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Genome-wide and abdominal MRI-imaging data provides evidence that a
genetically determined favourable adiposity phenotype is characterized by lower
ectopic liver fat and lower risk of type 2 diabetes, heart disease and

hypertension.
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Abstract (200 wor ds)

Recent genetic studies have identified alleles associated with opposite effects on
adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and
test the hypothesis that such “favourable adiposity” alleles are associated with higher
subcutaneous fat and lower ectopic fat. We combined magnetic resonance imaging
(MRI) data with genome-wide association studies (GWAS) of body fat % and
metabolic traits. We report 14 alleles, including 7 newly characterized alleles,
associated with higher adiposity, but a favourable metabolic profile. Consistent with
previous studies, individuals carrying more “favourable adiposity” aleles had higher
body fat % and higher BMI, but lower risk of type 2 diabetes, heart disease and
hypertension. These individuals also had higher subcutaneous fat, but lower liver fat
and lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated
with higher body fat % but lower liver fat and lower risk of type 2 diabetes included
those in PPARG, GRB14 and IRSL, whilst the allele in ANKRD55 was paradoxically
associated with higher visceral fat but lower risk of type 2 diabetes. Most identified
“favourable adiposity” alleles are associated with higher subcutaneous and lower liver
fat, a mechanism consistent with the beneficial effects of storing excesstriglyceridein

metabolically low risk depots.



I ntroduction

There are many overweight or obese individuals who do not carry the expected
metabolic disease risks associated with higher BMI (1; 2) while some lean or normal
weight individuals develop diseases like type 2 diabetes(3-5). We(6; 7) and others(8-
10) have previously shown that genetic variation is likely to contribute to these
differences by increasing adiposity but lowering the risk of type 2 diabetes. We
labelled these variants “favourable adiposity” since the alleles associated with higher
BMI are associated with a favourable metabolic profile and lower risk of type 2
diabetes. The alternative alleles of the same variants could be characterized as
“unfavorable lack of adiposity” or “limited adipose tissue storage capacity”. The
identification of these variants differed by study. One study started with a genome-
wide association study (GWAS) of body fat % in 76,150 individuals and showed that
a common alele near the IRSL gene was associated with higher adiposity but lower
insulin resistance and risk of disease(8). The remaining studies were limited to genetic
variants associated with fasting insulin levels at genome-wide levels of statistical
confidence and used a combination of data and approaches to identify genetic scores
of between 10 and 53 variants that collectively were associated with opposite effects

on BMI and risk of type 2 diabetes(6; 7; 9; 10).

More detailed characterization of these aleles revealed several insights. First, the
alleles associated with higher BMI but lower risk of type 2 diabetes were associated
with alower risk of hypertension and heart disease as well as type 2 diabetes(6; 7; 9).
Second, most of the alleles associated with higher insulin sensitivity, as identified by
GWAS of fasting insulin levels, were associated with higher BMI or a redistribution

of fat into the lower body, as estimated by waist-to-hip ratio(6; 7; 9; 10). Third, these



alleles were associated with more refined measures of adipose tissue distribution: the
alleles associated with higher BMI but lower risk of disease were also associated with

higher adiposity in the lower body (gynoid area and legs) as measured by DEXA(9).

The association of “favourable adiposity” alleles with higher peripheral adiposity in
the previous studies proposed that a likely explanation for the mechanism is altered
adipose tissue storage capacity(6; 7; 9; 10) consistent with the “adipose tissue
expandability” hypothesis(11). To have a clear understanding about the underlying
mechanisms associated with “favourable adiposity” in the context of the “adipose
tissue expandability” hypothesis, we need to study whether “favourable adiposity”
alleles are specifically associated with lower levels of ectopic fat. Furthermore, since
men and women have different body fat distribution regulated by sex steroids(12), the
study of underlying mechanisms separately in men and women may help elucidate the

biology of the cardio-metabolic diseases.

The aim of this study was to identify additional alleles associated with “favourable
adiposity” and to combine genetic and MRI data to understand more about the
underlying mechanisms. In contrast to most previous studies, that focused on variants
associated with surrogate measures of insulin resistance (fasting insulin), we started
with variants associated with altered body fat %. We describe an approach that led to
the characterization of 14 alleles collectively associated with higher body fat % but
lower risk of type 2 diabetes, hypertension and heart disease. We showed that these

alleles are associated with lower ectopic fat in the liver, based on MRI data.



Method

UK Biobank study: UK Biobank recruited over 500,000 individuals aged 37-73
years (99.5% were between 40 and 69 years) between 2006-2010 from across the UK

(supplementary table 1). The study has been described in more detail €l sewhere(13).

UK Biobank genetic data: SNP genotypes underwent extensive central quality
control (http://biobank.ctsu.ox.ac.uk). We based our study on 451,099 individuals of
white European descent as defined by Principal Components Analysis (PCA). Briefly,
principal components were generated in the 1000 Genomes Cohort using high-
confidence SNPs to obtain their individual loadings. These loadings were then used to
project al of the UK Biobank samples into the same principal component space and
individuals were clustered using principa components 1-4. We removed 7
participants who withdrew from the study, and 348 individuals whose self-reported
sex did not match their genetic sex based on relative intensities of X and Y

chromosome SNP probe intensity.

Measures of disease and disease related traitsin UK Biobank: We used 3 cardio-
metabolic diseases. type 2 diabetes, hypertension (also represented by continuous
measures of systolic and diastolic blood pressure) and heart disease — all using
baseline data and following similar definitions to those used in previous GWASs

(supplementary table 1).

We defined type 2 diabetes cases using baseline data if 3 criteria were present: i)
reports of diabetes at the interview, ii) at least one year gap from diagnosis without
requiring insulin, iii) reported age at diagnosis over the age of 35 years to limit the
numbers of individuals with slow-progressing autoimmune diabetes or monogenic

forms. Individuals not reporting an age of diagnosis were excluded. We aso excluded



individual s diagnosed with diabetes within the year prior to the baseline study visit as
we were unable to determine whether they were using insulin within the first year.

Controls were individuals not fulfilling these criteria.

We defined subjects as hypertensive if systolic blood pressure was >140 mmHg, or a
diastolic blood pressure was >90 mmHg, or blood pressure medication was reported.
Controls were individuals not fulfilling these criteria. For the analysis of systolic and
diastolic blood pressure, we corrected blood pressure measures in people on
antihypertensive drugs by adding 15 mmHg to systolic and 10 mmHg to diastolic

blood pressure.

We defined heart disease cases if individuals reported angina and/or a heart attack at

the interview stage. We defined controls as individual s without these conditions.

| dentification of genetic variants associated with “ favorable adiposity”

We designed a study in three steps to identify genetic variants associated with

“favourable adiposity” (supplementary figure 1).

First, genetic variants associated with adiposity. We used Bio-impedance measures
of body fat % measured by the Tanita BC418MA body composition analyser as
measure of adiposity (N = 442,278 individuals from UK Biobank). We used a linear
mixed model implemented in BOLT-LMM to account for population structure and
relatedness(14). We used age, sex, genotyping platform, study centre and the first 5

principal components as covariatesin the model.

Second, genetic variants associated with a multivariate metabolic outcome: We
used summary statistics from published GWASs (not including UKBiobank) of

metabolic biomarkers including body fat % (N = 120,000)(15), HDL-C (99,900)(16),



adiponectin  (29,400)(17), sex hormone binding globulin (SHBG, 21,800)(18),
triglycerides (96,600)(16), fasting insulin (51,800)(19), and alanine transaminase
(55,500)(20). We used these biomarkers to be consistent with our previous
approach(7). These biomarkers are used to discriminate monogenic disorders of fat
storage (lipodystrophy) from other monogenic conditions where insulin sensitivity

and adiposity are affected(7; 21; 22).

Within each GWAS, we standardized the effect sizes to correct for the differences in

sample size and the various traits measurement unit across different GWAS:

betastandardized = _beta_

se* \ﬁ
We used metaCCA(23) to run a multivariate GWAS. The phenotype-phenotype
correlation matrix (X"YY=cov(Y, Y)) was built according to the Pearson correlation
between any pairs of traits across genome-wide genetic variants. Genotype-genotype
correlation matrix (X"XX=cov(X, X)) was computed using reference database from
1000 Genomes. The canonica correlation analysis in metaCCA finds the maximal
correlation coefficient R_metaCCA between genetic variants and linear combination
of phenotypes based on phenotype-phenotype correlation matrix. We defined genetic

variants associated with a multivariate metabolic outcome if metaCCA p < 5x10°8.

Third, genetic variants associated with “favourable adiposity”. We selected
genetic variants associated with both adiposity (step 1) and a multivariate metabolic
outcome (step 2) at p < 5x10® and used a hierarchical clustering approach to narrow
down the list to ones showing a pattern of “favourable adiposity”. We calculated the
frequency of times the variants were in the same cluster to identify “favourable

adiposity” cluster using the “pvclust” package in R as shown before(7).



Genetic score analysis

We constructed the genetic score of “favorable adiposity” variants as the number of
“favorable adiposity” alleles carried by each individual (un-weighted). We used age,
sex, genotyping platform, study center and the first 5 ancestry principal components

as covariates in the model.

Additional studiesfor replication of the non-imaging findings

To provide further evidence for the role of “favorable adiposity” alleles, we used 5
cohorts that were not part of the published GWASs used in our discovery stage
(supplementary table 1): NEO study (The Netherlands Epidemiology of Obesity;
6,671 individuals of white European descent collected from the greater area of Leiden
in the West of the Netherlands(24)), EXTEND (Exeter 10,000; 7,340 individuals of
white European descent collected from South West England), GS.SFHS (Generation
Scotland: Scottish Family Health Study; 20,000 individuals of white European
descent collected from Scotland(25)), TUF (Tubingen Family Study for Type 2
Diabetes, 2,679 individuals of white European descent collected from Southern
Germany(26)), and IMI-DIRECT (Diabetes Research on Patient Stratification; 3,029
Caucasian pre-diabetic and Type 2 Diabetes subjects recruited by clinical centers

located across Europe(27)).

To further provide evidence for the role of “favorable adiposity” alleles in risk of
cardiometabolic diseases, we used published GWAS studies of type 2 diabetes(28),

heart disease(29) and blood pressure(30).

Studies contributed to imaging findings (liver fat, visceral fat and subcutaneous

fat):



UK Biobank: We used 5,045 individuals who had available data obtained through
UK Biobank Access Application number 9914 and 6569. Participants were MRI
scanned as previously described(31). Briefly, a single transverse dlice located at the
liver was acquired from each subject using multi-echo spoiled-gradient-echo
acquisition and analysed as previously described(32). Assessment of abdominal

subcutaneous and visceral fat was described previously(33).

NEO: Abdominal subcutaneous and visceral fat was assessed in 2,236 participants
using MRI and were quantified by a turbo spin echo imaging protocol. At the level of
the 5th lumbar vertebra 3 transverse images each with a dice thickness of 10 mm
were obtained during a breath-hold. Proton (*H)-MRS of the liver was used to assess

hepatic triglyceride content (N = 1,821)(24).

TUF: The TUF study contributed subcutaneous and visceral adipose tissue
measurements from 833 and 906 genotyped individuals, respectively, who underwent
whole body magnetic resonance tomography. The two fat depots were quantified by
an axia T1-weighed fast spin echo technique with a 1.5 T whole-body imager
(Magnetom Sonata, Siemens Healthcare), as previously described(26). Liver fat
measurements were available from 911 genotyped individuas who underwent

localized *H magnetic resonance spectroscopy, as described(26).

IMI-DIRECT: The IMI-DIRECT consortium is a collaboration among investigators
from arange of European academic institutions and pharmaceutical companies. Liver
fat was assessed on 1,457 subjects using a multi-echo acquisition as previousy
described(34). Briefly, the liver was identified from a scout abdominal image and
axial images were performed during suspended respiration, which were used to

position a single slice multi-echo sequence through the liver.



Published GWAS: We used published genome-wide association study of

subcutaneous and visceral fat distribution as measured by CT scan or MRI(35).



Results

We identified 14 alleles associated with “ favourable adiposity”

Using a 3-step approach, we characterized 14 genetic variants associated with
“favourable adiposity”. Of these variants, seven were previousy known to be
associated with a “favourable adiposity” phenotype - those in/near PPARG,
LYPLAL1, GRB14, IRS1, PEPD, FAM13A and ANKRDS55, five were known to be
associated with a relevant trait, but not confirmed as having a “favourable adiposity”
phenotype, (those in/near TRIB1, KLF14/MKLN1, DNAH10, VEGFA/C6orf223 and
AEBP2/PDE3A) and two were entirely novel (those in/near MAFF and CITED?2)
(supplementary table 2). Twelve of the 14 variants had not previously been

associated with body fat % at genome-wide levels of statistical confidence.

In the first step (supplementary figure 1), we performed a GWAS of body fat % in
442,278 individualsin the UK Biobank. We identified 620 variants at p<5x108. In the
second step, we used published GWAS dtatistics from 7 circulating biomarkers of
metabolic health and identified 33 of these 620 variants as associated with a
multivariable metabolic phenotype. This approach identifies alleles associated with
metabolic traits after accounting for the phenotypic correlation between higher
adiposity and these metabolic traits (supplementary table 3 & 4, supplementary
figure 2). For example, this approach has more power to detect alleles paradoxically
associated with higher adiposity but a favourable metabolic profile, because the
model accounts for the population level correlation between higher adiposity and an
adverse metabolic profile. The resulting 33 aleles also included some alleles
associated very strongly with higher BMI and adverse metabolic profile, such as the

alele in the FTO gene, most likely because adjusting for body fat % in the model



does not fully account for the adverse metabolic effects of lifelong higher adiposity.
We therefore undertook a third step where we further refined the phenotypic
characteristics of these variants by performing a clustering analysis. This approach led
to the clustering of 14 alleles associated with “favourable adiposity” as defined by
association with higher body fat %, HDL-C, SHBG and adiponectin levels, and lower
triglycerides, alanine transaminase and fasting insulin levels (supplementary figure
3). We validated the effect of the 14 “favourable adiposity” alleles together in a
genetic score on levels of metabolic biomarkers using 5 independent studies: NEO,

EXTEND, GenScotland, TUF and IMI-DIRECT (supplementary table 5).

A genetic score of “favourable adiposity” alleles was associated with lower risk of

cardiometabolic disease outcomes.

Carrying additional "favourable adiposity” alleles was associated with higher body fat
% and higher BMI but lower risk of type 2 diabetes, hypertension and heart disease
(table 1). For example, the 10% of people carrying the most “favourable adiposity”
alleles had approximately 1.04% higher body fat % (95%CI [0.95,1.13], p=6x10-11%)
and 0.4 kg/m? higher BMI ([0.32,0.45], 3x10%) but 0.66 OR lower risk of type 2
diabetes ([0.61,0.72], 7x102%3), 0.87 lower risk of hypertension ([0.84,0.90], 1x1019)
and 0.84 OR lower risk of heart disease ([0.80,0.89], 6x101%) compared to the 10% of
people carrying the fewest “favourable adiposity” alleles (data from UK Biobank)
(figure 1). These effects were similar in men and women and when we removed the
seven known "favourable adiposity” variants from the analysis (table 1). These
associations were similar when using data from published GWASs (supplementary
table 6). For each of the 14 individual variants, the body fat % increasing alele was

associated with at least one of lower risk of type 2 diabetes, lower risk of heart disease



or lower diastolic or systolic blood pressure in UK Biobank except the variant at the
AEBP2 locus (supplementary figure 4). In published GWAS data the exceptions

were the variants at the AEBP2 and MAFF loci (supplementary table 6).

Individual “favourable adiposity’” alleles were associated with heterogeneous

effects on waist-to-hip ratio.

Five of the individual 14 variants were previously identified as associated with waist-
to-hip ratio(36). Previous studies have pointed out that the disease-protective effect of
these alleles is likely to be due to their association with redistribution of the extra fat
into the lower body (defined by lower waist-to-hip ratio). We therefore examined the
alleles association with waist-to-hip ratio in more detail. Carrying more “favourable
adiposity” alleles was associated with lower waist circumference (p=3.7x10°) but
higher hip circumference (2.3x101%) in women. However, in men, carrying more
“favourable adiposity” alleles was associated with higher waist circumference
(1.7x10%9), higher hip circumference (1.8x10°%) and no effect on waist-to-hip ratio
(supplementary table 7). These associations were robust when limiting the variants
to the 7 not previoudly identified as having a “favourable adiposity” phenotype
(supplementary table 7). Theindividual variants were associated with heterogeneous
effects on waist-to-hip ratio. Most notably, for two variants, those in/near PPARG and
ANKRD55, the “favourable adiposity” allele was not associated with lower waist-to-
hip ratio in women, and for ANKRD55, it was associated with higher waist-to-hip

ratio (figure 2).

“Favourable adiposity” alleles were associated with less liver fat and more

abdominal subcutaneous fat.



We next investigated the associations between the “favourable adiposity” variants and
MRI measures of subcutaneous, visceral and liver fat using data from 9,434
individuals and 4 studies — the first wave of UK Biobank imaging data (n=5,045),
NEO (2,236), IMI-DIRECT (1,323) and TUF (906). A fifth set of data did not include
liver fat and came from a published meta-analysis of 13 studies with abdominal MRI

or CT scans of 18,332 individuals(35).

The genetic score of “favourable adiposity” alleles was associated with lower
visceral-to-subcutaneous adipose tissue ratio p=2x1014) in both men and women.
This effect was driven by association with more subcutaneous fat (p=2x1014; table 2,
figure 3). All 14 individual genetic variants were associated with higher subcutaneous
adipose tissue, seven at p<0.05 (in/near DNAH10, FAM13A, GRB14, KLF14,
LYPLAL1, IRSL and PPARG). Nine individua “favourable adiposity” alleles were
associated with lower visceral-to-subcutaneous adipose tissue volume ratio, al at p <
0.05 (in/near CITED2, DNAH10, FAM13A, KLF14, LYPLALL, IRSL, PPARG, TRIB1
and VEGFA; supplementary figure 4, supplementary table 8). Paradoxicaly, the
“favourable adiposity” alleles inf/near ANKRD55 and PEPD were associated with

higher visceral-to-subcutaneous adipose tissue volume ratio (p=0.001 and 0.02,

respectively).

The genetic score of “favourable adiposity” was associated with lower liver fat in
women (p=6.3x10?°) but was not associated with liver fat in men (p=0.8; table 2,
figure 3). These effects were robust when limiting the variants to the 7 not previously
identified as having a “favourable adiposity” phenotype (table 2). For 11 individual

variants, the allele associated with higher subcutaneous fat was associated with lower



liver fat, four with p<0.05 (in/near CITED2, GRB14, PPARG and TRIB1

(supplementary figure 4, supplementary table 8).

Sensitivity analysis of liver fat.

We performed three sensitivity analyses to assess whether the effect of “favourable
adiposity” aleles on lower liver fat was affected by menopause, inclusion of type 2

diabetes patients or alcohol consumption.

First, menopause leads to a redistribution of adipose tissue towards more central
obesity and an android phenotype(37; 38). To study whether or not the association
with liver fat in women was influenced by menopausal status, we divided women
from the UK Biobank and TUF studies into pre- and post-menopausal status. The
association between “favourable adiposity” alleles and lower liver fat in pre-
menopausal women was twice that (-0.258 % [-0.223,-0.293]; p=0.002; n=433) of
post-menopausal women (-0.124 % [-0.106,-0.142]; p=0.002; n=2,356) but the

difference was not statistically meaningful (Pgiference=0.14; supplementary table 9).

Second, fatty liver disease is very common (>50%) in patients with type 2
diabetes(39). To check whether inclusion of people with type 2 diabetes had affected
the association with liver fat, we ran the tests in UK Biobank individuals excluding
people diagnosed with type 2 diabetes (n=222) from the analysis of liver fat. The
association of “favourable adiposity” alleles with liver fat remained similar after
exclusion of patients with type 2 diabetes in al, men and women (all Pgiterence™0.7;

supplementary table 10).

Third, the most common cause of increased fat in the liver is alcohol consumption

which is more prevaent in men(40; 41). To study whether or not the lack of



association with liver fat in men was due to greater acohol consumption, we assessed
the effect of “favourable adiposity” alleles on liver fat in men defined as heavy,
moderate and non-drinkers based on self-report alcohol questionnaires. The
“favourable adiposity” aleles were not associated with liver fat in any of the three

groups (supplementary table 11).



Discussion

We characterized 14 genetic variants associated with “favourable adiposity”. Our
study adds to previous studies(6; 7; 9; 10) in several ways. First, we outlined a new
approach which leads to the identification of more “favourable adiposity” variants.
Second, we provide more clarity about which individual aleles are likely “favourable
adiposity” alleles and how they affect metabolic traits and diseases. Third, we used
MRI data which strongly suggests these variants have a collective effect on lower
liver fat as well as higher subcutaneous fat but they have little detectable effect on
viscera fat. Finally, we provide a template for detecting alleles with apparently
paradoxical effects on adiposity and disease using a wide variety of publically
accessible GWAS data. In addition, our results strengthen previous observations
including the “favourable adiposity” effect is not driven by altered body shape in men

detectable by waist-to-hip ratio (6).

Of the 14 variants detected, 12 had been associated with at least one metabolic trait,
including fasting insulin (those in/near LYPLAL1, GRB14, IRS1, FAM13A, ANKRD55
and PEPD (42)), lipid levels (those in/near GRB14, IRSL, KLF14, TRIB1 and
DNAH10 (16)), adiponectin (those in/near TRIB1, DNAH10 and AEBP2(17)) and
alanine transaminase (TRIB1(20)). However, only two were known to be associated
with body fat % (those in/near GRB14 and IRSL(15)) at genome-wide levels of
statistical confidence. Our data provides several insights about individua variants.
Firgt, the alleles at PPARG, GRB14 and IRSL are associated with higher body fat %
but lower liver fat and lower risk of type 2 diabetes. Second, the allele in ANKRD55 is
paradoxically associated with higher visceral fat but lower risk of type 2 diabetes. In

agreement with this finding, this variant is in high linkage disequilibrium (R?= 0.97)



with another variant (rs459193) found to associate with lower waist circumference,
but higher 2-houre glucose levels(43). Third, the allele in TRIBL is associated with
higher body fat %, lower visceral fat, lower liver fat and lower risk of heart disease
and hypertension but it does not have any detectable effect on type 2 diabetes. Fourth,
4 variants we previously noted as favourable adiposity were not detected in this study.
These variants (in or near PDGFC, PEPD, RSPO3 and TET2) may alter body fat
distribution or other aspects of body composition without altering overall body fat %,

and hence were not detected at p<5x10€ in stage 1.

A key question is whether or not the “favourable adiposity” effect is entirely due to
preferential storage of the excess adiposity in the lower body as proposed before(36;
44). We made two general observations. First, despite similar effects on higher body
fat % and lower risk of disease in each sex, the protective effect in men was not
characterized by preferentially more fat in the lower body, as estimated by waist-to-
hip ratio, consistent with our previous observation(6). Second, the individual variants
were associated with heterogeneous effects on waist-to-hip ratio even within women.
For example the allele in/near ANKRD55 was associated with “favourable adiposity”

but higher waist-to-hip ratio in women.

Having established that the “favourable adiposity” effect is not driven by preferential
storage of fat in the lower body, as estimated by waist-to-hip ratio, in men, we
examined more detailed measures of fat redistribution using MRI data. The
association with lower liver fat was only detected in women. Our sensitivity analyses
did not find hormonal differences due to menopause, alcohol consumption or type 2
diabetes as possible explanations for sex differences. We would expect the

“favourable adiposity” alleles to be associated with liver fat in non-drinkers or



moderate drinkers if the alcohol intake in men confounded the association. However,
the analysis stratified by alcohol intake in men did not show any association. The lack
of association with visceral fat suggests that these alleles were not protecting from
disease due to lower viscera fat. This observation is consistent with some studies
which showed lower ectopic fat accumulation in the liver may be more important than
visceral fat in protection from risk of type 2 diabetes(45). A caveat to this conclusion
is that we used a marker of liver fat, alanine transaminase, as one of the metabolic
biomarkers to identify the variants, and therefore will be biased towards those that

affect liver more than visceral fat.

Our approach provides a framework for identifying additional alleles with apparently
paradoxical effects on adiposity and disease. A previous study(9) used a ssmple and
effective approach by taking published GWAS data and selecting all variants
associated with higher fasting insulin adjusted for BMI, lower HDL-C and higher
triglycerides at p<0.005 for each of the three traits. However, this approach has
limitations for two reasons, first it applies an arbitrary cut-off for the three traits, and
second, it does not use information from other biomarkers. We combined GWASs of
seven metabolic biomarkers and used a multivariate test that does not require
individual trait associations to reach a certain statistical threshold. We showed that
our method performs well, as it was able to identify the 7 variants previously known
to be associated with “favourable adiposity” as well as 7 additional variants that we
then validated in independent GWAS data. Furthermore, by including SHBG,
adiponectin and ALT in the model, we had more power to detect “favourable

adiposity” variants (supplementary table 12).



The identification of “favourable adiposity” aleles highlights genes that may be
targets for novel insulin-sensitizing agents. The alele in PPARG provides an
important proof of principle because thiazolidinediones are PPAR-y agonists and
appear to lower glucose levels despite increasing the patient’s weight by activating
adipocyte differentiation, which redistributes fat away from liver towards an
expanded subcutaneous depot(46; 47). The variants identified in our study do not
identify which genes they are acting through; however, previous studies suggest some
strong candidates. For example, TRIB1 encodes a protein critical for adipose tissue
maintenance and suppression of metabolic disorders(48). Mice lacking Tribl show
diminished adipose tissue mass and increased lipolysis even when on a normal
diet(48). GWAS studies in humans have implicated TRIBL1 in lipid metabolism(16)
and regulation of hepatic lipogenesis(20). Higher levels of VEGF-A in mice can
facilitate healthy expansion of adipose tissue and protect from lipotoxicity and
metabolic disease(49). CITED2 is required for optimal PPARy activation(50).
FAM13A encodes a protein enriched in mature adipocytes and plays an important role
in the insulin signaling cascade(51) by protecting IRS1 (insulin receptor substrate 1)
from degradation(51). The proteins encoded by IRS1 and CCDC92 are associated
with adipogenesis, lipid accumulation and adipocyte differentiation ability(9; 51).
Functional studies suggest DNAH10 is involved in adipocyte differentiation
capacity(9). KLF14 is a master regulator of gene expression in adipose tissue(52)
associated with adipocyte cell size in humans(53). MAP3K1 regulates expression of
IRS1(54). LYPLALL, as a triglyceride lipase, is over-expressed in subcutaneous
adipocytes of obese people to maintain triglycerides metabolism(55). The regulation
of Grbl4 expression in adipose tissue may play a physiological role in insulin

sensitivity(56). AEBP2 regulates a gene encoding a fatty acid-binding protein.



Our study had a number of limitations. First, we used 7 metabolic biomarkers from
published GWASs in our multivariate analysis. The sample size for each GWAS was
different: ranging from 21,800 individuals from GWAS of SHBG to 99,900 from the
GWAS of lipids. These differences, caused by using GWAS meta-analysis data from
different studies, will have limited our power, and led to less accurate estimates of the
correlation between phenotypes compared to having the same sample size for all
phenotypes. Second, the published GWASs of biomarkers were performed in men and
women together rather than in a sex specific way. As men and women have different
body fat distribution, it seems necessary to perform the discovery of “favourable
adiposity” variants in men and women separately when data becomes available.
Third, we used bio-impedance measures of body fat % as measure of adiposity in the
discovery step. This measure of adiposity is an imprecise measure and is not as
accurate in calculating body fat % in obese individuals or people with higher muscle
mass(57). However, it's availability in 442,278 individuals meant it represented a
powerful dataset from which to start(58). Fourth, individual variants had subtle effect
sizes; al variants were associated with at least one disease, with the body fat %
increasing allele associated with lower risk except the one at AEBP2 locus; although
this variant had a paradoxical effect on adiposity and metabolic biomarkers with
significant association between body fat % increasing allele and higher adiponectin
(p= 4.76x107%), higher HDL-C (p=2.83x10%) and lower triglycerides (p=0.003;

supplementary table 4).

To yield a better understanding of how “favourable adiposity” protects against
cardiometabolic disease, more studies in future are warranted. First, it will be
important to test the association of “favourable adiposity” variants with pancreatic fat

as a potential cause of B-cell dysfunction that will inform the associations with type 2



diabetes. Second, there are substantial ethnic differences in diabetes risk by BMI with
South Asians having a much higher risk of type 2 diabetes for a given BMI compared
to Europeans(59). Study of the genetics of “favourable adiposity” in different ethnic
groups may provide important insights into the mechanisms underpinning the

significant ethnic differences in diabetes risk.

In summary, our study provides further genetic evidence that the balance of
subcutaneous to ectopic liver fat is an important factor for type 2 diabetes, heart
disease and hypertension. This finding is consistent with data from monogenic forms
of lipodystrophy and the importance of an expandable subcutaneous adipose tissue as
a protective disease mechanism and limited adipose storage capacity as a risk

mechanism (based on the opposite alleles) as proposed in previous studies(60-62).
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Tables



Table 1. The effect of “favourable adiposity” genetic score on measures of adiposity and cardiometabolic disease outcome in the UK Biobank

study. Effects are per carrying additional adiposity alele. 95% CI: 95% confidence interval; P. p-value; N: number; OR: odds ratio.

14 SNPs 7 “additional” SNPs |

Trait/disease | Analysis | Effect  95% CI P Effect 95% ClI P N (casesvs. controls)
Body fat % ALL 0.17 0.169, 0.171  6x10263 0.15 0.149, 0.151 1x101% | 443,000

Women |0.15 0.148,0.152 3.5x1016 | 0.14 0.138, 0.142 8.9x10°2 | 240,882

Men 0.19 0.188,0.192  1x101% 0.16 0.158, 0.162 3x10°! 202,118
BMI (kg/m?) | ALL 0.040 0.039, 0.041 3.6x10% | 0.045 0.044, 0.047 4.5x10%0 | 449,359

Women | 0.041 0.039,0.042 3x10% 0.047 0.045, 0.049 1.9x101° | 243,797

Men 0.039 0.038,0.041 1.6x10% | 0.042 0.040, 0.045 6x1014 205,528
Type?2 ALL 0.954 0.948,0.960  4x10* 0.966 0.957, 0.975 1.9x1013 | 14,371 vs. 428,017
diabetes (OR) | Women | 0.950 0.939,0.961 3x1018 0.962 0.946, 0.977 2x106 4,713 vs. 236,073

Men 0.960 0.948,0.964 5x10% 0.966 0.955, 0.978 1x10® 9,076 vs. 192,344
Heart disease | ALL 0.984 0.980,0.989  3x10 0.982 0.976, 0.988 1.5x10° | 37,741 vs. 318,892
(OR) Women | 0.987 0.980, 0.994  0.0003 0.981 0.971, 0.991 0.0003 12,270 vs. 184,550

Men 0.982 0.977,0.987 2x10t 0.983 0.975, 0.990 2.6x10° | 25,363 vs. 134,433
Hypertension | ALL 0.987 0.985,0.989  1x10% 0.989 0.986, 0.992 3x10°13 241,691 vs. 206,525
(OR) Women | 0.988 0.985,0.991 2x1016 0.989 0.985, 0.993 3x10”7 114,713 vs. 128,623

Men 0.985 0.981,0.988 1.7x101° | 0.987 0.983, 0.992 1.6x107 | 126,978 vs. 77,902
Systolic blood | ALL -0.173  -0.174, - 9x1046 -0.139 3.6x1016 | 450,075
pressure 0.172 -0.141, -0.138
(mmHgQ) Women |-0.163 -0.165, - 1x10% -0.134 1x108 244,183

0.162 -0.136, -0.132
Men -0.206  -0.208, - 7.9x10%" | -0.161 2x10° 205,892
0.205 -0.163, -0.159

Diastolic ALL -0.074  -0.075, - 7x1024 -0.085 -0.087, -0.083  1x1016 449,322




blood pressure 0.073
(mmHgQ) Women |-0.078 -0.080, - 1.6x10* | -0.093 1x10°10 243,732
0.077 -0.095, -0.091
Men -0.073  -0.074, - 1.9x101° | -0.081 3.5x107 | 205,590
0.071 -0.083, -0.079

Table 2. The effect of “favourable adiposity” genetic score on (MRI/CT scan) measures of abdominal adipose tissue using data from 5 studies.

Effects are per carrying additional adiposity allele. 95% Cl: 95% confidence interval; P het: P of heterogeneity test across the 5 studies.

14 SNPs 7 “additional” SNPs

Analysis | Beta 95% Cl P P het Beta 95% Cl P P het
subcutaneous | Al 0.054 0.042, 0.067 2x1014  0.36 0.048 0.029, 0.067 9.6x107  0.38
af'?fose“SSUG Women | 0.032 0.016, 0.048 6x10° 0.55 0.032 0.010, 0.054 3x10°3 0.89

Itres

(Litres) Men |0.051 0.035, 0.067 25x1011  0.16 0.045 0.022, 0.064 49x105  0.35
Visceral All 0.005 -0.007, 0.014 0.4 0.69 -0.002 -0.016,0011  0.84 0.94
?Si'tﬂ‘g“swe Women | -0.007 -0.018, 0.005 0.2 0.28 -0.009 -0.025,0005 021 0.6

Men |0.011 0.000, 0.020 0.05 0.05 0.007 -0.009,0.020  0.43 0.34

All -0.005 -0.007,-0004  2x10“ 0.5 -0.005 -0.008,-0.004  4x10° 0.75
YQZSAT Women | -0.005 -0.007,-0003  1x10°  0.46 -0.006 -0.008,-0.004  9x10°® 0.93

Men  |-0.004 -0.005,-0002 7107 0.03 -0.004 -0.006, -0.002  4x10* 0.16




Liver fat (%)

All
Women
Men

-0.087
-0.170
-0.005

-0.124, -0.051
-0.225, -0.110
-0.055, 0.041

5.6x10°
6.3x10°
0.8

0.015
0.26
0.16

-0.060
-0.133
0.000

-0.115, -0.009
-0.216, -0.055
-0.069, 0.069

0.02
1x103
0.99

0.015
0.57
0.086




Figures

Figure 1. Carrying more “favourable adiposity” aleles was associated with higher
adiposity but lower risk of type 2 diabetes (a), heart disease (b) and hypertension (c).
We divided individuals from UK Biobank into 10 centiles based on their “favourable
adiposity” genetic score (x vector). The distribution of “favourable adiposity” genetic
score is shown in black and the case/control proportion is shown in red per each

centile.

Figure 2. The individual variants were associated with heterogeneous effects on
waist-to-hip ratio. Most notably, for two variants, those in/near PPARG and
ANKRD55, the “favourable adiposity” allele was not associated with lower waist-to-
hip ratio in women, and for ANKRD55, it was associated with higher waist-to-hip
ratio. For eleven variants (those in/near IRS1, TRIB1, CITED2, FAM13A, VEGFA,
AEBP2, KLF14, LYPLAL1, DNAH10, MAFF and GRB14) the “favourable adiposity”
allele was associated with lower waist-to-hip ratio in women, whilst for the variant
in/near PEPD there was no clear association with waist-to-hip ratio in either sex. The
x vector illustrates the effect on body fat % in men (right plot) and women (left plot).
The y vector illustrates the effect on waist-to-hip ratio. Data is from UK Biobank

population.

Figure 3. The effect of “favourable adiposity” genetic score on (MRI/CT scan)
measures of abdominal adipose tissue using data from 5 studies. The x-axis is the

effect size per carrying additional “favourable adiposity” allele.
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