
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

Paracomplete logic Kl: natural deduction, its automation, 

complexity and applications

Bolotov, A., Kozhemiachenko, D. and Shangin, V.

 

This is a copy of the final version of an article published in Journal of Applied Logics - 

IfCoLog Journal of Logics and their Applications, 5 (1), pp. 221-261.  It is available from 

the publisher at:

http://www.collegepublications.co.uk/journals/ifcolog/?00021

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License. 

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

http://www.collegepublications.co.uk/journals/ifcolog/?00021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk


Paracomplete Logic Kl — Natural
Deduction, its Automation,Complexity and

Applications

Alexander Bolotov∗
University of Westminster, London, UK.

a.bolotov@westminster.ac.uk

Daniil Kozhemiachenko
Lomonosov Moscow State University, Russian Federation.

kodaniil@yandex.ru

Vasilyi Shangin†
Lomonosov Moscow State University, Russian Federation.

shangin@philos.msu.ru

Abstract
In the development of many modern software solutions where the under-

lying systems are complex, dynamic and heterogeneous, the significance of
specification-based verification is well accepted. However, often parts of the
specification may not be known. Yet reasoning based on such incomplete speci-
fications is very desirable. Here, paracomplete logics seem to be an appropriate
formal setup: opposite to Tarski’s theory of truth with its principle of biva-
lence, in these logics a statement and its negation may be both untrue. An
immediate result is that the law of excluded middle becomes invalid. In this
paper we show how to apply an automatic proof searching procedure for the
natural deduction formulation of the paracomplete logic Kl to reason about
incomplete information systems. We provide an original account of complex-
ity of natural deduction systems, which leads us closer to the efficiency of the
presented proof search algorithm. Moreover, we have turned the assumptions
management into an advantage by showing the applicability of the proposed
technique to assume-guarantee reasoning.
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1 Introduction
1.1 Problem Setup — Reasoning with Incomplete Information
The significance of formal specification with subsequent verification in Software En-
gineering is well accepted. It is quite standard to classify two types of verification —
the explorative approach (with model checking as its typical representative) and the
deductive one. In this paper, we are interested in specification-based deductive
verification. Incorporating the notation of [22], we represent the task of deduc-
tive verification, DV, of a system Sys with its specification Spec by the following
signature:

DV :: Sys× Spec −→ B × [Proof ]

where the Boolean result of deductive verification based on theorem proving is either
a proof that a system satisfies a given property or a demonstration that no proof
can be established — B × [Proof ].

Traditionally, specifications follow two general classical principles: completeness
and consistency. The former assumes that a statement — φ — about the specifica-
tion Spec, or its negation — ¬φ — is true. Under the latter, a member of Spec — φ
— and its negation — ¬φ — cannot be both true. As a consequence, completeness
and consistency govern reasoning applied to such formal specifications — regardless
whether it is model checking, or deductive reasoning, classical or not (temporal,
modal, etc). Inconsistent or incomplete specifications are results of rejecting one of
(or both) the principles mentioned above. Here paraconsistent and paracomplete
logics come into play [1]. We strongly believe such cases are of more interest when
one considers the development of modern software solutions with their underlying
complex, dynamic and heterogenous systems. This definitely applies to such areas
as clouds or robotics, where software systems are defined to work in a complex, dy-
namic and heterogeneous environment. However, our thorough research of software
engineering formal methods literature has not shown many works where authors
tackle incomplete specifications. Perhaps one of the main reasons for this is the
lack of deductive methods for such a non-standard setting. Among few of those
that address this problem are [17, 18, 29, 28, 43]. However, none of the techniques
proposed in these papers, gives any account of automation, and, to our believe, they
are not open to an easy way of automation. Below we identify the following cases
relevant to the account of incompleteness of specifications:

(a) the problem to simplify complex software requirements in incomplete specifi-
cations,

(b) a typical integration task of various resources, which could be the problem
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of forming of heterogeneous resources into networks or clouds, or component-
based system engineering where components are not fully specified, or

(c) the problem of finding assumptions in assume-guarantee reasoning in the con-
text of incomplete specifications.

We argue that reasoning following the classical principles is unsuitable when one
deals with incomplete information as such reasoning validates the excluded middle
(bivalence) principle1. Informally, it says that a truth-value of any statement is either
true or false. One may also say that under the given specification, any statement
is fully defined. In case this principle does not hold (i.e. some statement is not
fully defined, or, in other words, we have here a truth-value gap) we are required
to propose both specification languages of high level and corresponding deductive
methods.

In the paper, we deal with the paracomplete logic where the law of excluded
middle and some other classical laws are invalid. For example, one can not deduce
A ⊃ B from ¬A ∨ B. We confine ourselves to the sentential reasoning, and at the
moment, abstract from temporal or dynamic dimensions. We assume the language of
the paracomplete logic Kl [1] (which is called PComp in [38] and [8]) is the language
to write incomplete specifications. One must find efficient deductive techniques to
deal with the reasoning which corresponds to clauses (a)–(c) above. When we choose
among available formalisms and methods of deduction which use assumptions, we
believe it is reasonable to take into account the following considerations.

(i) Efficient management of assumptions: tracking assumptions, making sure the
assumptions occur in the proof with some reasons, not randomly, and to man-
aging the way how assumptions occur in the proof.

(ii) Availability of automated proof searching that enables implementation.

(iii) Potential to reuse and adapt deductive techniques and proof searching for to
the various kinds of formal specifications; for instance, an option to deal with
incomplete or inconsistent specifications as well as with specifications which
are both incomplete and inconsistent, or an option to extend our results to
such richer formalisms as dynamic systems.

We argue now that natural deduction seems to be an appropriate framework if
one wants to satisfy (i)–(iii).

1Although the principles of bivalence and excluded middle are different, in the paper we will
use them as synonyms.
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In the framework of automated reasoning, provers are usually based upon ei-
ther resolution method, analytic tableaux or Fitch-style natural deduction (see, for
example [31, 34, 27, 35, 30, 40] for provers based on classical natural deduction). Au-
tomated theorem proving in many-valued logic is usually conducted via the method
of analytic tableaux, which provides a useful way of constructing counter-models to
non-provable formulas. Our target is different. We are interested in a proof tech-
nique that explicitly constructs proofs. Considering automated natural deduction
for the three-valued paracomplete logic, we use a Fitch-style calculus. Furthermore,
in contrast to analytic tableaux we aim at developing a proof search algorithm which
constructs explicit proofs for tautologies, not only counter-models for non-provable
formulae.

In the rest of this introductory section we first provide some argumentation
in favour of our choice of the underlying logic, Kl, to reason about incomplete
specifications and then we will analyse possible approaches to build a desired natural
deduction proof technique.

1.2 Choice of Logic — Paracomplete Logic Kl as a Many-valued
Logic

The logic Kl was originally introduced by Avron [1]. In Avron’s paper, Kl plays an
important role in the definition of a family of paracomplete natural logics (though,
Avron himself doesn’t use the term ‘paracomplete’; in his terminology, such logics
are logics with the ’undefined’ interpretation). This family includes strong Kleene’s
logic, logic of partial functions LPF and Łukasiewicz’s 3-valued logic. In the fol-
lowing we highlight the importance of Kl in the context of these logics and explore
some arguments in favour of our natural deduction presentation in comparison to
Carnielli’s approach to systematization of finite many-valued logics [14].

Considering strong Kleene’s logic we note its famous property of not having
theorems. As in our paper we want to tackle both derivations and proofs we find
this logic inappropriate for our purposes. The logic of partial functions, LPF, has an
additional unary connective (so to speak, another kind of negation), and for this rea-
son we consider LPF being not in the scope of our research. Finally, Łukasiewicz’s
3-valued logic lacks the deduction theorem which is crucial for our proof searching
procedure, where the deduction theorem is incorporated in the form of the impli-
cation introduction rule. However, these arguments only justify our choice of logic
and do not mean that proof searching procedures for these logics won’t be a task
for a future research that may be carried out. We note that these systems can be
tackled, for example, in the spirit of [16].

It is also worth to analyse here Sette and Carnielli’s weakly-intuitionistic logic I1
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[39]. Note that I1 is both a counterpart of Sette’s maximal paraconsistent logic P 1

and an extension of strong three-valued Kleene’s logic K3. First, we observe that
I1 is different from our target logic, Kl, with respect to the validity of the formulae
representing the law of excluded middle. In particular, A ∨ ¬A is invalid in Kl for
an arbitrary A while in I1 it is invalid for an atomic A only. Another difference lies
within the matrix definitions of both implication and negation. The valuation of
A ⊃ B when A = 1 and B = f is ‘f ’ in the semantics of Kl but it is ‘0’ in the
semantics of I1. The valuation of ¬A when A = f is ‘f ’ in the semantics of Kl but
it is ‘0’ in the semantics of I1. Last, not least, logics I1 and Kl don’t coincide in
respect to their notions of theoremhood. For example, only a restricted version of
¬¬A ⊃ A is valid in I1 while in Kl this law holds without restriction.

1.3 Choice of Deductive Approach — Natural Deduction for Kl

Considering the nature of our approach to build a natural deduction system, it is
worth to compare it to [14, 13] and [1]. Carnielli’s approach essentially uses the
idea of signed formulae. Following this approach, a prefix of a formula used in
a tableaux or natural deduction, would have been the corresponding matrix evalu-
ation for this formula. For instance, given three values 1, T, 0 we would formulate
in a sequent calculus (and with a slight adaptation, a natural deduction system)
exactly three rules for each signed formula, 1 ⊃, T ⊃, and 0 ⊃. A different approach
was adapted by Avron, (see in particular [1], p. 277, footnote 2) and we follow this
approach. Also note that some natural deduction system can be routinely extracted
from Avron’s paper, however, it would be considerably different from our natural
deduction construction.

Natural deduction allows not only to establish that the proof one wants to achieve
exists, but it also makes it very explicit. Both a natural deduction system for Kl and
its proof searching (as presented in [10]) satisfy (i)–(ii). To the best of our knowledge,
no other (direct) natural deduction system for Kl has been proposed. We believe this
can be explained by the following. Both paraconsistent and paracomplete logics are
likely to be analysed with some philosophical motivation and, therefore, in computer
science framework the preferential methods have been Hilbert-style systems [24],
analytic tableaux [12] or sequent-style calculi [20]. The only exception here is [4],
where a kind of natural deduction system for a paracomplete setting is introduced.
However, one can’t consider such an approach as a direct method of deduction as it
is based on the translation techniques to Isabelle [26]. We remind the reader that
the system PCont, the dual of Kl (named as three-valued paraconsistent logic [1,
p.278]), deals with inconsistent systems. Both a natural deduction system for PCont
and its proof searching can be found in [7] and [33]. Consequently, the latter paper
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together with the results of this paper, imply that our choice of natural deduction
satisfies (iii).

The novelty of our paper is in the following. First, we show the way an automated
natural deduction for Kl in [10] is applicable to reason about incomplete information
systems. We also provide proofs of some statements previously announced and
presented without proof in [8], thus significantly improving and expanding the latter.
We present substantial conceptual and methodological considerations, introduce new
technical concepts, refine and polish proofs and provide several examples. Finally,
we provide an account of complexity and efficiency.

The paper is organised as follows. To make reading self-contained, §2 reviews
the formulation of the natural deduction system for classical propositional logic.
Next, §3 introduces the underlying logic Kl, its axiomatics, and natural deduction
calculus, it also contains sketches of results in [10]. In §4 we discuss the complexity
account. This follows by an overview of the proof searching procedure and the core
algorithm in §5. We also provide a detailed example of the algorithmic proof search.
The next section, §6, classifies problems to which natural deduction is applicable as
a tool for deductive verification. We also present a methodology for solving some
of the problems of the type (a)–(c) mentioned above and consider typical scenarios
of component-based system synthesis and assume-guarantee technique. Finally, §7
contains the conclusion and the roadmap to future work.

2 Natural Deduction System for Classical Propositional
Logic — CPLND

We commence with the review of the natural deduction system for classical proposi-
tional logic, CPLND. The natural deduction system presented below is a standard
Fitch-style natural deduction system. One of the specifics of this type of natural
deduction systems is that a derivation is defined in a linear format, opposite to
Gentzen-style, or tree-like format. The rules of derivation are traditionally divided
into elimination and introduction rules — the former allow to decompose compound
formulae while the latter allow to construct compound formulae. Recall that in
constructing proofs in natural deduction systems, we introduce assumptions. In
some cases we need to discard alive assumptions. To indicate that a natural de-
duction rule with the conclusion C discards the last alive assumption, A, and all
formulae A, . . . , C− (where C− is the formula preceding C), we will use a standard
abbreviation, [A]C.

The system CPLND has the following rules of derivation.
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Elimination rules:

∧el1
A ∧B
A

, ∧el2
A ∧B
B

, ¬el
¬¬A
A

, ∨el
¬A,A ∨B

B
,⊃el

A ⊃ B,A
B

Introduction rules:

∧in
A,B

A ∧B , ∨in1
A

A ∨B , ∨in2
B

A ∨B , ⊃in
[A]B
A ⊃ B , ¬in

[A]B, [A]¬B
¬A

Definition 1 (CPLND-derivation). An CPLND-derivation of a formula A from
a set of formulae Γ is a finite sequence of formulae, each of which is either a member of
Γ (an assumption) or is derived from the previous formulae by one of the elimination
or introduction rules. In case ⊃ in or ¬ in are used, all formulae from the last alive
assumption to the resulting formula should be discarded from the derivation.

Definition 2 (Proof). A proof in the system CPLND is a derivation with the empty
set of alive assumptions.

Note that this and the other definitions of a derivation in natural deduction
systems in the paper are ‘standard’ textbook ones and are sufficient for the purposes
of the paper. For a more accurate definition of proof see [42].

It has been shown that CPLND is sound and complete [5]. The natural deduction
system for paracomplete logic Kl given in §3 is a modification of the CPLND which
reflects its characteristic features.

3 Paracomplete Logic Kl and its natural deduction cal-
culus KlND

Here, to make the presentation self-contained, we define fully the logic Kl, its syntax
and semantics, give a full set of rules of the natural deduction calculus and provide
an account of its metatheoretical properties — the main results of [10].

3.1 Kl and Its Axiomatics

Kl is a propositional logic with the infinite number of propositional symbols Prop =
p, q, r, . . . and the semantics assigning to each propositional symbol from Prop one of
the three truth-values 1 — ‘true’ (the designated one), 0 — ‘false’, and 1/2 — ‘none’
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such that A∨B = max(A,B) and A∧B = min(A,B) The matrices for connectives
are defined as follows.

∨ 1 1/2 0
1 1 1 1

1/2 1 1/2 1/2
0 1 1/2 0

∧ 1 1/2 0
1 1 1/2 0

1/2 1/2 1/2 0
0 0 0 0

⊃ 1 1/2 0
1 1 1/2 0

1/2 1 1 1
0 1 1 1

p ¬p
1 0

1/2 1/2
0 1

It is the presence of the third truth assignment, 1/2, that makes the calculus
paracomplete allowing to identify the cases of incompleteness (uncertainty, etc.) and
thus allowing to consider systems with incomplete information, (see §6 for details).
Often the properties and the flavour of the logic become more transparent in the
axiomatic construction. For these reasons we export the axiomatic of Kl from [1]
which is a subset of the set of axioms of classical propositional logic.

1. (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))
2. A ⊃ (A ∨B)
3. A ⊃ (B ∨A)
4. (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))
5. (A ∧B) ⊃ A
6. (A ∧B) ⊃ B
7. (C ⊃ A) ⊃ ((C ⊃ B) ⊃ (C ⊃ (A ∧B)))
8. A ⊃ (B ⊃ A)
9. (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
10. ((A ⊃ B) ⊃ A) ⊃ A
11. ¬(A ∨B) ⊃ (¬A ∧ ¬B)
12. (¬A ∧ ¬B) ⊃ ¬(A ∨B)
13. ¬(A ∧B) ⊃ (¬A ∨ ¬B)
14. (¬A ∨ ¬B) ⊃ (¬A ∧ ¬B)
15. ¬(A ⊃ B) ⊃ (A ∧ ¬B)
16. (A ∧ ¬B) ⊃ ¬(A ⊃ B)
17. ¬¬A ⊃ A
18. A ⊃ ¬¬A
19. ¬A ⊃ (A ⊃ B)

The only rule of inference of Kl is modus ponens: from A and A⊃B infer B.
Note that this axiomatics reflects the failure of the law of excluded middle so,

for example, p ∨ ¬p is not provable in this system. We also observe that Axiom 19
is equivalent to (B ⊃ ¬A) ⊃ ((B ⊃ A) ⊃ ¬B) [1, p.288].
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3.2 KlND — Natural Deduction Calculus for Kl.
Definition 3 (KlND-derivation). A derivation in the system KlND is a finite non-
empty sequence of formulae where each formula is an alive assumption or is derived
from the previous ones by one of the following KlND-rules.

Elimination rules:

∧el1
A ∧B
A

, ∧el2
A ∧B
B

, ¬∧el
¬(A ∧B)
¬A ∨ ¬B ,¬el

¬¬A
A

,

¬ ∨el1
¬(A ∨B)
¬A , ¬ ∨el2

¬(A ∨B)
¬B , ⊃el

A,A ⊃ B
B

,

¬⊃el1
¬(A ⊃ B)

A
, ¬⊃el2

¬(A ⊃ B)
¬B , ∨el

A ∨B, [A]C, [B]C
C

,

∨⊃el1
(A ∨B) ⊃ C

A ⊃ C , ∨⊃el2
(A ∨B) ⊃ C

B ⊃ C .

Introduction rules:

∧in
A,B

A ∧B , ¬∧in
¬A ∨ ¬B
¬(A ∧B) , ∨in1

A

A ∨B , ∨in2
B

A ∨B ,

¬∨in
¬A,¬B
¬(A ∨B) , ⊃in

[A]B
A ⊃ B , ¬⊃in

A,¬B
¬(A ⊃ B) ,

¬in
B

¬¬B , ⊃p
[A ⊃ B]A

A
, Kl¬in

A,¬A
B

Definition 4 (Proof). A proof in the system KlND is a derivation with the empty
set of alive assumptions.

Let us give now a short, but indicative, example of proof for ((p∧q)∨(p∧r)) ⊃ (p∧
(q∨r)) in the described natural deduction calculus. Below we use the square brackets
to indicate which formulae are discarded from the proof. Thus, the application of
∨el rule to p∧ (q∨r) on step 12 requires to discard all formulae from the assumption
p∧ q on step 2 up to p∧ (q∨ r) on step 6 and all formulae from the assumption p∧ r
on step 7 up to formula p∧ (q∨r) on step 11. Finally, applying ⊃in rule to p∧ (q∨r)
on step 12, we obtain the desired derivation for ((p ∧ q) ∨ (p ∧ r)) ⊃ (p ∧ (q ∨ r))
discarding all formulae from the last alive assumption (p∧ q)∨ (p∧ r) on step 1, up
to the conclusion of this rule.
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


1. (p ∧ q) ∨ (p ∧ r) — assumption


2. p ∧ q — assumption
3. p — ∧el1 : 2
4. q — ∧el2 : 2
5. p ∨ r — ∨in1 : 4
6. p ∧ (q ∨ r) — ∧in: 3, 5



7. p ∧ r — assumption
8. p — ∧el1 : 7
9. r — ∧el2 : 7
10. q ∨ r — ∨in2 : 9
11. p ∧ (q ∨ r) — ∧in: 8, 10

12. p ∧ (q ∨ r) — ∨el: 1, 6, 11
13. ((p ∧ q) ∨ (p ∧ r)) ⊃ (p ∧ (q ∨ r)) — ⊃in: 12

As the derivation does not have any alive assumptions it is also a proof for
((p ∧ q) ∨ (p ∧ r)) ⊃ (p ∧ (q ∨ r)).

The presented natural deduction calculus is sound and complete, below |= stands
for KlND logical consequence:

Theorem 1. Γ `KlND A ⇐⇒ Γ |= A [10]

Theorem 1 semantically justifies applications of derivations based on natural
deduction. We argue that the natural deduction style of a proof is a powerful
technique to tackle formal specification/verication software engineering problems.
It is particularly important when there is an obvious need to not only establish if
a desired proof exists but to also explicitly show how the proof (for some desired
property) is constructed. Let us give here an informal insight into the way how the
proof in natural deduction is formed. Assume we have a specification S, and would
like to investigate if some statement B ∈ S holds under some set of assumptions
Γ. In this introductory case, we have a task to derive B from the specification
S, given the assumptions Γ. Following the specifics of natural deduction, now, we
either simplify compound formulae in the proof by elimination rules, or synthesise
formulae by introduction rules. In the subsequent sections we present a proof search
algorithm which guides such applications of elemination/introduction rules in an
efficient manner, and give an annotated example.

4 Complexity of Natural Deduction
Convention 1. We will, according to Reckhow [41] and Pelletier [32], say that a given
calculus is natural if it allows to use arbitrary assumptions in the proofs of theorems
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and incorporates the deduction theorem as one of its rules.
It is evident then that systems CPLND and KlND are “natural” systems.
Now we will consider three sound and complete classical propositional natural

calculi, namely, CPLND described in §2, nested deduction Frege system and general
deduction Frege system described in [11].

Definition 5 (Nested deduction Frege system — ndF ). The system ndF is char-
acterised by the following constraints:

• it has two rules of derivation:

1. mpn — A A ⊃ B
B

2. drn — [A]B
A ⊃ B (where A is the last alive assumption)

• it uses a finite number of axiom schemas.

An ndF -derivation of a formula A from a set of formulae Γ is a finite sequence of
formulae, each of which is

• either a member of Γ (an assumption), or

• an instance of an axiom schema or

• is derived from previous formulae by mpn or drn. In case drn rule is used, all
formulae from the last alive assumption up to (but not including) formula A
should be discarded from derivation.

We write Γ|ndF
n A if there is an ndF -derivation of A from Γ with the length of

no more than n formulae. We use here and below, in the formulation of the rules,
a lower index n to indicate that these are derivations and rules in Nested deduction
Frege system.

Definition 6 (General deduction Frege system — dF ). Derivations in dF have
steps presented as sequents of the form Γ 7→ A with Γ being a set of formulae and
A being a formula. We use below, in the formulation of the rules, a lower index g
to indicate that these are derivations and rules in General deduction Frege system.
There are four rules of derivation in dF :

1. 7→ A, where A is an instance of an axiom schema of a consistent and complete
set of axioms taken, for example, from [21].

2. {A} 7→ A, where A is either a member of Γ or an assumption
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3. mpg — Γ1 7→ A Γ2 7→ A ⊃ B
Γ1 ∪ Γ2 7→ B

4. drg — Γ 7→ B

Γ \ {A} 7→ A ⊃ B
We define a dF -derivation of a formula A from a set of formulae Γ as a finite

sequence of sequents, each of which is obtained by one of the rules above, and the
last sequent is Γ 7→ A. We write Γ|dF

n A to indicate that there is a dF -derivation of
Γ 7→ A containing no more than n sequents.

We will now prove some theorems related to speedups (better performance) of
these calculi.

Theorem 2. Γ|CPLND
n C ⇒ Γ|ndF

O(n)C

Proof. We prove the theorem by induction on the number of steps n of CPLND-
derivation.

The proof splits into two cases depending on how the last formula C in CPLND-
derivation was inferred.

Case 1 C is an assumption or a member of Γ. Then an ndF -derivation consists
of only one formula — C itself.

Case 2 C was derived by a rule of a derivation. We will now show that the con-
clusion of every CPLND-rule can be derived from its premises in ndF in a constant
number of steps. This is obvious in case of rules ∧in, ∧el1 , ∧el2 , ∨in1 , ∨in2 , ⊃el, and
¬el. Next, we substitute each application of ⊃in with drn and each application of
⊃el with mpn.

In case C was derived by ¬in, let C = ¬A. We have a CPLND-derivation of
length n. We proceed as follows. We will also provide necessary comments explaining
how steps of the proofs are derived.

...


A — the last alive assumption
...
B
...
¬B

¬A — ¬in applied to B and ¬B
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The ndF -derivation will be as follows:
...


A — the last alive assumption
...
B
...
¬B
...
B ∧ ¬B — in a constant number of steps using A ⊃ (B ⊃ (A ∧B))

A ⊃ (B ∧ ¬B) — drn

A — assumption
...
B — in a constant number of steps using (B ∧ ¬B) ⊃ B

A ⊃ B — drn

A — assumption
...
¬B — in a constant number of steps using (B ∧ ¬B) ⊃ B

A ⊃ ¬B — drn
...
¬A — in a constant number of steps using (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A)

Theorem 3. Γ|ndF
n C ⇒ Γ|CPLND

O(n) C

Proof. To prove this we simply note that assumptions and formulae of Γ in an
ndF -derivation become, respectively, assumptions and formulae ofΓ in a CPLND-
derivation. Similarly, each application of mpn becomes an application of ⊃el, and
each application of drn becomes an application of ⊃in. We substitute all instances
of axiom schemata with their proofs which are constructed in a constant number of
steps.

Theorem 4. Assume, there is a CPLND-derivation of C from Γ in n steps. Then,
there is a dF -derivation of C from Γ in O(n) steps.

The proof is similar to the proof of Theorem 2.
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Theorem 5. Assume, there is a dF -derivation of C from Γ in n steps. Then, there
is a CPLND-derivation of C from Γ in O(n2) steps.

Proof. For this theorem, let
m∧

i=1
Ai be a conjunction of m formulae Ai which are or-

dered arbitrarily. Also, if Γ is a finite set of formulae, then ∧(Γ1∪Γ2) is a conjunction
of its members ordered and associated arbitrarily.

It suffices to prove that if {A1, . . . , Am} 7→ C has a dF -proof of the length n,
then

m∧
i=1

Ai ⊃ C has a CPLND-proof of the length O(n2). The proof of this theorem

is similar to the proof of Theorem 4 in [11]. We substitute each sequent in a dF -
derivation with its relevant formula and then fill in the gaps. Now we show that all
gaps can be filled in O(n) steps. The proof splits into four cases depending on how
the sequent in a dF -derivation was inferred.

Case 1 The sequent has the form 7→ A, where A is an instance of an axiom schema.
Then we substitute it with the formula A which can be proved in a constant number
of steps (since A is a tautology).

Case 2 The sequent has the form A 7→ A, where A is an assumption. We substitute
it with the formula A ⊃ A which has a CPLND-derivation of a constant number of
steps.

Case 3 The sequent was inferred by mpg. Then it has the form Γ1 ∪ Γ2 7→ B and
there are also two sequents prior to it, namely, Γ1 7→ A ⊃ B and Γ2 7→ A. It suffices
to show that ∧(Γ1 ∪ Γ2) ⊃ B can be inferred from ∧ Γ1 ⊃ (A ⊃ B) and ∧ Γ2 ⊃ A.
The derivation proceeds as follows.

...∧ Γ1 ⊃ (A ⊃ B)

...∧ Γ2 ⊃ A
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


∧(Γ1 ∪ Γ2) — assumption
...∧ Γ1 applying ∧el to

∧(Γ1 ∪ Γ2) and then ∧in
...∧ Γ2 applying ∧el to

∧(Γ1 ∪ Γ2) and then ∧in

A ⊃ B — applying ⊃el to
∧ Γ1 ⊃ (A ⊃ B) and ∧ Γ1

A — ⊃el applying ⊃el to
∧ Γ2 ⊃ A and ∧ Γ2

B — ⊃el applying ⊃el to A ⊃ B and A∧(Γ1 ∪ Γ2) ⊃ B — applying ⊃in to B

If there are m formulae in ∧(Γ1 ∪ Γ2), it can be shown by induction on m that∧ Γ1 and ∧ Γ2 can be inferred from ∧(Γ1 ∪Γ2) in O(m) steps via ∧el and ∧in rules.
Since m 6 n, we can infer both ∧ Γ1 and ∧ Γ2 in O(n) steps which proves the case.

Case 4 The sequent was inferred by drg. Then it has the form Γ 7→ A ⊃ B
and there is also the sequent Γ \ {A} 7→ B prior to it. It suffices to show that∧(Γ \ {A}) ⊃ (A ⊃ B) can be inferred from ∧ Γ ⊃ B in O(n) steps. We proceed as
follows.

...∧ Γ ⊃ B


∧(Γ \ {A}) — assumption (if A /∈ Γ)


A — assumption
...∧ Γ — from ∧(Γ \ {A}) and A using ∧el and ∧in

B — ⊃el

A ⊃ B — ⊃in∧(Γ \ {A}) ⊃ (A ⊃ B) — ⊃in

If there are m formulae in Γ, then it can be shown by induction on m that∧ Γ can be derived in O(m) steps from A and ∧(Γ \ {A}). Since m 6 n, we infer∧(Γ \ {A}) ⊃ (A ⊃ B) from ∧ Γ ⊃ B in O(n) steps which proves the case.

We will prove theorems showing the speedup of KlND over the axiomatic calculus
for Kl presented above which we will further designate as KlAx.

Definition 7 (proof simulation, speedup). A proof system S1 simulates S2 with an
f(n) increase in number of steps if for any S2-proof of formula A in n steps there is
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a proof of A in S1 in O(f(n)) steps. We say that S2 provides at most f(x) speedup
w.r.t. S1 if S1 simulates S2 with an increase of number of steps in f(x).

Theorem 6. KlND linearly simulates KlAx.

The proof of this theorem is straightforward since KlND has modus ponens rule
(⊃el) and all axioms have KlND-proofs of a constant length. The details are left to
the reader.

As it had been shown in [1], KlAx is sound and complete (and so is KlND).
This means that we can add ⊃in rule to KlAx thus transforming it into the natural
calculus which we will further denote as KlAxn. One can see that KlAxn is actually
a nested deduction Frege system for Kl — hence our use of the index n for this
system.

Theorem 7. KlND and KlAxn linearly simulate one another.

Proof. It is obvious that KlND linearly simulates KlAxn since all axioms can be
proven in a constant number of steps while instances of modus ponens and ⊃in

as well as assumptions in a KlAxn-derivation become, without loss of generality,
instances of ⊃el, ⊃in and assumptions in a KlND-derivation.

Next we show that KlAxn linearly simulates KlND. It suffices to show that we
can obtain conclusions of all rules of derivation from their premises in a constant
number of steps. We will prove the cases of ∨el and ⊃p rules only.

∨el KlND-proof has the following form:

A ∨B

A — assumption
...
C


B — assumption
...
C

C — ∨el
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We proceed here as follows.

A ∨B

A — assumption
...
C

A ⊃ C — ⊃in — to C

B — assumption
...
C

B ⊃ C — ⊃in — to C
...
C — in a constant number of steps using (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))

⊃p KlND-proof has the following form:


A ⊃ B — assumption
...
A

A — ⊃p

We proceed here as follows.


A ⊃ B — assumption
...
A

(A ⊃ B) ⊃ A — ⊃in to A
...
A — in a constant number of steps using ((A ⊃ B) ⊃ A) ⊃ A

Theorem 8. If there is an KlND-proof of A of length n, then there is a KlAx-proof
of A of length O(n · α(n)) with α being the inverse Ackermann function.

Theorem 7 shows that KlAxn linearly simulates KlND. The former is, by virtue
of definition, a nested deduction Frege system. This means that we can apply the
result of Buss and Bonet (Main Theorem 6 proved in [11]) which states that nested
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deduction Frege systems provide a near-linear speedup over Frege systems (and
KlAx is a Frege system).

The above observations at least give us an idea how some fragments of proof
search technique perform from the point of view of complexity. It also gives us
grounds to expect that similar developments can be applied to the case of non-
classical logics.

Concluding this section, we note that Theorems 6-8 provide us with an important
tool of checking whether or not our proof-search algorithm presented in the next
section is optimal. We know that natural deduction for Kl gives at most a near-
linear speedup over Frege system for Kl. This means that we can test our algorithm
on known examples that are hard for proof systems like analytical tableaux but have
Frege proofs in a polynomial number of steps. If an algorithmic proof happens to be
near-linearly faster than Frege proof, the algorithm works optimally at least on these
examples. On the other hand, if the algorithm proves these examples polynomially
slower than Frege system does, we will learn that it is not optimal. Finally, if the
algorithm proves these formulae in an exponential number of steps, we will find out
that it is considerably less effective than Frege systems.

Concluding this section, we observe that these general theoretical discussions
should be supported by the study of the implementation of the proof searching
algorithm, which forms part of our future work.

5 Algorithmic Proof Searching for KlND

The potential of the application of a logical deductive method to some practical
specification/verification problem depends on the existence of the proof search and
its efficiency. Here, we review the proof search technique for the logic Kl originally
defined in [10]. To keep the presentation self-contained, we describe the procedures
behind this search and then present the searching algorithm referring an interested
reader to [10] for full details.

The proof search strategy is goal-directed, which means that it runs over two
sequences: list proof and list goals. The former is a list of formulae in the proof,
while the latter is a list of goals to be reached. A specific goal, the last goal in
list goals, is called current goal. We identify three types of goals in list goals.

Definition 8 (Types of goals). A goal, Gi, 0 ≤ i ≤ n, occurring in list goals =
〈G0, G1, . . . , Gn〉, is one of the following

• Gi is a formula B, or

238



Automated natural deduction, complexity and applications for Kl

• Gi is of the form [A]B, i.e, it is a derivation of a formula B from an assumption
A, or

• Gi is a contradiction, i.e. two contradictory Kl formulae, A and ¬A. In this
case we will write Gi = ⊥.

In our introductory case, we have a task to derive B from the specification S,
given the assumptions Γ, or S,Γ 
 B. Note that here and below we distinguish
the task of establishing that B is derivable from S,Γ (abbreviated by S,Γ 
 B)
from the statement that such a derivation exists (S,Γ ` B). We will see that our
searching procedures transform derivation tasks. Thus, list proof = {A|A ∈ S ∪ Γ}
and list goals = B. Now, if our goal is not reachable, we either simplify compound
formulae in list proof invoking applicable elimination rules, or manage list goals to
generate new goals, applying introduction rules only when and if necessary. Each
step of the algorithmic proof is associated with the current goal. In our introductory
case current goal = B. Checking the reachability of the current goal, one of the core
procedures, is introduced below and is based on Definition 8.

Definition 9 (Current goal reachability). Current goal, Gn, 0 ≤ n, occurring in
list goals = 〈G0, G1, . . . , Gn〉, is reached if

• Gn is some formula B and there is a formula A ∈ list proof such that A is not
discarded and A = B or

• Gn is of the form [A]B and there is a derivation of B from a non-discarded
assumption A, or

• Gn is a contradiction and there are two contradictory formulae, A ∈ list proof
and ¬A ∈ list proof.

5.1 Proof-Searching Algorithm KlNDALG

Now we are ready to introduce the notion of an algo-derivation and searching pro-
cedures involved.

Definition 10 (Algo-derivation KlNDALG). A Kl algo-derivation, abbreviated as
KlNDALG, is a pair (list proof, list goals) whose construction is determined by the
searching Procedures (1)–(4) outlined below.

5.1.1 Searching Procedures

Searching Procedures below update list proof, list goals or both of them.
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Procedure (1) Here we follow one of the main ideas of natural deduction proof to
simplify structures of obtained formulae: list proof is updated due to an applicable
elimination rule. If we find a formula, or two formulae, which can serve as premises
of one of these rules, the rule is enforced and the sequence list proof is updated by
the relevant conclusion.

Procedure (2) We apply Procedure (2) when Procedure (1) terminates but the
current goal is not reached. Here we distinguish two subroutines.

Procedure (2.1). This procedure applies when the current goal is not reached.
Analysing the structure of the current goal we update list proof and list goals, respec-
tively, by new goals or new assumptions. Let list proof = P1, . . . Pk and list goals =
G1, . . . , Gn, where Gn is the current goal. A new goal, Gn+1, is generated by apply-
ing the subroutines (2.1.1)–(2.1.9) below which depends on the possible structures
of Gn:

Gn = A ∧B|A ∨B|A ⊃ B|¬(A ∧B)|¬(A ∨B)|¬(A ⊃ B)|L|¬¬A|⊥|[C]A

where A,B are any formulae, L ∈ Lit and [C]A states for the derivation of A from
assumption C. The rules below have structure Γ 
 α −→ Γ′ 
 α′ indicating that
the rule modifies some given derivation task Γ 
 α to a new derivation task Γ′ 
 α′.
The procedures depend on the structure of the current goal: they tackle the cases
when the current goal is a compound Kl formula. The last type of the goal — ⊥ —
is managed as follows.

(2.1.1) Γ 
 ∆, A ∧B −→ Γ 
 ∆, A ∧B,B,A
In the above, Procedure (2.1.1) splits the current conjunctive goal into two conjuncts.

(2.1.2.1) Γ 
 ∆, A ∨B −→ Γ 
 ∆, A ∨B,A
(2.1.2.2) Γ 
 ∆, A ∨B −→ Γ 
 ∆, A ∨B,B

Procedure (2.1.2) tackles a disjunctive goal A∨B setting each disjunct as a sep-
arate goal. We need some clarifications for Procedures (2.1.2.1) and (2.1.2.2) to
explain the way how we avoid infinite loops invoking a dedicated marking tech-
nique. For the former, when the current goal is disjunction, we try to reach the
left disjunct (Procedure 2.1.2.1), and if we fail this subroutine is deleted and we
apply Procedure (2.1.2.2). Similarly, if the latter fails we delete this subroutine and
terminate the whole Procedure (2.1.2).

(2.1.3) Γ 
 ∆, A ⊃ B −→ Γ, A 
 ∆, A ⊃ B,B
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Procedure (2.1.3) tackles A ⊃ B as a goal, requiring to update list proof with A and
list goals with B.

(2.1.4) Γ 
 ∆,¬(A ⊃ B) −→ Γ 
 ∆,¬(A ⊃ B), A,¬B
(2.1.5) Γ 
 ∆,¬(A ∨B) −→ Γ 
 ∆,¬(A ∨B),¬A,¬B
(2.1.6) Γ 
 ∆,¬(A ∧B) −→ Γ 
 ∆,¬(A ∧B),¬A ∨ ¬B

Procedures (2.1.4)–(2.1.6) transform negative compound goals ¬(A ⊃ B), ¬(A∨B),
¬(A ∧B) into A ∧ ¬B, ¬A ∧ ¬B and ¬A ∨ ¬B, respectively.

(2.1.7.1) Γ 
 ∆, F −→ Γ 
 ∆, F,⊥
(2.1.7.2) Γ 
 ∆, F −→ Γ, F ⊃ p ∧ ¬p 
 ∆, [F ⊃ p ∧ ¬p]F

Here F is a literal (a proposition or its negation) or F = A∨B and variable p should
be fresh.

In the paracomplete setting, we also reason by refutation. When the current goal
is not reached, and it is either a literal or disjunction (not reached by Procedure
(2.1.2)) we first look for the contradictions in the proof — Procedure (2.1.7.1) which
sets up a new goal, ⊥.

If no contradictions are found, then we turn into the refutation style proof ap-
plying Procedure (2.1.7.2). The application of this procedure is linked to the rule
⊃p which allows us to introduce to list proof the derivation of F from F ⊃ p ∧ ¬p,
the goal of Procedure (2.1.7.2), once this goal is achieved.

(2.1.8) Γ 
 ∆,¬¬A −→ Γ 
 ∆,¬¬A,A
(2.1.9) Γ 
 ∆, [A]B −→ Γ, A 
 ∆, B

Procedure (2.1.9) corresponds to our interpretation of assumptions — the given goal
[A]B means to infer B from the assumption A, hence we update list goals by B and
list proof by the assumption A.

Marking Various marking routines are applied to prevent infinite looping dur-
ing the search. For example, applying Procedure (2.1) we mark literals and formulae
of the type A ∨ B. This mark serves proof by refutation — in reaching relevant
goals we cannot any longer apply reasoning by refutation. Also, applying Procedure
(2.1.7.2), we mark the assumption that this procedure defines, and these marks
indicate that this assumption, and any formula which is derivable from it, cannot
serve as source of a new goal, i.e. Procedure (2.2) described below, is not applicable
(otherwise, the proof search will enter an infinite loop). Our example in §5.2 will
further clarify how marking technique affects proof search.
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Procedure (2.2). Here we analyse compound disjunctive and implicative for-
mulae (but not of the type A ⊃ ⊥, where ⊥ is any contradiction, as explained above)
contained in list proof in order to find sources for new goals. If one of these formulae
is found then its structure determines the generation of a new goal.

(2.2.1) Γ, A ∨B 
 ∆, C −→ Γ 
 ∆, [A]C Γ 
 ∆, [B]C
(2.2.2) Γ, A ⊃ B 
 ∆, C −→ Γ 
 ∆, C,A

Procedure (3) Here we check the application of Definition 9. If the current goal
Gn, (n > 0) is reached, we delete Gn from the sequence list goals and set Gn−1 as
the current goal. If the current goal G0 is reached, we delete G0 from the sequence
list goals.

Procedure (4) This is a search for an applicable introduction rule. It is based on
the association of Procedures (2.1.1)–(2.1.8) with correspondent introduction rules
presented below.

Procedure (2.1.1) −→ ∧in

Procedure (2.1.2.1) −→ ∨in1

Procedure (2.1.2.2) −→ ∨in2

Procedure (2.1.3) −→ ⊃in

Procedure (2.1.4) −→ ¬⊃in

Procedure (2.1.5) −→ ¬∨in

Procedure (2.1.6) −→ ¬∧in

Procedure (2.1.7) −→ ⊃p

Procedure (2.1.8) −→ ¬in

Note that Procedure (4) represents the unique specifics of our searching technique
— it makes the application of the introduction rules completely determined by the
analysis of the structure of the current goal (reached) and its preceding goals.

5.1.2 Algorithm KlNDALG

Let us introduce the following abbreviations

• ‘Gcur’ abbreviates the current goal in list goals

• ‘last(list goals)’ returns the last element of list goals, and

• list goals — Gn deletes the last formula, Gn, from list goals.

Now, based on the procedures (1)-(4) we introduce the proof search algorithm
KlNDALG making comments to the steps of the algorithm within the ‘//’.

(0) list proof(), list goals(), go to (1) // initialisation of sequences list proof and
list goals//
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(1) Given a task Γ 
 G0, Gcur = G0 // initialisation of Gcur as G0

(Γ 6= ∅) −→ (list proof = Γ, list goals = G0, go to (2))// when Γ is not empty
update list proof with formulae of Γ and list goals with G0//

ELSE

list goals = G0, go to (2) // when there are no given assumptions in Γ only
update list goals with G0//

(2) Procedure (3)(Gcur) = true //checks the reachability of the current goal//

(2a) IF Reached (Gcur) = true, then list goals = list goals−Gcur // when the
current goal is reached it is deleted from list goals, the new current goal
is the previous goal in list goals//
THEN

IF (Gcur = G0) −→ go to (6a) // If the initial goal is reached, go to
the terminating step//
ELSE
Gcur 6= G0, then Gcur = last(list goals) go to (3)//If the reached goal
is not the initial goal determine a new Gcur as the last goal in Gcur =
last(list goals) and proceed with the relevant introduction rule//

(2b) IF Reached (Gcur) = false, THEN go to (4)//If (Gcur) is not reached
proceed further with elimination rules//

(3) Procedure (4)(〈list proof, list goals〉) = true //apply a relevant introduction
rule// go to (2).

(4) Procedure (1)(〈list proof〉) = true //apply elimination rules//

(4a) Elimination rule is applicable, go to (2) ELSE

(4b) if there are no compound formulae in list proof to which an elimination rule
can be applied, go to (5).

(5) Procedure (2)((〈list proof, list goals〉) = true) // update list proof and list goals
based on the structure of Gcur//

(5a) Procedure (2.1)(〈list proof, list goals〉) = true) //analysis of the structure
of Gcur//
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go to
(2) ELSE

(5b) Procedure (2.2)(〈list proof, list goals〉) = true) //searching for the sources
of new goals in list proof//

go to
(2) ELSE

(5c) if all compound formulae in list proof are marked, i.e. have been consid-
ered as sources for new goals, go to (6b).

(6) Terminate KlNDALG.

(6a) The desired ND proof has been found. EXIT.
(6b) No ND proof has been found, counterexample found. EXIT.

5.2 Algo-Proof Example
As an example of an algorithmic ND proof we apply KlNDALG as an attempt to
prove the following formula

(\) (p ⊃ q) ⊃ (¬p ∨ q)

Note that this formula is valid in the classical setting and is not in the setting of
paracomplete logic. Its validity would have led to the validity of ¬p∨ p as shown in
the following: if (\) is valid then so would be

(]) (p ⊃ p) ⊃ (¬p ∨ p),

now since p ⊃ p is valid, by modus ponens, we would derive ¬p ∨ p.
This is an indicative formula which contains a disjunctive constraint and as

the reader will see in the proof attempt, all core procedures related to disjunctive
formulae are invoked.

Let us introduce a useful concept of algo-step which will make the understand-
ing of the application of proof search easier. Recall that an algo-proof is a pair
(list proof, list goals). At each step of the application of the procedures described
above we have the sequences list proof and list goals of specific lengths, say i and
j. Let’s abbreviate them by (list proofi, list goalsj), respectively, and let list proof =
B1, . . . , Bi and list goals = G0, . . . , Gj , where Gj is the last goal, that is it is the
current goal. So an algo-step is the task to find a derivation B1, . . . , Bi 
 G0, . . . , Gj .
Thus, the algo-proof for some formula C (with no given assumptions) commences
with the first algo-step 
 G0, where G0 = C.
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Now, for the input (p ⊃ q) ⊃ (¬p ∨ q), we commence the proof with the main
goal, (p ⊃ q) ⊃ (¬p ∨ q). According to the classical search Procedure (2.1.3), the
antecedent of the main goal, p ⊃ q, becomes the new assumption, and its consequent,
¬p∨ q — the new goal, G1 = ¬p∨ q. So the next algo-step would be p ⊃ q 
 ¬p∨ q.
In the representation of the algo-proof below we will have the following columns
indicating, in order, a step of the algo proof (step), so the abbreviation as0 stands
for the first algo-step, formulae in the proof (list proof), an annotation explaining
how a formula appears in list proof, and finally, a list of the goals (list goals).

step list proof annotation list goals
as0 G0 = (p ⊃ q) ⊃ (¬p ∨ q)
as1 1. p ⊃ q assumption G0, G1 = ¬p ∨ q

The current goal G1 = ¬p∨ q cannot be reached so we apply Procedure (2.1.2.1)
and set a new goal G2 = ¬p, hence list goals = ¬p∨ q,¬p. Since ¬p is not reachable,
we delete it from list goals, and applying Procedure (2.1.2.2) we set a new goal
G2 = q, hence list goals = ¬p ∨ q, q. Since q is not reachable, we delete it from
list goals. At this stage we have failed to reach both disjuncts of G1. Hence we
start the refutation, applying first Procedure (2.1.7.1). Thus, we set up a new goal
G2 = ⊥. This new goal, in turn, is not derivable, so we delete G2 from list goals,
and apply Procedure (2.1.7.2) adding (a) a new assumption, (¬p∨ q) ⊃ (r∧¬r) and
(b) a new goal, [(¬p ∨ q) ⊃ (r ∧ ¬r)]¬p ∨ q. Here we mark the assumption on step
‘as3’ indicating that it should not be subject to Procedure (2.2).

Note that, according to the definition of Procedure (2.1.7.1), in the r ∧ ¬r con-
straint, the variable r should be fresh.

step list proof annotation list goals
as0 G0 = (p ⊃ q) ⊃ (¬p ∨ q)
as1 1. p ⊃ q assumption G0, G1 = ¬p ∨ q
as2 G0, G1, G2 = ⊥
as3 2. (¬p ∨ q) ⊃ (r ∧ ¬r) assumption G0, G1, G2 =

[(¬p ∨ q) ⊃ (r ∧ ¬r)]¬p ∨ q

Now, looking for the applicable elimination rule, we notice that ∨⊃el1 and ∨⊃el2

are applicable to formula 2, thus we derive steps 3 and 4.
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step list proof annotation list goals
as0 G0 = (p ⊃ q) ⊃ (¬p ∨ q)
as1 1. p ⊃ q assumption G0, G1 = ¬p ∨ q
as2 G0, G1, G2 = ⊥
as3 2. (¬p ∨ q) ⊃ (r ∧ ¬r) assumption G0, G1, G2 =

[(¬p ∨ q) ⊃ (r ∧ ¬r)]¬p ∨ q
as4 3. ¬p ⊃ (r ∧ ¬r) ∨ ⊃el1 G0, G1, G2
as5 4. q ⊃ (r ∧ ¬r) ∨ ⊃el2 G0, G1, G2

At this stage, the current goal, G2 is not reachable, so we look for the sources
of new goals analysing compound formulae in the proof applying Procedure (2.2.2).
Hence by analysing step 1, we set up a new goal G3 = p. This is not reachable, so
we again apply Procedure (2.1.7.1), setting a new goal, G4 = ⊥.

step list proof annotation list goals
as0 G0 = (p ⊃ q) ⊃ (¬p ∨ q)
as1 1. p ⊃ q assumption G0, G1 = ¬p ∨ q
as2 G0, G1, G2 = ⊥
as3 2. (¬p ∨ q) ⊃ (r ∧ ¬r) assumption G0, G1, G2 =

[(¬p ∨ q) ⊃ (r ∧ ¬r)]¬p ∨ q
as4 3. ¬p ⊃ (r ∧ ¬r) ∨ ⊃el1 G0, G1, G2
as5 4. q ⊃ (r ∧ ¬r) ∨ ⊃el2 G0, G1, G2
as6 G0, G1, G2, G3 = p,G4 = ⊥

The current goal, G4 is not reachable, so we delete it and applying Procedure
(2.1.7.2) we set up a new assumption, p ⊃ (s ∧ ¬s) and a new goal, G4 = [p ⊃
(s ∧ ¬s)]p. Note that s is a fresh variable.

step list proof annotation list goals
as0 G0 = (p ⊃ q) ⊃ (¬p ∨ q)
as1 1. p ⊃ q assumption G0, G1 = ¬p ∨ q
as2 G0, G1, G2 = ⊥
as3 2. (¬p ∨ q) ⊃ (r ∧ ¬r) assumption G0, G1, G2 =

[(¬p ∨ q) ⊃ (r ∧ ¬r)]¬p ∨ q
as4 3. ¬p ⊃ (r ∧ ¬r) ∨⊃el1 G0, G1, G2
as5 4. q ⊃ (r ∧ ¬r) ∨⊃el2 G0, G1, G2
as6 G0, G1, G2, G3 = p,G4 = ⊥
as7 5. p ⊃ (s ∧ ¬s) assumption G0, G1, G2, G3, G4 =

[p ⊃ (s ∧ ¬s)]p
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At this stage the searching algorithm terminates as there are no procedures to
apply and all formulae in list proof are marked: as a result, we still have goals to
reach, however, no more elimination rules can be applied, we do not have any more
formulae in list proof that could give us new goals and, once again, introduction rules
are only applied as a result of Procedure (4), which is now void. Note that although
formula 2 in list proof is compound, it was set up as an assumption due to Procedure
(2.1.7.2), hence it is marked and is not considered as a source for new goals. These
marks are carried on for the derivable formulae on steps 3 and 4.

Now, looking at the list proof we can extract the counterexample as follows.
Formula p ⊃ (s ∧ ¬s) means that p has the value f while q ⊃ (r ∧ ¬r) means q has
the value f . Under these values for p and q, formula (p ⊃ q) ⊃ (¬p ∨ q) also takes
the value f .

5.3 Correctness
The following theorems reflect the metatheoretical properties of the above algorithm
[10].

Theorem 9. KlNDALG terminates for any input formula.

Theorem 9 guarantees that for any input formula for the KlNDALG the sequences
list proof and list goals are finite.

Theorem 10. KlNDALG is sound.

Theorem 10 ensures that every formula for which an ND proof is constructed
according with KlNDALG is valid.

Theorem 11. KlNDALG is complete.

Theorem 11 establishes that for every valid formula, A, KlNDALG finds a KlND
proof.

Altogether, theorems 9, 10 and 11 imply the following fundamental property of
our algorithm:

Theorem 12. For any input formula A, the KlNDALG terminates either building
up a KlND-proof for A or providing a counter-model.

Let us now present some important observations on the proof search and on some
of its core and important features.

As in the other ND calculi, in constructing an ND derivation, we are allowed to
introduce arbitrary formulae as new assumptions. Note that for many researchers,
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this opportunity to introduce arbitrary formulae as assumptions has been a point of
great scepticism regarding the very possibility of the automation of the proof search.
It is true that without the proof search technique assumptions can be introduced
arbitrarily. However, due to the goal-directed feature of the presented algorithm, any
assumption that appears in the proof is well justified serving a specific target. Let
us emphasise that we also turned the assumptions management into an advantage
showing the applicability of the proposed technique to assume-guarantee reasoning
as shown in §6.

We also note that, according to the algorithm, the order in which assumptions
are discharged, is the reverse order to their introduction into the proof.

Finally, introduction rules that have been another point of scepticism concerning
the automation of natural deduction, in our algorithm are completely determined.
Namely, the reachability of the current goal and the type of the previous goal deter-
mine the relevant introduction rule. Also, though ¬in rule of our system KlND, in
general, allows to derive any formula from the contradiction, the application of this
rule is strictly determined by the searching procedures. Therefore, the formula that
we derived from a contradiction is always the one mentioned in list goals.

6 Applications in Specification-Based Verification
Our development of the automated reasoning technique tackles at this stage only
the propositional basis. However, even at this more or less simple level, we argue
that it can significantly contribute in specification-based verification.

6.1 Methodology of applying KlNDALG as Deductive Verification
Here we draw several routes of applying natural deduction enhanced with the proof
search.

Below we list relevant problems and indicate the relevant methodology of their
solution based on natural deduction.

1. To find if a system satisfies some desired property

1.1. obtain the specification of the system, Spec, with some core properties,
Γ and the specification of the desired property, say, B;

1.2. find an ND derivation Γ 
 B.

2. To reason about requirements

2.1. specify the requirements;
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2.2. for a given requirement B, find if there is an ND proof of B;
2.3. drop such requirements since they are valid regardless of a system.

3. To check the consistency of a given system

3.1. obtain the specification, Spec, of a system and run the searching technique
to obtain the contradiction, i.e. setting up the goal ⊥;

3.2. if ⊥ has been reached, the given system is inconsistent.
We will show in the present section how this works in the framework of
component-based system.

4. To look for non-explicit assumptions, apply the presented Kl proof search
algorithm, and the procedures will automatically upgrade list proof with new
assumptions.
We will show in this section how this works in finding assumptions in the
framework of assume-guarantee reasoning.

In the following subsections we tackle problem setting 3–4 leaving the discussion
of problems 1–2 for the conclusion.

6.2 Component-Based Systems
Here we justify the application of the natural deduction to component-based system
assembly. Thus, we aim to apply the searching algorithm KlNDALG as the deductive
verification technique for a component system.

As an example, let us consider a simple component system interpreted in The
Grid Component Model (GCM) based on Fractal [3].

Let our component system, Sys have the following specification Spec. Compo-
nents interact together by being bound through interfaces. The system has four
core components P , Q, R and S. Let p, q, r and s represent properties that core
components, P , Q, R and S are bound to the system (one that should be always
available and should not be “touched”).

Consider as an example the following set of global requirements and their for-
malisation:

• whenever P is bound R should be bound: p ⊃ r

• whenever P is not bound S should be bound: ¬p ⊃ s.

• whenever Q is bound both R and S should not be bound: q ⊃ (¬r ∧ ¬s).

• Q should be bound to the system: q.
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Consider now the verification task to establish if the above configuration of com-
ponents is consistent. We commence the proof (see below) by the given conditions
of the Spec and set up the goal of the procedure to derive the contradiction, abbre-
viated in the proof annotation below as ⊥. If the contradiction is derivable, then
we would have been able to see its sources tracing the proof backwards. Otherwise,
the Spec would have been shown consistent.

We commence the proof by listing all four given formulae on steps 1-4. From 3
and 4 by eliminating implication we derive ¬r∧¬s and then eliminating conjunction
from the latter, derive steps 6 and 7. We have not reached the goal ⊥. By Procedure
(2.2) we analyse compound formulae in the proof. Thus, analysing formula on step
1 we apply Procedure (2.2.2) and set up p, the antecedent of 1, as the new goal.

step list proof annotation goals
as0 ⊥
as1 1. p ⊃ r given ⊥
as2 2. ¬p ⊃ s given ⊥
as3 3. q ⊃ (¬r ∧ ¬s) given ⊥
as4 4. q given ⊥
as5 5. ¬r ∧ ¬s 3, 4 ⊃el ⊥
as6 6. ¬r 5,∧el ⊥
as7 7. ¬s 5,∧el ⊥
as8 ⊥, p

The current goal, p has not been reached — we apply Procedure (2.1.7.1) setting
up the new goal, ⊥. If we derive ⊥, then by Kl¬in we would be able to derive the
desired p. However, ⊥ is not reachable so we delete it and apply Procedure (2.1.7.2)
so the new assumption is p ⊃ (t∧¬t) (where t∧¬t is the formula ⊥ in the formulation
of Procedure (2.1.7.2)) and our task is now to derive p. Since we cannot do it we
apply Procedure (2.2.2) and analyse formula 2 putting its antecedent, ¬p, as the
new goal.

Again, as it is reachable we apply Procedures (2.1.7.1) and (2.1.7.2) consequently.
The latter procedure sets up the new assumption ¬p ⊃ (u ∧ ¬u) on step 9 and the
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new goal ¬p, where u ∧ ¬u is ⊥ in Procedure (2.1.7.2).

step list proof annotation list goals
as0 ⊥
as1 1. p ⊃ r given ⊥
as2 2. ¬p ⊃ s given ⊥
as3 3. q ⊃ (¬r ∧ ¬s) given ⊥
as4 4. q given ⊥
as5 5. ¬r ∧ ¬s 3, 4 ⊃el ⊥
as6 6. ¬r 5,∧el ⊥
as7 7. ¬s 5,∧el ⊥
as8 ⊥, p
as9 8. p ⊃ (t ∧ ¬t) assumption ⊥, p, p
as10 ⊥, p, p,¬p
as11 9. ¬p ⊃ (u ∧ ¬u) ⊥,¬p,¬p

At this moment, the proof search stops. A model is extractable as follows: p is
assigned f because p ⊃ (t ∧ ¬t) is in the list proof or because ¬p ⊃ (t ∧ ¬t) is in the
list proof. Note that p is assigned f if, and only if, ¬p is assigned f . Next, r gets
the value 0 because ¬r is in the list proof and s is assigned 0 because ¬s is in the
list proof. Under this valuation, each formula p ⊃ r,¬p ⊃ s, q ⊃ (¬r ∧ ¬s) and q is
assigned 1. So, this set of formulae in Spec is consistent.

This explicitly shows the nature of the applicability of paracomplete logic — the
given Spec does not have a precise information about p — if this component should
be bound or not. So the reasoning stops.

Had we reasoned about this specification in the classical set up, we would have
been able to use classically valid formula p∨¬p (which is not valid in Kl) to derive
the contradiction. We will give the corresponding proof a little later, after presenting
a derivable rule which we will use in the proof:

A ⊃ B, C ⊃ D
(A ∨ C) ⊃ (B ∨D)

Note that this rule is also derivable in logic KlND, so we will construct the proof
applying our algorithm KlNDALG. It will return the conclusion of this rule, (A∨C) ⊃
(B ∨D), given that the premisses are constituted.

The KlNDALG (hence the classical algorithm [9] as well) would set up (A∨C) ⊃
(B ∨ D) as the main goal G0 to be derived from the given set A ⊃ B, C ⊃ D.
Because the goal is implicative, by Procedure (2.1.3), its antecedent A∨C becomes
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the new assumption, and its consequent, B ∨D — the new goal, G1.

step list proof annotation list goals
as0 G0 = ((A ∨ C) ⊃ (B ∨D))
as1 1. A ⊃ B given G0
as2 2. C ⊃ D given G0
as3 3. A ∨ C assumption G0, G1 = B ∨D

The current goal, G1, is disjunctive, therefore, by Procedure (2.1.2.1), the left
disjunct of G1 is set up as the new goal G2 = B.

This goal cannot be reached so it is deleted from list goals, and, by Procedure
(2.1.2.2), the right disjunct is set up as the new goal G2 = D.

This goal cannot be reached so it is deleted from list goals. Therefore, we have
a disjunctive goal G1 which so far has not been reached.

Next, the Procedure (2.2.1) is fired. The algorithm finds a disjunctive formula
A ∨ C in list proof and it should take in turn two branches.

First, to derive G1 adding A as the new assumption and then to derive G1 adding
C as the new assumption.

Solving the first derivation, A is the new assumption on step 4 as below. Now
G1 is a disjunctive goal and its antecedent becomes the new goal G2 = B.

This can be reached by eliminating implication from 1 and 4 obtaining B on step
5 and then introducing disjunction to the latter obtaining B ∨D on step 6.

step list proof annotation list goals
as0 G0 = ((A ∨ C) ⊃ (B ∨D))
as1 1. A ⊃ B given G0
as2 2. C ⊃ D given G0
as3 3. A ∨ C assumption G0, G1 = B ∨D
as4 G0, G1, G2 = B
as5 4. A assumption G0, G1, G2
as6 5. B 1, 4 ⊃el G0, G1
as7 6. B ∨D 5,∨in G0, G1

Although we have obtained B ∨D on step 6, we have not reached the goal G1
— to reach the latter we also need to achieve the second subderivation — from
the set of formulae 1, 2, 3, C where C is the new assumption, to derive B ∨D. The
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application of the algorithm is similar to the above, so the proof continues as follows:

step list proof annotation list goals
as0 G0 = ((A ∨ C) ⊃ (B ∨D))
as1 1. A ⊃ B given G0
as2 2. C ⊃ D given G0
as3 3. A ∨ C assumption G0, G1 = B ∨D
as4 G0, G1, G2 = B
as5 4. A assumption G0, G1, G2
as6 5. B 1, 4 ⊃el G0, G1
as7 6. B ∨D 5,∨in G0, G1
as8 G0, G1, G2 = D
as9 7. C assumption G0, G1, G2
as10 8. D 2, 7 ⊃el G0, G1
as11 9. B ∨D 8,∨in G0, G1

Both subderivations tasks have been completed so the algorithm applies ∨el rule
as we have the disjunctive formula A∨C in the proof and from either of its disjuncts
we have derived B ∨D. The result of this rule is B ∨D on step 10 with annotations
as below.

Finally, introducing implication to the formula on step 10 we derive the desired
goal G0 from the formulae on steps 1 and 2.

step list proof annotation list goals
as0 G0 = (A∨C)⊃(B∨D)
as1 1. A ⊃ B given G0
as2 2. C ⊃ D given G0
as3 3. A ∨ C assumption G0, G1 = B ∨D
as4 G0, G1, G2 = B
as5 4. A assumption G0, G1, G2
as6 5. B 1, 4 ⊃el G0, G1
as7 6. B ∨D 5,∨in G0, G1
as8 G0, G1, G2 = D
as9 7. C assumption G0, G1, G2
as10 8. D 2, 7 ⊃el G0, G1
as11 9. B ∨D 8,∨in G0, G1
as12 10. B ∨D 3, 4, 7, [4−6], [7−9] G0
as13 11. (A ∨ C) ⊃ (B ∨D) 10,⊃in, [3−10]
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Now we use this derivable rule returning to the task of showing that in the
classical setting the given SPEC is inconsistent. We will not show below the algo-
steps as they would correspond to the steps of the proof.

list proof annotation
1. p ⊃ r given
2. ¬p ⊃ s given
3. q ⊃ (¬r ∧ ¬s) given
4. q given
5. (p ∨ ¬p) ⊃ (r ∨ s) 1, 2, derived rule
6. ¬r ∧ ¬s 3, 4,⊃el

7. ¬r 6,∧el

8. ¬s 6,∧el

9. p ∨ ¬p classical validity
10. r ∨ s 5, 9,⊃el

11. s 7, 10,∨el

Now steps 8 and 11 constitute the contradiction hence the classical reasoning
would have detected the contradiction while, in fact, in our initial setup with in-
complete knowledge on p we do not have any inconsistency due to this lack of the
exact information about the truth conditions of p.

6.3 Assume-Guarantee Reasoning

We consider here how the reasoning based upon natural deduction can be applied
to the automation of the assume-guarantee reasoning [19, 36] technique, the most
used technique in the framework of compositional analysis.

In assume-guarantee reasoning, a verification problem is represented as a triple,
〈A 〉S〈P 〉, where S is the subsystem being analyzed, P is the property to be verified,
and A is an assumption about the environment in which S is used.

The standard interpretation of 〈A〉S〈P 〉 suggests that A is a constraint on S and
if S as constrained by A satisfies P , then the formula 〈A〉S〈P 〉 is true.

Let us formulate the semantics of 〈A 〉S〈P 〉 in the following way: S/A |= P
where S/A means the system S with the additional information A. Now, the typ-
ical example of the application of assume-guarantee reasoning is in the context of
decomposing a given system S into two subsystems S1 and S2 that run in parallel.
Suppose we need to verify that the property P is satisfied in S. Then we can apply
the assume-guarantee rule † as follows.
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(†)
〈A〉S1〈P 〉
〈true〉S2〈A 〉
〈true〉S1||S2〈P 〉

Here 〈true〉S2〈A〉 and 〈true〉S1||S2〈P 〉 mean, respectively, that A is verified in
S2 (without any constraints) and P is verified in S1||S2 (without any constraints).

In terms of natural deduction we can rewrite this rule as ‡ below.

(‡)
S1, A ` P
S2 ` A

S1||S2 ` P

Now new tasks are to find the natural deduction derivations S1, A 
 P and
S2 
 A in order to conclude that S1||S2 ` P and the application of the proof search
technique is the next logical step here.

One of the major obstacles in the efficient application of assume-guarantee ap-
proach [15] is that once decomposition is selected, to manually find an assumption
A to complete an assume-guarantee proof is difficult. Indeed, the assumption must
be strong enough to sufficiently constrain the behavior of S1 so that S1, A ` P
holds, and must be weak enough so that S2 ` A holds. The problem of finding such
as assumption A would become even more difficult if the systems in question are
constrained with an incomplete information. The application of the proof search
algorithm of paracomplete logic Kl described above would represent an efficient so-
lution. (Of course we would need to introduce the rigorous reasoning here defining
what are ‘strong’ and ‘weak’ conditions.)

Let us draw here some directions of the application of the presented proof search
towards the automation of assume-guarantee technique.

In the reasoning below we rigorously follow the proof search algorithm for KlND.
When solving the problem S1||S2 
 P we look for the assumption A such that

S1, A 
 P and S2 
 A. Assume that S1 and S2 are systems with the specifica-
tions containing statements B1, . . . , Bm and C1, . . . , Cn, respectively. Our task is
to find an assumption A, following rule (†) above, such that B1, . . . , Bm, A 
 P
and C1, . . . , Cn 
 A. In the description of our reasoning, we will use the con-
cept of the algo-step, introduced above. Now we commence KlND proof setting

255



Bolotov, Kozhemiachenko and Shangin

list proof = B1, . . . , Bn and list goals = P :

step list proof annotation list goals
as0 1. B1 given P
as1 . given P
as2 . given P
as m m. Bm given P
as m+ 1 m+ 1. P,⊥

On algo-stepm, since the goal P is not reachable, we update list goals by ⊥. If on
algo-stepm+1 list proof contains contradictory elements, then the new goal ⊥ would
be reachable and we would have two contradictory statements within B1, . . . , Bm,
say, C and ¬C at the stages 1 ≤ i < j ≤ m. Thus, our new goal would have been P
again which we would reach by applying Kl¬in rule:

step list proof annotation list goals
as0 1. given P
as1 . given P
as3 i. C given P
. given P
as j. ¬C given P
as m m. given P
as m+ 1. P,⊥
as m+ 2. P
as m+ 3. P i, j, Kl¬in

Now we found our first candidate for A — contradiction. Hence we set up the
new task — C1, . . . , Cn 
 ⊥ and thus check if we can establish the latter.

Alternatively, we consider the second case on step m above, when the goal ⊥ on
algo-step m is not reachable. In this case we would have the following continuation
of the proof:

step list proof annotation list goals
as0 1. B1 given P
. . given P
. . given P
as m m. Bm given P
as m+ 1 m+ 1. P ⊃ r ∧ ¬r assumption P, [P ⊃ r ∧ ¬r] P

At this stage, since P was not reachable, it is not contained in list proof hence
no elimination rules are applicable and we search for new assumptions. Namely, we
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would be looking for disjunctive and implicative formulae in list proof (but ignoring
the formula P ⊃ r ∧ ¬r on step m+ 1).

If successful, we would introduce into the proof the corresponding assumption
and proceed further applying the searching algorithm until it terminates with either
finding the desired proof for P or failing to do so.

In the former case, P would be the last formula of list proof and we will be able
to consider assumptions appearing in list proof between algo-step m+1 to test them
in the second task C1, . . . , Cn 
 A.

7 Conclusion and Roadmap to Future Work

The contribution of this paper is twofold. On one hand, we provided the complex-
ity analysis of the classical natural deduction system and its modified version, for
paracomplete logic Kl. This has led us closer to the important question on the
efficiency of the presented proof search technique and enables us to speak about the
second aspect of the contribution of the paper — application issues. We have shown
how paracomplete logic Kl can be used in providing high level specifications for
incomplete systems and how natural deduction system for this logic, supported by
the algorithmic proof search, can be used to reason about obtained specifications.
To the best of our knowledge, there is no other similar work on the automation of
paracomplete natural deduction systems or on an application of natural deduction
techniques in general to the reasoning about incomplete specifications.

We have shown how these developments can be integrated into the existing ap-
proaches dealing with component-based system assembly.

It is notable that for many researchers, one of the core features of natural de-
duction, the opportunity to introduce arbitrary formulae as assumptions, has been
a point of great scepticism regarding the very possibility of the automation of the
proof search. In this paper, not only we show the contrary, but we also turned
the assumptions management into an advantage showing the applicability of the
proposed technique to assume-guarantee reasoning.

The results presented in this paper have important methodological aspects form-
ing the basis for the development of automated goal-directed techniques for more
expressive formalisms, for example, temporal and normative extensions. The feasi-
bility of these extensions is based on the systematic, generic nature of the natural
deduction construction and algorithmic proof search. This will, in turn, enable the
application of the powerful natural deduction based reasoning to tackle dynamic
systems defined in heterogeneous environments, with such complicated cases as the
combinations of time / paraconsitency / paracompleteness. Thus we envisage the
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extensions of the applicability of our methodology to the specification of complex
dynamic systems, to the specification of normative systems (i.e. protocols) and to
reasoning about systems that are both inconsistent and incomplete.

One specific area, where we have obtained some preliminary results, is Require-
ments Engineering. In a series of works authors indicate the importance of the
specification of high-level requirements of a partial model such that these specifi-
cations are built incrementally from higher-level goal formulations in a way that
guarantees their correctness by construction [23]. In [44] the approach to tackle the
problem of reduction of complex software requirements to simpler ones and to reason
about the requirements is given.

However, we are not aware of any approach which would tackle this task under
the following constraints:
(i) considering this problem in the context of incomplete specifications;

(ii) using the advances of automated deduction.
We argue that the natural deduction searching technique, which enables us to

trace the dependencies of the formulae in the proof, opens a very important prospect
of finding solutions to the above (i) and (ii). The methodology here is as follows:
set the formally specified requirements as the goals for the searching technique so
the latter returns the set of assumptions upon which these goals depend.

This corresponds to the layer of ‘global invariants’ mentioned in [23], where the
authors give a very reasonable taxonomy of goal patterns (see [23, P.26]).

Now, our solution looks as follows: setting the requirements Req as goals for the
proof searching technique, we aim at finding such global invariants.

Thus, applying to each such requirement r ∈ Req our proof searching algorithm,
KlNDALG, we aim at finding the assumptions, Depend(r), on which r depends in
the proof. This set of formulae Depend(r) represents the desired set of reduced
requirements (global invariants).
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