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Abstract 

This research focuses on the quantification of image quality in lossy 

compressed images, exploring the impact of digital artefacts and scene 

characteristics upon image quality evaluation.  

A subjective paired comparison test was implemented to assess perceived 

quality of JPEG 2000 against baseline JPEG over a range of different scene 

types. Interval scales were generated for both algorithms, which indicated a 

subjective preference for JPEG 2000, particularly at low bit rates, and these 

were confirmed by an objective distortion measure. The subjective results did 

not follow this trend for some scenes however, and both algorithms were 

found to be scene dependent as a result of the artefacts produced at high 

compression rates. The scene dependencies were explored from the interval 

scale results, which allowed scenes to be grouped according to their 

susceptibilities to each of the algorithms. Groupings were correlated with 

scene measures applied in a linked study. 

A pilot study was undertaken to explore perceptibility thresholds of JPEG 2000 

of the same set of images. This work was developed with a further experiment 

to investigate the thresholds of perceptibility and acceptability of higher 

resolution JPEG 2000 compressed images. A set of images was captured using a 

professional level full-frame Digital Single Lens Reflex camera, using a raw 

workflow and carefully controlled image-processing pipeline. The scenes were 

quantified using a set of simple scene metrics to classify them according to 

whether they were average, higher than, or lower than average, for a number 

of scene properties known to affect image compression and perceived image 

quality; these were used to make a final selection of test images. Image fidelity 

was investigated using the method of constant stimuli to quantify 

perceptibility thresholds and just noticeable differences (JNDs) of 

perceptibility. Thresholds and JNDs of acceptability were also quantified to 

explore suprathreshold quality evaluation. The relationships between the two 

thresholds were examined and correlated with the results from the scene 
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measures, to identify more or less susceptible scenes. It was found that the 

level and differences between the two thresholds was an indicator of scene 

dependency and could be predicted by certain types of scene characteristics. 

A third study implemented the soft copy quality ruler as an alternative 

psychophysical method, by matching the quality of compressed images to a set 

of images varying in a single attribute, separated by known JND increments of 

quality. The imaging chain and image processing workflow were evaluated 

using objective measures of tone reproduction and spatial frequency response. 

An alternative approach to the creation of ruler images was implemented and 

tested, and the resulting quality rulers were used to evaluate a subset of the 

images from the previous study. The quality ruler was found to be successful in 

identifying scene susceptibilities and observer sensitivity.  

The fourth investigation explored the implementation of four different image 

quality metrics. These were the Modular Image Difference Metric, the 

Structural Similarity Metric, The Multi-scale Structural Similarity Metric and 

the Weighted Structural Similarity Metric. The metrics were tested against the 

subjective results and all were found to have linear correlation in terms of 

predictability of image quality. 
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1 Introduction 

Digital images are, by now, so sophisticated, ubiquitous and embedded in 

modern culture that it seems somewhat incredible that consumer digital 

cameras were widely available only in the mid-1990s. Since the development 

of the first digital still camera in 1986 [  HYPERLINK \l "Nak06"  1 ], which 

used a charge-coupled device (CCD) with only 250,000 pixels; pixel size, sensor 

technology, digital cameras, and imaging applications have continued to evolve 

in complexity, interactivity and interoperability with multiple systems and 

devices. Currently, digital cameras are a standard component of many types of 

mobile device, including phones, tablets, laptops and lately, smart watches. 

Consumer digital imaging has represented the biggest growth market in 

imaging for a number of years. 

Many factors affect the required file size and the pixel resolution of the images 

produced, depending upon the image quality requirements of a given 

application, but also the output and on-going workflow of the images, and the 

way in which they are disseminated and archived. Data storage and processing 

capabilities, as well as transmission bandwidths, have progressed in tandem 

with, and driven by, the enormous expansion in imaging applications, and the 

need to compress data still remains. Data visualisation, new imaging modes 

and methodologies, and increasing file size ensure that image compression 

remains an important area of research.  

1.1 Image Compression 

The majority of images used in this research were captured using a 

professional level digital SLR, the Canon EOS 5D Mark II, with a full frame 

sensor resolution of  approximately 21.1 megapixels and effective pixels 5616 

x 3744 2].  A fully rendered, uncompressed 8-bit RGB image from this camera 

has a file size of 60.2 megabytes (Mb).  At the time of writing there are a 

number of smartphones available with 16 megapixel image sensors. Imaging 
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applications on smart phones and mobile devices have developed 

exponentially in the last few years, bringing relatively sophisticated image 

processing, High Dynamic Range (HDR) imaging and panoramic imaging (to 

name but a few) to the consumer, and are used to disseminate and share 

images to an extent which could not have been imagined when digital cameras 

were first developed.  

A digital image is a discrete representation of either original scene intensities, 

or of the intensities of an analogue image, both of which are continuous 

intensity1 functions. The input function is sampled and quantised at a required 

level, to ensure that discontinuities are not apparent to a human observer 

under given viewing conditions, as a result of the digitisation process.  

Digitisation is achieved by sampling and quantisation of the original and may 

be represented by: 

 𝑓(𝑥, 𝑦, 𝑡, 𝜆) = 𝑓′𝑛(𝑖, 𝑗) 

( 1.1 ) [  

HYPERLINK \l 

"Tri11"  3 ]2 

Where f is the intensity level in the original scene or image at spatial location 

[x, y], integrated across spectral band λ for time t, and f’ is the digital level 

assigned at the equivalent position in the output image denoted by discrete 

integers [i,j]. n denotes the nth colour channel.  

The maximum values of i and j are M and N, the number of samples 

horizontally and vertically; the maximum of n is C, the number of spectral 

bands, and the maximum value of f’ is L-1 from: 

 𝐿 = 2𝑏 (1.2 ) 

                                                        
1 Intensity is a generic term for input values, which might be brightness, luminance, 
illuminance, reflectance, transmittance, density 
2 Adapted from [  HYPERLINK \l "Tri11"  3 ] using the convention of i, and j for rows 
and columns in the output image 
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Where L is the number of discrete quantised levels per channel and b is the bit 

depth per channel. The file size (S) of a digital image in bits is therefore given 

by: 

 𝑆 = 𝑀 × 𝑁 × 𝐶 × 𝐿 (1.3) 

The uncompressed file size is calculated assuming that the full number of bits 

are allocated per pixel, however this is rather inefficient, as there are 

numerous sources of redundancy within digital images of natural scenes [4] 

[5], which may be exploited to reduce file size. Redundancies may exist in the 

data (the bit stream used to encode the image) conveying the image 

information, or in the image information itself (the scene content).  

Compression methods are either lossless or lossy. Lossless coding aims to 

reduce the average bit rate (bit allocation per pixel) without the loss of any 

information. Bovik [6] says: 

“In lossless coding the image data should be identical both quantitatively 

(numerically) and qualitatively (visually) to the original encoded image” 

Lossless compression is a requirement of certain imaging applications where 

image fidelity is paramount, for example in some forensic or medical imaging 

applications; it relies on the removal or reduction of correlation within images, 

and the reorganisation and encoding of the data in the most efficient manner 

possible. This is most successfully achieved by pre-processing the image to 

highlight or exploit the correlations, followed by a reduction in the amount of 

data using both interpixel and coding redundancy. However, the achievable 

compression rate is limited and is inadequate for many applications. 

Lossy methods achieve much greater compression by reducing the image 

information as well as the data conveying it [4] [5] [6] [7]. Information beyond 

the limits of, or less relevant to, the human visual system, is removed or 

reduced, with a potential expense to image quality as a result of distortion 

being introduced. At lower compression rates, some lossy compression 

methods are considered perceptually lossless, as described by Bovik [6]: 
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“These methods require that the encoded and decoded images be only visually, 

and not necessarily numerically, identical” 

In fact, the degree to which the decoded images are required to appear visually 

identical to their uncompressed originals is both context and image dependent. 

In reality, the images are unlikely to be viewed next to their original for 

comparison outside an imaging lab, therefore the degree to which distortions 

introduced by compression (and other sources of distortion in the imaging 

chain) are tolerated, depends upon the purpose of the image, the viewer and 

viewing environment and the visibility of the distortions. 

Two such methods have been developed by the Joint Photographic Experts 

Committee, a “joint working group of the International Standardization 

Organization (ISO) and the International Electrotechnical Commission (IEC)” 

[8] set up for the specification of compression standards for continuous tone 

images.   

The JPEG baseline standard [9] [10], introduced in 1991, is a discrete cosine 

transform-based (DCT) algorithm originally developed for images displayed on 

screen, at a time when no such standard existed. JPEG has a number of 

characteristic distortions and its development occurred at a time when digital 

imaging was much less evolved and complex, meaning that it has some 

limitations when used in the modern imaging environment. For example, its 

native YCbCr colour space has a gamut developed for images to be viewed 

upon Cathode Ray Tube (CRT) displays-, and it is limited to 8-bit greyscale or 

24-bit RGB images [10]. The nature of the quantisation means that it is rather 

poor at compressing images containing text. Nevertheless, baseline JPEG is 

probably the most widely adopted image compression method in existence at 

the time of writing; it is a standard rendered file format in the majority of 

digital cameras and has supplanted the majority of other image file formats in 

use in images across the Internet. 

A newer approach to transform based compression uses the Discrete Wavelet 

Transform (DWT), as in the more recently specified JPEG 2000 standard [11]. 

Part 1 of the standard uses the DWT with bit-plane encoding. As well as 
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providing improved compression efficiency and error resilience, it allows 

multiple resolution representation and progressive coding of image data. It has 

been developed to provide a number of other additional functionalities, 

including [12]: Lossy to lossless layer progressive encoding, image tiling, 

region of interest coding, random access and processing, improved colour 

space and ICC profile support and the use of alpha channels to meet the future 

needs of graphics and internet applications. Lossy JPEG 2000 has its own set of 

distinctive artefacts, which affect images in a different way to baseline JPEG. 

As JPEG 2000 is the main algorithm investigated in this research it is of interest 

to note that the lossy version has been much less widely adopted than its 

predecessor. Nevertheless, JPEG 2000 is in use in a number of specialist 

applications, such as forensic imaging, where research into its use is ongoing 

[13]. Baseline JPEG has now been available for over two decades. It may be that 

consumer tolerance has habituated to the characteristic JPEG artefacts more 

than those of JPEG 2000.  Otherwise this may be a reflection upon consumer 

preference in terms of visibility of distortions. It could simply be that JPEG is 

fit-for-purpose and there is not the motivation for manufacturers or 

consumers to invest in an alternative.  The question of one type of artefact 

being more acceptable than another is an interesting area to explore in image 

quality.  

1.2 Evaluating Compression 

Because lossless coding methods result in images that are identical to their 

originals, their evaluation is generally focused upon the amount of 

compression, compression time and flexibility or usefulness.  

Compression rate is calculated as a simple ratio of the output file size to input: 

 𝐶𝑟 =
𝑛1

𝑛2
  (1.4) [4] 

Where Cr is compression ratio, and n1 and n2 are the original and the 

compressed data sets respectively. The rate of compression may instead be 

expressed as a compression percentage, or more commonly as a bit rate, which 
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defines the average number of bits required to represent a pixel in the 

compressed image. This is meaningful only when compared with the number 

of bits per pixel allocated in the original uncompressed image [5]. In lossy 

compression, compression rate is not enough as a performance measure, 

because of the distortion introduced, which must be somehow quantified both 

in terms of amount and relevance to the viewing system within the given 

context. 

The simplest approaches to the assessment of the distortion evaluate the 

numerical difference between the original and the compressed image, which 

may then be used to form a rate-distortion curve, a graph of compression rate 

against distortion [5]. These so called distortion metrics are simple to calculate 

and quantify the total difference between the two images the average 

difference per pixel (Mean Absolute Error or Mean Squared Error), or the 

average difference in relation to the signal (Signal-to-Noise Ratio or Peak 

Signal-to-noise Ratio). Based upon first order statistics, these measures give no 

information about the spatial effects or location of the error [14] and are 

therefore poorly correlated with the perceived image quality of the 

compressed images. 

1.3 Aims and Overview of the Project 

This research explores image quality and compression with a particular focus 

upon scene dependency, that is, the influence of scene characteristics upon 

compression performance and their impact on human visual assessments of 

image quality. 

The concept of image quality is difficult to define. It has different meanings 

depending upon context, application and purpose of the images. It varies 

widely across observers, images, systems, and scenes. The methodologies and 

approaches used in image quality evaluation are varied, originating from many 

different disciplines including imaging science, computer science and 

computer vision and psychology, to name a few. Objective image quality 

methods at their simplest quantify amounts of distortion and at their most 

complex attempt to predict image quality by modelling the combined effects of 
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the scene, system components and visuo-cognitive processes of the human 

visual system. Subjective methods use psychophysics, which is the scientific 

study of the relationship between physical stimuli and human perception and 

involves the use of observers to evaluate images. 

Lossy compression is just one of the many sources of artefacts that are 

introduced into images in the digital imaging chain.  Understanding the visual 

effects of these artefacts is of fundamental importance in the evaluation of 

lossy processes. The interactions between scene, imaging system and the 

human visual system will ultimately determine whether an application, 

method or device is successful and useful. 

Chapter 2 introduces key theory underpinning image quality evaluation. Image 

quality is defined, and factors affecting image quality evaluation are discussed. 

Objective and subjective image quality evaluation approaches are introduced 

and summarised. Image quality attributes and their objective quantification 

are described, including an overview of image quality metrics. Human visual 

perception and visual phenomena affecting image quality judgements are 

described, in relation to the design of metrics. Psychophysical methods are also 

reviewed. 

Chapter 3 introduces image compression in more detail. Redundancy in images 

is discussed as a basis for compression. Lossy transform based compression is 

defined and the architectures of JPEG and JPEG 2000 are described. Image 

artefacts and their effects upon image quality judgements, as well as their 

interactions with scene content are detailed. Scene dependency and its sources 

are summarised along with their potential impact upon image quality 

judgements. Approaches to the classification of scenes according to their 

properties and susceptibility to artefacts are discussed. 

Chapter 4 describes a psychophysical experiment to evaluate JPEG and 

JPEG2000 in terms of their preferred image quality. A paired comparison 

experiment is implemented to evaluate observer preference between the two 

algorithms. An associated study classifying the scenes used in the experiment 

is also described. 
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Chapter 5 reports on an experiment to evaluate perceptibility and acceptability 

thresholds for JPEG 2000. The imaging workflow is described in detail. Tone 

reproduction characteristics at all stages of the image-processing pipeline are 

evaluated. Scene metrics are again used to describe the test scenes. 

Correlations are sought between perceptibility and acceptability thresholds 

and scenes are clustered. Similarities between scene characteristics within the 

clusters are identified. 

Chapter 6 describes the implementation of ISO 20462-3 [15], the Soft-Copy 

Quality Ruler, a standardised psychophysical method that uses images of the 

same scene separated by known increments of quality JNDs (but varying only 

in a single attribute, in this case sharpness) as a set of standards against which 

test images may be matched. The images are presented in the form of a slider 

allowing the user to select the matched image interactively. The results are 

explored in terms of their application in identifying scene susceptibility and 

observer sensitivity when implementing a psychophysical test. 

Chapter 7 describes experimental work to correlate a number of objective 

metrics with the subjective results. The selected metrics are, where applicable, 

adapted using the results from the experimental work from the earlier 

chapters. 

Chapters 8 and 9 discuss the experimental work and the implications of the 

results, drawing final conclusions and proposing ideas for further research. 

Chapter 10 summarises related work carried out during the process of this 

research. 
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2 Image Quality 

2.1 Image Quality Definitions 

The now well-established era of digital imaging has led to the convergence of 

many different disciplines into a relatively generic imaging industry [16], 

which encompasses numerous approaches to product design and performance 

assessment. Product cycle times continue to decrease, to keep up with the 

many developments in imaging applications and the burgeoning array of 

modes by which images are used and disseminated.  These factors lead to an 

increasing need for fast and accurate methods of evaluating and predicting 

perceived image quality.  

A number of definitions of image quality exist, including those by Jacobson 

[17]: “the subjective impression formed in the mind of the observer of the 

degree of excellence exhibited by an image” and Engeldrum [18]: “the 

integrated set of perceptions of the overall degree of excellence of the image”. 

These descriptions imply that image quality cannot be separated from 

consideration of the observer, that it is fundamentally subjective in nature, and 

that it is the result of the combination of a number of different perceptual 

attributes.  

Keelan [16] explains more specifically: “the quality of an image is defined to be 

an impression of its merit or excellence, as perceived by an observer neither 

associated with the act of photography, nor closely involved in its subject 

matter”. As a result of this strict definition of the observer, the influences of 

what Keelan describes as ‘personal attributes’, which are those that affect the 

quality judgement of an image by someone who has been personally involved 

with the image, capture or with the subject matter, are eliminated. An example 

of such an attribute is ‘the preservation of a cherished memory’ which reduces 

the objectivity of an observer’s judgement, making prediction of perceived 

image quality difficult. 
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These definitions indicate the complexity inherent in image quality 

investigations. It is not only difficult to describe something which is ultimately 

about a subjective impression in the mind of an observer, but image quality is 

multi-dimensional, the combined impact of variations in a range of attributes 

upon a number of different systems. The dimensions relating to single 

attributes and the various systems affected combine and interact in ways that 

are difficult to understand and predict.  

2.2 Factors Affecting Image Quality Evaluation 

According to Ford [19], a fundamental assumption in approaching the 

quantification of image quality must be that a relationship exists between 

measureable physical properties of the image and imaging systems and the 

subjective impression of quality that the image produces. He describes image 

quality as the interaction of three main systems with the original image 

properties to produce the overall perception of image quality for the observer. 

These systems are the display system, which includes viewing conditions, the 

‘visual’ system, and the ‘cognitive’ system; clearly some aspects of these are 

more readily described and quantified than others. As shown in figure 2.1, such 

a model considers the image in different states as it passes through the 

different systems. 

 

 

 

Figure 2.1 Image types and their location in a digital imaging system, according to Ford 
[19] 

Some objective approaches to image assessment are based on the idea that the 

influence of the visual system on the perceived image quality is primarily as a 

result of lower level processing performed in the eye and early on in the visual 

Visual Image Displayed              
Image 

Digital Image Subjective   
Impression 

Display System Visual System Cognitive System 



 30 

pathway. These methods use models of various aspects of human visual 

processing, based upon knowledge of characteristics of the human visual 

response. Examples of such characteristics include the nonlinear visual 

response to changes in luminance and the contrast sensitivity function(s), 

describing the frequency response of the human visual system (HVS). Such 

methods assume that more complex processing such as feature extraction, 

pattern matching and the processing as a result of changes in attention are of 

secondary importance in terms of quality perception, to lower level visual 

processing [20]. Effectively they are measuring the ‘visual image’ from figure 

2.1, without predicting anything about its interpretation. 

The implication in such an approach is that the visual image, prior to cognitive 

processing, may thus be simply described as the result of the physical 

properties of the original stimuli (scene or image), the influence of the viewing 

conditions, and various low level linear and non-linear processing performed 

by the HVS.  There is a question, however, as to whether it is possible to so 

clearly define a separation between the visual and cognitive systems, whether 

such a ‘visual image’ exists, considering the continuously changing nature of 

attention and selection performed as an observer looks at the scene in front of 

them. Where methods based on psychophysical aspects of the HVS are fairly 

successful at predicting thresholds of detection in images (as determined in 

image fidelity studies, see section 2.4), they are not so effective for 

suprathreshold quality estimation [21]. This seems to suggest that the 

emphasis between high-level and low-level visual processing and cognitive 

processing changes, depending upon the visual task and image context. 

Jacobson and Triantaphillidou [22] summarise some of the additional factors 

that influence observer image quality judgements (as well as the particular 

imaging context) in the term ‘quality consciousness’. Quality consciousness 

includes the combined impact of memory, association, experience in judging 

images, scene content, emotions, environmental conditions and many other 

factors difficult to define or quantify. Ahumada and Null [23] suggest, for 

example, that when various types of image artefacts are suprathreshold, the 
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variations in observers’ experiences of the artefacts, which affect their quality 

consciousness, will lead to differential weightings of the artefact dimensions. 

Engeldrum notes that the criteria for judging quality vary significantly 

depending upon the imaging context [24]. For example, in medical or forensic 

imaging, the perceived image quality is often dependent on an expert observer 

being able to detect and recognise image features and to interpret them in the 

context of a particular image class. This idea of ‘fitness of purpose’ of images in 

quality evaluations is more formally explored in the measure of ‘usefulness’ as 

a component of image quality, described in the next section.  This can be 

contrasted against a more generalised view of quality judgement, which he 

describes as: “a ‘beauty contest’ selection from images produced by competing 

products”. Indeed, the motivation for much image quality research comes from 

the manufacturers of imaging products; in many cases, they are interested in 

the judgements and perceptions of non-expert observers. The visual tasks in 

these two broad classes of image quality judgement are different, or rather are 

prioritised differently.  

Consideration of the image in context is clearly extremely important as this has 

a primary effect on the expectations of the observer. Janssen and Blommaert 

[25] coined the terms usefulness and naturalness of images to describe 

requirements of image quality relating to context and expectation. The former 

relates to the suitability of the image for a task or application; the latter to the 

relationship between the image characteristics and the observer’s ‘internal 

references’, which may be thought of as a combination of memory, association 

and expectations (equivalent to quality consciousness described above).  

Yendrikhovskij [26] notes that researchers in colour science have a long 

history of investigating the relationship between memory and preference. A 

number of experiments [27] [28] have identified inconsistencies between the 

measured colour of objects, so-called ‘memory colours’ and preferred colours. 

It has been suggested by Newhall et al [29] that these discrepancies are caused 

by the influence of memory prototypes, which are examples of typical colours in 
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an object category (the average of the category), stored in the memory and 

used for comparison with actual object colours. 

Contemporary theories of visual perception suggest that our understanding of 

scenes is based upon a hierarchical structure of perceived attributes, which 

may be broadly classified into high-level and low-level attributes, and which 

contribute to two different visuo-cognitive mechanisms [21]. Hochstein and 

Ahissar [30] define the two levels in the hierarchy, as “vision at a glance”, 

which produces a general categorisation of scene content, a ‘broad brush’ 

impression of the scene, and “vision with scrutiny”, where attention is focused 

on details. They propose a new view of the hierarchy, contrary to the classical 

view, called ‘Reverse Hierarchy Theory’ for the order in which these two levels 

operate. The classical view of visual hierarchy suggests that the outputs from 

neurons from low-level cortical areas, e.g. those dealing with visual inputs to 

represent simple attributes such as edges and lines, are gradually combined 

with those from other low level attributes, at subsequent cortical levels, to 

build up an overall understanding of global features, from the bottom-up.  

Reverse Hierarchy Theory suggests that a scene is instead perceived using a 

top-down hierarchy, beginning with high-level processing in the cortex, to 

produce a generalised impression of the scene, with in-depth scrutiny of the 

scene following later, to fill in the details.  

Work by Leisti et al [21] suggests that subjective quality evaluations are based 

upon what they term Image Quality Experience, in which observers also use a 

hierarchy of high and low-level image quality attributes. According to 

descriptions by observers of their image quality experience, subjective 

attributes can be ‘concrete’ and related in a straightforward manner to 

physical properties of an image, or more general and ‘abstract’ (although in 

some cases such attributes can be demonstrated to relate directly to physical 

attributes, but the context of the relationship is less clear). Examples of the 

former type include ‘sharpness’ and ‘graininess’, while the latter are less easily 

defined, such as ‘naturalness’ or ‘clarity’. The two classes of attributes are 

interrelated, and interdependent, with a hierarchy which may be related to the 

hierarchical nature of human vision as described above. This could in part 
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explain the difficulty in correlating traditional objective approaches for quality 

prediction, with results from subjective experiments. The relationships 

between physical image properties and low level attributes are well defined, as 

are suitable objective measurements for them, many of which are described in 

section 2.6.  Defining types of abstract high level attributes, as well as their 

relationships to physical image properties is a more complex task. 

Complementing the different perspectives on visual perception and subjective 

quality evaluation, theories on image quality also consider the problem both 

from top-down and bottom-up: 

 As described by Yendrikhovskij [26], a bottom-up approach to quality 

explores the physical parameters underlying image quality, such as properties 

of the imaging system, the display and viewing conditions, and the properties 

of the human visual system. This classical ‘signal processing’ perspective is 

typical of traditional approaches to image quality metrics. The signal is 

processed by the physical parameters of system and HVS to produce 

perceptual attributes such as brightness, colourfulness etc. Individual 

perceptual attributes are assumed to combine to form higher-level attributes 

such as image quality. More recently, image quality has been considered from 

an ‘information processing’ perspective, which is a top-down approach; visual 

information is processed, reconstructed and interpreted in the context of 

memory representations, such as the prototype memory colours discussed 

earlier. Yendrikhovskij notes that the requirements of both signal processing 

and information processing approaches may be used to develop a general 

model of image quality. He describes [26] a model containing the three 

attribute dimensions: fidelity, usefulness and naturalness (FUN), in which the 

overall quality of an image can be modelled as a weighted sum of the three 

attributes. The FUN model is illustrated in figure 2.2. 
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Figure 2.2 Different image types illustrated in the FUN model of image quality, from 
Yendrikhovskij [26] 

The Fidelity attribute is the degree of correspondence between the reproduced 

image with the external reference (the original). In classical image quality 

approaches, fidelity metrics are used to identify thresholds of perceptibility. 

Fidelity is described in more detail in section 2.4. A high degree of fidelity is 

important in applications requiring image matching. 

Usefulness, as described earlier by Janssen and Blommaert [25] considers the 

image in context and quantifies its suitability for a particular task. Usefulness is 

important in imaging applications requiring detection or discrimination of 

objects or details. 

Naturalness is the degree of correspondence between the reproduced image 

and internal reference; the knowledge of reality as stored in memory i.e. 

prototypes. Yendrikhovskij in [31], states that ‘a basic assumption underlying 

the naturalness constraint is that images of good quality should at least be 

perceived as natural’. This is not necessarily the case however, when all three 

attributes are considered to be components of image quality. 

The definitions above indicate that the three attributes may be conflicting. 

Janssen and Blommaert note, particularly, that the requirements of usefulness 

and naturalness may not coincide. For example, maximum usefulness may be 
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achieved by enhancing an image to improve object discrimination (for example 

by contrast enhancement or edge detection), thereby reducing its naturalness 

(and its fidelity).  

2.3 Objective and Subjective Image Quality Assessment 

Objective image quality measures involve the physical measurement of imaging 

systems, images and image attributes which contribute to overall quality.  

Engeldrum calls them - in the context of his Image Quality Circle, [18], [32], - 

‘Physical Image Parameters’. Research into the measurement of image 

structure, tone and colour reproduction has a long and well-documented 

history, leading to numerous standardised practices. Many have been devised 

and are used individually as performance measures for imaging devices, 

processes and systems, for comparison, or to drive product development. 

Various adaptations of these standard methods have been developed for the 

assessment of digital imaging systems. Some of the attributes and their 

measurement are described later in this chapter. However, as noted by 

Engeldrum, although an important aim in developing robust objective methods 

of image evaluation is to relate image attributes to image quality, individual 

measures alone are typically unsuccessful, as they quantify the image 

properties but not the visual system.  

Nevertheless, performance measures are important as components in 

objective image quality metrics (IQMs). Visual image quality metrics  (VIQMs) 

aim to combine physical measurements from images with psychophysical 

characteristics of the human visual system to predict perceived image quality 

(or fidelity – see below), often producing single numbers or figures of merit. 

Jacobson [22] notes, however, that one of the most significant questions asked 

by researchers in relation to IQMs is whether the single-number approach is a 

valid one in the assessment of image quality. Nevertheless, a wide variety of 

metrics have been developed, differing in the physical image properties 

quantified, as well as the models and parameters of the human eye used.  

For objective measures to be useful to image quality assessment, they must 

correlate with subjective impressions of image quality and ideally should be 
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both standardised and independent of the imaging systems or processes 

involved. This last requirement is difficult to fulfil, meaning that many 

solutions are very application specific and difficult to translate for the 

comparison of different types of systems. In particular, if a metric has been 

developed for a digital imaging process which gives rise to one particular type 

of artefact, it can produce very different results from a process producing 

different kinds of artefacts [33]. As the visibility and severity of such artefacts 

are typically dependent upon scene content, this may be viewed as a form of 

scene dependency. The problem of this type of scene dependency is being 

addressed in current research [34] [35].  In general, metrics that are applicable 

to different types of systems tend to be more complex and computationally 

intensive than those that are application specific [36]. 

Subjective image evaluation approaches involve the collection and analysis of 

judgements of aspects of image quality by human observers. The field of 

psychophysics, a branch of psychology concerned with the quantification of 

perception, has its roots in the work of Weber and Fechner in the nineteenth 

century. Their research related discriminable differences in the perception of 

different sensations, to measured changes in physical properties (for example, 

the relationship between the perceived taste of ‘saltiness’ and the 

concentration of sodium chloride in solution). Psychometrics is an area of 

psychophysics that describes experiments designed to quantify relationships 

between the perceptions of stimuli to variations of more than one objectively 

measureable attribute; it is used extensively in subjective image quality 

assessments. Presenting sample stimuli to relatively large groups of observers 

may produce various measurement scales, correlated to aspects of image 

quality. Some psychometric experimental methods derive scales by the rating 

of attributes of single images, in experiments to determine suprathreshold 

magnitudes of image quality. Others, using paired comparison experiments, 

are based on Thurstone’s Law of Comparative Judgement [37] (1927), and are 

more commonly used to evaluate small differences in image quality, useful for 

identifying thresholds of perceptibility of stimuli changes, or Just Noticeable 

Differences (JNDs) [16] [18].  



 37 

There are some challenges in implementing subjective methods of quality 

assessment. The data analysis involved is often demanding and in practice, 

data collection can be time-consuming. Environmental conditions must be 

carefully controlled and large numbers of observers are often required to 

produce meaningful results.  Factors such as the experience of the observer 

group in the judgement of images, and the level of fatigue of observers can 

have a significant effect on the results obtained. Therefore the observer group 

must be carefully selected and the length of time taken for observations must 

be controlled, which limits the numbers of images that may be evaluated. The 

results are also very dependent upon the type and range of sample stimuli and 

careful consideration must be given to image selection. This makes it difficult 

to provide comparisons between derived scales, unless they are calibrated in 

some way to a common standard. Keelan’s Handbook of Image Quality [1] and 

further work on an extension of ISO standard 20462, the Softcopy Quality 

Ruler [38] [39], are examples of approaches which aim to provide solutions to 

this problem of calibration and comparison between scales resulting from 

different psychometric experiments.  

The necessary time and complexity of psychophysical experiments mean that 

such methods are not always practical for the assessment of systems which 

have a short product cycle time; this is a primary motivation in the 

development of suitable objective image quality measures and metrics. 

Nevertheless, subjective methods remain an important aspect of image quality 

investigation; they are an important means of evaluating and benchmarking 

objective metrics.  

2.4 Distortion, Fidelity and Quality 

Various aspects of image quality may be quantified, and these are 

differentiated by three terms, image distortion, image fidelity and image quality.  

Although all are related to the evaluation of images and imaging systems, they 

are described somewhat inconsistently in the literature under the general 

umbrella of image quality [19] [40], but have distinct meanings. 
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Image distortion is assessed objectively and is concerned with the 

quantification of errors introduced by an imaging system or process, without 

reference to their visual impact. The simplest methods measure physical 

differences between digital images. The example in figure 2.3 illustrates a form 

of distortion measurement, where a compressed image has been subtracted 

from the original and the results scaled to produce a third image which is a 

difference map between the two images. The resulting image can be quantified 

to produce a measure of the magnitude of error incurred by the compression 

process. Distortion metrics such as root mean squared error (RMSE) [4]and 

Peak Signal-to-Noise Ratio (PSNR) [7], which evaluate the average error 

magnitude (per pixel in most cases), and the amount of error relative to the 

peak value of the signal, respectively, are two widely used examples.  

 

 

Figure 2.3: An example of simple distortion measurement (Image© S. Triantaphillidou) 

Such measures are often employed to quantify the effects of imaging processes 

that introduce loss of information, such as image compression; however, their 

poor correlation with the subjective perception of quality [20] means that they 

have limited usefulness as visual quality measures. There are various reasons 

for a lack of correlation. Because simple distortion metrics are based on first 

order statistics, they take no account of the spatial structure of the image and 

therefore the location or visibility of the errors (as discussed later, certain 

spatial image characteristics may provide a masking effect for some types of 

origi compres

= Subtract 

Original Difference Image      
(Contrast enhanced) 

Compressed 



 39 

artefacts, which more sophisticated objective approaches attempt to model). 

Additionally, without any model of the HVS incorporated, distortion measures 

cannot predict how problematic the errors will be, as their visual significance 

cannot be weighted. Indeed, the low level introduction of certain types of 

artefacts can represent an improvement in perceived quality for some types of 

scene content [33] [34], resulting in a negative correlation between such a 

distortion measure and image quality. Furthermore, certain global variations 

to images, such as a small value change in brightness [19](by the addition or 

subtraction of a small constant to every pixel), or a translation of all pixels by 

the same amount, will result in large distortion values with no perceived effect 

on the image. Nevertheless, distortion measures have a place in assessing the 

level of information loss introduced by some processes. Additionally, certain 

types of metrics rely upon error pooling as a final stage, after taking into 

account the properties of display and visual systems. 

Silverstein and Farrell [41] define image fidelity as “the ability to discriminate 

between two images” and referring to “the ability of a process to render an 

image accurately without any visible distortion or information loss”. Like 

distortion metrics, image fidelity measures employ image comparison of the 

same scene to evaluate differences; however they are concerned with 

identifying and quantifying threshold levels of detection of those differences 

and relating those to physical properties. As they provide a measure of the 

point at which distortion is perceived by the visual system, they effectively 

quantify the combined effects of the physical image properties, the display 

system, and aspects of visual processing. Because fidelity measures deal with 

thresholds, the differences between the compared images tend to be small 

(although a range of distortions will be evaluated). The differences may be as a 

result of a change in a single physical attribute, for example by contrast or 

colour modification, or can be the combined effects of multiple attributes and 

artefacts, as is typical of the distortion caused by lossy compression. 

Fidelity may be assessed subjectively in paired comparison experiments, 

where observers provide a yes/no answer to the question of whether they can 

detect a difference between two stimuli, one distorted and the other a 
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reference. Alternatively, observers may change a physical parameter on a 

single image to identify the point at which a difference is detectable: the Just 

Noticeable Difference (JND). Once the JND is established, a scale of magnitudes 

of fidelity loss may be calculated using multiples of the JND. 

Objective measures attempt to predict the threshold point by combining 

physical image properties with models of the reproduction system and models 

of the HVS. The perceptual characteristics upon which these models are based 

are discussed in more detail in section 2.7. The visual models deal with lower 

order processing; typically they incorporate functions for luminance 

adaptation, contrast sensitivity and masking effects, where the effects of a 

signal can be masked by the presence of another signal, for example the 

presence of noise of a particular frequency can be masked by the presence of 

that frequency in the signal at the same spatial location [42]]. Pappas, Safranek 

and Chen [36]] term these types of measures: ‘Perceptual Metrics’. These are 

classified as ‘full reference’ quality measures [24], in that a test image is 

compared to a reference image. Both images are passed through a number of 

different processing stages, which simulate the viewing and display conditions, 

followed by selected characteristics of the HVS. The result in each case is a 

theoretical ‘visual image’ [19]. The final stage is error pooling, the 

quantification of the differences between the two images, producing either a 

single figure which equates to quality, or a map of distortions (e.g. colour 

differences for each pixel).  

It seems logical to assume that when an observer is comparing two images 

with relatively small differences between them, then they will tend to 

scrutinise the images with care; this is particularly true in the case of 

subjective fidelity studies using expert observers. From the earlier discussion 

regarding current theories of visual perception, this implies that hierarchical 

visual processing in fidelity judgements is likely to be operating from the 

bottom-up, (i.e. Hochtein and Ahissar’s ‘vision with scrutiny’ [30]) where 

consideration of lower order attributes, takes precedence. This would explain 

why objective fidelity metrics, which use low level image attributes and models 

of lower level visual processing appear to correlate relatively well with 
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subjective fidelity. However, as already discussed, suprathreshold quality 

judgement involves more high level visuo-cognitive processing. As Ford [19]] 

points out, without additional cognitive inputs, appropriate scaling to predict 

quality is difficult with perceptual metrics. 

Image quality in the ‘true’ sense is concerned both with thresholds of 

perceptibility (to establish the just noticeable difference) and with 

suprathreshold magnitudes, [19] (which may usefully be calibrated in a scale 

of JND values). This involves the overall perception of the ‘goodness’ of the 

image, and combines the effects of all aspects of visual and cognitive 

processing with the further factors influencing observer quality preferences 

(such as quality consciousness and imaging context). Figure 2.4 illustrates the 

different factors involved in distortion, fidelity and quality measurements, and 

the points at which they are carried out. 

 

Figure 2.4: Factors involved in the measurement of image distortion, image fidelity and 
image quality and points where their measurements are performed (from Triantaphillidou 
[40] 
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assessment. The fundamental difference is in the task for the observer; in 

fidelity, it is one of discrimination (establishing perceptibility), whereas in 

quality the observer is also asked for a preference, or a judgement (for 

example, establishing acceptability). Because fidelity measurements assess the 

degree of visible distortion, they may also correlate negatively with perceived 

quality [41], as for distortion measures, for the reasons described previously. 

Part of this research, detailed in chapter 5, explores subjective assessment of 

perceptibility and acceptability within the same experimental study, and the 

relationship between them, particularly with reference to scene content. 

Quality may be assessed subjectively, using either comparison between images 

to indicate preferences (in paired comparisons, or by ranking groups of 

images), or on single images (so-called no-reference methods). Without 

comparison, Ford notes [19] that the impact of the observer’s quality 

consciousness becomes more dominant. Psychometric evaluations produce 

various different types of quality scales, as detailed in the later section on 

subjective evaluation methods. Image quality may be assessed objectively 

using various performance measures, to evaluate systems, or by modelling 

image quality attributes (described below) either singly or in combination in 

Image Quality Metrics (IQMs) [ [19] [22] [40] [14]. A fundamental assumption 

in the development of many IQMs is that image quality is multi-dimensional, 

but that the attribute dimensions can be individually scaled and then combined 

to obtain an overall figure of merit.  As described in section 2.6, five main 

attributes have been traditionally considered to be the main contributors to 

image quality in analogue imaging systems, and derived metrics often use 

combinations of these attributes with HVS characteristics. Types of metrics are 

introduced in the later section on objective measurement. 

2.5 Physical and Perceptual Image Quality Attributes 

Keelan, in providing a working definition of image quality [16], classifies a 

range of image quality attributes into the following different types, according 

to their nature and amenability to objective description: 
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Personal attributes, as described at the beginning of this chapter, e.g. to do 

with capturing the ‘essence’ of the subject, or providing a flattering image of 

someone. 

Aesthetic attributes, such as lighting and composition. 

Artefactual attributes, which are not always evident in an image, but are 

defects introduced by the imaging system, and commonly (but not always) lead 

to degradation in image quality. Examples include blur, noise, and digital 

artefacts. 

Preferential attributes, these are always evident in an image and can be 

identified by a preferred point, dependent upon observer, scene content and 

imaging context. Examples include tone and colour reproduction. 

Of these, the first two types of attributes are highly subjective in nature, and 

very variable from image to image, therefore are not very amenable to 

objective quantification. The effects of these types of attributes are limited by 

careful definition of the observer, purposeful scene selection and quality 

evaluation across many different images. The latter two types of attributes are 

the ones of interest in image quality investigation, having two important 

characteristics: they are both amenable to objective description, as described 

below, and they are strongly influenced by the properties of the imaging 

system. 

In analogue imaging, five basic physical attributes have been traditionally 

considered to influence image appearance [19], [22] [40]: tone, colour, 

resolution, sharpness and noise. These are sometimes referred to as the main 

dimensions of image quality. There are numerous well-defined physical 

measures relating to each attribute, as defined in table 2.1, and these are used 

individually or in combination in image quality metrics to characterise the 

physical properties of the image.  

Where physical attributes are considered to be objective measures, they are 

related to perceptual attributes, which are often termed ‘nesses’ [18] [32]. 
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These are the terms typically used by observers to describe the way in which 

the image characteristics are perceived; some of those relating to the physical 

attributes described above are illustrated in table 2.2.  

 

 

Table 2.1:Physical Image attributes and objective imaging performance measures (from 
Triantaphillidou [40]) 

Table 2.2: Physical attributes, their descriptions and relationships with perceptual 
attributes (adapted from Ford [14]). 

Note that sharpness is considered both a physical attribute, quantified by the 

objective measurement of the frequency content in a reproduced edge, and a 

perceptual attribute, describing the subjective impression formed from the 

IMAGE  
ATTRIBUTE 

MEASURES 

Tone 

 

Characteristic curve, density differences, transfer 
function and OECF, contrast, gamma, histogram, 
dynamic range 

Color Spectral power distribution, CIE tristimulus values,  
colour appearance values, CIE colour differences 

Resolution Resolving power, imaging cell, limiting resolution 

Sharpness Acutance, ESF, PSF, LSF, MTF 

Noise Granularity, noise power spectrum, autocorrelation 

function, total variance ( ) 

Image content and 
efficiency 

Information capacity, entropy, detective quantum 
efficiency. 

PHYSICAL 
ATTRIBUTE 

VISUAL DESCRIPTION RELATED PERCEPTUAL 
ATTRIBUTES 

Tone Macroscopic contrast; reproduction of 
intensity 

Brightness, Lightness, Contrast 

Colour The reproduction of/differences in 
lightness, chrominance and saturation 

Lightness, Brightness, 
Chrominance, Saturation, 
Colourfulness, Hue 

Resolution The ability to perceive/reproduce fine 
detail 

Fineness (detail) 

Sharpness The reproduction of edges Sharpness, Fineness 

Noise The presence of random and non-
random spurious information 

Noisiness  

TOTAL
2
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reproduction of an edge. In some cases there is a direct relationship between a 

single ness and a physical attribute, but in others the perceptual attribute is 

either dependent on more than one physical attribute, or the physical attribute 

may be partially described by several different nesses. For example, the 

subjective impression of sharpness is to do with both edge frequency content 

and edge contrast. Equally, five different perceptual attributes may be used to 

describe aspects of colour reproduction.  

The perceptual attributes described in table 2.2 are fairly well defined, but as 

described in section 2.2, recent research identifies further more complex 

perceptual attributes that have an influence on image quality. Examples 

include usefulness and naturalness, which are dependent not only on the 

physical attributes of the image, and psychophysical characteristics of the 

visual system, but also on higher level visuo-cognitive processing, which 

references the user’s quality criteria in relation to the imaging application and 

their expectations and preferences based upon their internal references for the 

particular type of image or scene.  

2.6 Objective measures of physical attributes 

The following sections describe some of the well-defined measures of imaging 

performance relating to the five basic image quality attributes described 

above. 

2.6.1 Tone Reproduction 

Tone reproduction is concerned with the relationship between the scene 

luminances and their reproduction in images. Although a subset of colour 

reproduction, it is considered separately because of its fundamental 

importance to image quality, as a result of the amount of information carried 

by the achromatic visual channel [40]. Objective tone reproduction for an 

imaging system or device is described by the relationship of input to output 

intensities in one or several transfer functions. Subjective tone reproduction is 

dependent on this objective relationship from input to output, but also takes 

into consideration viewing conditions (luminance level, surround luminance, 
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flare, etc), which influence psychophysical characteristics (the non-linear 

perception of luminance, amplitude non-linearity) and therefore the perception 

of tones and tonal differences. 

The transfer functions of imaging materials or devices are evaluated using 

sensitometric measurements, by inputting a scale of known intensity values of 

usually equal visual steps and measuring the output. The transfer function for 

silver halide materials, known as the photographic characteristic curve, or the 

H and D curve, after F.Hurter and V.C. Driffield [43] [44], is a sigmoid shaped 

curve obtained by plotting output densities against log relative exposures.  

An important measure, which may be derived from device transfer functions is 

termed gamma (), which is correlated with image contrast. In the 

photographic characteristic curve, it is known as sensitometric contrast [45] 

and is defined as the gradient evaluated from any two points lying on the 

straight line portion of the curve:  

 𝛾 =
𝐷2 − 𝐷1

log 𝐻2 − log 𝐻1
 (2.1) 

Transfer functions for digital systems are obtained in a similar fashion. They 

are more typically plotted on linear-linear axes and in many cases exhibit a 

non-linear relationship between input and output, often completely specified 

by some form of a power function.  Interestingly, these transfer functions in 

some cases are not intrinsic to the devices but are applied by some form of 

internal correction to conform to transfer functions which have been 

standardised for image interchange and video transmission [46] [47] [48]. A 

well-known example of a power transfer function (which is native to the 

device) is that of a Cathode Ray Tube (CRT) display system, which has a non-

linear relationship between input voltages and the produced luminances on 

the display surface, often described by the gamma model [47]below: 

 𝐿 = 𝑜 + 𝑔𝑉𝛾𝐷 (2.2) 
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Where L = normalised luminance 

o = system offset (from display brightness setting) 

g = system gain (from display contrast setting) 

V is the normalised voltage (or normalised pixel values) 

D is the non-linearity of the contrast in the displayed image 

On a correctly adjusted display, the offset and gain are set to values of 0 and 1. 

Many CRTs, when correctly set up have an exponent close to a value of 2.5.  

Typically, in a digital imaging chain, the gamma of successive components is 

different, and gamma correction is applied, to compensate for the various 

individual gamma values, modifying image pixel values to obtain the required 

overall tone reproduction. The system gamma is calculated by cascading 

individual gamma values [47]: 

 γsys = γOx γI x γD x γC (2.3) 

Where the subscripts O,I,D and C represent output, input, display and 

correction respectively. 

The expression above implies that gamma correction will be applied only once 

in the imaging chain, but in reality, it may be applied individually at several 

different stages. The importance of the CRT display gamma models is that 

many devices (and colour encodings) incorporate gamma correction to ensure 

that an image will be displayed on a typical CRT correctly. The term gamma 

correction originates from the television industry and is defined by Poynton 

[48] as: “The process by which a quantity proportional to intensity, such as CIE 

luminance...is transformed into a signal by a power function with an exponent 

in the range 0.4 to 0.5”. This describes the conversion of a linear signal to one 

that will be correctly displayed on a CRT with a non-linear response curve. 

This form of gamma correction may be generalised by the expression: 

 𝑉′ = 𝑉1/𝛾             (2.4) 
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Where V’ is the gamma corrected signal, V is the original signal, and  is the 

gamma value from the power function modelling the response of the intended 

display device. 

As mentioned earlier, because of the initial prevalence of CRT display 

technology in digital imaging chains, many other devices are gamma corrected 

to a theoretical CRT display. Liquid Crystal Displays (LCD), for example, have 

various different native transfer functions depending on their operating 

modes, but are essentially linear devices. Their signals are often gamma 

corrected to ensure that they are suitable for standardised image interchange, 

often resulting in a gamma corrected signal, which mimics that of a CRT [46]. 

Digital Still Cameras (DSCs) and scanners have sensors with approximately 

linear luminance responses. However their transfer functions are usually 

described using the Opto-Electronic Conversion Function (OECF), which is a 

system transfer function produced from the combination of sensor, firmware 

and software. Gamma correction is typically applied as part of the signal-

processing pipeline to ensure that the images are correctly displayed [47]. If 

RAW data are to be output, this happens when the image is previewed during 

RAW conversion (usually using one of a selection of standard RGB colour 

spaces). If a fully rendered file is produced, in the majority of DSCs it will be 

rendered using a standard RGB colour image encoding, such as sRGB or Adobe 

RGB 1998. Both colour encodings have transfer functions that approximate 

power functions. That of sRGB is not an exact power function; it has a linear 

bottom part and despite the power in the encoding being 2.4, it has a nominal 

gamma value of 0.45 (which corresponds to a gamma correction of 1/2.2,) 

because it assumes that the encoded image will be output to a standard CRT 

with a gamma of 2.5. Adobe RGB 98 is a pure power function with an exponent 

of 0.45. 

While the goal of objective tone reproduction is an overall gamma of unity 

(where all component gammas compensate for each other), it is subjective 

tone reproduction that is important in terms of image quality. Ford [14] and 

Triantaphillidou [46] note that subjective tone reproduction is dependent on 
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scene brightness relative to white, and that perceived contrast changes as a 

result of viewing conditions and surround. Fundamentally this means that 

perceived contrast cannot be defined without consideration of environmental 

and viewing conditions.  

2.6.2 Colour Reproduction 

2.6.2.1 Colour Specification 

It is quite common in everyday language to ascribe certain colours to objects 

or light sources: for example ‘grass is green’.  However, this is an erroneous 

description, for colour is not an object attribute but rather an attribute of 

visual sensation; it cannot exist without an observer. 

Whatever form the ‘observer’ takes (it need not be human) encompasses a 

means of both detecting and of interpreting electromagnetic radiation. In the 

human observer, the retinal photoreceptors detect the physical stimulus 

(electromagnetic radiation in the visible region of the spectrum) and then the 

neural connections in the visual pathway, and the cognitive system, process 

and interpret the signals produced by the stimulus [49]. The observer is the 

final component of what is termed the triangle of colour [50]. The first 

component is a source of visible electromagnetic energy, which will have its 

own spectral signature. The second component is an object, the chemical and 

physical properties of which modulate the energy from the source. To fully 

specify and describe colour, all three components of the triangle of colour 

require quantification. 

The complexity of colour is reflected in the methods and models of colour 

description, which are numerous and multi-dimensional in nature. There is not 

a single perceptual attribute for example, from table 2.2, which can alone 

describe the appearance of a colour. It is generally accepted that three main 

perceptual attributes are required to fully express the observer’s response to a 

colour [51]. Briefly, the hue of an area describes its relationship or apparent 

similarity to the perceived colours, red, green, yellow or blue (or combinations 

of two of them); its brightness is the degree to which an area appears to emit 
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more or less light; and its colourfulness is the amount by which an area appears 

to exhibit more or less of its hue [52]. Lightness and chroma are correlates of 

brightness and colourfulness respectively where the area is judged in 

proportion to that of a similar area, which is white or highly transmitting. 

Saturation is another correlate of colourfulness, judged in proportion to the 

area’s brightness. 

2.6.2.2 Colorimetry 

As shown in table 2.1, various approaches may be used in the objective 

quantification of colour. Spectral colour definition is a purely physical 

approach, for example quantifying the relative amounts of wavelengths 

contained within a stimulus (the spectral power distribution), the spectral 

absorption and reflection characteristics of surfaces or the spectral absorption 

properties of a photoreceptor. Colorimetry (the ‘measurement of colour’), by 

its strictest definition, is a means of predicting a colour match between two 

light sources of different spectral power distributions under specified 

conditions for a standard ‘average’ observer.  

The Commission Internationale D’Eclairage (CIE), in 1931, recommended a 

colour measurement system for absolute specification of such colour matches, 

which formed the basis of modern colorimetry. By specifying colour matching 

functions for a standard observer (for a 2, and later a 10 visual field) and 

providing SPDs for a variety of standard illuminants, CIE colorimetry allows 

absolute specification of colours that is independent of device or system [19].  

CIE colorimetry is a trichromatic system, and is based on the assumption that 

colour vision at photopic levels operates in the first instance by trichromatic 

matching of colours by the addition of the responses of the three types of cone 

receptors in the retina. The cone responses span three broad bands of 

wavelengths, with peaks at 580nm, 540nm and 440nm and are often denoted 

L, M and S (long, medium and short wavelengths, respectively), or , and . 

There is significant overlap between the responses of the different types of 

cones in certain parts of the spectrum.  
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CIE colorimetry aims to specify and describe all colours in terms of three 

variables, termed tristimulus values. These values are amounts of three 

additive primary stimuli that combine to match the colour being specified [52]. 

According to Grassman’s laws of additive colour mixture, a colour match can 

be specified by [50]:      

 𝐶 ≡ R(𝑹) + G(𝑮) + B(𝑩) (2.5) 

Where R(R) is R units of the R primary, etc. The CIE RGB colour matching 

functions, r(), g() and b(), shown in figure 2.5, were obtained 

experimentally for the standard (2) observer matching three primary 

monochromatic stimuli: R(700nm), G(546.1nm) and B(435.8nm). The curves 

in the figure indicate the relative amounts of the three illuminants required at 

any wavelength, to invoke a visual sensation equal to unit amounts of power a 

monochromatic source of the same wavelength.  

 

Figure 2.5: CIE 1931 RGB colour matching functions, from Triantaphilldou [38] 

To calculate the tristimulus values for any stimulus with a spectral power 

distribution (), the generalised equations are [50]:  
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As described by Fairchild [50], the, () term is dependent on the stimulus 

being measured. For a self-luminous source, it is usually the relative spectral 

power distribution, whereas for a reflective material, it is the product of the 

spectra of the source and the object.  

As figure 2.5 illustrates, some areas of the colour matching functions are 

negative. As Hunt [52] explains, this is because there is some overlap in the 

response of the three types of cone receptors, which means that it is never 

possible to stimulate the  cones alone. To eliminate the negative values in the 

colour matching functions the CIE converted the RGB primaries using linear 

transformations to a further set of imaginary primaries, XYZ, which could 

match all stimuli without negative values. These primaries were selected so 

that one of them, the Y primary, would match V(), the CIE photopic luminous 

efficiency function, by choosing the other two primaries to produce no 

luminance response [50]. The XYZ primaries have colour matching functions 

x(), y( and z() respectively and general equations for calculating tristimulus 

values are: 

 

𝑋 = 𝑘 ∫ 𝜙(𝜆)�̅�

𝜆

(𝜆)𝑑𝜆 

𝑌 = 𝑘 ∫ 𝜙(𝜆)�̅�

𝜆

(𝜆)𝑑𝜆 

𝑍 = 𝑘 ∫ 𝜙(𝜆)𝑧̅

𝜆

(𝜆)𝑑𝜆 

(2.7a) 

(2.7b) 

(2.7c) 
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Where k is a normalising constant. k is defined as 683 lumens W-1 for absolute 

colorimetry, which is used mainly for self-luminous stimuli. For relative 

colorimetry: 

 𝑘 =
100

∫ 𝑆𝜆�̅�(𝜆)𝑑𝜆
𝜆

 (2.8) 

Where S() is the relative spectral power distribution of the illuminant (a 

relative SPD is one that has been normalised). This normalisation constant 

yields tristimulus values in the range 0-100 for most materials; if relative 

colorimetry is used for a light source, the Y tristimulus value will always be 

100. 

The colour matching functions described above were determined from 

experiments using a 2 visual field. In 1964 the CIE published data for the 

supplementary standard colorimetric observer with a 10 visual field. 

2.6.2.3 CIE Uniform Colour spaces 

Tristimulus values provide a model of colour measurement directly associated 

with the trichromatic model of human visual processing. However, when 

attempting to visualise the colour of a stimulus, they are not particularly 

intuitive descriptors, as they do not establish the relationship with perceptual 

attributes relating to colour. Tristimulus values are commonly represented 

graphically using a two-dimensional chromaticity diagram. The conversion 

from XYZ tristimulus values to x,y, or u’v’ chromaticity co-ordinates is achieved 

by normalisation of the values to remove luminance information. They cannot 

therefore represent many aspects of the colour appearance of stimuli [50]. 

The CIELAB and CIELUV colour spaces, recommended by the CIE in 1976, were 

developed with the aim of providing visually uniform spaces for the 

measurement of colour differences, as this cannot be achieved using 

tristimulus values or chromaticity co-ordinates for the reasons stated above. 

The CIE colour spaces are three-dimensional, expressed in dimensions which 

approximately correlate with the perceived, hue, chroma and lightness of a 
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stimulus[37,38]. Correlation and visual uniformity are achieved by 

incorporating features that account for non-linear visual responses and 

chromatic adaptation. Both spaces have a uniform lightness scale L*, and two 

chromaticity co-ordinates: a*, b* in the CIELAB space approximately represent 

redness-greenness and yellowness-blueness; u*, v* are the equivalent co-

ordinates in the CIELUV space. 

The transformations from XYZ tristimulus values to the co-ordinates of the two 

colour spaces are not dissimilar. CIELAB values are obtained as follows [51]: 

 

𝐿∗ = 116𝑓 (
𝑌

𝑌𝑁
) − 16 

𝑎∗ = 500 [𝑓 (
𝑋

𝑋𝑁
) − 𝑓 (

𝑌

𝑌𝑁
)] 

𝑏∗ = 200 [𝑓 (
𝑌

𝑌𝑁
) − 𝑓 (

𝑍

𝑍𝑁
)] 

(2.9a) 

(2.9b) 

(2.9c) 

Where Xn , Yn  and Zn are tristimulus values of the reference white, and f(x) is 

defined differently depending on the normalised values as follows: 

For normalised values (i.e. x= 
𝑋

𝑋𝑁
, or 

𝑌

𝑌𝑁
  or  

𝑍

𝑍𝑁
)    >0.008856:  

 𝑓(𝑥) = (𝑥)
1
3 (2.10) 

For normalised values  0.008856: 

 𝑓(𝑥) = 7.7871(𝑥) + 
16

116
 (2.11) 

The CIELAB space is illustrated in figure 2.6. Perceived chroma, (C*ab)and hue 

(hab) are cylindrical co-ordinates in the same three-dimensional space and are 

also depicted. They may be derived from a* and b*: 

 𝐶∗
𝑎𝑏 = (𝑎2 + 𝑏2 )1/2 (2.12) 
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ℎ𝑎𝑏 = 𝑡𝑎𝑛−1 (

𝑏

𝑎
) (2.13) 

 

 

 

 

 

 

 

 

 

Figure 2.6: Three-dimensional representation of the CIELAB uniform colour space. 
Cylindrical coordinates, C*

ab and hab are also illustrated. From Triantaphillidou [38] 

2.6.2.4 Colour Difference Formulae 

Colour-difference values are important in objective image quality assessment, 

performing various functions depending upon the approach and methods 

being implemented. As a measure of differences between images, they can be 

used for the quantification of errors in a full reference distortion metric. 

Evaluating pixel-by-pixel colour differences produces a colour difference map, 

which is useful in highlighting image content that is particularly susceptible to 

distortion. Colour differences may also be pooled to produce a single value 

metric [50]. Furthermore, perceptibility and acceptability thresholds may be 

investigated in terms of colour differences. Because of the perceptual 

uniformity of the CIE colour spaces, colour differences may be evaluated using 

the Euclidean distance between the co-ordinates of two stimuli. In the CIELAB 

space, this is expressed as [50]: 

L* 

b* a* 

hab 

C*ab 
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 𝑓(𝑥) = 7.7871(𝑥) + 
16

116
 (2.14) 

Colour differences may also be expressed in terms of chroma and hue: 

 ∆𝐸∗
𝑎𝑏 = [(∆𝐿∗)2 + (∆𝐶∗

𝑎𝑏)2 + (∆𝐻∗
𝑎𝑏)2]

1
2 (2.16) 

As noted by Fairchild [50], CIELAB colour differences are not perceptually 

uniform throughout the colour space. Because of this, a number of 

modifications have been made, to improve colour-difference measurement 

uniformity.  These modifications have resulted in CIE recommendations for 

two newer models for colour-difference measurement, CIE94 and CIE-DE2000. 

The CIE94 model, published in 1995, is an adaptation of the equations used to 

calculate CIELAB colour differences and is based on a set of reference 

conditions defining illumination, observer, background and sample 

characteristics [50]. Parametric factors are used to weight hue, chroma and 

lightness components according to the position of the stimulus in the CIELAB 

space, to adapt for conditions different to the reference. ∆𝐶∗
𝑎𝑏 and ∆𝐻∗

𝑎𝑏 

decrease with increasing  𝐶∗
𝑎𝑏 CITATION Hun98 \l 1033  [52]. 

The CIE-DE2000, which was published in 2001 and has been proposed for 

adoption by the CIE, incorporates some aspects of CIE94 and a previous rather 

complex model known as the CMC module (developed in the mid-1980’s, CMC 

also weighted the different components according to the position of the 

stimulus). The CIE-DE2000 colour difference, denoted ∆𝐸00, incorporates a 

weighting function which is dependent on hue [49] and a term that is 

dependent on the hue and chroma difference product. It also rescales the a* 

 ∆𝐸∗
𝑎𝑏 = [(∆𝐿∗)2 + (∆𝑎∗)2 + (∆𝑏∗)2]

1
2 (2.15) 

 ∆𝐻∗
𝑎𝑏 = [(∆𝐸∗

𝑎𝑏)2 − (∆𝐿∗)2 − (∆𝐶∗
𝑎𝑏)2]

1
2 (2.17) 



 57 

axis prior to computation of hue and chroma. Again, a rather complex formula, 

Sharma [49] notes that there are some concerns about CIE-DE2000. Although 

well-behaved in most regions of CIELAB, some distortions are evident 

particularly in the blue regions of the colour space. There are additional 

concerns about the validity of the scaling functions under some conditions, as 

they are based upon different (colour difference) datasets. A more general 

concern about all colour difference formulae is that the visual datasets that 

they are based on involve comparisons of stimuli on a fixed and uniform 

background [49,53] [54]. This raises questions over their applicability in 

imaging applications where colours are surrounded by other, often-similar 

colours. Further, in image quality studies, it is desirable to be able to evaluate 

perceived differences between colours in complex scenes. 

2.6.2.5 Colour appearance modelling 

Colour appearance modelling aims to specify, according to Fairchild [50]: ‘the 

colour appearance of stimuli under a wide variety of viewing conditions’. As 

well as the influence of viewing conditions, a number of visual phenomena and 

environmental conditions influence colour appearance: chromatic adaptation, 

light adaptation, luminance level, background colour and surround colour. Of 

these, chromatic adaptation is the most important. 

Chromatic adaptation is a mechanism of colour constancy (one of a number of 

visual constancies that improve the cognitive processing of visual information 

and the recognition and interpretation of scenes). It enables the HVS to 

maintain the perceived colour of objects under illuminants with different 

characteristics and white points [51]. It is analogous with white balance in 

digital cameras. Chromatic adaptation is achieved via transforms (CATs) which 

compute the corresponding colours under a reference illuminant for a stimulus 

defined under a test illuminant. 
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Table 2.3: Relationship between colorimetric measures and the input and output data 
from CIECAM02 (based on Hunt [52], and Triantaphillidou [51]) 

There are a number of different Colour Appearance Models (CAMs), which 

share some general concepts, summarised by Fairchild [50]: Stimulus and 

viewing conditions are specified in terms of CIE XYZ tristimulus values, which 

are converted to cone responses via (usually) linear transformation, to allow 

more accurate modelling of the physiological aspects of the HVS. 

Non-Uniform(NU)/ 
Uniform(U) Colorimetric 
Measures 

Input Data CIECAM02 Output Data CIECAM02 
(Perceptual Correlates) 

NU:   Luminance factor L/Ln 

U:   CIE 1976 lightness L* 

 

X,Y,Z: Relative tristimulus 
values of color stimulus in the 
source conditions 

J: Lightness 

 

NU: Luminance L 

U: None 

LA: Luminance of the adapting 
field (cd/m2)  

Q: Brightness 

NU : None 

U: CIE 1976 C*uv or C*ab 

Xw,Yw,Zw: Relative tristimulus 
values of white  

C: Chroma 

NU: Excitation Purity pe 

U: CIE 1976 Saturation suv 

Yb: Relative luminance of the 
background  

s: Saturation 

NU: None 

U: None  

c: Impact of surround  M: Colourfulness 

NU: Dominant wavelength 

d 

U:CIE 1976 hue-angle huv or 
hab 

Nc: Chromatic induction factor  h: hue angle 

 FLL: Lightness contrast factor  H: hue composition 

 F : Degree of adaptation factor  aM,bM: Cartesian colour 
coordinates derived from 
colourfulness and  hue 

  aC,bC: Cartesian colour 
coordinates derived from 
chroma and hue 

  as,bs: Cartesian colour 
coordinates derived from 
saturation and hue 
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Characteristics of the viewing environment are also considered; including 

tristimulus values of the adapting illuminant and in some cases various other 

data such as absolute luminance level and details of the background and 

surround. A chromatic adaptation transform is then applied, additionally 

incorporating data about the adapting stimulus and viewing conditions. After 

this stage, results are combined into higher-level signals modelling the 

opponent-colours theory of the HVS as well as various non-linearities and 

threshold effects. The final signals are combined in various ways to produce 

predictors of perceptual attributes. 

Early colour appearance models, developed by Hunt (1982,1985) and Nayatani 

(1986), lead to the first recommendation from the CIE, CIECAM97s. More 

recently, a simpler model has been recommended, CIECAM02. A summary of 

colorimetric measures, including those in CIECAM02 and their perceptual 

correlates is given in table 2.3. The table illustrates how the physical attributes 

(measured by the input data in the second column) affect the perceptual 

correlates. Basic colorimetric measures alone are not able to predict how 

stimuli will be perceived in complex scenes and images, particularly in terms of 

the interactions between attributes – as indicated by the lack of measures in 

the last few rows of the table. However, they can be adapted and combined 

with other variables to produce an overall model of colour appearance. 

2.6.3 Resolution 

Resolution is concerned with the reproduction of detail within an image. Like 

sharpness, it describes micro-image spatial properties, but where sharpness is 

concerned with edges alone, which are sudden transitions in intensities, 

resolution describes the finest level of detail that may be captured or 

represented within the image [55].  Rather confusingly, the term is used to 

describe many different aspects of imaging systems, particularly digital 

imaging systems.  

In capture devices, resolution often describes the number of (imaging) pixels 

on a sensor, with the aim of its use as a comparative figure of merit for 

consumers. This is more correctly termed digital resolution [47] or pixel 
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resolution. Such a definition is relatively meaningless without reference to the 

sensor size; together the two measures determine the addressable resolution 

which is the number of individual image elements per unit distance for a 

device or image, often described by dots per inch (dpi) or pixels per inch (ppi). 

The addressable resolution is also a descriptor for output devices, although the 

final subjective impression of resolved detail (and sharpness) will also depend 

upon viewing distance and viewing conditions. 

The ‘true’ resolution of an image or imaging system, the spatial resolution is 

fundamentally dependent upon the size of the basic imaging element; the point 

spread function (PSF) the shape of the image of a point of light, which is 

influenced by all stages of the imaging process [40]. These include the imaging 

optics; anti-aliasing filters; optical aberrations; sensor characteristics; optical 

spreading within a photographic emulsion, termed turbidity; optical spreading 

from micro-lenses in a digital sensor; interpolation processes, as averaging will 

always blur images and reduce resolution; and environmental conditions at 

image capture. The PSF may be viewed as a ‘blurring function’ imposed by the 

imaging system. Its size and shape determines how closely spaced two 

distinguishable image points can be. As noted by Burns [56] two factors 

determine the resolution of a digital system: the PSF and the sampling 

frequency (in samples per unit distance, analogous to the addressable 

resolution described above), which defines the upper resolution limit that may 

be achieved.  

A traditional measure of resolution in photographic systems is resolving power, 

where an image of a test target containing blocks of equally spaced bars of 

increasing frequency (Figure 2.7) is visually inspected to identify the highest 

number of lines per unit distance that can be clearly distinguished by an 

observer. This is a form of assessment of limiting resolution, determined as the 

point at which finely spaced features are no longer detectable.  
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Figure 2.7: The USAF 1951 Lens Test Target 

While simple to implement and understand, resolving power has a number of 

disadvantages, in that it ultimately relies on subjective evaluation, the results 

are dependent on the contrast of the target, and it only identifies a threshold 

criterion [56]. While useful and widely used therefore as an imaging 

performance measure, resolving power is less suitable as an indicator of image 

quality. Because resolution and sharpness are contrast dependent, a more 

complete measure of both can be obtained by investigating contrast or 

modulation as a function of spatial frequency, in the modulation transfer 

function (MTF), or the spatial frequency response (SFR), both of which are 

described in section 2.6.4. 

In considering images compressed using lossy algorithms such as the JPEG 

baseline algorithm, or the JPEG 2000 algorithm, the issue of resolution is 

complicated by the fact that colour images are often pre-processed to convert 

from an RGB colour encoding to a luminance-chrominance colour space, at 

which point the chrominance channels are sub-sampled [33]. As Ford points 

out [19], both colour space and sub-sampling method may be unknown. When 

the image is decompressed, the sub-sampled channels must be interpolated to 

provide missing values. Although the final number of samples will be 

unaffected, artefacts may be introduced by this process and spatial detail lost, 

which then leads to questions about the accuracy of resolution measures, in 
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this context, and particularly their correlation with or influence upon image 

quality. Furthermore, lossy algorithms such as JPEG are notoriously non-linear, 

and as system linearity is one of the fundamental assumptions in the 

evaluation of MTF, this complicates the measurement and interpretation of 

MTF curves in assessment of such images [55]. 

The subjective impression of resolution within an image is highly influenced by 

other image quality attributes, most notably image sharpness and contrast. 

Although resolution and sharpness correlate physically [19] (i.e. edge 

sharpness is highly dependent on how well the edge is resolved) it has been 

found that an increase in contrast can increase the perceived sharpness in a 

low-resolution image, relative to a lower contrast higher resolution image [19].  

2.6.4 Sharpness 

Image sharpness is concerned with the micro-image reproduction of edges. 

Image edges may be defined in terms of two variables, the edge gradient, 

which defines the spatial extent of the edge and the magnitude, which defines 

the contrast of the edge. A traditional photographic measure of sharpness is 

acutance, which is evaluated from the mean squared gradient of an edge. 

However it can be subject to errors and only partially correlates with visual 

sharpness [43]. Because edge reproduction is a function of both the PSF and 

micro-image contrast, the MTF, which evaluates the contrast with respect to 

frequency content of the edge, is a more complete measure. 

When considering a sinusoidal intensity pattern of fixed spatial frequency, the 

modulation M, which may be thought of as a measure of contrast, is defined as: 

 

 

 𝑀 =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛
         (2.18) 
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When a sinusoidal pattern is input into a linear spatially invariant imaging 

system, the result will be an output sinusoidal pattern of the same frequency, 

but with a reduction in modulation (equivalent to a change in contrast, see 

Figure 2.8); the modulation reduction increases with increasing spatial 

frequency. The change in modulation for a given angular frequency is known 

as the modulation transfer factor:   

 

Figure 2.8: A sinusoidal input when passing through a linear spatially invariant system, 
results in another sinusoid of equal frequency, but with reduced modulation (and possibly 
a change in phase) 

The modulation transfer function is a plot of the modulation transfer factor 

versus spatial frequency and can be evaluated by imaging a range of sinusoidal 

input targets and calculating the modulation transfer factor for each (the sine 

wave recording method). As described earlier, the MTF is based on the 

assumption that the system is linear and spatially invariant. In reality most 

imaging systems are non-linear, and digital systems are also spatially variant 

[57](as mentioned earlier, these are particular problems with lossy 

compressed images). In photographic systems the shape of the characteristic 

curve has a significant linear portion and as long as the test images are 

exposed on this area, they may be treated as quasi-linear. In digital systems the 

	

 𝑀(𝜔) =
𝑀𝑜𝑢𝑡(𝜔)

𝑀𝑖𝑛(𝜔)
        (2.19) 
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non-linearities are typically accounted for using the Opto-Electronic 

Conversion Function (OECF). 

Some examples of MTFs are illustrated in figure 2.9. All show the characteristic 

shape of an MTF curve, illustrating an increasing loss of modulation as the 

spatial frequency increases. The higher that the level of the graph is, the less 

there is a loss of contrast. A theoretical ‘ideal’ imaging system would produce 

an MTF of unity across the full range of frequencies illustrating no change in 

modulation. The film curves illustrate the relationship between grain size and 

MTF; the fine grain film has the highest MTF across the full range of 

frequencies compared to the other two. This can be explained in terms of both 

resolution and sharpness. A film with fine grain will have a narrower PSF than 

one with larger grain structure. Hence its ability to resolve high spatial 

frequencies is better, and its resolution of edges and maintenance of edge 

contrast is improved. A further point to note is that the curves for both the fast 

panchromatic film (a(1)) and the CCD/CMOS imager in (b) increase above 

unity. This represents an increase in contrast from input to output and equates 

to a sharpening process. In the film, it is the result of adjacency effects, which 

are a chemically induced non-linearity of densities on either side of an edge. In 

the digital MTF, the rise is typical of a sharpening process, which may well be 

as a result of a sharpening operation (typically a laplacian filter) applied to 

compensate for the blurring introduced by the various interpolation processes 

and anti-aliasing filters typically implemented with image sensors [47]. 

 



 65 

 

(a) 

 

(b) 

Figure 2.9: (a) Typical MTF curves for (1) a fine grain film (2) medium speed film (3) fast 
panchromatic film (b) for a typical digital CCD or CMOS camera with a 9um pixel  (from 
Jenkin [57]) 

For image sensors, evaluation of the MTF from sinusoidal inputs is 

problematic, due to imperfect alignment in-phase of the sensor elements with 

the sinusoidal pattern on higher frequency targets, a situation made worse by 

noise [58]. An alternative method is the use of an edge input, because a 

‘perfect’ edge theoretically contains an infinite number of frequencies and 
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edges are easy to find in images. The edge spread function (ESF) is obtained by 

scanning or sampling the edge. As illustrated in figure 2.10 the line spread 

function (LSF) may then be obtained by differentiating the ESF. The MTF is 

then calculated by taking the modulus of the Fourier Transform (FT) of the 

LSF: 

Where l(x) is the line spread function.  

Note that the LSF is also related to the PSF, and can be obtained by integrating 

the PSF in one direction. 

 

 

 

 

Figure 2.10  Relationships between the edge spread function, the line spread function and 
the modulation transfer function 

In practice in digital systems an adaptation of the edge technique may be used, 

the slanted edge method defined by ISO 12233 [48] [49]. This is a method 

designed for use with sampled images. A region of interest is selected from an 

area across a slanted edge of specified contrast, usually obtained by imaging a 

specially designed test target and the image transformed to compensate for a 

non-linear transfer function (typical of digital devices) using its OECF, before 

channels are weighted to produce a luminance record. The edge samples are 

combined to allow creation of a 1D edge profile, which is effectively super-

sampled, reducing aliasing and allowing accurate evaluation of the MTF beyond 

the sensor’s Nyquist frequency. As for the edge method described above, the 

 𝑀(𝜔) = |∫ 𝑙(𝑥)𝑒−2𝜋𝑖𝜔𝑥𝑑𝑥
+∞

−∞

|     (2.20) 
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edge profile is then differentiated, followed by Fourier transformation of the 

resulting LSF and the modulus taken. The result is termed the spatial frequency 

response (SFR) and is distinct from MTF (although equivalent) because it takes 

no account of the frequency content of the target. 

 

Figure 2.11: Supersampling an edge in the slanted edge method for SFR measurement © 
Jenkin [58] 

The point at which the MTF/SFR drops to 10% is defined as the resolution 

limit or effective resolution [56] [58]. Each component within a system 

(including image processing as well as optical components) will have an 

associated MTF; the system MTF is a combination of all the individual MTFs. 

This cascading property means that the MTFs of system components are 

multiplied together. The effects of an individual component may hence be 

removed by dividing the system MTF by the individual MTF, which can be very 

useful in system design and evaluation. 

MTF measurements are incorporated into many image quality and fidelity 

metrics and measures. They are also useful in providing models of the HVS, as 

for example in modelling the effect of the optics of the eye as a contributing 

component of the contrast sensitivity function (CSF), which describes the 

overall spatial frequency response of the eye. Note however that the CSF is 
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sometimes described as the MTF of the eye, which is an incorrect definition. 

See section2.7.1 for more information on the CSF. 

2.6.5 Noise 

Noise has numerous causes and is an inherent feature of all imaging systems. It 

is defined as unwanted fluctuations in intensity over the image area and may 

be introduced by many aspects of the imaging system, processes, or as part of 

the signal itself. The main sources in photographic images are Poisson 

exposure noise, which is present in the signal (due to the random distribution 

of photons in a nominally uniform exposure) and therefore affects both 

photographic and digital images, and random partitioning of the exposing light 

due to the photographic grain structure. In digital imaging systems, sources 

additional to Poisson exposure noise include fluctuations as a result of 

photoelectric conversion, electronic and thermally generated noise, and errors 

introduced by the process of quantization in analogue to digital conversion. 

Although more commonly considered to be a random pattern which is 

superimposed on top of the image signal, in digital systems various sources of 

fixed pattern noise also exist. The artefacts introduced by processes such as 

lossy image compression are often considered as a form of noise and there is a 

close relationship between the simple distortion measures mentioned earlier 

and some of the noise measures described below. 

Because noise is generally a random pattern, it may be treated as a random 

variable, which can be described by a probability density function (pdf). Simple 

measures of noise are therefore concerned with first order statistics, such as 

the mean of the associated pdf, which helps to describe the area of the tonal 

range most affected, and variance based measures which can quantify the 

amount of noise present. An example is a traditional measure of noise in 

photographic systems, granularity, which is obtained by taking 

microdensitometry traces across uniform areas of the image and assessing 

fluctuations in density. Assuming a uniform clean sample, Selwyn granularity, 

(G = (2A), where  is the standard deviation of density fluctuations and A is 

the sampling aperture area of the microdensitometer) is found to correlate 
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well with the corresponding subjective attribute, graininess [58]. However, as 

a first order statistical measure, which produces a single number 

quantification of the amount of noise present, granularity is not informative 

about either the structure of the noise pattern or its visibility. Hence, like other 

statistical measures of distortion, it has poor correlation with image quality. 

Other measures, such as the autocorrelation function provide a more complete 

description of the spatial structure of noise. The autocorrelation function is 

defined mathematically as: 

 

This describes a process of correlation of a 1-dimensional density trace D(x) 

with itself displaced by a distance,. At each value of, the product of the 

density deviations are calculated. Note that the term density is traditionally 

used, as the function is obtained from density traces, but this may be 

generalised to ∆𝐼(𝑥), to represent intensity fluctuations, when dealing with 

traces from digital images. The result is a function that decreases with 

increasing displacement. The shape of the function will be dependent upon the 

amount of noise present and its spatial structure. A noise trace containing 

many high frequencies will tend to drop to zero more quickly than one with a 

more low frequency structure such as that contained in a large grained 

emulsion. 

Another important noise measure is the noise power spectrum (NPS), which 

describes the noise characteristics in frequency space and can be obtained 

from the autocorrelation function via its Fourier transform [58]. The measured 

NPS, N∆I(𝜔) , can be directly calculated from the intensity fluctuations, ∆𝐼(𝑥) 

using:  

 𝐶(𝜏)) = lim
𝑥→∞

1

2𝑥
∫ ∆𝐷(𝑥)∆𝐷(𝑥 + 𝜏)𝑑𝑥

𝑥

−𝑥

 (2.21) 
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Where L is the length of the measuring slit, ∆𝐼(𝑥) the measured intensity 

fluctuations at displacement x, and < > represents an average of the ensemble 

of values across the range. 

As mentioned above, the autocorrelation function and the noise power 

spectrum are Fourier transform pairs. The former is useful for identifying the 

structure and causes of noise, while the latter helps in evaluating the effects; by 

combining the image power spectrum (i.e. a frequency representation of the 

signal) with the noise power spectrum, it is possible to gain information about 

the signal to noise ratio in terms of spatial frequency. This is used in image 

processing and image restoration and is the basis of the Wiener filter [4]. Note 

also that the variance of the measured intensity fluctuations is equal to the 

value of the NPS at zero spatial frequency. 

2.7 Modelling visual perception 

Early approaches to image quality assessment focused upon the understanding 

and quantification of the signal, or of measurable physical characteristics of the 

imaging system. More recent research has attempted to better quantify the 

visual effects of changes to image attributes, by using knowledge of the 

properties of the human visual system and underlying neural processes. 

Significant advancements, particularly in the last decade, in our understanding 

of the human visual system have allowed the development of better models for 

perceptual criteria used in image quality evaluation [59]. Much of this research 

has stemmed from fields of visual neuroscience and visual psychophysics.  

In practical applications, image quality can be modelled by the perceptual 

weighting of all relevant visual attributes, the relative significance of each 

determined by the specific imaging context and purpose [60]. Study of human 

vision is a vast and complex subject, but some of the psychophysical properties 
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of the human visual system of particular relevance in modelling image quality 

are detailed below.  

As described by Pappas et al, [61], human visual sensitivity to variations in 

luminance depends on a number of factors, including light level, spatial 

frequency and signal content. The perceptual models most used within image 

quality relate to lower order aspects of vision. These are based upon an 

understanding of: 

- The optics of the eye, the physical characteristics and modelling of the 

visual pathway until visible radiation reaches the retina; 

- Photoreceptor responses (trichromatic, and opponent), scotopic and 

photopic vision, light and dark adaptation and initial mechanisms of colour 

vision;  

- Ganglion cell receptive fields, which exhibit centre-surround antagonism 

[62] and can facilitate various signal processes, such as dynamic range 

enhancement, edge detection and enhancement and compression of 

redundant visual information; 

- The lateral geniculate nucleus, a part of the thalamus, which has a 

fundamental role in temporal and spatial correlations of signals received 

on the visual pathway from different areas of the visual field, from both 

eyes, to produce a three-dimensional representation of space. LGN 

processing is complex and not yet well understood, but LGN cells and 

groups of cells also have receptive fields and are believed to play a role in 

the coordination of visual attention [63]; 

- The striate cortex, where more complex encoding of visual information is 

performed. Area V1 for example, contains cells (or groups of cells) that are 

tuned to respond to specific stimuli important to higher order visual 

understanding, such as specific bands of spatial frequencies, or specifically 

oriented edges; the cells also interact and combine responses to build up 

more complex perceptions important for visual phenomena such as size 

and shape constancy, motion or depth perception [62]. 
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Modelling of the functions described above allows better predictions of their 

effects on visual sensitivity, which can be incorporated into perceptual image 

quality metrics. Some of the models more commonly used in image quality are 

summarised below; Chandler in [59] provides a more in-depth discussion. 

2.7.1  Contrast Sensitivity Function 

The variation in response of the human visual system to contrast as a function 

of spatial frequency is known as the Contrast Sensitivity Function (CSF). 

Contrast sensitivity is the inverse of the contrast threshold at a particular 

spatial frequency; that is, as defined by Johnson and Fairchild [64] as  ‘The 

level of contrast necessary to elicit a perceived response by the human visual 

system’. As mentioned earlier, the CSF is sometimes described incorrectly as 

the MTF of the HVS. The primary difference however is that MTF is based upon 

linear systems theory, whereas the CSF is a measure of the contrast response 

of the entire visual system, which is neither linear, nor spatially invariant. 

The CSF is different for achromatic and chromatic channels. There are a 

number of different models for the achromatic CSF, which vary in complexity, 

and there have been various experiments to measure the CSF, which have 

provided good agreement with the models. One of the most well-known of the 

more complex models is that of Barten, described in detail in his book 

‘Contrast Sensitivity of the Human Eye and its Effect on Image Quality’ [65]. His 

model considers contrast sensitivity as a function of the internal noise (photon 

and neural noise) of the eye, lateral inhibition processes, also influenced by 

external noise, image size, pupil diameter, colour temperature of illuminant 

and luminance level. Daly’s CSF [66] is also complex, and includes parameters 

for orientation, luminance, radial spatial frequency, image size and viewing 

distance. 

A somewhat simpler model is that of Movshon and Kiorpes [67], which is 

approximated by a three-parameter exponential function and is viewing-

distance dependent. It is a version of this that has been adapted for the 

Modular Image Difference Metric by Johnson and Fairchild [68] described in 

more detail in (7.2), and implemented in Chapter 7 of this thesis. 
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Common to all of these functions is a shape that is bandpass in nature, peaking 

at somewhere between 4 and 8 cycles per degree (cpd). The effect of this, as 

shown in figure is to enhance frequencies around the 4cpd level while 

attenuating the very low frequencies and the much higher ones. Models such as 

that of Movshon are isotropic, making them easy to implement. Daly’s is 

anisotropic, providing a larger response to horizontal and vertical frequencies 

compared to diagonal frequencies [64].  

 

Figure 2.12 Bandpass shape of achromatic contrast sensitivity function ©R Jenkin, from 
[63] 

There are fewer models available for the chromatic channels. One that is 

described in the modular image difference model [68] [69] takes a similar form 

to the Movshon-Kiorpes model, but has the form of a low pass rather than band 

pass function. 

CSFs are often included at an early stage within an image quality metric as a 

form of spatial frequency filter prior to error calculations.  The functions may 

be approximated through convolution filtering in the spatial domain, or more 

accurately modelled by multiplication with the modulus of the Fourier 

transform of the image in the frequency domain. Their effect is to modulate 

frequencies beyond the limits of the HVS at a particular viewing distance, 

hence reducing errors within these frequencies that would have no significant 

visual effect. 
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It should be noted however that measured and modelled CSFs of this form are 

derived from the detection of simple targets (often consisting of one or only a 

few different spatial frequencies) against a plain background. More recent 

research in image quality metrics, detailed later, is exploring different 

approaches to the modelling of constrast sensitivity. 

2.7.2 Visual Masking 

Masking describes the effect that the presence of a signal can have in 

suppressing the visibility of another signal, and hence the ability of an observer 

to detect that signal. This is a cause of scene susceptibility, a form of scene 

dependency (see 3.6.1). Luminance masking may be considered to be a 

function of amplitude non-linearity [61]as a result of Weber’s law, which 

describes the increase in a threshold of detection or just noticeable difference 

as a result of the increase in background luminance: 

 
∆𝐿

𝐿
= 𝑘 (2.23) 

Where L is luminance and ∆𝐿 describes the change in luminance required to 

produce one just noticeable difference in luminance (i.e. the threshold) and k is 

a constant. 

Pattern masking is another form of masking where the presence of a pattern or 

a texture masks the visibility of distortions, particularly if they are similar or 

close in frequency. Noise masking can occur as a result of additive noise in the 

image or the process, which disrupts the detection of, for example, edges, or 

boundaries of objects. Distortions caused by digital processes can also be 

considered to be noise. 

Contrast masking [59] is also described as spatial frequency adaptation [70]. 

Spatial frequency adaptation occurs as a process of desensitisation to 

particular frequencies and those in the adjacent octaves as a result of the 

presence of the frequency in the visual field. The effect is described as a 

‘Dipper effect’ by Chandler [59] because of the impact that it has on the shape 

of the contrast sensitivity function. 
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2.7.3 Multichannel model of the HVS 

Experimental work by Campbell and Robson [71] found that the contrast 

detection thresholds of complex gratings (in this case square waves) were 

lower than that for a sine wave of the fundamental frequency. This led them to 

the conclusion that the HVS decomposes a signal into multiple separate spatial 

frequency channels. This multi-channel model may be used in image quality 

metrics to isolate and modulate specific bands of frequencies. The wavelet 

transform that is the basis of JPEG 2000 may be viewed as a form of multi-

channel decomposition.  

2.8 Types of Metrics 

As mentioned in section 2.3, classical signal processing approaches to image 

quality view the imaging process from the bottom-up. Here the problem is seen 

as one of modelling the physical parameters that affect image quality and using 

them to process the image signal. The range of metrics that have been 

developed is enormous and new metrics are continually being developed in the 

search for a speedy and robust approach to accurately predict perceived image 

quality as an alternative to the need for time consuming psychophysical 

experiments. Here some of the broad approaches to metrics are summarised. 

Those relevant to this work are described in more detail in a later section.  

Jacobson describes Image Quality Metrics (IQMs) as [72]: ‘single numbers 

(figures of merit) derived from physical measurements of the system, which 

relate to perceptions of image quality’. These methods combine measures of 

system attributes only or their related perceptual attributes, without 

accounting for the visual system. Examples include Minkowski metrics, used to 

quantify errors between images [73], or in a multivariate formalism to 

combine different perceptual attributes, such as the combination of sharpness 

and graininess by Bartleson [74]. Wang et al [20] highlight some of the 

limitations of Minkowski metrics: they are based upon the implicit assumption 

that signal samples are independent of one another, which in natural images is 

not the case.  Hence they are incapable of predicting the visual errors across 

the image, which are influenced by the structure of the image as a result of 
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dependencies between samples (for example errors may be masked in areas of 

containing fine detail). Other types of IQMs include colour difference formulae 

as described in section 2.6.4. Although some versions include viewing 

conditions, they do not incorporate visual models and therefore are incapable 

of modelling colour appearance. 

For more detail about current and recent research in image quality metrics, 

Chandler [59] provides a useful and detailed overview of recent developments 

in image quality and metrics, classified into full-reference (FR) and reduced 

reference/no-reference (RR/NR) algorithms.  He further divides the full-

reference methods (which are of relevance to this work) into the following 

categories [59]: 

2.8.1 Methods based on HVS models 

Visual Image Quality Metrics extend classical metrics to incorporate models of 

the human visual system. They combine physical measures of image attributes 

(usually sharpness and noise as a minimum), which are weighted for the 

human visual system using some form of contrast sensitivity function and 

possibly models of other visual phenomena. 

These metrics commonly include masking, and spatial frequency 

decompositions, to produce some form of error measure between distorted 

and undistorted images. These models tend to work best at threshold levels of 

distortion, because the knowledge and models for the CSF and other 

perceptual phenomena is better defined, than that for suprathreshold 

evaluations. Visual image quality metrics and modular image difference 

models are examples of these types of metrics. Examples include the Square-

Root Integral with noise (SQRIN). Pictorial Information Capacity (PIC) and 

Effective Pictorial Information Capacity (EPIC). However these have certain 

limitations, in that they are linear metrics, and digital imaging systems exhibit 

many non-linearities, limiting the validity of results and requiring caution and 

adaptation in their application. More complex perceptual metrics [75] use 

better models of visual processing, including frequency analysis to decompose 

the image into sub-bands of different frequencies and orientations and 
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incorporate non-linear mechanisms for masking effects, followed by error 

pooling. They are commonly used for evaluating thresholds or distortions. 

Examples include Daly’s Visible Differences Predictor [76]. 

Colour science has been another source of VIQMs, with the spatial extension by 

Zhang and Wandell [77]] of the standard CIELAB ∆𝐸 equation, known as the S-

CIELAB metric. This model spatially filters the image in an opponent colour 

space to approximate the CSF, prior to calculating colour differences. Johnson 

and Fairchild more recently introduced the Modular Image Difference Model 

[68], which extends S-CIELAB with several pre-processing steps, to model 

various appearance phenomena such as adaptation and local and global 

contrast detection. 

Some VIQMs have also been developed to incorporate some form of saliency 

modelling to determine visual importance of specific areas within the image, to 

allow weighting of the models.  

2.8.2 Methods based upon image structure 

Recently image quality assessment has been approached from a quite different 

(information processing) perspective. Structural approaches to image quality 

are based upon a number of fundamental assumptions as described by Sheikh 

and Bovik [78]: (i) That natural image signals contain significant amounts of 

structural information and correlation (ii) the human visual system is highly 

adapted to extract useful structural information from natural scenes. Therefore 

a measure of structural similarity between a processed and reference image 

should be a good indicator of perceptual distortion.  The Structural Similarity 

Index (SSIM) [78] [79] achieves this by calculating relatively simple luminance 

comparison, contrast comparison and structure comparison functions from first-

order statistical information. The three comparisons are weighted and 

combined to produce the SSIM index value. Another similar measure is the 

Visual Information Fidelity Measure (VIF) [73] [80], which aims to quantify the 

‘mutual information’ shared between the test and reference image and to 

relate this to the visual quality of the test image. 
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Alternative structural methods have been developed and use other structures 

within the image, for example gradient-based methods or methods which 

include some form of wavelet, DCT or Fourier transform, which may predict, 

for example, the presence or degradation of textures within an image. 

2.8.3 Other Issues 

2.8.3.1 Universal applicability of metrics 

There is a wide range of alternative methods, using image statistics or machine 

learning, to identify structures or distortions and predict their effects within 

images. The success of the methods depends of course upon the nature of any 

distortions within the image, and how they interact with the specific processes 

within the image quality algorithm. This has meant that some methods will 

work well on particular types of distortions but not on others, therefore they 

are not universally useful. The same can be said for the sample images tested, if 

they are all of one type or sharing common characteristics. But perhaps this is 

a reflection on the complexity of image quality evaluation: the pace of 

development in imaging modalities and technologies (for example High 

Dynamic Range Imaging) means that often metrics are either developed to 

address a particular need as a new technology is released, or are playing 

‘catch-up’ in testing and comparing new imaging technologies against existing 

ones after they are released. Giocca et al [60] provide a useful review of 

currently available metrics, including Full-Reference (FR), Reduced-Reference 

(RR) and No-Reference (NR), which includes descriptions of their operation, 

approach and implementation, and performance. The No-Reference methods 

tend for the most part to be developed for the evaluation of specific algorithms 

or artifacts. 

2.9 Subjective Evaluation: Psychophysics 

As introduced in section 2.3, subjective evaluation of images uses 

psychophysics, which is described by Sharma [49], as the ‘study of the 

relationships between physically measured stimuli and the sensations and 

perceptions of those stimuli’.  



 79 

Engeldrum [24] highlights the importance of distinguishing between observer 

responses that are judgements, from those that are preferences. The former 

are often considered to be to some extent more ‘objective’ than the latter, with 

less expected variation in observer response. Preference may be regarded as 

more ‘subjective’, being much more closely linked to an individual’s quality 

criteria; therefore response is more variable across a group of individuals.  To 

obtain meaningful results, care must be taken during experimental set-up, with 

consideration to observer demographic and their experience in image 

judgement, careful scene selection and attention in the wording of instructions 

given to the observers to ensure that the requirements of the task are clear. 

Psychophysical experiments are generally of two types: scaling experiments, 

which investigate relationships between stimuli and perceptual magnitudes; 

and threshold experiments, which involve detection and discrimination of 

small visual changes in stimuli, or alternatively that identify visual matches.  

Scaling experiments encompass suprathreshold magnitudes (judgement and 

preference) and may evaluate individual attributes, combinations or overall 

image quality. Threshold experiments are more commonly concerned with 

image fidelity, (which may be correlated with image naturalness) or 

acceptability (which may be correlated with image usefulness, although this is 

not always the case). Keelan [16] suggests a framework using Just Noticeable 

Differences (JNDs) derived from threshold experiments, as natural units for 

image quality evaluation, for example in calibrating numerical scales of quality, 

allowing the comparison of different image quality scales or scales of different 

attributes. He also suggests that [16]: ‘The term just noticeable difference 

might be better generalised to just significant difference or something similar’ 

when considering preference. Such a term is particularly applicable when 

considering artefactual attributes, such as errors introduced by compression. 

Sharp [81] notes: 

‘It is relatively easy to recognise a difference between the appearance of two 

images…however, appearance is not necessarily synonymous with image 

quality’ 
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Sharp comments on this difference in the context of medical imaging, where 

image usefulness in the context of object detection and recognition may 

require that image processing be applied to enhance certain image 

characteristics, while sacrificing overall image quality. However his point may 

equally be applied to ‘beauty contest’ image quality judgements, where 

detection of a distortion is not necessarily to the detriment of image quality. 

2.9.1 Types of Scales 

There are four different types of scales generated in psychophysical scaling 

experiments, originally defined by Stevens [82] in 1946. The scale types and 

characteristics are summarised in table 2.4. 

Scale Basic Empirical Operations  

Stevens’ definitions [82] 

Scale Characteristics 

Nominal Determination of equality No magnitude or direction. Samples are placed in 
categories only, which may be identified by 
numerals or descriptors, but the numbers do not 
relate to quantities. A form of classification, rather 
than quantification. 

Ordinal Determination of greater or 
less  

Direction without magnitude. Samples are rank 
ordered in terms of attribute(s) being scaled, but 
without information about distances along the 
scale. 

Interval Determination of equality of 
intervals or differences 

Quantitative scales. Samples are placed 
numerically along the scale, to allow 
determination of distances (differences) between 
them. Interval scales have no absolute zero point 
and are floating scales, meaning that numerical 
values are not fixed and have meaning only 
relative to one another. 

Ratio Determination of equality of 
ratios 

Quantitative scales with a fixed zero point. More 
difficult to generate experimentally; and it is 
conceptually difficult to define a zero point for 
many attributes and for overall image quality. 

Table 2.4: Description of the four classic types of psychometric scale, with reference to 
Stevens [82] definitions 

The scales increase in the level of complexity from top to bottom in the table, 

with each one encompassing the qualities of the ones above. Experimentally, 

the scaling process becomes more difficult for observers, and data analysis also 

becomes more complex, but much more information may be gained, and the 
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scale comparison becomes more achievable. Interval scales are probably the 

most widely used in the study of image quality, representing a good balance 

between complexity and usefulness. The scales are illustrated in figure 2.13. 

 

Figure 2.13: Illustration of Stevens’ psychometric scales, from Boynton [83]  

2.9.2 Scaling Methods 

There are a number of approaches to scaling, which differ in terms of 

complexity to set up and the type of scale derived [40] [84]. All have 

limitations, which has led to the recent development of the quality ruler 

method, described in ISO 20462 [84] [85] and later in this chapter.  

2.9.2.1 Rank Ordering and Paired Comparison 

Both of these approaches require comparison between image samples, the 

main difference being in the number of samples considered simultaneously. In 

rank ordering an entire sample set will be considered and ranked, which 

requires a large working space for hard copy and is usually impractical for soft 

copy samples. Paired comparisons consider the sample set in a series of pairs 

and in each pair they identify which is greater or lesser in terms of quality or 

the attribute or ‘ness’ under consideration. Paired comparison takes longer, as 
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samples must be presented multiple times, but results are generally more 

robust than rank ordering. This, and the limitations in the application of rank 

ordering mean that paired comparison is one of the more widely used 

approaches. Data from both may be converted to interval or ratio scales based 

upon Thurstone’s Law of Comparative judgement, assuming that perception of 

two samples is modelled by a pair of Gaussian distributions and using z-

deviates to determine differences between them [16] [18] [40] [84]. However, 

if the difference exceeds 1.5 JNDs, the magnitude of the difference cannot be 

reliably estimated [16] [84]. Paired comparisons are also widely used in the 

evaluation of thresholds and JNDs as described in section 2.7.3. ISO 20462 

additionally specifies a triplet comparison method, which ‘combines elements 

of paired comparison, rank ordering, and categorical sort methods’. [86]. 

2.9.2.2 Categorical Sort 

Here the stimulus is classified into a category identifying either different levels 

of quality or attributes. The categories have descriptors to identify the levels.  

This method is relatively simple to set up and as an observer task it is easy to 

understand, meaning that assessments can be quite rapid. However it has a 

number of limitations [16]. Observers do not tend to use the end categories 

much, and the results are often dependent on the number of categories, rather 

than image properties. The descriptors used can influence the results, and the 

number of categories is relatively few. While simple to produce an ordinal 

scale, the conversion to an interval scale is complex, and the lack of a 

standardised set of adjectives as category descriptors makes comparison 

between experiments difficult. 

2.9.2.3 Magnitude Estimation 

Observers are required to assign a numerical value to a sample stimulus, 

usually by comparison with a reference sample used to anchor the range of 

values. This is a method often used to generate a ratio scale, which, as defined 

in ISO-20462 part 1 [84],  
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‘…Is a scale in which a constant percentage change in value corresponds with 

one JND. In practice, modest deviations from this behaviour occur, 

complicating the transformation of the rating scale into units of JNDs without 

inclusion of unidentified reference stimuli (having known quality)’ 

2.9.3 Thresholds and Just Noticeable Differences 

Engeldrum [18] describes the difference in the understanding of thresholds 

and JNDs in classical and modern psychophysics. Classically, thresholds are 

defined as the amount of a physical image parameter required to be 

perceptible or to evoke a just noticeable difference. Modern psychophysics 

broadens the approach, so that thresholds and JNDs may be evaluated for more 

complex ‘nesses’ such as image quality and are not tied to a single physical 

image parameter. However, on a practical level this requires that mechanisms 

must be devised to link the ‘ness’ scale of JNDs to physical image parameters, 

using visual algorithms. 

Threshold experiments are useful when evaluating processes that introduce 

distortion, such as compression. They require binary yes’ or ‘no’ responses 

from the observer, who may be presented with a single image and asked 

whether they can detect a ‘ness’ or attribute; or they may asked to compare the 

image with a standard or reference and asked whether they can either see the 

‘ness’, or whether the test image is acceptable in comparison with the 

reference. The first two examples identify a threshold of detection, which is a 

process of determining the sensitivity of the perceptual system to a stimulus, 

its perceptibility. By contrast, the third example identifies a threshold of 

acceptability, which is a process of determining the point at which a change in 

the stimulus becomes bothersome, and so is about the impact of the stimulus 

on quality.  

It should be noted that the meaning of acceptability depends upon the context; 

it can be correlated with usefulness for example, if acceptability refers to 

whether artefactual attributes are detrimental to detection and recognition 

(for example in diagnostic imaging); whereas in a more general imaging 
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context (the ‘beauty contest’ as defined by Engeldrum [24]) acceptability may 

correlate more with a combination of naturalness and fidelity. 

 Although the observer task is different in perceptibility and acceptability 

threshold evaluation, the process of data analysis is similar. The experiment 

described in chapter 5 explores the relationship between perceptibility and 

acceptability in compressed images. 

Gescheider [87] highlights the complexity of determining thresholds of 

perceptual attributes: 

‘Biological systems are not fixed… but rather are variable in their reaction and 

therefore when an observer is presented on several occasions with the same 

stimulus, he is likely to respond “yes” on some trials and “no” on others. Thus 

the threshold cannot be defined as the stimulus below which detection never 

occurs and above which detection always occurs’ 

His point is that observations vary not only across groups of observers because 

of the variability in their perceptual systems, but also in individual observers 

when presented with the same stimuli at different times. Therefore the 

decision making process is not deterministic but probabilistic; the threshold 

value is a random variable. Various steps may be taken in experimental design, 

such as careful selection of observers, stimuli and presentation of stimuli 

multiple times across multiple observers to mitigate this variability and reduce 

noise in the results, but observer responses in perceptual experiments will 

nevertheless be distributed upon a perceptual continuum. A probability 

density function is used to model the variability of observer responses and it is 

found experimentally [87] that the variation tends to be normally distributed. 

2.9.3.1 The Psychometric Function 

The psychometric function is a graph constructed from the proportion of ‘yes’ 

responses, p, plotted against X, the stimulus intensity or another parameter, 

such as compression ratio. A curve is fitted to the data points, and often, if 

produced from enough responses, the curve will tend towards an ogive 

function, which is a particular type of s-shaped curve [87]. The curve is a 
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cumulative distribution function of the probability density function describing 

user responses [18]. If the model fits the data well enough, parameters 

describing it may be defined and these can be used to extract various useful 

information. If the proportions of ‘yes’ responses follow a Gaussian (normal) 

distribution, then the proportions may also be expressed as z-scores, and the 

relationship between X and z is linear. The relationship between the normal 

distribution and the psychometric function is illustrated in figure 2.13. 

The absolute threshold is defined as the smallest amount of the stimulus that is 

perceptible and is commonly taken as the point at which observers respond 

‘yes’ in 50% of trials [18]. This is also known as the point of subjective equality 

(PSE), referring to the point in a JND study at which two images will be seen as 

equal. Effectively, it is the point at which the stimulus is perceptible to the 

more sensitive of observers, but without certainty, and takes into account the 

probability of some positive responses as a result of observer guessing. In 

figure 2.13, it is the amount of X that produces a proportion p of 0.5, and is also 

the area under the normal distribution curve to the left of the z=0 point (which 

is 50% of the total curve). 

The difference threshold, or just noticeable difference is usually taken to be the 

0.75 proportion point on the psychometric curve. ISO 20462 defines a JND in 

relation to the responses in a forced choice paired comparison test, as the 

point at which there is a 75%:25% proportion of ‘yes’ responses. 

Keelan [16] describes the JND increment as ‘the number of units of an objective 

metric or rating scale required to produce a sample difference of one JND. In 

other words, it is one JND from the point of subjective equality and means that 

by this point there is enough certainty in its perceptibility for the majority of 

observers to perceive it. It is the 0.75 line in Figure 2.14, which corresponds to 

75% of the area under the normal distribution (to the left of the second dashed 

line at z=0.67). 
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Figure 2.14: The relationship between the psychometric function and the normal 
distribution. When proportions on the psychometric curve are transformed to z-values, 
thresholds on the psychometric curve correspond to areas under the normal distribution 
to the left of the z-values. Adapted from Gescheider [87] 

ISO 20462 differentiates the two different types of JND: 

 An attribute JND requires that only one attribute in the image is varying, 

and is a measure of the detectability of that change.  

 A quality JND is a measure of the effect of changes of combinations of 

image attributes upon image quality. 

Engeldrum [18] distinguishes between the absolute threshold and the 

difference threshold in terms of the question being asked of the observer. In 
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the first case they are being asked to identify the first point at which the ‘ness’ 

or attribute is detectable, whereas in the second they are identifying at what 

level of the ‘ness’ or attribute the image is seen as different from a reference or 

standard. Determination of the absolute threshold can be particularly useful 

when scaling some ‘nesses’: conceptually the idea of a zero point is difficult to 

imagine for complex ‘nesses’ which do not have a clear physical correlate (for 

example, naturalness, or image quality), so they tend to produce interval 

scales. The absolute threshold may be used instead as a theoretical zero point 

with JNDs as unit increments, allowing better interpretation of scale values. 

2.9.3.2 Approaches Used In Threshold Experiments 

There are three main approaches used in classical psychophysics for the 

evaluation of thresholds, which determine how sample stimuli are prepared 

and presented to observers [18] [87]. 

In the method of limits observers are presented with a series of sample stimuli, 

which begin with a sample that is either well above the detection threshold (all 

observers should be able to detect the distortion or ‘ness’) or well below the 

threshold (no observers can detect it). The range of sample stimuli should be 

determined beforehand using a pilot study. The stimuli are manipulated by the 

observer, in a descending or ascending series towards the threshold, until they 

reach the transition point between detection and non-detection, before the 

process is repeated from the opposite end of the series, so that observers are 

detecting the point at which the distortion or ‘ness’ becomes perceptible in one 

direction and the point it which it becomes imperceptible in the other. The 

transition point will be midway between the two. 

The method of adjustment is similar to the method of limits, but the observer is 

not restricted in terms of the way that stimuli are presented and controls the 

stimuli themselves from a random starting point in the series. Engeldrum [18] 

points out that the ‘active involvement of the observer raises interest, reduces 

boredom and tediousness, and generally improves the quality of the data’. 



 88 

The method of constant stimuli is so called because it uses a set of fixed stimuli 

from within a range of stimulus variation, that is presented to the observer 

multiple times in a random order. The range is determined by a pilot study to 

ensure that at one end the ‘ness’ or distortion is always detected and at the 

other that it is never detected. The method of constant stimuli is one of the 

most widely used approaches, as it is simpler in many cases to use fixed 

samples but also because it allows the formation of a psychometric function, 

described below, from the collected data. The method of constant stimuli may 

be applied as a no-reference method, in which single samples are presented 

without a standard or reference, and an absolute threshold is determined; or 

as a full-reference method, using a reference or standard in a comparison with 

the sample in a paired comparison experiment. 

The various common approaches for both scaling and threshold experiments 

are detailed in table 2.5, which illustrates the information that may be derived 

from them. 

Method Threshold JND Ordinal 

Scale 

Interval 

Scale 

Ratio 

Scale 

Method of Limits X X    

Method of 

Adjustments 

X X    

Method of Constant 

Stimuli 

X 

 

X X X  

Rank order   X   

Categorical scaling   X X  

Rating scaling    X X 

Magnitude estimation    X X 

Table 2.5: Common psychometric methods for threshold estimation and scaling, from 
Triantaphillidou [40] 

2.9.4 The Quality Ruler 

The quality ruler method is defined in ISO 20462 part 3 [85] as a 

‘psychophysical method that involves quality or attribute assessment of a test 

stimulus against a series of ordered, univariate reference stimuli that differ by 

known numbers of JNDs’. 

The images in any one ruler are of the same scene, and are presented to the 

observer so that they may compare a ruler image side-by-side with a test 
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image (usually, but not necessarily, of the same scene), to identify the ruler 

image closest in quality to the test image. Because the ruler images are 

calibrated to differ by known amounts of quality JNDs, the ruler method allows 

the immediate association of a numerical value with the test stimulus when the 

observer identifies the ruler image which best matches the test image in terms 

of image quality [88]. The reference samples are closely spaced in terms of 

subjective quality and span a large range overall, to reduce the inaccuracy 

introduced by other psychophysical methods as a result of either extrapolation 

(when the range is small) or interpolation (when the range of samples is large 

and spaced out). It also avoids the problem of saturation effects, which may 

occur in threshold experiments with sample comparisons spaced by more than 

1.5 JNDs, resulting in the proportions appearing in the tails of the assumed 

underlying Gaussian distribution (which tend towards positive and negative 

infinity). Therefore the quality ruler is suitable for both threshold and 

suprathreshold quality evaluations. 

The ruler images vary in a single attribute, which prevents the ambiguity in 

determination of image quality [16] that can be introduced as a result of 

interactions between multiple attributes; this also simplifies the process of 

ruler generation. There are several requirements of such an attribute: Its 

variation needs to have a known impact on image quality; Varying the attribute 

must produce results that are relatively robust in terms of observer sensitivity 

and variation across scenes. Keelan [16] also suggests that it should be an 

attribute that varies widely in practical imaging systems (so fulfilling 

naturalness criteria). Finally, the attribute needs to be easily simulated and 

characterised.  

An attribute fulfilling these criteria particularly well is sharpness, and 

therefore sharpness is used in the model within the standard. Sharpness is 

easy to manipulate through digital image processing and its correlation with 

the MTF means that the user can generate a set of ruler images for a particular 

test scene varying in sharpness, by manipulation of the system MTF. 
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A set of reference prints varying in sharpness (the standard reference set, 

(SRS)) has been made available through the I3A, and these are calibrated to the 

standard quality scale (SQS) [85]. This is: 

‘…a fixed numerical scale of quality having the following properties: 

a) the numerical scale is anchored against physical standards; 

b) a one unit increase in scale value corresponds to an improvement of 

one JND of quality; and 

c) a value of zero corresponds to an image having so little information 

content that the nature of the subject of the image is difficult to identify’ 

The reference images can be used to calibrate user-generated rulers to the SQS 

values (note that hard copy rulers calibrated to the SRS are quantified in 

primary SQS1 values, whereas soft copy quality rulers, calibrated to the DRS 

are termed secondary SQS2 values).  If not calibrated against the SRS or DRS, 

scene dependent ruler calibration [85] should be applied, to obtain results that 

are not biased as a result of scene content.  

Alternatively, attributes other than sharpness may be varied in rulers, but 

these must be calibrated using a quality ruler varying in sharpness. The 

attributes should be artefactual attributes (as defined earlier, those that when 

visible, generally have a negative impact upon image quality) rather than 

preferential attributes, such as relative colourfulness, because these are much 

more subject to observer variation. 

The standard describes both hardcopy and softcopy implementations of 

quality rulers. The softcopy method is of interest in the context of image 

compression and is the method employed in chapter 6.  

2.9.4.1 Generation of Ruler Images 

It is most useful to be able to generate ruler images for different scenes. 

Although images can be evaluated by comparison with different but similar 

scenes, the task for observers is conceptually simpler if they are comparing the 



 91 

same image. Ruler images of the scene are therefore generated by 

manipulation of the system MTF. 

The system MTF of the complete imaging system generating the ruler images is 

first characterised for horizontal and vertical orientations, and this is checked 

for conformance with the shape of the monochromatic MTF of a diffraction-

limited lens defined by: 

Where m is the modulation of the imaging system, v is the spatial frequency in 

cycles per degree at the eye of the observer and k is a constant. The aim MTF is 

identified as the one modelled from equation 2.23 where the area under the 

curve best matches that of the measured system MTF over the range of 0 to 30 

cycles per degree. The value of k for this aim MTF may be regarded as 

reciprocally related to the system bandwidth.   

By varying the value of the k constant, a series of MTF curves may be generated 

from equation (2.24) [85], each of which corresponds to a differing amount of 

blurring or sharpening of the system MTF. Values of k may be selected to 

provide required JND increments using [15]: 

𝐽𝑁𝐷𝑠 =
17,249 + 203, 792𝑘 − 114,950𝑘2 − 3,571,075𝑘3

578 − 1,304𝑘 + 357,372𝑘2
          (1 ≤ 100𝑘 ≤ 26) 

(2.25) 

Some examples of MTF curves generated from equation (2.24) [85] and 

differing by one quality JND [85] are illustrated in Figure 2.15 A series of MTFs 

generated from equation(2.24) [85], spaced by increments of 1 JND. 

The JNDs values calculated from are relative JND values; the difference 

between scale values calculated for two reference stimuli are equivalent to 

differences in quality JNDs, but the scale values are not absolute. However, 

 

𝑚(𝑣) =
2

𝜋
(𝑐𝑜𝑠−1(𝑘𝑣) − 𝑘𝑣√1 − (𝑘𝑣)2 )       𝑘𝑣 ≤ 1 

𝑚(𝑣) = 0                                                                 𝑘𝑣 > 1 

(2.24) [85] 
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they are also expressed as Standard Quality Scale (SQS2) values in the later 

version of ISO 20462-3 [85]. SQS2 values are ‘obtained through assessments 

traceable to the Digital Reference Stimuli (DRS) or the average scene 

relationship’ [85]. 

Figure 2.15 A series of MTFs generated from equation(2.24) [85], spaced by 

increments of 1 JND.  

The system MTF of the original reference image is modified to approximate the 

aim MTFs for the series of JND increments required. This modification is 

achieved using linear spatial filtering by Jin, Keelan et al [38], and by filtering 

in the frequency domain by Young-Park [89]. An alternative implementation of 

a frequency domain approach is presented in chapter 6 
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3 Image Compression and Image Quality 

3.1  Redundancy in Images 

The process of encoding an image involves the assigning of a code word, which 

is a set of binary digits, to a source symbol, which may be a single pixel value or 

a group of pixel values, or alternatively, to transformed information such as 

frequency coefficients [5].  

Image compression is possible because of the existence of redundancies within 

natural images. Gonzales and Woods [4] broadly classify these redundancies 

into three types: 

Interpixel redundancy, also called spatial redundancy, exists due to correlation 

within the structure of the image itself. Note that the term ‘spatial’ does not 

specifically refer to the spatial image plane, but to the relationships between a 

value and the values around it (which could be in the frequency domain). For 

example, identical or similar consecutive values within a frame, or between 

values in the same location in consecutive frames in a moving image 

(interframe redundancy), or between colour channels (spectral redundancy). 

Interpixel redundancies are common in areas of low frequency, where tones 

and colours are unchanging or are changing smoothly, in a predictable manner. 

These correlations mean that each value need not be explicitly encoded. Values 

can be encoded in groups, as differences, or using models to predict their 

values [7]. The result may be lossless or lossy, depending upon the accuracy of 

the prediction. 

Coding redundancy, or statistical redundancy, is a data redundancy as a result 

of the unequal frequency distribution of digital levels in natural images (as 

illustrated by peaks within image histograms). Using the same fixed length of 

code for every value is inefficient, and therefore variable length coding 
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methods [7] [5] are used, to assign shorter codes to the most commonly 

occurring values.  

For a single channel, the average length of code per pixel, 𝐿𝑎𝑣𝑒 , may be 

calculated from: 

 𝐿𝑎𝑣𝑒 = ∑ 𝑃𝑖

𝐿−1

𝑖=0

𝑙(𝑖) (3.1) [5] 

Where 𝑃𝑖 is the probability of a pixel taking value i, L is the number of possible 

levels that a pixel may take and 𝑙(𝑖)  is the code length assigned to level 𝑖. 

Coding redundancy is exploited to minimise 𝐿𝑎𝑣𝑒 . 

Psychovisual redundancy is redundancy in image information due to the limits 

of the human visual system. This may be regarded as perceptually irrelevant 

information [6] [7]. These methods often include a frequency transform, to 

allow attenuation of frequencies that are beyond the limits of the Contrast 

Sensitivity Function (CSF), or to reduce the magnitude of frequencies that are 

less visually important within a scene. Other areas of redundancy occur as a 

result of the reduced colour discrimination compared to tonal discrimination 

of the HVS and the non-linear nature of many aspects of human vision (see 

section 2.7). As noted by Sayood [7]: 

 “…the mind does not perceive everything the eye sees. We can use this 

knowledge to design compression systems such that the distortion introduced 

by our lossy compression scheme is not noticeable.” 

Lossy compression schemes therefore include one or more quantization stages 

in which information is removed. The quantization is designed to exploit 

psychovisual redundancy, with the degree of loss linked to a user -set quality 

level, so that the level of distortion introduced is controlled. 

3.2 Image structure and information content 

Entropy is a measure of the information content of an image. The first order 

entropy, H, is the average self-information per pixel of the image where [5]: 
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 𝐻 = ∑ 𝑃𝑖

𝐿−1

𝑖=0

𝑙𝑜𝑔2  
1

𝑃𝑖
 𝑏𝑖𝑡𝑠 (3.2) 

Or alternatively: 

 𝐻 = − ∑ 𝑃𝑖

𝐿−1

𝑖=0

𝑙𝑜𝑔2 𝑃𝑖 𝑏𝑖𝑡𝑠 (3.3) 

Entropy may also be calculated for blocks of symbols or pixels; for a block of 

length b, the entropy equals b times the entropy of a single symbol. Pi is 

approximated by the normalised image histogram. 

Information capacity is a measure of the maximum amount of information that 

may be transmitted from an information source per symbol or group of 

symbols [58]. The information capacity, C, of an image containing m pixels per 

unit area is: 

 𝐶 = 𝑚 𝑙𝑜𝑔2(𝐿) 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎 (3.4) [58] 

The maximum amount of information will be conveyed if all outcomes from the 

information source are equally likely. In the case of an image containing L 

possible pixel values, if all pixel values have equal probabilities, then all 𝑃𝑖= 

1/L, which sum to 1, and equation (3.3) becomes: 

 𝐻 =  log2(𝐿) 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙  (3.5) 

In this case, entropy is at a maximum and is equal to the information capacity. 

It is assumed in this expression that all image values are independent of one 

another. When the values are unequally distributed (as can be seen by peaks in 

the image histogram), for example when only a few values have a very high 

probability, the entropy decreases (an image containing pixels with all the 

same value has an entropy of 0). 
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Shannon [90], in his noiseless coding theorem, defines the theoretical limit for 

compression, using variable length coding alone. Based upon the assumption 

of the image as a zero-memory information source, Shannon defines the lower 

bound for 𝐿𝑎𝑣𝑒  as equal to the first order image entropy H. Variable rate coding 

methods are also termed entropy coding, and are used as a final stage in almost 

all compression, lossless or lossy. The difference between the information 

content and the information capacity defines the amount of redundancy within 

the image and hence the possible compression that may be achieved from 

coding redundancy alone. 

Tavokoli in [91] describes two different measurements of the information 

content of a source; in terms of either its statistical properties or its predictive 

properties. The statistical properties refer to the independent probabilities of 

source values; first order entropy is a statistical property measure but cannot 

give a measure of the predictability attached to the values.  

As described above, there are many types of correlation existent in natural 

images. Correlations indicate predictability; some values are predictable based 

upon knowledge of preceding values, therefore they carry less information. 

Higher order entropies (which consider the probabilities of groups of values 

occurring sequentially, rather than independent values) are predictive 

measures [91]. Second order entropy, for example, is calculated as follows: 

 𝐻2 = 𝐻(𝐴, 𝐵) − ∑ ∑ 𝑃(𝐴𝑖 ,

𝐿−1

𝑗=0

𝐵𝑗) 𝑙𝑜𝑔2 𝑃(𝐴𝑖𝐵𝑗) 𝑏𝑖𝑡𝑠

𝐿−1

𝑖=0

 (3.6) [91] 

Where (A,B) are two-value sequences of random variables 𝐴𝑖and 𝐵𝑗, and 

𝑃(𝐴𝑖𝐵𝑗) is their joint probability density function.  Second, and higher order 

entropy values are found to be consistently lower than first order entropy in 

natural images [91], because there is more redundancy in an image if values 

can be predicted from their neighbours. 

Entropy, and particularly higher order entropy, can provide measures of the 

structure within an image. A high value of first order entropy indicates many 



 97 

pixel values evenly distributed. A low value indicates that some pixel values 

are more probable than others and therefore more compression is possible. 

Higher order entropy can be a measure of the predictability of image structure. 

Pixel values are least correlated and predictable in an image of random noise. 

High frequency areas in images, and fine random texture are less correlated 

than uniform areas, and low frequency tonal gradations, such as those found in 

areas of sky in landscapes, or in skin tones in portraits. Texture can also be 

predictable, if it follows a regular pattern. As well as being used extensively in 

the design of compression algorithms, entropy and associated measures can be 

used in the analysis of images, to predict both the degree of potential 

compression, and image areas most susceptible to information loss. 

3.3 Transform based Lossy Compression 

A well-developed class of lossy compression algorithms, these methods rely 

upon the transforming of image data from the spatial to the frequency domain. 

This allows the data to be grouped according to frequency and orientation. 

Colour images may also be transformed at a pre-processing stage into a 

luminance-chrominance colour space to better exploit the redundancy in the 

chrominance channels (taking advantage of the fact that the human visual 

system is less sensitive to colour discrepancies than to changes in tone), and to 

provide better, more channel-specific models matched to human contrast 

sensitivity [14].  

The frequency transform stage itself is usually lossless with the loss incurred 

when the frequency information is quantized. The final stage involves (usually) 

lossless encoding, which employs both interpixel and coding redundancy to 

achieve further data compression. 

A generalised model of the compression-decompression process is shown in 

Figure 3.1 
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Figure 3.1 Generalised model of image compression and reconstruction, adapted from [4] 

The JPEG and JPEG 2000 compression schemes are well known examples of 

transform-based compression. They are described briefly here to offer some 

insight into the nature and characteristics of the distortions that they 

introduce. More in-depth treatment can be found in [9] [92] [93] and in 

numerous documents available upon the JPEG committee webpage at [8]. 

3.3.1 JPEG Compression 

The JPEG standard was the first international digital image compression 

standard for continuous tone still images [9]. It was developed from 1986 [8] 

by the Joint Photographic Experts Group committee, which is a collaboration 

between the International Organisation for Standardisation (ISO), and the 

International Telephone and Telegraph consultative committee (CCITT), 

(which is now the International Telecommunications Union’s 

Telecommunication Standardization Sector (ITU-T)). The standard was 

developed in response to advances in digital technology and the need for a 

reduction in image file sizes with minimum loss of visual quality.  

The latest version was standardised in 1994 [8] and the specification has five 

parts, and a number of different modes of operation, including a lossless mode 

based upon predictive coding and a lossy progressive encoding mode. 

However it is the lossy baseline sequential mode that has proved to be the 
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most widely used. Baseline JPEG applies a forward DCT to 8 x 8 pixel blocks or 

sub-images, followed by quantization and encoding, as illustrated in figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Stages in JPEG compression algorithm. Items in italics indicate output from 
each stage of compression process. Adapted from a diagram by Wallace [9] 

Baseline JPEG allows lossy compression rates of up to 100:1 (although 

achievable compression rate is very scene dependent). This incurs some 

information loss, however the perceptibity of such loss is minimised by the 

architecture of the standard. In colour images, image data is converted to a 

luminance-chrominance colour space, YCbCr, and chrominance samples are 

down-sampled.  
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Following colour transformation, the Forward Discrete Cosine Transform 

(DCT) is applied to image blocks of 8 x 8 pixels. This produces blocks of 64 

coefficients, representing the magnitudes of cosine basis functions of 

frequencies within that image block.  

As continuous tone images tend to contain large areas of slowly changing tone, 

most of the information will be concentrated in the lower frequencies, as 

illustrated in Figure 3.3 and many of the high frequency coefficients are likely 

to be zero or close to zero. 

 

 

 

 

 

 

Figure 3.3: 3-dimensional representation of typical layout of coefficient magnitudes from a 
Discrete Cosine Transform after reordering. The zero frequency component at the top left, 
has the highest magnitude and is surrounded by low frequency coefficients. The 
frequencies increase in a diagonal zig-zag, to the highest frequency component in the 
bottom right. The highest frequency components are of very small or zero magnitudes. [5] 

These coefficients are quantized using a 64-element quantization table, the 

values in the table being defined within the application according to the 

required quality level set by the user.  

The quantization process is applied using: 

 𝐹𝑄 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑟𝑜𝑢𝑛𝑑  (
𝐹(𝑢, 𝑣)

𝑄(𝑢, 𝑣)
 )        (3.7) [94] 

Where F(u,v) is a value from the block of frequency coefficients output from 

the DCT stage, Q(u,v) is the value from the quantization table in the same 

position and  𝐹𝑄 is the quantized output value. An example quantization table 

Zero frequency (DC) coefficient 

Highest Frequency 

Vertical 

Frequencies 

increasing 

Horizontal 

Frequencies 

increasing 
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is illustrated in figure 3.4 (c). Because the highest values in the quantization 

table are in the position of the highest frequency coefficients, the division 

followed by rounding sets these coefficients to zero. 

 

Figure 3.4: An example of a 64 pixel block going through the different stages of the 
baseline JPEG algorithm, from [9] 

The higher the quality setting, the more coefficients will be retained. The 

quantization tables are designed perceptually, based upon the spatial 

frequency response of the Human Visual System, the Contrast Sensitivity 

Function (CSF), giving more weight to the frequency components that are more 

visually important.  

Quantization is followed by (or combined with) a reordering of the coefficients 

into a zigzag sequence, with the zero frequency component (DC coefficient) in 

the top left hand corner and the highest frequency component in the bottom 

right (figure 3.5).  The DC coefficients are losslessly encoded separately from 

the other coefficients using differences between the coefficients of consecutive 

blocks (DPCM), to ensure that the mean intensity value of each block, which is 

proportional to the DC coefficient, is maintained. The remaining AC coefficients 
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are entropy coding using either Huffman coding or arithmetic coding. The 

resulting bit stream may be stored or transmitted as required. 

 

Figure 3.5: Zigzag rearrangement of DCT coefficients from a single 64 x 64 pixel block in 
baseline JPEG. The DC value corresponds to the zero frequency, and the AC coefficients 
are numbered from lowest to highest frequencies horizontally and vertically. From 
Wallace [9] 

The decompression stages of the algorithm produce a reconstructed and 

viewable image. Each stage of the compression is reversed, as shown in the 

bottom row of figure 3.2. True inverse quantization is not possible as many of 

the coefficients will have been truncated to 0 and therefore the resulting 

frequency coefficients will be an approximation of the original. Additionally, if 

the chroma channels were down-sampled at the pre-processing stage, then 

upsampling them at the final stage may cause colour distortion due to 

interpolation and rounding errors. The artefacts produced by JPEG are 

introduced later in this chapter and in more depth in chapter 4. 

3.3.2 JPEG 2000 

The growing requirements of technologies and applications producing and 

using digital imagery, in particular the expansion of the Internet and 

multimedia applications, prompted a call for contributions to a new image 

compression standard in 1997. Areas in which JPEG and other image standards 

had failed to deliver were to be addressed with certain requirements of the 

new standard. JPEG2000 Part 1 was standardised in 2000 [95] with the 

following features [93]: 
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 Superior rate distortion and subjective image quality performance at low bit 

rates, to that of existing standards. This is a key requirement of network 

image transmission and remote sensing applications. 

 The ability to encode different types of images. The ability to compress bi-

level, grey scale, colour and multi-component images is a feature of 

JPEG2000. This allows the compression of documents containing both 

images and text. JPEG suffers from artefacts when compressing binary 

images and is not successful at compression of text in particular. This 

expands the range of possible applications for JPEG2000.  

 The ability to encode images with different characteristics. For example, 

natural images, images from scientific and medical applications, images 

containing text or computer graphics. These applications have very 

different requirements from a compression algorithm; therefore flexibility 

of operation is one of the key features of JPEG2000. 

 Lossless and lossy encoding. This allows the use of JPEG2000 by applications 

such as medical imaging where lossless reconstruction is required. 

Progressive lossy to lossless decompression means that an image may be 

compressed losslessly, but then decompressed to required lossy 

compression levels or quality levels. Effectively, a single compressed 

version of the image may be used in multiple contexts.  

 Progressive transmission by pixel accuracy or spatial resolution. This is 

particularly important for image archives and web-browsing applications. 

 Robustness to bit errors. This is important for transmission over wireless 

communication channels. 

 Special features to improve flexibility, such as region-of-interest coding and 

protective image security. 

JPEG2000 images do not suffer from blocking artefacts characteristic of JPEG 

unless the image has been tiled. The decomposition of an image into frequency 

sub-bands using a wavelet transform is quite different to the structure of block 

based DCT transformation used in the JPEG architecture and is illustrated in 

figures 3.6, 3.7 and 3.8. The wavelet transform decomposes the image by 

dividing a set of image samples into different sub-bands of down-sampled 
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high-pass and low-pass samples. This is achieved using 1D filters, termed 

wavelet filters (giving the high-pass output) and scaling filters (giving the low-

pass output) in horizontal and vertical directions. The result is shown in figure 

3.6. Each image in the top left quadrant of a sub-band is one quarter of the size 

of the original (having been down-sampled in both the horizontal and vertical 

directions) and contains the coefficients representing the low-pass output. On 

the top right is the high frequency information in the horizontal direction, 

bottom left are high vertical frequency and bottom right relates to high 

diagonal frequencies. These four images make up one ‘scale’ of the original 

image.  

 

Figure 3.6 A four scale sub-band wavelet decomposition, based on a diagram from [96] 

At each level, the process is repeated iteratively on the low-pass samples. This 

recursion continues to further levels, the final output consisting of a small 

block of low-pass samples at the lowest resolution in the top left, with the 

remainder of the image made up of high frequency detail coefficients at 

different resolutions. An example of the effect on an image is shown in figure 

3.7. The low-pass output may be seen to be a version of the original image at a 

lower spatial resolution. 
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Figure 3.7 A three scale wavelet decomposition upon an image © David Taubman UNSW, 
from [92] The low pass version of the image is top left. All other squares contain high 
frequency components at different scales. 

Following decomposition, the sub-bands are quantized separately.  The image 

is then further sub-divided before entropy coding into precincts and code 

blocks. The inputs into the entropy coder are the code blocks by bit plane, from 

a precinct scanned in raster order [93] [95]. A precinct, identified in figure 3.8, 

consists of three blocks of code blocks, one from each sub-band at that 

resolution level. The diagram above illustrates the difference in the structure 

of the two algorithms. Where the values in a reconstructed block within a JPEG 

compressed image will be dependent upon the frequencies present at that 

spatial location within the original image and the quantization table selected, 

the reconstruction from the JPEG2000 image is made up of code blocks from 

precincts in the same spatial position relative to the edge of a particular sub-

band, from all the different sub-bands. Each sub-band may be viewed as a 

version of the image at a different scale or resolution. Because the quantization 

step-size is different in different sub-bands, errors build up in a very different 

way, being much less uniform over a spatial location by comparison with JPEG 

blocks.  
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Figure 3.8 Diagram illustrating the partition of a tile or image component into code blocks 
and precincts (based on a diagram by Skodras et al. [93]  

3.4 Quantifying Distortion 

Measuring the performance of a lossy compression scheme requires some 

quantification of the degree of loss, in determining the usefulness of the 

system.  Error measures can be used to understand the balance between 

information loss and compression rate.  

Rate-distortion theory, derived from Shannon’s work on information theory 

[90], defines a relationship between compression rate and some measure of 

distortion. Rate distortion theory can be used in the development of lossy 

compression systems as a basis for optimizing their performance. It establishes 

theoretical limits for an achievable compression rate based upon minimal 

entropy, without exceeding a given maximum level of distortion. The 

relationship can be expressed in a rate-distortion function. The distortion 

measures below are some of those most commonly employed [5]. 

Mean Absolute Error (MAE) is a measure of the average amount of error per 

pixel across the image: 
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 𝑀𝐴𝐸 =  
1

𝑁
∑|𝑥𝑛 − 𝑥𝑛|

𝑁

𝑛=1

        (3.8) [7] 

Where N is the number of pixels in the image, 𝑥𝑛 is the value of the pixel at 

position n in the original image, and �̂�𝑛 is the value of the pixel at position n in 

the compressed image. The other distortion measures below are adaptations of 

the MAE. 

Mean Squared Error (MSE): 

 𝑀𝑆𝐸 =  
1

𝑁
∑(𝑥𝑛 − 𝑥𝑛)2

𝑁

𝑛=1

        (3.9)  

Signal to Noise Ratio (SNR) compares the power of the original signal, P, with 

the MSE: 

 𝑃 =  
1

𝑁
∑(𝑥𝑛)2

𝑁

𝑛=1

        (3.10)  

SNR is often expressed in decibels (dB) as: 

 𝑆𝑁𝑅(𝑑𝐵) =  10𝑙𝑜𝑔 10(𝑆𝑁𝑅)       (3.12)  

Peak Signal to Noise Ratio, (PSNR), defines the ratio between the theoretical 

maximum power (defined by the bit depth, 2no. of bits -1) of the signal and the 

noise in terms of MSE. It is expressed in decibels as follows: 

 𝑃𝑆𝑁𝑅(𝑑𝐵) = 20 𝑙𝑜𝑔 10   (
𝑚𝑎𝑥

√𝑀𝑆𝐸
)    (3.13)  

 𝑆𝑁𝑅 =  
𝑃

𝑀𝑆𝐸
      (3.11)  
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These measures are simple to compute, requiring only the compressed image 

and the original, but are not good at predicting perceived image quality 

performance. Their limitation is that they generalise error; all distortions are 

treated equally. They provide a measure of the magnitude of the difference 

between two images without considering the type of error or its context.  

For example [97], it is possible to obtain the same value for MSE from 

calculations between an original image and a JPEG compressed version of it; or 

a version that has been blurred; as the MSE value calculated from a version 

that has been rotated; or where the contrast has been increased. The first two 

processes usually result in quality loss; rotation is unlikely to affect quality 

unless aliasing is introduced; contrast is a preferential attribute and might 

actually result in an increase in perceived quality if the original image was too 

low in contrast to start with. Furthermore, the viewing conditions, observer 

demographic and quality criteria, the purpose of the image, and the nature and 

characteristics of the original do not affect the MSE value, yet all are important 

aspects of the ‘image quality context’. 

Distortions are not equal in their perceptual effect for various reasons, as 

discussed later in relation to scene dependency; some distortions are more 

bothersome than others; most distortions vary in terms of their visibility 

depending upon the spatial configuration of the scene, and some can mimic 

preferential attributes at certain levels on specific types of image content.  

Wang and Bovik [97] explain this by highlighting a number of assumptions 

made about perceived image quality that are implied by the use of distortion 

metrics as predictive measures: 

1) That perceptual image quality is unaffected by the spatial relationships 

between image elements; in effect pixels are spatially independent from 

one another. There is no consideration of image structure and content. 

2) The relationship between original signal and error signal is 

unimportant; it does not account for the effect of the error on the image, 

which depends upon the structure of the original. 
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3) Distortion is measured as a magnitude, without direction. Perceived 

quality will be affected by the way in which a signal changes, as well as 

by how much it changes. 

4) Image samples are equally weighted in terms of visual importance. 

These assumptions break down as soon as the characteristics of real scenes 

and the response of the human visual system to them are considered.  

3.5 Scene Dependency and Image Quality 

Scene dependency may be defined as a variation in subjective image quality 

evaluation, which is directly related to the scene content. This means that two 

images of different scenes, which have the same or similar values for physical 

characteristics but different scene content, may be scaled differently in 

subjective image quality, or in terms of particular perceptual attributes. Scene 

dependency represents a challenge in image quality quantification.  

Engeldrum describes the dependence of judgements of images upon the spatial 

configuration of the images [18] and defines spatial configuration and object 

content as important ‘context factors’.  This description of scene dependency is 

usually defined as independent from the aesthetic aspects of the images, and is 

specifically in relation to preferential and artefactual attributes. Of course, it is 

very difficult to eliminate observer bias based upon scene content. Engeldrum 

[18] describes the ‘emotional involvement, or potential emotional 

involvement’ of observers with scene content as another context factor, but 

suggests that a potential strategy is to include images from various different 

sub-classes (for example, portraits, landscapes, abstract) to reduce the effect of 

observer bias. 

3.5.1 Sources of Scene Dependency 

Triantaphillidou [34] identifies three different sources of scene dependency 

affecting subjective image quality in image compression: 

- Scene Dependency as a result of observers’ quality preference An example is 

the difference in sharpness preference between architectural and portrait 
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scenes [ref], whereby portraits may be considered acceptable if slightly 

blurred, whereas architectural scenes are generally preferred slightly 

sharper overall.   

- Scene dependency due to variable visibility of an artefact in some image areas 

compared to others. This may be the result of masking effects, whereby the 

image content masks the particular artefact (for example, areas of fine 

detail can mask noise, and noise can mask contouring artefacts [98] [40]). 

Alternatively it may be as a result of an artefact being more or less visible 

as a result of visual adaptation.  

- Scene dependency of digital processes or image processing algorithms. 

Sometimes termed scene susceptibility. Many algorithms are designed to 

selectively enhance or suppress specific image characteristics. Image 

compression is a particular example. As described in the previous sections, 

lossy transform based algorithms tend to remove or reduce both colour 

resolution and high frequency magnitudes. Therefore scenes with more of 

this type of content will compress less well and will contain more artefacts 

when compressed to the same level as a scene with fewer high frequencies, 

for example.  

3.5.2 Scene Dependency and Compression 

As described in 3.2 the information content of an image is fundamental to 

compression performance. The structure of the image determines the 

predictability of image content, which in turn defines the amount of 

redundancy (spatial, coding or psychovisual) within the image. Because 

compression is based on the elimination of redundancy, it follows that it is 

inherently scene dependent. This means that when using a particular lossless 

compression method, images of the same original file size with different scene 

content, will compress by different amounts [5]. Conversely, in lossy 

compression, the two images when compressed to the same file size will differ 

in image quality. 

Because lossy compression removes information as well as reducing data, the 

distortion introduced will be dependent upon the scene content; specifically 
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the interaction between the scene content and the particular compression 

mechanism. Different lossy compression schemes introduce their own 

distortions; so the scene dependency varies depending upon the algorithm. 

The artefacts introduced by complex algorithms tend to be very specific and 

recognisable, and this can make them less acceptable than artefacts that are 

more general and from a range of different sources. Certain types of image 

content can also mask or enhance the artefacts.  

Finally, and perhaps the most important point, distortions may affect 

observers’ quality criteria. In particular, observers may become habituated to 

certain types of artefacts over time, if they are exhibited by widely adopted 

algorithms and processes, and this may have the potential to increase 

perceived image quality, when compared to an artefact that is newer, less 

familiar and perhaps therefore more apparent. It does not seem unreasonable 

to suggest that such habituation may have happened, for example, in response 

to the blocking artefact characteristic of JPEG, particularly because it is so 

prevalent in compressed moving images from the MPEG algorithm, but also 

because JPEG has been in use since 1992 [94]. 

Scene dependency is a particular area of interest in compression research, not 

least because it can help to explain why algorithms do not perform as might be 

predicted. Characterisation of images in terms of spatial configuration and an 

understanding of scene dependent interactions can help to determine the 

suitability of an algorithm for a particular class of image if it has a limited 

range of specific characteristics (for example in images of fingerprints, which 

have a lot of high frequency content). 

Keelan [99] suggests that in the case of artefactual rather than preferential 

attributes, variability in results across observers occurs due to their sensitivity 

to the artefact. Determination of this sensitivity is more straightforward than it 

is for a preferential attribute, because preference is likely to be much more 

variable across observers. By definition, an artefact is a defect; therefore as all 

observers will find the artefact bothersome in the majority of images, optimum 

quality becomes the threshold point at which the artefact is not visible. In this 
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case, variability across scenes is entirely a result of scene susceptibility to the 

digital process. Keelan proposes the quantification of quality loss for subsets of 

observers and scenes to obtain a better fit with psychometric data [100], 

grouping according to observer sensitivity and/or scene susceptibility (see 

section 6.6.3). 

3.5.3 Scene selection  

Various approaches may be used to reduce the bias introduced as a result of 

the susceptibility of certain scenes to either distortion or the visibility of the 

distortion, by averaging results over a range of different types of scenes, or by 

limiting the characteristics of the scenes used in the evaluation. These 

strategies are entirely appropriate to ensure that the results reflect the 

performance of systems under average conditions for most scenes.  

Engeldrum [18] notes that the 'selection of image samples is governed by the 

objective of the scaling study’. As pointed out by Keelan, [99] [101]this is 

particularly true if the study is evaluating an artefactual attribute; where 

scenes have different levels of susceptibility they should be selected to ensure 

the inclusion of scenes spanning the full range of artefact visibility, from those 

where the artefact is well masked to those where it is emphasised by scene 

content. The distortions in lossy compression are a case in point. Keelan also 

suggests that it does not matter if selection of scenes to emphasise or suppress 

certain characteristics means that the sample set is not representative of the 

overall population of ‘customer images’, if the aim is to ‘improve the signal in a 

psychometric experiment’, because this will mean that the results will be more 

able to test the efficacy and accuracy of an objective metric, assuming that the 

metric is developed for such a restricted sample set. 

Bartleson in [102] proposed five categories for sample image selection, as 

summarised in table 3.1. The categories represent a narrower and more 

specific approach to image selection as they move down the table. All of the 

categories are used in product development, dependent upon product and 

context. The ISO has developed reference sets of images in ISO 20462 part 3 

[85], the Standard Reference Set (SRS) of hard copy images and the Digital 
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Reference Set (DRS) of digital images for use with the quality ruler, which are 

examples of incident samples (to be made available through www.imaging.org 

[38]). In exploring scene dependency, it useful to select a purposeful set of 

samples, by evaluation of various attributes deemed to influence image quality 

preference. Approaches to characterising images for this type of sample 

selection, are discussed in section3.7. 

Sample Category Properties and Characteristics 

Random and 
Independent 

Images have equal chance of selection; Selection of each image 
independent of selection of others. 

Stratified Population classified in terms of distinction of interest, and 
numbers in each class reflect population statistics. Common in 
psychometric experiments. 

Contrast Stratified, with extra images in classes of interest, common in 
product development testing. Ignores irrelevant classes. 

Purposeful Represents a specific population OR varies independently in 
some attribute. Also common in product development. 

Incidental Random sample representing sub-groups of particular interest 
OR special (unique) existing collection (e.g. ISO standard images) 
Reference sets; ‘sacred samples’. 

Table 3.1 Sample Categories by Bartleson [102], adapted from Engeldrum [18] 

3.6 Digital Imaging Artefacts 

The objective characterisation of digital imaging systems and processes is 

more complex than that of analogue, because, in addition to the physical 

attributes described in chapter 2, a number of digital artefacts (detailed in 

table 3.1) are introduced, as a result of the various processes involved in 

digitisation and throughout the imaging chain.  

As described by Keelan [103], these artefactual attributes are not always 

evident in an image (unlike a preferential attribute such as colourfulness), but 

when present, they are nearly always detrimental to image quality. However, 

in previous work by the author [33], detailed in chapter 4, it has been found 

that the presence of small amounts of particular artefacts sometimes appears 

to enhance subjective image quality. Such cases, although isolated, are 

http://www.imaging.org/
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interesting examples of scene dependency, resulting from the interactions of 

the algorithm with particular scene characteristics. It should be noted that the 

visual effect of the artefact (ringing as a result of JPEG compression) mimics 

that of a preferential artefact (sharpening).  

The common digital artefacts are detailed in table 3.1, along with scene areas 

which are either more susceptible or in which they are more visible. The final 

column details some of the interactions with other image attributes, which 

may serve to emphasise or mask them, and some potential methods to reduce 

or correct them. 

3.6.1 Variation of artefacts across an image 

Artefactual and preferential attributes may affect an image globally or locally 

[101]. Global artefacts are equal in magnitude and character across the image 

plane, both objectively and perceptually, (colour misregistration in large 

amounts is an example, see table 3.1). But many artefacts (and preferential 

attributes) are variable within an image, meaning that they affect the image 

plane unequally. This variability, as noted in section 3.3.1, is a significant 

source of scene dependency. Keelan describes this variation as dependent on 

one or more of three factors: 

- Signal level (many attributes vary as a function of image intensity); 

- Location (for example radial position) 

- Orientation or direction 

Artefacts can be localised perceptually, whilst affecting the image globally, 

meaning that they are linear in an objective metric space, but non-linear in a 

perceptual space. Therefore the visual system has a variable response to them 

across the image plane, which is often dependent upon signal level. Keelan 

[101] describes the Detail Visibility Function (DVF) which characterises the 

visibility of certain artefacts (for example noise, streaking and banding) 

weighting them in relation to the signal level. Thus, although they are 

distributed equally across the tonal range of the image, their visibility is 

affected by the visual density response to the artefact.   
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Artefact Causes Scene Susceptibilities Masking/Interactions/
Reduction 

Contouring Poor quantisation; multiple 
colour conversions; chroma 
sub-sampling 

Large areas of slowly varying 
tone or colour (low 
frequencies) 

Strong interaction with 
noise 

Jaggedness 
/Pixelisation 

Insufficient spatial resolution; 
aliasing from down-sampling 

Diagonal edges and lines Can be masked by 
blurring or noise; 
dithering of edges may 
reduce visibility 

Aliasing Sampling Areas with periodic high 
frequency information (high 
frequency lines) 

May be masked by 
random noise. Pre-filter 
prior to down-sampling 
to limit bandwidth 

Chromatic 
aliasing 

Differential sampling of 
colour channels, resulting in 
differences in Nyquist 
frequencies of RGB channels 

Areas with periodic high 
frequency information (high 
frequency lines), colour moiré 
more apparent in neutral areas 

May be masked in 
highly chromatic areas 

Blocking DCT compression Areas with high frequency 
information; More visible in 
uniform and slowly varying 
areas 

May be masked by fine 
detail 

Smudging 

     

DWT compression Edges and lines; areas of 
texture and high frequencies. 

 

Colour bleeding DWT compression Adjacent colour areas; More 
visible in relatively uniform low 
chromatic areas 

 

Ringing     Abrupt truncation of 
frequencies. Examples 
include ideal filtering in the 
frequency domain or DCT 
compression 

Appears as an echo or a ripple 
around edges and lines 

Use of more gradual 
frequency attenuation 
filters; windowing 

Halo artefact  Exaggerated ‘overshoot’ and 
‘undershoot’ at edges caused 
by digital sharpening in the 
spatial domain 

Appears as a halo around edges 
and lines. Can appear similar to 
the ringing artefact 

Affected by (but not 
the same as) 
sharpening3 

Patterning Dithering Slowly varying areas except for 
pure blacks and pure whites 

May be masked by 
noise 

Streaking Pixel-to-pixel non-uniformity 
in linear arrays (mostly in 
digital printing devices) 

Uniform areas, slowly varying 
areas  

Weak interaction with 
noise 

Banding Periodic variations in digital 
printing devices 

Uniform areas, slowly varying 
areas  

 

Colour 
Misregistration 

Spatial shift between colour 
records of an image. A global 
artefact. 

Small amounts: edges, lines 
may appear unsharp; large 
amounts, ghosting in all areas 

 

Table 3.2 Digital imaging artefacts, scene susceptibility and masking (adapted from 
Triantaphillidou [34] [40]) 

                                                        
3Oversharpening and sharpness are distinct from each other. The sharpness of an edge is determined by 
the steepness of the slope of the edge (its spatial extent orthogonal to the edge direction); 
oversharpening is an artefact, the effect of which is determined by the magnitudes of the overshoot and 
undershoots. However once oversharpening is present, it will be affected by any processes that affect 
image sharpness 
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While individual artefacts may be detrimental to image quality, their 

interactions with other attributes may mask their presence, and some 

processes within the imaging chain are introduced for precisely this reason. 

Finally, some artefacts are highly localised in objective space and therefore 

unpredictable in their effects upon quality and their visibility. The smudging 

artefact in JPEG 2000 is an example. 

For attributes that are variable as a result of position, some form of location 

(field position) weighting may be applied within metrics. Keelan and Jin in 

[104] found that subject matter that particularly affected sharpness was often 

positioned closer to the centre of the image, whilst judgements of noisiness 

were more affected by scene content in the periphery of the image. If the 

positional variability is well defined and consistent in an objective space, it can 

be relatively straightforward to divide the field position into various regions 

and weight them according to their areas. A similar approach can be used for 

orientation dependent attributes or measures. An example is the modulation 

transfer function, which for lenses is positionally dependent (optical 

performance is best at the centre of the lens), and for sensors is often 

orientation dependent, due to different horizontal and vertical spacing and 

dimensions of sensor elements. 

3.6.2 Visual saliency 

While the discussion above is in relation to measures or attributes changing in 

objective space as a result of spatial position, field position can be linked to the 

idea of saliency, which is more of a reflection upon the visual response to 

particular image features and is dependent upon their position within the 

image. Saliency is a term used in computer vision to identify features or 

locations within an image that are more distinguishable from their 

surroundings, or are more visually important [105]. It is not difficult to 

imagine that if a distortion, particularly a compression artefact is both 

bothersome and very visible, in a particular area within an image, that area 

will become a salient feature. 
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Kadir and Brady [105] describe visual saliency as referring to the idea that 

‘certain parts of a scene are pre-attentively distinctive’. This is based upon 

work from Neisser [106] from 1964, which divides the early stages of human 

vision into pre-attentive and attentive stages. Pre-attentive vision identifies 

key features (so-called salient features) within a scene; so any features that are 

distinctive will be picked out. Attentive vision follows and takes in the rest of 

the scene, finding relationships between the features and grouping objects and 

attributes for interpretation. This is analogous to the ordering of the two 

stages of vision proposed in Hochstein and Ahissar’s Reverse Hierarchy Theory 

[30], described in section 2.2.  

Saliency is linked to the concept of foveated vision [107], which describes the 

variable resolution of the retinal image, produced as a result of the unequal 

distribution of photoreceptors and ganglion cells on the retina. The fovea is the 

point on the retina coincident with the optical axis and contains the highest 

density of cone receptors, which are responsible for visual acuity. The retinal 

image is sharply focused in this area, subtending 2 degrees of visual angle 

[108] and image sharpness gradually decreases away from the optical axis. To 

create the final perceived fully sharp image, the eye undergoes small 

involuntary jerking movements known as saccades to direct the fovea to 

different areas of the scene, lead by objects of interest, or salient points. 

Saliency feature extraction attempts to identify and extract salient areas within 

an image, which may then be used for weighting attributes in metrics. Saliency 

metrics can be tested by identifying the spatial distribution of important 

subject matter in an image, for example from experiments with observers 

using eye tracker technology to track visual attention. 

3.7 Scene Classification 

Scene classification has long been a subject area of interest to researchers from 

various disciplines; imaging science can use an understanding of the 

characteristics of images and imaging systems combined with the human 

visual response to guide this exploration.  
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Scene classification has significance in a number of different contexts in 

imaging science; its relevance to the results of image quality studies [22] [34] 

[33], its usefulness in classifying images on the internet [109], and in image 

taxonomy for image content based retrieval systems [110] are just a few. The 

approaches used vary widely in their complexity depending upon discipline 

and purpose. For image quality studies it is useful to explore methods that are 

relatively simple to implement and analyse, but that correlate well with human 

perceptions of quality (or other attributes). Many approaches use simple first 

order or second order statistical measures applied to luminance or 

chrominance data, or simple feature extraction approaches to edges or texture. 

Experimental work by Triantaphillidou in [34], investigates scene classification 

for image quality, exploring the issues of scene susceptibility and scene 

dependency in relation to subjective image quality judgements.  A number of 

simple scene analysis measures are used to group and classify test stimuli in 

relation to some of their inherent scene properties. The measures used aim to 

quantify global image content in relation to tone, colour and spatial 

characteristics. A range of measures are employed, including first order 

statistical measures applied mainly to the CIELAB L* channel; chroma variance 

derived from C*ab; a multi-stage image segmentation metric to evaluate image 

busyness (as a ratio of busy, or detailed areas to non-busy areas within the 

image) and two methods to determine the number of lines within the image. 

The results are compared against interval scales from a paired comparison 

experiment, to explore correlations between low-level visual features and 

human image quality criteria. The paired comparison is described in chapter 4, 

where the relationship between the visual descriptions of image quality 

attributes and the scene susceptibilities of digital artefacts are explored in 

relation to JPEG and JPEG 2000.  

Mancusi adapts this approach in [111] to develop a multi-dimensional image 

selection and classification system, expanding upon the range of measures 

used in [34] to classify images in terms of: global lightness and lightness 
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contrast; colourfulness, colour contrast and dominant hue; and scene 

busyness. 

Hoon [112] applies scene descriptors both globally and to local image regions 

of interest based upon Kadir and Brade’s saliency model [105] to explore scene 

susceptibility with respect to sharpness and noisiness. First order statistical 

measures are employed to quantify tone, contrast, colour and information 

content. Second order statistics extract textural information. Edge detection 

filters are used to extract gradient images and quantify the number and 

strength of edges in the image, which might be susceptible to sharpness 

degradation. In this study, measures applied globally appear to correlate better 

to subjective quality evaluation than local measures, however, this may be 

affected by positional variations in the effects of the attributes, as described in 

[104]. 

Various scene descriptors have been used to classify colour attributes of 

images. Hasler and Susstrunk [113] use statistical measures of the 

chrominance channels of the CIELAB space to develop a number of metrics, 

which correlate well with colourfulness in natural images. Scene descriptors 

relating to colour have also been used to explore the relationship between 

gamut variation and JPEG and JPEG 2000 compression [114]. Scenes are 

classified according to the size of the image gamut, colourfulness, spatial 

frequency response of the chroma channels, and the number of unique colours 

in RGB colour space. 
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4 Comparison of JPEG and JPEG 2000 

4.1 Background to the investigation 

Since its adoption as a standard in 1992, [9] the JPEG compression scheme has 

become the most widely used method for the lossy compression of digital 

images [115]. As discussed in the previous chapter there are a number of 

artefacts that are characteristic of JPEG at high compression rates, most 

notably blocking and ringing. Nevertheless as the predominant format in, for 

example, camera phone applications, which probably generate the largest 

volume of consumer digital images globally, the JPEG algorithm is so widely 

used, that it might be argued that its artefacts have, to some extent, become an 

accepted characteristic of contemporary images. 

The development of JPEG 2000 was not, therefore, primarily about failings in 

terms of image quality from JPEG. Both algorithms are ‘perceptually lossless’ at 

low compression rates, making them satisfactory for many applications. Key 

motivations prompting ongoing research to improve upon JPEG, described in 

the call for proposals for the new standard were to [11] ‘provide an open 

system approach to image compression’, to ‘provide capabilities to markets 

that currently do not use compression’ and to ‘address areas where current 

standards failed to produce the best quality or performance’. This last refers in 

particular to the levels of distortion and perceived image quality at low bit 

rates, but fundamentally JPEG 2000 was designed to address the requirements 

of modern digital imaging and its expansion into new territories. For some of 

the disciplines in question, such as medical and forensic imaging, image fidelity 

and acceptable levels of distortion are critical.  

Traditionally, evaluation of lossy compression has involved simple distortion 

metrics [7,14]. JPEG 2000 distortion has been assessed objectively in 

numerous studies, such as [96,116,117,11,93,118]. Those investigations 

incorporating comparisons of the performance of JPEG 2000, JPEG and other 

compression standards have also focused on distortion metrics [118]. 
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However, as discussed in section 3.4 [97], because they are based upon a 

number of possibly questionable assumptions about image quality evaluation, 

distortion metrics do not always correlate well with perceived quality.  

Objective measures that incorporate some model of the human visual system 

have been found to correlate better with subjective image quality scaling 

studies [22,119]. However the number of psychophysical investigations of the 

quality of JPEG 2000 against which to evaluate them is far more limited than 

those for JPEG.  

A few subjective comparison studies have been implemented. Steingrimsson 

and Simon [120] implemented a three-image discrimination test to determine 

the perceptibility of distortions, with three perceptibility thresholds (66%, 

75% and 90%) identified and compared for the two algorithms. In the same 

study, suprathreshold quality was investigated using paired comparisons of 

JPEG and JPEG 2000 images. Their results for both studies were found to be 

scene dependent.  

This chapter describes experimental work evaluating and comparing JPEG and 

JPEG 2000. The study involved a paired comparison of subjective image quality 

between JPEG and JPEG 2000 to establish whether JPEG 2000 demonstrated 

significant improvements in visual quality [33]. The derived quality interval 

scales were obtained using paired comparison of images displayed under 

calibrated viewing conditions. A particular focus of this work was the inherent 

scene dependency of the two algorithms and their influence on subjective 

image quality results. Further work on the characterization of scene content 

was carried out in a connected study [34]. 

4.2 JPEG and JPEG 2000  

It is useful to consider the aspects of the architecture of the two algorithms 

that lead to their specific artefacts. JPEG 2000 workflow is similar to that of 

JPEG (which is shown in figure 3.2). Key differences in JPEG 2000 are in the use 

of the Discrete Wavelet Transform (DWT) instead of the Discrete Cosine 
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Transform (DCT), and in the separate quantization and encoding of sub-bands 

rather than blocks.   

The differing architectures lead to characteristic errors. Both algorithms are 

scene dependent, resulting in better performance on certain types of scenes 

than on others, producing higher compression ratios with less visible loss. In 

addition, the types of artefacts are more visible in some image areas than in 

others [33]. This work aims to compare the two compression schemes across a 

set of images varying in scene content and to explore scene susceptibility and 

scene dependency in relation to image quality.  

The wavelet function has been extensively researched as an alternative to 

other frequency transforms for signal decomposition [121,122,123,124,125]. 

Wavelets have a number of distinctive properties, in that they are localised, 

and have translational and scaling properties, meaning that they can provide a 

multi-resolution representation of an image through a set of wavelets at 

different scales.  An advantage of the DWT is that it can be applied using a filter 

bank, which simplifies the transform process [96] [121]. The use of a 

pyramidal filter bank provides the ability to encode the image at different 

scales. This is extremely useful in image compression, as it allows a single 

image to be compressed and then decompressed at different pixel resolutions 

as required. Additionally, the use of wavelets in compression minimises the 

blocking artefacts inherent in schemes such as JPEG, but comes with certain 

other associated distortions. At low bit rates, the nature and visibility of their 

artefacts and their scene dependencies result in differences in preference 

between the two algorithms. 

In both, the frequency transformation stages decorrelate the data prior to 

quantization and encoding. Baseline JPEG allows lossy compression rates of up 

to 100:1 (although achievable compression rate is very scene dependent). The 

perceptibility of this information loss is minimised by the use of visually 

optimized quantization tables (see figure 3.4). 

A detailed description of the architecture of both is provided in chapter 3; the 

key differences in the operation of the two algorithms at each stage are 
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summarised in Table 4.1. The provision of the required features and 

functionalities expressed in the call for proposals has resulted in an 

architecture that is more complex in JPEG 2000 than that of baseline JPEG. 

Table 4.1 Comparison of compression stages in Baseline JPEG and JPEG 2000 

The frequency transformation stage, because of the resulting configuration of 
frequencies, may be considered to be the most important factor in the differences 
differences between the distortions introduced. Although both decompose the image into 
image into frequency coefficients, the arrangement of the coefficients is different. It is 
different. It is commonly assumed that the improvements demonstrated in quality 
quality comparison trials of JPEG 2000 against JPEG are due to the use of the wavelet 

wavelet transform instead of the DCT. However Steingrímsson [120] suggests that it is not 
that it is not the choice of the transform but the differences in the way in which the image 
the image is sub-divided in the stages before entropy coding that might be the key to 

Compression 
Stage 

Baseline JPEG JPEG 2000 

Pre-processing 

 

 

Conversion of RGB image to YCbCr and 
down-sampling of chroma channels 

Division of image into 8 x 8 pixel sub-
images. 

Image ‘tiling’ (OPTIONAL) Division of image 
into non-overlapping image tiles. (varying 
sizes). 

Reversible or irreversible colour 
transformation. 

Frequency 
Transformation 

Discrete Cosine Transform, resulting in 64 
coefficients representing magnitudes of 
different frequencies for each sub-block. 

Reversible or irreversible Discrete Wavelet 
Transform (for lossless or lossy 
compression respectively). The image or 
image tile is decomposed into a number of 
‘sub-bands’. Each sub-band consists of 
coefficients describing horizontal and 
vertical frequency components at a 
particular resolution. 

  Quantization Coefficients are re-ordered using a zig-zag 
sequence though each block. Frequency 
coefficients from each block are quantized 
using visually weighted quantization tables, 
resulting in the highest frequency 
components and lowest magnitude 
components being removed. This results in 
a string of zero magnitudes for the highest 
frequency coefficients at the end of each 
block. 

Sub-bands of coefficients are quantized 
separately using a uniform scalar quantizer 
with the option of different quantizer step 
sizes for different sub-bands, based upon 
the dynamic range of the sub-band. 
Quantization step size will be 1 if lossless 
compression is required. 

Entropy Coding Differential Pulse Code Modulation (DPCM) 
of DC coefficients of all blocks. 

Huffman or Arithmetic coding of each block 
of AC coefficients (those left after 
truncation).  

Run-length coding of remaining string of 
zero magnitudes. 

Sub-bands are divided into precincts and 
code blocks  

Each code block is input independently in 
raster order into the entropy coder. 

Code blocks are coded by individual bit 
plane, using three passes of an arithmetic 
coder.  



 124 

key to quality improvements. The output from the DCT stage in JPEG is an array consisting 
array consisting of blocks of 64 coefficients arranged so that they relate to the magnitudes 
magnitudes of frequencies in the same spatial region in the original image.  The blocking 
blocking artefacts produced at higher compression ratios, as illustrated in  

 

 

 

 

 

 

 

Figure 4.1, which arise as a result of coarse quantization in individual blocks of 

pixels and may be seen as one of the main causes of data loss and 

unrecoverable distortions in JPEG [126]. 

 

 

 

 

 

 

 

 

Figure 4.1 Left: Uncompressed reference image Right: Test image ‘ISO Table’ displays 
blocking artefacts in the background at a JPEG compression rate of 50:1.  

JPEG 2000 images do not suffer from blocking artefacts unless the image has 

been tiled. The decomposition of an image into sub-bands using a wavelet 

transform results in a lower-resolution version of the original and high-

frequency information in horizontal, vertical and diagonal directions [96] (see 

figures 3.6 and 3.7). The sub-bands are quantized separately and further sub-
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divided into code blocks before entropy coding. A code block is a rectangular 

section of a sub-band and a precinct (see figure 3.8), consists of three groups of 

four code blocks, each group from the same position in each high-frequency 

sub-band at that decomposition level [127]. The inputs into the entropy coder 

are the code blocks by bit plane, from a precinct, scanned in raster order.  

The values in a reconstructed block within a JPEG compressed image are dependent upon 
dependent upon the quantization table, (which is determined by the implementation and 
implementation and the quality setting) and the frequencies present at that spatial 
spatial location. By contrast, the reconstruction from the JPEG 2000 image will be made 
up of code blocks from precincts in the same spatial position relative to the edge of a 
particular sub-band, from all of the different sub-bands. Because the quantization step-
size is different in different sub-bands, the errors build up variably, affecting an image 
area at different scales and being much less uniform over a spatial location by comparison 
with JPEG blocks.  ‘Smoothing’ or ‘smudging’ artefacts appear at higher levels of 
compression. These appear as a blurring of small regions within the image as shown in 

 

Figure 4.2. 
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Figure 4.2 Left: Original image. Right: Test image ‘Motorace’ at compression rate of 80:1 
displays severe smoothing artefacts from the JPEG 2000 algorithm. Note however that 
numerical information is well preserved. 

The lossy versions of both compression schemes suffer from ringing artefacts. 

These artefacts are a result of abrupt truncation of high-frequency coefficients 

during quantization. The effect of this may be modelled in the frequency 

domain as a frequency transformed image (which may be a block, or a sub-

band) being filtered (multiplied, as a result of the convolution theorem) by a 2-

dimensional version of the rect function, a top-hat function [128], which is the 

equivalent to an ideal filter (see figure 6.2(a)). During inverse transformation 

back to the spatial domain, a rect function becomes a sinc function (the sinc 

function and the rect function are a Fourier transform pair [129]). This is 

equivalent to convolving the image with a sinc function in the spatial domain; it 

affects the appearance of edges in particular and is evident as oscillations or 

‘ripples’ around high-contrast edges [130] as shown in Figure 4.3.  

 The visual effects of ringing in JPEG 2000 may be reduced (although they are 

still evident) because of the arrangement of sub-bands, meaning that they are 

less localised and the errors are distributed across the image. They tend 

therefore to be less noticeable than the smoothing artefact illustrated in Figure 

4.2. Smoothing artefacts may also mask ringing to some extent. 
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Figure 4.3 Ringing artefacts around edges in test image ‘Yellow Flowers’ compressed at 
60:1 (JPEG compression). Severe blocking and colour distortions are also evident. 

In JPEG images, because the errors from a block in a specific spatial area will 

affect the same area in the reconstructed image, ringing is much more visible. 

This can be identified as one of the key reasons that JPEG compresses text 

poorly (Figure 4.4). 

At low compression rates, ringing can give a similar visual impression to 

sharpening. The density oscillations around an edge can lead to the slight 

overshoot or undershoot of density on either side of an edge in the same way 

as a result of the use of a sharpening filter (the halo artefact). 

Both algorithms suffer from colour artefacts. These are caused by various 

factors, including the sub-sampling of chroma channels in the JPEG algorithm 

and the irreversible colour transformation in JPEG 2000, as well as 

reconstruction errors from quantization. The visual effect of these errors is a 

‘colour bleeding’, which affects smoothly graduating areas and neutral tones, 

as seen in figure 4.5, and in the background in figure 4.1. 
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 Figure 4.4 The ringing and blocking artefacts in this JPEG image compressed at a ratio of 
40:1 make the text unreadable. 

 

 

 

 

 

Figure 4.5 Colour distortions are evident in the less chromatic areas of the background of 
this JPEG 2000 compressed image.  

4.3 Artefacts and Scene Dependency 

As discussed in chapter 3, lossy compression of stimuli with different scene 

characteristics produces output images with different levels of image quality at 

the same compression rate. Similarly, if two stimuli of the same size but with 

different scene properties are compressed to the same quality level, they will 

usually have different file sizes. 

The degree of error in the output image is primarily dependent upon the 

amount of compression; in JPEG the user set quality level defines the file size 

and the quantization table used; therefore the level of reconstruction errors. 

JPEG 2000 allows the user to compress to a desired file size or quality level, 

although it should be noted that the quality settings in JPEG and JPEG 2000 are 

specific to each algorithm and are unrelated to each other’s scales. Because the 

quantization stage is performed in the frequency domain, it is also dependent 
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upon the frequency characteristics of the image contained within each image 

area or image block. The other main area of compression in both algorithms, 

the reduction in colour resolution, also affects the amount of distortion 

introduced. 

The error difference as a result of scene property variations is a result of the 

scene dependency of the algorithm, which can be quantified to some extent by 

distortion metrics. But they cannot predict the visibility of the errors, which 

will be determined by scene characteristics and any masking effects. 

The susceptibility of a scene to a particular artefact influences the results of an 

image quality study, in both objective and subjective assessments. Scenes with 

large areas of smoothly graduating tone may show more obvious blocking 

artefacts at high levels of compression, therefore such scenes might be 

expected to produce poorer results for JPEG. Meanwhile scenes containing 

many edges and straight lines, for example those typical in architectural 

images might suffer more visual degradation from the smoothing artefacts of 

JPEG 2000. These images may also suffer ringing artefacts. 

4.4 Subjective Image Quality Assessment 

This investigation aims to provide a comparison of the subjective image quality 

of JPEG versus JPEG 2000 in relation to scene content.  

Thurstone’s Law of Comparative judgement [37] assumes that the discriminal 

process (the process by which observers make judgements of samples) is a 

random variable with a probability density function following a Gaussian or 

normal distribution on the perceptual attribute scale (or ‘ness’); in this case 

the image quality scale. Thurstone postulated that the proportion of times that 

a stimulus is judged greater than another stimulus might be viewed as an 

indirect measure of the distance between the two stimuli on the ‘ness’ scale 

being evaluated. Normalizing the difference between two mean scale values, by 

dividing by the standard deviation of the probability density function 

describing the values, produces results in terms of z-values. The z-scores may 

then be used to generate an interval scale of image quality [131]. 
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Interval scales provide numerical values for a perceptual attribute, or image 

quality, against the physical properties of the image, in this case, compression 

rate. Distances between values on the scale are proportional to distances in 

perceived image quality, allowing predictions of differences between samples 

[131]. They may be compared in terms of relative magnitudes of differences. 

In this investigation, a paired comparison experiment was performed in which 

observers were asked to select an image from a pair displayed on screen, 

based upon their preferred image quality. Ten observers, six male and four 

female, with some experience of visual assessment of images carried out the 

tests.  Observers had normal or corrected vision, and normal colour vision. 

Each uncompressed image was compressed to the same range of four 

compression rates using both algorithms. All of the compressed images for a 

particular scene were then compared with all of the others from the same 

dataset. The dataset also included the original uncompressed TIFF version of 

the scene. The total number of unique pairs was 36 per scene. 

4.4.1 Test Images 

Sixteen original images were used in the investigation. Twelve were selected 

from a Kodak Photo-CD collection, three from the ISO 12640:1997 standard 

image set and the final one was ‘Lena’, an image commonly used in 

compression quality investigations. The images were selected to cover a range 

of image content and characteristics. 

The data set included: 

 A range of different scenes, such as portraits, natural scenes, 

architectural. 

 Scenes containing smoothly graduating tones, in which blocking 

distortions might be highly visible at higher compression rates.  

 Scenes containing text, which might be susceptible to the ringing 

distortions inherent in JPEG. 

 Highly chromatic scenes and some with a very low chromatic content. 
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 Scenes containing a large amount of fine detail, which might be 

particularly susceptible to JPEG 2000 smoothing artefacts. 

The majority of images were colour, although two grayscale images were also 

used, including ‘Lena’. The Kodak Photo-CD images were opened at a 

resolution of 512 by 786 at 72dpi in CIELAB 16 bit per channel colour space. 

They were converted to sRGB colour space, down-sampled to 317 by 476 

pixels and finally saved as TIFFs. The original images were all the same size, 

approximately 445Kb, to be displayed at 100% resolution. The selected size 

allowed two images to be displayed side-by-side on screen without any effects 

from further interpolation by the graphics card for the display. The images are 

shown in Figure 4.6. 
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Figure 4.6: The 16 images used in the psychophysical comparison of JPEG and JPEG 2000 

 

01chinatownST.tif

05ISO_fruitsST.tif

09LeopardST.tif

13africantree.tif

02formulaST.tif

06ISO_tableST.tif

10yellowflowersST.tif

14bike.tif

03glassesST.tif

07kidsST.tif

11lena.tif

15boats.tif

04ISO_cafeteriaST.tif

08saulesST.tif

12louvre.tif

16motorace.tif
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4.4.2 Image Compression 

It was necessary to set a maximum compression rate based upon JPEG rather 

than JPEG 2000 because of the more limited compression capabilities of JPEG. 

After a pilot test, the images were compressed at intervals of 80:1, 60:1, 40:1, 

20:1. This set of compression rates was selected to cover a range that might 

conceivably be used in everyday imaging across a range of applications, 

particularly consumer imaging applications and the web.  

The JPEG compressed images were processed using Advanced JPEG 

Compressor v4.1, a stand-alone software application by Winsoftmagic 

Development [132]. The software compressed the images using baseline JPEG 

standard compression, while allowing specification of output file size, quality 

setting or compression rate. The JPEG 2000 images were compressed using 

Lurawave Smart Compress 3.0, developed by Algo Vision Luratech GmbH 

[133]. Default settings were used in both methods of image compression. 

Image optimisation was not used. 

4.4.3 Display Characterisation 

The images were displayed on a 15” NEC Multisync M500 CRT monitor, with a 

Matrox Graphics MGA Millenium graphics card adapter at screen resolution of 

1024 x 768 pixels. To ensure correct colour rendition, the monitor was 

characterised [14], before being calibrated to the sRGB standard 

[134,135,136]. 

The viewing conditions were first adjusted to the sRGB recommended viewing 

conditions: the reference ambient illuminance was set to an average of 64 lux 

at the faceplate of the monitor and reference average chromaticities of the 

surround were equivalent to D50 (x=0.3457 and y=0.3585) [137].  

The display allowed independent adjustment of the R, G and B channel signal 

levels. After a warm-up time of 30 minutes, the uncalibrated white point of the 

display was measured using a Minolta Chromameter CL200 with a CL-A11 

head, taking measurements from a generated white patch covering 50% of the 

display area. Measurements were taken with a hood around the display under 
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the reference viewing conditions. The white point was adjusted through the 

RGB channel signals to match the CIE x,y, chromaticity co-ordinates of the CIE 

D65 standard illuminant [137]: x=0.3127, y=0.3290. 

The tone reproduction characteristics of the three channels were measured 

from a series of patches generated [138] on screen covering a range of pixel 

values from 0-255 for each channel, in increments of 5. For the individual 

channel measurements, the patches covered 50% of the displayed area and the 

other 50% was filled with the complementary colour (i.e. if a patch was 

displayed with RGB values of [128, 0, 0], the surround was filled with a 

uniform pixel value of [0,128,128]). Each measurement was taken three times 

from different areas and the results were averaged. Figure 4.7 illustrates the 

results. Power functions fitted to the individual plotted datasets are on the 

graphs with their R2 values, indicating that the derived functions fitted the data 

to a satisfactory level, and that the  channels combined to produce a gamma 

value of close to 2.2, as specified for the sRGB colour space.  

 

 

 

 

 

 

 

Figure 4.7 Tone characteristics of the NEC Multisync M500 CRT monitor. 

4.4.4 Psychophysical Display 

The paired comparison software was written in Visual Basic™ 6 [139]and run 

on an IBM compatible HP Vectra VA platform. Observers sat approximately 

60cm from the display, although the distance was not controlled by a headrest 
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for this experiment. Images were displayed side-by-side on the screen in a 

random sequence, and randomised in position from left to right. For each 

scene there were four compressed images for each algorithm and one 

uncompressed image. These gave a total of 36 unique pairs per scene and 576 

comparisons in total.  

Observers were provided with written instructions prior to the test and were 

asked to take a break from the test if they felt fatigued. They were asked to 

select the image in the pair that in their opinion had the highest quality. They 

were not time-restricted in making each selection and all observers completed 

the test in less than an hour. Results from the observations were recorded into 

a text file, which was saved directly on the computer hard drive. 

 

Figure 4.8 Psychophysical display.  

4.4.5 Image Distortion 

Additional to the subjective investigation, values for peak-signal-to-noise 

ratios (PSNR) were calculated between each original image and all compressed 

versions. As described in (3.4), PSNR is defined as: 

 𝑃𝑆𝑁𝑅(𝑑𝐵) = 20 𝑙𝑜𝑔 10   (
𝑚𝑎𝑥

√𝑀𝑆𝐸
)    (4.1)  

4.5 Scene Characterisation 

The scenes used in this experimental work were characterised by 

Triantaphillidou in a linked experiment [34]. A summary of the methodology 
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and results are provided here in relation to the psychophysical experiement. 

More details of some of the scene measures used are included in chapter 5. 

In the study, simple scene metrics (summarised in Table 4.2) were used to 

quantify global image content in terms of tone, colour and information content. 

The measures were applied to the uncompressed images with the aim of 

quantifying the scene properties and identifying any correlations between the 

results and the performance of the compression algorithms. The measures 

were applied in the CIELAB colour space. 

Type of measure Measure  Predicted scene characteristics 

First order statistical measures  

applied to the CIE L* channel 

 

Mean value m 

Median value md 

Skewness s 

Variance v 

First order entropy e 

Global average intensity 

Global average intensity 

Imbalance of the probability 
density function  

Global scene contrast 

Information content, random 
changes in the scene 

applied to image Cab* calculated from the  
CIE a* b* channels 

Chroma variance V Cab* Colourfulness 

Image Segmentation Busyness b Ratio of busy areas to uniform 
areas within the scene 

Line Detection: Edge detection followed by 
radon transformation 

Log10 of the number of 
lines log10(f) 

Amount of lines and busyness of 
the scene 

Table 4.2 Scene measures used to quantify scene properties [34] 

The measures were applied in the MATLAB environment [140]. The L* channel 

of the images was converted to an 8-bit greyscale image. The busyness metric 

involved edge detection using the Sobel operator to form a gradient image, 

followed by thresholding and the application of morphological operations to 

separate homogenous and inhomogenous regions of the image (Figure 4.9). 

The scenes were ranked according to their values for the individual measures. 

The images were grouped according to their interval scale results and 

correlations were sought with the results from the scene measures. 
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Figure 4.9 The stages in the busyness metric, by Triantaphillidou, reproduced from [34] 

4.6 Interval Scale Generation 

Engeldrum describes the practical derivation of interval scales from the 

proportion of observer responses in detail in [131]; a summary is provided 

here for completeness. According to Thurstone [37], the relationship between 

the z-deviates and scale values for samples A and B is defined by [131]: 

 𝑆𝐴 − 𝑆𝐵 = 𝑍𝐴−𝐵√𝜎2
𝑎 + 𝜎2

𝑏 − 2𝜌𝜎𝑎𝜎𝑏 (4.2) 

Where is the difference between scale values, is the z-value 

produced, and are the standard deviations of the observers’ responses 

for the two samples and is the correlation between the two samples.  

In the Case V solution to this expression, it is assumed that the variances are 

equal and that there is zero correlation between samples, which simplifies the 

expression to: 

 𝑆𝐴 − 𝑆𝐵 = 𝑍𝐴−𝐵𝜎√2 (4.3) 

The measured proportions from observer responses are used as an estimate of 

the probability of sample A being preferred over sample B. Therefore [131]: 

BA SS  BAz 

A B



1 - Original image 2 - Binary gradient mask 3 - Dilated edge 

5 - Eroded (final) image 4 - Holes filled 
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 𝑃(𝐴 > 𝐵) = 𝐻(𝑆𝐴 − 𝑆𝐵) (4.4) 

Where H is an underlying cumulative density function (probability distribution 

function). The inverse of H will give the scale difference values [131]: 

 𝑆𝐴 − 𝑆𝐵 = 𝐻−1[𝑃(𝐴 > 𝐵)] (4.5) 

If 𝜎√2 is set equal to 1, then 𝐻−1[𝑃(𝐴 > 𝐵)] is equal to 𝑍𝐴−𝐵. 

In the case where there is unanimous agreement among observers about a 

particular pair of images giving p=1, there will always also be a value of p=0. 

These proportions indicate that the scale values for the two images are so far 

apart that there is no confusion between the two. A proportion of zero or one 

results in a z-value of ±∞, due to the extended tail of the underlying 

cumulative distribution function [141]; this means that scale estimates are not 

robust, particularly if the number of observers are small.  One option is to 

increase the number of observers significantly to improve accuracy, but this is 

an impractical solution. Engeldrum [142] suggests adopting a strategy 

proposed by Noether [143], in which a proportion of p=1 is substituted by 1-

1/(2n) and p=0 by 1/(2n), where n is the number of observers.  

An example of the scale value calculation matrix for image ‘Lena’ is shown in 

Table 4.3. The values in the data matrix are the relative scale differences 

between two samples, calculated from 𝑍𝐴−𝐵 . To reduce the number of 

comparisons, images were not compared with themselves. Instead the 

assumption was made that because observers would not be able to distinguish 

between the images, in a forced choice experiment they would guess, resulting 

in a proportion of 0.5 and a z-deviate of 0, as shown on the diagonal of the 

matrix. The final scale values are a sum of the relative scale differences for each 

image treatment. 
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TIFF JPEG20 JPEG40 JPEG60 JPEG80 JP2K20 JP2K40 JP2K60 JP2K80 

TIFF 0.00 0.00 -1.64 -1.64 -1.64 0.52 -0.52 -1.64 -1.64 

JPEG 20 0.00 0.00 -1.28 -1.64 -1.64 1.28 -0.25 -1.28 -1.64 

JPEG40 1.64 1.28 0.00 -1.64 -1.64 1.64 1.64 0.00 -1.28 

JPEG60 1.64 1.64 1.64 0.00 -1.64 1.64 1.64 1.64 0.52 

JPEG80 1.64 1.64 1.64 1.64 0.00 1.64 1.64 1.64 1.64 

JP2K20 -0.52 -1.28 -1.64 -1.64 -1.64 0.00 -0.25 -1.64 -1.64 

JP2K40 0.52 0.25 -1.64 -1.64 -1.64 0.25 0.00 -1.64 -1.64 

JP2K60 1.64 1.28 0.00 -1.64 -1.64 1.64 1.64 0.00 -1.28 

JP2K80 1.64 1.64 1.28 -0.52 -1.64 1.64 1.64 1.28 0.00 

Standard 
deviation 0.91 1.03 1.44 1.16 0.55 0.69 1.01 1.44 1.21 

Mean Scale 
Difference 0.91 0.72 -0.18 -0.97 -1.46 1.14 0.80 -0.18 -0.77 

Scale Value 8.22 6.47 -1.64 -8.75 -13.16 10.28 7.19 -1.64 -6.97 

Table 4.3   Scale value differences for image ‘Lena’ 

4.7 Results and Observations 

The results are presented as plots of interval scale values against compression 

ratio. Scenes producing similar trends in their interval scales have been 

grouped for clarity.  

The first two groups indicated preference for JPEG 2000 over JPEG across most 

of the range, with significantly better performance at higher compression 

ratios. Group 1 ‘Lena’, ‘Glasses’ and ‘Leopard’ produced the highest interval 

scale ratings for JPEG 2000 compared to JPEG across the majority of the 

compression range. They demonstrated little perceptible quality loss until a 

compression ratio of 40:1 for JPEG 2000 compression, with only a gradual loss 

in quality (Figure 4.10) from 40:1. The results for the JPEG compression of 

these images produced steeper curves, showing more overall quality loss, 

particularly at high compression levels. There was more perceived quality loss 

overall; the average loss on the interval scale for the JPEG was 21.16 scale 

points, compared to only 14.14 for JPEG 2000. The difference between the 

results from the two algorithms was more marked at the bottom of the range, 

confirming better performance of JPEG 2000 at lower bit rates. Image 

‘Leopard’ indicated only a slight preference at 40:1 but with a relatively large 
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standard deviation this could be an anomaly; the remainder of the range again 

indicated a clear preference for JPEG 2000.  

 

 

Figure 4.10 Group 1: images compressed at 60:1 by JPEG 2000 and interval scales. Images 
that were the least susceptible to JPEG 2000 artefacts 

The scenes in the groups shared certain obvious characteristics and the 

similarities were confirmed by the common results from the scene metrics: 

Average global 
intensity m, md 

Skewness s 

 

Colourfulness VCab* Busyness b Information content e 

High Negative Low Average Average 

Table 4.4 Group 1: Common scene characteristics  
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Only one of the images (glasses) was a colour image. The high global intensity 

values and negative value for skewness indicated that their histograms were 

dominated by light tones. The lack of chromatic information in the images 

meant that they did not suffer from colour artefacts, although this was a 

characteristic of both algorithms and therefore could not explain the difference 

in results. Overall, the quality of the scenes was more robust under JPEG 2000. 

An example is illustrated in Figure 4.11 

 

 

 

 

 

 

 

 

 

Figure 4.11 Compression of the glasses image at 80:1 compression ratio. Top: Original 
(uncompressed) Bottom Left: JPEG 2000, Bottom Right: JPEG 

The most obvious explanation is the prevalence of blocking, which is very 

noticeable in the smooth areas of graduating tone. The scene measures do not 

reflect this well, but some form of combination of global intensity measures 

and quantification of regions of low frequencies might be able to identify these 

types of images. 

Of interest within this group is the ‘Lena’ image. This image was preferred to 

the uncompressed image at a JPEG 2000 compression of 20:1. This is not 

surprising in the context of previous scene dependency studies, confirming the 
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observations from the work of Biederman [144], that portraits are often 

preferred in terms of quality when slightly blurred.  

The results for the images in group 2 (Figure 4.12), ‘Kids’, ‘Formula’, ‘Motorace’ 

and ‘ISO Cafeteria’ indicate better perceived quality for JPEG 2000 compared to 

JPEG across the entire compression range, although with a less marked 

improvement than group 1; quality decreased at a relatively constant rate for 

both algorithms.  

 

Figure 4.12 Group 2 : Preference for JPEG 2000 across the entire range, significant 
difference in quality loss for the two algorithms 

The overall loss was large for both algorithms, with an average loss of 24.14 

relative scale points for JPEG and 21.13 for JPEG 2000. This indicated a greater 

loss in image quality at high compression ratios than observed in the first 

group.  These images all had a high chromatic range and contained key areas of 

fine detail, where loss of high frequencies was more noticeable. All four images 

also contained text or numerical data. 

Average global 
intensity m, md 

Colourfulness 
VCab*and/or 
Variance V 

Busyness b, 
Information 
content e 

Amount of lines 
Log10(f) 

Common scene 
content 

Low to average Very high High to very high Very high Text 

Table 4.5 Group 2 scene characteristics 
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The high frequency content of the images, indicated by high values for b, e and 

log10(f) might account for the large loss in quality. This is an example of 

algorithm scene dependency, as a result of both algorithms assigning less 

perceptual importance to high frequencies. The high errors in these areas 

resulted in very apparent blocking, smoothing artefacts and ringing. These 

scenes could therefore be identified as being highly susceptible to transform 

based compression and the scene measures were successful in identifying this.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Comparison of artefacts at the highest compression rates on the Formula 
image: Top: JPEG 80:1, Bottom: JPEG 2000 80:1 

The difference between the results from JPEG and JPEG 2000 indicated that 

blocking artefacts were more bothersome than smoothing artefacts in these 

scenes. This is illustrated in  

, which shows the results for the ‘Formula’ image at a compression ratio of 

80:1. It is clear from this image that the ringing artefact is more evident in the 
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JPEG version. Text and numerical data would also be fixation points, therefore, 

artefacts in these areas would be expected to be more noticeable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Group 3: Preference for JPEG at low CR, preference for JPEG 2000 at high CR 

The next few groups of scenes produced more ambiguous results, shown in 

Figure 4.14 and Figure 4.15. The scene measures for groups 3-5 show no 

distinctive correlations in scene properties, which were in most cases average 

in their rankings [34]. 

Figure 4.14 indicates that perceived subjective quality is similar for both 

algorithms at low compression rates for this image group, with a slight 

preference for JPEG over JPEG 2000, but the reverse is true at higher 

compression rates. Scenes ‘ISO Fruit’ and ‘Louvre’ had a slightly smaller range 
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of quality loss range for JPEG 2000 compression than JPEG than the scene 

‘Bike’, meaning that there is less quality loss at higher JPEG 2000 compression 

rates. The results are very close for both algorithms, but the slight preference 

for JPEG at low levels of compression suggests that the sharpening effect from 

JPEG ringing artefacts might be preferable to the blurring caused by JPEG 2000. 

As compression is increased the perceived quality decreases and JPEG 2000 is 

preferred. At high compression rates blocking becomes more visible and 

ringing more severe. These scenes contain both flat areas and high 

frequencies; therefore the effects of either might be less preferable or more 

noticeable than the smoothing of JPEG 2000.  

 

 

 

 

Figure 4.15 Group 4: Preference for JPEG at lower compression levels 

The results for group 4 are unexpected. In both of these scenes, JPEG produces 

much better subjective quality than JPEG 2000 across most or all of the 

compression range. The curves (Figure 4.15) are extremely similar. The quality 

range for both compression algorithms is almost identical; however at 

compression ratios from 1:20 to 1:40, JPEG demonstrates improved quality 

over JPEG 2000. Both of these images contain large areas of fine and random 

detail. This detailed information is of one predominant colour in both scenes. 

Blocking, ringing and smoothing artefacts are present in the images produced 

by both algorithms; however the level of ringing is similar and may be 

discounted. Because there is so much fine detail within the scenes, the 

smoothing artefact is highly visible, however the blocking artefact is somewhat 

masked (Figure 4.16). 
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Figure 4.16 Compression ratio 40:1.Smoothing is clearly evident in the JPEG 2000 image 
(top), however the fine detail within the image appears to mask blocking artefacts 
produced by JPEG (bottom). 

The images in group 5 (Figure 4.17) produced extremely similar curves for 

both algorithms, although in ‘Chinatown’ there was a slight preference 

indicated for JPEG 2000, whereas JPEG seemed to be preferred for the ‘Boats’ 

image. The ‘ISO Table’ scene produced results that vary in preference for one 

algorithm or another across the scene. 
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Figure 4.17 Group 5 results: Quality loss results similar for both algorithms 

The images in group 5 might be considered to be ‘average’ scenes, average in 

all scene characteristics and producing very similar quality loss across the 

range, with no clear susceptibility to the artefacts of one compression 

algorithm or the other. These are the types of scenes that are often used in 

image quality studies while excluding the more susceptible scenes. 

The most unusual results are produced from the ‘African Tree’ image (Figure 

4.18).  

 

Figure 4.18 The ‘African Tree’ scene produces the most anomalous results, with JPEG 
being preferred to both the original and JPEG 2000 at low compression rates. 
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In this scene, the JPEG images at compression ratios 1:20 and 1:40 have higher 

quality than both the uncompressed original and JPEG 2000 versions. For the 

rest of the range, JPEG is preferred to JPEG 2000 and there is little quality loss 

from JPEG. 

This is the only image that has a positive quality scale value at JPEG 

compression of 80:1. Examining the scene characteristics, it is clear that this 

image is quite different to the other scenes, having low chroma, low contrast 

and virtually no fine detail. Significantly, the scene is an image of a tree in mist, 

and therefore contains soft edges. The blurring artefacts produced by JPEG 

2000 therefore represent a loss in image quality, whereas the slight 

sharpening produced by JPEG might be viewed as an improvement. This result 

is similar to the results from one image in Steingrimmson’s study, where JPEG 

was also preferred across the range [120]. 

Figure 4.19 shows the average interval scale across most scenes. The values for 

‘African tree’ have not been included, as they are so unusual compared to the 

rest of the images and cause a large increase in the standard deviation of the 

distribution. From these curves it is quite clear that JPEG 2000 outperforms 

JPEG across most of the range, with much more significant differences at high 

compression ratios. At lower compression ratios, the large standard deviations 

indicate a large spread of results and there seems much less of a performance 

advantage using JPEG 2000. JPEG was originally developed to be visually 

lossless at low compression rates and this perhaps indicates that both 

algorithms perform well at these lower levels of compression. 
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Figure 4.19 Average interval scales for all scenes, excluding African Tree 

PSNR provides a measure of the error within an image compared to the 

original. Because the images are all of a standard size, the values between 

different scenes are comparable. Interval scales provide a measure of image 

quality loss, across a range of compressed images compared to the original, but 

do not provide information about the relative perceived quality of different 

scenes, as their zero point is not fixed and absolute. For this reason, error 

measures can be a useful method for quantifying the effects of an algorithm 

across different scenes and may predict the types of scenes that will produce 

fewer artefacts when compressed.  

The results for the two algorithms, shown in Table 4.6, indicate higher PSNR, 

for JPEG 2000 compared to baseline JPEG across all scenes at all compression 

rates, apart from the two highest compression rates for the ‘African Tree’ 

image. This confirms the results from previous similar investigations 

[96,121,117,11,93,118] indicating that JPEG 2000 has better error resilience 

than JPEG. Figure 4.20 shows the average PSNR results across all scenes except 

‘African Tree’, which was again removed due to results anomalous with the 

remaining images. The average results for both subjective and objective 

evaluations confirm that JPEG 2000 outperforms JPEG; however, PSNR does 
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not predict the scene dependency influencing the perceptual results. This 

confirms the assertion that PSNR and associated error measures are limited in 

their value as a tool in image quality studies. 

PSNR (db) 

Compression Ratio   20:1 40:1 60:1 80:1 

AFRICAN TREE JPEG   44.0 42.3 41.4 40.6 

  JPEG 2000  45.5 42.2 41 40.2 

BIKE JPEG   28.1 25.4 23.9 22.8 

  JPEG 2000  30.1 26.5 24.6 23.6 

BOATS JPEG   31.8 28.4 26.9 25.7 

  JPEG 2000  34.2 30 28 26.6 

ISO CAFETERIA JPEG   23.8 21.2 19.8 18.8 

  JPEG 2000  25.4 21.9 20.4 19.5 

CHINATOWN JPEG   32.5 29.1 27.3 26 

  JPEG 2000  35 30.5 28.2 26.6 

FORMULA JPEG   32.6 28.5 26.8 25.6 

  JPEG 2000  36.7 31.1 28.3 26.6 

ISO FRUITS JPEG   32 29.2 27.7 26.5 

  JPEG 2000  34.8 30.8 28.8 27.3 

GLASSES JPEG   36.5 32.9 30.6 29.1 

  JPEG 2000  38.7 35.1 32.8 31.3 

KIDS JPEG   34.9 30.9 28.8 27.1 

  JPEG 2000  38.3 33.3 30.8 28.8 

LENA JPEG   38.7 34.3 32.1 30.2 

  JPEG 2000  41.7 37 34.4 32.3 

LOUVRE JPEG   32.2 29.4 27.7 26.8 

  JPEG 2000  34.7 30.6 28.4 27.4 

MOTORACE JPEG   25.3 22.5 21 19.8 

  JPEG 2000  27.5 23.6 21.8 20.6 

SAULES JPEG   25.4 23.4 22.4 21.9 

  JPEG 2000  26.8 24 22.8 22.1 

ISO TABLE JPEG   32.3 28.3 26.2 24.9 

  JPEG 2000  35.5 30.2 27.5 25.6 

LEOPARD JPEG   32 28.8 27.3 26.4 

  JPEG 2000  34.8 30.8 28.9 27.8 

YELLOW FLOWERS JPEG   30.6 27.6 26.3 25.2 

  JPEG 2000   34.4 30.1 28.1 26.5 

Table 4.6 PSNR ratio results 
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Figure 4.20 Average PSNR results for most scenes 

Finally, PSNR results do not correlate with the conclusion from the subjective 

investigation that in some scenes, JPEG results are preferred to either JPEG 

2000 or to the original. Error measures may be considered to in some way 

quantify the scene dependency of the algorithm, but as there are a number of 

other influencing factors, they cannot predict the perceived image quality 

results. 

4.8 Summary 

This chapter describes a psychophysical experiment to evaluate the image 

quality of the baseline JPEG algorithm against lossy compressed JPEG 2000 and 

original undistorted TIFF images, producing interval scales of the results. The 

results showed a small preference for JPEG 2000 over JPEG for most scenes. 

Examination of individual scene results demonstrated clear scene 

susceptibilities for each algorithm. An associated piece of work by 

Triantaphillidou et al [34] explored scene characteristics and some initial 

groupings were made based upon common behaviour of the two algorithms 

with particular images (for example where one algorithm proved to be 

significantly better than the other across the entire compression range). 

Correlations were identified between particular types of scene content and 

quality loss as a result of compression, particularly in relation to scene 
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busyness. A further investigation explored perceptibility thresholds in a pilot 

study using JPEG 2000 compression only.  

 

The results from the scene metrics were useful in that they demonstrated the 

potential to identify and predict scene susceptibilities in groups of images in 

relation to a particular distortion or algorithm with a relatively simple 

combination of scene descriptors. The results prompted the work in chapter 5, 

with a larger scale experiment, using a set of high quality and high-resolution 

test images. The work from this chapter has been presented at conferences and 

has also been published in a two-part paper (see chapter 10).
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5 JPEG 2000 Thresholds 

5.1 Perceptibility and Acceptability Thresholds 

Chapter 4 explored the influence of scene content upon image quality and its 

importance in understanding the comparative performance of compression 

schemes. The next two chapters examine the image quality of JPEG 2000 in 

more detail in two psychophysical experiments; in this chapter an 

investigation into thresholds of perceptibility of distortion (image fidelity) and 

acceptability of the distortion (which is a suprathreshold judgement). The next 

chapter describes the implementation of ISO 20462 part 3: Quality Ruler 

Method [85] using the same set of sample stimuli.  

Image fidelity studies are an important aspect of image quality evaluation for 

lossy processes, allowing the determination of the perceptibility of artifacts 

introduced into the image [145,41]. The absolute threshold in a psychophysical 

study of perceptibility is sometimes termed the point of subjective equality 

(PSE) [146]. This is the amount of a physical stimulus or image parameter that 

produces a response in 50% of observers when asked whether they can detect 

a difference between two images. The visual difference threshold is the point 

that is one JND from the absolute threshold, and is normally taken to be 

corresponding to a response from 75% of observers [84].  

As explored in chapter 3, image compression processes are scene dependent in 

various ways. The artefacts from JPEG 2000 are very specific, and are localised, 

affecting, and being visible in, some parts of the image more than others. 

Chapter 4 illustrated that there is no clear quality preference between baseline 

JPEG and JPEG 2000 across all images, which may be partly as a result of the 

differences in the distortions introduced by the two algorithms. There will 

always be some scenes that will be more robust and suffer less from distortion 

when compressed with a particular algorithm, and neglecting this in image 

quality evaluation may give an incomplete picture of predicted performance.  
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Psychophysical studies of thresholds and JNDs of distortion, contribute to the 

development of guidelines around the use of image processes for imaging 

applications where fidelity may be critical (such as forensic and medical 

imaging [147] [148]), as well as providing reference data against which image 

quality metrics may be benchmarked. For less specialised imaging 

applications, image fidelity is not always a requirement and the acceptability of 

image degradations in a given context is also useful. Image fidelity studies 

involve observer judgements about perceptibility thresholds and just 

noticeable differences (JNDs) beyond the threshold. Judgements of 

acceptability are exclusively suprathreshold and are concerned with image 

quality; in this case distortions are visible, but may or may not be bothersome 

to the observer.  

 

 

 

 

 

 

 

 

  

Figure 5.1 An example of an image at the perceptibility threshold (left) and the 
acceptability threshold (right) from [149] 

Figure 5.1 shows an example of an image at its perceptibility and acceptability 

thresholds for JPEG 2000. The left hand image is the one in which most 

observers can detect a difference from the original (errors can be seen under 

close examination in the textured background and ringing around the edge of 
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the man’s arm). For this scene, the perceptibility threshold is low, at a CR of 

approximately 14:1. The image on the right is compressed to a level at which 

75% of observers deem it to be unacceptable (for this image at around a CR of 

22:1). In this image the distortions are more obvious and affect a larger area of 

the background, also ringing artifacts are beginning to affect the area behind 

the seagull, which is a focal point in the image, so they become more 

bothersome. From these results it can be assumed that for this scene, for 

compression ratios of between 14:1 and 22:1, distortions will be evident, but 

the image quality will be acceptable for most observers.  

The problems caused by scene dependency affecting image quality evaluations 

raise the following questions pertinent to this investigation: 

 What aspects of scene content affect the perceptibility and acceptability of 

JPEG 2000 distortions? 

 Do scene characteristics affect fidelity and acceptability in the same 

manner? 

 How does scene content affect the relationship between the perceptibility 

and acceptability thresholds? 

 

It would seem that the susceptibility of scenes to particular distortions would 

be key to understanding the effects of scene dependency on thresholds. The 

interactions of the algorithms with scene properties and the visibility 

characteristics of the distortions (the way in which they are masked or 

emphasised by scene content) will determine the impact of the distortions.  

In the case of acceptability, the observers’ preference criteria must play a 

fundamental role in the decision as to what point a distortion becomes 

unacceptable. This of course relates to the imaging context and the relative 

specialism of the observer group. For example, the preference criteria of 

forensic specialists looking at fingerprint images will focus on the specific 

scene characteristics important to the extraction of key fingerprint features. In 

this case, variation in imaging conditions, scene content and resulting image 

characteristics will be restricted. In more general applications of imaging, 
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preference criteria will be affected by variation in characteristics that make a 

scene more or less ‘pleasing’.  

The images used in this investigation were captured purposefully to represent 

a range of scene content to allow further investigation of the scene dependency 

of the algorithm. This chapter includes a description of image acquisition and 

the image-processing pipeline used to prepare the images for the 

psychophysical investigation. Characterisation of the devices and workflow 

relevant to the experimental work is also detailed, and the process of scene 

classification using simple scene metrics [34] introduced in chapter 4, has been 

developed and employed in the selection and classification of the final set of 

test images. 

Images were compressed using JPEG 2000 to a range of compression ratios, 

progressively introducing distortion to levels beyond the threshold of 

detection. Twelve observers took part in a paired comparison experiment to 

evaluate the perceptibility threshold compression ratio.  A further 

psychophysical experiment was conducted using the same scenes, compressed 

to higher compression ratios, to identify the level of compression at which the 

images became visually unacceptable. Images were ranked for the two 

thresholds and were further grouped, based upon the relationships between 

perceptibility and acceptability. Scene content and the results from the scene 

descriptors were examined within the groups to determine the influence of 

specific common scene characteristics upon both thresholds. 

5.2 Image Acquisition and Processing 

The images used in chapter 4 were from a number of different sources, 

including some ISO images, and a number of images from a Kodak photo CD™. 

The capture systems were therefore unavailable and not characterised. The 

images were also of rather low digital resolution.  

 It was decided to investigate the performance of JPEG 2000 on images 

captured at higher digital resolution, using a contemporary professional level 

digital single-lens reflex camera, for display on a high-resolution monitor. It 
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was also considered essential to be able to investigate the performance of the 

image capture system, and subsequent image processes prior to compression.  

Therefore the images used for the remainder of the experimental work in this 

research have all been captured on the same system by the author, with 

workflow carefully controlled and with due consideration to scene content to 

allow exploration of the scene dependency of the JPEG 2000 algorithm. 

The focus during the preparation of the sample image set was to obtain images 

of optimal quality prior to compression. The selection of a RAW workflow, 

good exposure, use of a high quality lens, and maintaining native resolution 

and high bit-depth until late in the image processing pipeline were decisions 

made with image quality in mind. The aim was to minimise unwanted 

distortions introduced by other image processes where possible. The images 

were selected to encompass a range of scene content, allowing investigation 

into the scene dependency of the algorithm. Different scene types were 

included in the test set, providing good variation in scene characteristics, and 

captured under a range of different lighting conditions typically encountered in 

consumer photography.   

5.2.1 Image Acquisition 

An original sample set of 44 images was captured in raw file format (.cr2) 

using a Canon EOS 5D mkII D-SLR camera, which has a full frame sensor with 

resolution of 21Mp (5616 x 3744 pixels), and a Canon EF 24-70mm L II USM 

lens. Use of the raw file format enabled careful control of the image-processing 

pipeline prior to image compression.  The images were captured using a range 

of focal lengths and apertures to provide variation in scene content and types 

of images. The image capture settings are summarised in Table 5.1. 
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Camera Canon EOS 5D MkII 

Lens Canon EF 24-70mm L II USM 

Pixel resolution 5616 x 3744 

ISO 200-3200 

Focal length 24-70mm 

Aperture f2.8-f22 

File format Canon Camera Raw (CR2) 

Processed colour space 
and bit depth 

sRGB, 16 bits per channel 

Table 5.1 Initial image capture of test images. Images were captured using a range of focal 
lengths and apertures, although not all were used in the final selected test set. 

5.2.2 Image Processing 

The images were processed in an sRGB viewing environment, on the same 

calibrated display that was used later in the psychophysical investigation. The 

steps in the processing pipeline were based on a typical camera processing 

pipeline, but using linear rather than adaptive processing methods.  

Using an external raw processing pipeline (Adobe CS 5.1 Camera Raw), the 

images were optimized scene-by-scene to correct exposure and white balance. 

A standard medium contrast tone curve was applied. Colour noise reduction 

was applied using the filter in the raw processor, with sRGB as output color 

space and the images were down-sampled to the minimum size possible in the 

raw processor (from 5616 x 3744 pixels to 1536 x 1024 pixels for uncropped 

images).  

The raw workflow is shown in the top row of Figure 5.2. Initial demosaicing 

was carried out using the colorimetric interpretation from the camera profile, 

which produced an image in a linear camera RGB space [150]. The image was 

previewed on screen in Camera Raw. The preview process is similar to that 

used in soft-proofing: the camera profile is the source profile and the 

destination profile a user selected output profile, selected from four Adobe 

workspace options: Adobe RGB 1998, sRGB, ProPhoto RGB, Colormatch RGB, 

which are standard (calibrated) RGB colour spaces [151]; used with the 

display profile to correctly display the image. White balancing was achieved by 
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adjusting two sliders. In Adobe Camera Raw, these ‘blend’ two colorimetric 

interpretations [150] for the camera from two profiles, each for a different 

white point (D65 and standard illuminant A). The resulting image was now in a 

large linear gamut colour space for processing, which has the same primaries 

and white point as Pro-Photo RGB (also known as Reference Output Medium 

Metric RGB (ROMM RGB)). 

 

Figure 5.2: Image processing pipeline for raw images captured using Canon EOS 5d MkII 
and processed using Adobe Camera RAW and Adobe Photoshop. Adapted from [88] 

After raw processing, the rendered images were opened in Adobe Photoshop 

CS 5 version 12.1 X64. Further downsampling was applied (using bi-cubic 

interpolation) to optimize for the psychophysical display, with final image 

sizes of approximately 588 x 882 (some images were cropped to slightly 

different dimensions). The bit depth was reduced from 16- to 8-bits and a final 

sharpening stage was applied using an unsharp mask. The unsharp mask was 

applied to the lightness channel only in CIELAB space, before converting back 
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to RGB; the images were then saved as uncompressed TIFF files. Figure 5.3 

shows one of the final images after initial raw rendering and in its final 

processed state, which is much closer to the JPEG rendered image captured by 

the camera (all images were captured as RAW and JPEG).  

 

 

 

 

 

 

 

Figure 5.3: ‘Lamp’ image. The image on the left is as previewed with default rendering in 
the RAW processor prior to optimisation. With a linear tone curve and no exposure 
correction, the image is dark and desaturated. The image on the right is processed using 
the image-processing pipeline shown in Figure 5.2. 

5.3 Characterisation of Devices and Workflow 

5.3.1 Camera-Lens System Tone Reproduction 

 The opto-electronic conversion function (OECF) for the camera and lens 

system was measured according to ISO 14524 (2009) [152]. The 

measurements were taken prior to compression, because the image processing 

prior to compression was most likely to affect tone reproduction; and because 

an accurate estimation of the camera OECF was required for linearisation of 

images prior to calculating the system MTF, a necessary stage of the Soft-Copy 

Quality Ruler methodology described in chapter 6. The camera OECF is defined 

in ISO 14254 [152] as the: ‘relationship between the input scene log 

luminances and the digital output levels for an opto-electronic digital image 

capture system’ 
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The standard defines target characteristics, illumination, and a number of 

different methods for determining the OECF of a camera system. These include 

two methods (one with and one without the lens) for determining the focal 

plane OECF in terms of focal plane log exposure; and a further method, for 

determining full camera system OECF, in which a test target is captured under 

controlled conditions, and the independent input variable is scene log 

luminance. Because the OECF was to be used to linearise the images to 

determine the system SFR after image processing, the second method was 

chosen, producing the full camera OECF. The test chart used was the SFR plus 

test target, illustrated in Figure 5.4, which has a central area containing 20 

neutral patches which are differentiated in approximate 0.1 increments. 

The chart reflection densities were measured using a Macbeth TR924 

densitometer, with three readings taken from the centre of each patch and 

averaged, resulting the densities illustrated in Figure 5.4(c). The chart 

densities were converted into log luminances using: 

 Li =
10−𝐷𝑖𝐸

𝜋
 (5.1) 

Where 𝐷𝑖  is the grey scale patch density, and E is the illuminance incident on 

the chart in lux. 

  

 

 

 

 

 

Figure 5.4: (a) Test target used for camera system OECF determination (cropped image) 
(b), area used for density measurements (c) density measurements corresponding to 
patch arrangement. 

The chart was displayed vertically with its surface normal to the optical axis of 

the camera, and was illuminated using two tungsten lights positioned at an 

 0.81 1.56 1.73 0.91 

1.45 0.53 0.07 1 
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angle of approximately 45° to the target to provide even illumination. The 

illuminance incident upon the chart was measured using a Minolta 

Chromameter CL200 at the chart surface, at the position of the grey scale, and 

at 8 locations around it, on the slanted squares and the sinusoidal star directly 

adjacent. The measurements are shown in Table 5.2 and indicate that both 

illuminance and colour temperature were within 2% of the mean, with mean 

values of 866.3 lux and 2678.7 Kelvin.  

 Position Illuminance (lux)  CT (Kelvin) 

1 875 2680 

2 871 2681 
3 869 2678 

4 864 2674 
5 871 2681 
6 871 2681 
7 858 2679 
8 861 2678 
9 857 2676 

Mean 866.3 2678.7 

Table 5.2 Measured illuminance and colour temperature across the surface of the chart 

The mean illuminance was used in equation (5.1) to generate input log 

luminance values from the measured chart densities. 

The test target was photographed at a target-to-camera distance of 203cm. 

Nine images were captured at a speed of 160 ISO, focal length 70mm, f2.8 and 

1/40 second shutter speed. The images were processed in Adobe Lightroom 3. 

All tone adjustment settings were set to zero, and the tone curve was set to 

linear. Noise removal and sharpening were turned off, and a lens correction 

was applied. The white balance was set manually to 2679 kelvin. The images 

were saved as 16 bit TIFF files with an sRGB colour profile. 

A 51 x 51 pixel area was selected from each patch on the greyscale and using 

the region-of-interest manager in Image J, the mean pixel values recorded for 

each patch in all nine images, and the results averaged. The results are shown 

in Figure 5.5 and Figure 5.6.  
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Figure 5.5: Opto-electronic Transfer Function for Canon EOS 5d MkII and Canon EF 24-
70mm L II USM plotted in linear units, for minimally processed image (linear tone curve, 
16-bit, sRGB rendering, TIFF from raw file) 

 

Figure 5.6: Opto-electronic Transfer Function for Canon EOS 5d MkII and Canon EF 24-
70mm L II USM plotted in log10 units, for minimally processed image (linear tone curve, 16-
bit, sRGB,rendering, TIFF from raw file) 

5.3.2 Camera-System-Image Processing Pipeline: Tone Reproduction 

The tone reproduction functions in the previous section characterise the OECF 

of the camera-lens systems with linear output and minimal processing of the 

RAW files.  The image-processing pipeline described earlier, aimed to optimise 

the images perceptually, as well as down-sampling the images in preparation 
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to be displayed on screen in the psychophysical tests. As illustrated in Figure 

5.3, if the test images had been presented to observers with linear tonal 

adjustment from the raw files as described they would have appeared rather 

flat in terms of contrast, and too dark. The images also needed to be down 

sized to fit on the screen, which involved several stages of interpolation, and 

they required some colour noise reduction and sharpening to counteract the 

many sources of blurring (as a result of multiple interpolations, and the anti-

aliasing filter over the sensor).  

It should be noted that the image processing was kept to a minimum and the 

processes applied are similar to those that would be applied automatically in a 

rendered camera workflow if the images were being output in a fully rendered 

format (for example as JPEG files) [116]. The impact of these processes 

affected the image attributes in various ways, in particular introducing non-

linearities into the tone characteristics. Therefore the same test images 

captured and detailed in section 5.3.1, were further processed using the same 

image-processing pipeline as the sample set of images to measure the effect of 

the processing on the OECF. The only significant difference was in the amount 

of optimisation required in terms of exposure, because the exposure of the test 

targets had been carefully controlled in the laboratory. The same procedure 

was used for generating the OECF. Because the images were significantly 

smaller than the full resolution version, and the grey scale test area was a small 

part of the image, the selected areas from each patch were only 6x6 pixels, to 

ensure that patch edges were not included in the calculation. 
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Figure 5.7: Opto-electronic Transfer Function for Canon EOS 5d MkII and Canon EF 24-
70mm L II USM plotted in linear units, using the image-processing pipeline that was used 
to render final psychophysical test images (medium contrast tone curve, 8-bit, sRGB 
rendering, down-sampled, noise reduction, sharpened, TIFF image) 

 

Figure 5.8: Opto-electronic Transfer Function for Canon EOS 5d MkII and Canon EF 24-
70mm L II USM plotted in log10 units, using the image-processing pipeline that was used to 
render final psychophysical test images (medium contrast tone curve, 8-bit, sRGB 
rendering, down-sampled, noise reduction, sharpened, TIFF image) 

The gamma values for the curves were obtained as before and are shown in 

Table 5.3. 
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5.3.3 Comparison of camera OECF before and after processing 

 

 

 

 

 

 

 

Figure 5.9 Visual comparison of one of the images used in the OECF measurements 
processed linearly before applying the image-processing pipeline (left hand side) and non-
linearly after the image-processing pipeline (left hand side). Note that the images have 
been compressed for this document. 

Table 5.3 shows the effective gamma values for the red, green and blue 

channels and the R2 coefficients of the functions fitted to the data, for the test 

images before and after the image-processing pipeline. 

 Full resolution, linear tone 
reproduction 

Fully processed, down-sampled 
image 

Colour Channel Gamma (γ)  R2 Gamma (γ) R2 

Red 0.4049 0.9993 0.5004 0.99627 

Green 0.4171 0.9997 0.5192 0.99777 

Blue 0.3974 0.9996 0.4892 0.99787 

Table 5.3: Derived gamma values for the RGB channel responses for target image before 
and after processingFigure 5.9 illustrates the difference in appearance of the test images 
before and after the image-processing pipeline was applied. 

It can be seen from the graphs of the functions that the three colour channels 

are fairly consistent in their tone reproduction, but that the normalised 

responses do not perfectly match across the three channels, with a relative 

increase in the response in the red channel at higher luminances, which is most 

pronounced above a normalised luminance of 0.5, and a lower relative 

response in the green channel at lower values, which is a reflection upon the 

increased gamma value in the green channel, and therefore slightly higher 
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dynamic range. This deviation is more evident after processing than before and 

can be seen particularly in Figure 5.8. The R2 values are lower for the data 

produced after processing, indicating that the functions used to calculate 

gamma values did not fit the data as well as they did on the linearly processed 

images. 

 

Figure 5.10 Camera OECF for combined RGB channels before and after processing 
expressed in linear units. Dashed lines indicate power function trend lines fitted to the 
data 

The combined transfer function for the three colour channel responses before 

and after the image-processing pipeline was taken by averaging (equally 

weighting) the RGB values for each patch. The results are plotted in linear 

units in Figure 5.10, with dashed lines (blue for full resolution before 

processing, green for after processing) indicating the trend lines used to fit 

each data set. The gamma value for the combined channels prior to processing 

was 0.4064, with an R2 value of 0.99927; after processing the gamma value 

was 0.5027 with an R2 value of 0.99747. The difference in R2 values is 

seemingly small (0.00228), however the trend lines in Figure 5.10 are 

interesting. The trend line for the data before image processing (blue dashed 

line) is consistent with the plotted data across the whole dataset, however the 

trend line for the data after image processing (green dashed line) appears to fit 
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the data reasonably well at low luminance values, but deviates quite 

significantly from the data from 0.2. This is not unexpected, as some non-

linearities have been introduced by the processing. The medium contrast tone 

curve applied to the images in the raw processor for example, was s-shaped 

(see Figure 5.11), with some tonal compression at very low luminances and 

very high luminances and tonal expansion in the centre of the range. The shape 

of the OECF of the processed images corresponds to this, with an increased 

dynamic range between 0.1 and 0.5 normalised luminance, compared to that of 

the linear processed response. Because there are a greater number of 

measurement points in the lower part of the response (in linear units, because 

the target contained patches spaced in approximately equal logarithmic units), 

the trend-line fits well to this data, and less well to the sparsely populated 

higher values. 

 

Figure 5.11: Medium contrast tone curve applied to images in image processing pipeline. 
This was the only tone correction applied to images of grey scale patches for calculation of 
OECF 

The overall difference before and after processing is better illustrated in the 

log-log graph in Figure 5.12. The function produced from the image after 

processing is much steeper, indicating higher contrast, as expected from the 

higher gamma value, and it can be seen that a single linear function does not fit 

the data well (again indicated by blue and green dashed lines). 
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Figure 5.12: Camera OECF for combined RGB channels before and after processing 
expressed in log10 units 

5.3.4 Display Characterisation 

Another PhD student within the department characterised the display in 

accordance with BS EN 61966 part 4: Equipment Using Liquid Crystal Display 

Panels [153] [89]. The author assisted with measurements for the OECF, which 

are detailed in the next section, and the results from the remaining 

measurements in relation to the standard are included in Appendix B. The 

measurement of the SFR of the display is detailed in chapter 6. 

The measurement and calibration of the display device was carried out under 

controlled conditions in accordance with BS EN 61966:4-2000 [153], as shown 

in Table 5.4. 
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Devices 

Display: 

PC: 

Calibrator: 

Colorimeter: 

EIZO CG245W 21.4” 

Dell Optiplex 760 with an ATI Radeon HD 3450 graphics card 

GretagMacbeth i1Pro display calibrator & Built-in calibration sensor 

Konica-Minolta CS-200 tele-chromameter  

Environmental Conditions 

Temperature: 

Relative Humidity 

Illumination: 

Warm up time: 

Object distance: 

20 degrees celcius 

N/A 

Total darkness 

1 hour 

150 cm (Effective screen height: 32.4 cm, width: 51.84cm)  
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Table 5.4: Devices and environmental conditions used in display characterisation 

A series of uniform patches of pixel values, with values as defined in [153] 

were displayed in the centre of the screen, and measurements taken using the 

Kodak-Minolta CS-200, placed parallel to the screen, at a distance of 150 cm, 

set with a 0.2° field of view.  

Measurements were taken from four sets of 32 generated uniform patches, one 

set for each colour channel (in which only that channel was on, and the other 

two channels were set to zero), and one set of neutral patches (equal values in 

all three channels). The patches spanned a range of values from 8-255 in 

increments of 8. Each patch was 240 x 240 pixels. 

Three measurements of luminance and tristimulus values for each patch were 

taken, and the results were averaged for each. The normalised luminance 

values are plotted against normalised input pixel values for the red, green and 

blue colour channels in Figure 5.13. 

 

Figure 5.13 Tone reproduction characteristics of EIZO CG245W, plotted in linear units 

The measurements taken from the neutral patches are plotted in Figure 5.14. 

The display gamma value (𝛾𝑑𝑖𝑠𝑝𝑙𝑎𝑦= 2.1849) was obtained from this curve, with 

a power function fitted to pixel values of 48 and above (normalised to 0.188). 

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.00 0.20 0.40 0.60 0.80 1.00

N
o

rm
a

li
se

d
 l

u
m

in
a

n
ce

Normalised pixel value

red

green

blue



 171 

 

Figure 5.14 Tone reproduction characteristics of EIZO CG245W, measured from neutral 
displayed patches, plotted in linear units 

5.4 Psychophysical Experiment 

5.4.1 Quantification of Scene Characteristics 

An aim of this experimental work was the exploration of the relationship 

between scene characteristics and thresholds. Based upon previous work by 

Triantaphillidou et al [34] and Hoon et al [35], a series of scene metrics were 

selected to classify the scenes and seek correlations with the results from the 

psychophysical experiment. 

The optimized images were converted to CIELAB for scene analysis. A range of 

simple image analysis tools were used [7], to evaluate and rank selected scene 

characteristics in the test images and provide relevant visual scene descriptors 

(i.e. metrics used to quantify each scene characteristic). These included: 

First-order statistical measures (median md, variance V, and skewness s); 

derived from the probability density function (PDF) of the L* channel [154]: 

 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝑉 =  ∑ 𝑃(𝑎)(𝑎 − �̅�)2

𝐿−1

𝑎=1

        (5.2) [154] 

y = 1.0082x2.1849

R² = 0.9999
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Where a is a particular pixel value, 𝑃(𝑎) is the probability of a pixel taking 

value a (estimated from the normalised histogram), L is the number of levels in 

the channel, and �̅� is the mean pixel value. 

 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝑠 =  
1

𝜎𝑎
3

∑ 𝑃(𝑎)(𝑎 − �̅�)3

𝐿−1

𝑎=1

        (5.3) [154] 

A busyness metric developed by Triantaphillidou [34], involving the 

following steps, reproduced here for completeness: 

(i) The L* channel of the image was filtered with horizontal and vertical 

Sobel filter masks and a threshold of 0.04. 

(ii) The resulting gradient image was thresholded and dilated with a 

line shaped structuring element of length three pixels in horizontal 

and vertical directions. This filled gaps in the detected edges and 

amplified the ‘busy’ areas (detected edges). 

(iii) A flood filling operation was applied to fill in ‘holes’ in the identified 

busy regions. 

(iv) The result was eroded using a diamond shaped structuring element 

to eliminate noisy pixels. 

The stages of the metric were implemented in MATLAB [155] and are 

illustrated in Figure 4.9. The output of the metric was a ratio of detailed areas 

to overall image area. 

Chroma variance VC*ab, the variance of CIELAB C*ab ; derived from the a* and 

b* channels. 

These measures allowed the images to be broadly classified according to their 

overall lightness (md, s), global contrast (V), spatial content / amount of detail 

(busyness metric, b) and colour contrast (VC*ab,). Histogram skewness was 

included as a measure of global scene lightness, because as well as correlating 

with median values, it indicates a predominance of light or dark tones within 

the image (i.e. the ‘key’ of the scene). 
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5.4.2 Scene Selection 

The original set of 44 images was ranked according to each of the scene 

descriptors and the final set of images selected as follows:  

(i) The mean value for the scene descriptor was determined.  

(ii) Images were classified according to whether they fell into the 

average category for the selected scene characteristic, the greater 

than or less than average categories (based upon distance from 

mean) 

(iii) Scenes for were selected to ensure that all from all five scene 

descriptors were represented. 

The final set consisted of 25 images, which can be seen in Appendix A. Figure 

5.15 illustrates the categorisation of images for md and s descriptors, in this 

case with additional categories for very low and very high descriptor values. 

 

 

Median (md) 

Skewness (s) 

     

Category Extremely 
high 

Higher than 
average 

Average Lower than 
average 

Extremely Low 

Range of scene 
descriptor 

x>μ + 1σ x<μ+1σ  

x>μ + 0.5σ 

x<μ + 0.5σ  

x>μ -0.5σ 

x<μ -0.5σ 

x>μ -1σ 

x<μ -1σ 

Figure 5.15 Classification of scenes into five categories for md and s and category bounds 
for the scene descriptors 
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Figure 5.16 Examples of scenes from the three classes (less than average, average, greater 
than average) for the five scene characteristics. Images are (left to right, top to bottom), 
Lilies, Kids, Afternoon Tea, Cliffs, Lamp, Emporium, Huddle, Players Navy, Flower Garden. 

5.4.3 Image Compression 

The processed sRGB TIFF files were compressed as JPEG 2000 files in the 

MATLAB environment. Default settings were used for the compression 

parameters (i.e. lossy compression, single quality layer, tile size equal to image 

size) and the images were compressed to a set of defined compression ratios 

(CR).  

A study by the author in 2004 evaluated thresholds of perceptibility for the 

image set used in the investigation in the previous chapter [156]. Compression 

ratios for all but one of the images were found to fall in the range from 10:1 to 

35:1. Therefore the selected compression ratios for this perceptibility test 
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were 5, 10, 15, 20, 25, 30 and 40. An additional pilot test using two observers 

was carried out to ensure that the range was suitable under the current 

experimental conditions. Results indicated that three images (‘Afternoon Tea’, 

‘Fred’ and ‘Bride’) had potentially high perceptibility thresholds, and therefore 

their range was extended up to a CR of 60:1. The sample set consisted of 190 

images in total.   

The acceptability test, being a suprathreshold evaluation, required a larger 

range of compression. The images were inspected at a range of higher CRs and 

70:1 was established as a rate at which most images became unacceptable. The 

images were therefore further compressed to the following compression 

ratios: 45, 50, 55, 60, 65, and 70, resulting in a total of 150 images.  The 

acceptability test for an individual observer consisted of all images in which 

the observer had noted a difference during the perceptibility test, in addition 

to the 150 images at higher compression ratios. 

5.4.4 Psychophysical Display and Viewing Conditions 

The display used for the investigation of thresholds (this chapter) and the Soft 

Copy Quality Ruler experiment (chapter 6) was calibrated every day during the 

period of the test to the sRGB standard, BS EN 61966 part 2-1: Colour 

Management – Default RGB Colour Space - sRGB [137].  

The viewing environment was calibrated to closely match the specification in 

BS ISO 3644:2009, [157] section 4.5, with neutral surround, elimination of 

strong environmental colours and veiling glare, an ambient colour 

temperature of 5000K and an ambient illuminance of 64 lux, measured on a 

Minolta Chromameter CL200. 

5.4.5 Paired Comparison Test 

Perceptibility and acceptability thresholds were evaluated through a two-part 

paired comparison test. The test interface was developed using MATLAB. The 

test images were displayed side-by-side, one compressed and the other an 

uncompressed original. The images were presented in a random sequence and 

the original and compressed versions were randomized in their presentation 
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on the left or right of the screen. The effective screen size was 518.4 mm wide 

by 324.0 mm; each image took up approximately 45% of the half-screen area 

on a mid-grey background. Image size was selected to ensure that there would 

be no interpolation when they were displayed. The viewing distance was fixed 

at 60cm, giving an angle of subtense of 22.450 degrees of arc (0.392 radians). 

The time to view the images was unrestricted, the observer controlling when 

they would move on to the next image using a push button. 

The perceptibility test was performed first and based upon the threshold 

identified by the observer, the set of images to be used for the acceptability test 

were identified. Any images in the set that were above the perceptibility 

threshold were then presented to the observer in the acceptability experiment. 

This meant that observers had different sets of compressed images for the 

acceptability experiment, tailored to their sensitivity level. 

Twelve experienced observers carried out the perceptibility test, and eleven of 

them completed the acceptability test. All had normal, or corrected vision. 

In the first section of the test, observers were asked to provide a ‘yes’ or ‘no’ 

answer, to the question of whether they could perceive a difference between 

the two displayed images of the same scene. Observers were given the 

opportunity to take a break between the perceptibility and acceptability tests 

and were asked to stop if they felt tired. In the second half of the test, 

observers were asked whether they found the compressed image acceptable 

when compared to the original.  

The PSE is defined as the statistical point at which observers perceive two 

images to be equal. Here the PSE corresponded to the compression rate at 

which 50% of the observers responded ‘yes’ to perceiving a difference 

between the two images. Corresponding to this, the absolute acceptability 

threshold is the point at which 50% of the observers find the images 

unacceptable (i.e. respond ‘no’ to the question ‘Do you find the image 

acceptable.’).  
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5.5 Determination of Thresholds 

5.5.1 Functional Form of the Psychometric Curve 

When dealing with a small number of observers, as is often the case in 

psychophysical tests, it can be difficult to generate a smooth psychometric 

function from the data. Therefore a functional form for the psychometric curve 

is hypothesized and this is fitted to the data. A detailed treatment can be found 

in [158], but key steps are summarised here. 

The probability of a sample being judged to have more of a ness than a 

reference is assumed to be a linear function of the form [158]: 

 𝑃𝑗𝑠 = 𝐹(𝛼 𝑠 + 𝛽𝑠𝑥𝑗𝑠 )    (5.4) [154] 

Where j is the sample, s is the standard 𝑃𝑗𝑠  is the probability of j being 

preferred over s, and 𝑥𝑗𝑠is the stimulus level (in this case compression rate) 

corresponding to 𝑃𝑗𝑠  on the psychometric function. F is the function used to 

model the psychometric curve. Various functions can be used for F; the 

Gaussian model and the logistic model (applied here) are two that are widely 

used. The parameters of the function 𝛼 𝑠 and 𝛽𝑠 can be determined and then 

used to estimate thresholds. 

The logistic function is defined as: 

 𝑃𝑗𝑠 =
1

1 + 𝑒−(𝛼 𝑠+𝛽𝑠𝑥𝑗𝑠)
   (5.5) [154] 

And: 

 ln (
𝑃𝑗𝑠

1 − 𝑃𝑗𝑠
) = 𝛼 𝑠 + 𝛽𝑠𝑥𝑗𝑠   (5.6) [154] 

The proportions of responses were used to generate estimated psychometric 

curves using the Palamedes MATLAB® Toolbox [159] using the logistic 

function. 
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The psychometric curves directly related the proportion of observers’ 

responses to the original compression ratio and were used to evaluate various 

points of interest: the point of subjective equality (PSE), or absolute threshold, 

defined as the 0.5 proportion point; the just-noticeable-difference (JND) 

(defined by convention as the stimulus increment between the PSE and the 

0.75 proportion); and the detection threshold, defined here as the 0.75 

proportion point. 

The PSE is defined as the statistical point at which observers perceive two 

images to be equal [146,160]. Here the PSE corresponded to the compression 

rate at which 50% of the observers responded ‘yes’ to perceiving a difference 

between the two images. Corresponding to this, the absolute acceptability 

threshold was the point at which 50% of the observers find the images 

unacceptable (i.e. responded ‘no’ to the question ‘Do you find the image 

acceptable.’).  

The compression ratio identified at the 0.75 proportion was the point at which 

75% of observers could either perceive a difference between the two images, 

or found the differences unacceptable; in this study it is this value that is 

referred to as the threshold of perceptibility/acceptability. 

5.5.2  Error estimation and goodness of fit of the psychometric curve 

The curve fitting procedure produced a maximum likelihood estimate of the 

parameters (α, corresponding to threshold at a probability (P) of 0.5 and β, 

corresponding to the slope) of the psychometric curve for each image, based 

upon the observer responses across the compression range [160]. A goodness-

of-fit test was performed when the estimated curve was generated, based on 

1000 simulations of the data [160] and resulting in a ρ-value, the probability 

that the observed data could be part of the population generated from the 

estimated model. ρ-values of below 0.05 were deemed to be an unacceptably 

poor fit. The results of the goodness-of-fit test were used as a means of 

determining the approach to be used in the error estimation.  
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To estimate standard error, for a ρ-value of greater than or equal to 0.05, a 

bootstrapping procedure was again used to generate 400 hypothetical sets of 

data, based on the parametric description of the observed experimental data 

(i.e. the estimated curve). A logistic function was fitted to each set of simulated 

data to derive the new α and β parameters. Finally the sample standard 

deviation (i.e. the standard error, equal to population standard deviation 

divided by number of samples) for each parameter was calculated from their 

distributions in the simulated sets of data. This parametric bootstrap approach 

used the estimated curve as the starting point and its parameters were the 

mean values from which the standard deviation was calculated.  

In the case of images where the ρ-value <0.05, a non-parametric bootstrap was 

used to evaluate the errors. The experimental data was used instead of the 

parameters of the curve in the simulations, obtaining hypothetical data based 

on actual data rather than an ‘average’ estimated function [160]. The standard 

deviation for the α and β parameters was again determined from the sampling 

error across the simulated datasets. 

The error estimation procedures did not generate an accurately fitted function 

(‘failed fits’) for a few of the images, Figure 5.17. In these cases, the failed 

datasets were excluded in the calculations of standard error, as their estimated 

parameters were deemed an inaccurate fit to the data and would have biased 

the results. 

 

 

 

 

Figure 5.17 Examples of psychometric curves: Seagull (top), ρ-value 0.559 (good fit) error 
bars fitted to curve, Lamp (bottom) ρ-value 0.026 (poor fit) error bars fitted to data  
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5.6 Results  

5.6.1 Scene ranking from objective measures 

The images were ranked according to each scene descriptor. The correlations 

between the individual scene descriptors were evaluated to determine 

whether there was a predictable relationship between them for the sample 

image set. They were calculated from the original scenes using Spearman’s 

correlation coefficient [161]𝑟 =
6 ∑ 𝑑2

𝑛(𝑛2−1)
 , where d=the difference in rank 

between the two descriptors for each image, and n is the total number of 

scenes. For 24 degrees of freedom (from n-1), the coefficient has a greater than 

95% chance of being significant at a value > 0.406  [161]. 

The results are shown in Table 5.5. The coefficient of the correlation between 

median and skewness (in bold) is the only coefficient that indicates a 

significant correlation  (for this number of images). This is an expected result 

as a histogram skewed in one direction or another will have a median value in 

the same direction. The results for all images and scene characteristic ranks 

are shown in Table 5.6. 

Scene Measure Median Skewness Variance Busyness 

Chroma 

Variance 

    m s V b VC*ab 

Median m 1.00         

Skewness s 0.89 1.00 

  

  

Lightness Variance V -0.18 -0.32 1.00 

 

  

Busyness b -0.05 -0.24 0.33 1.00   

Chroma Variance VC*ab -0.29 -0.33 0.03 0.30 1.00 

Table 5.5 Correlations between scene descriptors 
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Image 

 

Rank 

 

Rank %  Rank 

 

Rank 

 

Rank 

  md md s  s b b V V VC*ab VC*ab 

                  

 

  

accordion 120 6 0.05 9 49.67 11 5760.00 19 144.64 12 

afternoon tea 154 18 -0.80 22 2.59 1 3712.70 7 123.24 10 

beach goods 128 11 0.17 4 62.80 20 5573.10 17 405.31 24 

bride 138 14 -0.40 17 18.23 5 4745.80 14 252.32 20 

cliffs 140 16 -0.25 14 61.95 19 2899.60 5 338.50 23 

crockery 125 9 -0.10 11 74.24 23 6625.40 21 175.04 15 

crown antiques 172 22 -0.48 18 65.23 21 8644.40 24 226.21 17 

emporium 60 1 0.54 1 55.49 14 7884.70 23 34.66 1 

flags 154 19 -0.73 21 9.60 4 1750.60 1 133.30 11 

flower garden 127 10 0.07 7 93.38 25 2863.10 4 270.20 21 

formal 129 12 0.13 5 59.11 17 5585.10 18 246.59 18 

fred 205 24 -1.42 24 21.61 6 6043.70 20 65.57 2 

hive beach 109 3 0.45 3 29.86 8 4743.50 13 118.20 9 

huddle 186 23 -1.60 25 23.26 7 1843.60 2 100.49 6 

kids 134 13 -0.06 10 6.43 3 2491.90 3 70.98 3 

lamp 214 25 -1.36 23 43.50 10 4274.80 10 152.37 13 

lilies 110 4 0.11 6 35.22 9 4425.80 12 303.90 22 

marle sculpture 158 20 -0.32 15 50.43 13 7565.20 22 79.43 4 

pink flowers 124 7 -0.24 13 49.80 12 2977.50 6 250.70 19 

players navy 60 2 0.46 2 61.60 18 9484.10 25 443.74 25 

pool 153 17 -0.63 19 59.07 16 4984.30 15 208.66 16 

seagull 139 15 -0.33 16 72.02 22 4110.10 8 104.93 7 

serpent 124 8 -0.19 12 56.68 15 4157.30 9 115.77 8 

stones ii 167 21 -0.64 20 84.05 24 5002.30 16 98.19 5 

summer 119 5 0.05 8 3.04 2 4300.60 11 157.97 14 

average 13.2   -0.32   47.74   4954.05   185.96   

SD 7.2   0.56   24.05   2094.79   107.23   

Table 5.6  Images ranked according to objective measures: Median (md), Skewness (s), % 
Busyness (b), Variance (V), Chroma Variance (VC*ab) 

5.6.2 Perceptibility and acceptability thresholds 

The results for the thresholds for perceptibility and acceptability for all images 

are shown in Table 5.7. The images are presented as ranked according to their 

perceptibility thresholds. The ranks indicate a not unexpected positive 

correlation between the perceptibility and acceptability thresholds, which can 

also be seen in Figure 5.19. Of interest is the relationship between 
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perceptibility and acceptability thresholds, particularly in images where there 

are significant differences in their rankings for perceptibility and acceptability. 

Table 5.7 Perceptibility and acceptability thresholds for all images. Ranks are based on the 
(0.75) threshold. 

Two scenes with the highest rank in terms of perceptibility threshold 

(Afternoon Tea, and Fred, marked with an * in table 3) do not have 

corresponding values for acceptability thresholds. These images proved to be 

extremely robust under JPEG 2000 compression. Neither reached the 0.75 

proportion point for acceptability at the maximum compression ratio 

evaluated, meaning that psychometric curves and derived thresholds could not 

be estimated. The order of their ranking in terms of acceptability is assumed, 

based upon the proportions of observers who gave ‘no’ responses at the 

maximum compression ratio tested (0.4 for Fred and 0.7 for Afternoon Tea).  

 

Perceptibility Thresholds 

 

  

Acceptability Thresholds 

 

 
 

PSE Threshold JND Rank PSE Threshold JND Rank 

 

P(0.5) P(0.75) 
P(0.75)-
P(0.5)   P(0.5) P(0.75) 

P(0.75)-
P(0.5)   

Afternoon Tea 44.8 54.6 9.8 25 NA NA NA 24* 

Fred 34.0 47.9 13.9 24 NA NA NA 25* 

Summer 24.9 32.4 7.5 23 36.5 48.2 11.8 22 

Lamp** 24.2 31.1 6.9 22 44.0 55.9 11.9 23 

Lilies 23.1 29.7 6.6 21 38.0 48.1 10.1 21 

Huddle 19.3 25.5 6.2 20 30.1 36.2 6.1 16 

Bride 16.6 24.4 7.7 19 34.5 45.7 11.2 20 

Flags 19.2 24.0 4.8 18 28.0 31.5 3.5 11 

Emporium 17.9 22.3 4.3 17 34.6 44.6 10.0 19 

Pink Flowers 17.5 21.7 4.2 16 25.8 30.7 4.9 10 

Kids 14.9 21.6 6.7 15 32.5 40.4 7.9 17 

Serpent 15.5 21.6 6.1 14 26.2 35.1 8.9 14 

Crockery 17.0 21.6 4.6 13 26.3 33.2 6.9 12 

Accordion 14.7 20.4 5.7 12 31.2 41.5 10.3 18 

Marle Sculpture 16.2 20.2 4.0 11 26.2 33.7 7.5 13 

Pool 14.5 18.2 3.6 10 24.1 36.2 12.0 15 

Flower Garden 12.5 17.4 4.8 9 22.1 25.4 3.3 5 

Hive Beach 13.7 16.1 2.4 8 20.8 25.6 4.8 6 

Formal 12.9 16.0 3.1 7 20.7 24.2 3.5 4 

Beach Goods** 12.4 15.7 3.3 6 21.4 27.6 6.2 8 

Crown Antiques 11.3 15.6 4.2 5 20.9 29.8 8.9 9 

Players Navy 13.8 15.4 1.6 4 22.2 27.6 5.4 7 

Seagull 11.6 13.9 2.3 3 18.9 21.7 2.8 2 

Stones II** 11.2 13.3 2.0 2 17.5 21.9 4.5 3 

Cliffs** 8.0 9.3 1.3 1 12.8 16.7 3.9 1 
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Figure 5.18 Afternoon Tea (left) and Fred (right). These were images which had high 
perceptibility thresholds and did not reach the threshold of acceptability for the given 
compression range. These images might be classified as the least susceptible scenes. 

Four images (marked with **) are highlighted in Table 3 because they had ρ-

values below the 0.05 threshold point in the perceptibility test, indicating that 

the estimated curve was of an unacceptably poor fit.  

5.6.3 Grouping Scenes 

Because significant correlations had not been found between the rankings of 

the scene descriptors for this particular image set, the thresholds were instead 

used to find groupings. 

The perceptibility and acceptability JND thresholds (p=0.75) were evaluated 

using k-means clustering. Various numbers of cluster groups and distance 

measures were evaluated, and the final clustering used 7 groups and a squared 

Euclidean distance measure. The scenes in each group were then compared in 

terms of their scene measures to search for correlations and common 

characteristics. 

Figure 5.19 illustrates the relationship between perceptibility and 

acceptability thresholds and shows some of the identified groups. 
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Figure 5.19 Relationship between perceptibility and acceptability threshold compression 
ratios. 

5.6.4 Correlations between thresholds and scene metrics 

Spearman’s rank correlation coefficients [161] were calculated to examine the 

relationships between the perceptibility and acceptability thresholds with each 

scene descriptor. The results are presented in Table 5.8. 

  Perceptibility  Acceptability 

md 0.09   0.09 

V -0.25 

 

0.03 

s 0.32 

 

0.27 

b -0.80 

 

-0.73 

Vc -0.28   -0.30 

Table 5.8  Spearman’s correlation coefficients calculated between scene metrics and 
subjective thresholds. 

The high negative coefficients corresponding to the busyness metric with both 

subjective measures are significant. The negative sign of the coefficient 

indicates that as scene busyness increases, the thresholds of perceptibility and 

acceptability decrease. This implies scene dependency of the JPEG 2000 

algorithm, meaning that it performs less well in images containing lots of 
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detail. Figure 5.20 illustrates the effects of the algorithm on the most and least 

busy of the images. The majority of scene measures suggest weak correlation 

with the subjective thresholds. This implies that scene global lightness, 

contrast, and colour contrast do not play a significant role in JPEG 2000 

compression when considered across the entire sample set of images, although 

correlations may exist within the image groups indicated on Figure 5.19, as 

shown in Table 5.9. 

 

 

 

 

 

 

Figure 5.20 High and low ranking images in terms of the busyness metric. From left to 
right: Fred, compression ratio 70, perceptibility 54.5, acceptability threshold not reached; 
Cliffs, compression ratio 70, perceptibility 9.3, acceptability threshold 16.7; Close up of 
Cliffs illustrating significant distortion. 

5.6.5 Scene grouping and correlations 

Images were grouped in terms of their threshold levels, and the relationship 

between their perceptibility and acceptability thresholds. Correlations 

between scene descriptors or scene content within groups were identified. The 

thresholds and results from the visual scene descriptors for the six groups are 

shown in Table 5.9. The remaining images were not found to correlate strongly 

with one another. 
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Group I  

Afternoon Tea 54.56 (25) BR 154 (18) -0.80 (22) 2.59 (1) 3712.70 (7) 123.24 (10) 

Fred 47.87 (24) BR 205 (24) -1.42 (24) 21.61 (6) 6043.70 (20) 65.57(2) 

Group II  

Lamp 31.07 (22) 55.92 (23) 214 (25) -1.36 (23) 43.50 (10) 4274.80 (10) 152.37(13) 

Summer 32.43 (23) 48.22 (22) 119 (5) 0.05 (8) 3.04 (2) 4300.60 (11) 157.97 (14) 

Lilies 29.70 (21) 48.11 (21) 110 (4) 0.11 (6) 35.22 (9) 4425.80(12) 303.90 (22) 

Group III  

Huddle 25.50 (20) 36.24 (16) 186 (23) -1.60 (25) 23.30 (7) 1843.60 (2) 100.49 (6) 

Flags 24.02 (18) 31.53 (11) 154 (19) -0.73 (21) 9.60 (4) 1750.60 (1) 133.30 (11) 

Group IV  

Flower Garden 17.39 (9) 25.41 (5) 127 (10) 0.07 (7) 93.38 (25) 2863.10 (4) 270.20 (21) 

Formal 15.99 (7) 24.21 (4) 129 (12) 0.13 (5) 59.11 (17) 5585.10 (18) 246.59 (18) 

Hive Beach 16.1(8) 25.6(6) 109(3) 0.45 (3) 29.86(8) 4743.50(13) 118.20(9) 

Group V  

Beach Goods 15.72 (6) 27.63 (8) 128 (11) 0.17 (4) 62.80 (20) 5573.10 (17) 405.31 (24) 

Players Navy 15.39 (4) 27.60 (7) 60 (2) 0.46 (2) 61.60 (18) 9484.10 (25) 443.74 (25) 

Crown Antiques 15.56 (5) 29.83 (9) 172 (22) -0.48 (18) 65.23 (21) 8644.40 (24) 226.21 (17) 

Group VI  

Seagull 13.94 (3) 21.67 (2) 139 (15) -0.33 (16) 72.02 (22) 4110.10 (8) 104.93 (7) 

Stones II 13.25 (2) 21.94 (3) 167 (21) -0.64 (20) 84.05 (24) 5002.30 (16) 98.19 (5) 

Cliffs 9.31 (1) 16.71 (1) 140 (16) -0.25 (14) 61.95 (19) 2899.60 (5) 338.50 (23) 

Group VII        

Serpent 21.6 (14) 35.08 (14) 124(8) -0.19 (12) 56.68 (15) 4157.3(9) 115.77(8) 

Marle Sculpture 20.2(11) 33.7 (13) 158(20) -0.32(15) 50.43 (12) 7565.20 (22) 79.43 (4) 

Pool 18.2(10) 36.2 (15) 153 (17) -0.63 (19) 59.07 (16) 4984.30 (15) 208.66 (16) 

Table 5.9 Perceptibility and acceptability thresholds and objective scene descriptors and 
ranks for images in groups. Numbers in parentheses indicate rank. BR=Beyond Range 

Some adjustment was made to groups based upon their content. The images in 

groups did not all exhibit similar values or rankings when considering scene 

descriptors. However it was clear that their susceptibilities to compression 

within the groups linked them. This is more apparent in Figure 5.21, which 

shows the grouped images and the similarity in their thresholds and the 

relationships between the thresholds.  
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Figure 5.21 Graph showing relationships between perceptibility and acceptability for all 
images. Images are arranged according to kmeans cluster groupings 

The cases where there was not a clear similarity in scene measures therefore 

warrant further consideration, as discussed later. 

5.7 Discussion 

5.7.1 Group 1 

Images with very high thresholds for perceptibility and acceptability 

 

 

 

 

 

Figure 5.22 Group I images Lamp (left), Afternoon Tea (center), Fred (right) 

Two images belong to this category: Fred, and Afternoon Tea. Both have very 

high acceptability thresholds (neither reached the acceptability threshold 

within the experimental CR range). The perceptibility thresholds for Fred, and 

Afternoon Tea are higher than the acceptability thresholds for 20 out of the 
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other 23 images. Afternoon Tea has the highest perceptibility threshold of all 

the images. 

The scene descriptors Table 5.9 shows similarity in the ranks for median, 

skewness and busyness, with high ranks for median and skewness, illustrating 

the predominance of light tones in the images and low ranks for busyness 

because of the lack of high frequency detail in each of them. The images were 

all average or below average for chroma variance. 

The psychometric curves for the images indicated a degree of noise in the 

observers’ responses, also confirmed by discussion with the observers after 

the test. Distortions were difficult to detect and did not tend to affect any of the 

salient features within the images. The lightness and lack of contrast in 

significant areas of the image also meant that there was less contrast in the 

distortions and the blurring distortions were less visible, which may partly 

account for the very high thresholds of these images. 

5.7.2 Group II 

Images with high thresholds for perceptibility and acceptability 

 

 

 

 

 

Figure 5.23 Group II images, with high thresholds for both perceptibility and acceptability 
Lamp (left) Summer (middle), Lilies (right) 

The three images in this category, Figure 5.23, had high values for both 

perceptibility and acceptability. The scene descriptors for two of the group II 

images indicate similarity in terms of median and skewness (lower than 

average), busyness (lower than average), and variance (average). The other 

image, lamp does not correlate in this way, other than in variance, which is 
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very similar. However, the significant features in the images are not busy, and 

therefore less susceptible to the localized blurring and ringing artifacts 

introduced by JPEG 2000. Like the images in group I, these images contain 

relatively large areas of higher than average or lower than average lightness. 

The effect on distortions on these areas is similar to that in the light areas in 

the images from group I; the distortion contrast is reduced and so they are 

potentially less visible. 

5.7.3 Group III:  

Images with high perceptibility thresholds but lower in acceptability threshold 

rank 

These two images (Figure 8) show similarity across all of the scene 

descriptors. Both images have high median and skewness rankings, low 

rankings for busyness and variance, and average to low rankings for chroma 

variance. As for group 1, the dominant light areas of similar color and tone 

covering much of the image area do not appear to be very susceptible to visible 

distortion. At CRs beyond the perceptibility threshold for these images, the 

important features (the flags in the first image, the blue clothing in the second) 

are affected by very visible ringing as well as blurring; this may account for the 

reduction in acceptability once the distortion becomes visible. 

 

 

 

 

 

 Figure 5.24 Group III images: Flags (left) Huddle (center) Huddle showing artifacts at CR 
70 (right)  
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5.7.4 Group IV 

Images with low perceptibility and acceptability thresholds and lower 

acceptability rank  

The landscapes of group IV are dominated by natural textures. Two of the 

images, flower garden and formal correlated in all scene descriptors apart from 

variance, with high values for busyness and chroma variance and relatively 

low values for median and skewness. While hive beach did not correlate, it is 

clear that the scene content is equally susceptible to the artefacts. The blurring 

artefact is very noticeable in these scenes, particularly in the foreground areas 

where the textures are degraded significantly (Figures 9 and 10). The low 

thresholds for these images are unsurprising; the reduction in acceptability 

threshold rank compared to perceptibility is an indicator that the distortion is 

bothersome once perceived. Better scene descriptors identifying the natural 

textures in these images might provide more correlation. 

 

 

 

 

 

 

 

 

 

Figure 5.25   Group IV images: Flower Garden (top left) Formal (top right) Hive Beach 
(below) 
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Figure 5.26 Group IV images: Formal at compression ratio 70, showing severe and highly 
visible distortion. 

5.7.5 Group V 

Images with low perceptibility thresholds, but an increase in acceptability rank. 

These images are very low in terms of perceptibility threshold, but exhibit 

improved acceptability rankings.  The images have high busyness, lightness 

variance and chroma variance rankings. As well as containing visually 

important textural features, which proved susceptible to distortion, all three 

images contain text. The areas of texture are proportionally less than those in 

Group VI, which may account for their comparatively improved acceptability 

rankings. 

 

 

 

 

Figure 5.27 Group V images: Crown Antiques (left) Beach Goods (center) Players Navy 
(right)  
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5.7.6 Group VI 

Images with very low perceptibility and acceptability thresholds 

With the lowest thresholds of all the images, these three images are found to 

be very busy, with significant proportions of the image areas dominated by 

texture. The texture was affected by blurring artifacts at very low compression 

ratios. Because of its visual importance within the images, this must be seen as 

a significant factor influencing the results. 

 

 

 

 

Figure 5.28  Group VI images: Seagull (left), Stones II (center), Cliff (right) 

It is of interest to note that in cases where scene descriptors were not well 

correlated, groupings of scenes still appeared robust because of the scene 

content. For example, although the images in Group IV did not match on all 

descriptors, all had similar areas of natural texture. Equally the scenes in group 

II had large areas of high or low intensity low frequencies. 

5.8 Summary 

The experimental work in this chapter was carried out in several stages.  The 

first stage involved the acquisition of a set of Raw images, captured upon a 

professional level digital SLR and processed using a carefully tested workflow 

to minimise the introduction of distortion from sources other than JPEG 2000 

compression where possible. The tone reproduction of the imaging chain from 

capture to display was evaluated in stages. The images were characterised 

using a selection of the scene descriptors that had been used in the work in 

Chapter 4. The busyness metric was adapted based upon empirical 

observations, to the larger, higher resolution images and the change in viewing 

conditions in this experimental work compared to those used in the previous 
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experiment. The images were classified based upon their position from each 

descriptor mean value and divided into categories according to whether they 

had a high, low or average measure of the descriptor. A subset of the original 

set of images was selected to ensure that there was a range of different types of 

scene content, and that all the different categories of each scene descriptor 

were represented. A psychophysical paired comparison experiment was 

carried out to evaluate thresholds of perceptibility and acceptability for the 

images. The results were evaluated using k-means clustering between the 

perceptibility and acceptability thresholds to identify groups of images that 

exhibited the same behaviour in terms of their thresholds (for example, with 

high perceptibility but relatively low thresholds and other variants). Finally 

the cluster groups were evaluated in terms of their scene characteristics to 

explore and identify further scene dependencies and their possible causes. 

This lead to the work in chapter 6, which used the same image set to 

investigate whether the soft-copy quality ruler produced similar results in 

terms of scene groupings. 

This work further demonstrates the usefulness of some form of scene 

characterisation prior to image quality studies. It also explores the relationship 

between perceptibility and acceptability thresholds across a range of scene 

content. This approach might have potential as a mechanism for exploring 

distortion visibility and masking within particular image types. Making the 

images available with scene characteristic data would be useful for further 

research. 
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6 Soft Copy Quality Ruler 

6.1 The Soft Copy Quality Ruler 

As described in chapter 2, the soft-copy quality ruler method is a recently 

standardised approach to subjective image quality evaluation, specified in ISO 

20462-3 [85], which allows assessment of images against a reference set, 

producing numerical results that are directly equivalent to interval scale 

relative differences in terms of JNDs. 

The soft-copy ruler is a series of images of the same scene, varying in a single 

attribute (in this case sharpness), and spaced in known JNDs of quality [85]. 

The images are used as a reference (the ‘ruler’) against which the visual effects 

of imaging systems or processes may be compared and matched.  

The ruler images are created using a shaping function, which is a filter that 

shapes the system MTF to a set of required aim MTFs, each corresponding to a 

different level of sharpness. Observers are presented with a test image and a 

ruler image (the start level is randomised), and using a slider, match the 

quality loss in the test image introduced by the process or system under 

investigation, with the quality loss as a result of the change in sharpness in the 

ruler images. In this manner, a relative JND can be defined in real time for each 

image, without the significant data analysis required from other methods such 

as paired comparison experiments. 

The images used in this investigation were selected from the set used in the 

thresholds experiment in chapter 5, to allow comparison between the results 

from the two investigations, and in particular to explore the results in terms of 

the groupings identified in the threshold experiment. The processing pipeline 

prior to compression was the same, and so this needed to be accommodated in 

the measurements of the system MTF. 

Although the task of scaling the images against the quality ruler was predicted 

to be faster for observers than the paired comparison experiments described 
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in chapters 4 and 5, the experimental set-up and preparation of ruler images 

was more complex.  

The steps involved in generating the quality rulers (one per scene) were as 

follows: 

 Acquisition of test images 

 Characterisation of imaging chain OECF and SFR 

 Formation of system MTFs for required focal lengths and aperture stops 

 Identification of aim MTF closest to system MTF for the particular 

aperture / focal length combination 

 Shaping system MTF to aim MTF (if non-conforming) 

 Development of filters from shaping function to modify scene sharpness 

by known JND increments 

 Filtering of the original scenes to create a set of ruler images 

The original image set (consisting of 45 images) had been captured using a 

range of ISO speeds, focal lengths and apertures, which meant that the system 

MTF was not the same for all images. Therefore a restricted range of images 

was selected, covering a limited range of focal lengths and apertures, whilst 

ensuring that images from all groups identified from the experimental work in 

chapter 5 were represented. 

6.2 MTF Modification 

The image of a scene may be modelled in the frequency domain as a scene 

frequency spectrum in which the magnitudes of the frequencies have been 

variably attenuated by the components of the imaging system.  The system 

MTF can therefore be thought of as a form of frequency domain filter. This is 

relatively straightforward to understand when considering its spatial domain 

counterpart; the point spread function (PSF). The system PSF can be 

determined by the convolution of a single point of light, an impulse function 

(represented mathematically by the dirac delta function) with the system. Any 

point in the image is produced by the convolution of the system PSF with the 
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spatial configuration of scene luminances, defined by the imaging equation 

[57]: 

 𝑄′(𝑥𝑝, 𝑦𝑝) = ∬ 𝑄(𝑥, 𝑦)𝑃(𝑥𝑝

∞

−∞

− 𝑥, 𝑦𝑝 − 𝑦)𝑑𝑥𝑑𝑦 (6.1) 

 

Where 𝑄′(𝑥𝑝, 𝑦𝑝) is the output image, 𝑄(𝑥𝑝, 𝑦𝑝)is the input image and P(x,y) is 

the system PSF. 

The process is shown in the top row of Figure 6.1. 

 

Figure 6.1 The imaging equation (convolution) and the spatial frequency equivalent, from 
Jenkin [57] Q(x,y) is the input scene, P(x,y) is the system PSF and Q’(x,y) is the output 
image. Note that T(u,v) is correctly termed the optical transfer function and M(u,v), the 
modulus of the optical transfer function is the MTF. 

The PSF of the system is the result of the convolution of a number of different 

PSFs (from lens, sensor, processing and so on). Assuming a linear system, the 

convolution theorem states that ‘the Fourier transform of a convolution of two 

functions is the product of the Fourier transforms of the same two functions’ 

[57]. The relationships between spatial and frequency domain are illustrated 

in Figure 6.1. Therefore the system MTF defined by the process of cascading 

MTFs (which is the product of the constituent MTFs) is the equivalent in the 

frequency domain, of the convolution of the scene luminances with the 

individual component PSFs in the spatial domain. Modification of the MTF may 

be achieved in the spatial domain by convolution with a spatial mask, or in the 

frequency domain by multiplying with a filter transfer function. Both 
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approaches are known as linear filtering methods, and both modify the 

frequency content of the image.  

Convolution filtering is relatively straightforward to implement on digital 

images, as the convolution integral defined for continuous functions becomes 

the summation of products for discrete functions [162] [128]. The effects of 

convolution filters are determined by the filter coefficients and the shape and 

extent of the convolution mask. However, it is difficult to predict the exact 

effect upon frequencies from the spatial domain mask, and the number of 

arithmetic operations can become extremely large depending upon the size of 

the image and the extent of the filter. The alternative implementation in the 

frequency domain involves far fewer calculations [128]; the filter is the same 

size in the frequency domain as the image spectrum, and the filtered image is 

obtained by a point-by-point multiplication of filter transfer function and the 

Fourier transform of the image. Most usefully, it is possible to manipulate 

image frequencies very precisely. Frequencies in the image are attenuated by 

values between 0 and 1 in the filter and boosted by filter values of greater than 

1. Low pass and high pass filters ‘pass’ low and high frequencies respectively, 

attenuating other frequencies. Band pass and band stop filters work on specific 

ranges of frequencies; notch filters have a very narrow stop band so can 

remove very specific ranges of frequencies. The shape and extent of the filter 

functions in the frequency domain determines the effect in the spatial domain. 

Some examples of frequency domain filters are shown in Figure 6.2.  

 Figure 6.2(a) and (b) are of interest, because although able to precisely remove some 
remove some frequencies whilst allowing others to pass unchanged, the shape of the filter 
of the filter function causes ringing artefacts in the spatial domain image. This can be 
can be explained because the shape of the filter is a rect function, and the Fourier 
Fourier transform of a rect function is a sinc function. Ringing appears as a rippling 
rippling artefact, which is particularly noticeable around high contrast edges. The abrupt 
The abrupt truncation of frequencies in JPEG during quantization is equivalent to the 
to the application of an ideal low pass filter. Many frequency domain filters suffer from 
suffer from ringing to some extent. Careful shaping of the filter function by selection of 
selection of suitable functions, or by windowing the function, to provide a more gradual 
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gradual transition to zero, can help to alleviate the problem.  A highboost filter such as the 
such as the one shown in  

 

 

 

 

 

 

 

 

 

 

Figure 6.2 (c) maintains low frequency information whilst boosting high 

frequencies. This is a form of sharpening filter, similar to the unsharp mask 

(which is usually applied through convolution in the spatial domain). 
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Figure 6.2 Examples of frequency domain filter transfer functions (from Jenkin [128])            
(a) Ideal low-pass (b) Ideal high pass (c) High boost 

6.3 Measurement of the system MTF 

6.3.1 Cascading the system MTF 

Each component or process within an imaging chain can be described by its 

own MTF, and the cascading property of MTF means that the component MTFs 

multiply together to produce the system MTF, assuming linearity throughout 

[58]. This also means that the effect of the MTF of any individual component 

from the imaging chain can be removed from the system by dividing the 

system MTF by the component MTF. This allows individual component MTFs 

to be modelled even if they haven’t been measured in isolation, as long as 

enough of the other components are known. 

The cascading of the imaging chain used in this experimental work is described 

by: 

Where 𝑀(𝜔)𝑠𝑦𝑠 is the MTF of the system, IS is image sensor, L is lens, P is 

processing DS is downsampling, and D is display. Equation 6.1 defines the 

system MTF for the final processed and downsized images as a combination of 

the MTFs of the components, each of which might be varied.  It was necessary 

to obtain a series of separate system MTFs for each focal length and aperture 

combination used.  

The simplest approach to measuring the system MTF is to capture an image of 

a test chart using the camera and lens, process the image as the other test 

images were, display it on screen and photograph the image on the screen. 

However, this would mean that the camera-lens MTFs would be included in the 

system MTF twice, and would need to be extracted to correctly calculate the 

𝑀(𝜔)𝑠𝑦𝑠 =   𝑀(𝜔)𝐼𝑆 × 𝑀(𝜔)𝐿 × 𝑀(𝜔)𝑃 × 𝑀(𝜔)𝐷𝑆 × 𝑀(𝜔)𝐷  (6.2) 
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system MTF. It also required that the process be repeated for each aperture 

and focal length combination.  

Jin et al [88] implemented the soft-copy quality ruler method in 2009 to 

evaluate images from two digital camera systems. In their experiment, they 

measured the display MTF from a captured point source image using a 

calibrated monochrome camera.  

Without access to specialist equipment, the display MTF had to be measured 

using the camera within the imaging chain. Obtaining a good MTF from an 

image captured from the display proved to be a complex process, requiring 

careful alignment of the camera and numerous tests, to minimise the 

interactions between the arrangement of display pixels and the Bayer array on 

the image sensor, which caused spurious chromatic aliasing. Increasing the 

potential sources of aliasing by using a downsampled image would be likely to 

compound these issues. It was decided that a simpler approach would be to 

generate the display target, and capture an image of the displayed image, to 

reduce the length of the imaging chain and the effect of other component MTFs. 

An alternative method was thus implemented to obtain MTFs for separate 

parts of the imaging chain, which were cascaded together to obtain the system 

MTFs, as follows: 

(1) Camera-lens MTF: This was evaluated by measurement from an image 

of a printed SFR plus test target. The image was captured as a raw file 

and processed with a linear transfer function. This was repeated for all 

focal length/aperture combinations required. 

(2) Display MTF: An SFR plus test target was generated in Imatest™ and 

displayed on screen before being photographed. The Camera-lens MTF 

was extracted from the result to obtain the display MTF. 

(3) Processed Image MTF: The images captured in (1) were processed using 

the image-processing pipeline illustrated in figure 5.1. The processed 

images were used to obtain cascaded camera-lens-processing MTF. 
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(4) System MTF: The system MTF for use in generating the ruler images was 

obtained by cascading the relevant processed image MTF (3), with the 

display MTF (2). 

Care had to be taken throughout to ensure correct translation of frequencies, 

with the final system MTF being expressed in cycles per visual degree. 

6.3.2 SFR software and Test Target 

As described in section 2.6.4, measurement of MTF for digital systems is 

generally achieved using a modified method of the edge input method, known 

as the slanted edge method, [58] to obtain the spatial frequency response 

(SFR), due to the difficulties in evaluating the MTF of sampled systems by 

traditional sine wave recording or edge methods. The slanted edge method has 

been adopted as an ISO standard; the latest version is ISO 12233: 2014 [163].  
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 Figure 6.3 Flow diagram for edge based SFR algorithm from [163] 

The method uses an edge projected at a slight angle to the vertical or 

horizontal onto a sensor. A single row of array elements from an image sensor 

will undersample the edge, but when rows in an area are combined, because 

the slanted edge is slightly offset in each row, if the pixel values are interlaced 

they form a single super-sampled edge trace (see figure 2.11), which avoids the 

problems of aliasing. The super-sampled edge is differentiated and the Fourier 

Transform applied (see Figure 2.11) to obtain a measure of the spatial 

frequency response (SFR) for that orientation to frequencies beyond the 
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Nyquist frequency. The SFR method is now widely used and is implemented in 

a number of standalone software applications. The flow chart for the 

implementation of SFR in the standard is shown in 

 Figure 6.3. 

The SFR software used in this experimental work was Imatest™ Version 4.0-

beta Master, available from [164], which tests a range of image quality factors, 

including SFR, tone, sharpness and noise, using a number of different charts 

and implementing ISO standard methods. 

A scalable vector graphics (SVG) test target, with a contrast of 20:1 and gamma 

2.2 was downloaded from the Imatest® website and printed on an Epson 

Stylus Pro 3880 inkjet printer. The chart contained a focus star, a grey scale 

step chart and a number of squares slanted slightly to provide horizontal and 

vertical slanted edges. The chart was printed to give a target contrast ratio of 

20:1 across the slanted edges. 

6.3.3 Image Acquisition  

The test target was displayed and photographed as described in section 5.3.1 

as the same images were used for OECF and SFR measurements. Correct target 

to camera distance was calculated to ensure that the MTF from the inkjet 

printer did not affect the overall MTF measurement. The distance was 

calculated according to guidelines given on the Imatest website for 

measurement of high quality inkjet prints [165], so that that the captured 

image should have no more than 140 sensor pixels per inch of target. The 

distances were evaluated by defining an image size in the captured image to 

conform to this requirement, and this meant that the camera had to be moved 

with each change in focal length, to maintain approximately the same size of 

projected image on the sensor. Focal lengths and target to camera distances 

are shown in table 6.1. 
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Focal length 
(mm) 

Target to camera 
distance (mm) 

24 1000 

34 1200 

50 1670 

70 2170 

Table 6.1: Target to camera distance for focal lengths used 

The images were captured at an ISO speed of 160, and apertures of f/2.8, f8.0 

and f22.0 for all four focal lengths. Exposures were bracketed by +/- one stop 

for each aperture/focal length combination. The raw images were opened in 

Adobe Lightroom and the best exposures selected from the histograms to 

ensure a good spread of values without clipping. 

6.3.4 Camera-Lens MTF 

As for the OECF calculations, two sets of the test images were processed, one 

with linear processing at maximum resolution and, and the other set with the 

final processing from the image processing pipeline. For measurement of the 

SFR of the camera-lens system, the images were selected, opened in the raw 

processor and processed minimally as shown in table 6.2: 

Settings Value 
Resolution 3744 x 5616 (sensor) 
Bit depth 16 
Brightness & Contrast 0 
White balance Custom 2679 K 
Tone Correction Linear 
Lens correction Canon EF 24-70mm f/2.8 L USM 
Sharpening & Noise off 
Output colour profile sRGB 
Output format TIFF 

Table 6.2 Settings for linear processed full resolution output images  

A MATLAB routine was written to construct a lookup table to linearise the RGB 

channels in the output images [166]. Gamma correction was achieved using the 

reciprocal of the individual channel 𝛾 values calculated from the measured 

OECFs (Figure 5.5 and 5.6). The pixel values from the greyscale step chart 

values from the linearised image were plotted against the input normalised 

luminance values to check for linearity. 
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A further MATLAB routine combined the linearised RGB channels in the 

images into a single luminance image. For RGB colour spaces, such as sRGB, 

[137] which use the ITU-R BT.709-3 reference primaries, relative luminance 

can be calculated from linear RGB values using a weighted average of the three 

channels [167]: 

 Y = 0.2126𝑅 + 0.7152𝐺 + 0.0722𝐵 (6.3) 

The linearised luminance images were processed in Imatest, using a selection 

window of 120 x 200 pixels. As specified in ISO 20462 [85] the SFR was 

measured from on-axis and off-axis positions for both horizontal and vertical 

orientations. 

For each focal length/aperture combination, a minimum of two slanted edge 

measurements were taken from within 6% of the centre of the image, and a 

further two to four measurements at the edge of the target, which was between 

20% and 40% from the centre of the image (Figure 6.4). The on-axis and off-

axis measurements were averaged separately and the overall MTF for each 

orientation was calculated by giving the on-axis average a weight of 3/7 and 

the off-axis average a weight of 4/7.  

The horizontal and vertical orientation SFRs were combined to give an overall 

MTF, by weighting them so that the orientation with the lower MTF (calculated 

as the area under the function between frequencies of 0 and 0.7 cycles per 

pixel, equivalent to 0-30 cycles per visual degree in the final system MTF) was 

given a weighting of 2/3 and the orientation with the higher MTF a weighting 

of 1/3. 

 

 

 

 

https://en.wikipedia.org/wiki/Rec._709
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Figure 6.4 Example of areas selected on and off axis for vertical SFR evaluation (image has 
been cropped) 

Figure 6.5 shows the measured SFRs for the different focal lengths at each of 

the major aperture stops. Because the SFRs were calculated from a weighted 

average of a number of different edge samples, the error was calculated as a 

weighted standard deviation and error bars show +/- 1 standard deviation at 

each point. 

The weighted mean may be defined as follows: 

 �̅�𝑤 =
∑ 𝑤𝑖𝑥𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 (6.4) 

Where �̅�𝑤is the weighted mean from all the measurements, w𝑖  is the weight for 

the ith value, x𝑖  and N is the number of samples. 

The weighted standard deviation is then calculated from [168]: 

 𝑆𝐷𝑤 = √
∑ 𝑤𝑖(𝑥𝑖−�̅�𝑤)2𝑁

𝑖=1

(𝑁′ − 1) ∑ 𝑤𝑖
𝑁
𝑖=1

𝑁′

 (6.5) 

Where N’ is the number of non-zero weights (in this case the same as N). 
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Figure 6.5 : SFR for camera-lens system (minimal processing), showing differences 
between performance at different focal lengths for the three measured apertures 
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The standard deviation was largest at f2.8 for all focal lengths; and the 

difference in mean SFR between focal lengths was larger at f2.8, possibly 

because at shorter focal lengths the lens has more off-axis correction. 

Differences in mean SFR, and standard deviation were comparably smaller for 

all focal lengths at f22. 

The variation of the SFR with aperture stop for a single focal length is shown in 

Figure 6.6. As would be expected, optimum performance for all focal lengths 

was at an aperture f8.0. The variation in SFR between apertures at different 

focal lengths was significant, meaning that it was necessary to calculate 

individual SFRs in defining the filters to create ruler images. 

 

Figure 6.6: Variation of SFR with aperture at a focal length of 24mm 

6.3.5 Derivation of Display MTF 

For the measurement of the display MTF, an SFR plus test target containing 

edges with contrast ratios of both 10:1 and 20:1 [163], was generated in 

Imatest® and displayed on the calibrated screen at full size, providing a 1:1 

pixel correspondence, to ensure that no interpolation was introduced by the 

display. 
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Figure 6.7 SFR plus target displayed on screen for measurement of display MTF 

The display was photographed in darkness, with the camera placed 1 metre 

away from the surface of the screen on a tripod. The display target was 1548 x 

1042 pixels. With the lens set at a focal length of 50mm, this distance produced 

an image of the target with dimensions of 3360 x 2256 camera pixels, meaning 

that each display pixel was sampled by 2.17 camera pixels, enough to ensure 

adequate sampling, while blending the pattern of the display pixel 

arrangement [47]. 

The image was captured at an ISO speed of 160, aperture f/8 and shutter speed 

of 1/4 s, with the reflex mirror locked up to prevent camera shake. Careful 

alignment was required to ensure that the camera was parallel to the screen 

surface, to minimise aliasing as a result of the interactions between the display 

pixel pattern and the Bayer array of the camera.  

The captured image was processed using the same settings as used for the 

camera processing described in Table 6.2, the only differences being that the 

image was converted to greyscale during raw conversion, to minimise 

chromatic aliasing, and that the white balance was left ‘as shot’ (4750K). The 

output image was a 16bit RGB TIFF file, with equal RGB channels. 

As the SFR for the display was to be derived from a combined camera plus 

display SFR, the combined OECF (display and camera) was calculated from the 

image of the 20-step greyscale in the test target displayed on screen. For each 



 210 

patch six 38 x 38 pixel regions were selected and the mean RGB channel values 

recorded for each. The results for each patch were averaged. The normalised 

mean output pixel values were plotted against normalised input pixel values to 

obtain the combined gamma value of 1.0251, as shown in Figure 6.8. As would 

be expected the gamma value was very close to unity, as the camera and 

display correct for each other. The graph includes standard error of the mean 

(SEM) values. 

 

Figure 6.8 Combined tone reproduction characteristics of camera and display, plotted in 
linear units.  

The image of the target was linearised by gamma correcting for this value (
1

𝛾
=

0.9755). The SFR was calculated using a combination of on-axis and off axis 

selection areas for both vertical and horizontal directions. 

y = 1.0189x1.0251

R² = 0.9992

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

N
o

rm
a

li
se

d
 m

e
a

n
 o

u
tp

u
t 

p
ix

e
l 

v
a

lu
e

Normalised input pixel value



 211 

 

Figure 6.9 Horizontal and vertical SFRs for the camera x display system, expressed in cycles 
per camera pixel 

The mean horizontal and vertical camera-display SFRs (with SEM estimates) 

are shown in Figure 6.9. Expressed in cycles per camera pixel, these plots 

sample far beyond the Nyquist frequency of display, hence the appearance of 

the curve beyond 0.35 cycles per pixel, which indicates aliasing. The 

conversion of frequencies to cycles per display pixel, by multiplying the 

frequency by the number of camera pixels sampling each display pixel (≈2.17) 

gave the display Nyquist frequency at 0.238 cycles per camera pixel. 

The display MTF was extracted using the cascading property of the MTF: 

 𝑀(𝜔)display =
𝑀(𝜔) 𝑠𝑦𝑠𝑡𝑒𝑚

𝑀(𝜔)𝑐𝑎𝑚𝑒𝑟𝑎
 (6.6) 

Where 𝑀(𝜔) 𝑠𝑦𝑠𝑡𝑒𝑚 refers to the SFR measured from the camera-lens x display 

system, and 𝑀(𝜔)
𝑐𝑎𝑚𝑒𝑟𝑎

 is the SFR measured from the camera-lens system (as 

detailed in 6.3.4). The 𝑀(𝜔)𝑐𝑎𝑚𝑒𝑟𝑎 used was the one measured for the same 

focal length and aperture as the image was captured with (50mm, f8.0). The 

SFRs for system and camera in cycles per camera pixel are illustrated in Figure 

6.10. The frequencies were converted to cycles per display pixel as described 

above. Figure 6.11 shows the resulting display MTF. 
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Figure 6.10 SFRs for camera x display and camera-lens system only at a focal length of 
50mm and f8.0, for horizontal and vertical orientations, used in deriving the display MTF. 

 

Figure 6.11  Derived SFR for the display for horizontal and vertical orientations 
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increments, therefore a third degree polynomial (shown in Table 6.3) was 

fitted to each curve. 

𝑀(𝜔)display(H)  2.2139x3 - 2.3999x2 - 0.3087x + 1.0050 R² = 0.99728 

𝑀(𝜔)display(V) 3.6256x3 - 3.6530x2 - 0.0822x + 0.9999 R² = 0.99909 

Table 6.3 Polynomials used to fit display SFRs 

6.3.6 Camera-Lens-Processing MTF 

The images used in the psychophysical experiments had been processed using 

the pipeline defined in figure 5.1. The processing is summarised in Table 6.4.  

Settings Value 

Scene Specific Adjustments 

White balance As shot, or custom to correct 
Exposure correction Minimal, if necessary 
Levels correction As necessary 

Applied to all images 

Initial pixel resolution (uncropped, native) 3744 x 5616 
Down sampling (raw) 1024 x 1536 
Down sampling (bicubic interpolation) 588 x 882 
Bit depth 8 
Tone Correction Medium contrast curve 
Lens correction Canon EF 24-70mm f/2.8 L USM 
Noise 25% colour noise reduction 
Sharpening Unsharp mask applied to 75% opacity L*channel, 

radius and threshold dependent upon ISO  
Output colour profile sRGB 
Output format TIFF 

Table 6.4: Processing applied to finalised images 

The processing is separated in the table into processes that were applied scene 

by scene, to optimise tone and colour, and those that were applied to all 

scenes. It was not possible to account for scene-by-scene optimisation in the 

SFR measurements; in capturing the test target images, illumination and 

exposure was carefully controlled. Therefore only the processes applied to all 

images were applied to the test target images.  

Applying tone correction, noise reduction and sharpening were the processes 

deemed most likely to affect the OECF and the SFR of the system. As described 

in section 5.3.2, the OECFs of the processed images were measured from the 
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greyscale step charts in the processed images. The RGB channel 𝛾 values were 

used to linearise the images, and the linearised RGB channels combined to 

form single channel luminance images from which the SFRs were measured. 

The SFRs were measured as before, but using a smaller sampling aperture of 

32 x 22 pixels (limited by the smaller size of the slanted squares, to ensure that 

the edge fully covered the selection region). Slanted edges were measured both 

on and off axis and weighted as previously. The horizontal and vertical SFRs 

were not combined at this stage, because they were to be cascaded with the 

display SFR, which was slightly different in the two orientations. 

 

 Figure 6.12 Horizontal SFR for camera-lens-processing (SEM omitted for clarity) 

The SFRs for all aperture-focal length combinations (horizontal orientation 

shown in  Figure 6.12) followed the same pattern as the camera lens MTFs in 

terms of focal length and aperture, with the best performance for all focal 

lengths at f8. The frequencies were expressed in cycles per pixel. In this case 

one ‘pixel’ was a pixel in the down-sampled image, which was interpolated 

from 6.4 pixels in a single orientation in the original full resolution image. 

These frequencies corresponded to cycles per display pixel. 
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The SFRs all show an increase above unity between 0.1 and 0.4 cycles per 

pixel, peaking at 0.3 cycles per pixel, which is typical of an MTF produced as a 

result of the unsharp mask being applied to the image [169], illustrating an 

artificial boosting of these frequencies. 

6.3.7 System MTF 

A subset of 16 of the 25 psychophysical test scenes used in the threshold 

experiment was selected. It was deemed necessary to reduce the number of 

scenes to ensure that the quality ruler experiment was not too long for 

observers. This limitation meant that the system MTF was required for a small 

number of focal length-aperture combinations: 24mm, 50mm and 70mm focal 

lengths all at f/8, and 70mm at f2.8. Where images did not exactly match a focal 

length-aperture combination, the nearest was used. 

The measured SFR for the processed image was multiplied point-by-point with 

the display SFR for horizontal and vertical orientations. It was necessary to 

express the frequencies in cycles per visual degree (CPD) from the position of 

the observer [85]. 

The frequencies were converted from cycles per pixel (CPP) on the display to 

CPD using: 

 cycles per degree = cycles per pixel ×
𝜋

180
 ×

𝑑

𝑝
   (6.7) [170] 

Where d is the distance from observer to screen in some unit measure, and p is 

the centre-to-centre pixel pitch in the same units. In this experiment, 

d=600mm and p=0.27mm.  

The horizontal and vertical orientation SFRs were combined and weighted as 

before, by 1/3 and 2/3, with the higher weighting given to the orientation with 

the lower modulation between 0 and 30 CPD [85]. The system MTFs for the 

four focal length aperture combinations are shown in Figure 6.13. 
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Figure 6.13 System MTFs for the focal length-aperture combinations used in the soft copy 
quality ruler 

6.4 Creation of Ruler Images 

6.4.1 Determination of aim MTF and shaping function 

The aim MTF was defined using equation 2.24, reproduced here using the 

nomenclature used in this chapter: 

The equation describes the MTF of a diffraction-limited lens. A series of curves 

were modelled with different values of k. They were compared to the 

measured system MTF to check whether the system conformed adequately to 

the aim MTF and was suitable for use. ISO 20462-3 describes conformance 

between the functions if [85]: 

‘The mean fractional modulation transfer of the system and aim MTFs over 

each of the frequency bands 0 to5, 5 to 10…, and 25 to 30 CPD agree to within 

0.05’ 
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 The increase in 𝑀(𝜔) of the system MTF between 5 and 10 CPD as a result of 

the unsharp mask, affected the entire MTF and meant that it was not possible 

for the system MTF to conform to the aim MTF as required. Therefore an 

approach used by Jin [88] and Young-Park [89] was adapted, defining a filter to 

modify the system MTF so that it conformed more closely to the aim MTF. Jin 

defined a spatial filter to achieve this, while Young-Park modified the MTF in 

the frequency domain. 

First, an aim MTF was selected, for the system MTF to be modified to fit. MTF 

modification was described by: 

 M(ω)𝑎𝑖𝑚 = M(ω)𝑠𝑦𝑠𝑡𝑒𝑚 × M(ω)𝑓𝑖𝑙𝑡𝑒𝑟   (6.8) 

And therefore: 

 M(ω)𝑓𝑖𝑙𝑡𝑒𝑟  =
M(ω)𝑎𝑖𝑚

M(ω)𝑠𝑦𝑠𝑡𝑒𝑚
   (6.9) 

The filter function was found by dividing the M(ω)
𝑎𝑖𝑚

 by the measured 

M(ω)
𝑠𝑦𝑠𝑡𝑒𝑚 

at all of the measured frequencies. The resulting data were plotted 

and a sixth degree polynomial function was fitted to the graph. This polynomial 

was used to precisely generate a frequency domain filter transfer function. 

6.4.1.1 Shaping the system MTF to the aim MTF 

A program was written in MATLAB to apply the filter to the image of the test 

target (the same image that had been used to derive the system MTF). The 

process consisted of the following steps: 

1) The image was padded with zeros so that its dimensions were to a 

power of 2. Padding was necessary to avoid wraparound error, because 

of the assumed periodicity of the image when using the discrete Fourier 

transform (DFT) [171]), and the image dimensions were converted to 

powers of 2 to facilitate implementation using the Fast Fourier 

transform (FFT) algorithm. Code from Gonzales and Woods [172]was 

used for the purpose. 
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2) An array of ones was created to the same dimensions as the padded 

image. 

3) The polynomial function was applied radially to the array from (2), so 

that the values corresponding to the zero frequencies were at the centre 

of the image and the function was radially symmetrical.  

4) The image FFT was computed and centred. The result was separated 

into magnitude and phase components. 

5) The 2D magnitude image was multiplied with the filter array. 

6) The result was recombined with the phase and the inverse FFT applied 

(followed by centring and removal of the padded values) to obtain the 

filtered image. 

The aim MTF, defined for the 70mm f2.8 image is shown, with the system MTF, 

in Figure 6.14. Note the deviation between the two functions, most pronounced 

between 0.2 and 0.3 CPP. The functions are expressed in cycles per display 

pixel, as the derived filters were expressed in pixels. 

 

Figure 6.14 System MTF and selected aim MTF (determined from equation 6.7 using a 
value of k=0.031) for a focal length of 70mm and aperture f2.8 

The selection of the aim MTF for a particular camera setting was based upon 

trial and error as follows: Different values of k were used to determine various 

possible aim MTFs, and their corresponding filter functions were created and 

used to filter the test image. The conformance of the resulting MTF with the 
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MTF matched the system MTF at near the Nyquist frequency. The resulting 

shaping function, determined from this combination of aim MTF and system 

MTF is shown in Figure 6.15. The polynomial was fitted to data up to 0.75 CPP. 

Figure 6.15 shows a one-dimensional representation of the filter transfer 

function, effectively a cross-section of the radius of the filter. Figure 6.16 shows 

the appearance of the filter as a two-dimensional image. The tones of the image 

correspond to the filter values, between 0 (black) and 1(white). 

 

Figure 6.15 Shaping filter and derived polynomial function (filter shown by red solid line) 

 

Figure 6.16 A two-dimensional representation of the shaping filter used for 70mm f2.8. 
The centre of the image corresponds to zero frequency, with highest frequencies at the 
edges. 
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The MTF of the filtered image was quantified and is shown in Figure 6.17, 

indicating satisfactory conformance to the aim MTF, determined from a k value 

of 0.031. 

 

Figure 6.17 System MTF for 70mm f2.8 after filtering with the shaping function, compared 
with the aim MTF 

The process was repeated for all four focal length/aperture combinations. The 

k values for the best fitting aim MTFs are shown in Table 6.5. The SQS2 value 

for each was calculated from [85]: 

𝑆𝑄𝑆2 =
17,249 + 203, 792𝑘 − 114,950𝑘2 − 3,571,075𝑘3

578 − 1,304𝑘 + 357,372𝑘2
          (1 ≤ 100𝑘 ≤ 26) 

(6.10) 

 

 

 

 

 

 Table 6.5 k values defining aim MTFs for different focal length aperture combinations. 
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6.4.2 Development of the JND filters 

From the determined aim MTF k value for each focal length and aperture, a set 

of functions could be defined. Using equation (6.10), the k values were found 

which produced a range of SQS2 values in increments of one JND (for almost 

all, see below) from the SQS2 value of the aim MTF. These represented a set of 

aim MTFs (Figure 6.18) of varying sharpness.  The lower k values correspond 

to higher MTFs. The bold line shows the ‘original aim MTF’ for a k value of 

0.031.  

 

Figure 6.18 Aim MTFs spaced in 1JND increments for a series of filters for the 70mm f2.8 
system MTF. The legend shows the k value used to generate each curve.  

It is important to note that the highest MTF, for a k value of 0.0100, was the 

limit according to equation (6.10), which is only defined for (1 ≤ 100𝑘 ≤ 26). 
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JND difference for the 70mm f2.8 images; the difference varied depending 

upon the starting point for k), but it was important to include it, to allow the 

largest range of sharpness to be represented. As the process of modelling to 

the original aim MTF necessitated a slight reduction in sharpness from the 

system MTF (by removal of the increase in the magnitude of frequencies 

between 0.1 and 0.4 cycles per degree), it was possible that some of the less 

compressed images might be matched to a ruler image with a higher MTF than 

the original aim MTF. 

The ‘JND filters’ were generated in the same manner as the one generated to 

shape the system MTF to the aim MTF, described in section 6.4.16.4.1, by 

dividing the system MTF by the required filtered image MTF, and fitting a 

polynomial, which could be applied as a filter to the image FFT. A total of 31 

filters were created for the 70mm f2.8, settings ranging from ≈+6JND to -24 

JNDs (relative to the original aim MTF). These covered a range of k values from 

0.01 to 0.1791 for the filters. For the other camera settings, the number of 

filters was one less (+5JNDs to -24 JNDs) because the initial k values were 

higher, covering a k range from 0.01 to 0.1613 for 50mm and 24mm at f8.0 and 

a k range of 0.0136 to 0.1697 for 70mm at f8.0. Some examples of the JND 

filters are shown in  Figure 6.19. 

 

 Figure 6.19 A sub-set of the JND filters developed for 70mm f2.8 system. Positive JND 
filters sharpened the image relative to the original aim MTF, negative JNDs blurred the 
image.   

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6

M
(ω

)

ω pixel-1

+5 JND

+4 JND

+3 JND

+2 JND

+1 JND

-1JND

-2JND

-3JND

-4JND

-5JND



 223 

6.4.3 Application of the JND filters to the test images 

The JND filters were generated for each focal length-aperture combination 

using the appropriate set of k values and the measured system MTF. The 

MATLAB routine developed in 6.4.1 was adapted to apply the filters to the final 

set of processed images to be used in the experiment. These were the reference 

images, so had been processed using the image processing pipeline as 

described in Table 6.4, but had not been compressed. The program separated 

the RGB colour channels, normalised them, and converted them to linear sRGB 

values as follows:  

C𝑠𝑅𝐺𝐵 = [
(C′

𝑠𝑅𝐺𝐵+0.055)

1.055
]

2.4

            if C′𝑠𝑅𝐺𝐵 > 0.04045    

and C𝑠𝑅𝐺𝐵 =
C′

𝑠𝑅𝐺𝐵

12.92
                          if C′𝑠𝑅𝐺𝐵 ≤ 0.04045    

(6.11) [137] 

Where C is the colour channel C′𝑠𝑅𝐺𝐵 is the non-linear sRGB value for that 

colour channel and C𝑠𝑅𝐺𝐵is the equivalent linear sRGB value. Steps 1-6 from 

section 6.4.1 were applied separately to the linear RGB colour channels. The 

filter was applied using the appropriate fifth or sixth degree polynomial 

function (fifth degree polynomials were found to fit adequately for many of the 

functions and sixth degree polynomials were only used where necessary for 

accuracy). The polynomial functions including their cut-off frequencies are 

tabulated in Appendix C. The resulting images were mapped back to the spatial 

domain, the sRGB transfer functions were applied to produce non-linear sRGB 

values, and the images were saved as 8 bit TIFF files. 

6.5 Psychophysical Investigation 

6.5.1 Psychophysical Display and Viewing Conditions 

The display was an EIZO CG245W 24.1” LCD, driven by a Dell Optiplex® and 

was calibrated daily during the period of the test to the sRGB specification 

[137]. The viewing environment was also calibrated to closely match the sRGB 

specification, with ambient color temperature of 5000K and an ambient 

illuminance of 64 lux.  
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6.5.2 Interface Design 

The quality ruler interface was designed in MATLAB 7.12 using GUIDE. The 

images were presented side-by-side on screen with the ruler image on the left, 

and the test (compressed) image on the right. The effective screen size was 

518.4mm wide by 324.0 mm; the images took up approximately 45% of the 

half-screen area on a mid-grey background. The slider was below the images. 

The test images were presented in a random order, being randomised each 

time the test was run. The slider contained no numerical information, and was 

marked at either end by ‘beyond high range’ (beyond the sharpest images) and 

‘beyond low range’ (beyond the most blurred image).  The increments on the 

slider adapted in size depending upon the total number of images in each set. 

The interface is shown in Figure 6.20. 

 

Figure 6.20 Soft-Copy Quality Ruler Interface 

When the ‘next’ button was pressed, a new pair of images was presented to the 

observer. The initial level of sharpness of the ruler image and its associated 

slider position were randomised, so the ruler image might be very close or 

quite far from the test image in quality. The observer was then able to move 

the slider left for a sharper ruler image and right for a less sharp image, until 

they felt that the images matched in quality level.  
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The application stored the results for each observer in a text file, which was 

named by the observer in a dialogue box at the beginning of the test. 

6.5.3  Observers and Test Images 

14 observers with experience in image evaluation, from a variety of (image 

related) backgrounds, completed the test. The observers ranged in age from 19 

to 50 years old. All had normal or corrected vision. 

The test consisted of 16 different scenes, (Figure 6.21). For most scenes 

compression ratios of 10:1 to 60:1 were used. This range was selected because 

it had been found that the perceptibility and acceptability thresholds were 

contained in this range for all scenes. For two of the scenes that had been 

found to have low perceptibility thresholds in the previous experiment, 

additional compression ratios of 5:1 and 15:1 were used. This meant that there 

were a total of 101 test images.  

Observers were given detailed verbal instructions about how to conduct the 

experiment and were shown examples of a couple of test images and the 

process of scaling them. The types of artefacts characteristic of JPEG 2000, and 

the scene areas that were most susceptible were highlighted. They were also 

given written instructions, adapted from [85]. These can be found in Appendix 

D. 

The time taken by observers to complete the test varied, but all were 

completed within one hour.  
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Figure 6.21Images evaluated by the Soft Copy Quality Ruler 
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08_Emporium.tif

17_Marle Sculpture.tif

22_Serpent.tif

02_Afternoon_Tea.tif

14_kids.tif

19_Players Navy.tif

23_Flower Garden.tif

05_cliffs.tif

15_Lamp.tif

20_Pool.tif

24_stones_II_.tif

06_Crockery.tif

16_Lilies.tif

21_Seagull.tif

25_Summer.tif
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6.6 Results and Discussion 

Each observer defined a ruler value for each test image, by selecting the point 

on the ruler at which they judged the ruler image to be identical in terms of 

image quality to the test image. The results were output as a text file 

containing the matched ruler and test image file names. From these results, 

SQS2 values were identified for the selected ruler image. The results from all 

observers were averaged to give a final SQS2 value for each image. Initially, 

these results were used to investigate scene dependency, but it is important to 

note that the rulers at this point had not been calibrated (see section 6.6.4). 

The calibration process as detailed in section 7.2 of [85] provides a method of 

reducing scene dependent effects and is therefore necessary when the results 

are to be interpreted in JNDs. However the uncalibrated results were deemed 

more useful for investigating scene dependency (as to some extent the scene 

dependency was more exaggerated prior to calibration) and were also 

therefore of interest.  

6.6.1 Overall average, all scenes 

The results for all images and all observers are shown in Figure 6.22, which is 

effectively a quality loss function in SQS2 values against compression ratio. 

 

 Figure 6.22 SCQR results for all scenes and all observers. 

The average quality loss, determined from compression ratios of 10: 1 to 60:1 

was equivalent to 9 SQS2 values. This was calculated from the average scale 
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values of all scenes. However it is clear from Figure 6.22 that there was 

significant variation across scenes. The slope of an individual set of scene 

values will determine the amount of quality loss for that scene. Significant 

deviations of the slope can identify scenes that are more or less susceptible to 

the distortions introduced by the process in question.  

As would be expected the results are very close for all scenes at low 

compression rates, because the distortions are not highly visible, with much 

more variation at higher compression rates, indicating the difference in the 

impact of distortion on different types of images. 

The ruler images included an ‘original’ image, which was filtered to the original 

aim MTF. It might be assumed that this would be regarded as the highest 

quality image as it is not affected by the compression. Therefore the 

compressed images would be expected to be lower than this original. The 

original image SQS2 values (shown in Table 6.5) were between 26.5 and 27.5. 

Because of the low k values of the aim MTF, the original image was not at the 

centre of the JND range of the ruler images (see Figure 6.18), but was near the 

top, meaning that there were only five or six ruler images that were sharper 

than the original and many more that were blurred. It can be seen from Figure 

6.22 that the majority of images at the lowest compression ratio have an SQS2 

value which is higher than the original SQS2 value. This is somewhat 

misleading as it implies that the quality of the images at 10:1 compression 

ratio was universally regarded as better than the original.  

This result can be explained by the fact that the shaping function for the 

original image removed the increase in the system MTF between 0.1 and 0.4 

cycles per pixel. This is clearly illustrated in Figure 6.14 and Figure 6.17, which 

show the system MTF before and after filtering. Effectively the image filtered 

to the aim MTF was slightly less sharpened (or oversharpened) than the 

original. However, the test images incorporated the sharpening and therefore 

were perceived at a higher SQS2 value than the ‘original’ image. The relative 

quality of the compressed but sharpened images had effectively been 

artificially increased by the sharpening process. 
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Unfortunately the unfiltered and uncompressed original image (the real 

original, which had not been filtered with the shaping function) was not 

included in the set of test images in anticipation of this effect.  A possible 

strategy for dealing with this problem would be to include this image and in 

some way use the scaling value from it to rescale all the other values down (i.e. 

to identify the difference between the known SQS2 value of the original image 

which has been shaped to the aim MTF, and the observer scaled SQS2 of the 

‘real’ original image. However it is not clear how much the sharpening would 

have artificially boosted the scale values across the range. This is an area that 

warrants further investigation. 

6.6.2 Individual Scene Results Prior to Ruler Calibration 

The results below show the results for individual scenes, broadly grouped by 

comparison with the average function. Trend lines were calculated using linear 

regression, which was found to be a good fit to the data in the majority of 

cases. Error bars indicate standard error of +/- 1. 

 

Figure 6.23 Quality loss functions for all scenes including the scene average and the 
functions + and – 1 standard deviation from the mean 
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Figure 6.24 All Scene Results SCQR prior to calibration 
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6.6.2.1 Scene Susceptibility 

As discussed by Keelan [99], psychophysical tests are inevitably affected by 

observer sensitivity and scene susceptibility. It can be useful to quantify these 

effects by evaluating individual scenes or observer results against the average 

for all.  Figure 6.23 shows the average quality loss function for all scenes and 

all observers. The standard deviation is calculated from the variation in scale 

values across all scenes at a particular compression level. The dotted lines 

show + and -1 standard deviation. The larger standard deviations at the lower 

quality end of the scale illustrate the scene dependent effects of the distortion 

as a result of its increased perceptibility. The slope of the lines indicates more 

or less quality loss. It seems that these could be useful in exploring scene 

susceptibility. Figure 6.24 illustrates the results for all of the individual scenes. 

6.6.2.2 Scene results close to the all scene average 

 

Figure 6.25 Scenes that are close to the all scene average quality loss in the SCQR 

The scenes in Figure 6.25 produced results that were close to the initially 

calculated all scene average. The error bars increase from lowest compression 
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to highest, and this is a consistent result across all the scenes, indicating more 

variation in observer response as the distortions became more visible, 

whereas there was remarkable agreement between observers when 

compression was low.  

6.6.2.3 Scenes more or less susceptible to image distortions 

 

Figure 6.26 Individual scene SQS2 values for a selected set of scenes plotted against 
average SQS2 values for all scenes 

A potential approach to exploring scene susceptibility is illustrated in Figure 

6.26. In this graph, relative JND values for individual scenes are plotted against 

the scene average relative JND values. The values are reversed from the 

previous figures in that they start from lowest quality on the left hand side. The 

line for average all scenes is a plot of the average against itself, so the values on 

both axes are the same; if on equal scale axes this line would be at 45°. The 

(mean + σ) and (mean – σ) lines are also plotted. These would seem to be 

useful limits with which to identify unusual scenes.  

The slope of the functions can be used (see regression lines and equations on Figure 6.23) 
Figure 6.23) to distinguish between more or less susceptible scenes. A steeper gradient 

gradient indicates a greater quality loss by the individual scene compared to the original, 
the original, while a more robust scene would have less overall quality loss and a less 
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a less steep function gradient than the average. There are some exceptions however, for 
however, for example the summer image plotted in light blue, has a similar gradient to the 

gradient to the average but is consistently higher, indicating that it is judged as better 
better than average quality throughout the compression range. The individual scale values 

scale values have been included in the figure for the scenes where at least three of the 
three of the values fall outside the ± 1σ lines. The images are shown in  

Figure 6.28 and  

Figure 6.29.  

The images in Figure 6.27 (lamp, summer, afternoon tea) are the scenes that 

were least susceptible to quality loss. Their individual quality loss functions 

show that they are relatively flat across the whole compression range 

compared to the average (shown by the dashed line). These are most of the 

images from Groups I and II, identified from the results of the threshold 

experiment in chapter 5, confirming that both methods can accurately identify 

the least susceptible scenes. 

 

Figure 6.27 Scenes that are less susceptible to quality loss than average in the SCQR 



 234 

  

Figure 6.28 (seagull, stones II, cliffs, players navy) are those below the (mean – 

σ) line in Figure 6.24 and therefore can be considered to be the most 

susceptible scenes. Again, the results correlate with those from chapter 5; the 

first three images are those from the group with the lowest thresholds. 

 

 

Figure 6.28 Scenes found to be more susceptible to quality loss than average in the SCQR 
experiment 

The pool image is also within this group, shown in Figure 6.29 The pool image 

compressed to a compression ratio of 60:1, which observers noted as 

particularly difficult to scale on using the quality ruler. The reason given was 
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that the image has fine random detail in the foreground, while being slightly 

blurred in the background, and observers found it difficult to match the quality 

of the ruler image to both parts of the test image. 

 

Figure 6.29 The pool image compressed to a compression ratio of 60:1, which observers 
noted as particularly difficult to scale on using the quality ruler 

6.6.3 Observer Sensitivity 

The results from individual observers were also evaluated (Figure 6.30). The 

total and average scale values over all scenes were calculated for each 

observer. Using the same approach as used to identify non-average scenes, the 

mean total for all scenes was calculated and the standard deviations from the 

observer totals. This gave limits for observer response.  

It was found that six observers fell outside the  (μ ± 1σ) range, three at either 

end. The least sensitive observers consistently ranked the test images at a 

higher level than the average and their responses were flat across the range. 

The most sensitive observers ranked the images with the greatest quality loss 

across the range, producing average quality loss functions, which were much 

steeper than the average. It is interesting to note that these three observers 
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were researchers with a particular interest in image quality, therefore might 

be expected to be more critical in their evaluations. 

 

 

Figure 6.30 Observer sensitivity in the SCQR results 

The two solid lines plotted in Figure 6.30 are the average quality loss function 

for all observers, and the function for average observers when the most 

sensitive and least sensitive observers were excluded. This indicates that 

observer sensitivity has not biased the results in this investigation, as 

expected, because there are an equal number of more and less sensitive 

observers. 

6.6.4 Calibration of the Rulers 

The ISO standard 20462-part 3 [85] defines the methodology for validating 

and calibrating quality rulers. For soft copy quality rulers, user generated 

scene-dependent rulers created using equation (6.10), may be calibrated by 

direct comparison of the ruler images with the Digital Reference Stimuli (DRS), 

or using the average scene relationship. In this case, ruler results shall be 

averaged against at least two other quality rulers from different scenes, to 

reduce bias introduced as a result of a scene having particular dependency 
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upon the attribute being varied. The quality rulers used for the averaging in 

this study should themselves not exhibit strong sharpness related scene 

dependency. 

For the purposes of ruler calibration a number of images were selected which 

had quality loss functions close to the overall average (Table 6.6) 

 Trend line 
equation 

R2 value Used to calibrate 

Average of all scenes y = -0.179x + 30.913 R² = 0.99744 

 

Calibration image 1 & 
Calibration image 2 

Calibration Image 1 
(Marle) 

y = -0.1963x + 31.36 R² = 0.9334 

 

 

All other images except 
calibration image 2 

Calibration Image 2 

Crockery 

y = -0.1961x + 31.579 
 

 

R² = 0.97203 All other images except 
calibration image 1 

Table 6.6 Ruler calibration 

The calibration was carried out as follows:  

(i) For all but the two calibration images: The results for each compressed 

image were averaged with those of the same level of compression in the 

two calibration images. 

(ii) For the two calibration images:  The results for each compressed image 

were averaged against the all scene average. 

(iii) The calibrated results for each image were re-plotted and a linear 

trendline was fitted to the data. In this case a common starting image 

was assumed by extrapolating the data from all scenes (i.e. the y-

intercept of the regression of all scenes). These functions were derived 

to allow modelling of the results from chapter 5 as SQS2 values. 
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Figure 6.31 Quality Rulers after calibration 
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6.7 Summary 

This chapter summarises an experiment to implement the soft copy quality 

ruler according to ISO 20462 part 3 [85] [85]for JPEG 2000 compressed 

images. The modelling of the system MTF was evaluated, and an aim MTF was 

defined. The approach used to adapt the system MTF to the aim MTF involved 

precise modelling in the frequency domain followed by the creation of a filter 

using a polynomial function. The ruler images were then created using the 

equation defined in the ISO standard to create a set of ruler images for each 

scene, varying in terms of sharpness. The quality rulers were used to 

implement a psychophysical experiment to determine interval scales of quality 

for JPEG compression using a sub-set of images from the set used for the 

investigation in chapter 5. The data clearly highlighted scene susceptibilities. 

The rulers were also useful in determining observer sensitivity. The ruler 

results were also calibrated in accordance with ISO 20462, which all but 

eliminated the scene dependencies in the results. 

The SCQR ruler approach has clear application in future image quality studies. 

Because the image set has been characterised by scene and thresholds have 

also been separately evaluated, the subjective quality of the images is well 

defined, and the relationship with scene characteristics should make them 

useful as a test set of images in developing and adapting metrics. This is the 

subject of the experimental work in the next chapter. 
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7 Image Quality Metrics 

The experiments in chapters 4, 5 and 6 have investigated a number of different 

psychophysical methods including the new soft copy quality ruler ISO standard 

for evaluating image quality. The results have provided an overview of the 

quality performance of JPEG 2000 and have also illustrated the complexity of 

implementing psychophysical studies and the analysis and interpretation of 

the results.   

In many practical imaging applications there is not the time to implement a 

psychophysical study on a large enough scale to produce results quickly 

enough to keep apace of developing technologies. Therefore, as described in 

chapter 2, research into robust, predictive and easily applied image quality 

metrics remains an important topic, which has developed a great deal in the 

last decade. Section 2.8 gave an overview of just a few categories of the vast 

range of image quality metrics now available.  

7.1 Selecting the metrics for use in this work 

In selecting metrics for the final part of this experimental work, literature 

research was undertaken with a view to identifying and testing metrics that: 

- Illustrate a variety of different approaches to metric design. 

- Have been developed for general image quality applications, rather than 

for specific types of algorithms or artifacts. 

- Are relatively straightforward to implement. 

- Are flexible enough to allow some adaption. 

- Have been tested and shown to be effective. 

Four metrics were finally selected. These were: 

1) The Modular Image Difference Metric (MIDM).  

This metric, developed first by Fairchild and Johnson [70] [68] was 

selected because of its modular structure, meaning that individual 

modules could be left out, added or tuned to explore the use of the 
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scene metrics used earlier in the research (chapters 4 and 5). 

Furthermore, some research, supervised by the author, had already 

been carried out using the MIDM on the images and the interval scaling 

results from in chapter 4 [173], which indicated that it might be 

effective as a model, particularly in predicting scene dependency in the 

psychophysical results. 

2) The Structural Similarity Index Model (SSIM) [174] 

The SSIM has found widespread use since its introduction by Wang et al 

in 2004 [174]. It has been found to be as effective in predicting 

subjective quality as much more complex VIQMs. Many variants of SSIM 

have been developed, and there are readily available software 

implementations in Java and MATLAB, making it easy to implement. As 

it focuses on relatively simple scene descriptors to evaluate ‘structure’ 

within an image, it would also seem to be suitable for a scene 

dependency investigation. 

3) The Multi-scale Structural Similarity Model (MSSIM) 

The MSSIM [175] is a variant of structural similarity, which includes a 

multichannel decomposition step prior to application of the metric. This 

is achieved through a down-sampling and low pass filtering process, not 

dissimilar to filter banks used in wavelet processing, therefore it might 

be considered highly applicable to JPEG 2000. 

4) The Three-component Weighted Structural Similarity Model (WSSIM) 

The WSSIM [176] is an adaptation of either the SSIM or the MSSIM, in 

which the image is segmented into three broad categories: texture, 

edges and uniform areas. The SSIM or MSSIM map is calculated in the 

normal manner, and the segmentation is then used to weight the SSIM 

map components, according to their assumed differing perceptual 

importance. 

7.2 The Modular Image Difference Model 

The modular image difference model is a framework for a colour image 

difference metric [69], which has been incorporated into the ICAM appearance 

model [177]. The original framework was based upon the S-CIELAB [178] 
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spatial extension to the CIELAB colour space. S-CIELAB was initially developed 

to adapt the traditional colour difference equations with a pre-processing step 

to simulate the human CSF. In the application in [178] the CSF was 

approximated using convolution filtering, with the aim of reducing the high 

frequency colour patterns (present for example in half tone printing) that are 

beyond the limits of the CSF to provide a better model of colour appearance 

and colour differences. 

 

Figure 7.1 Flowchart of a modular image difference metric (image © M.D. Fairchild, from 
[70]) 
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The modular image difference model has extended S-CIELAB, adding modules 

to take into account other aspects of visual processing. In MIDM [68] [70] both 

chromatic and achromatic CSFs are applied in the frequency domain, and there 

are further options for spatial frequency adaptation, spatial localisation of 

edges, and local contrast detection. The same set of modules is applied to both 

original and distorted images, and an error map is then calculated between the 

resulting images. The error map can then be used to generate a metric. A 

number of statistics may be used including the mean, median, maximum, 

which may describe different aspects of the data [70]. The steps in the modular 

image difference model are illustrated in Figure 7.1. 

7.3 Implementation of MDIM in this work 

7.3.1 Pre-processing: Colour space conversion 

The model was implemented using the IPT colour space, an opponent colour 

space (I is the luminance channel and P and T are chroma channels), first 

proposed by Fairchild and Ebner [179]because of its uniformity of hue and 

suggested for use in the iCAM model.  

The processing steps from sRGB values to non-linear IPT values were as 

follows: 

1) Image normalised by dividing by maximum value 

2) RGB channels linearised by application of the inverse of the XYZ to 

sRGB transfer functions 

3) Linear sRGB values XYZ (D65 adapting white point) 

4) XYZLMS (another cone response space) 

5) Application of non-linear transfer curves LMSL’M’S’ 

6) L’M’S’IPT 

All transfer functions and transform matrices are detailed in Appendix E. Step 

5 can be optionally omitted, and in this case it was, to ensure that linear values 

were used for frequency space processing. 
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7.3.2 Application of CSFs and Spatial Frequency Adaptation 

A variation of the Movshon-Kiorpes CSF was used for filtering the achromatic L 

channel defined by: 

csf𝑙𝑢𝑚(f) = a. 𝑓𝑐. 𝑒−𝑏.𝑓            where a=75, b=0.2 and c=0.8    

 

(7.1) [70] 

Where f is spatial frequency in cycles per degree of visual angle. The chromatic 

CSFs were defined by 

csf𝑐ℎ𝑟𝑜𝑚(f) = a1. 𝑒−𝑏1.𝑓𝑐1
+ a2. 𝑒−𝑏2.𝑓𝑐2

  

 

(7.2) [70] 

Where (a1, b1, c1, a2, b2, c2) are (109.14, 0.00038, 3.424, 93.60, 0.000367, 

2.1680) respectively. 

The spatial frequency adaptation model used was the model proposed in [64] 

based upon the Natural Scene Assumption, also known as the 1/f 

approximation. This assumes that the probability of occurrence of any given 

frequency within a natural scene is inversely proportional to the frequency. 

This may be defined by: 

frequency of occurence(f) =
1

𝑓
 

 

(7.3) [70] 

Therefore to model the effects of spatial frequency adaptation, it is assumed 

that each frequency can be divided by its frequency of occurrence, meaning 

that those frequencies most commonly occurring will be the most attenuated. 

This is achieved by manipulating the luminance CSF as follows: 

csf𝑎𝑑𝑎𝑝𝑡(f) =
csf𝑙𝑢𝑚(f)

(1
𝑓⁄ )

1/3 =𝑓1/3. csf𝑙𝑢𝑚(f) 

 

(7.4) [70] 

The adaptation exponent of 1/3 is included to prevent too much attenuation of 

low frequencies and emphasis of high frequencies. 
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The adaptation was applied to the modelled CSF prior to it being applied to the 

image in the frequency domain. The shape of this function after normalisation 

is shown in Figure 7.2. Note that the DC value (at zero cpd) is maintained at a 

value of 1 in both cases. The original function when calculated from (7.1) [70] 

consisted of values ranging from 0 to approximately 120 for the peak value. 

The f term multiplier in the equations means that the DC value is going to be 

zero after application of the CSF filter. The DC value defines the average 

luminance value of the image, therefore it should remain unchanged during 

frequency space processing or the overall brightness of the image will change.  

After consultation by email with the authors of [64] the shape of the functions 

below was achieved by shifting the original luminance CSF towards the x-axis 

and by 1 cpd (also recommended in [64]). This meant that the zero cpd value 

was now what had been the 1cpd value (a value of approximately 60). This 

new value was used to normalise the entire curve. Although it meant that the 

peak of the CSF was shifted by 1cpd it was still within the range of 4-8cpd. 

Once normalised the curve maintained its band pass shape even after 

adaptation. 

 

Figure 7.2 The Movshon-Kiorpes achromatic CSF before and after adaptation from [64]. 

Application of the CSFs was implemented in MATLAB as follows: 

1) The CSFs and adapted CSF functions were defined as two-dimensional, 

rotationally symmetrical functions of the same dimensions as the 

image. 
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2) The image channels were separated and transformed to frequency 

space using the fast Fourier Transform function. 

3) The magnitude and the phase of the frequency spectrum were 

separated. The CSFs were applied to the magnitude component only. 

4) The inverse fft2 of the result was taken to produce a filtered image. 

7.3.3 Conversion to Non-Linear IPT space 

The frequency space processing had been applied to a linear image. The 

remainder of the processing was to be applied to images with perceptual non-

linear transfer curves applied. The images were therefore transformed from 

IPT space to LMS values using the inverse of the forward LMS to IPT transform 

matrix. The LMS non-linear transfer functions were applied before the images 

were again transformed into non-linear IPT values. 

7.3.4 Edge enhancement 

The busyness metric derived by Triantaphillidou in [34] had been adapted for 

the work in chapters 5 and 6 to the different image size and viewing conditions 

and had been found to correlate with the subjective results of the 

psychophysical experiments. The metric consists of five stages: 

1) The image is thresholded using Otsu’s method to define a global 

contrast threshold. The method minimises intra-class variance between 

black and white pixels in the result. The position of the threshold is 

scene dependent. 

2) An additional threshold is set, which is used as a multiplier for the 

threshold defined in (1). This multiplier defines which parts of the 

image will be included as part of the ‘busy’ segment. It is a function of 

image size and viewing distance and was determined empirically both 

in the work in chapter 4 [34] and in chapter 5, by applying the metric 

and evaluating the result. A threshold of 0.04 was used in the images in 

chapter 4, and a value of 0.13 was found to work best for the images 

used in chapters 5, 6 and 7. 

3) Sobel filters are applied in the horizontal and vertical directions. 
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4) For the busyness metric, the resulting binary image was dilated, and 

holes filled to produce the segmented image. 

 

Figure 7.3 Stages of busyness metric (reproduced from chapter 4 and [34] for reference) 

A version of this was adapted to provide edge localisation to the luminance 

image channel. 

The adapted version was as follows: 

1) The Otsu algorithm was applied to the original image to obtain the 

image specific threshold. The original threshold of 0.13 was maintained. 

This produced a thresholded mask image. 

2) Horizontal and vertical 3 x 3 sobel filters were applied by convolution 

to the processed image to produce two gradient images. 

3) The magnitude of the two edge images was taken, using:  

gr ad=( gh2+gv 2) 0. 5,  where gh and gv were the horizontal and vertical 

gradient images. 

4) The outputs from (1) and (3) were multiplied together to produce an 

edge mask. This was then added to the image to sharpen it. 

The results from 1), 3) and 4) can be seen in Figure 7.4. 

 

1 - Original image 2 - Binary gradient mask 3 - Dilated edge 

5 - Eroded (final) image 4 - Holes filled 
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Figure 7.4 Edge masks developed from the busyness metric and used for spatial 
localisation module in the MDIM. Top left: thresholded output after applying Otsu’s 
method to gain an image specific threshold. Top right: edge magnitude image. Bottom: 
resultant edge mask image, obtained by multiplying the other two images together. 
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7.3.5 Local contrast detection 

A final module was used to implement local contrast detection based upon a 

method by Moroney [180]. A low pass filtered version of the image (obtained 

by applying a 10 x 10 averaging convolution filter) was used as a mask and the 

following equation was applied to provide local contrast correction: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑚𝑎𝑥 ((
𝑖𝑛𝑝𝑢𝑡

𝑚𝑎𝑥
)

2
(

𝑚𝑒𝑑𝑖𝑎𝑛−𝑚𝑎𝑠𝑘
𝑚𝑎𝑠𝑘

)

) 

 

(7.5) [180] 

This function results in individual tone reproduction curves being generated 

per pixel – mask values greater than the median value result in an exponent of 

less than 1 and vice versa. Mask values equal to the median will give an 

exponent of 1 and the input value will be unchanged. 

7.3.6 Calculation of error metric 

The entire cascade of modules was applied to both reference and distorted 

images. From these I, P and T channels of the output of distorted image were 

subtracted from the output of the original to produce an error map. At each 

pixel position in the image, the following image difference measure was 

calculated, to give a single difference image. From this a mean value was 

calculated to give the final metric value. 

∆𝐼𝑚 = √∆𝐼2 + ∆𝑃2 + ∆𝑇2 

 

(7.6) [70] 

7.4 Structural Similarity Approaches to Image Quality 

According to Wang et al in [181]: ’ The most fundamental principle underlying 

structural approaches to image quality assessment is that the HVS is highly 

adapted to extract structural information from the visual scene, and therefore 

a measurement of structural similarity (or distortion) should provide a good 

approximation to perceptual image quality’. 
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Structural similarity methods are top-down full-reference metrics, which aim 

to quantify distortions without the necessity to know anything of the specifics 

of the imaging system (other than the HVS). 

As described in chapter 3, traditional distortion measures such as MSE do not 

correlate well with perceived distortion because they provide a simple 

difference measure, evaluating the magnitude of errors without reference to 

their direction, their visual impact, or the impact of masking processes; and 

based upon the assumption that individual image values are statistically 

uncorrelated and independent of each other. The problem with this approach 

is that very different distortions can produce the same level of errors, for 

example, if an image is slightly rotated with respect to the original, it will 

produce a very high MSE value, but have little impact upon perceived image 

quality. 

The sophistication of the HVS is illustrated by various psychological 

phenomena known as visual constancies. These are learned principles of 

perception, which allow us to perceive objects in the world as the same 

regardless of the different images that they may project onto the retina. 

Examples include shape and size constancy, and colour and brightness 

constancy. The local effects of change to luminance or contrast, for example 

when an object is partially in shadow, do not prevent the HVS from 

understanding an image, as if the HVS is subtracting their effects during object 

recognition. 

The structural similarity approach aims to separate out image quality 

attributes and in particular the influence of illumination, which may have 

impact upon local variations in luminance and contrast, from structural 

distortions [181], which are likely to have more of an impact on quality. A 

summary diagram of this approach is shown in Figure 7.5. 



 251 

 

Figure 7.5 ‘Details of the Structural Similarity Measurement System’ from [174]   

7.4.1 Structural Similarity Index Metric (SSIM) 

The SSIM algorithm is usually applied only to a luminance channel, although 

this is not a requirement. Therefore for the purposes of this experiment, the 

image was converted from sRGB to the non-linear version of IPT (as described 

earlier and in appendix F). The metric was applied to the I channel only. 

The SSIM metric was implemented in MATLAB using the SSIM.m code provided 

by Wang et al and available to download from [182]. The code includes a down 

sampling stage, in which the image is first low pass filtered and then down 

sampled by a factor determined by the image size. This is based upon advice 

given in the readme file on suggested usage. In this implementation, images 

were down-sampled by a factor of 2. 

Let x and y denote the original and the distorted images respectively. The 

algorithm is applied to the image using a series of windows, the default size of 

which is 11 x 11 pixels, and the distortion map is formed from the combination 

of the outputs from all the windows. Using smaller windows enables the effects 

of local luminance and contrast differences to be evaluated using local 

statistics. 

In each window, the following comparison measures are applied [181]: 

1) The luminance of the signal is estimated by the mean intensity: 
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𝜇𝑥 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

 

(7.7) [181] 

Where N is the total number of pixels and xi is the intensity of the pixel 

at position i. The luminance comparison is a function of the mean 

intensities from the original and the distorted image (denoted by x and 

y subscripts) in the same window: 

𝑙(𝑥, 𝑦) = 𝑙(𝜇𝑥, 𝜇𝑦) 

 

(7.8) [181] 

2) The standard deviation within a local window is used as an estimate of 

image contrast: 

 

𝜎𝑥 = (
1

𝑁 − 1
∑  (𝑥𝑖

𝑁

𝑖=1

− 𝜇𝑥)2)

0.5

 

 

(7.9) [181] 

And the contrast comparison is: 

𝑐(𝑥, 𝑦) = 𝑐(𝜎𝑥, 𝜎𝑦) 

 

(7.10) [181] 

3) The signal is now normalised by dividing by its own standard deviation 

and the structure comparison is as follows: 

𝑠(𝑥, 𝑦) =
2𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
 

 

(7.11) [181] 

The constant 𝐶3 is introduced top and bottom to prevent numerical overflow caused 

by a zero denominator. 

The SSIM Indices are computed by a combination of the three measures with 

weighting parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝛾: 
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𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)𝛼 . 𝑐(𝑥, 𝑦)𝛽 . 𝑠(𝑥, 𝑦)𝛾] 

 

(7.12) [181] 

If 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 are set to 1 and C3= C2/2, then a specific SSIM index is produced: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥 , 𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1)(𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2
 

 

(7.13) [181] 

This final index was applied to each window, to produce an SSIM map the same 

size as the down-sampled image. As for the modular image difference model 

the statistics from this map can be used to provide single valued measures of 

quality. In this experiment the mean of the SSIM index map was taken. 

7.4.2 Multi-scale Structural Similarity Index Metric (MSSIM) 

The MSSIM [175]uses a lifting structure to compute the SSIM at different 

scales. This could be interpreted as incorporating an approach similar to the 

multichannel model of the HVS into the metric. As JPEG 2000 is based upon a 

multi-resolution transform, this might prove to be a particularly appropriate 

metric. 

The metric uses multiple stages of low-pass filtering followed by down-

sampling as shown in  

 

Figure 7.6 ‘Multi-scale structural similarity measurement system’ reproduced from [175] 

The original and distorted images are each passed through a low pass filter, 

and then down-sampled by 2. At each scale the individual comparison 

measures are computed (although not all of them are computed at every scale). 
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If the original scale is scale 1 (i.e. before any down-sampling has taken place) 

and the highest scale is scale M, the MSSIM is expressed as follows: 

 

 

(7.14) [175] 

The luminance comparison is only computed at scale M, while the contrast and 

structure comparisons are computed at all scales. The weighting factors are 

separate for each scale. As described in [175] the weightings could be linked to 

the CSF, but it is pointed out that the CSF functions are calculated at visibility 

thresholds whereas the images being evaluated are complex and the 

distortions are supra-threshold. 

In this work, the MSSIM was applied again to the image in a non-linear IPT 

colour space on theI channel only. The algorithm was applied in MATLAB, 

adapted from code written by the authors of [175] and downloaded from 

[182]. 

7.4.3 The Three-Component Weighted SSIM (WSSIM) 

The three-component weighted SSIM was developed by Li and Bovik and is 

described in [176]. While the SSIM separates out and weights components of 

the scene, this adaptation considers the scene in terms of three types of 

‘features’: edges, textures and uniform areas. The three areas can be unequally 

weighted depending upon the distortion being tested. The reasoning behind 

this separation is based upon the relative importance of edges for object 

recognition, and the high sensitivity of the HVS to edge distortions, particularly 

in the luminance channel. If an image has a large area of texture however, this 

may mask any distortions. Although distortions will show up in uniform areas 

of an image, these can be the least susceptible areas to errors and therefore 

they can be considered to have less of an impact on image quality. 

In this research the busyness metric was used to segment the image in terms of 

its texture. As in 7.3.4, horizontal and vertical Sobel filters were used to 

MSSIM (x, y) = lm(x, y)[ ]
aM

[c j (x, y)]b j[s j (x, y)]g j

j=1

M

Õ
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identify edges, and were combined to produce a magnitude image. From 

testing it became clear that a 3 x 3 Sobel was not adequate to identify 

significant edges in all images. The gradient magnitude image was therefore 

processed with a dilation filter above a threshold, which was determined from 

the edge image again using the MATLAB gr ayt hr esh function, which 

identifies a scene specific threshold using Otsu’s method. This had the effect of 

identifying and enhancing the strongest edges within the image (assumed to be 

the most visually important). The output of this operation was a binary edge 

image mask. 

The busyness metric as described in 5.4.1 was again used with a threshold set 

at 0.13, which had been determined visually through inspection of the 

segmentation of a number of images. The output at this stage was a binary 

mask, which segmented the image into busy and non-busy areas. The edge 

mask image was subtracted from this mask, leaving a mask, which identified 

busy areas, but did not include their boundaries, which were part of the edge 

mask. 

The final stage was to compute the uniform areas binary mask. This was 

computed by subtracting the other two masks from a mask image, and so 

included whatever was left. The output masks for the three image areas are 

shown in Figure 7.7. 

The SSIM metric was applied to the entire image to create an SSIM index map. 

The masks were then each multiplied by the map to get SSIM maps for each 

feature. The average value for each SSIM map was then computed using only 

the non-zero elements (i.e. those included in the mask). Finally the mean 

values of the masks were weighted and combined. In the original 

implementation of this method the weights proposed in [176] were: 0.25 for 

textured and uniform areas, and 0.5 for edges. However, it was found through 

testing that this approach gave too much weight to uniform areas. Alternative 

weights were therefore tested and the eventual weightings were: Edges=0.6; 

textures=0.3 and uniform areas=0.1. 
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Figure 7.7 Example of image segmentation in the Three-Component Weighted Structural 
Similarity model. Anti-clockwise, from the left are the masks for edges, texture areas and 
uniform areas. White pixels indicate that pixels are classified in that image feature. 

7.5 Results  

The error metrics were calculated for all of the images and the results plotted 

against the quality ruler results from chapter 6. Because the MDIM is a 

measure of errors, or differences from the (group average) ‘original’ in terms 

of JNDs, the quality ruler values were calculated in terms of quality loss from 

the original (by subtracting the original average value from each) and these 

were used in the plot instead of the raw data.  For the three structural 
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similarity metrics, where the values reflect a measure of similarity rather than 

difference, the values were plotted directly against the JNDs. 

The JNDs values used were from the raw un-calibrated data. This was because 

one of the aims of the work was to explore scene susceptibilities and the 

calibration process removed these to a large extent. 

 

Figure 7.8 Results for the modular image difference metric. High values indicate larger 
visual differences 

The results from the modular image difference model were plotted against 

compression ratio. Figure 7.8 illustrates a clear separation in the response to 

by the metric to different image types. In particular the scenes at the bottom of 

the plot are those that show the least difference from the original. The three 

lowest images were ‘Lamp’, ‘Summer’ and ‘Kids’. The images at the top of the 

plot, indicating the largest differences were images with lots of texture: 

‘Flower Garden’, ‘Seagull’, ‘Cliff’ and ‘Stones II’.  

The results for all four metrics are shown as scatter plots, with objective metric 

plotted against subjective ratings, or difference ratings, in figures 
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Figure 7.9 Average ΔIm from the MIDM values for all images plotted against relative 
difference JNDs from the data from the soft copy quality ruler in chapter 6. 

 

Figure 7.10 Mean SSIM values for all images plotted against JNDs obtained from the 
quality ruler experiment in chapter 6. 
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Figure 7.11 Mean MSSIM values for all images plotted against JNDs obtained from the 
quality ruler experiment in chapter 6. 

 

Figure 7.12 Mean WSSIM values for all images plotted against JNDs obtained from the 
quality ruler experiment in chapter 6. 

The data in all cases appears to exhibit a correlation between the metric scores 

and the subjective JNDs. Therefore correlations between the data were 

calculated using Pearson’s correlation coefficient for linear correlation and 

Spearman’s Rank correlation coefficient. In all cases p-values were calculated 

for the null hypothesis (i.e. a measure of how likely the results would be if the 

null hypothesis was true). The correlation coefficients and p-values are shown 
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in Table 7.1, and indicate strong correlations between the SSIM, MIDM and 

WSSIM and the subjective data and moderate correlation between the MSSIM 

and subjective scores. P-values against the null hypothesis indicate that all the 

results are significant. 

 Modular 
Image 

Difference 
Metric 

(MIDM) 

Structural 
Similarity 

Index (SSIM) 

Multi-scale 
Structural 
Similarity 

Index 
(MSSIM) 

Weighted 
Structural 
Similarity 

Index 
(WSSIM) 

Pearson’s 
Linear 

Correlation 
Coefficient 

-0.7333 0.9123 0.3855 0.7978 

𝝆 𝒗𝒂𝒍𝒖𝒆 2.067 x 10-17 3.716 x10-38 1.0500 x 10-4 2.2618 x 10-22 

Spearman’s 
Rank 

Correlation 

-0.7296 

 

0.909900 

 

0.438300 

 

0.841700 

 

𝝆 𝒗𝒂𝒍𝒖𝒆 3.4039 x 10-17 1.0831 x 10-37 7.9384 x 10-6 6.7691 x 10-27 

Table 7.1 Correlation coefficients and p values for the four metrics against subjective JNDs 
of quality from the experiment in chapter 6  

7.6 Summary 

Four objective metrics were tested with a subset of the image set generated for 

the experimental work in chapter 5. Two types of metrics were chosen: the 

Modular Image Difference Model (MIDM), which may be regarded as a bottom-

up appearance modelling metric, which uses modules to model the effects of 

the HVS on data and then evaluates the difference between the original and 

distorted image; and three types of Structural Similarity Index Metrics, which 

evaluate similarity between original and distorted image by using separate 

terms for luminance, contrast and image structure.  

The MIDM was the most complex to implement but allowed a great deal of 

flexibility in terms of allowing individual modules to be included, omitted or 

‘tuned’ for a particular image type or context. 
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8 Discussions 

The aim of this research has been to explore image quality evaluation in 

relation to lossy compression as an example of one of the many sources of 

digital artefacts that may be introduced during the imaging chain. There are 

many different approaches to image quality evaluation depending upon 

disciplinary perspectives and imaging context. When usefulness or fidelity are 

not key requirements of an imaging process, acceptable image quality is more 

difficult to define. This research has focused particularly upon scene 

dependency inherent in image quality evaluation. Although JPEG 2000 is no 

longer a new compression method, and numerous studies have been done to 

evaluate its performance since its introduction, the algorithm has not been as 

widely adopted as baseline JPEG, other than in specialist imaging applications 

such as medical or forensic imaging and it is in these contexts that research has 

tended to focus. There is relatively little research that has explored subjective 

image quality of JPEG 2000 in a general purpose imaging application. This may 

be because of the increased use of raw workflows in professional imaging, 

partly facilitated by improvements in processing and storage. It may also be 

because the JPEG algorithm is good enough when applied to high resolution 

and high quality images, to allow it to remain the de facto standard image 

format for multiple imaging applications. Nevertheless, as the focus of this 

research has included the impact of scene dependency on image quality 

studies, JPEG 2000 has proved to be a useful case study. 

8.1 Quality Comparison of JPEG and JPEG 2000 

Although some comparative studies of JPEG and JPEG 2000 have been 

implemented, they have tended to focus upon distortion metrics, and so there 

are not many results from subjective studies available.  

The performance of JPEG and JPEG 2000 was compared in this experimental 

work using paired comparison tests and a series of images of varying scene 

content. A particular focus of the work was the scene dependency of the two 

algorithms. Scene dependency is well known to affect image quality evaluation. 
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Jacobson and Triantaphillidou in previous work [22] proposed that scene 

classification using simple metrics might be a useful approach to evaluating 

scene dependent effects in image quality. Steingrimmson et al [120] suggested 

that some less predictable results in a JPEG and JPEG 2000 comparison study 

might be linked to the scene susceptibility of the algorithm. 

The architecture of the two compression schemes causes certain specific and 

different artefacts. In JPEG the blocking artefact is the most obvious, caused by 

inaccuracies in reconstruction of image blocks as a result of quantization 

resulting in discontinuities at block edges. Like contouring (and sometimes 

with a similar appearance), blocking was highly visible in uniform or low 

frequency areas. JPEG 2000 does not suffer from blocking unless the image is 

tiled. The separate encoding of different scales of the image as a result of the 

multi-resolution nature of the DWT and the variable size of the quantizers used 

in the different sub-bands mean that the most obvious JPEG 2000 artefact is a 

localised blurring artefact (see Figure 4.2). Both algorithms also suffer from 

ringing artefacts and colour distortions. JPEG is more susceptible to ringing; it 

is the result of the truncation of high frequencies, which in JPEG are localised 

by image block. The effects of ringing in JPEG 2000 are at different scales, and 

this may be the reason that JPEG 2000 is better at compressing text. 

A set of images was selected for the experiment with varying scene content 

and characteristics, to enable the exploration of the effects of scene 

dependency of the algorithms. The scenes were classified in a separate study 

[34]using a range of different scene metrics to quantify attributes of tone, 

colour and scene busyness and information content. The original images were 

obtained from various sources, including some of the ISO standard test images 

and some images from a Kodak Photo CD. They were obtained in their original 

form at a low enough resolution so that they might be displayed at full size on 

screen without requiring resizing and incurring interpolation artefacts. The 

low resolution of the images meant that they were highly susceptible to 

compression artefacts from both algorithms.  
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The different appearance of the artefacts meant that they were more or less 

obvious in different types of scene content. Blocking tended to be more visible 

in uniform areas. Blurring artefacts became very evident around edges where 

they appear smudged, and in areas of random texture. Ringing was 

problematic near high contrast edges.  

The results of the paired comparison test indicated that on average JPEG 2000 

images were preferred over JPEG for most scenes across the entire 

compression range. The results for individual scenes however indicated clear 

scene dependency of the two algorithms and as observers assessed all images 

suggested that this was less to do with observer quality criteria but 

predominantly as a result of the scene dependency of the algorithms and 

masking effects. The results from this and the associated study indicated that 

scenes could be grouped according to their relative susceptibility to the 

artefacts of one or the other algorithm. The scene measures used supported 

these results. The images used in this study were very low resolution and 

therefore it could be suggested that they were more susceptible to errors than 

the file sizes more typical from contemporary digital cameras. 

JPEG 2000 was found to clearly outperform JPEG in scenes that were 

predominantly light in tone, achromatic, and possessing large uniform or low 

frequency areas. These scenes were successfully grouped from their results 

from scene metrics quantifying scene global intensity and busyness. 

The largest quality loss from lowest to highest compression ratio was found in 

scenes that shared a range of characteristics including significant amounts of 

fine detail in areas which might be considered to be focal points. These scenes 

were correlated in their results from the scene measures, with high values and 

rankings for busyness, colourfulness, and number of lines, and average to low 

rankings for global intensity. The subjective ratings for both algorithms were 

very low at high levels of compression. JPEG 2000 performed better than JPEG 

possibly because all had text or periodic patterns within them, which were 

very susceptible to ringing. 
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There were some scenes in which JPEG was preferred to JPEG 2000 either at 

very high compression ratios or across the entire range. These images were 

average for many of the scene measures but contained some texture or multi-

coloured detail, which was blurred by JPEG 2000, while blocking artefacts 

were masked. 

The results indicate that the nature and visibility of artefacts are of primary 

importance in image quality evaluation of compression. Their interaction with 

scene content produces results that are difficult to predict using simple 

distortion metrics. Scene metrics proved useful in grouping images according 

to their scene content and susceptibility to the processes. 

Key findings from the experimental work in chapter 4 are as follows: 

JPEG 2000 is capable of achieving much higher compression ratios than JPEG 

across most images. The results from both JPEG and JPEG 2000 are highly 

scene dependent, due to the nature of their characteristic artefacts. Such scene 

dependencies are mainly due to the architecture of the algorithms and their 

operation on specific scene content, as well as the visibility of the artefacts in 

particular scenes.  

For most scenes, there are small gains in quality for JPEG 2000 compared to 

baseline JPEG across the entire compression range (up to 80:1). JPEG 2000 

outperforms JPEG in terms of subjective quality for the majority of images at 

high compression rates (>60:1). This is likely to be due to the localisation of 

errors within JPEG, and the visibility of the blocking artefacts produced by 

JPEG compared to the smoothing produced by JPEG 2000. The differences in 

performance between the two algorithms is much less noticeable at lower 

compression ratios, (<40:1) and indeed, the slight sharpening effect of the 

increased ringing artefacts in JPEG is judged as a quality improvement in some 

images. 

At high compression ratios blocking artefacts are generally more bothersome 

than smoothing artefacts in images containing large areas of flat tone or low 

frequencies. However the opposite is the case in areas of texture, which do not 
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mask the blurring artefacts so well and where fine detail can start to break 

down very visibly. 

JPEG 2000 produces less distortion of text and numerical data than JPEG. Large 

areas of fine detail within images may mask blocking artefacts, and in such 

images the smoothing artefacts produced by JPEG 2000 may reduce perceived 

image quality. 

JPEG 2000 outperforms JPEG in terms of error resilience across most images 

and most of this compression range. PSNR is an inadequate predictor of 

subjective image quality and in particular the scene dependency affecting 

image quality studies. 

8.1.1 Additional experimental work based upon the first image set 

Following the work detailed in this chapter, a number of additional studies 

were undertaken using the same set of images.  

The first was an investigation into perceptibility thresholds for JPEG 2000, the 

results of which were presented at the Royal Photographic Society Digital 

Futures conference (see Related Work, 10.2). Using a paired comparison test to 

evaluate thresholds of perceptibility of distortions, this work laid the 

foundations for the work undertaken in chapter 5. Key findings from this work 

were that the perceptibility thresholds were highly scene dependent, that the 

average 50% JND threshold (i.e. where 75% of observers noticed a difference) 

for this image set was close to 20:1 and that, as had been demonstrated in the 

experiment from chapter 4, the thresholds were correlated with image 

busyness. 

Additional work was carried out by Orfanidou et al [183] used the same set of 

images and the interval scaling results to investigate the use of the Modular 

Image Difference Model for image quality evaluation. The implementation was 

somewhat different to the version described in chapter 7 of this research. 

Orfanidou found that the metric was able to usefully predict the scene 

dependencies in the subjective results. 
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The images used in chapter 4 were of rather low resolution. Increases in 

potential bandwidth and improved sensor technologies even in mobile phone 

cameras mean that typical image resolutions tend to be higher than the ones 

investigated here. 

8.1.2 Recent Research into JPEG, JPEG 2000 and other standards 

Research has been ongoing into JPEG 2000, with particular reference to its 

applicability and performance in specialist imaging applications. As a 

compression format it has been adopted, for example, in various applications 

in medical imaging. It is the preferred format [184] for the lossless encoding of 

Digital Mammogram images, providing many features that are useful in 

reliable image transmission and fast image database access. 

Recent research [185] has explored the use of JPEG 2000 as a visually lossless 

format for Remote Image Browsing. The format lends itself particularly to this 

application, as it is now often a requirement to allow panning and zooming 

when viewing images remotely.  The resolution scalability of JPEG 2000 helps 

to facilitate this process. The research proposed embedding scalable 

quantization step sizes into the JPEG compressed bit stream, to allow the 

image to easily be zoomed at multiple resolutions. The researchers found that 

the use of the JPEG 2000 resulted in significant reductions in required 

bandwidth compared to other formats. 

A recently published study [186]compared the performance of JPEG 2000 and 

JPEG with a newly developed adaptation of baseline JPEG 1992 algorithm, the 

CSI-JPEG, which uses cubic spline interpolation. The performance of the three 

algorithms were evaluated in terms of compression rate, colour accuracy and 

visual quality and found that JPEG 2000 and CSI-JPEG outperformed baseline 

JPEG 1992 for small colour differences. These results were correlated with 

visual data. 

The Joint Photographic Experts Group recently brought out a new standard, 

JPEG XT (for JPEG Extension) [187], which has a significant advantage in that it 

is backwards compatible with JPEG (whereas JPEG 2000 is a completely 
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different algorithm). This new format makes use of the additional functionality 

in the original JPEG specification that has not found previous widespread use. 

For example, there is a high precision 12-bit depth mode in the original 

specification that was not included in the JPEG File Interchange Format (JFIF) 

(one of the most widely adopted implementations of baseline JPEG). JPEG XT 

offers a number of useful features, such as this higher bit-depth encoding and, 

enhancements to allow high dynamic range encoding which will allow the 

original 8-bit version of an HDR image to be stored in the baseline format with 

an extension layer for the High Dynamic Range version of the image. JPEG XT 

also supports lossless encoding. Although there is a lossless mode in the 

original JPEG standard it has not been widely adopted and therefore is not 

included in many implementations of JPEG. Further features include the coding 

of opacity information and a privacy and security standardisation initiative to 

enable control of image distribution across networks. Potential future 

extensions include the possibility of encoding 360-panoramic images and 

animated JPEGS. 

8.2 Perceptibility and Acceptability of JPEG 2000 

This study explored the relationship between perceptibility and acceptability 

thresholds of compression across a range of different scenes. The results 

indicated a significant correlation, for most images, between perceptibility and 

acceptability thresholds for JPEG 2000.  

Although the acceptability context was not clearly defined to observers prior to 

the experiment, the results for acceptability thresholds across the observers 

were relatively consistent and the derived psychometric curves fit the 

observed acceptability data reasonably well, for the majority of images.   

Scene characteristics of the test images were evaluated using simple scene 

descriptors (median, variance, histogram skewness, busyness, chroma 

variance) [35,34] A strong statistical correlation was found between the 

busyness descriptor and both perceptibility and acceptability thresholds 

across all the scenes, demonstrating the susceptibility of highly textured 



 268 

scenes to JPEG 2000 distortions as well as the scene dependency of the 

algorithm, due to the localized nature of the blurring distortions [33] [34] 

The images were grouped according to the level of their perceptibility and 

acceptability thresholds, and the values from the scene metrics. Scene 

characteristics other than busyness did not correlate with the thresholds 

consistently across all of the images, but there was good correlation within the 

image groups, particularly with the descriptors for scene lightness (median 

and skewness). 

Images with high thresholds were found to have low busyness and either 

higher than average, or lower than average lightness. In these cases, the 

contrast of the blurring distortions affecting light or dark areas within the 

images was low and therefore less visible. The reduced contrast also meant 

that the ringing artifact was not very visible. 

Images within groups with low thresholds were also found to correlate across 

the scene descriptors. Busyness was the biggest influencing factor, but its 

effect on the thresholds depended upon the visual importance of the busy 

areas within the image. If the image area contained a large proportion of busy 

areas, or if important features were very detailed, distortions (particularly the 

blurring artifact) became both visible and bothersome. The majority of images 

with low thresholds were low to average in terms of lightness. 

The other scene descriptors (variance and chroma variance) were also 

reasonably well correlated within the groups. Chroma variance in particular 

seemed to be higher in (most of) the images with low thresholds. This might be 

because either the blurring artifact is reducing contrast, or that the blurring 

and ringing artifacts are obvious in these images, which contain lots of high 

contrast and highly chromatic areas. 

Research by Alers et al [188] has shown that image regions are unequally 

weighted in terms of visual significance by observers in image quality studies. 

The scene dependency of JPEG 2000 and the localization of its distortions 

mean that it affects some image areas more than others. The distribution of 
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salient features [189](i.e. significant focal points in the image), their area in 

relation to the overall image area, and their susceptibility to distortion as an 

influence upon image quality warrants further investigation in this context. 

The results from scene descriptors indicate that in some cases they are useful 

for predicting performance. But the choice of metrics will define this, and other 

metrics might better identify natural texture, for example. The metrics have 

proven useful in grouping scenes, and particularly in identifying scenes that 

are more or less susceptible to JPEG 2000 distortion artefacts. 

8.3 Soft Copy Quality Ruler 

This investigation implemented the soft copy quality ruler according to ISO 

20462 part 3 for a subset of the scenes compressed with JPEG 2000 for the 

investigation in chapter 5. The results indicate that the quality ruler can 

usefully be used to determine quality loss as an alternative to a paired 

comparison test. The SCQR was complex to prepare but once the JND filters 

were defined it was found easy to create quality rulers from a range of 

different scenes. 

Certain aspects of the imaging workflow meant that the final measured system 

MTF did not conform well to the aim MTF. In particular, the processes of 

sharpening and downsizing for display meant that the system MTF deviated 

significantly from the aim MTF particularly at lower frequencies between 0 

and 10 cycles per degree. Further investigation into the effects of non-linear 

processing on ruler results is warranted.  The effects of the processing upon 

the MTF were not anticipated at image capture, because the image capture and 

processing was carried out before the decision to use the SCQR was made and 

the non-linearities in the system MTF therefore had to be accommodated in  

modelling of the aim MTF, which added an extra layer of complexity to the 

work. 

The approach used to both shape the system MTF to the aim MTF and to 

produce the JND filters is novel. The method was highly successful in modelling 

the aim MTF. However, the best-fit polynomial function had to be determined 
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by a process of trial and error. One of the issues was the need to ensure that 

there was no sharp drop off of values in the MTF, which would have introduced 

ringing in the image. Further work could be done to investigate other methods 

for producing a smooth function in the frequency domain, for example the use 

of a windowing function. 

These complications could be avoided if the implementation of the SCQR was 

known beforehand, by further limiting the processes affecting the system MTF. 

This would be perfectly possible if the images were going to be developed as a 

reference set. But it is more difficult to apply such restrictions if quality rulers 

are to be generated for many typical image processing workflows. 

Observers found the ruler relatively intuitive to use once they fully understood 

the task. Their comments indicated that some images were more difficult to 

scale than others, particularly those with differential sharpness in the scene, 

which might be a limitation in its application. The test was quite time 

consuming for some observers, perhaps because it took a while for them to 

understand the task. It would be useful to develop a test set of images, which 

could be used as a training set. A number of images could be randomly 

repeated in some of the sets of ruler images to investigate the consistency of 

observer results. 

+/-1 standard errors were used as error bars and these were plotted on all of 

the initial results. They indicated close agreement in the results at the top end 

of the quality ruler closer to the original, whereas the errors were much larger 

for all of the images at lower quality levels. This indicates that there is 

significant variability in tolerance of visible distortion across groups of 

observers. 

The quality ruler was successful in identifying most and least susceptible 

scenes, with results that correlated well with those from the paired 

comparison thresholds experiment in chapter 5. The ruler was also useful in 

identifying the most and least sensitive observers. The results indicated 

however that in this experimental work these observers did not bias the 

overall results. 
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The majority of ruler results appeared to fit a linear function. This was a 

somewhat surprising result, indicating that the perceived quality loss changes 

approximately linearly with compression ratio. However, the compressed 

images spanned a relatively wide range, and with only six images compressed 

images per scene it is possible that different results would have been achieved 

with a more finely sampled range of compression rates. 

The lack of inclusion of an original uncompressed image within the group of 

rulers is acknowledged as a weakness in these results; however, the scene 

average linear regression was extrapolated to model an average original scene. 

This was felt to be a pragmatic approach, particularly as there was good 

agreement in the scaling of the images at the top end of the scale (below the 

perceptibility distortion threshold) leading to low errors across the entire set 

of images. The use of the additional (hypothetical) uncompressed image was 

included and the trend lines were recalculated. It was found that there was 

very little difference in the gradient or position of the trend line in nearly all 

cases, but that the correlation of the data to the regression line was improved 

Figure 8.1.  

  

 

 

 

 

 

 

Figure 8.1 Quality ruler scales with and without a hypothetical average starting point. 

 

The quality rulers were calibrated according to the average scene relationship 

detailed in ISO 60462 [85] and the results can be seen in Figure 6.31. What is 

most interesting to note is that the scene susceptibility has almost entirely 
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disappeared as a result of the averaging process. While it is useful to have 

calibrated rulers for future work, it is less informative in this work when trying 

to explore scene susceptibilities. It is suggested that the rulers should 

additionally be calibrated against the DRS, to check whether this calibration 

method is accurate. 

On a conceptual level the quality ruler is an interesting approach. There are 

questions however about using a ruler based upon sharpness when one of the 

distortions that is being explored has a significant effect on sharpness.   

8.4 Image Quality Metrics 

The final experimental work in this research explored a number of objective 

metrics. Two types of metrics were investigated, one which attempted to 

model some of the perceptual effects of the HVS from the bottom up, and three 

variants of another type that simply looked at the structure of the image itself. 

The Modular Image Difference Metric was somewhat complicated to 

implement, but once the basic framework was created, its modular nature 

(which was reflected in the way that it was programmed) meant that it was 

quite easily adaptable, and there is potential for it to be further developed. The 

individual modules were not tested beyond the implementation due to time 

constraints. Aspects of the busyness metric were included in the framework 

for spatial localisation. The plotted results indicate that the modular image 

difference metric has clearly identified the scene dependencies within this 

image data set. Scenes that suffered a large amount of quality loss are further 

spread along the x-axis and reach higher in terms of the image metric. In 

particular the use of the adapted busyness metric at the spatial localisation 

stage of the metric appears can be seen to be reflected in the results, with the 

busiest images, (Cliffs, flower Garden, and Stones) forming a group highest on 

the plot, indicating that they scored more highly in the image difference metric. 

Images of less susceptible scenes are clustered closer to the centre, indicating 

less loss in both objective and subjective ratings. 
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 The results for individual images when plotted against compression ratio 

Figure 7.8 show a large vertical separation, which can be directly related to the 

busyness metric and possibly indicate that its effects need to be somehow 

attenuated. Of note is the fact that the image identified by the MIDM (see 

Figure 8.2) as having the highest value (i.e. the lowest in quality) was not one 

of the ones with very lowest subjective ratings, although it was one that was 

lower than average. This is likely to be due to the texture throughout the image 

having a masking effect for observers, which the MIDM did not model 

effectively. The texture dominates the entire image and does not dominate as a 

feature of interest. The objective metric however highlights it and this is likely 

to be because of its high level of detail meaning that it has a high busyness 

rating. In this case, busyness does not directly correlate with image quality. In 

its current form, the MDIM is too sensitive to busyness. The results also 

indicate that using the current structure it is not able to predict masking. 

 

 

 

 

 

Figure 8.2 Flower Garden The modular image difference metric gives the highest value for 
this image, which does not correlate with the subjective results.  

The results from the modular image difference metric indicate that it is 

monotonic with respect to subjective quality loss and is also able to distinguish 

between more or less susceptible scenes. The results illustrate the usefulness 

in tuning the metric with the addition of modules (or adaptation of existing 

modules) to highlight particular image attributes. In this case the spatial 

localisation module has been adapted using the busyness metric, which was 

found to provide good correlation with subjective results in previous chapters, 

to facilitate better prediction of quality results based on the busyness of 

images.  
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The filtering module used a relatively simple model for the achromatic CSF and 

was quite straightforward to implement. However, it is acknowledged that the 

CSF used, which was band pass in nature, was based upon CSF models for test 

targets, whereas the distortion metric is attempting to quantify suprathreshold 

detection in a complex image. Haun and Peli [190]suggest that the best CSF to 

use in image quality investigations might in fact be low pass rather than band 

pass (note that the chromatic CSFs used in chapter 7 were low pass). They 

suggest that when image quality is defined in terms of the errors between two 

images, the higher order statistics of images, which define the structures in the 

image (and relate to higher level cortical processing) ‘swamp the contributions 

of lower-order statistics’.  Recently, Triantaphillidou et al [191] described the 

measurement and modelling of more complex visual functions including the 

Contextual Contrast Sensitivity Function (cCSF); that is the contrast detection 

thresholds when measured within an image. Their results also suggest that the 

cCSF is lower than the Isolated Contrast Sensitivity Function, which is modelled 

from detection of single frequency targets against a plain background. 

Therefore the models used within this model may not be as suitable and it is an 

area that warrants further investigation. 

The strength of the MIDM in terms of its adaptability is also one of its 

weaknesses. It is easy to adapt and expand and therefore can quickly become 

complex by the addition of extra modules. As it becomes more complex 

however, the interactions between different modules become harder to 

predict. Each stage requires adequate testing both individually and in context. 

Therefore as a metric, it has great potential, but it is not straightforward to 

implement and requires careful testing to define the optimum modules and 

parameters for a given image quality context. The model is presented as a 

general framework; it would be useful to test some different structures to find 

the optimum workflow/modular structure for different types of image quality 

applications (for example, to tune it for images with specific characteristics). 

SSIM metrics have found widespread use over the last several years [176] [78] 

in part because they are so successful at predicting image quality. The results 
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for all of the metrics for all of the images showed that they had a correlation 

with the subjective results, both in terms of prediction and ranking. 

It is surprising however that the implementation of the MSSIM produced the 

least correlation and this warrants further investigation. The model was 

implemented using default settings and it might be that using a different scale 

might change the results. The scatter plot in Figure 7.11 indicates a wide 

spread of values. Further analysis is required to determine whether this is a 

result of scene dependency and if in fact the separation is a result of clustering 

of images according to their characteristics. 

The Weighted Structural Similarity Index is simple to implement, but in the 

current implementation gives lower correlation than the un-weighted version. 

Elements of the busyness metric were included in both the MIDM and the 

Weighted Three Component SSIM. The SSIM metrics were all relatively 

straightforward to implement but more difficult to adapt. 

It should be noted that these results were performed on the initial scene data 

before ruler calibration. Future work will include analysis of the objective 

results in terms of the calibrated rulers 

The Sobel filter proved useful for a number of the segmentation tasks.  

𝑔𝐻 = [
1 2 1
0 0 0

−1 −2 −1
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2 0 −2
1 0 −1

] 

Figure 8.3 Filter kernels for the Sobel edge detection filter. 

The filter is particular useful for edge detection because of its low 

susceptibility to noise. This is generally attributed to the fact that it is 

directional and while one direction is emphasising high frequencies by the 

application of positive and negative coefficients, there is an averaging process 

going on in the other direction in the same filter. The filters were useful when 

applied for edge enhancement in the spatial localisation module of the Modular 

Image Difference Model, but the response was not strong enough when used 

for feature extraction and therefore the results had to be dilated. 
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8.5 General Comments 

Chandler et al [192] [59] describe ‘Seven Challenges for Image Quality 

Research’, in which they comment on the general shift in the focus of image 

quality research away from the objective of gaining better knowledge and 

more accurate models of human visual processing and more towards metrics 

that fit the ground truth data currently available. Some of the key issues they 

discuss include how to improve masking models for use on natural images; 

how to deal with suprathreshold distortion; how to model the effects of 

distortions on an image’s appearance; and how to deal with multiple 

simultaneous distortions. 

The metrics tested in the final part of this work indicate different approaches 

to the image quality problem and highlight some of these challenges. As an 

example, the busyness metric has proved very successful at identifying images 

with more or less busyness. Therefore in the first few stages of this research it 

was useful in predicting image quality, because it was found that busy areas in 

the images were particularly susceptible to the blurring errors from wavelets.  

This can be very problematic for image quality if textured areas are salient and 

the distortions are affecting a salient part of the image (for examples, see the 

cliffs image). But conversely, if the entire image is busy, then the details can act 

as a contrast mask, as was seen in the Flower Garden image. Fundamentally, 

the effects of texture within an image depend upon its context within the 

structure of the image, for example whether it is in salient area, whether it is 

an area of texture isolated from the background, or whether the texture is in 

fact the background.  Therefore an approach whereby visual masking is 

considered only in terms of its effects upon the CSF does not give a complete 

picture of image quality. Chandler suggests that masking models require more 

research into ‘the interplay between recognition and masking’ [192], 

commenting that ‘recognisability has been argued to influence detection 

thresholds’, raising the threshold if the observer is unfamiliar with the content, 

i.e. it is not easily recognisable. 

The results in subjective tests must also be considered in terms of these issues 

of masking. Feedback from the observers who took part in the investigations in 
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chapters 5 and 6 indicated that once they became familiar with the parts of an 

image most affected by a particular distortion they found the image quality 

judgement easier and faster. The distortions became more recognisable and 

therefore their detection threshold went down.  

Chandler’s other questions are all highly relevant to this research. The results 

from the perceptibility and acceptability thresholds experiment indicate the 

effects of scene dependency upon thresholds. 

Structural Similarity models do not consider the imaging chain or visual 

processing and are far more concerned with the structure within the image 

itself. They have proved very successful in predicting image quality. One of the 

problems however with a top down approach is that although it can be very 

successful in predicting image quality effects, the lack of system modelling 

makes it more difficult to identify the causes of those effects, and to adapt 

systems or system components as a result of them.  

It would seem that a useful image quality approach would be to include aspects 

of both top down structural approach and the bottom up system modelling of 

more traditional signal processing approaches. Perhaps the modular image 

difference model or something similar can provide a framework for this. 
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9 Conclusions and Further Work 

Image quality knowledge and understanding has developed a great deal since this 

research began, particularly in terms of our understanding of visual perception, but also 

in terms of the approaches found to be most successful for image quality metrics and for 

subjective scaling. Metrics capable of accurately predicting image quality continue to be 

the ‘holy grail’ of imaging research, as a result of which many hundreds of metrics and 

their variants have been developed and tested over the last decade. Subjective scaling 

methods have also developed, but the time required for psychophysical experiments 

cannot keep up with the speed of technological development. The development of 

databases of images with known subjective quality ratings have also been useful for 

testing image quality metrics.  

9.1 Conclusions 

This research has resulted in the following conclusions: 

 The experiment described in chapter 4 investigated image quality of JPEG compared 

to JPEG 2000 and found that for most images JPEG 2000 was slightly preferred to JPEG 

although the difference in performance was rather small until compression ratios of 

>80:1, at which point JPEG 2000 was most commonly preferred. JPEG 2000 was found 

to be better in particular at compressing images containing text or periodic patterns 

than JPEG.  

 Both algorithms were found to be scene dependent and certain types of scenes were 

more susceptible than others. Image quality was generally more robust across the 

compression range for images with low busyness and those that were predominantly 

lighter or darker in tone. In all three of the subjective studies the images that 

performed least well in terms of image quality were those containing areas of texture 

in or near a focal point of the image. 

 Scene metrics are useful for grouping images and can be used to identify the 

characteristics of scenes that are more or less susceptible to perceived quality loss, 

either as a result of the interaction of the distortion with scene content, or due to 

masking effects. Scene groupings are algorithm specific and can be seen as a result of 

either scene susceptibility to distortions, or the characteristics of the distortions and 
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their visibility. The most useful scene metrics are likely to vary however depending 

upon the type of distortion(s). 

 The types of distortions affecting image compression, particularly JPEG 2000 

compressed images, are somewhat difficult to model as they are often combinations of 

more than one distortion (e.g. ringing,, blurring and colour distortions). However the 

use of scene metrics to evaluate the scenes that perform poorly in terms of image 

quality for a particular algorithm can be useful to identify susceptible scene 

characteristics and therefore some form of modelling of the visibility characteristics of 

the distortion. 

 Perceptibility thresholds provide information about the visibility of distortions, 

therefore scenes with very low or high perceptibility thresholds can help to inform us 

about visual masking and interactions either visually, or structurally between an 

algorithm and specific types of scene content. This can be informative when designing 

metrics, allowing the prediction of the effects of an algorithm on a particular scene 

type and incorporating elements (such as the busyness metric) into the metric to 

correctly weight those aspects of image content. 

 Acceptability thresholds are much more variable than perceptibility thresholds. 

Where images have a small difference between perceptibility and acceptability 

thresholds this indicates that the scene content results in distortions being highly 

visible. A larger difference between the two thresholds might indicate that although 

the distortion is visible it is not affecting visually important image areas. The 

variability may also be as a result of observer preference and quality criteria within 

the given imaging context. 

 The Soft Copy quality ruler is a relatively new approach to subjective quality scaling, 

which once set up, provides a method to extract quality JNDs directly from the results 

of a psychophysical experiment without lengthy analysis. The SCQR provides results 

that are consistent with those from the thresholds experiment in terms of image 

groupings. 

 The SCQR is usefully able to identify both scene susceptibility and observer sensitivity 

in an image quality study. 

 The approach used in the SCQR to model the system MTF to the aim MTF and 

subsequently to develop the JND filters was successful in producing the ruler images. 

Care must be taken however at image capture and during processing to try to 
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minimise non-linearities where possible because of the limitations imposed by the 

shape and range of the function used to model the JND filters. 

 The SCQR can be calibrated using the average scene, but this reduces scene variability 

and therefore may not be useful to accurately predict quality with respect to scene 

dependence. 

 The metrics used in chapter 7 all had moderate to very good correlation with the 

subjective data from the Soft Copy Quality Ruler in terms of prediction and ranking of 

image quality. The MSSIM performed the worst of the four and the SSIM was the best. 

However the analysis was carried out over all scenes and it would be useful to 

evaluate the results in terms of scene clusters derived from earlier psychophysical 

tests. 

 The modular image difference framework is adaptable and allows the addition and 

testing of further modules. In this implementation, aspects of the busyness metric 

were used to filter the images. However the results indicated that the metric was 

oversensitive to busyness and did not model masking effects. 

 The WSSIM used the busyness metric to segment the image in to textured areas versus 

edges and uniform areas. Values for the weightings were determined by a process of 

trial and error. These weightings can be tuned to the particular image content. 

9.2 Recommendations for Future Work 

 Create further sets of Soft Copy Quality Rulers from the remaining images in the 

set used in chapter 5. Test the existing SCQR images against the Digital Reference 

Set to check the efficacy of the calibration thus performed. Once calibrated the 

rulers can be made public as a resource for other researchers. 

 Investigate improvements to the implementation of the SCQR when creating the 

JND filters, for example using a windowing function. 

 Make the sample set of reference images available as a database, together with 

information about perceptibility and acceptability thresholds and scaled to the 

SCQR. 

 Develop some practical guidelines to support others in producing their own SCQR 

images using the method developed in chapter 5. 

 Further analyse the results from the metrics by scene to investigate which of the 

metrics are best at highlighting scene dependencies. 
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 Explore alternative scene metrics or combinations of metrics for different scene 

types. Provide scene metric values with the images developed for the SCQR. 

 ‘Tune’ the different modules used in the MIDM to provide less emphasis on 

busyness. 
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Allen, Elizabeth, Triantaphillidou, Sophie and Jacobson, Ralph E. (2007) Image quality 
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Appendices 

Appendix A Test Images Chapter 5 

Final set of 25 images, used in the thresholds experiment (captured by the author) 

 

01_accordion.tif

04_bride.tif

07_Crown_Antiques.tif

10_formal.tif

13_huddle.tif

02_Afternoon_Tea.tif

05_cliffs.tif

08_Emporium.tif

11_Fred.tif

14_kids.tif

03_beach goods.tif

06_Crockery.tif

09_Flags.tif

12_Hive Beach.tif

15_Lamp.tif
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16_Lilies.tif

18_pink flowers.tif

20_Pool.tif

22_Serpent.tif

24_stones_II_.tif

17_Marle Sculpture.tif

19_Players Navy.tif

21_Seagull.tif

23_Flower Garden.tif

25_Summer.tif
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Appendix B Display Characterisation 

Display characterisation of the CG245W was performed by Jae Young-Park. Figures, tables 

and captions are from [89] 

10.4.1.1 Devices 

Display: EIZO CG245W 
PC: DELL Optiplex 760 with an ATI Radeon HD 3450 graphics card 
Calibrator: GretagMacbeth i1Pro display calibrator & Built-in calibration sensor 
Colorimeter: Konica-Minolta CS-200 (Field of view was set to 0.2 degree) 
 

10.4.1.2 Environmental conditions 

Temperature: 20 degrees Celsius 
Relative humidity: N/A 
Illumination condition: Total darkness 
Warm up time: 1 hour (calibrated before the measurement of each characteristic) 
Object distance: 150 cm (Effective screen height: 32.4 cm, width: 51.84cm) 
 
Display calibration 
D65, gamma of 2.2, 120 cd/m² 
 

 
 

EIZO CG245W 

Displayable area (cm) 51.8 (H) x 32.4 (V) 

Native pixel resolution 1920(H) x 1200(V) 

Display colour 
 

24bits (DVI) / 30bits (DP) from a palette of 

48bits 

Viewing angle (°) 178 (H), 178 (V) 

Pixel pitch 0.27mm (H), 0.27mm (V) 

Maximum brightness 270cd/m² 

Maximum brightness for 

calibration and experiments 
120cd/m² 

Colour representation sRGB 

Table B1.Technical specifications of display device and the settings used during 

calibration and experiments. 
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CG245W 

 
X' Y' Z' u' v' 

Peak 

red 

 

41.45 

 

21.39 

 

2.44 

 

0.448 

 

0.521 

Peak 

green 

 

37.43 

 

73.18 

 

11.98 

 

0.128 

 

0.562 

Peak 

blue 

 

19.29 

 

7.61 

 

99.56 

 

0.179 

 

0.158 

Peak 

white 

 

95.59 

 

100.00 

 

113.49 

 

0.197 

 

0.465 

Table B2 CIE 1931 tristimulus values and CIE 1976 chromaticity coordinates for the 
peak colours and the peak white from the display device. 

 

 

Figure B1: Reproduction   of   the   peak   patches   on   display   devices   and   their 

corresponding values in sRGB colour space, plotted on u’, v’ diagram. 
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Figure B2: Colour tracking characteristics of the EIZO CG245W. Reproduced primary 

colours and neutral patches were plotted on u’, v’ diagram. 

 

 

Figure B3: Positional non-uniformity. Lightness 𝐿∗
𝑎𝑏  differences, from the reference 

point to the measured points across the screen for the CG245W. 
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כ  

כ  

 

Figure B4: Chromatic differences,∆𝐶∗
𝑎𝑏  from the reference point to the  measured 

points across the screen.  

 

 

 

Figure B5: Figure 3-14. Colour differences, ∆𝐸∗
𝑎𝑏  from the reference point to the 

measured points across the screen. The CG210 (top) and the CG245W (bottom). 
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Display 
Model 

Black Background White Background  

∆𝐸∗
𝑎𝑏 

 

∆𝐸∗
00 L* a* b* L* a* b* 

 

CG245W 106.79 -8.81 -8.12 106.73 -8.85 -8.26 0.16 0.18 

Table B3: Dependency on background Measured CIELAB values and evaluated 
colour differences 

 

 H 

 

 

 

 

 

 

 

Figure B6 Temporal Stability: Short-term stability (left) and mid-term stability 

(right) in luminance (top) and x, y chromaticity coordinates (bottom)  

 

 

 



 304 

 

 

Figure B7: Viewing Angle Dependency: Luminance output of the peak 

colours and the peak white at the various horizontal and vertical viewing 

angles. Solid lines represent vertical luminance and broken lines represent 

horizontal luminance.  

 

 

 

Figure B8: Changes in luminance output of neutral patches at various 

horizontal and vertical viewing angles. Solid lines represent vertical 

luminance and broken lines represent horizontal luminance. 
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Appendix C Polynomial Functions for JND filters  
 

filter K Polynomial     Fit Cut off 

1 0.0136 y = -63.02367191x5 + 113.97895044x4 - 52.00773711x3 + 11.07355158x2 - 1.40184154x + 1.01064112 R² = 0.99993 0.750 

2 0.0188 y = -58.73796286x5 + 93.65961602x4 - 39.39053803x3 + 8.08615063x2 - 1.41755594x + 1.00718922 R² = 0.99991 0.750 

3 0.0221 y = -53.36260637x5 + 77.60844792x4 - 29.97326990x3 + 5.93005133x2 - 1.41102187x + 1.00478963 R² = 0.99989 0.750 

4 0.0249 y = -46.38712024x5 + 61.07951578x4 - 20.65973874x3 + 3.85101399x2 - 1.38793134x + 1.00254428 R² = 0.99987 0.750 

5 0.0275 y = -15.87321704x6 - 1.81634528x5 + 12.81190066x4 + 0.99507901x3 - 0.41046558x2 - 1.20759534x + 0.99859113 R² = 0.99982 0.750 

6 0.0300 y = -24.46936163x5 + 19.36492875x4 + 1.79736436x3 - 1.01817742x2 - 1.26310970x + 0.99746839 R² = 0.99936 0.750 

7 0.0324 y = -5.54745780x5 - 12.22736986x4 + 18.38422331x3 - 4.56494292x2 - 1.11089337x + 0.99381815 R² = 0.99909 0.750 

8 0.0348 y = 171.59217189x6 - 348.50653465x5 + 244.99265044x4 - 72.27251211x3 + 10.18214873x2 - 2.13592599x + 1.00344549 R² = 0.99925 0.750 

9 0.0372 y = 170.37909143x6 - 320.00123012x5 + 205.87423181x4 - 54.28397739x3 + 6.82938134x2 - 2.03492146x + 1.00109897 R² = 0.99972 0.700 

10 0.0396 y = 150.14490436x6 - 261.29275147x5 + 151.67613740x4 - 33.86913584x3 + 3.54347126x2 - 1.96584090x + 0.99936427 R² = 0.99993 0.650 

11 0.0421 y =293.09375575x6 - 487.20690727x5 + 284.63700094x4 - 70.37121929x3 + 8.12727343x2 - 2.30094886x + 1.00079378  R² = 0.99985 0.650 

12 0.0447 y = 312.13692010x6 - 482.57568309x5 + 261.06957064x4 - 58.70041652x3 + 6.08424398x2 - 2.30824397x + 0.99971378 R² = 0.99993 0.600 

13 0.0474 y = 271.12623183x6 - 386.11268679x5 + 187.99409745x4 - 35.49621618x3 + 2.94492612x2 - 2.28999946x + 0.99865599 R² = 0.99999 0.550 

14 0.0502 y = 413.61667631x6 - 569.88146769x5 + 276.55807074x4 - 55.36316921x3 + 5.01059963x2 - 2.50758296x + 0.99903828 R² = 0.99998 0.550 

15 0.0532 y = 525.96307272x6 - 683.02096555x5 + 315.03241258x4 - 60.25709956x3 + 5.16600934x2 - 2.64675302x + 0.99888438 R² = 0.99998 0.500 

16 0.0563 y = 640.76948777x6 - 786.90238084x5 + 345.52419406x4 - 63.00578501x3 + 5.12505871x2 - 2.79038092x + 0.99874452 R² = 0.99998 0.475 

17 0.0597 y = 782.84345556x6 - 908.72633777x5 + 379.73577360x4 - 65.94453657x3 + 5.09554349x2 - 2.94624244x + 0.99862845 R² = 0.99999 0.450 

18 0.0634 y = 972.55765608x6 - 1,066.81318725x5 + 424.45010739x4 - 70.30541384x3 + 5.18628784x2 - 3.11974053x + 0.99854559 R² = 0.99999 0.425 

19 0.0673 y = 1,244.66990568x6 - 1,290.08726435x5 + 489.12534847x4 - 77.53331643x3 + 5.50068036x2 - 3.31573077x + 0.99849722 R² = 0.99999 0.400 

20 0.0716 y = 1,630.55986946x6 - 1,594.10481012x5 + 575.06007293x4 - 87.17135452x3 + 5.96076636x2 - 3.53371561x + 0.99846501 R² = 1.00000 0.375 

21 0.0764 y = 2,190.96306548x6 - 2,015.03849800x5 + 689.79860578x4 - 99.77887920x3 + 6.57709873x2 - 3.77689682x + 0.99844368 R² = 1.00000 0.350 

22 0.0817 y = 2,951.70920543x6 - 2,541.85617308x5 + 821.85995324x4 - 112.70265793x3 + 7.13422100x2 - 4.04407872x + 0.99841980 R² = 1.00000 0.325 

23 0.0876 y = 3,934.89195086x6 - 3,156.10487854x5 + 959.44669135x4 - 123.82055112x3 + 7.50652718x2 - 4.33886522x + 0.99839293 R² = 1.00000 0.300 

24 0.0944 y = 5,026.04401925x6 - 3,745.39193664x5 + 1,070.71538290x4 - 129.48954970x3 + 7.55646348x2 - 4.66789975x + 0.99836925 R² = 1.00000 0.275 

25 0.1022 y = 5,074.91891260x6 - 3,486.23657818x5 + 943.66211985x4 - 104.97355783x3 + 6.03273045x2 - 5.01914562x + 0.99833226 R² = 1.00000 0.275 

26 0.1112 y = 10,602.04308614x6 - 6,820.58270544x5 + 1,717.86413763x4 - 184.10790689x3 + 9.97630288x2 - 5.53319137x + 0.99837552 R² = 1.00000 0.250 

27 0.1219 y = 20,488.25552529x6 - 12,043.17609474x5 + 2,770.41229761x4 - 275.48433999x3 + 13.86394645x2 - 6.11630522x + 0.99838761 R² = 1.00000 0.225 

28 0.1347 y = 38,313.19862711x6 - 20,282.61222064x5 + 4,218.79235047x4 - 383.00404814x3 + 17.83682373x2 - 6.79752130x + 0.99838740 R² = 1.00000 0.200 

29 0.1504 y = 75,063.37910175x6 - 35,875.83039594x5 + 6,768.47474611x4 - 563.42843673x3 + 24.28069130x2 - 7.64657265x + 0.99839239 R² = 1.00000 0.175 

30 0.1697 y = 7,405.54025388x6 - 2,221.48715901x5 + 797.49897709x4 - 61.92697426x3 + 6.66109728x2 - 8.38018151x + 0.99838364 R² = 1.00000 0.150 
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Appendix D Observer Instructions for the SCQR 

Instructions for softcopy ruler experiment 
 

 

Thank you for participating in today’s evaluation. 

 

In this experiment, you will be assessing the overall quality of a series of 
images using a psychophysical technique called the softcopy quality ruler. 
Please remember there are no right or wrong answers; image quality is 
defined by observer perception, which varies among individuals. We are 
interested in your personal impression. 

 

When you first enter the opening screen, please click the start button and 
enter your name in the dialogue box that opens. This will save your results 
in a text file. 

 

Here is how we are asking you to evaluate the test images: 

 

a)   A pair of images will be presented on the monitor in front of you. The 
image on the left is labelled ‘Ruler Image’ and the image on the right 
is labelled ‘Test Image’. For each test image on the right, we ask you 
to adjust the ruler image on the left so that the quality of the two is 
matched. 

 

b) The test images shown on the right represent different amounts of 
compression artifacts. The distortion is in the form of localized blurring 
artifacts, ringing (which appears as halos) and other areas of texture 
distortion. During this session you will be evaluating between 6 and 8 
different levels of compression in each of sixteen different scenes. 

 

 c)  You will be comparing each test image on the right with a series of 
ruler images on the left, which can be varied by moving the slider bar. 
These ruler images differ only in sharpness. You will be balancing the 
quality loss due to unsharpness in the ruler images to the quality loss 
due to compression in the test images. When you are comparing test 
and ruler images, ask yourself which image you would keep if this 
were a treasured image and you were allowed only one copy. If you 
prefer the test image, then you should move the slider bar to the left 
for a sharper ruler image. If, instead, you prefer the ruler image, then 
you should move the slider bar to the right for a more blurred ruler 
image. When you have finished adjusting the ruler, the two images 
should be equal in your preference. Your response will be recorded 
when you press the ‘Next’ button. 
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Appendix E Colour Space Transformations 

Conversion from sRGB to 1931 CIE XYZ values [193]: 

sRGB values are first normalised by dividing all values by the maximum level. 

They are then transformed to linear sRGB values using the following transfer 

functions: 

 

( 0.1 

Let C denote R, G or B in the following: 

𝐼𝑓 𝐶𝑠𝑟𝑔𝑏 ≤ 0.4045 

𝐶𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑅𝐺𝐵 =
𝐶𝑠𝑟𝑔𝑏

12.92
 

else: 

𝐶𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑅𝐺𝐵 = ((𝐶𝑠𝑟𝑔𝑏 + 0.055) 1.055⁄ )
2.4

 

Linear sRGB values are then transformed to 1931 CIE XYZ values as follows: 

[
𝑋
𝑌
𝑍

] = [
0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

] [

𝑅𝑠𝑟𝑔𝑏

𝐺𝑠𝑟𝑔𝑏

𝐵𝑠𝑟𝑔𝑏

] 

Conversion from 1931 CIE XYZ values (adapted to a D65 white point) to 

IPT opponent colour space [70]: 

Step 1: convert XYZ to LMS: 

[
𝐿
𝑀
𝑆

] = [
0.4002 0.7075 −0.0807

−0.2280 1.1500 0.0612
0.0 0.0 0.9184

] [
𝑋𝐷65

𝑌𝐷65

𝑍𝐷65

] 

Step 2: Apply transfer curves: 
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Let C denote L, M, or S in the following: 

𝐶′ =  𝐶𝑙𝑖𝑛𝑒𝑎𝑟
0.43;  𝐼𝑓 𝐶𝑙𝑖𝑛𝑒𝑎𝑟 ≥ 0  

𝑒𝑙𝑠𝑒 𝐶′ =  −|𝐶𝑙𝑖𝑛𝑒𝑎𝑟|0.43 

 

Step 3: conversion from LMS to IPT colour space (LMS values may be linear or 

non-linear L’,M’,S’) 

[
𝐼
𝑃
𝑇

] = [
0.4000 0.4000 0.2000
4.4550 −4.8510 0.3960
0.8056 0.3572 −1.1628

] [
𝐿
𝑀
𝑆

] 

 

 

 

 

 


