By 
precision, we mean the proportion of predictions in agreement with The LMFDB Collaboration 
(2020), the validity of which is discussed in The LMFDB Collaboration (2020, Reliability of ellip-
tic curve data over Q, Reliability of genus 2 curve data over Q). By confidence, we mean the 
Matthew’s correlation coefficient (Matthews, 1975). The confidence value is an extra check in-
tended to minimize false positives and false negatives. For k > 2, we record the precision and the 
confusion matrix, which performs a similar role to the confidence value and is more transparent.

8. Repeat steps 5 to 7 for different choices of T . The precision and confidence values recorded below 
are representative of several repetitions.

1 In exceptional circumstances, we will in fact construct different datasets in place of D. We will do this, for example, in the 
investigation of particularly accurate classifiers as in Section 4.6, and in an attempt to improve on a poorly performing classifier 
as in Section 4.5. Such a digression from convention will always be clearly indicated.
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3.3. Further specifications

In this section, we give brief descriptions of the machine learning methods adopted in this paper 
to explain how specific classifiers predict a label for v ∈ V based on the labels for v ∈ T .

3.3.1. Logistic regression
For binary classification problems, the logistic regression classifier predicts the label

[σ(w · v L(E) + b)] ∈ {0,1},
where w ∈RN , b ∈R, σ is the logistic sigmoid function, and [σ(x)] is the nearest integer to σ(x).

The parameters w and b are estimated by using numerical methods to solve a non-linear equation 
derived from the labels for vectors in T . Note that the parameters w, b yield a heuristic formula to 
predict inv(X). For n-ary classification problems, the function σ is replaced by the softmax function.

3.3.2. Naive Bayes
Given a curve X corresponding to the unlabelled vector v = v L(X) ∈ V , the naive Bayes classifier 

predicts the label given by

argmax
s∈{1,2,...,k}

(Prob(inv(X) ≡ s|v L(X) = v)) , (3.12)

where ≡ is a shorthand for the correspondence between invariant values and label values (often this 
is an equality). The conditional probability in equation (3.12) is estimated by applying Bayes theorem 
to the set T , under a naive independence assumption.

3.3.3. Random forests
The random forest classifier divides several copies of RN into labelled regions, and each copy of 

RN tentatively predicts the label for v L(X) based on the region into which it falls. Each partition 
of RN is determined by randomly choosing certain features, and splitting the corresponding axes 
according to the labels of vectors in T . Each partition of RN is therefore determined by a decision 
tree, and the random forest classifier predicts the label given by a majority of trees.

3.3.4. Replicability
In the following sections, we will record the precision of the classifiers above when applied to 

particular invariants from arithmetic geometry. The experimental set-up can be reproduced to yield 
similar results. That said, without specifying T , the exact precision values are unlikely to be repli-
cated.

4. Elliptic curves

In this section we describe our experimental results for elliptic curves defined over Q. For stan-
dard algorithms used in the computation of the invariants discussed below, the reader is referred to 
Cremona (1997). To perform the experiments in this section, we downloaded data from The LMFDB 
Collaboration (2020, Elliptic curves over Q) the completeness of which is discussed in The LMFDB 
Collaboration (2020, Completeness of elliptic curve data over Q). For implementations of principal 
component analysis with this data, the reader is referred to He et al. (under review).

We note that the Hasse–Weil L-function of an elliptic curve E is an invariant of its isogeny class, 
and so we in fact downloaded a representative curve for each isogeny class. In LMFDB, an isogeny 
class is represented by an optimal curve, and hence our data sets are generated from optimal curves 
only. In general, the torsion order, torsion structure and the number of integral points, considered in 
Sections 4.2 - 4.4, are not uniquely determined by an isogeny class.
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Table 1
The above table shows the precision and confidence of a logistic regression classifier when asked to distinguish elliptic curves 
over Q with rank 0 from those with rank 1. The classifier is trained on E with conductor Q E in the ranges specified by the 
first column, using the number of Euler factors given in the second column. The classifier is verified on E with conductor in 
the ranges specified by the third column.

Q E training range N Q E validation range #{E} Precision Confidence

[1,1 × 104] 100 [1,1 × 104] 1.6 × 104 (×2) 0.977 0.955
" 300 " " 0.991 0.982
[2 × 104 + 1,3 × 104] 300 [2 × 104 + 1,3 × 104] 1.7 × 104 (×2) 0.964 0.922
" 500 " " 0.971 0.941
[1,1 × 104] 300 [2 × 104 + 1,3 × 104] " 0.924 0.848

Table 2
The above table shows the precision and confidence of a naive Bayes classifier when asked to distinguish elliptic curves over Q
with torsion order 1 from those with torsion order 2. The classifier is trained on a random sample of curves with conductor in 
the range specified by the first column, and verified on those which remain.

Q E range #{E} N Precision Confidence

[1,3 × 104] 3.57 × 104 (×2) 500 0.9997 0.9995

4.1. Rank

Recall that we denote by rE the rank of an elliptic curve E .
It is conjectured that, in a rigorous sense, 50% of elliptic curves over Q have rank 0, 50% have rank 

1, and 0% have higher rank, cf. Goldfeld (1979, Conjecture B); Katz and Sarnak (1999a,b). Furthermore, 
it is known that if rE ≤ 1 then rE is equal to the order of vanishing of L(E, s) at s = 1. It is therefore 
expedient to consider this as a binary classification problem using the vectors v L defined by Euler 
factors as in (3.8). For different ranges of conductor Q E , we established a balanced dataset of size 
∼ 2 × 104 (×2) for rank 0 and rank 1.

More precisely, our dataset is formed in the following way. The LMFDB has all the elliptic curves 
over Q with conductor up to 500,000 The LMFDB Collaboration (2020, Completeness of elliptic curve 
data over Q). We consider curves with conductor at most 30,000 in this subsection. For the first 
experiment with conductor range [1, 1 × 104], there are 16,450 curves of rank 0 and 19,622 curves of 
rank 1. We choose 16,000 curves uniformly at random from each rank to form our dataset. A similar 
process is taken to form datasets for the other experiments.

Trying several standard classifiers, we find that logistic regression worked best and the results are 
summarized in Table 1. We see that the accuracies are in the high 0.90 s, which is reassuring that 
a machine learns ranks of elliptic curves. What is of particular interest is the last line in the table, 
where we trained on 300 Euler factors for conductors in the range from 1 to 104 but validated on 
those in the range from 2 × 104 + 1 to 3 × 104, and still achieved a 0.92 precision.

The results show that the number of Euler factors needed for high precision is about 3
√

max{Q E }
in the range of Q E we considered. We also note that a logistic regression classifier also performed 
best in distinguishing the ranks of algebraic number fields (He et al., 2022b) when number fields were 
presented through defining polynomials. On the other hand, when trained on Weierstrass coefficients 
as in Alessandretti et al. (in press), no classifier was able to accurately predict the rank of an elliptic 
curve.

4.2. Torsion order

Unlike the rank, for which there is no established algorithm for its computation, the torsion sub-
group of an elliptic curve can be computed using rigorous algorithms based on theorems of Nagell 
and Lutz. Furthermore, the possibilities for the torsion subgroup were completely classified by Mazur. 
In fact, the torsion group of an elliptic curve over Q has order at most 16 (Silverman, 1992, Chap-
ter VII, Theorem 7.5).
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Table 3
The above table shows the precision and confidence of a random forest classifier when asked to distinguish elliptic curves over 
Q such that E(Q)tors ∼= C4 from those such that E(Q)tors ∼= C2 × C2. The classifier is trained on a random sample of curves 
with conductor in the range specified by the first column, and verified on those which remain.

Q E range #{E} N Precision Confidence

[1,1 × 106] 5.4 × 103 (×2) 500 0.885 0.789

Table 4
The above table shows the precision and confidence of a naive Bayes classifier when asked to distinguish elliptic curves over 
Q with no integral points from those with a single integral point. The classifier is trained on a random sample of curves with 
conductor in the range specified by the first column, and verified on those which remain.

Q E range #{E} N Precision Confidence

[1,5 × 104] 3.2 × 104 (×2) 500 0.999 0.998

Nevertheless, for the sake of completeness, we investigate the torsion subgroup from the per-
spective of machine learning. Currently, there are too few data-points on LMFDB to experiment with 
torsion order > 2. Thus, we perform supervised machine learning of the form {v L} → #(E(Q)tors) =
1 or 2, whereby predicting the torsion group being trivial or not, using the Euler factor coefficients 
alone. To be clear, we do not restrict the rank of a curve in this experiment. We established a bal-
anced dataset of size ∼ 4 × 104 (×2) for torsion order 1 and 2 together. A naive Bayes classifier was 
used and the results are summarized in Table 2. We see that the accuracies are extremely good, using 
500 ap coefficients. We note that the naive Bayes classifier appeared also in He et al. (2022a). We will 
revisit this experiment in Section 4.6.

4.3. Torsion structure

Continuing with the torsion group, let us see how well the actual torsion group can be distin-
guished. We established a balanced dataset of size ∼ 5 × 103 (×2) for C4 and C2 × C2 altogether. 
Using a random forest classifier, we found that E(Q)tors being C4 or C2 × C2 can be separated using 
500 ap coefficients to fairly good accuracy. The results are summarized in Table 3. Note that the size 
of the dataset is relatively small compared to those of previous experiments. With a larger dataset, 
the precision might be improved.

4.4. Integral points

It is known that an elliptic curve has only finitely many integral points (Silverman, 1992, Chap-
ter VIII, Chapter IX, Theorem 3.1). In contrast, it may have infinitely many rational points (this is the 
case when the rank rE > 0), as addressed above. We set up a supervised ML to try to distinguish 
curves with no integral points from those with a single integral point, a total of around 60 thousand 
curves with conductor in the interval [1, 5 × 104]. A balanced data-set of size ∼ 3.2 × 104 (×2) for 
“single integral point” or “no integral point” was established and a naive Bayes classifier produced the 
results summarized in Table 4. One can see that the results are extremely good. We will revisit this 
experiment in Section 4.6.

4.5. Tate–Shafarevich group

Finally, we come to the Tate–Shafarevich group, one of the most subtle parts of BSD. A definition 
of the Tate–Shafarevich group is given in Silverman (1992, Section X.4). The Tate–Shafarevich group is 
not known to be finite, and there are no effective methods available for its computation. The LMFDB 
records the analytic order of the Tate–Shafarevich group, that is the real number implied by equa-
tion (1.2), which is equal to the order conditionally on the BSD conjecture. If the Tate–Shafarevich 
group is finite, then its order is a square integer.
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Table 5
The above table shows the precision of a logistic regression classifier when asked to distinguish elliptic curves over Q with 
Tate–Shafarevich order 4 from those with order 9. The classifier is trained on a random sample of curves with conductor in the 
range specified by the first column, and verified on those which remain.

Q E range #{E} N Precision

[1,106] 2.8 × 104 (×2) 500 0.589

We could try the following binary classification problem: take 500 Euler ap coefficients and see 
whether one could distinguish between a Tate–Shafarevich group of order 4 versus 9. We tried a 
variety of methods, such as Bayesian or logistic classifiers, as well as some forward-feeding neural-
networks, but none performed especially well. The best result was attained by logistic regression with 
precision merely 0.589. This is in accordance with the difficulty in computing this group. The results 
are summarized in Table 5.

For this problem alone, we implemented Weierstrass coefficient training (as was done in Alessan-
dretti et al., in press). This experimental variant did not do well with any of the standard classifiers or 
regressors, again yielding no better than < 0.6 precision. Nevertheless, we briefly review this approach 
for completeness. Every elliptic curve over Q has a unique reduced minimal Weierstrass equation of 
the form:

y2 + e1xy + e2 y = x3 + e3x2 + e4x + e5,

e1, e3 ∈ {0,1}, e2 ∈ {−1,0,1}, e4, e5 ∈ Z.
(4.13)

Using the coefficients in (4.13), we define the vector:

v W (E) = (e1, e2, e3, e4, e5) ∈ Z5. (4.14)

Let F denote a finite set of elliptic curves, and, for each E ∈ F , let inv(E) be an invariant of interest. 
For example, F could be the set of all elliptic curves over Q with conductor less than one million 
and, for E ∈ F , the invariant inv(E) could be the rank of E . We introduce the following labelled
dataset:

DW = {v W (E) → inv(E) : E ∈ F}. (4.15)

Such a labelled dataset was used in Alessandretti et al. (in press).

4.6. Interpretation of naive Bayesian models

Of the experimental results above, two instances with strikingly high accuracies are: the order of 
torsion subgroups in E(Q) (Section 4.2), and, the existence of integral points on E (Section 4.4). The 
naive Bayes classifier was found to be optimal in both cases. Below we explore two explanations.

4.6.1. Parity of ap

We first observe that these classification problems are related to one another. Indeed, it can be 
shown that2:

1. If #E(Z) = 1, then #E(Q)tors = 2. Furthermore, the unique integral point is the torsion generator.
2. If #E(Z) = 0, then #E(Q)tors ≤ 2. Furthermore, in the LMFDB data, 99.99% of optimal elliptic 

curves over Q with #E(Z) = 0 have torsion order 1.

We might therefore expect that if a classifier can distinguish between #E(Q)tors ∈ {1, 2} then it can 
distinguish between #E(Z) ∈ {0, 1}.

2 Álvaro Lozano-Robledo and Chris Wuthrich informed us that one can prove these statements using the Nagell–Lutz theorem 
and other facts about elliptic curves.
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Fig. 1. The number of zeros in the list of 500 ap coefficients for elliptic curves (a) without integral points, and (b) with a single 
integral point.

On the other hand, we observe the following “human” procedure for distinguishing between tor-
sion order 1 and 2 using the vectors v L(E) as in equation (3.8). Recall from equation (3.7) that 
ap = p + 1 − #E(Fp). When p is an odd prime, it follows that ap is even if and only if #E(Fp) is 
even. If p is moreover a prime of good reduction, then a point of order 2 in E(Q) maps to a point 
of order 2 mod p and so #E(Fp) is even. We conclude that if #E(Q)tors = 2, then the vector v L(E)

consists of even integers with a few possible exceptions coming from p = 2 and bad primes. (It is 
known that ap = −1, 0, 1 for bad primes p, and the exceptional values of ap are actually equal to 
±1). In the case #E(Q)tors = 1 we observe that ap ’s are frequently odd as well as even. We are led 
to speculate that a naive Bayes classifier successfully distinguishes between vectors whose entries are 
all even from those whose entries are a mixture of even and odd numbers.

To test this, we perform the following experiment. We generate one set of 100-dimensional vectors 
with random integer coordinates in the range [−10, 10], and another set of 100-dimensional vectors 
with coordinates equal to two times a random integer in the range [−5, 5]. A naive Bayes classifier is 
able to distinguish these vectors to 99.8% accuracy. By comparison, a random forest achieves around 
74%. These accuracies are comparable to those observed in our experiments in Sections 4.2 and 4.4
and confirm the expectation that a Bayes classifier recognizes this difference.

4.6.2. Number of zeros in v L

As a separate attempt, inspired by the Lang–Trotter (Lang and Trotter, 1976) conjecture, we study 
the distribution of the number of zeros in the vector v L of 500 ap values, for curves with a single 
integral point and without integral points (the case with the order of torsion group being 1 or 2 is 
similar to the ensuing discussions, mutatis mutandis). For this purpose, we separately consider the 
set F0 of curves with no integral points and the set F1 of curves with a single integral point, where 
|F0| = 68, 154 and |F1| = 32, 816. We calculate the number of zeros in v L for each curve E ∈ Fi , 
i = 0, 1, and draw the resulting histograms. This is shown in parts (a) and (b) respectively in Fig. 1. 
Clearly, the means of the two distributions are different. Precisely, F0 has mean 10.85 with standard 
deviation 13.21, while F1 has mean 15.26 with standard deviation 14.70.

To check whether a naive Bayes classifier detects this difference, we define the following binary 
vector for a positive integer N:

v B(E) = (δp1 , . . . , δpN ) ∈ {0,1}N , δpi =
{

0, ap = 0,

1, ap �= 0.
(4.16)

The binary vectors in equation (4.16) are analogous to the binary vectors used in He et al. (2022b). 
Replacing v L(E) with v B(E) in Section 3.2 (Step 3) and performing the experiment in Section 4.4, we 
observe that the naive Bayes is accurate to around 0.8 precision. The result is similar if we instead 
use the following ternary vectors:

v T (E) = (εp1 , . . . , εpN ) ∈ {−1,0,1}N , εpi =

⎧⎪⎨
⎪⎩

−1, ap < 0,

0, ap = 0,

1, ap > 0.

(4.17)
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Table 6
The above table shows the precision and the confusion matrix of a logistic regression classifier with 
validation set of size 10, 890 = 0.3 × #{C} when asked to distinguish between genus 2 curves over 
Q with rank in the set {0, 1, 2}.

#{C} Precision

1.21 × 104 (×3) 0.971

Therefore, we see that what the Bayes classifier is picking up to reach the near 100% predictions is 
based on more than merely the frequency of zeros/positives/negatives. If we do include the actual 
values of the ap coefficients, it takes at least around 7 coefficients to get to more than 0.9 accuracy.

On the other hand, we should point out that the number of zeros to the ap-coefficients is part 
of the Lang–Trotter (Lang and Trotter, 1976) conjecture which is a refinement of the Sato–Tate (Tate, 
1965) conjecture. We are not aware of any claims in the literature that relate the distribution of zeros 
in the ap -coefficients to the number of integral points on or the torsion order of an elliptic curve. Our 
experimental results suggest that such relations may exist.

5. Genus 2 curves

Having met with success for the genus 1 case, in this section we describe our experimental results 
for genus 2 curves defined over Q. Throughout, we take the N = 200 pairs (ap,1, ap,2) of coefficients 
in the L-function and a conductor range from 1 to 1 million. This conductor range includes all the 
genus 2 curves available in LMFDB. See The LMFDB Collaboration (2020), Completeness of genus 2 
curve data over Q. Again the L-function depends only on the isogeny class, but this time we cannot 
specify one curve per isogeny class in the LMFDB data. Nevertheless, over 99% of the genus 2 isogeny 
classes in the database (which has 65534 classes and 66158 curves) have a unique representative. 
Accepting this slight redundancy, we simply use all the genus 2 curves available in LMFDB.

5.1. Rank

We performed an experiment analogous to that in Section 4.1. In the current context, a signifi-
cant proportion of genus 2 curves have rank 2 and we consider the ternary classification problem 
of predicting whether the rank is 0, 1, or 2, from the Euler coefficients. A balanced dataset of size 
∼ 1 × 104 (×3) was thus established and a logistic regression classifier was found to perform well, 
with accuracies ∼ 0.97. We emphasize that this is a 3-way classification and to obtain this level of 
accuracies in impressive. The results are summarized in Table 6.

5.2. Torsion order

As with the genus 1 case, we can try to distinguish the torsion group of order 1 versus 2 in a 
binary classification (cf. Section 4.2). A balanced data-set was established, with size ∼ 1.5 × 104 (×2)

and a naive Bayes classifier was found to perform best, with results presented in Table 7.
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Table 7
The above table shows the precision and confidence of a naive Bayes classifier 
when asked to distinguish genus 2 curves over Q with torsion order 1 from 
those with torsion order 2.

#{C} Precision Confidence

1.46 × 104 (×2) 0.926 0.854

Table 8
The above table shows the precision of all classifiers when asked to distinguish 
between genus 2 curves over Q with number of rational points as in the first 
column.

# of rational points #{C} Precision

{0,1,2,3,4,5,6} 5 × 103(×7) < 0.34
{2,4} 9.4 × 103(×2) < 0.73

Table 9
The above table shows the precision and confidence of a logistic regression 
classifier when asked to distinguish genus 2 curves over Q with trivial Tate–
Shafarevich group from those with non-trivial Tate–Shafarevich group.

#{C} Precision Confidence

4.2 × 104 (×2) 0.78 0.562

5.3. Rational points

As mentioned in the Introduction, curves of genus > 1 have only a finite number of rational points. 
This allows for an experiment slightly different in nature to what was possible with elliptic curves. 
Indeed, one could ask for a multi-category classification using the number of rational points, being 
predicted from the L-function coefficients. We tried various classes, after balancing the data but no 
classifier performed especially well. The results are summarized in Table 8, where a 7-way classifica-
tion is shown in the first row, and a binary, in the second. We suspect that training with a larger data 
set would result in a better performance.

5.4. Trivial Tate–Shafarevich group

Finally, we move to the Tate–Shafarevich group. Note that the order now needs not be a square for 
a genus 2 curve. We performed a binary-classification (having established a balanced data set of size 
∼ 4 × 104 (×2)) of whether Tate–Shafarevich group is trivial or not. Again, no classifier was found to 
perform particularly well, though a logistic regression classifier performed best (see Table 9), and the 
accuracies are comparable to those of the genus 1 case, However, once again, the prediction is better 
than completely random.

6. Conclusions and outlook

The experiments in this paper show that an ML classifier can be trained to predict the rank and the 
torsion order of an elliptic curve or a genus 2 curve with high precision when the curve is represented 
by a few hundred coefficients of its L-function. In particular, for elliptic curves, the torsion order and 
the number of integral points are determined almost perfectly by ML classifiers. Among the discrete 
invariants appearing in the BSD conjecture, only the order of the Tate–Shafarevich group seems to be 
out of reach with our approach of using a finite number of L-function coefficients.

Along with our previous work (He et al., 2022a,b), this paper confirms that ML classifiers perform 
surprisingly well with various invariants in number theory. High accuracies attained in our experi-
ments reflect that data sets arising from mathematics are actually “clean and clear” without any noise. 
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Tentatively, this opens up new opportunities of developing ML techniques for mathematics which ex-
ploit mathematical structures in data sets. In particular, we might expect high accuracy classifiers for 
invariants attached to any L-function through applying supervised learning strategies to their first co-
efficients. In forthcoming work, we investigate class numbers from this perspective, building on the 
results of He et al. (2022b).

With all these experimental results and evidence at hand, a compelling call to action is to un-
derstand what ML classifiers actually recognize in the data sets. Though the algorithms of standard 
classifiers are well-known, it does not seem straightforward to precisely analyse what a classifier 
does with data sets. As a starting point, in a future project, we will explore commonalities amongst 
misclassified curves and investigate the potential for extrapolation of classifiers beyond current com-
putational limits.

In another direction, we are reminded that the influential Langlands program anticipates corre-
spondences between two kinds of data sets: arithmetic data and automorphic data. We have been 
experimenting with arithmetic data. In accordance with Langlands program, we expect that a ma-
chine would learn automorphic data with high precision and efficiency. It would be very interesting 
to investigate whether this expectation is valid.
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