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ABSTRACT 
In this article we provide brief descriptions of three classes of 
schedulers: Operating Systems Process Schedulers, Cluster 
Systems Jobs Schedulers and Big Data Schedulers. We describe 
their evolution from early adoptions to modern implementations, 
considering both the use and features of algorithms. In summary, 
we discuss differences between all presented classes of 
schedulers and discuss their chronological development.  In 
conclusion we highlight similarities in the focus of scheduling 
strategies design, applicable to both local and distributed systems. 
 

Keywords: Schedulers, Workload, Cluster, Cloud, Process, Big 
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1. INTRODUCTION 

Designing a good scheduler is a complex task. The area of 
scheduling research is concerned with an effective 
allocation of available resources with the objective to 
optimizing one of more performance measures [60]. 
Depending on the situation, the resources may be CPU 
time, available memory, I/O operations time-slices, BTS 
stations in mobile cells network, but also non-IT scenarios, 
such as managing construction workers working of a 
building site, doctors located at hospitals, etc. Actually, the 
first algorithm for the assignment problem was the 
Hungarian method in 1955 [58], solving the problem of 
assigning available employees to office jobs based on their 
skills. 
In computer science areas, numerous scheduling 
algorithms are currently used to determine an effective 
task/jobs allocation – either on CPU cores or networked 
nodes. Simple algorithms include: list scheduling (LS) 
assigning jobs from pre-specified list as soon as machine 
becomes idle [60] largest processing time first (LPT) [36], 
highest level first [46] or round robin [72] as well as the 
weighted round robin variant [43]. Simple strategies do not 
require knowledge of unscheduled jobs or all the jobs 
currently being processed which makes them very popular, 

especially for online request scheduling [60]. However, 
not taking into account additional factors such as current 
server load, network infrastructure or storage availability 
may result in an inefficient utilization of available 
machines and overall higher operational system costs. 
More complex algorithms rely on the availability of static 
infrastructure data such as CPU speed, installed memory 
etc. As an example we find largest remaining processing 
time on fastest machine rule (LRPT-FM), where the job 
with the most remaining processing time is assigned to 
fastest machine [45]. LRPT_FM approach offers clear 
advantages in heterogeneous environments, where the 
system is composed from machines with different 
configurations. However this still does not take into 
account jobs being currently executed. Fixed-priority pre-
emptive scheduling is an example of a scheduling 
algorithm commonly used in real-time systems. Early 
versions of Sun Java Virtual Machine (JVM) implemented 
this schema, however current versions of JVM use the 
underlying Operating System thread scheduling model. 
This scheduling algorithm assumes a hierarchy of task 
priorities and ensures the processor always executes the 
highest priority task from those that are currently ready to 
be executed. This strategy has a serious drawback, as only 
highest priority tasks are executed – lower-priority tasks 
could be blocked indefinitely. One solution to this 
situation is to implement aging, where priority of tasks is 
gradually increased, ensuring that they will be eventually 
executed [4]. 
Besides a local CPU processes allocation, schedulers are 
commonly used in networked systems. The concept of 
connecting computing resources has been an active area of 
research for a considerable period of time. The term 
‘metacomputing’ was established as early as 1987 [74] and 
since then the topic of scheduling has been one of the key 
subjects within many research projects – service localizing 
idle workstations [61] parallel run-time system developed 
at the University of Virginia [37], blueprints for national 
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supercomputer [38], Globus (1997) metacomputing 
infrastructure toolkit [29]. 
As the research showed, the requirements of a load 
balancer in a distributed system significantly vary from 
scheduling jobs on a single machine [41]. One important 
difference are network resources – the machines are 
usually geographically distributed and transferring data 
from one machine to another is costly. Additionally, 
besides effectively spreading jobs across networked 
machines, the load balancer usually provides a mechanism 
for fault-tolerance and user session management. 
Nowadays, load balancers are able to schedule incoming 
jobs as well as to transfer existing ones to the networked 
machines. 
Scheduling jobs onto parallel nodes is difficult to solve 
optimally within fixed time, therefore approximation 
algorithms are usually employed. LS-based techniques 
have proven to be effective (a variant of LPT algorithm 
has been shown to have 19/12 guarantee ratio, resulting 
jobs allocation to optimal jobs allocation in a worst-case 
scenario) [22][31]. In addition, Bin Packing techniques are 
frequently employed as they naturally share the same 
decision, i.e. a bin-packing problem is defined as packing 
a number of items of various sizes into a minimum number 
of same-size bins) [60]. The heuristic known as first-fit 
decreasing has been shown to have 13/11 ratio guarantee, 
the worst-case scenario result for optimum items 
allocation) [84]. 
In the following chapters we will briefly explain how 
several current and past schedulers and distributed 
frameworks work. This will help to develop an 
understanding of how scheduling algorithms were 
developed over time and how their concepts have evolved 
over time. This is by no means a complete survey of all 
available schedulers, but rather an analysis of some of the 
landmark features and ideas in the history of schedulers. In 
Summary and Conclusions sections, we compare all 
classes of schedulers, with similarities and differences 
being discussed. We also suggest a possible unification of 
the future design of various classes of schedulers. 

2. OPERATING SYSTEMS PROCESS 
SCHEDULERS 

Operating System Process Scheduler works within a very 
short time frames (‘time-slices’). During scheduling events 
an algorithm has to examine planned tasks and assign 
appropriate CPU times to them [12][69]. This requires 
schedulers to use simple highly-optimized algorithms with 
very small overhead. Process schedulers have the difficult 
task of maintaining a delicate balance between 
responsiveness (minimum latency) and performance 
(maximum throughput). This is generally achieved with 
prioritizing the execution of processes with a higher 
sleep/processing ratio [66]. 

Nowadays, the most advanced strategies also take into 
consideration the latest location (CPU core) where the 
process actually ran last time (‘NUMA (Non-Uniform 
Access Memory) awareness’), with the aim of reusing the 
same CPU memory (the level of CPU cache utilization) 
where possible [7]. This also involves prioritizing in 
choosing a real idle core first before its logical SMT 
sibling (aka ‘hyperthread awareness’). This is a relatively 
high data load to examine in a short period of time, thus 
implementation needs to be strongly optimized for a faster 
execution. 
Operating System Process Schedulers generally provide 
only a very limited set of tuneable parameters without easy 
access to modify them. Some of parameters can be 
changed only during the kernel compilation process (e.g.: 
compile-time options CONFIG_FAIR_USER_SCHED 
and CONFIG_FAIR_CGROUP_SCHED) or by a low-
level tool sysctl (Linux kernel only). 
In the following section, we present the most notable 
process schedulers used in modern operating systems. 

2.1 Cooperative Scheduling 

Early multitasking operating systems (Windows 3.1x, 
Windows 95, 96 and Me, Mac OS prior to X) implemented 
a concept known as cooperative multitasking or 
cooperative scheduling (CS). In early implementations of 
CS, applications voluntarily ceded time one to another. 
Later this was supported natively by the Operating System, 
although Windows 3.1x used non-pre-emptive scheduler 
(it did not interrupt the program) and the program needed 
to explicitly tell the system that it did not need the 
processor time anymore. 
Windows 95 introduced a rudimentary pre-emptive 
scheduler; however this was for 32-bit applications only 
[42]. The main issue in CS is the hazard caused by a 
poorly designed program. CS relies of processes regularly 
giving up control to other processes in the system. 
Therefore, if one process consumes all available CPU 
power, it causes all systems to hang.  

2.2 Multi-Level Feedback Queue 

Perhaps the most widespread scheduler algorithm is Multi-
Level Feedback Queue (MLFQ), which is implemented in 
all modern versions of Windows NT (2000, XP, Vista, 7 
and Server), Mac OS X, NetBSD, Solaris and Linux 
kernels (up to version 2.6, when it was replaced with Q(1) 
scheduler). It was first described in 1962 in a system 
known as the Compatible Time-Sharing System [16]. 
Fernando Corbató was awarded the Turing Award by 
ACM in 1990 “for his pioneering work organizing the 
concepts and leading the development of the general-
purpose, large-scale, time-sharing and resource-sharing 
computer systems, CTSS and Multics”. 
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In MHQ jobs are organized into set of queues Q0, Q1, ….  
A job is promoted to higher queue if it does not finish 
within 2i time units. At any time, algorithm processes the 
job from the front of the lowest queue. In other words, 
short processes are given preference [69]. MFQ turns out 
to be very efficient in practice, while having very poor 
worst-case scenario [5]. 

2.3 O(n) Scheduler 

O(n) Scheduler was used between Linux kernel versions 
2.4-2.6, replacing the previously used simple circular 
queue algorithm [52]. In this algorithm, processor time is 
divided into epochs. Within each epoch, every task can 
execute up to its allocated time slice. The time slice is 
given to each task at the start of each epoch and it is based 
on the task's static priority added to half of any remaining 
time-slices from the last epoch [12]. Thus if a task does 
not use all of its time slice in current epoch, then it can 
execute longer in the next epoch. 
The disadvantage of this approach is relative inefficiency, 
lack of scalability (especially for multi-core processors) 
and weakness for real-time systems [52]. The scheduler 
itself may use a significant amount of time itself if the 
number of tasks is large (O(n) scheduler requires iteration 
through all currently planned processes during a 
scheduling event). 

2.4 O(1) Scheduler 

Between Linux kernel versions 2.6-2.6.23 came the 
implementation of O(1) Scheduler. This design can 
schedule processes within a constant amount of time (thus 
the name ‘O(1)’), regardless how many processes are 
currently running on the kernel [3][82]. 
The main issue with this algorithm is the complex 
heuristics used. To mark a task as interactive or non-
interactive (interactive tasks are given higher priority in 
order to boost system responsiveness), O(1) algorithm 
analyses the average sleep time of process. Those 
calculations are complex and subject to potential errors, 
where O(1) may cause non-interactive behaviour from an 
interactive process [52][66]. 

2.5 Completely Fair Scheduler 

At present, Linux kernel implements Completely Fair 
Scheduler (CFS) algorithm (introduced in kernel version 
2.6.23) [82]. The main idea behind CFS is to maintain 
balance (‘fairness’) in providing processor time to tasks 
[52], in other words each process should have equal share 
of CPU time. 
CFS implements red-black tree (self-balancing binary 
search tree structure) holding a queue for future task 
execution, with spent processor time used as a key and 

processes with the most sleeping time being prioritized 
[66]. When the time for tasks is out of balance (meaning 
that one or more tasks are not given a fair amount of time 
relative to others), then those out-of-balance tasks should 
be given time to execute [52].  

2.6 Brain F Scheduler 

Brain F Scheduler (BFS) was designed in 2009 and is an 
alternative to CFS and O(1) schedulers in the Linux 
kernel. The main objective of this algorithm was to 
provide a scheduling strategy suitable for desktop 
machines (with less CPU cores), that does not require 
adjustments of heuristic or tuning parameters [40]. 
In comparison to CFS, algorithm does have lower latency 
(improves interactivity), but has higher processes 
turnaround time (lowers performance) [40]. The author 
does not plan to integrate this scheduler into mainstream 
Linux kernel (scheduler is available as kernel patch ck1), 
although there exists several distributions that ship with 
BFS-enabled kernel, such as Zenwalk, PCLinuxOS, 
Kanotix and NimbleX. 

3. CLUSTER SYSTEMS JOBS 
SCHEDULERS 

While responsiveness and low overheads tend to be the 
focus of process schedulers, it is the case that the role of 
jobs schedulers is to focus upon scalability and high 
throughput. Jobs schedulers usually work with queues of 
jobs spanning to hundreds of thousands and sometimes 
even millions of jobs [70]. 
Jobs schedulers usually provide complex administration 
tools with a wide spectrum of tuneable parameters and 
flexible workload policies. All configurable parameters 
can usually be accessed through configuration files or via 
GUI interface. However, it has been documented that site 
administrators only rarely stray from a default 
configuration [24]. The most common scheduling 
algorithm is simply a First-Come-First-Serve (FCFS) 
strategy with backfilling optimization.  
The common issues cluster schedulers have to deal with 
are: unpredictable and varying load [64], complex policies, 
constraints and fairness [24]. Other factors include a 
rapidly increasing workload and cluster size [48], mixed 
batch jobs and services [13], legacy software [48], 
heterogeneous nodes with varying level of resources and 
availability [77]. There are also issues of hardware 
malfunctions [24][32] and the detection of 
underperforming nodes [48]. Also, Operating System can 
simply crash (it is especially common in heterogeneous 
cluster systems running mixture of Windows, Linux, Unix 
boxes, etc.) and the node and running applications might 
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need to be restarted. Specialized frameworks and tools 
offer automatic resolutions of some those issues [18]. 
Another interesting challenge, though rarely tackled in 
commercial schedulers, is the reduction of total power 
consumption. Typically, idle machines consume less than 
half of their peak power [62]. Therefore, the total power 
consumed by a given Data Centre can be lowered by 
concentrating tasks on a reduced number of machines and 
powering down remaining nodes [59][68]. 
In the following section, we present a few notable 
industrial-grade job schedulers used in modern distributed 
computer systems and supercomputers. 

3.1 Simple Linux Utility for Resource Management 

Simple Linux Utility for Resource Management (SLURM) 
is free and Open Source job scheduler for the Linux kernel 
initially developed for large Linux clusters at the 
Lawrence Livermore National Laboratory (LLNL). 
SLURM is used by many of distributed computer systems 
[83] and supercomputers. TOP500 project, which 
originated in 1993, ranks and details the 500 most 
powerful non-distributed computer systems in the world 
[78] and reports that approximately 50% of world 
supercomputers are using SLURM as the workload 
manager. 
SLURM uses a best fit algorithm based on Hilbert curve 
scheduling or fat tree network topology and it can scale to 
thousands of processors [67]. 

3.2 Maui Cluster Scheduler 

Maui Cluster Scheduler (Maui) is an open source job 
scheduler for clusters and supercomputers. It has been 
developed by Cluster Resources, Inc. in early 1990, being 
currently maintained and supported, but no longer being 
actively developed by Adaptive Computing, Inc. Maui is 
currently in use at many government, academic, and 
commercial sites throughout the world on hundreds of 
IBM SP-2, SGI Origin 2000, and Linux cluster systems 
[50]. 
Maui implements FCFS strategy [24], with a set of 
features such as ‘advance reservation’ (the availability of a 
set of resources is guaranteed at a particular time), 
‘backfilling’ (optimization allowing shorter jobs to execute 
while long job at the head of queue is waiting for a free 
processor [26] and ‘fair-share’ (when a site administrator 
can set system utilization targets for users, groups, 
account, classes and QOS levels [24]. 

3.3 Moab High-Performance Computing Suite 

Moab High-Performance Computing Suite (Moab) is a 
direct successor of Maui framework. Moab has all features 
from Maui and several additional features like basic 

trigger support, extended policies configuration, graphical 
administration tools, and a Web-based user portal and 
better scalability (over 15000 nodes with hundreds of 
thousands of queued job submissions and over 500 users). 
Moab currently manages workloads for about 40% of the 
top 10, top 25 and top 100 on the Top500 list [78] (Young, 
2014). 

3.4 Univa Grid Engine 

Univa Grid Engine is also known as Oracle Grid Engine, 
Sun Grid Engine, CODINE (Computing in Distributed 
Networked Environments), GRD (Global Resource 
Director) or simply Grid Engine. Univa had acquired it 
from Oracle in October 2013 [6]. Grid Engine has been 
developed as an enhancement of CODINE according to 
requirements from many early customers, such as the 
Army Research Lab in Aberdeen, and BMW in Munich 
[33]. 
Among other features, UGE supports advance reservation, 
job checkpointing (saving a snapshot of the current 
application state, which can be used for restarting the 
application execution in case of a failure [15], Apache 
Hadoop integration and Amazon EC2 integration for cloud 
computing. Out of the box, Grid Engine supports two 
scheduling strategies: FCFS (default) and an optional fair-
schare (called ‘Equal-Share’), however new strategies can 
be added, including the most available and lookahead 
strategies used to minimize a number of job migrations 
[80]. 
In late 2010 after purchase of Sun by Oracle, binaries for 
version 6.2 update 6 were released without source code. 
Grid Engine has been forked into multiple open source 
projects. Currently there are two actively maintained 
projects: Son of Grid Engine and Open Grid Scheduler. 

3.5 LoadLeveler 

Designed by IBM, LoadLeveler manages both serial and 
parallel jobs over a cluster of servers. LoadLeveler 
implements several scheduling strategies such as plain 
FCFS, FCFS with backfilling and gang scheduling, 
simultaneously running a set of related threads or 
processes on different processors allowing them to 
exchange messages without sleeping time and context 
switching [25]. An administrator can rewrite SYSPRIO 
function to implement alternative strategies [24][54]. 
LL also supports job checkpointing and it is able to 
communicate with external schedulers like Maui [24]. 

3.6 Load Sharing Facility 

Load Sharing Facility (LSF) was created by Platform 
Computing (acquired by IBM in January 2012 [75] and 
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was based on the Utopia project at the University of 
Toronto [89]. 
LSF supports numerous scheduling algorithms like FCFS, 
fair-share, backfilling and SLA (Service Level 
Agreements). LSF can also interface with external 
schedulers like Maui. LSF implements an interesting 
feature, where a job’s priority is gradually increased every 
time interval (thus the name ‘priority escalation’). This 
scheme results in higher priorities to long-waiting jobs 
[24].  

3.7 Portable Batch System 

Portable Batch System (PBS) was originally developed at 
NASA Ames research centre under a contract project that 
began on June 17, 1991. PBS can operate over a huge 
variety of machines, starting from heterogeneous cluster of 
loosely coupled workstations to vast parallel 
supercomputers [8]. 
PBS includes a number of scheduler strategies, such as 
FCFS, Shortest Job First (SJF) [69], fair-share and also 
allows implementation of a custom scheduler in C, TCL or 
in a specially designed language BaSL [8]. By default SJF 
strategy is used (starvation is mitigated by marking a 
particular job as ‘starving’ and withholding execution of 
all other jobs until the starving job finishes [24]. 
There exist three versions of PBS: 

 OpenPBS — original open source, suitable for 

small clusters 

 TORQUE — a fork of OpenPBS maintained by 

Adaptive Computing, Inc. 

 PBS Professional — the commercial version of 

PBS offered by Altair Engineering, Inc. 

iPhone/iPad users can also install PBS Express application 
from Apple Store. PBS Express allows for the monitoring 
and interaction with a PBS cluster from a smart phone. 

3.8 Globus toolkit 

Globus Toolkit is a set of tools for constructing a 
computing grid. It contains security framework, resource 
allocation and management strategies, communications 
libraries, etc. Its origins go back to Supercomputing '95 
conference (San Diego, California, USA), where a team of 
researches build a temporary network of 11 research 
centres (project ‘I-WAY’ (Information Wide Area Year)). 
In order to establish communication between those 
networks a set of new protocols has been created to allow 
users to remotely execute applications on computers across 
the country [29]. 
Following the success of I-WAY experiment, a Defense 
Advanced Research Projects allocated funds for further 

research and in 1997 the first version of Globus Toolkit 
was released and soon Globus Toolkit was deployed on 80 
sites across globe [28]. 
Occasionally, a computing cluster cannot allocate all 
resources need by an application at a given time. 
Application might then wait until the cluster has acquired 
enough resources, but this will result in bad response time. 
Alternative strategy is then to co-allocate resources on 
multiple grid systems and run application that way [73]. In 
fact, assuming low communication overhead, research 
demonstrated co-allocation might increase the overall 
performance of a grid [11][23]. 
Globus Toolkit uses Dynamically-Updated Request Online 
Co-allocator (DUROC) and Grid Resource Allocation & 
Management (GRAM) services to provide all the resources 
needed by a grid application. Globus Toolkit implements 
‘gang scheduling’. At first, DUROC service decomposes 
jobs requests into tasks (called ‘subjobs’) and sends them 
to remote GRAM instance on destination clusters. GRAM 
service communicates with local resource manager (e.g.: 
Load Sharing Facility, Portable Batch system, Univa Grid 
Engine, LoadLeveler, Condor, etc.) and allocates 
resources. When ready (i.e.: resources for tasks have been 
successfully negotiated), DUROC starts a job [73]. 
DUROC service does provide only limited support for job 
scheduling. It does not implement any jobs queuing 
mechanism – a jobs submission will simply fail if required 
resources are not immediately available or their acquisition 
cannot be successfully negotiated. Also, in situation of 
single task failure, the whole job is failed and user receives 
error message [73].  

3.9 GridWay 

GridWay is a meta-scheduler developed by the researches 
at the University of Madrid. It was designed with purpose 
of providing a flexible and reliable workload manager. 
GridWay was built on top of Globus Toolkit framework; 
therefore it supports a wide range of cluster and grid 
engines [47]. 
The code module of GridWay system is a submission 
agent. Submission agent contains two modules: 

 resource selector module, which evaluates 

requirements and allocates jobs to hosts (based on 

ranking expressions); both requirements and ranking 

expressions are provided by jobs and can be updated 

dynamically during jobs execution 

 performance evaluator module, which monitors 

application’s performance in order to detect 

slowdown and request job’s migration to an 

alternative node 
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In GridWay framework, a job can dynamically modify its 
requirements (‘self-adapting’) during its execution. An 
application might initially define a set of minimal 
requirements and keeps updating them later based of its 
current state.  GridWay scheduler implements a feature 
called ‘opportunistic migration’. Scheduler periodically 
evaluates available resources and may detect a better node 
for a currently executing job (based on dynamically 
updated ranking expressions and requirements). Scheduler 
then evaluates potential benefits of migrating this job to 
alternative node against the migration overhead [63] and 
scheduler might migrate the job to better node. 
The main drawback of this approach is a need to modify 
the source code of an application to support this behavior. 

3.10 HTCondor 

HTCondor (previously known as Condor). The name was 
changed in October 2012 to resolve a trademark lawsuit 
[1] and this is the oldest high-throughput software still 
successfully running today. 
HTCondor development started at the University of 
Wisconsin-Madison in 1984 and implemented an idea of 
stealing idle cycles from university’s workstations (‘cycle 
scavenging’) [61]. Over years of development, HTCondor 
architecture remained mostly unchanged, while many new 
features have been implemented and the pool of available 
nodes grew [77]. Nowadays, HTCondor architecture can 
be used to manage a workload on a cluster system.  
A number of tools and frameworks have been built on top 
of HTCondor infrastructure. One example is DAGMan 
(Directed Acyclic Graph Manager). DAGMan handles 
inter-job dependencies, where the programs are nodes 
(vertices) in the graph and the edges (arcs) identify 
dependencies. During execution, DAGMan orchestrates 
jobs execution order and schedules jobs directly into the 
HTCondor queue. HTCondor then identifies available 
machines and allocates jobs to them [30]. 
HTCondor implements a ‘fair-share’ algorithm, where 
users are allocated machine time based on their priority in 
the system. Additionally, every user has their own FIFO 
queue for personal jobs. Condor also supports ‘priority 
pre-emption’, where jobs from lower priority users are 
killed in order to allow higher priority jobs to progress 
[76]. 

3.11 Mesos 

Mesos originally began as a research project at University 
of California, Berkeley [44], but is now hosted in Apache 
Software Foundation and is being tested at several 
companies including Twitter and Facebook. 
Mesos  introduces   a   two-level   scheduling   mechanism, 
 

where a centralized ‘Mesos master’ acts as a resource 
manager that dynamically allocates resources to different 
scheduler frameworks (e.g.: Hadoop, Spark, Kafka, etc.). 
In case of a master failure Mesos uses ZooKeeper 
framework service to elect a new master [53]. Resources 
are distributed to the frameworks in the form of ‘offers’, 
which contain currently unused resources. Scheduling 
frameworks have autonomy in deciding which resources to 
accept and which tasks to run on them [44]. 
Mesos works most effectively when tasks are relatively 
small (compared to the cluster’s size), short-lived and have 
a high resources ‘churn rate’ eg - relinquish resources 
more frequently. In the current design (version 0.20.1 at 
the time of writing), only one scheduling framework can 
examine a resource offer at any given time. Therefore, this 
resource is effectively locked for the duration of a 
scheduling decision (i.e. concurrency control is 
pessimistic). A slow decision making scheduler can 
compromise overall system performance [70]. 

3.12 Open MPI 

Open MPI is an open source implementation of Message 
Passing Interface [39] developed and maintained by an 
international board of high performance computing 
vendors, academic researchers and applications specialists. 
Open MPI combines a number of libraries, technologies 
and other resources from a set of projects like LAM/MPI, 
LA-MPI, FT-MPI and PACX-MPI [32]. It is used in many 
TOP500 supercomputers such as Roadrunner or K 
computer [78]. 
The runtime environment of Open MPI provides a set of 
services to manage parallel executions in a distributed 
environment. A set of high-performance drivers is being 
actively developed for communication channels such as 
TCP/IP, shared memory, Myrinet, Quadrics and 
Infiniband. Framework is also transparently capable of 
handling failures of network devices (when node is 
equipped with several network devices) [32]. 
Job scheduling in Open MPI is fairly simple and works 
either on a by-slot basis (selection of all available slots) or 
by-node basis (selection of all nodes with available slots) 
round robin schedule. Each Open MPI node provides a 
number of slots available. Frameworks such as SLURM, 
PBS/Torque and SGE automatically provide an accurate 
number of slots and if not specified the default value of 1 
is used. Each execution of application specifies the number 
of processes that should be launched (the ‘np’ switch in 
mpirun command) and the scheduler then decides where 
those processes should be allocated. The scheduler takes 
into account the configured scheduling policy, involving 
the set of nodes suitable to run processes, defaults and 
maximum number of slots. 
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3.13 Autopilot 

Formerly, the management system for Microsoft’s 
Windows Live Messenger and Live Search services, 
Autopilot has been expended to support every Windows 
Live service and well as some other online services such 
as Windows Live Mail (previously Hotmail) resulting in 
storage space increasing substantially over previous years 
[49]. 
The main aim of Autopilot is to automate data centre 
operations and lower the number of people on 24-hour call 
required to maintain it, therefore lowering capital expense. 
This is achieved by using more intelligent software to 
replace much of the repetitive operations handles by data 
centre staff as well as moving failure management to 
automated scripts [49].  
Autopilot provides basic services needed to keep the data 
centre operational – provisioning and deployment of 
software, monitoring and hardware lifecycle including 
repair and replacement. However, job-scheduling policies, 
such as determining which services should run on which 
machines are left to individual applications [49].  

3.14 TORQUE 

TORQUE (Terascale Open-source Resource and QUEue 
Manager) is a fork of OpenPBS project maintained by 
Adaptive Computing, Inc. TORQUE Resource Manager 
provides control over batch jobs and distributed computing 
resources. In this architecture, the master node runs the 
pbs_server and the slave nodes run the pbs_mom daemons. 
Client command interface can be installed on any host (not 
necessary on system node). 
In default configuration, the simple FIFO job scheduler is 
deployed on the master node. The job scheduler interacts 
with pbs_server daemon allocate nodes to jobs based on 
configured resource usage policies. TORQUE users can 
choose to use an alternative scheduler such as Maui or 
Moab. 
At the time of writing, Czech National Grid Infrastructure 
MetaCentrum is evaluating an experimental extension to 
TORQUE Resource Manager [57], where an ad-hoc jobs 
placement mechanism has been replaced by a more 
sophisticated planning-based approach. This strategy will 
allow users to see when and where their jobs will be 
executed and predict behavior of the cluster system [14]. 
In the new approach, the constructed schedule is 
periodically (every 5 minutes) evaluated and incrementally 
improved by a Tabu Search algorithm (algorithm’s 
runtime is bounded by 2 seconds in each iteration) [56]. 
Various metrics such as makespan, slowdown, response 
time or wait time may be used as optimizations criteria 
[14]. 
 

Research also points to an interesting fact of notorious 
inaccuracy of job’s runtime estimations, due to a need to 
prevent job being killed due to an overrun. Jobs in fact 
often complete earlier than expected and this phenomena 
results in cumulative gaps and unnecessary high waiting 
times [55]. As demonstrated such ‘corrupted schedule’ can 
be immediately fixed by re-running optimization routine 
and ‘compressing schedule’ [14]. 
Initial experiments show very promising results in 
comparison to various backfilling strategies [14]. 

3.15 Borg and Omega 

To support its operations, Google utilizes a high number of 
data centres around the world (at the time of writing, 
Google has 12 data centres [2]. To orchestrate all its jobs 
in such a complex environment, Google has been using a 
custom job-scheduling system unofficially known as Borg 
[13]. 
Google’s Borg is effectively a monolithic scheduler. It 
uses a single, centralized scheduling algorithm for all jobs. 
In contrast, two-level or dynamic schedulers such as Mesos 
or TORQUE have a single resource manager that makes a 
resource offers to multiple independent scheduler 
instances. However, regardless of various optimizations 
acquired over years including internal parallelism and 
multi-threading, to address head-of-line blocking and 
scalability problems, Google decided to rewrite a 
scheduler as part of project Omega [13].  
The concept behind Omega is to deploy several schedulers 
working in parallel. The scheduler instances are using a 
share state of available resources, however the resource 
offers are not locked during scheduling decisions 
(optimistic concurrency control). In case of conflict, when 
two or more schedulers allocated jobs to the same 
resources, all involved jobs are returned to the jobs queue 
and scheduling is re-tried [70].  
This approach seems to be rather successful as shown in a 
study. It eliminates head-of-line job blocking problems 
and offers better scalability, however it also generates 
additional overhead for solving resource collisions. 
Nevertheless, the better scalability benefits often outweigh 
the incurred additional computations costs and scalability 
targets have been achieved [70].  
A point to note is that similar to MetaCentrum users, 
Google cluster users tend to overestimate memory 
resources needed to complete their jobs to prevent jobs 
being killed due to an exceeding of allocated memory. In 
over 90% of cases, users tend to overestimate the amount 
of resources that they require, wasting in some cases close 
to 98% of the requested resource [64]. 
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4. BIG DATA SCHEDULERS 

Big Data is a term given to the storage and processing of 
any collection of data sets so large and complex that it 
becomes unrealistic to process using traditional data 
processing applications (generally based on relational 
database management systems). Big Data also applies to 
statistics and visualization packages. 
Due to size Big Data is generally difficult to work with. 
Analyzing large data sets requires parallel software 
running on huge farms of servers [51] and that introduces 
new challenges of managing the workload and optimizing 
the usage of a cluster. It depends on the individual 
organization how much data will be called Big Data, but 
the following examples may be considered to get an idea 
of scale: 

 New York Stock Exchange produces about one 

terabyte of new trade data per day 

 Facebook hosts approximately 10 billion photos 

and currently about one petabyte of storage 

 The Large Hadron Collider (Geneva, 

Switzerland) produces about 15 petabytes of data 

per year [81] 

Big Data systems tend to be more specialized in their 
design, usually tackling only a very limited set of 
problems [48]. They often provide their own api [81] [87] 
and sometimes even the custom programming language, as 
seen with Skywriting in CIEL [65]. Despite these 
limitations Big Data systems are relevant to this research, 
as jobs scheduling and performance optimization remain 
common challenges. 
Big Data frameworks have a dual purpose, storing system 
data on its nodes (usually three replicas of each data block 
are used for fault-tolerance purposes [34][81] and 
secondly, to process this data via parallel tasks using the 
same nodes. A common optimization is applied, namely 
‘data locality’, where a scheduler attempts to schedule 
tasks near the data blocks required.  
Recently, many specialized frameworks have been created. 
Below, we will discuss and assess some of the most 
interesting and important, providing a brief description and 
focusing on job scheduling aspect in each. 

4.1 Dryad 

Dryad is a general-purpose framework for execution of 
data-parallel applications in distributed computers network 
developed at Microsoft Research. The project had several 
preview releases, but was ultimately dropped in October 
2011 [27] and Microsoft shifted focus to the development 
of Hadoop. 

The development of an application for Dryad is modeled 
as a directed acyclic graph (DAG) model. The developer 
defines an application dataflow model and supplies 
subroutines to be executed at specified graph vertices. The 
developer has also a fine-control over the communication 
protocols (e.g.: files, TCP pipes, shared memory) used in 
graph. The result is a developing style similar to ‘piping’ 
in Unix bash utilities (i.e.: streaming output from one tool 
to another, such as: cat file.txt | grep ‘word’ | wc –l), but in 
distributed flavor [48]. 
In comparison to MapReduce, Dryad features a much 
more lower-level programming schema, but all 
parallelization and task allocation and distribution 
mechanisms are effectively hidden from the developer. 
Therefore user does not need to have understanding of 
concurrency control mechanisms such as threads, 
semaphores or locks. 
The Dryad’s scheduler keeps a record of state and history 
of each vertex in a graph. A vertex might be re-executed in 
case of a failure (e.g.: node hardware malfunction) and 
more than one instance of a given vertex might be 
executed at the same time, meaning execution is versioned 
to avoid conflicts among runs. Upon a successful 
execution, one version is selected and returned as a result 
[48].  
A vertex or any pre-defined channels might have 
preferences and constraints for the node it is to be run [48] 
and this allows the developer to implement a very basic 
‘location optimality’, where task and input data are forced 
to be located on the same machine. 
The Dryad’s job scheduler implements Greedy strategy. In 
this approach the scheduler assumes that currently 
scheduled job is the only job running on a cluster and 
always selects the best node available. Tasks are run by 
remote daemon services, which periodically update the job 
manager about vertex’s execution status. If any task has 
failed more than a configured number of times, the entire 
job is marked as failed [48].  

4.2 MapReduce 

At the time of writing, MapReduce is the most widespread 
adopted principal for processing large sets of data in 
parallel. The name MapReduce originally referred only to 
the Google technology, developed in 2003 [20] and 
patented in [21] to simplify building of the inverted index 
for handling searches at Google.com, however the term is 
now widely used to describe a wide range of software (e.g. 
Hadoop, CouchDB, Infinispan, MongoDB, Riak, etc.) 
based on this concept. 
The concept behind MapReduce was first presented in 
2004 [19] and was inspired by ‘map’ and ‘reduce’ 
operations (hence the name ‘map-reduce’ or MapReduce) 
present in Lisp and many other functional programming 
languages [35]. 



149 
 

 

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015 
 

L. Sliwko and V. Getov 
 

However, the key contributions of MapReduce are the 
scalability and fine-grained fault-tolerance. This means 
that a failure in the middle of a multi-hour execution does 
not require restarting the job from scratch achieved for a 
variety of purposes by optimizing the execution engine 
once [20]. ‘Map’ is an operation that performs filtering 
and sorting all key-value pairs from the input data set, 
while ‘reduce’ performs summary operations (e.g.: 
counting the number of rows matching specified 
condition/s, yielding fields frequencies). ‘Map’ operation 
is used in the first step of computation by being applied to 
all available data. Due to its nature, ‘map’ can be executed 
in parallel on multiple machines (i.e. on distributed data 
set) and it is highly scalable. In the next step, the job goes 
into an intermediate state in which the framework gathers 
all values returned by ‘map’ workers. Then, a ‘reduce’ 
operation is fed with all received values supplied using an 
iterator, thus allowing the framework to process list which 
may not fit into machine memory [35].  

4.3 Hadoop 

Following publication of MapReduce concept [19], 
Yahoo! engineers have started Open Source project 
Hadoop. February 2008, Yahoo! announced that it’s 
production search index was being generated by a 10000-
core Hadoop cluster [81]. Subsequently, many other major 
Internet companies (e.g.: Facebook, LinkedIn, Amazon, 
Last.fm [85]) have joined the project and deployed it in 
their architectures [35]. Hadoop is currently hosted in 
Apache Software Foundation as Open Source project. 
Hadoop runs on top of a Hadoop Distributed File System 
(HDFS, similar to Google’s implementation of 
MapReduce, which runs on Google File System [34]. 
Users submit MapReduce jobs, which consist of ‘map’ and 
‘reduce’ operations/ implementations. Hadoop splits each 
job into multiple ‘map’ and ‘reduce’ tasks, which then 
process each block of input data (typically 64MB or 
128MB). 
Since its first release, Hadoop acquired a number of 
optimizations: 
 

A. ‘locality optimization’ was introduced, where the 
scheduler allocates ‘map’ task to the closest 
possible node to the input data required by it (the 
following allocation order is used: the same node, 
the same rack or finally the remote rack [86]. 

 

B. Hadoop also uses ‘backup tasks’, where a 
speculative copy of a task is run on a separate 
machine to finish computation faster. If the first 
node is available, but behaving poorly (such node is 
called ‘straggler’, this behaviour can arise from 
many reasons such as faulty hardware or 
misconfiguration), a job would be as slow as the 
misbehaving task [85]. Google estimated that using 

‘backup tasks’ can improve job response times by 
44% [19]. 
 

Currently, MapReduce in Hadoop comes with a selection 
of schedulers: 

4.3.1 FIFO scheduler 

Early versions of Hadoop had a very simple default 
scheduling system where the user jobs were scheduled 
using a simple FIFO queue with five priority levels [86].  
Typically, jobs were using whole cluster, so jobs had to 
wait their turn. When then job scheduler was choosing the 
next job to run, it was selecting jobs with the highest 
priority, thus it could result in low-priority jobs being 
delayed endlessly. Alternatively, as FIFO scheduler was 
not supporting pre-emption, a high-priority job could be 
blocked by a long-running low-priority job that started 
before the high-priority job was added to schedule [81]. 

4.3.2 Fair Scheduler 

Fair Scheduler (together with Capacity Scheduler 
described in the next section) is part of a cluster 
management technology YARN (Yet Another Resource 
Negotiator) framework, which is one of the key features in 
the second-generation Hadoop 2 version [79]. 
Fair Scheduler focuses on giving each cluster user a fair 
share of cluster resources over time, thus creating an 
illusion for each user of owning a private cluster [86].  
Each user has their own pool of jobs and scheduler uses a 
version of ‘max-min fairness’ [9] with minimum capacities 
guarantees (specified as the number of ‘map’ and ‘reduce’ 
task slots) to allocate tasks across pools. As more jobs are 
submitted, free tasks slots are given to the jobs in such a 
way as to give each user a fair share of the cluster 
computation capacity [81]. Thus, in busy environment, 
submitting more jobs by a user will not result in more 
cluster resources being used by this user. When one pool is 
idle (not using minimum share of his task slots), other 
pools are allowed to use available task slots. 

Jobs pools can have variable weights configurations. 
Usual scenario is to create one pool per user and special 
pools for production jobs [86].  
Fair Scheduler also supports pre-emption, thus if any 
given job pool is running over its capacity, its tasks will be 
killed to make free slots for under-running job pools [81]. 

4.3.3 Capacity Scheduler 

In Capacity Scheduler, a cluster is made up of a number of 
FIFO queues. Those queues might be hierarchical (a queue 
might have children queues) and each queue has allocated 
task slots capacity (separate for ‘map’ and ‘reduce’ tasks). 
Task slots allocation between queues is similar to sharing 
mechanism between pools as seen in Fair Scheduler [81].  
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Essentially Capacity Scheduler can be seen as a 
number of separate MapReduce clusters with FIFO 
scheduling for each user or organization. 

4.4 HaLoop 

HaLoop framework has been developed on top of Hadoop 
in response to the poor performance of the former when 
running iterative jobs (Bu et al., 2010). The reason for this 
behaviour is a default mechanism, where Hadoop writes 
the output of each MapReduce job to the distributed file 
system and reads it back on during the next iteration [35]. 
By adding various caching mechanisms and optimizations 
and making framework loop-aware (e.g. adding 
programming support for iterative application, storing the 
output data on the local disk), iterative jobs performance 
has been massively improved. HaLoop reduces query 
runtimes by 1.85, and shuffles only 4% of the data 
between mappers and reducers [10]. 
HaLoop’s scheduler keeps a record of every data block 
processed by each task on physical machines and tries to 
schedule subsequent tasks taking inter-iteration locality 
into account [10]. This feature helps to minimize costly 
remote data retrieval, thus tasks can use data cached on a 
local machine. 

4.5 Spark 

Similarly to HaLoop, Spark’s authors noted a suboptimal 
performance of iterative MapReduce jobs in Hadoop 
framework [87]. Spark is built on top of HDSF, however it 
does not follow the two-stage model of MapReduce. 
Instead it introduces resilient distributed datasets (RDD) 
and parallel operations on these datasets:  

 ‘reduce’ – combines dataset elements using a 

provided function 

 ‘collect’ – sends all the elements of the dataset to 

the user program 

 ‘foreach’ – applies a provided function onto every 

element of a dataset 

Additionally, this framework provides two types of shared 
variables: 

 ‘accumulators’ – variables onto each worker can 

apply associative operations (therefore they are 

efficiently supported in parallel) 

 ‘broadcast variables’ – sent once to every node, 

with nodes then keeping a read-only copy of those 

variables 

For certain kind of applications (e.g. iterative machine 
learning algorithms and interactive data analysis tools), 
Spark outperforms Hadoop in order of magnitude, while 

retaining the scalability and fault tolerance of MapReduce 
[87].  
Spark job scheduler implementation is conceptual similar 
to Dryad’s, however it takes into account which partitions 
of RDD are available in memory (framework re-computes 
missing partitions) and tasks are sent to the closest 
possible node to the input data required (‘locality 
optimization’) [88].  
Another interesting feature implemented in Spark is a 
concept of ‘delayed scheduling’. When a head-of-line job 
that should be scheduled next (according to fairness) 
cannot launch a local task, it lets other jobs start their tasks 
instead and repeatedly re-tries. However, if the job has 
been skipped long enough (typically up to 10 seconds), it 
launches non-local task. As typical Spark workload 
consists of short tasks (i.e. it has a high task slots churn), 
tasks have higher chance to be executed locally (there is 
no cost of retrieving the input data from a remote node). 
This feature helps to achieve almost optimal ‘data locality’ 
with a minimal impact on fairness and the cluster 
throughput might be increased by up to two times 
(analysis has been performed on Facebook’s workload 
traces) [88].  

4.6 CIEL 

Designed and implemented at the Cambridge Computer 
Laboratory (University of Cambridge), CIEL is a universal 
execution engine for distributed computation. CIEL 
implements master-slave architecture, where the master is 
responsible for coordinating and dispatching tasks to 
workers. Workers execute tasks and also can store result 
state to objects, which might be an input to following 
tasks. This data can be directly exchanged between 
workers by making remote calls to workers’ store objects 
[65]. A task can dynamically spawn ‘children’ tasks, 
effectively delegating the production of its output to its 
children [71]. 
CIEL uses its own scripting language for writing CIEL 
jobs – ‘Skywriting’. Skywriting is a full Turing-complete 
language, which allows developers to mix task creation 
and data-dependent control flow [65].  
CIEL is an open-source project licensed under the BSD 
license. Author also implemented CIEL variant running on 
multi-core machines (i.e. HTTP transport mechanism 
replaced by shared memory and communication between 
tasks re-implemented with OS-level pipes and semaphores) 
[71]. 

5. SUMMARY 

In this survey we presented a number of available 
schedulers from early implementations to modern 
versions. It may be noted that each class of scheduler 
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started with a simple job queue and developed over time as 
specific sets of problems emerged: 
A. Operating System Process Schedulers evolved with 
focus on maximizing responsiveness [66], while still 
providing good performance. While CPU switches 
between processes in a very rapid manner, the modern 
operating system process scheduling algorithms were 
designed with a very low overhead [82]. The majority of 
end-users for operating system process schedulers are non-
technical; therefore those schedulers usually have a 
minimum set of configuration parameters [40]. 
Introduction and popularization of multi-core processors 
by Intel and AMD in early 2000s (i.e.: Intel Core Duo and 
AMD Phenom II X2), enabled applications to execute in 
parallel and Operating Systems Schedulers started 
developing in similar direction as distributed systems 
schedulers. Modern Operating System Process Schedulers 
also implement cache ‘locality optimization’ when 
deciding which CPU core the task will be allocated to. 
B. Cluster Systems Jobs Schedulers have a difficult 
mission of ensuring ‘fairness’ [9] (i.e.: sharing cluster 
resources proportionally to every user) while maintaining 
stable throughput in a very dynamic environment. Cluster 
systems usually allow administrators to implement 
complex resource sharing policies with multiple input 
parameters. Cluster systems usually implement fault-
tolerance strategies (i.e.: ‘checkpointing’ [15]) and 
sometimes also focus on minimizing power consumption 
[59]. Surprisingly, the most popular approach to 
scheduling is simple First-Come-First-Served strategy 
with variants of backfilling. However, due to rapidly 
increasing cluster size, current research focuses on 
parallelization, as seen with models such as Google’s 
Omega [15]. Cluster users are notorious in overestimating 
resources needed for completion of their tasks, which 
results in cluster system job schedulers often over-
allocating resources [55][64]. 
C. Big Data systems are still rapidly developing.  Nodes in 
Big Data systems fulfil the dual purpose of storing 
distributed file system parts (e.g.: Google File System 
[34], its successor Colossus [17] or Hadoop Distributed 
File  System  [35])   and   providing   a   parallel  execution 

environment for system tasks. Job schedulers in this class 
inherit general design from cluster system’s jobs 
schedulers, but are usually very specialized for the purpose 
of  a framework and focused on ‘locality optimization’ or 
running a given task on a node where input data is stored 
or in the closest proximity to it. 

6. CONCLUSIONS 

The design of modern scheduling strategies and algorithms 
is a challenging and evolving field of study. While early 
implementations were often based on very simplistic 
approaches such as a circular queue (also known as 
‘Round Robin’), it is the case that modern solutions use 
complex load balancing schemas (i.e.: Google’s Omega, 
where multiple schedulers are working in parallel and 
competing for resources [70]) and introduce concepts like 
previously mentioned ‘fairness’, ‘checkpointing’, ‘backup 
tasks’, etc. 
During this research, we have noted many similarities 
between scheduling strategies used in all classes of 
schedulers. Early Operating System level schedulers were 
focused primarily on responsiveness and performance 
[16][69]. However, their design focus changed 
dramatically with introduction of multi-core processors 
and modern scheduler implementation strategies 
supporting parallel execution [82] and similar to those 
designed for distributed Cluster systems. 
The experiments with CIEL scheduler demonstrate that 
strategies used in allocating tasks in a distributed system of 
nodes can be adapted to effectively work on the Operating 
System level [71]. A recent introduction of Completely 
Fair Scheduler (based on a model of ‘fairness’) to Linux 
kernel (since kernel version 2.6.23) also highlights current 
trends of mixing concepts from both local and distributed 
systems when designing scheduling strategies. 
In the future, we expect research on all classes of 
schedulers to be increasingly more joined and design 
combining ideas from both the Operating System level as 
well as distributed Cluster systems. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



152 
 

 

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015 
 

L. Sliwko and V. Getov 
 

 
Table 1: Schedulers Comparison 
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System 
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No No 
Simple (compile-
time and runtime 

kernel parameters) 

MLFQ, O(n), O(1), CFS, 
BFS (with locality 

optimization) 

very low - 
low 

 single machine 
 responsiveness 
 simple configuration Cluster 

System Job 
Schedulers 

Yes Yes 
Complex 

(configuration files 
and GUI) 

FCFS (with backfilling 
and gang-scheduling), SJF 

low - high 
 distributed nodes 
 fairness 
 complex sharing policy 

Big Data 
Schedulers 

No(1) Yes 
Complex 

(configuration files 
and GUI) 

FIFO (with locality 
optimization and gang-

scheduling), Fair 

low - medium 
 specialized frameworks 
 parallelism 
 distributed data storage 

(1) MapReduce jobs tend have consistent resource requirements (i.e.: in majority of cases, every map task processes roughly the same amount of 
data (input data block size is constant), while reduce task requirements shall be directly correlated to the length of returned data) 
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