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Abstract. Accurate, automatic and robust segmentation of the pan-
creas in medical image scans remains a challenging but important pre-
requisite for computer-aided diagnosis (CADx). This paper presents a
tool for automatic pancreas segmentation in magnetic resonance imaging
(MRI) scans. Proposed is a framework that employs a hierarchical pool-
ing of information as follows: identify major pancreas region and apply
contrast enhancement to differentiate between pancreatic and surround-
ing tissue; perform 3D segmentation by employing continuous max-flow
and min-cuts approach, structured forest edge detection, and a training
dataset of annotated pancreata; eliminate non-pancreatic contours from
resultant segmentation via morphological operations on area, curvature
and position between distinct contours. The proposed method is evalu-
ated on a dataset of 20 MRI volumes, achieving a mean Dice Similarity
coefficient of 75.5 ± 7.0% and a mean Jaccard Index coefficient of 61.2
± 9.2%.
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1 Introduction

The accurate segmentation and classification of the pancreas plays a key role
in computer-aided diagnosis (CADx) systems [7,18], providing image analysis
for disorders such as Type 2 diabetes mellitus [1] and detection of pancreatic
neoplasms [13]. Studies have reported variations in the pancreas contour can be
linked to ductal adenocarcinoma [3], and enhanced contour analysis can help
stratify normal variations against pancreatic tumours [11]. However, the pan-
creas has very high structural variability and a full inspection from a scan is
problematic due to location and surrounding abdominal fat, and vessels. Dif-
fering from CT imaging, the low resolution and slower imaging speed of MRI
presents additional edge based artefacts, especially for the pancreas [2].
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In recent research literature, various approaches to pancreas segmentation
have relied upon training databases of manually annotated pancreata in MRI
and CT volumes. A number of methods have been employed including region
growing [16], atlas guided approach and discriminative dictionary learning [17],
deformable image registration [14] and patch-based label propagation using rela-
tive geodesic distances [19]. Furthermore, most recently, deep learning based net-
works such as convolutional neural networks (CNNs) have been widely reported
in pancreas segmentation tasks [2,13].

The proposed approach performs automatic pancreas segmentation in MRI
volumes using a training dataset of annotated image volumes. The identifica-
tion of the major pancreas region, coupled with effective contrast enhancement,
reveals rich pancreatic features which are extracted using continuous max-flow
and min-cuts, and structured forest edge detection.

In Sect. 2, the methodology for 3D pancreas segmentation and refinement
is covered. Section 3 presents and discusses the segmentation results’ outcome
with comparison to those reported in recent literature, and strategies for further
optimisation. Section 4 provides a conclusion for the proposed framework.

2 Methodology

The methodology of the proposed framework, as illustrated in Fig. 1, progresses
through three main stages, each one of which is discussed below.

Fig. 1. Overview of framework for the automatic segmentation of the pancreas from
an MRI volume.

2.1 Analysis of Image Structure and Intensities

An effective application of contrast enhancement in an MRI volume can differen-
tiate pancreatic tissue and boundaries against background classes of blood ves-
sels, stomach fundus and the first section of the small intestine. In this approach,
a sigmoid function is applied to a given test image volume by incorporating a
gain, g, which controls the actual contrast, and a cut-off value, c, which repre-
sents the (normalised) grey value about which contrast level is changed. Every
i-th slice, si, in the image volume undergoes contrast enhancement, C(si), as
described in Eq. 1:

C(si) =
1

1 + exp [g(c−si)]
(1)
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Figure 2(a) and (b) depicts a slice from an image volume before and after
contrast enhancement, respectively. By assigning optimum gain values to images
in the training dataset, a non-linear regression model is developed to predict
the gain from a test image volume. Overall, the value of the gain changes in
proportion to the mean of pixel intensities in the image volume. Similarly, a
linear regression model is developed for predicting the cut-off value.

Next, the major pancreas region is identified using the method reported in
[7]. A random forest is trained on a selection of extracted features in image
patches of 25 × 25 pixels. These features describe texture and the probability
of a patch being “pancreas” based on voxel intensity analysis in the training
data. Figure 2(c) displays a red outline over a sample slice that embodies the
area predicting “pancreas” at a probability of 0.85. This represents the major
pancreas region for that particular slice in a test image volume.

2.2 Segmentation of Pancreas Tissue and Surroundings

The image volume is further processed through a 3D segmentation algorithm
described in [20], which uses maximal-flow and minimum graph-cuts approach
in a continuous domain. Allow Ω to serve as a closed and continuous 3D domain
representing the major pancreas region volume as a graph. At every position,
x ∈ Ω, the spatial flow passing x can be written as q(x). Additionally, the
directed source flow from terminal s to x can be denoted by qs(x), and the
directed sink flow from x to terminal t by qt(x). The continuous max-flow and
min-cuts model can be described through the introduction of a multiplier known
as the “dual variable”, denoted by μ to some flow conservation:

max
qs,qt,q

min
μ

∫

Ω

qsdx +
∫

Ω

μ(∇ · q−qs + qt)dx (2)

such that qs(x) ≤ Cs(x), qt(x) ≤ Ct(x) and |q(x) ≤| C(x), where C(x), Cs(x)
and Ct(x) describe given capacity functions, and ∇ · q calculates the total spa-
tial flow nearby x. From here, the “Multiplier-Based Maximal-Flow Algorithm”
described in [20] is employed to perform unsupervised image segmentation on
the entire image volume within the major pancreas region. Figure 2(d) displays
the resulting segmentation of a single slice from a given test image volume.

Edge Detection and Boundary Matching. The segmented image volume under-
goes a transformation via structured forest learning [4] where the boundaries or
edges of pancreatic issue and surroundings are detected. The edges of segments
in each slice are measured against the boundaries of equally sized pancreas seg-
ments provided in the training dataset. The measure of similarity between these
edges are performed via modified Hausdorff distance (MHD) [6] and structural
similarity (SSIM) index [5]. Whenever the error between a region in the training
data and its corresponding region in the segmentation slice falls below 15% for
MHD and below 30% for SSIM, a boundary match is assigned to a compilation of
pancreas contour similarities, otherwise the segment is disregarded. Figure 2(e)
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depicts the boundaries of different tissue in a segmented slice after max-flow
and min-cuts segmentation. Notice the variation in contour intensity against the
background.

Fig. 2. Visualisation of results for a slice from image volume. (a) Original MRI slice,
(b) MRI slice after contrast enhancement, (c) Red bounding box depicts major pan-
creas region, (d) Segmentation following max-flow and min-cuts approach, (e) Bound-
ary detection using structured forest learning, (f) Final contour segmentation after
refinement. (Color figure online)

2.3 Fine Extraction of Pancreas

Once an image volume of rough segmentation has been extracted, a stage of
post-processing eliminates surrounding contours identified as “non-pancreas”.
Figure 2(f) displays the final segmentation outcome for a single slice in a test
image volume following stages of refinement.

Morphological Operations on Pancreatic Contours. Analysing a given set of anno-
tated training image volumes, the following is deduced: the mean range of slices
for a theoretical image, with careful consideration to heavy outliners; the mean
slice number where the pancreas features become visible for the first time, sstart,
reach maximum area, smax, and the last slice after which pancreas features
are not visible any longer, send. By considering the total number of slices in
each image volume, ts (which is constant), a discrete set of four slice ranges
are established: r1 : [1, sstart−1], r2 : [sstart, smax−1], r3 : [smax, send−1] and
r4 : [send, ts], where r1, r2, r3 and r4 ∈ Z. A k-medoids cluster approach is
employed in order to generate Nr1 , Nr2 , Nr3 and Nr4 groups of constraints for
every slice range. Every group of constraints includes a measure of area, trian-
gularity and ratio of width-to-height. For each slice range, individual contours
in the segmentation image volume are simultaneously measured against corre-
sponding groups of constraints; if the error for each observation is larger than
15%, then this contour is regarded as “non-pancreas” and removed from the
overall segmentation result, otherwise it is retained. Let Nri

(α), Nri
(β) and

Nri
(γ) represent individual constraints of area, triangularity and ratio of spatial
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dimensions. Thus, for every Nri
, this operation can be defined as:

pc =

{
1 if 0 ≤ Eα

ri
, Eβ

ri
, Eγ

ri
≤ 0.15

0 otherwise
(3)

where pc represents a segmented contour whose value of 1 corresponds to “pan-
creas” and a value of 0 corresponds to “non-pancreas”. Eα

ri
, Eβ

ri
and Eγ

ri
repre-

sent the error between Nri
(α), Nri

(β) and Nri
(γ) and an observed segmentation

contour’s similar measures, respectively.
Another morphological operation involves computation of mean curvature

[9] for each distinct contour in the segmentation. If an observed contour falls
below a threshold computed from analysing curvatures of unique contours in the
training dataset, then it is discarded.

Position of Contours. The slice-by-slice inspection of pancreatic regions in the
training dataset reveals that whole or distinct pancreatic contours are embod-
ied in a shape resembling a horseshoe, an inverted-V, transverse, sigmoidal
[8] but more commonly, oblique or L-shaped [3]. By considering a bounding
box, Fs, to contain all the contours in each segmentation slice, it is possible
to generate an L-shaped template that behaves like a “trail-map” for iden-
tifying contours deemed as “pancreas” or otherwise. This trail-map can be
viewed as a collection of neighbouring paths that begin from a set of points,
BXY = {(x1, ymax), ..., (xn, ymax)}, on the bottom horizontal of the bound-
ing box and rise by corresponding angles, θ = {θ1, ..., θn}, to respective points
on the top horizontal of the bounding box. From here, the trail descends by
angles, φ = {φ1, ..., φn}, to respective terminating points (on the bounding
box). It is noted that BX = {x1, ..., xn} are values that refer to a set of n
distances measured from the bottom right-hand vertex, i.e. (xmax, ymax), hence,
BX ∈ R | xmin ≤ BX ≤ xmax. Values of θ and φ are co-dependent on the width
and height of the bounding box.

3 Results and Discussion

The proposed approach employs a dataset of T2-weighted (fat-suppressed)
abdominal MRI scans obtained from 130 volunteers using a Siemens Trio 3T
scanner. The training and test evaluation dataset is split into 110 and 20 MRI
volumes respectively. For each image volume, the pancreas has been manually
annotated by an expert-operator using a commercially available image analysis
software. Every image volume in the dataset consists of 80 slices with 1.6 mm
spacing, with each slice of spatial size 320 × 260 and 1.1875 mm pixel interval in
the axial and sagittal direction.

For each experiment, the values described in Sect. 2.3 are such that the cur-
vature threshold is 0.27 and n = 4, respectively.

The segmentation program ran via a workstation with i7-59-30k-CPU at 3.50
GHz, and the mean time for segmentation of one case (MRI volume) is 25 min.
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This run-time can be potentially reduced by a factor of 10 by using a GeForce
Titan X GPU.

The performance of the proposed approach is evaluated using the Dice Sim-
ilarity Coefficient (DSC) and Jaccard Index (JI) method. Table 1 displays the
DSC and JI for the evaluation dataset as mean ± standard deviation [lowest,
highest], in comparison to other automatic approaches reported in research lit-
erature.

Fig. 3. Segmentation results for three different volunteers. From left, first column dis-
plays sample MRI axial slices with segmentation outcome (green) against ground-truth
(red), and computed DSC; second column displays 3D reconstruction of entire pan-
creas (green) segmentation against its ground-truth (red), with computed overall DSC.
(Color figure online)

However, direct comparison with other methods in literature is difficult due
to differences in imaging modalities, the scanner imaging protocols, spatial res-
olution and dimensions, as well as the number of image volumes used in the
experiments. That said, the approach presented in this paper does report bet-
ter quantitative pancreas segmentation results in comparison to other state-of-
the-art techniques. Although the accuracy results reported in [2] are relatively
higher in comparison, this proposed approach reveals a tighter standard devi-
ation. Moreover, employing this method produces detailed contouring of the
pancreas for every protrusion and indentation as opposed to an approximate or
mean tracing of the organ.

A methodology reported in [15] employs probabilistic atlas-based graph cut
and achieves a mean JI coefficient of 77.0 ± 10.2% for 15 CT volumes. Since the
technique is interactive based, a medical expert identifies a “seed” (or location)
from where the segmentation is performed. The proposed method for this paper
is fully automatic and does not require user intervention. Also, the modality of
choice is MRI, as opposed to CT, and therefore tackles greater problems relating
to image artefacts. Also, the max-flow and min-cuts based approach, described
in this paper, employs rich statistical information about wide variations and
irregularities in pancreas shape and size.

Figure 3 displays the final pancreas segmentation from three different MRI
scans. Notice the variation between image contrast and intensity in the axial MRI
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Table 1. Overall DSC and JI shown as mean ± standard deviation [lowest, highest]
for automatic segmentation methods

Method DSC (%) JI (%) Data (size)

Wang et al. [19] 65.5 ± 18.6 [2.4, 90.2] – CT (100)

Tong et al. [17] 71.1 ± 14.7 56.90 ± 15.2 CT (150)

Roth et al. [13] 71.8 ± 10.7 [25.0, 86.9] – CT (82)

Cai et al. [2] 76.1 ± 8.7 [47.4, 87.1] – MRI (78)

Okada et al. [10] – 46.60 CT (28)

Shimizu et al. [14] – 57.90 CT (20)

Proposed Method 75.5 ± 7.0 [65.0, 86.9] 61.2 ± 9.2 [48.1, 76.9] MRI (20)

slices. Although this method produces detailed contouring of the organ, there
are also evident differences can appear less-well defined with blurred bound-
aries between the organ and surrounding tissue, and therefore affect the overall
segmentation accuracy. The main source of segmentation error, currently pre-
venting a relatively higher accuracy score, can be attributed to accumulation
of surrounding pancreas tissue such as the superior mesenteric vein, the splenic
vein, the duodenum and nearby vessels. The potential for optimisation involves
removal of surrounding tissue such as splenic arteries prior to max-flow and min-
cuts segmentation. Incorporating a deep learning based model for automatically
learning to identify pancreatic features can enhance the segmentation outcome
[2,12]. Moreover, the proposed approach can be further developed by improving
computation of optimum parameters, such as threshold and contrast level for
pancreatic tissue enhancement prior to segmentation.

4 Conclusion

This paper presents a framework for automatic pancreas segmentation in MRI
volumes. Although direct comparison with other methods is difficult due to dif-
ferences in datasets, the proposed approach performs close to performs better
than state-of-the-art techniques.
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