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Sudden unexpected death in epilepsy (SUDEP) is a leading cause of premature death in patients with epilepsy. One hypothesis

proposes that sudden death is mediated by post-ictal central respiratory depression, which could relate to underlying pathology in

key respiratory nuclei and/or their neuromodulators. Our aim was to investigate neuronal populations in the ventrolateral medulla

(which includes the putative human pre-Bötzinger complex) and the medullary raphe. Forty brainstems were studied comprising

four groups: 14 SUDEP, six epilepsy controls, seven Dravet syndrome cases and 13 non-epilepsy controls. Serial sections through

the medulla (from obex 1 to 10 mm) were stained for Nissl, somatostatin, neurokinin 1 receptor (for pre-Bötzinger complex

neurons) and galanin, tryptophan hydroxylase and serotonin transporter (neuromodulatory systems). Using stereology total neur-

onal number and densities, with respect to obex level, were measured. Whole slide scanning image analysis was used to quantify

immunolabelling indices as well as co-localization between markers. Significant findings included reduction in somatostatin neurons

and neurokinin 1 receptor labelling in the ventrolateral medulla in sudden death in epilepsy compared to controls (P5 0.05).

Galanin and tryptophan hydroxylase labelling was also reduced in sudden death cases and more significantly in the ventrolateral

medulla region than the raphe (P50.005 and P5 0.05). With serotonin transporter, reduction in labelling in cases of sudden

death in epilepsy was noted only in the raphe (P40.01); however, co-localization with tryptophan hydroxylase was significantly

reduced in the ventrolateral medulla. Epilepsy controls and cases with Dravet syndrome showed less significant alterations with

differences from non-epilepsy controls noted only for somatostatin in the ventrolateral medulla (P5 0.05). Variations in labelling

with respect to obex level were noted of potential relevance to the rostro-caudal organization of respiratory nuclear groups,

including tryptophan hydroxylase, where the greatest statistical difference noted between all epilepsy cases and controls was at

obex 9–10 mm (P = 0.034), the putative level of the pre-Bötzinger complex. Furthermore, there was evidence for variation with

duration of epilepsy for somatostatin and neurokinin 1 receptor. Our findings suggest alteration to neuronal populations in the

medulla in SUDEP with evidence for greater reduction in neuromodulatory neuropeptidergic and mono-aminergic systems, includ-

ing for galanin, and serotonin. Other nuclei need to be investigated to evaluate if this is part of more widespread brainstem

pathology. Our findings could be a result of previous seizures and may represent a pathological risk factor for SUDEP through

impaired respiratory homeostasis during a seizure.
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Introduction
Sudden and unexpected death in epilepsy (SUDEP) is the

leading cause of death in young adults with intractable

epilepsy (Dlouhy et al., 2016). Ictal respiratory dysfunction

occurs in a subset of patients with epilepsy (Kennedy and

Seyal, 2015) and has been observed as a terminal event in

witnessed SUDEP cases on epilepsy monitoring units

(Ryvlin et al., 2013). There is accumulating evidence from

clinical and experimental models that a centrally mediated

apnoea could underlie some SUDEP cases (Sowers et al.,

2013; Dlouhy et al., 2016).

Central control of respiration is through interconnected

medullary nuclear groups forming the ventral respiratory

column (Smith et al., 2013) in the ventrolateral medulla

(VLM). Largely based on findings in animal studies, these

nuclei include the pre-Bötzinger complex (pre-BötC), an es-

sential generator of inspiratory rhythm (McKay et al., 2005;

Feldman and Del Negro, 2006), comprising diverse neuronal

cell types, including pacemaker-like somatostatin (SST) and

neurokinin 1 receptor (NK1R)-positive cells, as well as glyci-

nergic and GABAergic interneurons (Stornetta et al., 2003;

Ramirez-Jarquin et al., 2012; Wei et al., 2012). The pre-BötC

is further modulated to regulate respiratory rhythm in re-

sponse to physiological and metabolic demands and during

sleep-wake cycles via higher cortical and other brainstem

nuclei (Ramirez et al., 2012; Smith et al., 2013). The latter

are regulated by peripheral and sensory inputs and chemo-

receptors and, through the serotonergic neurons of the me-

dullary raphe, provide excitatory drive in response to

hypoxia and hypercarbia (Richerson, 2004; Benarroch,

2014). Emerging data from clinical and experimental studies

implicate defective serotonergic systems in the respiratory

dysfunction and impaired arousal following seizures that

could be relevant to SUDEP (Richerson, 2013; Sowers

et al., 2013; Zhan et al., 2016). In sudden infant death syn-

drome (SIDS), which has clinical parallels with SUDEP, alter-

ations to medullary serotonergic neuronal populations have

been shown (Paterson et al., 2006; Kinney et al., 2009).

In an MRI study of SUDEP, observed volume loss in the

medulla was proposed to be secondary to sustained seiz-

ure propagation in this region and relevant to ictal auto-

nomic disturbances in SUDEP (Mueller et al., 2014).

Spreading depolarizations in the dorsal medulla

following seizures mediate cardio-respiratory arrest in

mouse SUDEP models (Aiba and Noebels, 2015). Previous

post-mortem studies in neurodegenerative conditions such as

multiple system atrophy and Parkinson’s disease, with asso-

ciated sleep-related respiratory disorders and sudden death,

show pathology in both the pre-BötC and the medullary

raphe (Tada et al., 2009; Schwarzacher et al., 2011; Presti

et al., 2014), but these regions remain unexplored in SUDEP.

We hypothesized that pathological changes in brainstem

respiratory nuclei could occur in SUDEP and our aim was

to study the VLM region, which encloses the putative

human homologue of the pre-BötC nucleus (Tada et al.,

2009; Schwarzacher et al., 2011; Presti et al., 2014) and

medullary raphe in a series of SUDEP post-mortem cases

compared with control groups.

Materials and methods

Case selection

Brainstems from 40 post-mortem cases were included in this
study. Tissue from all cases was retained with era-appropriate
consent. Cases included:

(i) Fourteen SUDEP from the Epilepsy Society Brain and Tissue
Bank (ESBTB) at UCL (collected between 2010 and 2015)
and from Brain UK via the pathology department at
Derriford Hospital, Plymouth (between 2007 and 2012).
These were further categorized into nine definite SUDEP
(complete and negative autopsy including toxicology), the
remaining five being probable or possible SUDEP (incom-
plete autopsy examination or competing cause of death
identified) (Nashef et al., 2012);

(ii) Seven cases with Dravet syndrome obtained from ESBTB
and the University of Melbourne Australia [as previously
reported (Catarino et al., 2011), between 1992 and 2010].
This group also included three SUDEP cases (two of
which were definite SUDEP);

(iii) Thirteen non-epilepsy controls were obtained through the
MRC Sudden Death Brain Bank, Edinburgh and ESBTB (be-
tween 2008 and 2015). These included 10 cases with sudden
death (non-neurological, non-epilepsy sudden death controls);

(iv) Six epilepsy controls without an epilepsy-related death
(1999–2015). The clinical and neuropathology records,
including epilepsy and drug history, chronicity, circum-
stances of death and main neuropathology findings are
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detailed in Supplementary Table 1 and summarized in
Table 1. Of note, in all epilepsy groups there were
cases with onset of seizures in the last 2 years of life
(3/14 in SUDEP, 1/7 in Dravet syndrome and 3/6 in epi-
lepsy controls) as well as cases with epilepsy duration of
410 years (8/14 in SUDEP, 5/7 in Dravet syndrome and
3/6 in epilepsy controls).

Tissue preparation

For all 40 cases, a single 5-mm thick medulla block was se-
lected. Where available, blocks were selected from the caudal
medulla (axial level between obex 0 and 12 mm); in many cases
only one block of medulla was available for use. In seven cases,
only hemi-brainstems were used as the brainstem had been
divided sagittally as part of a protocol for 9.4 T MRI brainstem
imaging (Patodia et al., in preparation) but all these cases
included the entire midline raphe nuclei. Serial sections were
cut through the block at 20-mm thickness using the Tissue-Tek
AutoSection automated microtome (Sakura Finetek) obtaining
150–200 sections per case. Every 10th section (equivalent to
�200 mm steps) was stained for cresyl violet and obex levels
were confirmed independently by two observers (M.T., S.P.)
using a standard atlas (Paxinos and Huang, 1995). A region
spanning 10 consecutive cresyl violet levels (equivalent to
2 mm rostro-caudally) in each case was selected for further quan-
titative analysis, closest to the putative location of the pre-BötC
as based on human anatomical studies (Schwarzacher et al.,
2011). The mean mid-obex level for all cases was 6.5 mm
(range 2–13 mm) (Table 1) and there was no statistical difference
in mean mid-obex levels between the groups.

Immunohistochemistry and regions
of interest

Further adjacent sets of 10 interval sections, 200 mm apart,
were stained for SST, NK1R, TPH2 and serotonin transporter

(SERT). Single sections from the mid-obex region or each case
were double labelled for NK1R/SST and TPH2/SERT and two
sections from either end of the obex region under study were
stained for galanin. Immunohistochemistry and double label-
ling immunofluorescence used standard staining protocols,
detailed in the Supplementary material and in Table 2. Two
regions of interest were selected for quantitation: (i) the VLM
quadrant was outlined geometrically on each section using co-
ordinates from clearly-defined anatomical landmarks of the
inferior olive nuclei and the central recess of the fourth ven-
tricle (Fig. 1A). We considered this essential as the pre-BötC
does not have well defined boundaries compared to other
brainstem nuclei (Schwarzacher et al., 2011) and this method
therefore ensured comparable capture in each case of the re-
ticular formation, including intermediate and lateral reticular
nuclei (Paxinos and Huang, 1995). (ii) The medullary raphe
region of interest extended from the fourth ventricle to the
olive ventrally and abutted the midline (Fig. 1A); this ensured
inclusion of serotonergic neurons in both raphe obscurus and
raphe pallidus (Benarroch, 2014).

Quantitative methods and image
analysis

All sections were analysed quantitatively and image analysis
appropriate for the staining pattern was carried out.

Stereology

In cresyl violet and SST sections, total neuronal number and
density were measured using the optical fractionator method
with a Zeiss microscope (Axioskop 2 mot Plus) 63� objective
oil emersion lens (aperture 1.4) and StereoInvestigator� soft-
ware (Microbrightfield Biosciences). A sampling fraction of
5% was selected for each region of interest for cresyl violet
and SST, using a counting box (100 � 100 mm and depth
10 mm) to keep the coefficient of variation low (Gunderson
P5 0.01). Total neuronal counts in the whole rostro-caudal

Table 1 Summary of clinical details for the 40 cases in the four main groups studied

Group n Gender

M/F

Mean age onset

of epilepsy/mean

duration (years)

Mean age of

death, years

(range)

Mean brain

weighta, g

(range)

Mean

mid obex

level, mm

(range)

PMI/FT

mean

(days)

SUDEP

All (non-DS SUDEP) 14 8/6 13.6 /19 35.4 (18–53) 1399 (1310–1623) 6 (2–8) 3.2 /31

D-SUDEP 9 4/5 13.1 34.6 1365 7.3

P-SUDEP 5 4/1 14.6 36.8 1459 6.5

Dravet syndrome

ALL 7 4/3 0.8/18 18.7 (1–47) 1189 (1078–1340) 7 (4–13) 1.2/48

P-SUDEP 1 2/0 0.78 24 1151 10.5

D-SUDEP 2 1/0 0.6 11 1300 4

Non-epilepsy controls

All 13 10/3 NA 41.5 (23–80) 1469 (1374–1650) 6.5 (3.5–11.5) 3.4/15

NESD 10 8/2 NA 38.7 1469 6.8

Epilepsy controls 6 5/1 27/43 67 (47–84) 1307 (1185–1490) 8 (4–10.5) 2.3/50

Detailed case information is provided in Supplementary Table 1. From these four groups there were further subdivisions for definite SUDEP (D-SUDEP), possible or probable SUDEP

(P-SUDEP), and non-epilepsy sudden deaths (NESD).
aMean brain weights are given for the fresh weights; where the fresh weights were not available and only fixed weights 22 g was subtracted (based on previous study of brain weights

in SUDEP) (Thom et al., 2015). There was no significant difference in post-mortem interval between SUDEP epilepsy controls and non-epilepsy control groups.

DS = Dravet syndrome; FT = fixation times; NA = not applicable; PMI = post-mortem interval.
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region of interest were estimated. In addition, neuronal densi-
ties for each section (neurons/mm3) in each region of interest
were calculated relative to that obex level. In TPH2 sections, in
view of the low density of neurons in the VLM, a modified
method was used. Scanned images of the entire VLM region of
interest were imported into ImageJ (NIH, USA); all positive
cells were manually tagged and the cell density/area (mm2)
calculated.

Whole-slide scanning image analysis

Immunostained slides were scanned with a Leica SCN400F
digital slide scanner (Leica Microsystems) at 40� magnifica-
tion and analysed with Definiens Tissue Studio software 3.6
(Definiens AG, Munich, Germany) using the same region of
interest on both sides (Fig. 1A) and taking care to exclude any
artefacts or the edges of olivary nuclei. The intensity threshold
for positive labelling was set separately for each immunomar-
ker (Supplementary Fig. 1A); the total area of staining was
evaluated and expressed as a labelling index (percentage area
stained) for each region of interest, averaged over both left and
right sides for entire medulla sections. For SST, NK1R and
galanin labelling, a second analysis step was used in view of
the complex pattern of neuronal and fibre network labelling,
providing two measures per case: labelling index (evaluating
all thresholded positive pixels) and ‘smoothed’ labelling index
(utilizing a Gaussian smoothing filter) (Supplementary Fig. 1B).
As for stereology, individual values for each section with re-
spect to the obex level were recorded in addition to the overall
value. Repeatability of measurements was tested with good
agreements.

Double labelling analysis

NK1R/SST and TPH2/SERT labelled slides were visualized
using a confocal scanning laser microscopy (LSM710; Zeiss)
and co-localization quantified with a Zeiss Axio Imager Z2
fluorescent microscope (Supplementary material).

Statistical analysis and clinicopathol-
ogy correlations

Statistical analysis was carried out using SPSS version 22 (IBM
corporation, CA, USA) using Mann-Whitney, Kruskall-Wallis
and Spearman’s correlations for non-parametric data. Data
from the entire rostro-caudal region of interest were compared
between groups (SUDEP, definite SUDEP, Dravet syndrome,

epilepsy controls, non-epilepsy controls and non-epilepsy
sudden death controls) for statistical differences with P-values
of 50.05. In addition, differences between groups with respect
to obex levels (using values averaged over five increments: obex
1–2, 3–4, 5–6, 7–8 and 9–10 mm) were evaluated to assess
patterns and variations across the rostro-caudal medulla). For
graphical representation of data, Graphpad Prism 7 (University
of California, San Diego) was used.

Results

Nissl staining

Neuronal cells of varying size, morphology and lipofuscin

content were present in the VLM in cresyl violet stained sec-

tions in all cases and included in the stereological analysis (Fig.

1B). Total neuronal numbers were not statistically significant

differences between groups (Table 3). However, analysis of

mean neuronal densities at 2 mm obex intervals showed sig-

nificantly lower neuronal densities at obex 3–4 mm in all

SUDEP cases compared with non-epilepsy controls

(P = 0.008) (Fig. 1C). There were no significant differences

at other obex levels or between other groups (Fig. 1C).

Somatostatin

Medium-to-large neurons were labelled in the medulla with

SST, being mainly dispersed through the reticular forma-

tion (Bouras et al., 1987); there was no qualitative differ-

ence in labelling patterns between groups. In addition,

networks of SST-positive varicose or beaded fibres and

terminals were prominent in the lateral reticular region

(Bouras et al., 1987); these were visualized as a fan-like

band of labelling at low power extending from the fourth

ventricle (Fig. 1D). Distinct neuronal types were noted with

SST in the VLM and were analysed separately: (i) neurons

with intense SST cytoplasmic labelling (SST-SOMA + )

(Fig. 1E and F); (ii) neurons surrounded by a peripheral

rim of synaptic labelling (SST-PERIPH + ) (Fig. 1G and

H); and (iii) SST-negative neurons (Fig. 1E and F,

arrows). In addition, whole-slide scanning image analysis

(WSS) was used to quantify the overall labelling of cells

Table 2 Immunohistochemistry panel

Immunomarker Clone and source Dilution Region of

interest

Quantitative

method

Cresyl violet/Nissl - - VLM Stereology

Somatostatin (SST) Rb H-106, Santacruz Biotechnology 1:500 VLM Stereology, WSS

Neurokinin 1 receptor (NK1R) S8305, Sigma Aldrich 1:5000 VLM WSS

Galanin sc-166431, Santacruz Biotechnology 1:1000 VLM, MR WSS

Tryptophan hydroxylase (TPH2) AB121013, Abcam 1:1500; goat polyclonal VLM, MR Stereology, WSS

Serotonin transporter (SERT or 5HTT) MAB5618, Millipore 1:2500; mouse monoclonal VLM, MR WSS

TPH2/SERT MAB5618, Millipore 1:500/1:2000 VLM, MR IF, Zen

NK1R/SST MAB5618, Millipore 1:500/1:2000 VLM Qualitative evaluation only

These were used to assess the pre-Bötzinger region and medullary raphe, and the quantitative methods used to assess each marker is indicated. IF = immunofluorescence co-

localization; MR = medullary raphe; WSS = whole-slide scanning image analysis.
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Figure 1 Stereology analysis of neurons in VLM. (A) Cresyl violet (CV). The regions of interest were delineated using the image analysis systems

by drawing a rectangle in one-half of the brainstem (dashed red lines) using anatomical boundaries. The midline was first drawn and a parallel line at the

lateral edge of the inferior olive nucleus. Perpendicular lines to these were drawn through the ventral recess of the fourth ventricle and the ventromedial

part of the olive. The outer, ventral quadrant of this region (shown in yellow) became VLM, with the ventral aspect extended along the contour of the

olive. Care was taken to exclude the olive nucleus from all quantitative analysis. The medial raphe (MR) region of interest was the medial quarter of the

main rectangle (shown in orange), abutting the midline. This is shown for a hemi-brainstem, which was used in stereology. For whole slide scanning

analysis in whole brainstem sections, identical region of interest were constructed on the opposite side and mean values over the two sides calculated.

(B) Cresyl violet-stained neurons in the VLM/reticular formation (top); in the bottom image a neuron distended with lipofuscin is shown. (C) Line graphs

of neuronal densities on cresyl violet stain in the VLM plotted as mean values (error bars are standard deviations) in SUDEP and control groups relative

to the obex level (x-axis) at 2-mm intervals from 1 to 10 mm. There were significant differences between SUDEP and controls at obex 3–4 mm (asterisk).

(D) SST labelling in a hemi-medulla section with a band of staining fanning out from ventricle to lateral reticular regions (arrow); note also labelling in the

solitary nuclei. (E and F) Examples of patterns of SST labelling are shown with SST-SOMA+ neurons and diffuse cytoplasmic positivity (arrows indicate

unstained neurons); in G and H. SST-PERIPH+ neurons with peripheral synaptic like beads of positivity but negative cytoplasm are shown. (I) Bar graph

representing the fraction of total cells in VLM labelled with SST showing SST-SOMA+ and SST-PERIPH+ patterns in eight groups. SST-SOMA+ fractions

were not significantly different between groups but significantly lower SST-PERIPH+ cells were noted in SUDEP (Error bars represent standard deviations

for the groups; see Table 3 for significant differences in mean neuronal numbers (and standard deviations) between groups. (J) Line graph of variation of SST-

SOMA+ neurons with obex level in SUDEP and non-epilepsy sudden death controls expressed as ratio of total neuronal densities (error bars represent

standard deviations for the groups); the relative number of labelled cells increased with more rostral obex levels and the black dashed line shows values for

all cases which correlated with higher obex levels (P = 0.014). (K) Line graph of variations of SST-PERIPH+ neurons with obex level between non epilepsy

controls, non-epilepsy sudden death, SUDEP and definite-SUDEP expressed as neuronal density acquired from stereology data (mean values and error

bars are standard deviations). The density of neurons declines for all groups with rostral obex levels but is lower in the epilepsy groups compared to the

non-epilepsy controls at all obex levels, with the most significant differences noted between definite SUDEP and non-epilepsy sudden death controls at

obex 7–8mm (*P = 0.05). Magnifications: hemi-brainstem images taken at �0.58 and photomicrographs with �40 objective lens. Scale bar in A = 1.5 mm

for A and D, and 55 mm in B and E–H. D-SUDEP = definite SUDEP; NEC = non-epilepsy controls; NESD = non-epilepsy sudden death controls.
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and fibres in the VLM. The rationale of this approach was

to distinguish SST-expressing neurons from SST synaptic

terminals and networks (that modulate neurons) in the

VLM.

SST SOMA + -labelled neurons represented from 22%

(in non-epilepsy controls) to 26% (in Dravet syndrome)

of all VLM neurons between the groups (Fig. 1I); total

neuronal counts varied between groups but without signifi-

cance (Table 3). SST-PERIPH + neurons represented from

21% (in definite SUDEP) to 31% (in non-epilepsy sudden

death controls) of all neurons (Fig. 1I); total neuronal

counts were significantly lower in SUDEP groups compared

to non-epilepsy controls and non-epilepsy sudden death

controls (P4 0.01) with less significant reductions noted

for epilepsy controls and Dravet syndrome compared to

non-epilepsy controls (Table 3 and Fig. 1I) (P5 0.05

to 0.01). There was a significant increase in the relative

proportion of SST-SOMA + neurons with higher mid-obex

level for the region of interest (P = 0.014), in keeping

with previous reports (Schwarzacher et al., 2011)

(Fig. 1J). This trend was not seen for SST-PERIPH + neu-

rons, which if anything declined in number in the rostral

obex (Fig. 1K). Further analysis of mean neuronal densities

at 2 mm obex increments did not show significant

differences for SST-SOMA + neuronal densities between

SUDEP and control groups (Fig. 1J). For SST-PERIPH + ,

lower densities were noted for all epilepsy groups

compared to non-epilepsy controls at all obex levels, with

greatest significant at obex 7–8 mm (definite SUDEP:

non-epilepsy sudden death controls) (P5 0.05) (Fig. 1K).

WSS analysis did not show significant differences in label-

ling index between groups (Table 4) or in relation to obex

level.

Neurokinin 1 receptor

NK1R labelling highlighted a zone extending from the floor

of the fourth ventricle through the reticular formation in all

groups (Fig. 2A); this corresponded on higher magnification

to a plexus of processes with a mainly peri-membranous

labelling of neurons (Fig. 2B). It was not possible to clearly

discriminate positive from negative neurons and WSS was

used for quantitative analysis rather than stereology. Lower

mean NK1R labelling index (smoothed) was noted in all

SUDEP cases compared to non-epilepsy controls (P = 0.02)

and non-epilepsy sudden death controls (P = 0.046)

(Table 4 and Supplementary Fig. 2A). There was no

correlation between the NK1R labelling index and the

Table 3 Stereology counts on the VLM quadrant

Group classification CV SST SOMA + SST PERIPH + SST NEGATIVE TPH2a

Total

neurons (SD)

Total neurons (SD)a,b Total neurons (SD)a,b Total neurons (SD)a,b Neuronal

density

(�10�6/mm2)

All SUDEP 80 530 (21 673) 17 759 (6161) 15 817 (5915) 35 834 (6782) 1.3 (0.4)

n = 17 P = 0.003 (NEC) n = 17

P = 0.01 (NESD)

n = 17

D-SUDEP 83 499 (23 124) 17 214 (5821) 14 750 (4666) 36 548 (7529) 1.4 (0.4)

n = 10 P = 0.01 (NESD) n = 10

n = 10

SUDEP (excluding

Dravet syndrome)

80 772 (22 709) 17 713 (6213) 15 424 (4325) 37 296 (5971) 1.4 (0.4)

n = 14 P = 0.003 (NEC) n = 14

n = 14

Dravet syndrome 68 567 (15 167) 17 406 (5282) 16 076 (8750) 30 319 (8403) 1.5 (0.8)

n = 6 P = 0.04 (NEC) n = 6

n = 6

EP-controls

(excluding Dravet

syndrome)

80 547 (18 647) 19 824 (3373) 18 253 (6056) 39 314 (9899) 1.4 (0.4)

n = 6 n = 6 n = 6

All epilepsy controls 76 095 (17 837) 18 687 (3883) 16 571 (6115) 37 389 (10 816) 1.7 (0.5)

n = 8 P = 0.01 (NEC) n = 8

n = 8

NEC 81 011 (17 191) 14 919 (8503) 20 677 (11 380) 31 803 (16 910) 2.1 (1.3)

n = 11 n = 11 n = 11

NESD 79 756 (19 107) 13 775 (8945) 18 988 (12 294) 28 068 (16 582) 2.0 (1.3)

n = 8 n = 8 n = 8

This is shown for the eight group categories with mean total neuronal counts (SD) for the region of interest (Fig. 1A) equivalent to 2 mm in rostro-caudal direction.

In SST sections, three neuronal cell types were counted, those with intense SST cytoplasmic labelling (SST-SOMA), neurons surrounded by a peripheral rim of synaptic labelling

(SST-PERIPH) and unlabelled neurons (Fig. 2).
an = cases available for this study.
bIn one Dravet syndrome case and two non-epilepsy sudden death cases of the study group of 40 the staining was suboptimal and data analysis not included. Statistical differences

shown in bold using the Mann-Whitney tests.

CV = cresyl violet; D-SUDEP = definite SUDEP; EP = epilepsy controls; NEC = non-epilepsy controls; NESD = non-epilepsy sudden death.
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mid-obex level of the region of interest. Further comparison

of mean labelling index in cases at 2 mm obex intervals

between groups showed lower labelling index in SUDEP

compared to non-epilepsy controls at obex 3–4 mm

(P = 0.04) (Fig. 2C).

NK1R:SST co-localization

Double labelling confirmed previous observations

(Schwarzacher et al., 2011; Wei et al., 2012) with mixed

populations of double-labelled, single-labelled cells as

well as neurons with a peripheral pattern of SST labelling

Figure 2 Whole slide scanning analysis (NK1R and galanin). (A). NK1R at low power showing diffuse staining in the reticular formation

including a band extending into the lateral regions (arrowhead). (Bi and ii) At higher magnification complex networks and neuronal positivity with

NK1R is seen as peripheral labelling around neurons. (C) NK1R line graph of the labelling index (smoothed) in relation to obex level between SUDEP,

non-epilepsy sudden death controls (NESD) and epilepsy controls (mean values and standard deviation shown as error bars): there was no clear

increase in percentage labelling with obex and lowest labelling index were noted in the SUDEP groups with significant difference between the SUDEP

and non-epilepsy controls at obex 3–4 mm (P = 0.04). (D) NKR1 and SST double labelling in the VLM in different cases showing SST-SOMA+

(arrowhead), peripheral SST and NK1+ (double arrowhead) and double-labelled cells (arrow). (E) Galanin labelling at low magnification in a SUDEP

case showing a diffuse band of labelling extending through the VLM region (arrowhead) and distinct labelling is noted around the midline raphe nuclei

(arrow; shown at higher magnification in H). (F) Galanin in the VLM labelled scattered neurons but more prominent dense networks of processes

and fibres and surrounding individual neurons (G) in the VLM was noted. (H) Similar intense patterns of galanin labelling were noted in the medullary

raphe (MR) neuronal groups. (I) Bar graphs of galanin-labelling between group in the VLM and (J) in the medullary raphe showing significant reduction in

the VLM in the SUDEP cases. Magnifications: hemi-brainstem images taken at �0.58 and photomicrographs (B, C and G) with �40 and (F and H)

�20 objective lens. Scale bar in A = 3 mm in A and D, 500 mm in H, 50 mm in B, D and G; and 100 mm in F. D-SUDEP = definite SUDEP; DS = Dravet

syndrome; EP = epilepsy controls; NEC = non-epilepsy controls.
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(Fig. 2D); consistent labelling was not achieved in all cases

and further quantitative evaluation of the series was not

carried out. However, we observed a strong correlation

between SST and NK1R labelling index on single-stained

sections (all cases P50.000, Supplementary Fig. 2B and C;

SUDEP alone P = 0.001 Supplementary Fig. 2D; epilepsy

controls P = 0.007; non-epilepsy controls P = 0.001). We

did not observe any relationship between the relative SST/

NKR1 labelling index and obex level.

Galanin

Labelling for galanin, both in the VLM and in the medul-

lary raphe regions, was prominent at low magnification in

all groups (Fig. 2E and H) mainly forming dense networks

of processes surrounding neurons, with scattered positive

neurons in the VLM (Fig. 2F) as well as some neurons

with prominent pericellular labelling (Fig. 2G). WSS ana-

lysis showed significantly lower labelling index in VLM in

SUDEP compared to non-epilepsy controls (P = 0.002; for

total and smoothed labelling index) and for definite SUDEP

compared to non-epilepsy sudden death controls

(P50.007; for total and smoothed labelling index) but

not for other groups (Fig. 2I and Table 4). In the medullary

raphe, less significant reductions in labelling index in

SUDEP compared to non-epilepsy controls (P = 0.035)

and definite SUDEP to non-epilepsy sudden death controls

were noted (P = 0.04) (Fig. 2J and Table 4). There was no

correlation between the galanin labelling index and obex

level.

Tryptophan hydroxylase

Positive neurons with TPH2 were prominent in medullary

raphe nuclei (corresponding to the raphe magnus, obscurus

and pallidus), forming dense aggregates (Fig. 3A); a similar

distribution was noted in all groups. Scattered positive cells

were also present through the reticular formation and VLM

region (Fig. 3B), in keeping with previous descriptions

(Paxinos and Huang, 1995; Tada et al., 2009; Benarroch,

2014). Immuno-labelling was primarily in the neuronal

soma, extending into proximal processes, with rarer long

traversing processes (Fig. 3C). In the VLM, occasional neu-

rons were noted with accentuated peripheral labelling

(Fig. 3C, inset). TPH2-positive neurons were also noted in

the arcuate nuclei, single cells along the sub-pial border of

the lateral medulla, and occasionally in the floor of the

fourth ventricle and near the dorsal vagal nuclei.

TPH2 cell densities varied between groups but were not

significantly different (Table 3) and there was no correl-

ation between TPH2 cell counts and obex level.

Comparison of mean TPH2 cell counts in the VLM at

2 mm obex intervals between groups were lower for the

SUDEP and epilepsy controls than non-epilepsy controls

at all levels, with statistical difference noted between all

epilepsy cases and controls at obex 9–10 mm (P = 0.034)

(Fig. 3E).

The TPH2 labelling index was consistently higher in the

medullary raphe than VLM in all groups (Table 4). The

TPH2 labelling index in the VLM was significantly lower in

SUDEP and definite SUDEP groups than non-epilepsy

Table 4 Whole slide scanning analysis in VLM and medial raphe with mean values shown for all eight groups

SST NK1R Galanin TPH2 SERT

Group

classification

VLM VLM

(smootheda)

VLM VLM

(smootheda)

VLM

(smootheda)

MR

(smootheda)

VLM MR VLM MR

All SUDEP 6.2 (1.4) 2.4 (0.9) 8 (1.7) 1.5 (0.6) 53.3 (18) 54.4 (18) 0.7 (0.7) 1.7 (2) 27.9 (14) 40.4 (13)

n = 17 n = 17 n = 17 n = 17 n = 15 n = 15 n = 17 n = 17 n = 17 n = 17

D-SUDEP 6.3 (1.7) 2.6 (1.2) 8.2 (1.8) 1.6 (0.8) 48.6 (19) 51 (20) 0.5 (0.3) 1.1 (0.9) 34.9 (13) 36.4 (9)

n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10

SUDEP

(excluding

DS)

6.2 (1.6) 2.6 (1) 7.7 (1.7) 1.6 (0.7) 49.7 (17) 52.7 (19) 0.7 (0.7) 1.6 (1.7) 38.1 (13) 39.5 (11)

n = 14 n = 14 n = 14 n = 14 n = 12 n = 12 n = 14 n = 14 n = 14 n = 14

Dravet

syndrome

6.1 (0.9) 2.1 (0.4) 8.9 (0.9) 1.3 (0.4) 60.6 (18) 56.8 (17) 1.3 (1.3) 2.4 (3.7) 41.2 (18) 47.9 (16.7)

n = 7 n = 7 n = 5 n = 5 n = 6 n = 6 n = 7 n = 7 n = 7 n = 7

EP-controls

(excluding

DS)

5.2 (0.8) 2.1 (0.5) 7.7 (0.6) 1.8 (0.4) 53.2 (29) 50.6 (26) 1.8 (2.1) 1.9 (1.0) 40 (10) 42.7 (10)

n = 6 n = 6 n = 6 n = 6 n = 6 n = 6 n = 6 n = 6 n = 6 n = 6

All epilepsy

controls

5.6 (1.1) 2.3 (0.5) 7.9 (0.6) 1.7 (0.4) 56.5 (25.6) 54.4 (23) 1.5 (1.9) 1.7 (0.9) 42 (12) 45.3 (10.8)

n = 8 n = 8 n = 8 n = 8 n = 8 n = 8 n = 8 n = 8 n = 8 n = 8

NEC 5.7 (0.9) 2.7 (1) 7.7 (2) 2.2 (1) 68.9 (9.5) 67.3 (8.7) 2.9 (3.4) 5.7 (7.8) 43.5 (20) 52.8 (11)

n = 12 n = 12 n = 13 n = 13 n = 10 n = 10 n = 12 n = 12 n = 13 N = 11

NESD 5.5 (0.8) 2.3 (0.3) 7.2 (2) 1.9 (0.5) 67.4 (8.7) 65.6 (7) 2.0 (1.1) 3.5 (2.1) 42 (23) 51.9 (12)

n = 10 n = 10 n = 10 n = 10 n = 9 n = 9 n = 9 n = 9 n = 10 n = 8

All obex levels are included in this analysis. All values are shown as labelling index [shown as percentage of area with immunostaining (i.e. range 0–100)].

n = the number of cases studied in each group with each marker (in occasional cases with each marker the section staining failed quality control).
a‘Smoothed’ data refers to additional Gaussian filters used on Definiens image analysis (see ‘Materials and methods’ section); for Galanin only the smoothed data is shown but both

total and smoothed data showed significant differences between SUDEP and controls (see ‘Results’ section). Significant results highlighted in bold between SUDEP and controls

(see ‘Results’ section). See also Supplementary Fig. 1 for graphs. Values in bold represent data with significant differences between SUDEP and control groups.

DS = Dravet syndrome; EP = epilepsy controls; MR = medial raphe; NEC = non-epilepsy controls; NESD = non-epilepsy sudden death controls.
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control groups (both non-epilepsy controls and non-epi-

lepsy sudden death controls) (P5 0.005); no significant

differences were noted between Dravet syndrome and epi-

lepsy controls compared to non-epilepsy control groups

(Table 4 and Fig. 3D). For the medullary raphe, a similar

reduction was noted in SUDEP groups compared to non-

epilepsy controls but with less statistical significance than

the VLM (P50.01) (Table 4). There was a positive

correlation between the labelling index in the medullary

raphe and higher obex level (P = 0.01) but not for VLM;

the higher labelling index in the medullary raphe compared

to VLM was most apparent between obex 3 mm to 10 mm

(Fig. 3F). Further comparison of mean labelling index at

2 mm obex intervals between the groups showed lower

labelling index in SUDEP (and definite SUDEP) than non-

epilepsy controls (and non-epilepsy sudden death controls)

with greatest significance observed in the VLM at obex

3–4 mm and 7–8 mm (P50.05) (Fig. 3F).

Serotonin transporter

SERT immunolabelling in both the medullary raphe and

VLM region consisted of a dense plexus, mainly surrounding

neuronal soma and dendrites, although distinct cytoplasmic

labelling of some neurons was also noted and observed in all

groups (Fig. 4A and B). SERT labelling index was overall

higher in the medullary raphe than VLM across all groups

(Table 4). Lower SERT labelling index in the medullary

raphe was noted in SUDEP than in non-epilepsy controls

(P = 0.014) and in definite SUDEP than in non-epilepsy

sudden death controls (P = 0.016) (Fig. 4C). There were no

significant differences between the other groups in the me-

dullary raphe or in the VLM for any groups. There was no

significant correlation of SERT labelling index with obex

level. Comparisons of the labelling index between groups

at 2 mm obex intervals showed lower values in SUDEP,

with greatest significance in the medullary raphe between

SUDEP and non-epilepsy controls at obex 7–8 mm

(P = 0.024) and in the VLM at obex 3–4 mm (P = 0.042).

TPH2/SERT co-localization

Double labelling for SERT/TPH2 showed some regional

overlap in the distribution of labelling in the medullary

raphe and VLM observed in all cases. SERT showed more

extensive networks around processes and peripheral labelling

of TPH2-positive as well as around unlabelled cells (Fig. 4D

and F). In addition, several neurons in these regions showed

cytoplasmic double labelling (Fig. 4D and E). Quantitative

Figure 3 Serotonergic neurons. (A) Tryptophan hydroxylase (TPH2) labelling in the median raphe showing distinct neuronal labelling and

processes. (B) In the VLM, reduced density of neurons were noted (inset cluster of neurons in the floor of the fourth ventricle were occasionally

also noted). (C) TPH2-positive neurons and coarse dendrites in VLM with occasional fine axon crossing in the background (arrow). Inset: TPH2

positive neurons in VLM with more peripheral labelling pattern was occasionally noted. (D) Bar chart showing the differences in labelling index

between the groups in the VLM, which was significantly lower in SUDEP groups than non-epilepsy controls. (E) Line graph of mean TPH2 cell

counts between groups (mean values and standard deviation show as error bars) in the VLM with obex intervals were lower for the SUDEP and

epilepsy controls than non-epilepsy controls (NEC) at all levels, with the greatest statistical difference noted between all epilepsy cases and

controls at obex 9–10 mm (P = 0.034). (F) Line graph of TPH2 labelling in medullary raphe and VLM (shown as dashed lines and single lines,

respectively) of mean values (and error bars representing standard deviations) with respect to obex levels for definite SUDEP and non-epilepsy

sudden death controls (NESD). A positive correlation of medullary raphe labelling index with more rostral obex levels (P = 0.01) was noted and

lower labelling index in SUDEP than NESD. Magnifications: photomicrographs with �10 (A), �20 (B) and �40 objective lenses. Scale bar in

A = 300 mm in A, 200 mm in B, and 90 mm in C.
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evaluation of the relative areas of co-localization was higher

in non-epilepsy controls than SUDEP or epilepsy controls in

both VLM and medullary raphe but were not significantly

different. Co-localization was significantly higher in medul-

lary raphe than VLM in all groups, which may merely reflect

anatomical differences in serotonergic cell populations; how-

ever, greater differences were noted between these regions for

SUDEP (P = 0.001) compared to epilepsy controls (P = 0.05)

and non-epilepsy controls (P = 0.01). There was a significant

positive correlation between co-localization and higher obex

level for all cases for the medullary raphe (P = 0.009), but

between groups significant correlations were noted only for

the SUDEP group (VLM, P = 0.006 and medullary raphe,

P5 0.000) (Supplementary Fig. 3A).

Clinical–pathology correlations

In cresyl violet sections, there was a positive correlation

between VLM neuronal density and duration of epilepsy

(P5 0.01) and a trend for higher TPH2 neuronal counts

in epilepsy patients with epilepsy duration of 410 years

compared to cases with epilepsy onset 52 years

(P4 0.05, Supplementary Fig. 3B). Higher SST and

NK1R labelling index was also noted in cases with epi-

lepsy chronicity of 410 years, particularly the epilepsy

control group (P4 0.025, Supplementary Fig. 2E and F).

There was no relationship between any quantified meas-

ures and gender. A positive association with the NK1R

labelling index and age at death was noted (P5 0.01)

and for TPH2, significant positive correlations were

noted between age at death and labelling index in both

VLM (P5 0.01) and medullary raphe (P50.005)

(Supplementary Fig. 3C and D). We did not have complete

drug histories in all cases (Supplementary Table 1), but

only one person, in the control group, had been prescribed

a selective serotonin re-uptake inhibitor (Case 27); SERT

and TPH2 values in this case were in the middle range.

There was variation in fixation times between cases col-

lected from different centres (Table 1); we did not observe

a significant correlation between labelling index or cell

Figure 4 SERT and co-localization studies. (A) SERT labelling in the medial raphe (MR) and (B) VLM showed dense synaptic plexus of

labelling mainly around neurons and processes. In addition strong cytoplasmic labelling of neuronal cells in both regions was also noted

(arrowheads). (C) Bar chart of the mean labelling indices between groups in the medullary raphe with significant differences noted between

SUDEP cases and non-epilepsy control groups. (D–F) Double labelled immunofluorescence of SERT with TPH2. There was strong regional

expression of both markers concentrating in similar areas in the VLM (D and F) and medullary raphe (E). In the VLM, labelling of SERT around

TPH2-negative neurons was evident (arrows) as well as SERT labelling at the periphery of TPH2 positive neurons (F) as well as processes

(dendrites/axons; arrowhead in D). In addition, in both medullary raphe and VLM, co-localization of labelling in the cell was noted (chevrons in

F and E). D-SUDEP = definite SUDEP; DS = Dravet syndrome; NEC = non-epilepsy controls; NESD = non-epilepsy sudden death controls.

Magnifications: photomicrographs with �40 objective for (A and B). Scale bar in A = 230 mm in A, B and D, 300 mm in E and 80 mm in F.
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counts in the VLM and fixation time or relationship with

post-mortem intervals.

Discussion
There is strong clinical and experimental evidence for cen-

trally-mediated ictal respiratory dysfunction or central

apnoea as a pathomechanism in SUDEP (Ryvlin et al.,

2013; Sowers et al., 2013; Kennedy and Seyal, 2015).

MRI studies indicate structural abnormalities in the brain-

stem autonomic regions in SUDEP although the patho-

logical basis is unknown (Mueller et al., 2014). In a

series of SUDEP post-mortem cases we have shown signifi-

cant alterations in the VLM (which includes the putative

human pre-BötC region) and, to a lesser degree, in the me-

dullary raphe regions of the medulla. These involved NK1R

and SST neuronal populations of the VLM. We also noted

significant reductions in medullary neuromodulatory sys-

tems, including serotoninergic and galaninergic networks.

There was also some evidence for an association of neuro-

pathological alterations with duration of seizures. These

findings could indicate epilepsy-mediated pathology in

medullary respiratory neuronal groups that act as a vulner-

ability factor for SUDEP.

SST/NK1R neuronal alterations in
VLM in SUDEP

NKR1 and SST neurons in the human VLM include the

putative pre-BötC, present bilaterally as an ill-defined dif-

fuse nucleus, located near the lateral reticular and nucleus

ambiguus within the intermediate reticular zone (Huang

and Paxinos, 1995). Neurons of varied sizes are seen on cre-

syl violet stain (Paxinos and Huang, 1995; Schwarzacher

et al., 2011) corresponding to the mixed excitatory and

inhibitory neurons in addition to the presumed ‘rythmo-

genic’ pacemaker subsets of NK1R/SST neurons (Bouras

et al., 1987; Stornetta et al., 2003; Schwarzacher et al.,

2011; Ikeda et al., 2017); from animal studies these

neurons form the essential circuits that coordinate and

automate inspiration (Wei et al., 2012).

We noted a reduction of SST-positive neurons in the

VLM specifically in SUDEP as well as a reduction of

NK1R labelling, which could suggest deficient inspiratory

networks. Alterations in pre-BötC NK1R and SST

neurons has been previously reported in SIDS (Lavezzi

and Matturri, 2008) and neurodegenerative diseases such

as multiple system atrophy (Schwarzacher et al., 2011) and

Parkinson’s disease associated with disordered breathing

(Presti et al., 2014). SST is an inhibitory neuromodulator

of respiration; experimental silencing of SST neurons in the

pre-BötC induces apnoea (Cui et al., 2016) and blocking of

SST receptors prevents auto-resuscitation from asphyxia

(Ramirez-Jarquin et al., 2012). Slow, selective ablation of

NK1R neurons results in apnoeic episodes that first occur

during sleep, before ataxic breathing in wakefulness

(McKay et al., 2005). This implies that significant loss of

pre-BötC neurons is required before pathological breathing

occurs, but that the first manifestations, associated with

milder loss occur during sleep (Feldman and Del Negro,

2006), which is of potential relevance to the predominance

of nocturnal SUDEP cases.

Animal studies support that there is not complete overlap

of expression of SST and NK1R in the pre-BötC: different

neuronal subsets are present that likely reflect diverging

physiological functions (Wei et al., 2012; Koshiya et al.,

2014). Furthermore, not all neurons of a single immuno-

phenotype share similar functions, for example not all

NK1R + neurons are ‘pacemaker’ cells (Ikeda et al.,

2017). NK1R + /SST-SOMA + , NK1R + /SST-PERIPH + neu-

rons (with peri-somatic SST GABAergic/inhibitory synaptic

terminals) as well as NK1R + /SST� and NK1R�/SST+ neu-

rons have been described (Wei et al., 2012), as have

neurons negative for both markers. In the rodent, it is

estimated that �15% of the 3000 pre-BötC neurons are

SST-expressing (Cui et al., 2016). These reports compare

with our findings where 20–26% of VLM neurons were

SST-SOMA + , and a further 21–31% were SST-PERIPH + ,

a proportion showed NK1R + /SST + double-labelling and a

strong correlation between overall NK1R and SST labelling

was observed. In addition to a reduction of NK1R labelling

in SUDEP, we noted specific alterations in SST neuronal

populations, with a reduction in SST-PERIPH + , but not

SST-SOMA + cells or overall SST labelling. Animal studies

supports that GABAergic SST + terminals synapsing onto

pre-BötC neurons arise from other brainstem nuclei, includ-

ing the solitary tract nucleus and parabrachial nucleus

(Epelbaum et al., 1994; Cui et al., 2016) primarily modu-

lating respiratory activity (Cui et al., 2016). Our findings

could therefore be interpreted as loss of neuromodulatory

SST input rather than a primary loss of SST VLM

pacemaker neurons, a hypothesis that requires validation

through further studies of other brainstem regions

(Supplementary Fig. 4).

Rostro-caudal distribution of NK1R
and SST

Our archival cases extended over a range of obex levels

and, although not different between the groups, it was im-

portant to factor in any pathological differences in relation

to rostro-caudal level. Our current understanding of the

connectivity and relationship of the pre-BötC with other

medullary respiratory nuclear columns is based largely on

animal data (reviewed in Smith et al., 2013; Koshiya et al.,

2014; Ikeda et al., 2017). Functional imaging studies of the

respiratory control network in humans as yet lack the spa-

tial resolution to distinguish individual nuclear groups

(Pattinson et al., 2009). In animals, there is a hierarchical

organization of nuclei in a rostro-caudal direction; the

Bötzinger complex lies rostral to the pre-BötC, exerting

expiratory and inspiratory respiratory rhythms,
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respectively. Both of these nuclei are more rostral than ven-

tral respiratory groups that coordinate output to the phre-

nic and spinal motor neurons (Smith et al., 2013; Ikeda

et al., 2017). One seminal study on the human brain loca-

lized the axial level of the human homologue of the pre-

BötC, based on the density of SST/NK1R neurons, between

obex 6 to 14 mm and maximal at obex 9 mm; this was

supported by a peak in cresyl violet neuronal densities in

this region at 9 mm (Schwarzacher et al., 2011). Our study,

which used stereology rather than cell counting, did not

show a significant variation in cresyl violet neurons in the

VLM with obex level. The likely explanation for this dif-

ference is methodological, in that the region of interest we

chose included the entire ventrolateral quadrant of the me-

dulla whereas in Schwarzacher’s study the area analysed

was limited to a region between the ambiguus nucleus,

trigeminal tract and the inferior olive (Schwarzacher

et al., 2011). Other human pathology studies of pre-BötC

neurons have either not defined their region of interest,

used different cell counting methods or the obex level

was not detailed, which precludes a meaningful comparison

of data (Lavezzi and Matturri, 2008; Tada et al., 2009;

Presti et al., 2014). Our findings of an increase in the rela-

tive proportion of SST-SOMA + cells with higher obex level

(obex 9–10 mm), particularly noted in controls groups,

does align with Schwarzacher’s localization of the human

pre-BötC (Schwarzacher et al., 2011). Furthermore, the re-

duction in SST-PERIPH + densities in SUDEP reached great-

est significance at obex 7–8 mm, which may be of

functional significance to inspiratory networks in the puta-

tive human pre-BötC region. The lower neuronal densities

on cresyl violet and NK1R labelling in the more rostral

medulla (obex 3–4 mm) in SUDEP cases could implicate

pathology in more caudal ventral respiratory groups regu-

lating motor control of respiration of equal functional im-

portance, which requires further investigation.

Galanergic medullary systems and
relevance in SUDEP

We studied the distribution of galanin, a bioactive peptide

shown to modulate brainstem serotonergic and noradrener-

gic systems in experimental models (Medel-Matus et al.,

2017) and observed reduced labelling in the SUDEP

groups. Galanergic neurons in the rodent medulla are con-

centrated in the nucleus of the solitary tract, VLM, retro-

trapezoid nucleus (Bochorishvili et al., 2012; Spirovski

et al., 2012) and locus coeruleus (Spirovski et al., 2012).

In the human brainstem we noted that galanin primarily

highlighted dense medullary networks, surrounding neu-

rons but with scattered positive neurons in the VLM, in

support of some local expression. The retrotrapezoid nu-

cleus in animals, critical for central respiratory chemorecep-

tion, has glutamatergic and galanergic neurons that synapse

with NK1R + neurons of the pre-BötC and are considered

to activate breathing (Bochorishvili et al., 2012); local

galanin-expressing NK1R + neurons in the VLM are also

activated following hypoxia and hypercapnia (Spirovski

et al., 2012). Other experimental studies have reported

that micro-injection of galanin into the pre-BötC exerts a

central respiratory depression (Abbott et al., 2009) and

galanin also mediates inhibition of serotonergic transmis-

sion in the medullary raphe (Medel-Matus et al., 2017).

Interestingly, rodent anatomical studies indicate differential

sources of galanergic input to specific medullary regions;

for example, there is no projection from the retrotrapezoid

galanergic neurons to the medullary raphe (Bochorishvili

et al., 2012). Our finding of significantly reduced galanin

labelling in the VLM, but not the medullary raphe, in

SUDEP may be of physiological and functional relevance

and warrants further in-depth investigation of human gala-

nergic brainstem systems (Supplementary Fig. 4) and any

potential influences on respiratory networks in SUDEP.

Alterations in medullary serotonergic
systems in SUDEP

The pre-BötC is further modulated by serotonergic neurons

of the medulla, some of which have chemosensory proper-

ties, provide excitatory drive in conditions of hypercapnia

(as reviewed in Richerson, 2004) and are mediated by sev-

eral 5HT receptor subtypes (Richter et al., 2003). We used

labelling for TPH2, the main synthesising enzyme of 5-HT,

and labelling for its presynaptic transporter (SERT) and

found evidence for a reduction in the medullary serotoner-

gic systems in SUDEP, with preferential loss of TPH2 label-

ling in the VLM and SERT in the medullary raphe. For

TPH2 and SERT, the changes in SUDEP were maximal

at higher obex levels (7–10 mm) near the putative axial

level of the human homologue of the pre-BötC. In addition,

co-localization of the cellular labelling of SERT and TPH2

was more significantly reduced in the VLM compared to

medullary raphe in the SUDEP group. In all, these findings

indicate loss of serotonergic neuronal synthesizing capacity,

modified cellular re-uptake mechanisms which would result

in impaired delivery of 5HT, preferentially affecting the

pre-BötC region (Supplementary Fig. 4). In SUDEP, this

may functionally translate as compromised auto-resuscita-

tive responses during post-ictal hyperpcapnia.

Dysfunction of the brainstem serotonergic system in

SUDEP has been proposed as a central mechanism, through

effects on both ictal arousal and respiration (as reviewed in

Richerson, 2013; Sowers et al., 2013; Richerson et al.,

2016). For example, administration of serotonergic agents

rescued DBA/1 mice with susceptibility to seizure-induced

respiratory arrest and death (Faingold et al., 2016) and

both decreased firing (Zhan et al., 2016) and activation

(Kommajosyula et al., 2017) of raphe neurons occurred

following seizures. In human studies, there is a considerable

literature on defective medullary serotonergic neurotrans-

mission in SIDS. Reduced 5-HT1A receptor binding in the

medulla and higher densities of 5HT neurons in the
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medullary raphe and ventral surface were shown in SIDS

but with lower 5-HTT (SERT) binding per neuron

(Paterson et al., 2006). We were unable to obtain reliable

staining for 5-HT receptors in fixed post-mortem tissues.

Possible explanations for reduced TPH2 labelling in

SUDEP, compared to the findings in SIDS, could include

methodological differences but also maturational effects. In

our series, of mainly adults, we noted increased TPH2

labelling with age. Maturation changes to 5-HT neuronal

populations have been described in infancy (Kinney et al.,

2011) and, furthermore in SIDS, the majority of TPH2

medullary neurons were small, immature types (Paterson

et al., 2006; Kinney et al., 2011) compared to the large

fusiform and multipolar neurons in our adult series. This

highlights difficulties in the direct comparison of SIDS to

SUDEP cohorts. Nevertheless, in both studies there was

evidence for regional reduction in SERT labelling on

TPH2 medullary neurons, which indicates a potentially

common mechanism of re-uptake failure. In neurodegenera-

tive post-mortem studies, reduction of serotonergic neurons

has also been observed; loss of medullary raphe TPH2

neurons has been shown in multiple system atrophy and

in Parkinson’s disease with Lewy bodies and proposed as

relevant to the sleep-related disordered breathing occurring

in these conditions (Presti et al., 2014). Furthermore, in a

study of 12 patients with multiple system atrophy, signifi-

cant reduction of TPH2 neurons was shown in both the

VLM and medullary raphe in those dying suddenly (Tada

et al., 2009).

Clinical correlations and seizure
effects on medullary neurons

The medullary neuronal changes we noted in the VLM and

medullary raphe may represent acute and chronic sequelae

of previous seizures. There are few pathology studies to

date of the brainstem in SUDEP; in a recent study from

our group, no significant differences in acute inflammatory

changes in the medulla or evidence for blood–brain barrier

dysfunction was observed in SUDEP compared to controls

in several functionally different regions (Michalak et al.,

2017). There is evidence from experimental studies that

seizures and ictal electrophysiological changes extend to

medullary respiratory nuclei (Aiba and Noebels, 2015;

Kommajosyula et al., 2017; Villiere et al., 2017) and

could conceivably induce chronic cytopathological changes,

similar to that reported in remote cortical regions, thalamus

and cerebellum in human post-mortem studies (Crooks

et al., 2000; Blanc et al., 2011; Sinjab et al., 2013).

Although we did not find definitive evidence for overall

neuronal loss in the VLM in SUDEP, we did note

increased cresyl violet and THP2 neuronal numbers with

a longer duration of seizures. Brainstem volume loss has

been observed in in vivo MRI studies (Mueller et al.,

2014); any independent effect of volume changes on rela-

tive neuronal density in SUDEP requires evaluation

through MRI-pathology correlative studies, which are

currently in progress. There was also a trend for increased

labelling with SST and NK1R in patients with epilepsy

duration of a decade or more suggesting adaptive modu-

lation of these systems can occur. There is a large

literature regarding modulation of inhibitory neurons in

temporal lobe epilepsy, including acquired channelopa-

thies (Bernard et al., 2004) and altered neuropeptidergic

systems (de Lanerolle et al., 2012) proposed to rep-

resent compensatory anti-epileptogenic mechanisms.

Nevertheless, our key finding in SUDEP was of a regional

reduction of medullary SST, NK1R as well as serotonergic

and galanergic labelling compared to controls. We specu-

late this could reflect immediate consumption following a

recent seizure prior to death (Ryvlin et al., 2013) or accu-

mulative depletion from recent poor seizure control (Chen

et al., 2017). Experimental models have shown an acute

reduction of NK1R labelled neurons in the pre-BötC in the

ventral respiratory column at 10 days following seizures

(Totola et al., 2017). Furthermore, in status epilepticus,

depletion or ‘neurochemical exhaustion’ of reserves

of neuropeptides, galanin and SST, and an increase in

neurokinin and endocytosis of receptors, is recognized

(Chen et al., 2007).

In this current study, we also included a series of Dravet

syndrome cases as this syndrome is associated with a higher

risk of SUDEP. Dravet syndrome is considered primarily a

dysfunction of GABAergic interneurons (Cheah et al.,

2012) and experimental studies do not yet support a pri-

mary respiratory dysfunction (Kalume, 2013). Although no

distinct differences were noted compared to other groups in

our study, this may relate to the small group size as well as

their genetic heterogeneity.

Limitations

In many cases only single blocks from variable obex levels

were available, taken as part of the diagnostic evaluation at

post-mortem examination. Furthermore, only selected

neurochemical markers were examined in a limited subset

of nuclei, all of which were involved in control of breath-

ing. Because of this restricted focus, we are unable to de-

finitively conclude that these abnormalities were the cause

of SUDEP, or that SUDEP causes selective changes in these

nuclei. Further studies are needed to determine whether

there are much more widespread abnormalities throughout

non-respiratory brainstem nuclei, and whether they are

involved in the pathophysiology of these deaths. Ideally

future brainstem studies in SUDEP should be conducted

in prospectively sampled and clinically/genetically stratified

SUDEP series with similar drug histories, ideally with fresh

tissue samples. We also identified that some alterations

were spatially restricted in the rostro-caudal axis; many

of the differences that were detected were relatively small

and may not be enough to cause a change in function

severe enough to cause death. Future systematic bio-bank-

ing in SUDEP with standardized brainstem sampling will
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enable larger case series on aligned obex levels to further

explore any rostro-caudal vulnerability of neurons system-

atically and their potential functional implications. Finally,

the post-mortem intervals and fixation times varied

between cases in our series as they were collected from

various centres and brain banks in the UK. We did not

find differences in staining in relation to these tissue pro-

cessing times in this small series and our findings of relative

differences in immunostaining between groups in different

regions of interest also argue against this as having a major

effect. Nevertheless, systematic biobanking in the future

could overcome these potential confounding factors from

variations in tissue collection and processing (Thom et al.,

2018).

Conclusion
To summarize, we have demonstrated alterations in neur-

onal populations in the pre-BötC region of the medulla in

SUDEP, with evidence for more significant alterations in

neuromodulatory medullary neuropeptidergic and monoa-

minergic systems, including galanin, SST and serotonin.

Variations noted with obex level could be relevant to dif-

ferential effects within the rostro-caudal organization of

respiratory nuclear groups, which requires further investi-

gation. These alterations may represent a sequel of previous

seizures and a pathological risk factor for SUDEP through

defective respiratory homeostasis.
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