
Modern Family: A Revocable Hybrid Encryption
Scheme Based on Attribute-Based Encryption,
Symmetric Searchable Encryption and SGX

Alexandros Bakas and Antonis Michalas

Tampere University,
Tampere, Finland

{alexandros.bakas,antonios.michalas}@tuni.fi

Abstract. Secure cloud storage is considered as one of the most impor-
tant issues that both businesses and end-users take into account before
moving their private data to the cloud. Lately, we have seen some in-
teresting approaches that are based either on the promising concept of
Symmetric Searchable Encryption (SSE) or on the well-studied field of
Attribute-Based Encryption (ABE). In this paper, we propose a hybrid
encryption scheme that combines both SSE and ABE by utilizing the
advantages of both these techniques. In contrast to many approaches,
we design a revocation mechanism that is completely separated from the
ABE scheme and solely based on the functionality offered by SGX.

Keywords: Access Control · Attribute-Based Encryption · Cloud Se-
curity · Hybrid Encryption · Policies · Storage Protection · Symmetric
Searchable Encryption

1 Introduction

Cloud computing plays a significant role in our daily routine. From casual inter-
net users, to big corporations, the cloud has become an integral part of our lives.
However, using services that are hosted and controlled by third parties raises
several security and privacy concerns. For example, in [12] it is stated that there
has been a 300% increase in Microsoft cloud-based user’s account attacks over
the past couple of years. However, when considering a cloud-based environment,
cyber-attacks performed by remote adversaries is only a part of the problem.
More precisely, when we design cloud services we also need to take into consid-
eration cases where the actual cloud service provider (CSP) acts maliciously.

To overcome this, both academia and big industrial players have started look-
ing on how to build cloud-based services that will utilize Symmetric Searchable
Encryption (SSE) [7, 4]. In such a scheme, whenever a user wishes to access
her files, she can search directly over the encrypted data for specific keywords.
Unfortunately, revocation cannot be implemented efficiently since sharing an
encrypted file implies sharing the encryption key. As a result, if a data owner
wishes to revoke a user, then all files that are encrypted with the same key

2 Alexandros Bakas and Antonis Michalas

must be decrypted and then re-encrypted under a fresh key. Another promising
technique that fits cloud-based services is Attribute-Based Encryption (ABE).
In ABE schemes, all files are encrypted under a master public key but in con-
trast to traditional public key encryption, the generated ciphertext is bounded
by a policy. Each user has a distinct secret key which is associated with specific
attributes. This way a user’s secret key can decrypt a ciphertext if and only if
the her attributes satisfy the policy bound to the ciphertext. However, using an
asymmetric encryption scheme to store data is rather inefficient.
Contribution: We propose a hybrid encryption scheme that combines SSE and
ABE in a way that reduces the problem of multi-user data sharing to that of a
single-user. We use the ABE scheme as a sharing mechanism and not as a revo-
cation one to achieve better efficiency. To deal with the problem of revocation,
we utilize the functionality offered by SGX. Furthermore, this work extends the
protocol presented in [11].
Organization: In Section 2, we present important works that have been published
and address the problem of secure cloud storage, data sharing and revocation.
In Section 3, we define our system model while in Section 4, we present the
cryptographic tools needed for the construction of our scheme. In Section 5,
we give a formal construction of our scheme which is followed by the security
analysis in Section 6. Finally, Section 7 concludes the paper.

2 Related Work

In [13] authors present a revocable hybrid encryption scheme while at the same
time a key-rotation mechanism is used to prevent key-scrapping attacks. The
authors use Optimal Asymmetric Encryption Padding (OAEP) as an All-or-
Nothing-Transformation (AONT) [2] to prevent revoked users from accessing
stored data. This is due to the fact that reversing OAEP, requires to the entire
output. Thus, changing random bits, renders the reversion infeasible. Hence, to
decrypt a file, the changed bits need to be stored. However, this implies that
with each re-encryption, the size of the ciphertext grows. Thus, decrypting a file
that has been re-encrypted multiple times is an expensive operation. Moreover,
to achieve better efficiency, authors suggest that the AONT could be applied by
the server. However, this implies the existence of a fully trusted server.

A promising idea is presented in [5], where the authors present a protocol
based on functional encryption, with the main functionalities running in isolated
environments. The decryption of a file, and the application of a function f on
the decrypted file both occur in SGX enclaves. Moreover, all enclaves can attest
to each other and exchange data over secure communication channels. In our
construction, even though we use the same hardware principles, we build a hybrid
encryption scheme by combining SSE and ABE.

In [9] authors present a revocable ciphertext-policy attribute-based encryp-
tion scheme. The revocation mechanism is offered by a revocation list that is at-
tached to the resulted ciphertexts. To avoid maintaining long revocation lists, a
policy through which users’ keys expire after a certain period of time is enforced.

Modern Family: ABE & SSE Hybrid Encryption 3

As a result, the revocation list only includes keys that have been revoked be-
fore the expiration date. Another Hybrid encryption scheme is presented in [6],
in which authors propose a scheme based on SSE and ABE. In the proposed
scheme, data owners encrypt their files using SSE, but the resulted indexes are
encrypted under ABE. This way, users can locally generate search tokens based
on their attributes, that are then sent to the cloud. However promising, their
scheme is static and as a result can only have very limited applications in real-life
scenarios. Moreover, authors do not provide a revocation mechanism – a problem
of paramount importance in cloud-based services.

In our construction, we overcome these issues by designing an efficient re-
vocation mechanism that is utilizing the SGX functionality and it is separated
from the ABE scheme.

3 Architecture

In this section, we introduce the system model by explicitly describing the main
entities that participate in our protocol as well as their capabilities. The system
model of our work is built on top of the model presented in [10] and it is enhanced
with some important additions.

Cloud Service Provider (CSP): We consider a cloud computing environment
similar to the one described in [14, 15]. Moreover, the CSP must support SGX
since core entities will be running in a trusted execution environment offered by
SGX.

Master Authority (MS): MS is responsible for setting up all the necessary
public parameters for the proper run of the involved protocols. MS is responsible
for generating and distributing ABE keys to the registered users. Finally, MS is
SGX-enabled and is running in an enclave called the Master Enclave.

Key Tray (KT): KT is a key storage that stores ciphertexts of the symmetric
keys that have been generated by various users and are needed to decrypt data.
Registered users can directly contact KT and request access to the stored cipher-
texts. KT is also SGX-enabled and runs in an enclave called the KT Enclave.

Revocation Authority (REV): REV is responsible for maintaining a revoca-
tion list (rl) with the unique identifiers of the revoked users. Similar to MS and
KT, REV is also SGX-enabled and is running in an enclave called the Revocation
Enclave. Finally, for the security of the stored revocation list, it is important to
mention that rl is generated by the enclave (i.e. in an isolated environment) and
never leaves its perimeter. Therefore, there is no need to encrypt rl.

SGX: Below we provide a brief presentation of the main SGX functionalities
needed for our construction. A more detailed description can be found in [5, 3]

Isolation: Enclaves are located in a hardware guarded area of memory and
they compromise a total memory of 128MB (only 90MB can be used by software).
Intel SGX is based on memory isolation built into the processor itself along with
strong cryptography. The processor tracks which parts of memory belong to
which enclave, and ensures that only enclaves can access their own memory.

4 Alexandros Bakas and Antonis Michalas

Attestation: One of the core contributions of SGX is the support for attes-
tation between enclaves of the same (local attestation) and different platforms
(remote attestation). In the case of local attestation, an enclave enci can verify
another enclave encj as well as the program/software running in the latter. This
is achieved through a report generated by encj containing information about the
enclave itself and the program running in it. This report is signed with a secret
key skrpt which is the same for all enclaves of the same platform. In remote at-
testation, enclaves of different platforms can attest each other through a signed
quote. This is a report similar to the one used in local attestation. The difference
is that instead of using skrpt to sign it, a special private key provided by Intel is
used. Thus, verifying these quotes requires contacting Intel’s Attestation Server.

Sealing : Every SGX processor comes with a Root Seal Key with which, data
is encrypted when stored in untrusted memory. Sealed data can be recovered
even after an enclave is destroyed and rebooted on the same platform.

4 Cryptographic Primitives

In this section, we give a formal definition for the two main encryption schemes
that the paper is based on. We proceed with the definition of a CP-ABE and
SSE schemes as described in [1] and [7] respectively.

Definition 1 (Ciphertext-Policy ABE). A revocable CP-ABE scheme is a
tuple of the following five algorithms:

– CPABE.Setup is a probabilistic algorithm that takes as input a security pa-
rameter λ and outputs a master public key MPK and a master secret key
MSK. We denote this by (MPK,MSK)← Setup(1λ).

– CPABE.Gen is a probabilistic algorithm that takes as input a master secret
key, a set of attributes A and the unique identifier of a user and outputs a
secret key which is bind both to the corresponding list of attributes and the
user. We denote this by (skA,ui)← Gen(MSK,A, ui).

– CPABE.Enc is a probabilistic algorithm that takes as input a master public
key, a message m and a policy P ∈ P. After a proper run, the algorithm
outputs a ciphertext cP which is associated to the policy P . We denote this
by cP ← Enc(MPK,m, P).

– CPABE.Dec is a deterministic algorithm that takes as input a user’s secret
key and a ciphertext and outputs the original message m iff the set of at-
tributes A that are associated with the underlying secret key satisfies the
policy P that is associated with cp. We denote this by Dec(skA,ui , cP)→ m.

Definition 2 (Dynamic Index-based SSE). A dynamic index-based sym-
metric searchable encryption scheme is a tuple of nine polynomial algorithms
SSE = (Gen,Enc,SearchToken,AddToken,DeleteToken,Search,Add,Delete,Dec) :

– SSE.Gen is a probabilistic key-generation algorithm that takes as input a
security parameter λ and outputs a secret key K.

Modern Family: ABE & SSE Hybrid Encryption 5

– SSE.Enc is a probabilistic algorithm that takes as input a secret key K and
a collection of files f and outputs an encrypted index γ and a sequence of
ciphertexts c.

– SSE.SearchToken is a (possibly probabilistic) algorithm that takes as input a
secret key K and a keyword w and outputs a search token τs(w).

– SSE.AddToken is a (possibly probabilistic) algorithm that takes as input a
secret key K and a file f and outputs an add token τa(f) and a ciphertext
cf .

– SSE.DeleteToken is a (possibly probabilistic) algorithm that takes as input a
secret key K and a file f and outputs a delete token τd(f).

– SSE.Search is a deterministic algorithm that takes as input an encrypted
index γ, a sequence of ciphertexts c and a search token τs(w) and outputs a
sequence of file identifiers Iw ⊂ c.

– SSE.Add is a deterministic algorithm that takes as input an encrypted index
γ, a sequence of ciphertexts c, an add token τa(f) and a ciphertext cf and
outputs a new encrypted index γ′ and a new sequence of ciphertexts c′.

– SSE.Delete is a deterministic algorithm that takes as input an encrypted
index γ, a sequence of ciphertexts c and a delete token τd(f) and outputs a
new encrypted index γ′ and a new sequence of ciphertexts c′.

– SSE.Dec is a deterministic algorithm that takes as input a secret key K and
a ciphertext c and outputs a file f .

The security of an SSE scheme is based on the existence of a simulator that
is given as input information leaked during the execution of the protocol. In
particular to define the security of SSE we make use of the leakage functions
Lin,Ls,La,Ld associated to index creation, search, add and delete operations [4].

5 Modern Family (MF)

In this section, we present Modern Family (MF) – the core of this paper’s con-
tribution. We start by giving an overview of the SGX hardware functionalities
used by the communicating parties as defined in [5]. and we continue with a
formal construction.

Hardware:

– HW.Setup(1λ): Takes as input a security parameter λ and produces the
secret key skrpt

1 used to MAC the reports.

– HW.Load(Q): Takes as input a program Q. An enclave enci is created in
which Q will be loaded. Moreover a handle hdlenc is created that will be used
as an identifier for the enclave.

– HW.Run(hdl, in): Takes as input a handle hdl and some input in. It runs
the program in the enclave specified by hdl with in as input.

1 skrpt is shared with every enclave on the same platform

6 Alexandros Bakas and Antonis Michalas

– HW.Run&Report(hdl, in): Takes as input a handle hdl and some input
in. It will output a report that is verifiable by any other enclave on the
same platform. The report contains information about the underlying enclave
signed with skrpt.

– HW.ReportVerifiy(hdl′, rpt): Takes as input a handle hdl′ and a report
rpt. Uses skrpt generated by HW.Setup to verify the MAC of the report.

5.1 Formal Construction

MF is divided into a Setup phase and four main phases; Initialization, Key Shar-
ing, Editing and Revocation. During the Setup phase, all the necessary enclaves
are initialized by running the MF.Setup algorithm. In the rest of the phases, the
user is interacting with the enclaves by running one of the following algorithms:
MF.ABEUserKey, MF.Store, MF.KTStore, MF.KeyShare, MF.Search, MF.Update,
MF.Delete and MF.Revoke as described below.

Setup Phase: In this phase MF.Setup runs. Each entity receives a public/private
key pair (pk, sk) for a CCA2 secure public cryptosystem PKE. In addition to that,
the entities running in enclaves generate a signing and a verification key pair.
Finally, MS runs CPABE.Setup to acquire the master public/private key pair
(MPK,MSK). An enclave is initialized as follows:

MF.Setup(“initialize”, 1λ): Each enclave is initialized by generating a public/private
and signing/verification key pairs. To do so, the program Qinit

ID is loaded:

Qinit
ID

– On input (“initialize”, 1λ):

1. Run (pk, sk)← PKE.KeyGen(1λ).
2. Output pk.

Run hdl← HW.Load(Qinit
ID).

Additionally, during the setup phase, the MS enclave loads a program QSetup
MS

that outputs the master public/private key pair (MPK,MSK):

QSetup
MS

– On input (“initialize”, 1λ):

1. Run (MPK,MSK)← PKE.KeyGen(1λ).
2. Output MPK.

Run hdlMS ← HW.Load(QSetup
MS).

Initialization Phase: As a first step , a user ui contacts the MS enclave and
requests a secret CP-ABE key. Upon reception, MS authenticates ui and checks
if the user is eligible for receiving such a key. If so, MS generates a CP-ABE key
skA,ui , encrypts it under pki and sends it back to ui. This is done by running the

program QSKey
MS in the MS enclave as shown below:

MF.ABEUserKey(”KeyRequest”,MSK, ui, credi,A) : The master enclave pro-

gram QSKey
MS for generating users’ ABE keys is defined as follows:

Modern Family: ABE & SSE Hybrid Encryption 7

QSKey
MS

– On input (“KeyRequest”,MSK, ui, credi,A):

1. Verify that ui is registered. If not, output ⊥.
2. Use MSK and compute skA,ui .
3. Compute and output c = PKE.Enc(pki, skA,ui).

Run c← HW.Run(hdlMS, (“KeyRequest”,MSK, i, credi,A)).

After ui successfully received skA,ui she can start using the CSP to store files re-
motely. To do so, she first sends a store request StoreReq to the CSP. Specifically,
ui sends mreq = 〈r1,EpkCSP(credi), StoreReq,H(r1||credi||StoreReq)〉 where ri
is a random number. The CSP authenticates ui as legitimate and sends back
an authorization Auth as mver = 〈r2, (Auth), σCSP (H(r2||ui||Auth))〉. At this
point, ui generates a symmetric key Ki to encrypt her files and sends mstore =
〈r3,EpkCSP(γi), ci, H(r3||γi||ci)〉 to the CSP.
MF.Store(”Store”,mreq) : The CSP enclave program QStore

CSP that is responsible
for storing encrypted files is defined as follows:

QStore
CSP

– On input (“StoreReq”,mreq):

1. Open mreq ; verify the messagea; if the verification fails, output ⊥.

2. Compute and output mver = 〈r2, (Auth), σCSP (H(r2||ui||Auth))〉.
Run mver ← HW.Run(hdlCSP, (“StoreReq”,m4)).

– On input (”store”,mstore):

1. Open mstore; verify the message; if the verification fails, output ⊥.
2. Store (ci, γi).

Run HW.Run(hdlCSP, (“store”,mstore)).

a By this, we mean that the entity receiving the message verifies the freshness
and the integrity of the message and it can also authenticate the sender.

Initialization phase concludes with MF.KTStore where ui encrypts Ki under

MPK to get cKi

P and sends mkeystore =
〈
EpkKT(r4), cKi

P , σi

(
H
(
r4||cKi

P

))〉
to KT.

Upon reception, KT generates a random number rKi that is stored next to cKi

P .
MF.KTStore(”store”,mkeystore) : The KT enclave program QStore

KT that stores a
symmetric key Ki encrypted with MPK is defined as follows:

QStore
KT

– On input (“store”,mkeystore):

1. Open mkeystore; verify the message. If the verification fails, output ⊥.
2. Generate a random number rKi

.

3. Compute c = PKE.Enc(pkui , rKi
).

4. Store
(
c
Ki
p , c

)
.

Run
(
c
Ki
p , c

)
← HW.Run(hdlKT, (”store”,mkeystore)).

Key Sharing Phase: This phase begins with uj executing MF.KeyShare to
prove that is not revoked. To this end, uj sendsmverReq = 〈r5,EpkREV(uj), σj(r5||uj)〉
to REV. Upon reception, REV verifies the message and checks whether uj ∈ rl
or not. Assuming that uj /∈ rl (i.e. she has not been revoked), REV replies

8 Alexandros Bakas and Antonis Michalas

with mtoken = 〈r6,EpkKT(uj),EpkKT(τKS), σREV (H(r6||uj ||τKS))〉. The user then
simply forwards mtoken to KT who verifies it. After the verification is complete
KT sends mkey =

〈
(EpkCSP(uj , t)), c

Ki
p , σKT (H(uj ||t))

〉
back to uj , where t is a

timestamp declaring the time that uj accessed cKi
p . If uj already received Ki in

the past, KT will only send back the first and last components of mkey.

MF.KeyShare(“share”,m4) : REV and KT enclave programs (QVer
REV, QShare

KT)
that are responsible for sharing cKi

p are defined as follows:

QVer
REV

– On input (“share”,mverReq):

1. Open mverReq ; verify the message; if the verification fails, output ⊥.

2. Check if uj ∈ rl; if so, output ⊥.
3. Generate τKS .

4. Compute and output mtoken.

Run mtoken ← HW.Run(hdlREV, (“share”,mverReq)).

Qshare
KT

– On input (“share”,mtoken):
1. Open mtoken; verify the message; if the verification fails, output ⊥.

2. Decrypt PKE.Enc(pkKT, uj) and PKE.Enc(pkKT, τKS).

3. Compute and output mkey .
Run mkey ← HW.Run(hdlKT, (“share”,mver)).

User uj can now run MF.Search to access certain files that are stored in the
CSP. To do so, she locally runs SSE.SearchToken to generate τs(w) and then
sends msearch = 〈EpkCSP(uj , t, τs(w)), σi(H(uj ||t||τs(w))), σKT (H(uj ||t))〉 to the
CSP2. Upon reception, CSP runs SSE.Search.

MF.Search(”search”,msearch,) : The CSP enclave program QSearch
CSP that is re-

sponsible for searching over the encrypted data is defined as follows:

QSearch
CSP

– On input (“search”,msearch):

1. Open msearch; verify the message; if the verification fails, output ⊥.
2. Run SSE.Search(γi, ci, τs(w))→ Iw
3. Output Iw.

Run HW.Run(hdlCSP, (“search”,msearch), which internally runs SSE.Search →
Iw.

Editing Phase: In this phase3, registered users can add files to the database and
data owners can also delete files. To do so, ui executes MF.Update and MF.Delete.
To update the database, ui first generates an add token by running (τa(f), cf)←
SSE.AddToken(Ki, f). This token is sent to the CSP via madd = 〈EpkCSP(ui, t,
τα(f), ci, γi), σi

(
H(ui||t||τα(f)||ci||γi)

)
, σKT (ui||t)〉. Finally, the CSP verifies the

message and its freshness and executes SSE.Add(γi, ci, τα(f), cf)→ (γ′i, c
′
i).

2 The user simply forwards the components of mkey to the CSP along with a search
token τs(w).

3 One could completely ignore the Editing Phase and the result would be a static MF.

Modern Family: ABE & SSE Hybrid Encryption 9

MF.Update(“update”,madd) : The CSP enclave program QUp
CSP for adding files

to the database is defined as follows:

QUp
CSP

– On input (“update”,madd):
1. Verify the message. If the verification fails, output ⊥.

2. Run SSE.Add(γi, ci, τα(f), cf)→ (γ′i, c
′
i).

Run HW.Run(hldCSP, (“update”,madd), which internally runs SSE.Add(γi, ci,
τα(f), cf)→ (γ′i, c

′
i).

Deletion of a file is a more complicated task. This is due to the fact that we
only allow the data owner to delete files. To achieve this, ui needs to to prove
her ownership over Ki. This can be done by requesting the random number rKi

from KT. After ui receives rKi , she signs it, runs τd ← SSE.DeleteToken(Ki, f)
and replies to KT with: mdelete = 〈EpkCSP(ui, t, τd(f), γ′i), σi(H(ui||τd(f)||γ′i||rKi〉.
KT verifies the message and is convinced that ui is the owner of Ki. Finally, KT
generates a report (rpt) containing the delete token. This is sent to the CSP who
proceeds with the deletion of the specified files.
MF.Delete(“request”, σi(ui||t), cKi

p): The enclave programs QDel
CSP,Q

Del
KT that are

responsible for deleting files from the database are defined as follows:

QDel
KT

– On input (“request”, σi (ui||t), c
Ki
p):

1. Verify the signature. If the verification fails, output ⊥.
2. Get rKi

and compute c = PKE.Enc(pkui , rKi
).

3. Output c.
Run c← HW.Run(hdlKT, (“request”, σi (ui||t), c

Ki
p).

– On input (“delete”,mdelete):

1. Open mdelete; verify the message and authenticate ui as the owner of Ki. If
the verification or the authentication fail, output ⊥.

2. Generate and output rpt.
Run HW.Run(hdlKT, (“delete”,mdelete) and then
rpt← HW.RunReport(hdlKT, (“delete”,mdelete)).

QDel
CSP

– On input (“delete”, rpt):
1. Verify rpt. If the verification fails, output ⊥.

2. Run SSE.Delete(γ′i, c
′
i, τd(f))→ (γ′′i , c

′′
i).

Run HW.Run(hdlCSP, (“delete”, rpt) who will internally run HW.ReportVerify
(hdlCSP, rpt) and SSE.Delete(γi, ci, τd(f))→ (γ′′i , c

′′
i).

Revocation Phase: To successfully run MF.Revoke, ui first needs to prove
ownership over Ki by following the same steps as in MF.Delete. When ui signs

rKi , she sends mrevoke =
〈
r10,EpkKT

(
ui, uj , c

Ki

P

)
, σi

(
H(ui||uj ||cKi

P ||rKi

)〉
to KT.

Now that KT is convinced that ui is the owner of Ki, it generates rpt containing
uj ’s identity, which is then sent to REV, who adds uj to rl.

MF.Revoke(“request”, σ
i
(ui||t), cKi

p) : The enclave programs QRev
KT ,QRev

REV that
are responsible for revoking users are defined as follows:

10 Alexandros Bakas and Antonis Michalas

QRev
KT

– On input (“request”, σi (ui||t), c
Ki
p):

1. Verify the signature. If the verification fails, output ⊥.
2. Get rKi

and compute c = PKE.Enc(pkui , rKi
).

3. Output c.

Run c← HW.Run(hdlKT, (“request”, ui, c
Ki
p)).

– On input (“revoke”,mrevoke):
1. Open mrevoke; verify the message and authenticate ui as the owner of Ki. If

the verification or the authentication fails, output ⊥.

2. Generate rKi
′ and replace it with rKi

.
3. Generate and output rpt.

Run HW.Run(hdlKT, (“revoke”,mrevoke) and then

rpt← HW.RunReport(hdlKT, (“revoke”,mreport)).

QRev
REV

– On input (“revoke”, rpt):
1. Veirfy rpt. If the verification fails, output ⊥.

2. Add uj to the revocation list rl.
Run HW.Run(hdlREV, (“revoke”, rpt) who will internally run HW.Report Verify
(hdlREV, report).

6 Security Analysis

We construct a simulator S that simulates the algorithms of the real protocol
in such a way that any polynomial time adversary ADV will not be able to
distinguish between the real protocol and S. S intercepts ADV’s communication
with the real protocol and replies with simulated outputs.

Definition 3. (Sim-Security). We consider the following experiments. In the
real experiment, all algorithms run as defined in our construction while in the
ideal one, S intercepts ADV’s queries and replies with simulated responses.

Real Experiment

1. EXPrealMF (1λ) :

2. (MPK,MSK)← MF.Setup(1λ)

3. skA,ui ← ADV
MF.ABEUserKey(MSK,A)

4. ct← CPABE.Enc(mpk,m)

5. (γ, c)← ADVSSE.Enc(K,f)

6. MF.Search(“search”,ms)→ Iw
7. MF.Update(“update”,madd)→ (γ′, c′)

8. MF.Delete(“delete”,mdelete)→ (γ′, c′)

9. Output b

Ideal Experiment

1. EXPidealMF (1λ) :

2. (MPK)← S(1λ)

3. skA,ui ← ADV
S(1λ)

4. ct← S(1λ, 1|m|)
5. (γ, c)← ADVS(Lin(f))

6. S(“search”,ms)→ Iw
7. S(“update”,madd)→ (γ′, c′)
8. S(“delete”,mdelete)→ (γ′, c′)
9. Output b′

We say that MF is sim-secure if for all PPT adversaries ADV :

EXPreal
MF (1λ) ≈ EXPideal

MF (1λ)

Modern Family: ABE & SSE Hybrid Encryption 11

Everything ADV observes in the real experiment can be simulated by S.
Moreover, we use an IND-CCA2 public key encryption scheme. If ADV can
distinguish between real and ideal answers, she can also break the IND-CCA2
security. Finally, we let ADV can load different programs in the enclaves and
record the output. This assumption significantly strengthens ADV since we need
to ensure that only honest attested programs will be executed in the enclaves.

Theorem 1. Assuming that PKE is an IND-CCA2 secure public key cryptosys-
tem and Sign is an EUF-CMA secure signature scheme then MF is a sim-secure
protocol according to Definition 3.

Proof. We start by defining the algorithms used by the simulator. Then, we will
replace them with the real algorithms. Finally, the help of a Hybrid Argument
we will prove that the two distributions are indistinguishable.

– MF.Setup∗: Will only generate MPK that will be given to ADV.
– MF.ABEUserKey∗: Will generate a random key to be sent to the adver-

sary. That is, when ADV makes a key generation query, S will simulate
CPABE.KeyGen and it will output sk∗A,ui . This key is a random string that
has the same length as the output of the real MF.ABEUserKey∗. The key will
be given to ADV.

– MF.KeyShare∗: In the ideal experiment, after ADV requests a secret key, S
will encrypt a sequence of bits based on Lin, under MPK. The ciphertext
will be returned to ADV.

– MF.Search∗: When ADV generates a search token τs(w), S gets as input the
leakage function Ls and outputs a simulated response. When ADV makes a
search query, S will once again generate a simulated I∗w which will be sent
back to her.

– MF.Update∗: When ADV generates an add token τα(f), S gets as input the
leakage function La and outputs a simulated response. S will simulate the
add token, the ciphertext to be added to the database and will also update
the encrypted index.

– MF.Delete∗: When S generates a delete token, S gets as input the leakage
function Ld and outputs a simulated response. Apart from τd(f), S will also
update the encrypted index.

– MF.Revoke∗: The system does not revoke any user.

In the pre-processing phase, S runs HW.Setup(1λ), just as in the real experiment,
in order to acquire skrpt. Moreover, the challenger C generates a symmetric key
Ki, that will be needed in order to reply to search, add and delete queries. We
will now use a hybrid argument to prove that ADV cannot distinguish between
the real and the ideal experiments.

Hybrid 0 MF runs normally.

Hybrid 1 Everything runs like in Hybrid 0, but we replace MF.Setup with

MF.Setup∗.

12 Alexandros Bakas and Antonis Michalas

These algorithms are identical from ADV’s perspective and as a result the
hybrids are indistinguishable.

Hybrid 2 Everything runs like in Hybrid 1, but MF.ABEUserKey∗ runs instead

of MF.ABEUserKey.
Hybrid 2 is indistinguishable from Hybrid 1 because nothing changes from

ADV’s point of view.

After Hybrid 2, we have ensured that ADV has followed all the required
steps in order to ask for Ki. We are now ready to replace MF.KeyShare with
MF.KeyShare∗.

Hybrid 3 Like Hybrid 2, but MF.KeyShare∗ runs instead of MF.KeyShare. Also,

the algorithm outputs ⊥ if HW.Run is queried with (hdlKT, (”share”, mtoken))
but ADV never contacts REV.

Lemma 1. Hybrid 3 is indistinguishable from Hybrid 2.

Proof. Replacing the two algorithms, does not change from ADV’s perspective.
If ADV can generate mtoken, then she can forge REV’s signature. Given the
security of the signature scheme, this can only happen with negligible probability.
So ADV can distinguish between the Hybrids with negligible probability. 2

At this point, ADV has received what she thinks is a valid Ki. The simulator
now gets access to all leakage functions L from the SSE scheme.

Hybrid 4 Like Hybrid 3, but when HW.Run is queried with (hdlCSP, (”search”,

msearch)), S is given the leakage function LS and generates I∗w which is then
sent to the user.

Lemma 2. Hybrid 4 is indistinguishable from Hybrid 3.

Proof. Assuming the Li− security of the SSE scheme, the token sent by ADV
to the CSP, as part of msearch, is generated by S with Ls as input. As a result
when S receives msearch, it will generate a sequence of file identifiers I∗w that will
be send back to ADV. ADV cannot distinguish between the real and the ideal
experiment since she receives a sequence of files corresponding to a search token
that was also simulated by S. Moreover, if ADV manages to generate msearch

without having contacted KT earlier, then she can also forge KT’s signature.
However, this can only happen with negligible probability, and as a result ADV
can only distinguish between hybrids 4 and 3 with negligible probability. 2

Hybrid 5 Like Hybrid 4, but when HW.Run is queried with (hdlCSP, (“update”,

madd)), S is given the leakage function La and tricks ADV into thinking that
she updated the database.

Lemma 3. Hybrid 5 is indistinguishable form Hybrid 4.

Proof. By assuming the Li− security of the SSE scheme, we know that ADV
will not be able to distinguish between the real add token and the simulated one.

Modern Family: ABE & SSE Hybrid Encryption 13

Moreover, similar to the previous Hybrid, if ADV can generate madd without
having contacted KT, then she can also forge KT’s signature – which can only
happen with negligible probability. Hence, ADV can only distinguish between
hybrids 5 and 4 with negligible probability. 2

Hybrid 6 Like Hybrid 5, but when HW.Run is queried with (hdlKT, (”delete”,mdel)),

S is given the leakage function Ld and tricks ADV into thinking that she
deleted a certain file from the database. Moreover, S outputs ⊥, if ReportVerify
is queried with (hdlCSP, rpt) for a report that was not generated by executing
HW.RunReport(hdlKT, (“delete”,mdelete)).

Proof. By assuming the Li− security of the SSE scheme, we know that ADV will
not be able to distinguish between the real delete token and the simulated one.
Moreover, if ADV can query HW.ReportVerify with (hdlCSP, rpt), for a rpt that
was not generated by KT, then ADV can produce a valid MAC which can only
happen with negligible probability since she does not know skrpt. Thus, ADV
can only distinguish between Hybrids 5 and 6 with negligible probability. 2

Hybrid 7 Like Hybrid 6 but instead of MF.Revoke, S executes MF.Revoke∗.

The hybrids are indistinguishable since no one can access the content of the
revocation list and as a result nothing changes from ADV’s point of view.

With this Hybrid our proof is complete. We managed to replace the expected
outputs with simulated responses in a way that ADV cannot distinguish between
the real and the ideal experiment. 2

6.1 SGX Security

Recent works [3, 17, 8, 16] have shown that SGX is vulnerable to software attacks.
However, according to [5], these attacks can be prevented if the programs running
in the enclaves are data-obvious. Thus, leakage can be avoided if the programs
do not have memory access patterns or control flow branches that depend on the
values of sensitive data. In our construction, no sensitive data are used by the
enclaves. KT acts as a storage space for the symmetric keys and does not perform
any computation on them. Hence, all the cKi

p are data-obvious. Moreover, rl is
stored in plaintext and every entry in the list is padded to achieve same length.

7 Conclusion

In this paper, we proposed MF, a hybrid encryption scheme that combines both
SSE and ABE in a way that the main advantages of each encryption technique
are used. The proposed scheme enables clients to search over encrypted data by
using an SSE scheme, while the symmetric key required for the decryption is pro-
tected via a Ciphertext-Policy Attribute-Based Encryption scheme. Moreover,
our construction supports the revocation of users by utilizing the functionality
provided by SGX. In contrast to recent works, the revocation mechanism has
been separated from the actual ABE scheme and is exclusively based on the
utilization of trusted SGX enclaves.

14 Alexandros Bakas and Antonis Michalas

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy. pp.
321–334. SP ’07, IEEE Computer Society, Washington, DC, USA (2007)

2. Boyko, V.: On the security properties of oaep as an all-or-nothing transform. In:
Wiener, M. (ed.) Advances in Cryptology — CRYPTO’ 99. pp. 503–518. Springer
Berlin Heidelberg, Berlin, Heidelberg (1999)

3. Costan, V., Devadas, S.: Intel sgx explained. Cryptology ePrint Archive, Report
2016/086 (2016), https://eprint.iacr.org/2016/086

4. Dowsley, R., Michalas, A., Nagel, M., Paladi, N.: A survey on design and imple-
mentation of protected searchable data in the cloud. Computer Science Review
(2017)

5. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: Functional encryp-
tion using intel sgx. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. pp. 765–782. CCS ’17, ACM (2017)

6. Guo, W., Dong, X., Cao, Z., Shen, J.: Efficient attribute-based searchable encryp-
tion on cloud storage. Journal of Physics: Conference Series (2018)

7. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. pp. 965–976 (2012)

8. Lee, S., Shih, M., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-grained
control flow inside SGX enclaves with branch shadowing. In: 26th USENIX Security
Symposium, BC, Canada, August 16-18, 2017. pp. 557–574 (2017)

9. Liu, J.K., Yuen, T.H., Zhang, P., Liang, K.: Time-based direct revocable
ciphertext-policy attribute-based encryption with short revocation list. Cryptology
ePrint Archive, Report 2018/330 (2018), https://eprint.iacr.org/2018/330

10. Michalas, A.: Sharing in the rain: Secure and efficient data sharing for the cloud.
In: Proceedings of the 11th IEEE International Conference for Internet Technology
and Secured Transactions (ICITST-2016). IEEE (2016)

11. Michalas, A.: The lord of the shares: Combining attribute-based encryption
and searchable encryption for flexible data sharing. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. pp. 146–155. SAC ’19, ACM,
New York, NY, USA (2019). https://doi.org/10.1145/3297280.3297297, http:

//doi.acm.org/10.1145/3297280.3297297
12. Microsoft: Microsoft Security Intelligence Report (2017)
13. Myers, S., Shull, A.: Practical revocation and key rotation. In: Smart, N.P. (ed.)

Topics in Cryptology – CT-RSA 2018. pp. 157–178. Springer, Cham (2018)
14. Paladi, N., Gehrmann, C., Michalas, A.: Providing user security guarantees in

public infrastructure clouds. IEEE Transactions on Cloud Computing 5(3), 405–
419 (July 2017). https://doi.org/10.1109/TCC.2016.2525991

15. Paladi, N., Michalas, A., Gehrmann, C.: Domain based storage protection with
secure access control for the cloud. In: Proceedings of the 2014 International Work-
shop on Security in Cloud Computing. ASIACCS ’14, ACM, New York, NY, USA
(2014)

16. Weichbrodt, N., Kurmus, A., Pietzuch, P.R., Kapitza, R.: Asyncshock: Exploiting
synchronisation bugs in intel SGX enclaves. In: Computer Security - ESORICS
2016 - 21st European Symposium on Research in Computer Security, Heraklion,
Greece, September 26-30, 2016, Proceedings, Part I. pp. 440–457 (2016)

17. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In: Proceedings of the 36th IEEE Symposium
on Security and Privacy (Oakland). IEEE (May 2015)

