
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Parallelizing the Chambolle Algorithm for Performance-Optimized

Mapping on FPGA Devices

Beretta, I., Rana, V., Akin, A., Nacci, A. A., Sciuto, D. and Atienza,

D.

© ACM, 2016. This is the author's version of the work. It is posted here by permission of

ACM for your personal use. Not for redistribution. The definitive version was published in

the ACM Transactions on Embedded Computing Systems (TECS) 15 (3) Article No. 44,

2016. http://doi.acm.org/10.1145/nnnnnn.nnnnnn

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

http://doi.acm.org/10.1145/nnnnnn.nnnnnn
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

39

Parallelizing the Chambolle Algorithm
for Performance Optimized Mapping on FPGA Devices

IVAN BERETTA, École Polytechnique Fédérale de Lausanne
VINCENZO RANA, Politecnico di Milano
ABDULKADIR AKIN, École Polytechnique Fédérale de Lausanne
ALESSANDRO ANTONIO NACCI, Politecnico di Milano
DONATELLA SCIUTO, Politecnico di Milano
DAVID ATIENZA, École Polytechnique Fédérale de Lausanne

The performance and the efficiency of recent computing platforms have been deeply influenced by the
widespread adoption of hardware accelerators, such as Graphics Processing Units (GPUs) or Field Pro-
grammable Gate Arrays (FPGAs), which are often employed to support the tasks of General Purpose Proces-
sors (GPP). One of the main advantages of these accelerators over their sequential counterparts (GPPs) is
their ability of performing massive parallel computation. However, in order to exploit this competitive edge,
it is necessary to extract the parallelism from the target algorithm to be executed, which is in general a very
challenging task.

This concept is demonstrated, for instance, by the poor performance achieved on relevant multimedia al-
gorithms, such as Chambolle, which is a well-known algorithm employed for the optical flow estimation. The
implementations of this algorithm that can be found in the state of the art are generally based on GPUs, but
barely improve the performance that can be obtained with a powerful GPP. In this paper, we propose a novel
approach to extract the parallelism from computation-intensive multimedia algorithms, which includes an
analysis of their dependency schema and an assessment of their data reuse. We then perform a thorough
analysis of the Chambolle algorithm, providing a formal proof of its inner data dependencies and locality
properties. Then, we exploit the considerations drawn from this analysis by proposing an architectural tem-
plate that takes advantage of the fine-grained parallelism of FPGA devices. Moreover, since the proposed
template can be instantiated with different parameters, we also propose a design metric, the expansion rate,
to help the designer in the estimation of the efficiency and performance of the different instances, making it
possible to select the right one before the implementation phase. We finally show, by means of experimental
results, how the proposed analysis and parallelization approach leads to the design of efficient and high-
performance FPGA-based implementations that are orders of magnitude faster than the state-of-the-art
ones.

Categories and Subject Descriptors: B.6.1 [Design Styles]: Parallel circuits; I.4.8 [Scene Analysis]: Mo-
tion; C.1.3 [Other Architecture Styles]: Data-flow architectures; B.8.2 [Performance Analysis and De-
sign Aids]

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Chambolle, Optical flow, TV-L1, Field Programmable Gate Arrays, Par-
allel Architectures, Custom Hardware

1. INTRODUCTION
Heterogeneous and specialized computation is forecast to increasingly grow over the
next years, and establish itself as one of the main paradigms for embedded systems
design [Cordes et al. 2013]. The employment of special-purpose cores to perform a
complex functionality within a System-on-Chip (SoC), is motivated by higher perfor-
mance and lower power consumption with respect to an equivalent execution on a
general-purpose processing unit. Furthermore, in certain domains such as multimedia
processing, these specialized cores perform tasks that are sufficiently general to guar-
antee a good reusability in a wide range of systems. For example, specialized cores can
be used to accelerate common operations such as convolution filters [Jamro and Wiatr
2001] or the Jacobi operator [Sleijpen and Vorst 2000].

The design of special-purpose hardware modules traditionally aims at optimizing
their computational efficiency, while meeting predefined area requirements that may

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:2 Beretta et al.

be imposed when the core is part of a more complex multi-core SoC. To achieve the
target performance, application-specific accelerators can be implemented on differ-
ent cutting-edge platforms, such as Graphics Processing Units (GPUs) or Field Pro-
grammable Gate Arrays (FPGAs). However, even though GPUs are faster than FPGAs,
they show a rigid structure designed for single instruction multiple data processing,
hence they are not a good choice when dealing with algorithms with very complex data
dependencies among iterations [Bodily et al. 2010]. FPGAs, on the other hand, provide
a fully customizable platform where any kind of custom operation, either complex or
very simple, can be implemented in hardware and applied on multiple blocks of data
in parallel. Unfortunately, the design of complex and custom FPGA systems is a very
challenging task, and tools to drive the designer in the definition of such architectures
are still not mature.

Representative examples of important computation-intensive algorithms that
greatly benefit from parallelization and performance optimization can be found in the
field of multimedia processing ([Jian et al. 2013], [Ali et al. 2014]). Several researchers
have addressed their effort towards some of these algorithms in the last years ([Chen
et al. 2012] [Ghodhbani et al. 2014]). In this paper we focus our attention to Chambolle
[Chambolle 2004], which is a relevant algorithm belonging to this class and for which
a high-performance parallel implementation has not yet been proposed, as we show in
the analysis of the state-of-the-art approaches presented in Section 2.

The Chambolle algorithm is a well-known and widely-employed algorithm in such
fields as motion estimation and compensation, or rolling shutter correction (see Section
2 for more details). However, even though this algorithm is used in many applications
(e..g., the TV-L1 optical flow estimation described in Section 2), no parallel and efficient
implementation has been proposed so far; in fact, even the best performing implemen-
tations on GPUs are essentially sequential, and they do not achieve real-time frame
rates with high resolution images [Zach et al. 2007]. This lack of performance is mainly
due to the complex data dependencies schemas that usually characterize this kind of
algorithms. In addition to the lack of efficient GPU and multi-core implementations, no
hardware implementation methodology exists to exploit the high amount of resources
available on the latest programmable devices, such as FPGAs. For these reasons we
believe that the Chambolle algorithm can be considered as a cornerstone for many
multimedia systems that deal with challenging problems (such as the optical flow esti-
mation [Behbahani et al. 2007]) and for which efficient implementations have not yet
been found, mainly because of their complex data dependencies.

This work builds upon the Chambolle implementation we first outlined in [Akin
et al. 2011], complementing it with a more detailed algorithm analysis, as well as a
deep design space exploration. Specifically, we propose a breakdown of the Chambolle
kernel, formally proving its dependency pattern and its locality. We then define a novel
algorithmic-level metric to drive the design space exploration of iterative algorithms,
which we named expansion rate. The metric enables to estimate implementation as-
pects, such as the impact of memory transfers, as a function of the geometry of the
algorithm. Finally, we extend the design space exploration to other platforms, specifi-
cally to GPUs.

The remainder of this paper is structured as follows. In Section 3, we provide a
detailed analysis of the Chambolle algorithm, focusing on its main characteristics and
proprieties. Then, we describe the proposed design strategy to efficiently tackle its com-
plexity, parallelizing its computation in order to drastically improve its performance
(Section 4). After showing the proposed architectural template, we introduce the con-
cept of expansion rate, another relevant contribution of this work. Section 5 reports the
design space exploration for the Chambolle algorithm, and presents the implementa-
tion aspects of the proposed hardware implementation. Finally, Section 6 describes

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:3

the experimental results proving that the proposed parallelization of the Chambolle
algorithm is considerably faster than the solutions found in the literature. These ap-
proaches are mainly based on GPU acceleration that do not completely exploit the
implicit fine-grained parallelism of this kind of multimedia algorithm. Section 7 shows
how the proposed approach, based on a finer parallelization of the input algorithm and
targeting FPGA devices, is able to drastically increase the degree of parallelism that
can be extracted from the algorithm, and exploiting it to increase the efficiency and
the performance of the computing architecture. Finally, Section 8 concludes the paper
by drawing some final considerations.

2. STATE OF THE ART
The optical flow is a vector field representing the movement of an object in a sequence
of frames, and it can be determined by analyzing the variation of the brightness in-
side a sequence of successive images [Verri and Poggio 1989]. The estimation of this
vector field is one of the most important problems in image and video processing, as it
can be employed for motion estimation [Sun et al. 2000] and compensation [Lin et al.
1997], as well as in other fields such as robotics [Kim et al. 2007] and even medical
analysis [Behbahani et al. 2007]. Another important application of the optical flow is
the correction of an image acquired by CMOS optical sensors using the rolling shutter
technique [Baker et al. 2010], which is nowadays used in most of the low-end photo
cameras. In particular, rolling shutter is a method of image acquisition in which each
frame is recorded by scanning across the frame either vertically or horizontally, which
may generate errors and distortions in the final image.

The optical flow estimation is a computationally challenging problem [Behbahani
et al. 2007] because of the large amount of movements that can be detected in a frame,
and because of the noise that can alter the image brightness. A wide range of different
techniques, such as [Horn and Schunck 1981] [Black and Anandan 1993] [Papenberg
et al. 2006], has been proposed in the past, but variational methods [Aubert et al. 1999]
– i.e., algorithms based on the minimization of a quantity known as total variation
[Rudin et al. 1992] – have emerged as one of the most successful approaches in recent
years. The variational technique we consider in this work is called TV-L1 [Pock et al.
2007], which distinguishes itself from other approaches because it can handle highly-
varying intensities in the frames.

The TV-L1 method includes both a mathematical definition of the variational prob-
lem, and a numerical scheme to compute the solution. The numerical scheme is
based on a fixed-point algorithm originally proposed by Antonin Chambolle [Cham-
bolle 2004], which iteratively refines the solution (which in this case represents the
optical flow estimation) at different levels of precision. Though TV-L1 seems to be very
promising from a theoretical point of view, its implementations fail to reach real-time
performance (i.e., to process at least 30 frames per second), except for very small im-
ages. A multithread software implementation of TV-L1 that has been developed and
analyzed at EPFL, for example, can take more than 15 seconds to process just one
frame on a standard x86 workstation, and up to 50 seconds are required on the ARM
processor of an Apple iPhone 3GS. The profiling of the estimations of the TV-L1 optical
flow on both platforms shows that the Chambolle algorithm itself is the bottleneck that
generates the poor timing performance. In fact, besides the execution of an outermost
loop which does not require any complex matrix operation, approximately 90% of the
execution time is spent on the Chambolle iterative technique, which proves to be the
most critical and computationally intensive part.

However, all the implementations of the Chambolle algorithm that can be found in
literature fail in achieving real-time frame rates with high resolution images [Zach
et al. 2007]. Furthermore, at the best of our knowledge, a parallel implementation of

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:4 Beretta et al.

this approach has never been proposed because of the complex dependencies among
the intermediate results [Akin et al. 2011].

In [Pock et al. 2007] and [Zach et al. 2007], the robust TV-L1 technique to calculate
the optical flow between two frames is proposed and implemented using modern GPUs.
The authors proved that a real-time frame rate can be achieved by the most powerful
devices for low-resolution sequences, but only very few frames that are larger than
512×512 can be processed in one second. A Matlab implementation of the technique in
[Zach et al. 2007] requires from 5 to 6 seconds to complete the estimation of the optical
flow on a high-end workstation, and it also shows some limitations in terms of memory
usage.

Additional hardware results of the estimation of the TV-L1 optical flow on GPUs can
be also found in [Weishaupt et al. 2010], but even the fastest implementation cannot
top a rate of 6 frames per second, even on 512 × 512 images. A full summary of the
performance of the aforementioned state-of-the-art implementations of Chambolle are
reported in Section 6, as a reference to evaluate the solutions proposed in this paper.

Fast estimations of the optical flow can be achieved by using different techniques
and by simplifying the working domain. For example, the implementation proposed
in [Abutaleb et al. 2009] can process up to 156 fps on 768 × 576 images, working on
a low-cost FPGA device. However, the resulting optical flow is specifically suited for
motion detection, and it cannot be used in other applications such as rolling shutter
correction. The specific target allows the authors to filter the input frames, and in
particular to apply background subtraction, which heavily simplifies the amount of
data to be processed for the optical flow estimation.

3. CHAMBOLLE ALGORITHM ANALYSIS
This section presents the analysis we have performed on the Chambolle algorithm,
describing the structure of its dependency schema (Section 3.2) and providing a formal
proof of its locality (Section 3.3). The notation used in this section is a minor modifi-
cation of the one used in [Chambolle 2004], and requires few basic concepts that are
described in Section 3.1. Finally, Section 3.4 presents a simplified pseudo-code formu-
lation of the Chambolle algorithm.

3.1. Preliminary Definitions
In the context of multimedia processing, the input of the Chambolle algorithm is rep-
resented as a rectangular matrix of length L and width W , which represents a picture
of L ×W pixels. Let X be defined as the euclidean space X = RL×W , and let Y be the
cartesian product Y = X×X. Finally, let us recall the definition of the Euclidean norm
‖ . ‖ over R2, which is defined as ‖ y ‖=

√
y21 + y22 , for any point y = (y1, y2) ∈ R2.

It is now possible to introduce the two main operators that are used in the formula-
tion of the Chambolle algorithm: the discrete gradient divergence operators. Given an
element x ∈ X , the discrete gradient ∇x ∈ Y is defined as:

(∇x)i,j =
(

(∇x)
(1)
i,j , (∇x)

(2)
i,j

)
(1)

where:

(∇x)
(1)
i,j =

{
xi+1,j − xi,j , if i < L

0 , if i = L
, (∇x)

(2)
i,j =

{
xi,j+1 − xi,j , if j < W

0 , if j = W
(2)

for i = 1, .., L and j = 1, ..,W . The cases i = L and j = W are considered separately, as
they refer to pixels that lie on the boundaries of the matrix.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:5

The discrete divergence operator takes an element p ∈ Y as an operand, and returns
the value div p ∈ X defined as:

(div p)i,j =


p
(1)
i,j − p

(1)
i−1,j , if 1 < i < L

p
(1)
i,j , if i = 1

−p(1)i−1,j , if i = L

+


p
(2)
i,j − p

(2)
i,j−1 , if 1 < j < W

p
(2)
i,j , if j = 1

−p(2)i,j−1 , if j = L

(3)

As discussed in the previous sections, the Chambolle algorithm aims at minimizing
a quantity known as total variation [Rudin et al. 1992]. With the concepts defined in
this subsection, it is now possible to formalize this metric. Given g ∈ X and θ > 0, the
minimization of the total variation can be formulated as follows:

min
x∈X

 ‖ x− g ‖2

2θ
+

∑
1≤i≤L, 1≤j≤W

‖ (∇x)i,j ‖

 (4)

As shown in [Chambolle 2004], the minimization problem has a closed-form solution
whose analytical equation is known, but its numerical estimation is not straightfor-
ward. In order to find a solution numerically, the problem must be expressed in the
following form:

min
p∈Y
{‖ θ div p− g ‖2 : ‖ pi,j ‖2≤ 1 ,

∀i = 1, ..., L , j = 1, ...,W}
(5)

This formulation can be numerically approached using a recursive technique known as
semi-implicit gradient descent [Chambolle 2004], which is the core part of the Cham-
bolle algorithm. In particular, for any n ≥ 0, which defines number of iterations or
levels, an element p ∈ Y is recursively adjusted as follows:

p
(n+1)
i,j =

p
(n)
i,j + τ(∇Φ(n))i,j

1 + τ ‖ (∇Φ(n))i,j ‖
, Φ(n) = div p(n) − g

θ
(6)

where τ > 0 is a fixed value (in general it is equal to 1/4 to guarantee the convergence
of the algorithm [Chambolle 2004]), and p(0) = 0 by definition. The matrix Φ(n) ∈ X is
a matrix that is defined in order to keep the notation compact.

3.2. Dependency Schema
According to equation (6), the solution of the Chambolle algorithm recursively depends
on previous values (for example, there is an explicit dependency between p

(n+1)
i,j and

p
(n)
i,j), which may prevent a parallelized implementation because a large amount of data

might be required to compute the value of p(n+1)
i,j . The goal of this section is to unroll

the dependencies included in equation (6), and derive the full shape of the stencil.
For the sake of illustration, the points on the boundaries of the matrices are omitted,

therefore indices i and j are always strictly greater than 1, and strictly lower than L
and W , respectively. In fact, boundary values are only a special case of the proposed
analysis, and they can be easily handled by substituting the corresponding values from
equations (2) and (3).

In equation (6), the denominator is a scalar quantity, whereas both the two terms
in the numerator belong to Y = X × X. As a consequence, p(n+1)

i,j ∈ Y , thus it can be
written as:

p
(n+1)
i,j = (px

(n+1)
i,j , py

(n+1)
i,j) (7)

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:6 Beretta et al.

where both px(n+1) and py(n+1) are L×W matrices computed at level n+ 1.
The term (∇Φ(n))i,j can then be unrolled according to equations (1) and (2), remem-

bering that the point (i, j) is not on the boundaries of the matrix, and obtaining:

(∇Φ(n))i,j =
(

(∇Φ(n))1i,j , (∇Φ(n))2i,j

)
=
(

Φ
(n)
i+1,j − Φ

(n)
i,j , Φ

(n)
i,j+1 − Φ

(n)
i,j

)
(8)

By substituting this result in equation (6), and by considering the decomposition of
p
(n+1)
i,j shown in (7), two separate equations for px(n+1)

i,j and py(n+1)
i,j can be written:

px
(n+1)
i,j =

px
(n)
i,j + τ(Φ

(n)
i+1,j − Φ

(n)
i,j)

1 + τ ‖ (∇Φ(n))i,j ‖
(9)

py
(n+1)
i,j =

py
(n)
i,j + τ(Φ

(n)
i,j+1 − Φ

(n)
i,j)

1 + τ ‖ (∇Φ(n))i,j ‖
(10)

Finally, Φ(n) should be expressed as a function of px(n) and py(n). This can be
achieved by computing the div p(n) term according to equation (3):

(div p(n))i,j = px
(n)
i,j − px

(n)
i−1,j + py

(n)
i,j − py

(n)
i,j−1 (11)

and thus getting that an element Φ
(n)
i,j can be expressed as:

Φ
(n)
i,j =

(
div p(n) − g

θ

)
i,j

= px
(n)
i,j − px

(n)
i−1,j + py

(n)
i,j − py

(n)
i,j−1 −

gi,j
θ

(12)

The resulting value is substituted into equations (9) and (10) in order to show the
dependency between px(n+1) and py(n+1) and some points in px(n) and py(n), i.e., points
referring to the previous iteration. In particular, the resulting equations are:

px
(n+1)
i,j =

px
(n)
i,j + τ [px

(n)
i+1,j − 2px

(n)
i,j + px

(n)
i−1,j]

1 + τ ‖ (∇Φ(n))i,j ‖
+

+
τ [py

(n)
i+1,j − py

(n)
i,j + py

(n)
i,j−1 − py

(n)
i+1,j−1 +

(
gi,j−gi+1,j

θ

)
]

1 + τ ‖ (∇Φ(n))i,j ‖

(13)

py
(n+1)
i,j =

py
(n)
i,j + τ [px

(n)
i,j+1 − px

(n)
i,j + px

(n)
i−1,j − px

(n)
i−1,j+1]

1 + τ ‖ (∇Φ(n))i,j ‖
+

+
τ [py

(n)
i,j+1 − 2py

(n)
i,j + py

(n)
i,j−1 +

(
gi,j−gi,j−1

θ

)
]

1 + τ ‖ (∇Φ(n))i,j ‖

(14)

A visual representation of the dependencies extracted from equations (13) and (14)
is shown in Figure 1(a), where all the intermediate matrices px(n+1), py(n+1), px(n),
py(n) and Φ(n) are illustrated. However, since px(n) and py(n) are only known if the
element p = (px, py) is known, it is possible to use a more compact representation that
only considers p(n+1) and p(n), thus obtaining the schema in Figure 1(b). Since Figure
1(b) depicts the dependencies between two consecutive iterations, it also graphically
illustrates the shape of the stencil applied by the Chambolle algorithm.

3.3. Locality of the Algorithm
The stencil shown in Figure 1(b) can be generalized in two ways. First, it is possible
to identify the dependencies when more than one element of the matrix has to be

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:7

i - 1 i + 1i

j - 1

j

j + 1

i - 1 i + 1i

j - 1

j

j + 1

i - 1 i + 1i

j - 1

j

j + 1

i - 1 i + 1i

j - 1

j

j + 1

i - 1 i + 1i

j - 1

j

j + 1

px n+1

py n+1

Φ n

px n

py npn+1 pn

(a) Dependencies among matrices px(n+1), px(n+1), Φ(n), px(n) and py(n)

n n

n n+1 n

n n

i - 1 i + 1i

j - 1

j

j + 1

p

(b) Simplified representation of the dependencies among p(n+1) and p(n)

Fig. 1. Graphical representation of the stencil shape of the Chambolle algorithm

computed, as for example a sub-matrix of p(n+1) of size l × w. Figure 2(a) shows the
dependency schema when a 2× 1 and a 2× 2 sub-matrices are computed at level n+ 1.
Second, it is possible to increase the number of levels beyond n+ 1, as shown in Figure
2(b) for level n+ 2.

In general, a sub-matrix of size l ×w at level n+ 1 depends on the same l ×w pixels
at level n, but it also requires a ring of additional elements at level n that surrounds
the sub-matrix. In the example with a 2× 2 sub-matrix shown in Figure 2(a), the goal
is to compute 4 points at level n + 1, which can be achieved starting from the same
points at level n, and including a ring of 10 elements at level n that surrounds the
sub-matrix (notice that the pixels in the upper-left and in the lower-right corners are
not required). Similarly, if more levels are considered at once, the elements of the ring
require additional surrounding points, thus leading to a dependency schema composed
of concentric rings of growing size, as shown in Figure 2(b).

Given the regularity of the dependency schema, it is possible to estimate the number
of points that are required to compute a generic sub-matrix at an arbitrary level. Let

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:8 Beretta et al.

n

n n+1

n

n

n

n+1

n n

n

n+1

n+1

n

n

n

n n+1

n

n

n n

n

n+1

n

(a) Dependencies for the computation
of 2 and 4 points of p(n)

n

n+1

n+1 n+2

n+1

n+1

n+1

n+2

n+1 n+1

n+1

n+2

n+1

n+1

n

n n n n

n

n

n

n

n n n n

n

n

n

n+1

n+2

n+2

(b) Dependencies for the computation of multi-
ple levels (n to n + 2)

Fig. 2. Generalization of the dependencies among the points in matrix p

Ω(l, w,N) be the number of elements needed to calculate a sub-matrix of size l × w
(with 1 ≤ l ≤ L and 1 ≤ w ≤ W) at a level N ≥ 2. It can be observed that the case
N = 1 is trivial, as no recursion is necessary to get the result. In addition, if a point at
level N has to be computed, all the values from level N−1 to level 1 must be known, so
that the recursion of equation (6) will terminate. In the case of Chambolle, the value
of Ω(l, w,N) can be computed as follows:

Ω(l, w,N) =

N−1∑
k=1

[
(l + 2k)(w + 2k)− 2

k∑
h=1

h

]
(15)

The outermost summation considers all the levels N − k, and computes the number
of points that are required at that level. At each level, both the length and the width
of the surrounding ring enlarge by two points, an effect that is captured by the (l +
2k)(w + 2k) term. The innermost summation corrects the estimation by removing a
level-dependent number of points from the upper-left and the lower-right corners of the
ring, which are not required at that level. For example, let us consider the computation
of a 2 × 2 sub-matrix at level N = 3, which is the same schema shown in Figure 2(b)
when n = 1. For k = 1, level N − k = 2 is considered, and the number of points that are
required is equal to (2+2 ·1)(2+2 ·1)−2 ·1 = 14. At k = 2, level N−k = 1 is considered,
and a total of (2 + 2 · 2)(2 + 2 · 2) − 2 · 3 = 30 points are needed. Overall, 14 + 30 = 44
points are required to compute a 2× 2 sub-matrix at level 3.

The value of Ω(l, w,N) can be used to compute the static expansion rate metric of
Chambolle that will be introduced in Section 4. It is also important to remark that, in

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:9

Algorithm 1 Chambolle Algorithm
1: for i = 1, .., Niterations do
2: div p = (BackwardX(pxu1) +BackwardY (pyu1))
3: Term = div p− v1/θ
4: Term1 = ForwardX(Term)
5: Term2 = ForwardY (Term)

6: |∇u1| =
√
Term2

1 + Term2
2

7: pxu1 = [pxu1 + τ/θ · Term1] / [1 + τ/θ · |∇u1|]
8: pyu1 = [pyu1 + τ/θ · Term2] / [1 + τ/θ · |∇u1|]
9: u1 = v1 − θ· div p

10: end for

general, Ω(l, w,N) can be considered as an upper bound of the total number of pixels,
because some of the points may be located on the boundaries of the matrix, so they
depend on a smaller number of neighbors. Conversely, Ω(l, w,N) is an exact estimation
when the points are not located on the matrix borders. In both cases, the fact that the
number of required neighbors is bounded by Ω(l, w,N) ensures that this computation
can be performed locally.

3.4. A Simplified Pseudo-Code Formulation of Chambolle
In the previous subsections, the locality of the Chambolle algorithm and its depen-
dency schema has been analyzed starting from its mathematical formulation. For the
sake of clarity, a simpler pseudo-code formulation of the algorithm is now introduced.
The pseudo-code form has been first proposed in [Zach et al. 2007], and it introduces
a set of high-level macro-operations that are better suited for hardware design, while
preserving the same dependencies underlined in Figure 2.

In the pseudo-code formulation, the optical flow between the two input frames I0
and I1 – both expressed in a matrix form – is represented by a bi-dimensional vector
u = (u1, u2), which is the output of the Chambolle algorithm. The vector u is initialized
at 0, and its final value is computed by means of an iterative sequence of levels, as
discussed in the previous subsections. At each level, a support variable v = (v1, v2)
is defined using a thresholding function of I1 and of the value of u computed at the
previous level [Zach et al. 2007]. Then, the value of u at the current level is determined
using the iterative steps of the Chambolle algorithm, which are reported in Algorithm
1. For the sake of simplicity, the pseudo-code only shows the computation of u1, but u2
is computed in the same way, by simply substituting u1 and v1 with u2 and v2.

The vector u is updated by means of two intermediate values, namely px =
(pxu1, pxu2) and py = (pyu1, pyu2), which are initialized at 0 [Zach et al. 2007]. In or-
der to simplify the description, the auxiliary variables Term, Term1, and Term2 are
also introduced to store the intermediate results of the computation (lines 3–5). The
BackwardX (z) function returns a matrix where each element of z is subtracted by
its left neighbor, whereas in BackwardY it is subtracted by its upper neighbor. Sim-
ilarly, in function ForwardX the element is subtracted by by its right neighbor, and
in ForwardY by its lower neighbor. It is worth noting that, according to the way they
are invoked in Algorithm 1, these four functions generate the same stencil shape illus-
trated in Figure 2. Finally, the constants θ and τ are the same values that are used in
the mathematical formulation of Chambolle, and determine the precision of the algo-
rithm.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:10 Beretta et al.

4. THE PROPOSED DESIGN STRATEGY
The analysis described in the previous section shows that the Chambolle algorithm is
characterized by the following properties:

(1) no read-after-write (RAW) conflicts exist within a single iteration, as shown by the
pseudo-code presented in Algorithm 1. This means that the computation of an ele-
ment at iteration i+ 1 can not depend on the value of another element at iteration
i + 1, but only on previously-generated elements, i.e., those computed at iteration
i;

(2) as shown in Section 3.3, which describes the locality of the Chambolle algorithm,
the set of elements required to compute an element at the iteration i+ 1 is a small
subset of the frame fi produced at the i-th iteration, and these elements are spa-
tially close to element p that has to be computed;

(3) finally, the analysis of the dependency schema of the Chambolle algorithm per-
formed in Section 3.2 shows that, given two target elements that are separated by
a translation, the corresponding dependency schemas have the same shape, but
they are translated by the same distance as the target element.

By exploiting these features, we have been able to propose an efficient architecture
that serves as a template for the high-performance and parallel implementation of the
Chambolle algorithm, as described in Section 4.1. Since the template has to be tailored
to the specific needs of the designer, for instance to explore the resource-performance
trade-offs, we introduce in Section 4.2 a set of metrics that can be used by the designer
to tune the different architectural parameters of the proposed template.

4.1. Proposed Architectural Template
The proposed architectural template is based on a computational structure that is dif-
ferent from the straightforward one-entire-frame-at-a-time approach. In fact, it aims
at directly computing a portion of the results of an arbitrary iteration, by loading and
processing only the elements that are required to produce the output, according to the
dependencies schema of the algorithm. The set of elements produced as an output are
typically a subset of the elements that are processed as an input because of data de-
pendencies, therefore the core that performs such multi-iteration computation can be
seen as a cone (see Figure 3).

ITERATION N

ITERATION N-1

ITERATION N-2

Fig. 3. 3D representation of a generic computational cone spanning 2 iterations

The knowledge of the data dependencies makes it possible to express the result of
the (i + m)-th iteration as a function of (part of) the elements computed at the i-th
iteration. As a consequence, given the data available from the i-th iteration, instead
of trying to compute the whole fi+1, the proposed approach focuses on a subset of the
matrix elements and directly computes the results of a generic m-th iteration (with
m ≥ 1), thus obtaining a subset of fi+m. The resulting computational cone has a depth
equal to m.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:11

In order to obtain the entire output frame fi+m, multiple executions of the compu-
tational cones may be required. The proposed architectural template is defined as a
combination of multiple levels of cones of different depths, which are able to compute
the result of multiple iterations of the elementary transformation t. An instance of the
proposed template is shown in Figure 4, and it works as follows: a small subset (win-
dow) of the input data – which is stored in the off-chip memory – is transferred to the
on-chip memory to feed the cones of the first level of the architecture. In the example
shown in Figure 4, the first level is composed of four cones: A, B, C and D. The output
of each level is then used as input for the subsequent level, until all the necessary it-
erations are performed. The output of the last level (Level 3 in the example in Figure
4) is finally stored back into the off-chip memory, and the whole process starts over
on a different window of the input data, until all the matrices have been computed.
This technique, which allows to span across the input matrix in order to progressively
produce the output, is called sliding window.

INPUT

OUTPUT (4x4)

Iteration 1

Iteration 2

Iteration 3

Iteration 4
Iteration 5
Iteration 6

Iteration 7

Iteration 8
Iteration 9
Iteration 10

Level 2

Level 3

Level 1

A B C D

E F G

H

...

...
...

...

...
...

Fig. 4. An instance of the proposed cone-based architectural template

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:12 Beretta et al.

The sliding window technique is illustrated more in detail in Figure 5. The windows
are aligned in such a way that the correctly-computed elements cover the entire frame,
implying a certain degree of overlapping among them. The sliding windows approach
introduces both a memory and a computation overhead. The former is due to the fact
that certain elements are replicated in multiple sub-matrices, and are processed by
more than one cone. The latter is due to the structure of the cones, which are typically
unaware of which part of the processed data is valid, and will eventually contribute
to final output. The idea of dividing the input into a set of overlapping regions has
already been proposed for a few specific algorithms in the scope of custom hardware
design [Roca et al. 1999], even though it has never been methodically combined with
other optimizations, such as the computation of multiple iterations within a cone.

Sliding Window

Input Matrix

Elements not computed correctly
Elements computed correctly

Overlapping region{

Fig. 5. The sliding window technique to produce the whole output frame

Since the number and the depth of the cones in the actual architecture can vary
depending on the desired trade-off among resources usage and target performance,
multiple instances of the proposed template may exist. In particular, each on of these
instances is uniquely defined by the two following parameters:

(1) the size of the output window of each cone, defined as the number of output ele-
ments contained in the rectangle of size l × w;

(2) the depth of each cone, i.e. the number of levels in which the computation is divided
or, equivalently, the number of iterations that are performed at once by each cone.

Figure 4 shows an instance of the template with an output window of 4× 4 elements
and 3 levels of computation: the first one involves 2 iterations, while the other two
levels involve 4 iterations each. It is worth noting that, since the amount of data ex-
changed between two levels x and x+ 1 (the output of level x is the input of level x+ 1)
only depends on the size of the output of level x+1 and on the number of iterations con-
sidered by the two levels of computation, the parameters previously introduced suffice
to completely specify any architecture.

The only requirement for an instance to be feasible is that, if cones of different
depths are required to complete the computation, at least one cone of each depth must
be implemented on the device. For instance, the example in Figure 4 is feasible if the

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:13

available resources are sufficient to fit cones A and E because, in this case, the first
level can be implemented by sequentially executing cone A four times (in order to
cover B, C and D as well), and cone E four times (3 executions are required for level
2, and one for level 3). Many instances are generally feasible, and the same instance
may be implemented in different ways by instantiating different numbers of cores of
different depths, according to the resources availability. As a consequence, multiple
different tradeoffs between area usage and achievable throughput (the more cones,
the better) need to be evaluated. The tradeoff analysis can be performed by defining
proper quality metrics, which are discussed in the following section.

4.2. Design Evaluation Using the Expansion Rate
As the definition of a computational cone spanning across the frame introduces a com-
putation and memory overhead in the final architecture, it is necessary to define proper
quality metrics to estimate its impact and help the designer in tuning the architectural
parameters, such as depth and window size of each cone. An ideal metric should only
depend on the structure of the algorithm in order to be computed in the early stages
of the design, but on the other hand it should provide a reliable estimation of post-
implementation aspects, such as area and throughput. In this context, we define such
a metric, related only to the geometry of the dependency scheme, and we name it ex-
pansion rate.

Two flavors of the expansion rate are proposed in this work, the first focusing on the
geometry of the stencil, while the second is mainly driven by memory considerations.
The two values are conceptually different as they address two separate aspects of the
design, hence they can be considered as complementary while evaluating different
design options. The two flavors of the expansion rate are defined as follows:

— Static Expansion Rate (SER): the SER is defined as the normalized ratio between
the number of input elements to be processed, and the size of the output window. In
particular, the static expansion rate for a cone of depth m that produces an output
area of size l × w, is defined as follows:

SER(l, w,m) =
m

√
Ω(l, w,m)

l · w
(16)

where Ω(l, w,m) is the set of input elements that must be processed in order to gen-
erate the output area, while performing m iterations at once. The metric is purely
based on geometrical considerations, in fact, Ω(l, w,m) only depends on the shape
of the stencil, which in turn depends on the input algorithm. The m-th square root
acts as a normalization operation, which is necessary to compare cones of different
depths. In fact, a cone with a higher depth likely requires a larger number of input
elements to produce the same output area, but this higher overhead is compensated
by the benefits of performing more iterations at once.

— Dynamic Expansion Rate (DER): the DER is conceptually defined as a ratio between
the number of input elements that need to be loaded from the memory, and the size
of the output that is produced by the cone. The amount of data to be fetched from
the memory is equal to the number of elements that are necessary to compute the
current output window, and were not required to compute the previous one. Hence,
this metric is able to evaluate the overlapping of the sliding window, and assess how
this affects the memory access. Formally, the DER is defined as:

DER(l, w,m) =
Ψ(l, w,m)

l · w
(17)

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:14 Beretta et al.

where the function Ψ(l, w,m) indicates the number of non-overlapping input ele-
ments between two consecutive applications of the cone. This value is specific for
each input algorithm, and can be computed by considering either a horizontal or a
vertical translation of the sliding window.

The expansion rate is equal to 1 only if the output and the input window sizes are
equal, hence no overhead exists, while it assumes higher values when the number
of input elements that are processed by the cone is much larger than the size of the
output window. In this way, the expansion rate can be used to maximize the ratio
between the number of output and of input elements. The metric is also a function
of the depth of the cone, because performing a larger number of iterations at once
reduces the number of intermediate results to be stored, increases performance and
may balance the additional overhead of processing a larger input window.

5. IMPLEMENTATION DETAILS
This section illustrates the design of a parallel implementation of Chambolle, whose
structure is based on the cone architecture proposed in Section 4. Starting from the
stencil shape of the algorithm, a set of cones have been derived and further optimized
using ad hoc considerations. In particular, the design of the processing elements within
each cone has been specifically tuned to achieve the best possible performance, using
an efficient and application-specific data reuse mechanism, described in Section 5.3,
as well as a properly-suited memory management system, detailed in Section 5.4. As
a result of this design effort, the proposed solution largely outperforms all the existing
hardware implementations of Chambolle that can be found in the literature.

In the proposed architecture, the shape of the computational cone follows the stencil
shape shown in Figure 2(b). Each cone aims at directly computing each element of px
and py (see Algorithm 1) at iteration n+x by finding a formula that employs the values
available at iteration n. Each cone is then shifted using a sliding window mechanism,
in order to span the entire area of the input matrix. As discussed in Section 4, the ra-
tionale is to divide the output frame (I1 in Section 3.4) into overlapping sub-matrices,
whose profitable areas are contiguous. This approach introduces a slight memory over-
head, because certain elements are replicated in multiple sub-matrices. A computation
overhead is also introduced, as the cores may process some elements which are not
profitable and will not be part of the output. However, the sliding window technique
enables a coarse-grained parallelization of Chambolle in spite of its recursive nature
and its complex data dependencies, and this greatly improves the throughput of the
proposed implementation.

The remaining of this section provides a detailed description of the computation that
takes place within each computational cone. In addition, we discuss the implementa-
tion of the sliding window technique, which allows the cones to span the input matrix,
including all the relevant implementation details related to the memory organization.

5.1. Expansion Rate Analysis
The expansion rate metrics, which have been introduced in Section 4, can be evaluated
to guide the choice the most suitable cone size for the Chambolle algorithm.

The static expansion rate, which captures the geometrical properties of the algo-
rithm, can be computed according to equation (16), replacing the value of Ω(l, w,N)
– which quantifies the number of input elements that must be processed to generate
the output window – with the equation obtained in (15). The resulting equation is the

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:15

0
2

4
6

8
10 0

20
40

60
80

100
0

5

10

15

20

25

0
2

4
6

8
10 0

20
40

60
80

100
1

2

3

4

5

6

7

Static Expansion Rate (SER) Dynamic Expansion Rate (DER)

Output window length Output window lengthNumber of iterations Number of iterations

Fig. 6. Static and dynamic expansion rates for the Chambolle algorithm

following:

SER(l, w,m) =
m

√√√√∑m−1
k=1

[
(l + 2k)(w + 2k)− 2

∑k
h=1 h

]
l · w

(18)

This equation is plotted in Figure 6 for different values of the number of iterations
and the output window size. For the sake of illustration, a squared output window
has been assumed in the figure, so its size can be summarized using only one axis,
which represents the length of its edge. It can be observed that the expansion rate is
minimized with windows of large size (i.e., larger than 60 × 60), while a dependency
with respect to the number of iterations is significant only for windows of small size.
This behavior is consistent with the shape of the Chambolle stencil, which requires a
lot of overlapping input elements when a large output is computed.

Similarly, the dynamic expansion rate can be computed starting from equation (17),
and computing the number of elements to be fetched from the memory when the cone
slides to the following output window. According to the shape of the stencil illustrated
in Figure 2, it can be derived that:

— when the cone slides horizontally, a total of l · (w + 2m) new elements of the input
matrix have to be fetched;

— when the cone slides vertically, w · (l+ 2m) new elements have to be loaded from the
memory.

The two sliding directions can be used indifferently to compute the dynamic expansion
rate, as they eventually lead to the same conclusions. Figure 6 shows the behavior of
the DER for different values of the number of iterations and the output size: a squared
output window is again assumed for illustrative purposes, thus making the horizontal
and vertical translations equivalent. Similarly to the static case, the evaluation of the
dynamic expansion rate also recommends the employment of large output windows,
with an edge larger than 80 elements.

The conclusion of the analysis of SER and DER, reported in Figure 6, is that a win-
dow whose length is larger than 60 and 80 elements should be preferred, respectively.
The intersection of the two metrics ensures that any output window larger than 80×80
can effectively mitigate the effects of the computation and memory access overheads.

Finally, we use Chambolle as an illustrative example to illustrate the ability of the
expansion rate to capture post-implementation design aspects, specifically area and
throughput, in spite of being defined as a sole function of the geometry of the input al-

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:16 Beretta et al.

Fig. 7. Expansion rate estimation versus actual post-implementation area and throughput

gorithm. Figure 7 highlights the best solutions when two common design approaches
are adopted. Specifically, the x-axis represents the normalized ratio between through-
put and area, which corresponds to a scenario where the design goal is to maximize
the performance of the system, given the available resources. The y-axis, on the other
hand, represents the normalized throughput, corresponding to a scenario where per-
formance have to be maximized without area limitations. The quantitative analysis of
Figure 7 includes different window sizes and number of iterations, which in turn cor-
respond to different values of the expansion rate – in this case, the SER, but similar
results are obtained for the DER. The window sizes range between 6 × 6 and 89 × 89,
while the number of iterations varies between 1 and 5, and is represented in the pic-
ture by the size of the circles. The green data points (solid lines) highlight the top
20% of solutions in terms of SER. It can be observed that, in general, solutions with a
higher expansion rate tend to have higher throughputs, and make an efficient use of
the area they require. This is further supported by the results in Figure 8, which re-
ports throughput and throughput/area values as a function of the SER, the data points
being clustered and averaged in order to better highlight the correlation. The expan-
sion rate can therefore be considered as a reliable metric for design space exploration,
and it can be computed by following the algorithm analysis proposed in Section 3,
rather than performing a time-consuming synthesis for each candidate window size.

5.2. Overview of the Proposed Hardware Solution
Among the different implementations that satisfy the constraint identified in the pre-
vious section (windows larger than 80×80 elements), we herein propose as an example

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:17

Fig. 8. Normalized throughput and throughput/area for different ranges of the normalized SER

a solution that employs cones working on sub-matrices of 88 × 92 elements, which is
close to the target threshold, in order to keep low resource (especially memory) re-
quirements. The proposed hardware architecture slides these windows to span the
entire length of the original matrix.

A top-level block diagram of the proposed hardware architecture is shown in Figure
9. The hardware employs two concurrent cones moving as sliding windows (named
SW1 and SW2), which work completely in parallel, each one updating the values of
both u1 and u2 (we use the notation sw1u1 to indicate the value of u1 computed by
the sliding cone SW1). A cone moving as a sliding window is logically divided into
two parts: an array of processing elements (PEs), and a dedicated amount of on-chip
memory implemented on the BRAMs of the FPGA device.

A detailed view of a cone, and in particular of the circuit that processes sw1u1, is
shown in Figure 10. The data required to compute the components of u (i.e., v, px and
py, as shown in Algorithm 1) is stored in the on-chip BRAMs, in order to reduce the
access to the off-chip memory. We have designed the cone to compute 7 elements in
parallel for both u1 and u2, thus finding 14 elements of vector u at the same time. This
structure not only introduces a finer level of parallelism to accelerate the execution,

CONTROL UNIT
 Address and control Address and control
 signals for SW1 signals for SW2

θ
Niterations

dt

8 BRAMs for sw1u1 1 BRAM for Term

PE Array for sw1u1

sw1u1

8 BRAMs for sw1u2 1 BRAM for Term

PE Array for sw1u2

sw1u2

8 BRAMs for sw2u1 1 BRAM for Term

PE Array for sw2u1

sw2u1

8 BRAMs for sw2u2 1 BRAM for Term

PE Array for sw2u2

sw2u2

Fig. 9. Top-level block diagram of the proposed hardware implementation of Chambolle

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:18 Beretta et al.

CONTROL UNIT
 Read addresses Write addresses Read and write
 for BRAMs for px and py addresses for BRAM-Term

θ
Niterations

dt

Addresses for
external access

Read or write enable

Vertical Rotator Vertical Rotator

Updated px and py

PE Array for sw1u1 1 BRAM for Term

8 BRAMs for sw1u1

Port 2 (Address)
Port 2 (Enable)

Port 2 (Data In)
Port 2 (Data Out)

Port 1 (Address)

Port 1 (Data In)

Port 1 (Write only)

Initial loading of
px, py and v for sw1u1

sw1u1 , px and py sw1u1

px, py and v

Fig. 10. Computation of sw1u1 within a cone

but also enables a significant data reuse among the PEs (as discussed in the following
subsection), and reduces the access to both on-chip and off-chip memory.

As a result, the proposed hardware is able to compute the value of one element in
just 18 clock cycles: 1 cycle is required by the control unit, 1 cycle by the synchronous
read from the BRAM memory, 1 cycle by the vertical rotator, and 15 cycles by the PE
array. Furthermore, the processing of each one of sw1u1, sw1u2, sw2u1 and sw2u2 requires
8 BRAMs to store the respective px, py and v values, plus an additional BRAM that is
necessary to exchange data between two iterations of the PEs. Hence, only 36 BRAMs
blocks are employed by the proposed design.

5.3. Processing Element Arrays and Data Reuse
The proposed hardware implementation includes the proposed PE arrays, two for each
cone, to find the outputs u1 and u2 of Chambolle, which are subsequently used to up-
date v by means of the thresholding function. Each PE array contains 14 processing
elements, 7 of which are called PE-Ts and are used to calculate the values of Term
and u (see Algorithm 1), while the other 7 are named PE-Vs and are used to compute
px and py. Overall, there are 56 PEs in the proposed hardware, evenly divided among
PE-Ts and PE-Vs.

Within the cone, a ladder organization of a PE array is proposed: Figure 11 illus-
trates this organization on the PEs that work on the first 7 rows (also called first
region) of the input matrix. The same figure also illustrates how the same PEs are
then reused to process the following 7 rows (second region). In particular, while PE-T1

is calculating Term for the elements in uppermost row, PE-T7 computes Term for the
elements in row 6. Then, after all the PEs have completed the first 7 rows, PE-T1 starts
computing Term for row 7, while PE-T7 shifts to row 13.

The value of Term for one element depends on the values of px and py at the same
position (we refer to these values as c px and c py), plus the px vector of the element
on the left (l px), and the py vector of the element above (a py). Without any data
reuse policy, each PE-T in a PE array requires 4 values to be loaded from the on-chip
memory, and consequently 4 PE arrays with 7 PE-Ts require 112 values to be read from
the memory. Thanks to the proposed ladder organization of the PEs, this data transfer
can be limited by propagating the intermediate results. Figure 12 shows how the the
7 PE-Ts are disposed, and how they were aligned in the previous cycle (dashed boxes).
Since all the PEs require their c px and c py vectors computed in a previous iteration,
they are loaded from the BRAMs. Then, as the processing direction in a cone goes

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:19

PE-V1

PE-T1PE-V2

PE-T2PE-V3

PE-T3PE-V4

PE-T4PE-V5

PE-T5PE-V6

PE-T6PE-V7

PE-T7BRAM-Term PE-V1

PE-T1PE-V2

PE-T2PE-V3

PE-T3PE-V4

PE-T4PE-V5

PE-T5PE-V6

PE-T6PE-V7

PE-T7BRAM-Term

BRAM-Term

Column Number:
 0 ... 8 9 10 11 91

 Row BRAM
Number: Number:

0 BRAM 0

1 BRAM 1

2 BRAM 2

3 BRAM 3

4 BRAM 4

5 BRAM 5

6 BRAM 6

7 BRAM 7

8 BRAM 0

9 BRAM 1

10 BRAM 2

11 BRAM 3

12 BRAM 4

13 BRAM 5

87 BRAM 7

...

Re
gi

on
 0

Re
gi

on
 1

Fig. 11. Organization of 7 PE-Ts and 7 PE-Vs in a computational cone, and memory organization during
the computation of sw1u1

l_px a_py
PE-T1

c_px c_py

l_px a_py
PE-T1

c_px c_py

l_px a_py
PE-T2

c_px c_py

l_px a_py
PE-T2

c_px c_py

l_px a_py
PE-T3

c_px c_py

l_px a_py
PE-T3

c_px c_py

l_px a_py
PE-T7

c_px c_py

l_px a_py
PE-T7

c_px c_py

BRAM

...

BRAM BRAM

BRAM BRAM

BRAM BRAM

BRAM BRAM

Processing
Direction

Fig. 12. Data reuse among the 7 PE-Ts during the computation of sw1u1 (the dashed boxes indicate the
position of the PE-Ts in the previous cycle)

from left to right, these vectors can be reused as l px and a py vectors for the following
cycle without accessing the memory. For instance, PE-T3 takes the l px vector from the
flip-flop that stores the c px vector processed in previous cycle. Similarly, c py can be
reused as a py by the PE-Ts which are located below, as for example the c py vector
used by PE-T2 is the a py vector of PE-T3 for the next cycle.

The PE-Vs start computing px and py for one element one cycle after the PE-Ts,
and they also exploit a massive reuse of data. Algorithm 1 shows that, in order to
compute px and py vectors for an element, three Term values are required: the one

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:20 Beretta et al.

of the corresponding element, the one of its right neighbor, and the one of the bottom
neighbor. In the proposed implementation, the values of Term that are processed by
the array of PE-Ts are reused, and propagated using pipelining flip-flops. For instance,
in order to compute px and py for the element at position (2, 11), the Term values of
elements in (2, 11), (2, 12) and (3, 11) are required. PE-T3 calculates the Term value
at (2, 11), and at the same time PE-T4 calculates the Term value for (3, 10). In the
next clock cycle, PE-T3 and PE-T4 compute the Term values for (2, 12) and (3, 11),
respectively. Then, PE-V3 takes the required Term values from PE-T3 and PE-T4, as
well as the synchronized result of PE-T3 that was computed in previous clock cycle,
and determines the new px and py for element (2, 11), without reading any data from
BRAM. Once the values of px and py have been determined, they are stored in BRAM
for the following iterations.

5.4. Memory Organization
The proposed data reuse scheme reduces both the number of accesses to the BRAMs
and the amount of memory required to store the intermediate results. As shown in
Figure 12, the array of PE-Ts needs to read 15 vectors from BRAMs, but 28 vectors
would be required if data reuse had not been implemented. We now illustrate how
those BRAMs are organized.

According to Figure 11, PE-Vs from 2 to 7 take the required values of Term from the
two adjacent PE-Ts and from the result computed in previous clock cycle by the PE-Ts
that are on their right. Therefore, the computation of these six PE-Vs does not require
any additional BRAM to store the intermediate values of Term computed by the PE-Ts.
Only PE-V1 needs to load the Term values computed by PE-T7 in the previous region,
which has to be stored in a BRAM block (called BRAM-Term). For instance, in order
to calculate px and py for row 6, the values of Term for rows 6 and 7 are required, but
they cannot be computed in successive clock cycles because the two rows belong to two
different regions (see Figure 11), and are processed by the PE array in two separate
moments. Therefore, the Term values of row 6 are stored in a dual-port BRAM, and
they are read back when PE-T1 computes the Term values of row 7.

As a PE uses 8 BRAMs for px, py and v, plus an additional BRAM-Term block as a
bridge between two different regions, 9 BRAMs are required to process each region.
The results computed by each PE-V are stored in the corresponding BRAMs according
to the addressing shown in Figure 11. When the array completes a region and starts
processing the following one, the address used to access the BRAMs needs to be in-
creased by an offset of 92, and this step is performed by a vertical rotator, which is
shown in Figure 10.

Overall, the 8 BRAMs of each region are indexed using 1012 addresses, and 32 bit
blocks of data are stored in each address. The 32 bits encode v, which requires 13 bits,
followed by c px and c py, which require 9 bits each. After the PE-Vs find the new
values of px and py, the values in the BRAMs are updated by using the write ports of
the BRAMs, overwriting the vector values that have been read in previous cycles.

5.5. Processing Elements
We finally provide a detailed description of the PE-T and PE-V processing elements.
The hardware architecture of a PE-T is shown in Figure 13, and the one of a PE-V is
shown in Figure 14.

The implementation of a PE-T includes the Backward operations for px and py,
which are performed in parallel before computing the value of the output Term, which
is then used as r Term (right Term) for the PE-V that is processing the same row,
whereas b Term (bottom Term) can feed the PE-V that is processing the upper row.
Moreover, the value of Term is pipelined for 1 clock cycle in order to use it as c Term

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:21

!"#$%

&"#$%

!"#'%

("#'%

)%

*+!"%

,--%

,--%

,--%

!"./01%

0"./01%

!"%

,--%

,--%

&"#$%

("#'%

!"

,--%

,--% ,--%

,--%

Fig. 13. Hardware architecture of a PE-T

!"#$%&'

%"#$%&'

("#$%&'

)*'

!+,-*.,*'

/0'

,$1'/0'

,$1'/2'

/2'

Fig. 14. Hardware architecture of a PE-V

(current Term). The propagation schema of the different Terms (right, bottom and cur-
rent) is shown in Figure 11.

The hardware architecture for PE-Vs implements the Forward operations between
c Term, r Term and b Term in parallel, and then computes the new px and py vectors.
The main issue in the design of the PE-V architecture is the square root function to
compute px and py, as shown on line 6 of Algorithm 1. An efficient and precise hard-
ware implementation of the square root is still an open problem [Sajid et al. 2010] [Li
and Chu 1997], and there are two main techniques to handle it: iterative techniques,
which achieve better precisions, and look-up tables, which are faster.

In the proposed implementation, a look-up table implementation was employed to
focus on timing performance, while the achieved precision is still acceptable in the
context of optical flow estimation. In fact, the error of the approximated square root
is below 1% in more than 90% of the tested samples. The look-up table takes a 32-bit
signal represented using a fixed point notation, where the integer part takes 24 bits,

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:22 Beretta et al.

and the decimal part takes 8 bits. The entries of the table are 8-bit values, thus the
table contains 28 = 256 pre-computed values, and only requires 70 LUTs to be deployed
on the FPGA. Instead of dividing the input value into 4 pieces of 8 bits each, which can
index 4 different tables, a technique has been designed to increase the precision while
using only one table (thus saving approximately 12200 LUTs over the 28 PE-Vs). In
particular, the 8 most significant bits of the input value are considered, and used to
get the result from the table, discarding the remaining bits. The 8-bit block starts in
an odd position (counting from left to right), and finishes in an even one: if the first
non-zero bit is located in the n-th position, where n is even, then the 8 bit block will
start from the zero bit at position n − 1. In this way, if the decimal value of the 8 bit
block is equal to m, and if the rightmost bit of the block is in position 2k, then the
number is equal to m · 22k, and its square root is computed by accessing the table at
value m, and left-shifting the output by k positions.

6. EXPERIMENTAL RESULTS

Fig. 15. Area usage on a Xilinx Virtex-5 XC5VLX110T FPGA

The proposed cone-based parallelization of the Chambolle algorithm has been fully
implemented in Verilog and synthesized for a Xilinx Virtex-5 XC5VLX110T FPGA [Xil-
inx 2009]. Figure 15 shows the resource usage of the Chambolle core, which reaches an
operating frequency of 221 MHz after place and route. If required by the target device,
the number of required DSPs can be reduced by mapping part of the multiplications
on the LUTs.

Figure 16 shows the comparison, in terms of frames per second, between the per-
formance achieved by the proposed approach and the ones obtained by state-of-the-art
implementations. These are implemented on either CPUs or GPUs as, at the best of
our knowledge, no implementation that leverages the fine-grained parallelism of FP-
GAs has been proposed in the literature. The evaluation assumes that the images to
be processed are pre-loaded in the device memory, in order to focus the measurements
on the Chambolle algorithm itself rather than on the transient setup. The estimated
speedup achieved by the implementation proposed in this work ranges from 16.5× to
76× on images with a resolution of 512× 512, which is the most common format found
in the literature related to Chambolle.

However, the advantages of the proposed parallelization approach are even more no-
ticeable on larger images. In fact, the proposed implementation is the only one able to
achieve more than 30 fps – and, hence, meet the real-time constraints – on 1024× 768
images. On the contrary, most of the existing approaches work with reasonable frame

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:23

Fig. 16. Performance comparison, in terms of frames per second, with respect to state-of-the-art implemen-
tations

rates (higher than 20 fps) only on very small images (consisting of either 128 × 128 or
256× 256 pixels). Thus, in order to perform a fair comparison and to normalize the size
of the images processed by the different approaches, we compare them in Figure 17
in terms of number of mega-pixels elaborated per second. In this case, the speed-up
obtained by the proposed design with respect to the best state-of-the-art implementa-
tions ranges from 38× to 130× (77× in the average), proving that the proposed approach
scales very well with the frame size.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:24 Beretta et al.

Fig. 17. Performance comparison, in terms of mega-pixels per second, with respect to state-of-the-art im-
plementations

7. COMPARISON WITH RESPECT TO GPU IMPLEMENTATIONS
We finally discuss a possible implementation of Chambolle on GPUs, in order to prove
how the fine-grained configuration capabilities of FPGAs provide a better environment
for the implementation of this algorithm. Comparisons among the two architectures
have been already proposed in the literature, such as in [Bodily et al. 2010], proving
that GPUs do not match the flexibility provided by FPGAs when custom computation

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:25

is required. A similar discussion is herein performed in the context of Chambolle, since
the algorithm has been analyzed in depth in the previous paragraphs, and all its de-
tails – from the mathematical formulation to the actual FPGA implementation – are
known at this point.

The GPU framework considered as a potential target for Chambolle is CUDA
[nVIDIA 2007] by nVIDIA. Following the architectural model of these GPUs, appli-
cations are divided into parallel portions that are executed on the device as kernels,
which are in turn implemented by a grid of independent blocks that execute a set of
threads. The memory hierarchy consists of three levels: a local memory is used by
each thread, an on-chip shared memory is used within a block to exchange data and
synchronization information among the threads, and finally a global memory is used
among consecutive kernels. The modern nVIDIA Fermi architecture [nVIDIA 2009]
features 512 cores divided into 16 Streaming Multiprocessors (SMs) of 32 cores each.
The interesting feature of a SM is the availability of a unit to load and store data from
the 2-level cache memory and DRAM, and of a set of special function units, including
one for the inverse and one for the square root of a number.

In order to implement Chambolle on the Fermi GPU architecture, a mapping of the
operations on the thread blocks is required, as well as ad hoc memory considerations.
In the proposed parallelization of the algorithm, each element of the matrix requires
only the elements it caches in order to complete its computation, therefore the elabo-
ration of a single element can be assigned to a separate thread. As a consequence, the
elaboration of a window can be assigned to a single CUDA block and, using the sliding
window technique, more blocks cover the entire frame. However, because of the fixed
structure of the architecture, only 64 elements of the input matrix can be processed in
a single SM. Given the availability of 16 SMs, 16 windows can be processed in parallel,
thus allowing the concurrent computation of 16× 64 = 1024 elements. The latter value
is considerably lower than the FPGA counterpart – in which each cone could process
88 × 92 = 8096 elements at once –, and it translates a higher overhead in terms of
data that needs to be transferred from the memory. This inefficient parallelization is
only partially compensated by the higher frequencies of GPUs, since new data cannot
be produced at each clock cycle because of the presence of difficult operations like the
square root, which itself requires 8 clock cycles. On FPGAs, on the other hand, the pos-
sibility of customizing the structure of the computational cone leads to a more efficient
and tailored design, in which operations such as the square root can be arbitrarily
optimized and approximated according to the application requirements.

8. CONCLUDING REMARKS
After introducing the Chambolle algorithm and describing its main features, we have
performed a deep analysis on its structure and we have provided a formal proof of
the locality of its dependency schema. We have then exploited the considerations de-
rived by this analysis to propose a novel template architecture that exploit the implicit
fine-grained parallelism that can be extracted by this kind of multimedia algorithms.
However, since the proposed template can be instantiated with different parameters,
we have also introduced a metric, called expansion rate, to help the designer in the
exploration of the solution space. The proposed analysis and parallelization approach,
applied to the Chambolle algorithm, have been proven to be effective and able to gen-
erate efficient FPGA-based computing architectures, which performance is orders of
magnitude faster than the state-of-the-art ones, when compared on the number of
mega-pixels produced per second.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

39:26 Beretta et al.

Acknowledgments
This work has been partially supported by the ONR-G grant no. N62909-14-1-N072,
and the E4Bio RTD project (no. 200021 159853) evaluated and financed by the Swiss
NSF.

REFERENCES
M. M. Abutaleb, A. Hamdy, M. E. Abuelwafa, and E.M. Saad. 2009. A reliable FPGA-based real-time optical-

flow estimation. In Radio Science Conference, 2009. NRSC 2009. National. 1–8.
Abdulkadir Akin, Ivan Beretta, Alessandro Antonio Nacci, Vincenzo Rana, Marco Domenico Santambrogio,

and David Atienza. 2011. A High-Performance Parallel Implementation of the Chambolle Algorithm.
In IEEE/ACM 2011 Design, Automation and Test in Europe Conference (DATE 2011). ACM and IEEE
Press, Grenoble, France, 7–12.

Karim M.A. Ali, Rabie Ben Atitallah, Said Hanafi, and Jean-Luc Dekeyser. 2014. A generic pixel distribution
architecture for parallel video processing. In ReConFigurable Computing and FPGAs (ReConFig), 2014
International Conference on. 1–8. DOI:http://dx.doi.org/10.1109/ReConFig.2014.7032547

G. Aubert, R. Deriche, and P. Kornprobst. 1999. Computing Optical Flow via Variational Techniques. SIAM
J. Appl. Math. 60 (1999), 156–182.

Simon Baker, Eric P. Bennett, Sing Bing Kang, and Richard Szeliski. 2010. Removing rolling shutter wobble.
In CVPR. 2392–2399.

S. Behbahani, S. Asadi, M. Ashtiyani, and K. Maghooli. 2007. Analysing Optical Flow Based Methods.
In Signal Processing and Information Technology, 2007 IEEE International Symposium on. 133–137.
DOI:http://dx.doi.org/10.1109/ISSPIT.2007.4458079

M.J. Black and P. Anandan. 1993. A framework for the robust estimation of optical flow.
In Computer Vision, 1993. Proceedings., Fourth International Conference on. 231–236.
DOI:http://dx.doi.org/10.1109/ICCV.1993.378214

John Bodily, Brent Nelson, Zhaoyi Wei, Dah-Jye Lee, and Jeff Chase. 2010. A Comparison Study on Imple-
menting Optical Flow and Digital Communications on FPGAs and GPUs. ACM Trans. Reconfigurable
Technol. Syst. 3, 2, Article 6 (May 2010), 22 pages. DOI:http://dx.doi.org/10.1145/1754386.1754387

Antonin Chambolle. 2004. An Algorithm for Total Variation Minimization and Applications. J. Math. Imag-
ing Vis. 20, 1-2 (Jan. 2004), 89–97. DOI:http://dx.doi.org/10.1023/B:JMIV.0000011325.36760.1e

Peng Chen, Donglei Yang, Weihua Zhang, Yi Li, Binyu Zang, and Haibo Chen. 2012. Adaptive Pipeline Paral-
lelism for Image Feature Extraction Algorithms. In Parallel Processing (ICPP), 2012 41st International
Conference on. 299–308. DOI:http://dx.doi.org/10.1109/ICPP.2012.14

D. Cordes, M. Engel, O. Neugebauer, and P. Marwedel. 2013. Automatic Extraction of pipeline
parallelism for embedded heterogeneous multi-core platforms. In Compilers, Architecture
and Synthesis for Embedded Systems (CASES), 2013 International Conference on. 1–10.
DOI:http://dx.doi.org/10.1109/CASES.2013.6662508

R. Ghodhbani, T. Saidani, L. Horrigue, and M. Atri. 2014. Analysis and implementation of parallel causal
bit plane coding in JPEG2000 standard. In Computer Applications and Information Systems (WCCAIS),
2014 World Congress on. 1–6. DOI:http://dx.doi.org/10.1109/WCCAIS.2014.6916602

Berthold K. P. Horn and Brian G. Schunck. 1981. Determining Optical Flow. Artificial Intelligence 17 (1981),
185–203.

E. Jamro and K. Wiatr. 2001. Convolution operation implemented in FPGA structures for real-time image
processing. In Image and Signal Processing and Analysis, 2001. ISPA 2001. Proceedings of the 2nd
International Symposium on. 417–422. DOI:http://dx.doi.org/10.1109/ISPA.2001.938666

Guo-An Jian, Jui-Sheng Lee, Kheng-Joo Tan, Peng-Sheng Chen, and Jiun-In Guo. 2013. A real-time parallel
scalable video encoder for multimedia streaming systems. In VLSI Design, Automation, and Test (VLSI-
DAT), 2013 International Symposium on. 1–4. DOI:http://dx.doi.org/10.1109/VLDI-DAT.2013.6533845

Sungbok Kim, Ilhwa Jeong, and Sanghyup Lee. 2007. Mobile robot velocity estimation using an array of
optical flow sensors. In Control, Automation and Systems, 2007. ICCAS ’07. International Conference
on. 616–621. DOI:http://dx.doi.org/10.1109/ICCAS.2007.4407097

Yamin Li and Wanming Chu. 1997. Implementation of single precision floating point square root on FP-
GAs. In Field-Programmable Custom Computing Machines, 1997. Proceedings., The 5th Annual IEEE
Symposium on. 226–232. DOI:http://dx.doi.org/10.1109/FPGA.1997.624623

Shu Lin, Y.Q. Shi, and Ya-Qin Zhang. 1997. An optical flow based motion compensation algorithm for very
low bit-rate video coding. In Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE
International Conference on, Vol. 4. 2869–2872 vol.4. DOI:http://dx.doi.org/10.1109/ICASSP.1997.595388

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

Parallelizing the Chambolle Algorithm for Performance Optimized Mapping on FPGA Devices 39:27

nVIDIA. 2007. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide. http://developer.
download.nvidia.com/compute/cuda/1\ 0/NVIDIA\ CUDA\ Programming\ Guide\ 1.0.pdf

nVIDIA. 2009. nVIDIA Next Generation CUDA Compute Architecture: Fermi. Online. (2009).
Nils Papenberg, Andrés Bruhn, Thomas Brox, Stephan Didas, and Joachim Weickert. 2006. Highly Accurate

Optic Flow Computation with Theoretically Justified Warping. Int. J. Comput. Vision 67, 2 (April 2006),
141–158. DOI:http://dx.doi.org/10.1007/s11263-005-3960-y

T Pock, M Urschler, C Zach, R Beichel, and H Bischof. 2007. A duality based algorithm for TV-L1-optical-
flow image registration. Med Image Comput Comput Assist Interv 10, Pt 2 (2007), 511–518. http://www.
ncbi.nlm.nih.gov/pubmed/18044607

Elisenda Roca, Servando Espejo, Rafael Dominguez-Castro, Gustavo Linan, and Angel Rodriguez-
Vazquez. 1999. A Programmable Imager for Very High Speed Cellular Signal Processing. Journal
of VLSI signal processing systems for signal, image and video technology 23, 2-3 (1999), 305–318.
DOI:http://dx.doi.org/10.1023/A:1008193018623

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. 1992. Nonlinear total variation based
noise removal algorithms. Physica D: Nonlinear Phenomena 60, 1 (1992), 259 – 268.
DOI:http://dx.doi.org/10.1016/0167-2789(92)90242-F

I. Sajid, M.M. Ahmed, and S.G. Ziavras. 2010. Pipelined implementation of fixed point square root in FPGA
using modified non-restoring algorithm. In Computer and Automation Engineering (ICCAE), 2010 The
2nd International Conference on, Vol. 3. 226–230. DOI:http://dx.doi.org/10.1109/ICCAE.2010.5452039

Gerard L. G. Sleijpen and Henk A. Van Der Vorst. 2000. A Jacobi-Davidson Iteration Method for Linear
Eigenvalue Problems. SIAM J. Matrix Anal. Appl 17 (2000), 401–425.

Shijun Sun, D. Haynor, and Yongmin Kim. 2000. Motion estimation based on optical flow with adaptive
gradients. In Image Processing, 2000. Proceedings. 2000 International Conference on, Vol. 1. 852–855
vol.1. DOI:http://dx.doi.org/10.1109/ICIP.2000.901093

A. Verri and T. Poggio. 1989. Motion field and optical flow: qualitative properties. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 11, 5 (1989), 490–498. DOI:http://dx.doi.org/10.1109/34.24781

Andreas Weishaupt, Luigi Bagnato, Emmanuel D’Angelo, and Pierre Vandergheynst. 2010. Tracking and
Structure from Motion. Technical Report. École Polytechnique Fédérale de Lausanne (EPFL). http://
infoscience.epfl.ch/record/146572

Xilinx. 2009. Virtex-5 Family Overview, DS100 (v5.0). Online. (February 2009).
C. Zach, T. Pock, and H. Bischof. 2007. A Duality Based Approach for Realtime TV-L1 Optical Flow. In

Proceedings of the 29th DAGM Conference on Pattern Recognition. Springer-Verlag, Berlin, Heidelberg,
214–223. http://dl.acm.org/citation.cfm?id=1771530.1771554

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 3, Article 39, Publication date: March 2016.

