
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

LocLess: Do You Really Care Where Your Cloud Files Are?

Michalas, A. and Yigzaw, K.Y.

This is a copy of the author’s accepted version of a paper subsequently published in the

proceedings of Cloud Security and Data Privacy by Design (CloudSPD’16), Workshop

co-located with the 9th IEEE/ACM International Conference on Utility and Cloud

Computing, Luxembourg, 12 to Dec 2016.

It is available online at:

https://dx.doi.org/10.1109/CloudCom.2016.0090

© 2016 IEEE . Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

https://dx.doi.org/10.1109/CloudCom.2016.0090
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

LocLess: Do you Really Care
Where Your Cloud Files Are?

Antonis Michalas
Cyber Security Group,

Department of Computer Science
University of Westminster,

London, UK
a.michalas@westminster.ac.uk

Kassaye Yitbarek Yigzaw
Department of Computer Science,

UiT The Arctic University of Norway,
Norwegian Centre for E-health Research,

Tromsø, Norway
kassaye.y.yigzaw@uit.no

Abstract—Physical location of data in cloud storage is a problem
that gains a lot of attention not only from the actual cloud
providers but also from the end users’ who lately raise many
concerns regarding the privacy of their data. It is a common
practice that cloud service providers create replicate users’ data
across multiple physical locations. However, moving data in
different countries means that basically the access rights are
transferred based on the local laws of the corresponding country.
In other words, when a cloud service provider stores users’ data
in a different country then the transferred data is subject to the
data protection laws of the country where the servers are located.
In this paper, we propose LocLess, a protocol which is based on
a symmetric searchable encryption scheme for protecting users’
data from unauthorized access even if the data is transferred to
different locations. The idea behind LocLess is that “Once data
is placed on the cloud in an unencrypted form or encrypted with
a key that is known to the cloud service provider, data privacy
becomes an illusion”. Hence, the proposed solution is solely based
on encrypting data with a key that is only known to the data
owner.

Index Terms—Security, Cloud Computing, Data Protection,
Storage Protection, Searchable Encryption, Location Sensitive

I. INTRODUCTION

While location-based services are becoming more and more
popular we have now reached to a point where even novice
users are concerned about protecting their privacy. More pre-
cisely, many users believe that giving away private information,
such as their exact geographical location, age, home-town etc.,
lead to blatant violation of their privacy. As a result, they try
to protect their privacy by evaluating all services before they
actually start using them. One of the first things that users
try to protect is their actual location. To this end, they try to
avoid being tracked by simply turning off the corresponding
location services from the applications that have installed on
their smart-phone devices.

Even though keeping the location of individuals private
is becoming more and more popular and companies try to
build mechanisms that will eventually provide the necessary
guarantees to the users, things seems to be a bit different
when it comes to cloud-based services [1], [2]. Lately, along
with the already traditional questions about the safety of cloud
environments we have also seen concerns about the physical
location of data. More precisely, users demand to be able to
track the physical location of the data that they store on the
cloud. In other words, users take the role of a spying agent
who tries to breach the privacy of the the cloud service provider.

This problem is known as the geolocation of data placement in
cloud environments.

When users store their data on a cloud service provider,
they hand it over to a provider that may have data centres in
different geographical locations, countries or even continents.
Moreover, it is a common practice that cloud service providers
create replicas of the received data in order to protect users’
information from possible failures of the initial servers that are
storing the data. As a result, users’ data are transferred between
multiple servers that might be located in several different
locations around the world, and they might be even managed
and processed by external data centres.

The generation of data replicas and the placement of data in
multiple remote locations has as a result that user’ may never
know where exactly her data and the corresponding replicas
are stored. While this seems to be an innocent practice and in
many cases would not affect the experience of the end user’, it
is considered as an important security flaw that can lead to the
breach of privacy of cloud users’. The main reason for this, is
the fact that if the cloud service provider has servers in a foreign
country, the laws of that country may govern users’ data when
stored in that server. As a result, many important foreign laws
may govern users’ data and a third party can request access
to the data of a certain user’ directly from the cloud service
provider. In such a case, user’s data may be revealed without
her consent, or even her knowledge.

Cloud service providers want the freedom to move data to
different servers for load balancing or to take advantage of the
lower cost of utilities or personnel in different geographies.
However, by doing so, they may inadvertently expose their
customers’ data to the laws of countries other than those
where the customer opted to operate. Hence, while a cloud
service provider may take advantage of the friendly business
environment in a country, it may also subject equipment and
data stored in this equipment to the monitoring and surveillance
of the government in that country.

There is a significant number of proposed protocols [3]–[9]
that try to offer a reliable solution with which users will be
able to verify at any time the exact geographical location of
her data as well as the corresponding replicas. However, it has
been observed that these approaches have many limitations.
In addition to that, some of the existing solutions rely on
unrealistic assumptions. For example, the existence of a GPS

device in the server rooms. However, server rooms are usually
located in isolated places where there is no GPS signal. Hence,
a solution based on such an assumption is considered as
quixotic.

A. Our Contribution

In this paper, we present LocLess – a protocol through which
cloud users’ will be able to store their data on the cloud in such
a way that location of the underlying servers will not affect their
privacy. More precisely, after analyzing the existing geolocation
systems for the cloud, we make the following argument:

“Once data is placed on the cloud in an unencrypted form or
encrypted with a key that is known to the cloud service

provider, data privacy becomes an illusion”.

Driven by this argument, we propose a protocol that allows
cloud users’ to upload data of two different types:

1) Data that should always remain private. In other words,
even if the cloud service provider transfers the data or
replicas of the data in a location where a third party might
be able to access no valuable information about the actual
content will be revealed.

2) Data that users’ do not necessarily wish to protect from
unauthorized access. Meaning that the actual location of
the underlying server is irrelevant.

To achieve the first goal, we propose a protocol that is solely
based on a Symmetric Searchable Encryption scheme [10]
while for the second one we rely on standard techniques for
secure upload of data on the cloud.

B. Organization

In Section II, we present the state-of-the-art research for
verifying the physical location of data in cloud storage. In
Section III, we define the problem of trusted geolocation in
cloud computing and the primitives used throughout the paper,
while in Section IV we describe the proposed protocol. In
Section V, we provide a security analysis and in Section VI
we conclude the paper.

II. RELATED WORK

In this section, we present the most important works that
have been proposed in order to tackle the problem of data
geolocation in cloud environments. In addition to that, we
present a set of cryptographic tools that have been used by
several solutions.

Proof of Retrievability (PoR): PoR was introduced in [11]
and is a cryptographic proof of knowledge scheme which
enables a user (verifier) to determine whether a host (prover)
possesses a file f . More precisely, a host can prove to a user
that she can retrieve the file without having knowledge of f .
A PoR scheme consists of five algorithms, but for simplicity,
in the rest of the paper we denote by POR(P,V) an execution
of the protocol between a prover P and a verifier V . PoR
schemes have used by many protocols in order to provide a
reliable solution to the problem of physical location of data in
cloud storage.

Watson et al. [3] argued that there are limitations to the
accuracy of verifying the location of data in a cloud storage.
Authors showed that when a corrupted cloud service provider
colludes with malicious hosts, it is infeasible for a user’ to
correctly verify the exact geographical location of the stored
data. Moreover, authors were the first to take into consideration
cases where two or more malicious hosts collude and create
replicas of the stored files. This assumption led them to argue
that the task of restricting where the geographic location of data
is impossible. Additionally, they proposed a proof of location
(PoL) scheme that can be used by a user in order to obtain the
location of a stored file.

Benson et al. [6] proposed a protocol for approximately
calculating the location of data in Infrastructure-as-a-Service
storage with a per-data center granularity. The solution assumes
that the locations of all data centres where the cloud service
provider stores data are known, that the cloud service provider
does not have any exclusive Internet connection between the
data centres and that for each data center, there is a trusted third
party node located geographically close to it, relative to the
distance between the data centres. The proposed method relied
on the Haversine distance as a passive distance measurement
between the data centers to determine the location of the data
centres where a certain piece of data is stored. Moreover, the
paper discusses techniques to determine the location without
having the list of data centres disclosed and detect the changes
within a location. Apart from the proposed method itself, the
authors contribute with a solid overview of the cloud data
geolocation approaches.

Albeshri et al. [4], [5] proposed a protocol which combines
a PoR scheme with a time-based distance-bounding protocol
to determine the distance between a data centre and a verifier.
The proposed solution assumes that a tamper-proof GPS device
is attached to the local network of the cloud service provider
and a third party will communicate with this device in order
to verify the location of the stored data on behalf of a user’.

Gondree and Peterson [7] proposed a Constraints-Based Data
geolocation (CBDG) solution for determining the location of
data and its “binding” to specific locations. More precisely,
authors extended the solutions proposed in [6], [8] by designing
a generic framework for actively monitoring the location of
stored data in the cloud using latency based techniques. The
suggested approach combined probabilistic provable data pos-
session with geolocation in a CBDG protocol, which is solely
based on a PoR scheme.

One of the most promising solutions is the one presented
in [12] where authors presented SecLoc. SecLoc is based on
Key-Policy Attribute-Based Encryption [13] and achieves data
confidentiality, location-sensitivity and computing efficiency.
More precisely, SecLoc ensures that the cloud user’s data is
stored and can be processed only at locations that satisfy user
specified location constraints. If the cloud providers (uninten-
tionally) copy the user data to nodes outside the expected re-
gions, the user data will become inaccessible at those ineligible
locations.

III. PROBLEM STATEMENT & DEFINITIONS

In this section, we define the problem of geolocation in cloud
computing along with the primitives that we use in the rest of

the paper. Furthermore, we explicitly define the capabilities of
the adversary by defining the threat model that we consider.

Cloud Service Provider (CSP): We consider a cloud
computing environment based on a trusted IaaS provider like
the one described in [14] and [15]. The IaaS platform consists
of cloud hosts which operate virtual machine guests and
communicate through a network. In addition to that, we assume
a PaaS provider is built on top of the IaaS platform and can host
multiple outsourced databases. Furthermore, the PaaS provider
offers an API through which a developer can built a privacy-
privacy preserving application that offers searchable encryption
functionality like the one presented in [16] and [17].

CSP ’s Locations & Hosts: We assume that a CSP uses
a set of geographically distributed hosts. Let L = {l1, . . . , ln}
be the set of all locations where CSP can store data. Then the
set Si =

{
si1, . . . , s

i
k

}
is defined as the set of all hosts owned

by CSP in a location li.

Trusted User Locations: Each user ui who wishes to store
a file f needs to define a list of trusted locations. Let Ti ⊆ L
be the set of all trusted locations for user ui. Then the set of
hosts in Ti is denoted as STi

=
{
sTi
1 , . . . , s

Ti

l

}
.

Distance Between a Host & a Location: Most of the
protocols that are dealing with the problem of physical location
of data in cloud storage are using distance bounding techniques
in order to measure the distance between a host and a location.
Therefore, we denote the distance between a host sik and a
location lj as follows:

dist
(
sik, lj

)
=

 0, if sik is located in lj

|li − lj |, otherwise

One of the core components of our solution is the Symmetric
Searchable Encryption (SSE) component which will allow
users’ to encrypt their data using a symmetric secret key and
later be able to search directly on the encrypted data. In the
rest of the paper, we will be assuming the existence of the
following SSE scheme as defined in [17].

Definition 1 (Dynamic Index-based SSE): A
dynamic index-based symmetric searchable encryption
scheme is a tuple of nine polynomial algorithms
SSE = (Gen,Enc,SearchToken,AddToken,DeleteToken,
Search,Add,Delete,Dec) such that:
• Gen is probabilistic key-generation algorithm that takes as

input a security parameter and outputs a secret key K. It
is used by the client to generate her secret-key.

• Enc is a probabilistic algorithm that takes as input a secret
key K and a collection of files f and outputs an encrypted
index γ and a sequence of ciphertexts c. It is used by the
client to get ciphertexts corresponding to her files as well
as an encrypted index which are then sent to the storage
server.

• SearchToken is a (possibly probabilistic) algorithm that
takes as input a secret key K and a keyword w and outputs
a search token τs(w). It is used by the client in order to

create a search token for some specific keyword. The token
is then sent to the storage server.

• AddToken is a (possibly probabilistic) algorithm that takes
as input a secret key K and a file f and outputs an add
token τa(f) and a ciphertext cf . It is used by the client in
order to create an add token for a new file as well as the
encryption of the file which are then sent to the storage
server.

• DeleteToken is a (possibly probabilistic) algorithm that
takes as input a secret key K and a file f and outputs
a delete token τd(f). It is used by the client in order to
create a delete token for some file which is then sent to
the storage server.

• Search is a deterministic algorithm that takes as input an
encrypted index γ, a sequence of ciphertexts c and a search
token τs(w) and outputs a sequence of file identifiers
Iw ⊂ c. This algorithm is used by the storage server upon
receive of a search token in order to perform the search
over the encrypted data and determine which ciphertexts
correspond to the searched keyword and thus should be
sent to the client.

• Add is a deterministic algorithm that takes as input an
encrypted index γ, a sequence of ciphertexts c, an add
token τa(f) and a ciphertext cf and outputs a new
encrypted index γ′ and a new sequence of ciphertexts c′.
This algorithm is used by the storage server upon receive
of an add token in order to update the encrypted index and
the ciphertext vector to include the data corresponding to
the new file.

• Delete is a deterministic algorithm that takes as input an
encrypted index γ, a sequence of ciphertexts c and a delete
token τd(f) and outputs a new encrypted index γ′ and a
new sequence of ciphertexts c′. This algorithm is used by
the storage server upon receive of a delete token in order
to update the encrypted index and the ciphertext vector to
delete the data corresponding to the deleted file.

• Dec is a deterministic algorithm that takes as input a secret
key K and a ciphertext c and outputs a file f . It is used
by the client to decrypt the ciphertexts that she gets from
the storage server.

Problem Statement: Let U = {u1, . . . , un} be the set of
authorized users of the CSP . We assume that a user ui wishes
to store a file f in the storage cloud provided by CSP. The
problem is how to achieve the following:

1) ui must be able to select a set Ti of locations that are
considered as trusted and in which f should be stored;

2) ui must have the option to validate the location of f at
any time;

3) Even if the CSP acts maliciously and stores replicas of
data in a location lm /∈ Ti, ui must be able to store f in
such a way that CSP will not be able to learn any valuable
information about the content of f ;

Adversarial Model: Similar to existing works in the area,
we make the following assumptions regarding the threat model
we consider. First, we assume physical security of the CSP
as well as of the devices that are used by the users to send
and retrieve data to the cloud. Furthermore, we assume that

the communication channel between a user’ ui and the CSP is
secure. Thus, all the communication from and to the CSP is
considered secure. In addition to that, we also assume that all
cryptographic operations that are used throughout the protocol
are semantically secure, and an adversary is not able to break
any cryptographic mechanism. Finally, we assume that the
adversary is acting under the semi-honest threat model. In the
semi-honest adversarial model, even corrupted entities correctly
follow the protocol specifications. However, adversaries over-
hear all messages and may attempt to use them in order to learn
information that otherwise should remain private.

IV. LOCLESS

In this section, we introduce our protocol which satisfies
the criteria mentioned in the problem statement and offers
secure storage functionality for the users’ of a cloud-based
application that stores their personal records in the cloud.
Before we proceed with the actual description of the protocol
we provide a high-level overview of the phases that our protocol
consists. Figure 1 contains a high-level representation of the
main functions that our protocol consists of (details have been
omitted for clarity).

The protocol considers a cloud service provider which uses a
set of hosts distributed in different geographic locations. Hence,
CSP can transfer data to any possible remote location without
asking for the permission of the data owner. Our protocol is
divided into four main phases: the registration and login phase,
the key generation phase, the secure placement of data in the
cloud by a user and finally the retrieval of data by user in a
privacy-preserving manner.

Registration: Before accessing cloud data, a new user’ first
needs to register. To do so, the registration phase requires the
user to contact the CSP and submit her identity. Then, CSP
is responsible for verifying the validity of the user and can
also prevent a user from creating multiple accounts/identities
by simply checking if a user with the same identity has already
created an account. After the verification process, user’ can
login to her account by simply using a standard client where
will have to provide her credentials. During the first login, user’
will have to select a list of possible locations that would like
to store her data. To this end, CSP sends a list with all geo-
graphically distributed hosts that owns. So, CSP contacts ui by
sending m1 = 〈t, ui,L = {l1, . . . , ln} , σCSP (ui||L))〉, where
t is a timestamp, L is the set of all possible locations that CSP
can store data, σCSP (ui||L) is a signature of the unique id of
the user’ concatenated with the list of geographically distributed
hosts that are managed by the CSP. Upon reception of m1, ui
first checks the timestamp in order to verify the freshness of
the message. Then, uses the public key of the CSP to verify
the signature and the the integrity of the actual message. If
this verification is correct, then proceeds in selecting a list
STi
⊆ L of locations out of those in L who wishes to store

her files in the future. As a next step, ui verifies the actual
geographical location of the selected hosts by running a dis-
tance bounding protocol such as the one describe in [18]. After
verifying the location of the selected hosts, ui contacts CSP by
sending m2 =

〈
t′,STi

=
{
sTi
1 , . . . , s

Ti

l

}
, σi(ui||STi)

〉
. Upon

reception of m2, CSP verifies the integrity and the freshness

of the message and configures a set of VMs operated by hosts
that are located in a subset of STi

. From this point, ui will be
able to start storing data on remote locations that are managed
by the CSP.

Store Data: After the successful selection of possible remote
locations for storing data, ui can start interacting with the CSP
for storing and retrieving data from the corresponding hosts.
As we described in Section I-A, this can be done with two
different ways.

Scenario 1: First, we consider the case where ui wishes
to protect her data from any kind of unauthorized access. Even
if the cloud service provider transfers the data or replicas of
the data in a location outside of STi ui needs to be sure
that no one else apart from herself will be able to read the
actual content of the stored data. To achieve that, ui will be
using a SSE scheme to encrypt the data before sending it
to the CSP. To do so, ui needs to have a unique symmetric
encryption key that will be used to keep her data hidden from
any potential attacker. Thus, before start sending data to the
CSP, ui executes Ki ← Gen(1) to generate a symmetric secret
key. Ki will be used to encrypt user’s private data. After the
successful generation of Ki, ui is now ready to store encrypted
data to the CSP. Lets assume that ui wants to securely store a
collection of files fi to the storage offered by the CSP. To do
so, ui executes (γi, ci)← Enc (fi,Ki) and outputs a collection
of ciphertexts ci as well as an encrypted index γi. Both γi
and ci are then sent to the CSP via a secure channel. Upon
reception, CSP stores ci along with the encrypted index γi in
a local database. Since the encryption has been taken place
by the user’ and without the interaction of the CSP and we
have assumed that user’s machine is not compromised then the
CSP or any other internal or external attacker will not be able
to extract any valuable information about the content of the
encrypted file as long as the key is Ki is secure.

Scenario 2: Second, we consider the simple scenario
where ui does not necessarily wish to protect her data from
unauthorized access. Meaning that the actual location of the
underlying server is irrelevant. This scenario is straightforward
and can be done with any standard ways of uploading files to
the cloud. However, in LocLess ui will still have the ability to
check the location where her files are stored. More precisely,
we assume that ui wishes to store a collection of files fj to
the storage offered by the CSP. To do so, ui sends fi over a
secure channel to the CSP along with STi

. Upon reception, CSP
stores the received files as well as replicas in different locations
from the set STi . Then, ui has the option to verify the location
of the files by running a distance bounding protocol such as
the one described in [18]. However, in this scenario we make
two major assumptions: (1) CSP is trusted – meaning that will
not lie about the number of generated replicas and (2) that the
distance bounding protocol cannot be hijacked. Nevertheless,
both of these assumptions can be considered as unrealistic since
they weaken the actual threat model that we have assumed.
Having though in mind that the collection of files fj stored by
ui are not considered as confidential, our protocol is sound.

Search Over the Encrypted Data: Now that ui has stored a
collection of files in the cloud storage she can start searching
directly over her encrypted data. Lets assume that ui wishes

User

Cloud	Registra0on

PaaS	Provider

Trusted	IaaS	Provider

Cloud	Provider

DB	with	
encrypted	data

Indexers	on	
encrypted	data

Database	that	Stores	Users’	
Encrypted	Data

Sends	Encrypted	Data	

to	the	Cloud	Provider

Stores	the	Received	Data	

to	an	External	Database

Registers	to	the	service	and	selects	a	list	of	
loca<ons	with	available	hosts

Generates	a	Request	for	
Update	or	Delete	

Processes	the	Request	and	Updates	
or	Deletes	the	Corresponding	

Encrypted	Data

Hosts	in	different	geographical	loca<ons	
operated	by	the	CSP

Fig. 1. High level overview LocLess

to search over her data for a specific keyword w. First,
ui executes the τs(w)← SearchToken (Ki, w) and outputs a
search token τs(w) that is sent to the CSP. Upon reception, CSP
executes Search(γi, ci, τs(w))→ Iw and outputs a sequence of
file identifiers Iw which is a subset of ci and contains a list
of ciphertexts that includes the keyword w. The resulted Iw is
sent back to ui. Upon reception, ui executes the Dec algorithm
by giving as input her secret key and the sequence of encrypted
files that corresponds to the list of identifiers that received from
the CSP. By doing this, ui gains access to the plaintext of data
that contains the keyword w.

Update Stored (Encrypted) Data: Apart from storing data and
searching over the encrypted data, the user also needs to update
her stored data. Here, we consider the scenario where ui wishes
to add a new file f to the cloud storage. A naive approach
that ui could follow would be to run Enc algorithm again,
generate the ciphertext of f and send it to the CSP. However,
this would mean that ui would also create a new encrypted
index that would correspond to the encryption of file f . Such
an approach is not efficient since the user would end-up with
a huge list of encrypted indexes that are not related to each
other and every time that wishes to perform a search over
her data would require from the CSP to search over all the
encrypted indexes. To avoid this, ui needs to store her new file
and instead of creating a separate encrypted index she needs to
update the current one in order to also include the newly added
file. To achieve that, ui first generates an add token by executing
(τα(f), cf)← AddToken(Ki, f) and sends it to the CSP. Upon
reception, CSP executes Add (γi, ci, τα(f), cf)→ (γ′, c′i) and
outputs an updated encrypted index γ′i and an updated sequence
of ciphertexts c′i that corresponds to the data stored by ui. Thus,
by running the Add algorithm, CSP stores the ciphertext of f
and updates the existing encrypted index and ciphertext list of
ui.

Delete Stored Data: The final operation that ui needs to be able
to execute, is the deletion of a file. Lets assume that ui wishes
to delete the file f that stored in the previous step. Similar to the

previous case, the deletion of a file will also require the update
of the existing encrypted index as well as the sequence of stored
ciphertexts. To this end, ui generates a delete token by execut-
ing τd(f)← DeleteToken (Ki, f). Then, ui sends τd(f) to the
CSP who executes Delete (γ′i, c

′
i, τd(f))→ (γ′′i , c

′′
i). Similar to

the Add algorithm, Delete after removing the requested file f
then updates both the corresponding encrypted index and the
sequence of ciphertexts that are related to user ui.

V. SECURITY ANALYSIS

In this section, we are discussing the security of LocLess.
The discussion focuses explicitly on the protection of data that
can be accessed by unauthorized parties when they are placed
maliciously, or without the actual agreement of the user’, in
locations that are not included in the trusted locations STi that
were defined by the user’ during the registration phase.

The actual security of LocLess is solely based on the
symmetric searchable encryption scheme that is used. More
precisely, as long as the underlying cryptosystem is secure
LocLess can effectively protect users’ private data from unau-
thorized access. More precisely, the user’ sends the files to the
CSP in an encrypted form and the encryption has taken place
by the user’ without the interaction of the CSP. In addition to
that, we have assumed that user’s machine is not compromised.
In other words, we have assumed that the symmetric key Ki that
is used to protect user’s data is secure and will never leave the
perimeter of the user’ or exposed to any malicious entity. As a
result, even if the CSP acts maliciously and creates replicas of
data that are placed in locations other than the ones in STi that
were defined by the user’ then user’s data is protected from
both internal and external attacks since any attacker that can
access the stored ciphertexts will not be able to decrypt the
data even if she collaborates with the CSP.

Although LocLess manages to protect users’ data by consid-
ering the actual location as irrelevant to the actual security of
the data our approach has limitations. More precisely, the use
of symmetric searchable encryption sacrifices the powerful pro-
cessing capability brought by the cloud computing technology

since very limited number of queries can be implemented over
encrypted data [12]. Moreover, the allowed queries are also
time consuming and in many cases requires lot of computation
power. Thus making LocLess difficult to use with devices that
rely on limited resources (e.g. limited battery life). However,
we hope that with the future developments and improvements
of searchable encryption schemes LocLess will offer a signif-
icant experience to the cloud users’. Finally, this can lead to
DoS [19]–[22] attacks. However such attacks are out of the
scope of this work.

VI. CONCLUSION

In this paper, we proposed LocLess, a protocol that allows
cloud users’ to store their data on the cloud in such a way that
location of the underlying servers will not affect their privacy.
LocLess is based on a symmetric searchable encryption scheme
and protects users’ data from both internal and external attacks.
As future steps, we plan to implement our protocol in order to
measure its performance and prove its effectiveness in a real
cloud environment.

As future steps, we plan to implement our protocol in order
to measure its performance and prove its effectiveness in a real
cloud environment. Furthermore, we plan to explore the incor-
poration of our protocol with mobile sensing applications and
more precisely with privacy preserving reputation systems for
cloud-based participatory sensing applications. The envisioned
system will be based on [23]–[26] and will effectively maintain
the privacy and anonymity of users’ [27]–[30].

REFERENCES

[1] A. Michalas, N. Paladi, and C. Gehrmann, “Security aspects of e-health
systems migration to the cloud,” in e-Health Networking, Applications
and Services (Healthcom), 2014 IEEE 16th International Conference on,
pp. 212–218, IEEE, 2014.

[2] A. Michalas and M. Bakopoulos, “Secgod google docs: Now i feel safer!,”
in Internet Technology And Secured Transactions, 2012 International
Conference for, pp. 589–595, Dec 2012.

[3] G. J. Watson, R. Safavi-Naini, M. Alimomeni, M. E. Locasto, and
S. Narayan, “Lost: Location based storage,” in Proceedings of the 2012
ACM Workshop on Cloud Computing Security Workshop, CCSW ’12,
(New York, NY, USA), pp. 59–70, ACM, 2012.

[4] A. Albeshri, C. Boyd, and J. G. Nieto, “Geoproof: Proofs of geo-
graphic location for cloud computing environment,” in Proceedings of the
2012 32Nd International Conference on Distributed Computing Systems
Workshops, ICDCSW ’12, (Washington, DC, USA), pp. 506–514, IEEE
Computer Society, 2012.

[5] A. Albeshri, C. Boyd, and J. Nieto, “Enhanced geoproof: improved
geographic assurance for data in the cloud,” International Journal of
Information Security, pp. 1–8, 2013.

[6] K. Benson, R. Dowsley, and H. Shacham, “Do you know where your
cloud files are?,” in Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop, CCSW ’11, (New York, NY, USA),
pp. 73–82, ACM, 2011.

[7] M. Gondree and Z. N. Peterson, “Geolocation of data in the cloud,”
in Proceedings of the Third ACM Conference on Data and Application
Security and Privacy, CODASPY ’13, (New York, NY, USA), pp. 25–36,
ACM, 2013.

[8] Z. N. J. Peterson, M. Gondree, and R. Beverly, “A position paper on
data sovereignty: The importance of geolocating data in the cloud,” in
Proceedings of the 3rd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’11, (Berkeley, CA, USA), pp. 9–9, USENIX
Association, 2011.

[9] K. Bowers, M. van Dijk, A. Juels, A. Oprea, and R. Rivest, “How to
tell if your cloud files are vulnerable to drive crashes,” in Proceedings
of the 18th ACM conference on Computer and communications security,
pp. 501–514, ACM, 2011.

[10] R. Dowsley, A. Michalas, and M. Nagel, “A report on design and
implementation of protected searchable data in iaas,” tech. rep., Swedish
Institute of Computer Science (SICS), 2016.

[11] A. Juels and B. S. Kaliski, Jr., “Pors: Proofs of retrievability for large
files,” in Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS ’07, (New York, NY, USA), pp. 584–
597, ACM, 2007.

[12] J. Li, A. Squicciarini, D. Lin, S. Liang, and C. Jia, “Secloc: Securing
location-sensitive storage in the cloud,” in Proceedings of the 20th ACM
Symposium on Access Control Models and Technologies, SACMAT ’15,
(New York, NY, USA), pp. 51–61, ACM, 2015.

[13] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption
for fine-grained access control of encrypted data,” in Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS
’06, (New York, NY, USA), pp. 89–98, ACM, 2006.

[14] N. Paladi, A. Michalas, and C. Gehrmann, “Domain based storage
protection with secure access control for the cloud,” in Proceedings of the
2014 International Workshop on Security in Cloud Computing, ASIACCS
’14, (New York, NY, USA), ACM, 2014.

[15] N. Paladi, C. Gehrmann, and A. Michalas, “Providing user security
guarantees in public infrastructure clouds,” IEEE Transactions on Cloud
Computing, vol. PP, no. 99, pp. 1–1, 2016.

[16] Y. Verginadis, A. Michalas, P. Gouvas, G. Schiefer, G. Hbsch, and
I. Paraskakis, “Paasword: A holistic data privacy and security by design
framework for cloud services,” in Proceedings of the 5th International
Conference on Cloud Computing and Services Science, pp. 206–213,
2015.

[17] A. Michalas and R. Dowsley, “Towards trusted ehealth services in the
cloud,” in 2015 IEEE/ACM 8th International Conference on Utility and
Cloud Computing (UCC), pp. 618–623, Dec 2015.

[18] C. Cremers, K. B. Rasmussen, B. Schmidt, and S. Capkun, “Distance
hijacking attacks on distance bounding protocols,” in 2012 IEEE Sympo-
sium on Security and Privacy, pp. 113–127, May 2012.

[19] A. Michalas, N. Komninos, N. R. Prasad, and V. A. Oleshchuk, “New
client puzzle approach for dos resistance in ad hoc networks,” in Informa-
tion Theory and Information Security (ICITIS), 2010 IEEE International
Conference, pp. 568–573, IEEE, 2010.

[20] A. Michalas, N. Komninos, and N. R. Prasad, “Mitigate dos and ddos
attack in mobile ad hoc networks,” International Journal of Digital Crime
and Forensics (IJDCF), vol. 3, no. 1, pp. 14–36, 2011.

[21] A. Michalas, N. Komninos, and N. Prasad, “Multiplayer game for ddos
attacks resilience in ad hoc networks,” in Wireless Communication,
Vehicular Technology, Information Theory and Aerospace Electronic
Systems Technology (Wireless VITAE), 2011 2nd International Conference
on, pp. 1–5, Feb 2011.

[22] A. Michalas, N. Komninos, and N. R. Prasad, “Cryptographic puzzles
and game theory against dos and ddos attacks in networks,” International
Journal of Computer Research, vol. 19, no. 1, p. 79, 2012.

[23] T. Dimitriou and A. Michalas, “Multi-party trust computation in de-
centralized environments,” in New Technologies, Mobility and Security
(NTMS), 2012 5th International Conference on, pp. 1–5, May 2012.

[24] T. Dimitriou and A. Michalas, “Multi-party trust computation in decen-
tralized environments in the presence of malicious adversaries,” Ad Hoc
Networks, vol. 15, pp. 53 – 66, 2014.

[25] A. Michalas, T. Dimitriou, T. Giannetsos, N. Komninos, and N. Prasad,
“Vulnerabilities of decentralized additive reputation systems regarding the
privacy of individual votes,” Wireless Personal Communications, vol. 66,
no. 3, pp. 559–575, 2012.

[26] A. Michalas, V. A. Oleshchuk, N. Komninos, and N. R. Prasad, “Privacy-
preserving scheme for mobile ad hoc networks,” in Computers and
Communications (ISCC), 2011 IEEE Symposium on, pp. 752–757, June
2011.

[27] A. Michalas and T. Giannetsos, “The data of things: Strategies, patterns
and practice of cloud-based participatory sensing,” in Proceedings of
the 1st International Conference on Innovations in InfoBusineess and
Technology, 2016.

[28] A. Michalas and N. Komninos, “The lord of the sense: A privacy
preserving reputation system for participatory sensing applications,” in
Computers and Communication (ISCC), 2014 IEEE Symposium, pp. 1–6,
IEEE, 2014.

[29] A. Michalas, M. Bakopoulos, N. Komninos, and N. R. Prasad, “Secure
and trusted communication in emergency situations,” in Sarnoff Sympo-
sium (SARNOFF), 2012 35th IEEE, pp. 1–5, May 2012.

[30] K. Yigzaw, A. Michalas, and J. Bellika, “Secure and scalable statistical
computation of questionnaire data in r,” IEEE Access, vol. PP, no. 99,
pp. 1–1, 2016.

