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ABSTRACT

A complete phylogenetic analysis of all of the HON2 hemagglutinin sequences that
were collected between 1966 and 2012 was carried out in order to build a picture
of the geographical and host specific evolution of the hemagglutinin protein. To
improve the quality and applicability of the output data the sequences were divided
into subsets based upon location and host species.

The phylogenetic analysis of hemagglutinin reveals that the protein has distinct
lineages between China and the Middle East, and that wild birds in both regions
retain a distinct form of the H9 molecule, from the same lineage as the ancestral
hemagglutinin. The results add further evidence to the hypothesis that the current
predominant HON2 hemagglutinin lineage might have originated in Southern China.
The study also shows that there are sampling problems that affect the reliability of this
and any similar analysis. This raises questions about the surveillance of HON2 and the
need for wider sampling of the virus in the environment.

The results of this analysis are also consistent with a model where hemagglutinin
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been the main focus of international monitoring after a series of recent outbreaks, but the
emergence of the A/HIN1 pandemic virus “swine flu” in 2009 showed that other subtypes
also pose a serious threat to human health (Cao et al., 2009). Experiments have been
carried out to determine the exact factors of bird to human transmission and of droplet
transmission of HON?2 viruses (Sorrell et al., 2009).

The HON2 subtype is a variant of AIV usually associated with low pathogenicity. Due
to the lower pathogenicity phenotype of this virus, data collection has been very sporadic.
There have been outbreaks of HIN2 in flocks of domestic birds resulting in significant
economic loss and with high mortality rates of up to 60% reported during the epizootic of
1998-2001 in Iran (Nili & Asasi, 2002). This subtype has also been shown to pass to pigs,
ferrets and guinea pigs, as well as to humans in a small number of cases (Butt et al., 2005;
Cheng et al., 2011; Lin et al., 2000; Lv et al., 2012; Peiris et al., 1999; Wan et al., 2008; Xu et
al., 20045 Yu et al., 2008; Zhang et al., 2009). Antibodies to the virus have also been found
in a sero-epidemiological investigation of poultry workers (Pawar et al., 2012; Wang, Fu &
Zheng, 2009). These cross species infections show that in the future the virus may present a
serious threat to human health.

The co-circulation of HIN2 with other H5N1, H7N3, HIN1 and H3N2 subtypes
has resulted in the emergence of novel reassortant viruses (Monne et al., 2013; Peiris et al.,
2001; Sun et al., 2011). The reassorted virus has been shown to possess increased virulence
(Igbal et al., 2009; Marshall et al., 2013). The recent emergence of a novel reassortant
H7N09 virus containing internal genes from the HON2 virus is another of novel AIV in
birds which has the capability of infecting humans, with fatal consequences. However
in the cases of reassortment human to human transmission has not been demonstrated
(Watanabe et al., 2013).

There have been a number of recent studies on the evolution of AIV that have
incorporated geographical data available from global influenza monitoring (Fusaro et al.,
2011; Haase et al., 2010y Lam et al., 20125 Wallace et al., 2007). With the growth in the global
monitoring efforts, and the widespread use of cheaper DNA sequencing technology there
has been a rapid expansion in the number of available sequences. Previous phylogenetic
studies of HON2 hemagglutinin, have focussed on sequences from a single location (Ba#nks
et al., 2000; Butt et al., 2010; Kim et al., 2006; Li et al., 2005; Song, Han & Chen, 2011;
Xu et al., 2007a). The largest previous phylogeographical study was that of Fusaro et
al. (2011) who surveyed all of the HON?2 viral segments from the Middle East. Fusaro’s
study defined eight geographical regions covering the Middle East and used maximum
likelihood methods to construct the phylogenetic analysis. Bayesian methods were used to
evaluate the geographical clade distribution. This work has recently been extended to take
amore detailed look at viral evolution in Israel and to show that there have been successive
introductions from neighbouring countries (Davidson et al., 2014).

A large-scale phylogenetic analysis using eight viral gene segments from 571 complete
genomic sequences collected between 1966 and 2009 was carried out by Dong and
co-workers (2011). Geographical details were not the focus of this study as the aim was
to establish the lineage structure and genotypes present in HON2. That analysis revealed 74
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lineages and 98 genotypes when re-assortment is taken into consideration, but they only
identified 7 HA variants.

Investigations of the evolution of influenza A H3N2 hemagglutinin using evidence from
flu antigen evolution, have shown how the rates of evolution can vary between selection
events (epochs) (Koelle et al., 2006; Smith et al., 2004; Thomas & Hertz, 2012; Wolf et al.,
2006). Wagner used this study to suggest a reconciliation between the selectionist and
neutralist views in a network based model (Wagrner, 2008). Wagner’s model also shows
that the order in which mutations take place can have an effect on the selection of a
group of mutations. In this way random drift is punctuated by selective epochs. Using
mathematical models, Bedford, Rambaut ¢ Pascual (2012) have shown that in A/H3N2
sequence evolution is constrained by canalisation. This agrees with Wagner’s hypothesis if
there are times when there is limited drift but occasional bursts where the organism escapes
the canalisation (Thomas ¢ Hertz, 2012; Wolf et al., 2006).

It is difficult to assess the performance of phylogenetic models. The methods are
sensitive to the distance measures used and this is reflected in the number of sites that
can be compared and the number of sequences in the study (Felsenstein ¢ Felenstein,
2004). Clades should be monophyletic if they are produced by divergent evolution (Page ¢
Holmes, 1998). If a lineage is geography and host specific then we would expect all of the
sequences that form a clade to share the same labels in terms of geography and the species
in which they are found. Single base or amino acid changes are ambiguous and could be
a product of either divergence or convergence, but larger conserved patterns, especially
if they are non-consecutive in the sequence alignments are good indicators of mutations
that are responsible for differentiating between clades. These patterns of change can then
be examined in terms of their effects on protein structure and function. Ultimately it
is the biological function that determines how selection has been responsible for clade
differentiation.

The current study presents a comprehensive phylogenetic analysis of the HON2 HA, that
includes sequences from all of the geographical regions where HON2 has been reported.
This investigation shows how host species and geographical distribution have shaped the
evolution of distinct lineages of H9 HA. This reveals clades that are both geographically
and host species dependent. From these analyses new hypotheses can be generated for
more specific events such as migrations or intra-species infections.

MATERIALS AND METHODS

The complete set of HON2 hemagglutinin protein sequences were downloaded from the
NCBI on the 22nd of May 2013. The search term used for searching the protein database
was HIN2 hemagglutinin. The sequences were exported in FASTA format.

The complete set of HIN2 hemagglutinin nucleotide sequences were downloaded
from the NCBI on the 9th of September 2013. The search term used was ((HON2
hemagglutinin) NOT precursor) NOT partial. The sequences were downloaded in
FASTA format.
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A dataset for the complete set of Korean HON2 hemagglutinin sequences was
downloaded from the NCBI on the 15th of June 2014. The search term used was ((HIN2
hemagglutinin) NOT H5) Korea).

After removal of long truncations (>40 amino-acid residues) as well as a group of
sequences that were actually from other AIV subtypes, the final protein dataset contained
2,045 sequences, the final nucleotide dataset contained 1,052 sequences of which the
Korean nucleotide subset contained 64 sequences.

The edited protein and nucleotide datasets were then broken into sub-groups based on
the sequence annotations, using a short text matching program written in Perl. The data
was split into subsets based on geographical location and host species.

The geographical subsets were based on national boundaries except for China, which
was divided into its regions. Where a Chinese region had 10 sequences or less then
phylogenetic analysis was not carried out. National borders have been identified as barriers
to influenza transmission and so these are appropriate geographical subsets (Wallace ¢»
Fitch, 2008). A subset was created for the Americas including all of the North American and
the single South American (Argentinian) sequence.

Species trees were created for chicken, duck (including mallard), quail, pheasant and
swine. In the past it has not been common practice to produce species specific phylogenetic
trees but a recent paper by Worobey, Han ¢ Rambaut (2014) also used this approach. There
are numerous wild bird species and also some environmental samples, but these are often
only represented by single cases and so subsets were not created.

All of the sequence analysis and editing was carried out in MEGA 5.2 on a Windows
8 computer. Both the protein and gene sequences were aligned using Muscle within
the MEGA sequence analysis package, using the default parameters (Edgar, 2004;
Tamura etal., 2011).

Model evaluation was carried out for the protein dataset within MEGA. This analysis
showed that the Jones—Taylor-Thornton model with gamma distributed rates amongst
sites was the best model (Table S1) (Jones, Taylor & Thornton, 1992). Phylogenetic trees
for the protein sequences were then constructed using Maximum Likelihood within
MEGA using the JTT + G substitution model. Each model was tested with 500 bootstraps
replicates. To make the calculations tractable the heuristic nearest neighbour interchange
was used. The initial tree was created with neighbourhood joining.

Model evaluation for the corresponding nucleotide dataset showed that the Tamura-Nei
substitution model with gamma distributed rates amongst sites was the best performing
model (Table S2) (Tamura ¢ Nei, 1993). Phylogenetic trees for the gene sequences were
constructed using Maximum Likelihood within MEGA using the TN93 4 G substitution
model. Models were tested with 500 bootstrap replicates. Smaller numbers of sequences in
the gene dataset meant that it was possible to calculate the bootstrap values for the chicken
trees, which could not be calculated in the protein trees.

The amino acids responsible for clade formation were determined manually using
the alignment view within MEGA. This view shows only the amino acid changes relative
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Figure 1 Phylogenetic overview. A compressed view of the complete phylogenetic tree with the major
clades shown in a condensed format.

to the conserved sequence, and so it is a matter of scanning the sequences looking for
substitutions that correspond to the different clusters.

All of the trees have been presented as cladograms rather than as phylograms because
the study uses a cladistic approach for the analysis. The topology (ordering of the clusters)
is the most significant factor in this investigation rather than the distances between groups.
The removal of distance data and also the bootstrap data from the figures improves
the clarity of the diagrams, but this omitted information is available in Supplemental
Information 5 that includes the full phylogenetic analysis.

RESULTS AND DISCUSSION

Global nucleotide phylogenetic tree analysis

A complete phylogenetic analysis of the nucleotide dataset was carried out. Computational
limits on memory and processor speed make it impossible to carry out a complete analysis
on the protein dataset (especially as it contains almost twice as many sequences). A
condensed view of the principal clades from the global nucleotide tree can be seen in
Fig. 1. One noticeable absence from the global nucleotide tree is the quail sequences. These
were omitted during the editing of the sequences to remove truncated sequences where
the ends of the sequences were missing. The virus can be broken into three main clusters
labelled A, B and the Main Chinese Clade. (The complete tree can be found in Fig. S1.)
There is also a small clade (labelled C) that splits from the root of the tree between clades
A and B. This clade contains Chinese sequences that were isolated from chickens between
1999 and 2002. This topology agrees with those from the existing literature except that
there is some disagreement in the identification of the lineages (Li et al., 2003; Peiris et
al., 2001; Perk et al., 2006; Yu et al., 2008). Ji used a lineage and sub-lineage nomenclature
that identified four lineages and 2 sub-lineages corresponding to Clade A (lineages 9.1, 9.2
and 9.3), Clade B (sub-lineage 9.4.1) and the main Chinese Clade (sub-lineage 9.4.2).
Huang and co-workers used a lineage naming system based on the prototypes Y439,

TY WS 66, G1 and Y280 (Huang et al., 2010). Y439, and TY WS 66 (Turkey, Wisconsin
1966) are both in clade A. GI is in clade B and Y280 is in the main Chinese clade in
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China 1 1994-2010. The large study by Dong et al. (2011) identified HK/G1/97, BJ/1/94,
HK/289/78, HK/AF157/92, KR/96323/96, DE/113/95 and W1/1/66 as prototype sequences
for the different HA lineages. The G1 lineage and WI/1/66 lineages are well established
and correspond to Clade B and Clade A respectively. BJ/1/94 is in the same clade as
Y280, HK/289/78, HK/AF157/92 and DE/113/95 are not in the current dataset because
of truncations, but there are sub-clades for Hong Kong duck sequences and Korean chicken
sequences that correspond to HK/289/78 and KR/96323/96 respectively. This suggests that
it might be possible to divide Clade A into further sub-clades but given the limited number
of sequences sampled there is insufficient evidence to be able to carry this out at present.

Within the Main Chinese clade there are a series of nested sub-clades labelled China 1-9
where the annotations follow the correct date order, with the exception of clade 8. In clade
8 there is a single sequence from a chicken in the Shandong region collected in 1999, which
is a probable outlier. All of the other sequences within the clade are from 2003 onwards,
which would be consistent with the splitting dates for the other sub-clades. It is possible
that this is an example of convergent evolution between recent Chinese sequences and an
earlier branching of the phylogenetic tree, but a single sequence is insufficient evidence
to corroborate this. An alternative explanation is that this results from sequencing error
but this is also unlikely given the large number of bases that would have to be incorrectly
identified (for an alignment between the Shandong sequence, G1, G9/Y280, Wisconsin
1966 sequences see Fig. 52). It is possible that this could be a database error, but again this
seems unlikely given the provenance and tracking systems within GenBank. In the absence
of database error and a clear evolutionary connection between this lone sequence and the
rest of the clade does provide evidence for the inadequate sampling of sequences. This
nested structure of the Chinese sequences had previously been reported by Song, Han ¢
Chen (2011).

The expanded tree (Fig. S1) shows that the geographical sampling has not been
systematic and that it has been carried out in a sporadic and haphazard manner. There are
breaks in the dates of sequence annotations in some of the clades that are homogeneous for
location. Date gaps in annotations at specific locations are likely to be a result of inadequate
sampling rather than reliable evidence for the loss and subsequent migratory return of the
clade. The focus on China because of outbreaks of HON2 within flocks of domestic birds
has resulted in a very dense phylogenetic tree for the Chinese sequences, resulting in an
artificially Chinese focused distribution to the phylogenetic trees. There is only a single
sequence from South America this is the result of a sampling effect rather than reflecting
the actual HON?2 distribution.

Clade A (Fig. 2) corresponds to wild bird infections that are distributed world-wide and
include examples from North America, South America, Europe and the Far East. This is
an important clade because it also contains the original sequence of the hemagglutinin
from the HIN2 subtype that was found in a turkey in Wisconsin in 1966. This clade
also contains a number of recent sequences from Korea the US and Europe and so
this clade remains extant. The topology of this clade disagrees with that from Kim and
co-workers who constructed a tree for regions 1-1104 using DNA Star (Kim et al., 2006).
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Maliard Turkey Goose, North America 1980-1991

gik292381581gb K C209500.1| Infuenza A vrus (Afwild bird Korea/B639/2005{HSN2) segment 4 hemagglutinin (HA) gene complete cds
gil3435TT4641gb ICYOSTE30. 1] nfuenza A wrus (Adnorthern shoelen/Missoun/ 258/ 200%(HEN2)) hemagglutinin (HA) gene complete cds
L | gil401T16585gb 437685, 1] Infuenza A virus (A/egrerHunan/1/2012(H3MZ)) segment 4 hemagglutinin (HA) gene complete cds
gil4a5324145gb K CE5C345 1| Infuenza A vrus (Afwhite-fonted gooseKoma/20-28/200T(HINZ) segment 4 hemagglutinin (HA) gene complete cds
g 158203 221gbICYOTS348 1| nfuenza A wus (Afnorthemn showeler/Intenor Alaska/B8MI4TO2008(HIND)) hemagglutinin (HA) gene complete cds
gils 12130473 gk K F 188287 1| Influenza A virus (A furkeyPava/141/1983{HINZ)) segment 4 hemaggluinin (HA) gene complete cds
gIRSE24T261gb 2T 3541, 1] Influenza A wirus {AJSchicken/Hungary'1 1-45872001HSMZ)) segment 4 hemagglutinin (HA) gene complete cds
Duck Hong Kong 1976-1979
Shorebirds Delaware Bay 2003-2006
Korea 1986-2010
gilB5858T59Idhj|AB125528.2] Influenza A vmus (Aduck/Hokkaido/49/SB{HSNZ)) HA gene fbr hemagglutinin complete ods
# gi513120205igbKF 188265 1| Infuenza A s (A/duckiHong Kong/Y425/1997(HINZ)) segment 4 hemagglufinin (HA) gene completeods ) Y439 Clade A
—— Wild Birds Netherlands 2005-2007
gil338324T82pb lX273569.1| Influenza A virus (A/tukey GermanyEK 224/15935(HONZ)) segment 4 hemagglutinin (HA) gene comple® ods
glElZlZ‘J..‘J]’Igb[KFH‘-E{;]’D 11 Infuenza A wns (A/shorbid/ Delaware Bay2T7/1959(HONZ)) segment 4 hemagglutinin (HA) gene complete cds
gnl—51313'}331lgblK F18E372.1| Infuenza A virus (A/shombird Delaware Bay 278/ 1953 HINZ)) segment 4 hemagglutinin (HA) gene complete ods
Maliard Iran 2007
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gil338324T84gb X273570.1| Influenza A virus (A/tukeyNethed ands/1 1015452201 1{HSNZ)) segment 4 hemagghutinin {HA)} gene complete ods
Maliard Portugal 2009

Figure 2 Clade A. This is the original lineage of HON2 that was first isolated in a turkey in Wisconsin in 1966.

The complete sequence for HA is over 1,700 bases, and the method used here is Maximum
Likelihood, whereas DNA Star uses the less reliable UPGMA tree generation algorithm
within ClustalW. In their tree the recent Korean sequences were placed outside clade A and
beyond the Y280 sequences as a distinct clade. The bootstrap values are high for this region
of the tree (>99%) and it has geographical consistency with the rest of the clade, and so the
topology presented in the current paper is most likely to be correct.
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Figure 3 Clade B. This is also known as the G1 lineage.

Clade B (Fig. 3) contains mostly Middle Eastern sequences although there are a few
Chinese sequences that form a sub-clade. This clade corresponds to the extended G1
lineage used by Fusaro et al. (2011) and Monne et al. (2013). Iran and Israel are the two
countries most strongly represented in this clade. There are also a number of sequences
from the Arabian peninsular and a large grouping from the Indian sub-continent.

The sub-lineage structure of Clade B shows that the sequences have evolved substantially
from the G1 prototype. The G1 prototype sub-clade became extinct in Iran in 2004 and in
Israel in 2007. This was replaced by a new sub-lineage (labelled 725 sub-clade in Fig. 3)
that appears to have originated in chicken flocks in Iran in 1998, although it is only
found in a large number of Iranian samples after 2004. This sub-lineage is similar to
that previously identified by Fusaro et al. (2011) and Monne et al. (2013) (labelled cluster C
in their papers). There is a sub-clade from the Indian subcontinent that originated in the
Punjab/Haryana region in 2003. There is a linking clade than originated in Pakistan in 2004
before spreading back to Iran in 2009. The final sub-clade seems to have originated in the
Arabian Peninsular in 2006 and correspond to cluster B from the studies of Fusaro et al.
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Figure 4 Clade C. This is a small clade found between clades A and B.

(2011) and Monne et al. (2013). This sub-lineage then spread to Israel and most recently to
Egypt. This is in good agreement with the previous studies on the origin of the Egyptian
virus (Abdel-Moneim, Afifi & El-Kady, 2012). The phylogenetic tree shows that after the
initial Egyptian outbreak in 2010 there has been a marked diversification in the sequences.

Clade C (Fig. 4) is a Chinese clade that has annotated dates between 1999 and 2001.
In the phylogenetic analysis this clade falls between Clade A and Clade B. As there are
only a small number of sequences within the clade there is no discernable pattern to the
distribution of the sequences within the Chinese regions, although it appears to have
originated in Guangdong in 1999. As there are no more sequences after those from 2002
this clade can be considered extinct.

The first Chinese clade contains the G9/Y280 lineage (Fig. 5). After the banning of
live quail from poultry markets the G1 lineage disappeared from Chinese poultry leaving
only the G9/Y280 lineage (Choi et al., 2004). In the study of Li et al. (2005) four lineages
were specified G1, TY/WS/66, Y439 and Beijing/1/94, but no sequences from G1 or Y439
were found in their sample. Cong and co-workers (2007) identified two more lineages
within this clade based on antigenic studies and nucleotide phylogenetic trees. These are
represented by prototype sequences from Shanghai 1998 and a swine genotype. These
lineages only cover a small number of the possible sub-clades within this first Chinese
Clade (Fig. 5). As no sequences have been sampled from this clade since 2010 it is possible
that the G7/Y280 lineage is now extinct, but this hypothesis cannot be confirmed without a
longer period of absence of viruses from this clade.

This study shows a series of new clades that had not been previously identified and that
originate in 1997 in Beijing. This is also the origin of the clade labelled China 2. All of the
subsequent nested Chinese clades are related to this Beijing sequence. Some sub-clades
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such as China 4, China 5 and China 6 also appear to have become extinct and so there is
good evidence for successive selective sweeps through the viral population.

As discussed previously the individual unusual sequence from 1999 in China 8 sub-clade
is difficult to explain. It might suggest that there is considerable sequence diversity within
these nested clades, but because of the low number of individuals carrying a particular
sequence it might take a long-time for a sequence to become fixed sufficiently within the
population to be found by sporadic sampling. If this is true then all of the clades probably
have a much earlier origin and there is a long period before first detection. This causes
some concern for tracking the evolution of potential pandemic strains, as they might be
circulating quite widely before they are detected for the first time.

Clade analysis of the geographical subsets

From the global phylogenetic tree three interesting geographical subsets were identified;
the tree for Korea because it is homogeneous to clade A, and the trees from Iran and Israel
as they show successive waves of sequence evolution in clade B. The main Chinese clade
has many interesting features but these are difficult if not impossible to untangle and
coherently explain because of the limitations of sampling within the data, where there are
only small numbers from some regions and then large numbers from others.

Both the protein and nucleotide phylogenetic trees for Korea are shown in Fig. 6. There
is a fair agreement between the two trees but once again this emphasizes the problems
of sampling and the possible effects this can have on phylogenetic reconstruction. From
the nucleotide tree it is tempting to define a clade that contains only wild birds and
that suddenly developed in 2005, but this clade is not present in the protein tree, and
so it cannot be definitively assigned. There are also some differences in the topology
surrounding the swine flu case (marked with a red diamond). Previous studies have
investigated the effect of vaccination, which initially suppressed the number of cases that
were seen in 2008 before an increase in the number of cases in 2009 (Park et al., 2011).
From the trees presented here the period following the introduction of vaccination does
correspond to a period of diversification. All of the Korean sequences are from clade A,
which is the longest circulating lineage and previously it had not shown a wide diversity of
sequences. Vaccination is likely to have had an impact on hemagglutinin evolution, which
can be seen in the 2009-2010 clade (Lee &~ Song, 2013).

The protein and nucleotide phylogenetic trees for Israel and Iran are shown in Fig. 7.
In the Iranian tree Clade 1 are duck sequences from Clade A. This is why this clade has the
deepest origin within the tree, but it does not contain the earliest sequences. This shows
that wild birds can introduce other lineages to a geographical region where another lineage
currently dominates.

Clades 2 and 5 in the Iranian tree are the oldest clade from the G1-like lineage in these
regions. The G1 lineage appears to have originated in Hong Kong in 1997. The initial G1
clade (Clade 2) becomes extinct in 2003 in the nucleotide tree and in 2005 in the protein
tree indicating a selective sweep. This event coincides with the loss of sister Clades 1 and 2
in the Israeli protein tree and Clade 1 in the nucleotide tree. These clades were assigned to
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Figure 7 The Iranian and Israeli nucleotide and amino acid phylogenetic trees. (A) The Iranian nucleotide phylogenetic tree, (B) The Iranian
amino acid phylogenetic tree, (C) The Israeli nucleotide phylogenetic tree, (D) The Israeli amino acid phylogenetic tree.

cluster A by Fusaro et al. (2011) and Monne et al. (2013). The second G1-like clade (clade 5,
labelled sub-clade 725 in the global phylogenetic tree, Fusaro/Monne Cluster D) continued
to be found in Iran until 2009. This has no equivalent in the Israeli trees, which seem to
have inherited a G1-like lineage which originated in the Indian sub-continent and then
circulated in the Arabian peninsular (see the global phylogenetic tree, Fig. S1 and Fig. 3,
Fusaro and Monne cluster B) before being found in Israel in 2006/2007 (clade 3 in the
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Figure 8 The qual nucleotide and amino acid phylogenetic trees. (A) The nucleotide phylogenetic tree, (B) The amino acid phylogenetic tree.
Numbers on the internal branches are the bootstrap values.

nucleotide and protein trees) and in Iran in 2009 (clade 4 in the protein and nucleotide

trees). A recent paper has shown that there have in fact been several introductions of
HIN2 to Israel from Jordan, and the Arabian Peninsula (Davidson et al., 2014). This newly
introduced G1-like sub-lineage seems to have had a selective advantage over the existing

viral G1-like sub-lineages but this can only be confirmed by future sampling. Subsequently

this new sub-lineage has also spread to Egypt from Israel.

Clade analysis of the host specific subsets

The interesting host species subsets are those for ducks, quail and swine. Ducks are

important as a possible carrier of the virus between geographical regions and in acting

as a reservoir species. Quail have also been associated with acting as a host to allow

re-assortment and viral evolution. Finally swine are important because of the over-lapping

glycosylation site specificity of swine and human viruses, which suggests that they may act

as an intermediate for transmission to humans (Guo et al., 2005).

There are problems in interpreting the quail trees because of the absence of the Shantou

sequences from the nucleotide tree because of partial sequencing (Fig. 8). Shantou was the

main geographical location for the outbreak of HON2 in quail between 2000 and 2005 (Xu
et al., 2007a; Xu et al., 2007b). Live quail were banned from Chinese wet markets after a
study had shown the link to the virus. In the literature it was found that by 2003 this had
resulted in the G1-like lineage disappearing from China but the data here show that it was

still present in quail in the Shantou region until 2005 (Choi et al., 2004). The trees show
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that quail are hosts for all of the main lineages clade A, clade B (G1-like lineage) and the
main Chinese clade. This would support the theory that quail have been the host species
responsible for the diversification of the HON2 sub-type, especially given that the original
sequence of G-like lineage that is the prototype sequence for clade B was originally found in
a Hong Kong quail (Hossain, Hickman ¢ Perez, 2008). This also fits with the epochal model
of viral evolution proposed by Wagner (2008). There are periods of neutral drift, which are
punctuated by selection events. Here the selection event is the formation of a new lineage
within a different host species after a long period of neutral drift within clade A.

Like quail ducks provide a host for the clade A and main Chinese clade viral lineages
(Fig. 9). There is only a single example of a clade B sequence in ducks, and so they might
not be very effective carriers of this virus or this might be explained by their geographical
exposure to that lineage (Perez et al., 2003). Ducks are of concern as a host species as they
can contribute to the spread of this lineage over a wider geographical region. In the global
phylogenetic tree sequences from ducks are often found clustered with those from quail
showing that there is frequent transfer between the two hosts.

Most of the swine cases have been within the main Chinese clade of sequences (Fig. 10).
There is a single sequence from Korea in 2004 that belongs to clade A. This is important in
guiding how we monitor disease outbreaks because it shows that the most geographically
widely distributed clade can also produce infection in pigs. The swine flu epidemic of
HINT1 originated in Mexico whereas China had been the main focus of surveillance,
because of the frequency and previous circulation of the virus. This is also true of
HO9N2 monitoring which is focused on Southeast Asia, but shows that more widespread
monitoring is important in the early detection of pandemics.

There is no obvious geographical or temporal pattern in infection in pigs and there are
multiple transmissions between birds and pigs that produce a tree with many different
sub-clades usually with only a small number of members. This is consistent with there
not being a widespread circulation of the virus within pigs, which would give a larger
homogeneous cluster of swine viruses from different times and locations due to pig to
pig transmission. Previously five amino acids changes had been identified as being swine
specific, but none of these were conserved within the swine sequences or even within a
single swine clade (Xu et al., 2004). There are a few cases of the S145N mutation that has
been identified to change the antibody epitope but this again is sporadic (Ping et al., 2008).

Identifying the amino acid changes responsible for clade
formation
The X-ray crystal structures are available for the H9 hemagglutinin and so it is possible to

map the amino acid changes responsible for differentiating between the different clades
onto the structure (Ha et al., 2001; Ha et al., 2002). The region between amino acids 128
and 275 makes up the receptor subdomain. This domain is responsible for binding to the
cellular membrane as part of viral invasion. The stem domain is made up of the first 60
amino acids of the N-terminus and the final 275 amino acids in the C-terminus of which
the last 221 are cleaved by proteolysis of the precursor protein at a conserved arginine to
produce a second peptide chain. In between these domains is the remains of a catalytic
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Figure 9 The duck nucleotide phylogenetic tree. Numbers on the internal branches are the bootstrap values.

domain—the vestigial enzyme domain (Ha et al., 2002). The amino acids that are specific
to the four most distinct clades are given in Table 1.

The presence of four key amino acids has been shown to be essential for droplet
transmission of the virus H183, A189, E190 and 1.226 that correspond to residues H191,
A197,E198, and L234 in the H9 numbering (Sorrell et al., 2009).

There are 17 amino acids that distinguish between Clade A and the consensus sequence,
only three of these are in the receptor domain and so the majority are in the stem domains.
Three mutations are in the enzymatic domain of which the most significant of which is
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Figure 10 The swine amino acid phylogenetic tree.

the replacement of a serine at residue 127 with an asparagine as this is on the boundary
of the domain and this creates another potential glycosylation site. The receptor domain
changes are Q164H, R180E and T206A. Of these the replacement of the basic arginine
group by an acidic glutamic acid is the most interesting, because of the change in polarity,
none of the amino acid changes affected either the glycosylation sites or altered the residues
that were identified as key to viral droplet transmission. Only T8A had been previously
identified as an important change when it was shown to be involved in host specificity
(Perez et al., 2003).

There are 26 amino acid changes that distinguish Clade B. Eleven of these changes can be
found in the receptor subdomain. Many of the changes are between leucine, isoleucine and
valine. These are conservative changes that preserve the hydrophobicity of the amino acid
but change the steric interactions. Another significant proportion of the changes is substi-
tutions to threonine from serine or valine. Three of the serine to threonine changes occur
in the receptor domain and this might reflect an altered binding affinity for a larger binding
partner. Position A168 had been identified previously as under positive selection (Fusaro et
al., 2011). This is supported by the mutation to leucine in this clade. Of the key amino acid
changes required for droplet infection only the N191H mutation is clade specific.

The amino acid changes responsible for differentiating between clades gives some
support to previous studies that have tried to identify residues that are under selection
(Fusaro et al., 2011). However most of the clade specific changes have not been previously
identified in the literature on the evolution of antigenicity (Kaverin et al., 2004; Skehel ¢
Wiley, 2000). The amino acids responsible for glycosylation are conserved throughout the
phylogenetic trees, although some of the amino acid changes introduce new asparagine
residues, which could be new sites for glycosylation (Guo et al., 2000; Zhang et al., 2004).
There are a very large number of sequences with the L234 substitution required for droplet
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Table 1 The amino acid differences between clades A and B with respect to the main Chinese
clade. Numbering is for the complete H9 hemagglutinin protein. Changes are from the conserved
sequence (main Chinese clade) to the clade specific sequence.

Clade A Clade B
V4T V3—>T
T8 — A V15— Tor A
T38 — 1 N40 — T
A47 —> T L107 - T
179 -V S121 > T
R92 — K S143— T
L122 - F S147 — T
S127 — N S$158 —- N
Ql64 — H N167 — G
R180 — E Al68 — L
T206 — A M187 - V
R335 - A N191 - H
S337 — D T204 — I
K381 — E R205 - N
V394 — 1 1217 - L
K473 —- N D239 - N
N496 — D R294 — K
T299 — S
V306 — 1
N313 > T
V318 — 1
V333 —> 1
S353— P
1429 - V
V469 - M
1537 - L

infection but these are not specific to any of the major clades and this shows that the
mutation has arisen multiple times.

CONCLUSIONS

The sequence databases are growing at a hyperbolic rate, and with next generation
sequencing, this level of growth is likely to continue for the foreseeable future. There are
two challenges for dealing with this data. The first is computational that requires improved
algorithms and implementations especially as we are moving to more computationally
intensive methods of analysis. The second is the quality of the data collection itself.
Currently data collection is not systematic and this seriously affects the reliability of the
models that can be built. Sampling is badly skewed to certain geographical locations, China
being a prime example, while others are ignored (Africa and South America). Surveillance
of wild birds is particularly problematic. Where there have been international efforts
such as in the European Union study of the spread of H5N1 in wild birds, even this was
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incomplete with no data from Spain and Eastern Europe, and only partial data for France
and Germany (Hesterberg et al., 2009).

There are also problems with partial and truncated sequences, as these often have to be
excluded from analysis. This is becoming less of a problem as sequencing methods become
cheaper and so complete sequences become more widely available.

Another area where there needs to be a significant improvement is in the quality of
the sequence annotations in the databases. For effective phylogeographic analysis it is
important that future data should be annotated with as much geographic data as is
possible, this must include GPS coordinates and further GIS (geographic information
system) information to include habitat and urbanisation measurements would be ideal
(Scotch et al., 2011; Yasué et al., 2006).

In this paper there are clearly three different principal clades; Clade A—Wisconsin like,
Clade B—G1-like and the Main Chinese Cluster—Y280-like, but it is not clear when a
new lineage has arisen and when they are no longer “like” the prototype sequences. At the
sub-lineage level the assignment of cluster and clades strongly depends on the sampling of
the sequences and this has produced some conflicts between different assignments in the
literature. Geography is a much stronger determinant of lineage rather than the avian host,
which seems to provide a much weaker barrier to spread of the virus. However there is a
definite barrier between bird species and pigs as hosts.

The clade analysis has provided insight into the functional and structural evolution of
the protein. There is only a limited overlap between the residues identified in this study
as important in clade differentiation and those identified as significant in the existing
literature. There is therefore a need for further investigation of the functionality of these
newly identified amino acid changes.
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