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Abstract

A relationship between individual differences in trait estimates of the cortisol awakening 

response (CAR) and indices of executive function (EF) has been reported. However it is 

difficult to determine causality from such studies. The aim of the present study was to 

capitalise upon state variation in both variables to seek stronger support for causality by 

examining daily co-variation. A 50-day researcher-participant case study was employed, 

ensuring careful adherence to the sampling protocol. A 24-year-old healthy male collected 

saliva samples and completed an attention switching index of EF on the morning of each 

study day. Subsidiary control measures included wake time, sleep duration, morning fatigue, 

and amount of prior day exercise and alcohol consumption. As the CAR preceded daily 

measurement of EF we hypothesised that, over time, a greater than average CAR would 

predict better than average EF.  This was confirmed by mixed regression modelling of 

variation in cortisol concentrations, which indicated that the greater the increase in cortisol 

concentrations from 0-30 min post-awakening (CAR) the better was subsequent EF 

performance at 45 minutes post-awakening (t = 2.29, p = .024). This effect was independent 

of all potential confounding measures. Results are discussed in terms of implications for the 

understanding of the relationship between the CAR and cognitive function, and the 

previously suggested role of the CAR in ‘boosting’ an individual’s performance for the day 

ahead.
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1. Introduction

The Cortisol Awakening Response (CAR) is the rapid increase in cortisol concentrations 

within the first hour after awakening from sleep (Pruessner et al., 1997), and is initiated in 

response to morning awakening (Wilhelm et al., 2007). The CAR typically peaks around 30 

minutes post-awakening in males, and at around 45-min post-awakening in females (Wuest 

et al., 2000), and is subject to significant state (day-to-day) variation (Hellhammer et al., 

2007; Law et al., 2014; Stalder et al., 2009). The CAR is considered a key link between mind 

and body due to its sensitivity to psychosocial factors such as negative affect and 

anticipation of workload in the day ahead (Clow et al., 2010; Fries et al., 2009). Though the 

precise function of the CAR remains unknown, numerous studies have indicated 

relationships between the CAR and indices of cognition including declarative memory 

(Rimmele et al., 2010; Wolf et al., 2005), prospective memory (Baumler et al., 2014), 

working memory (Moriarty et al., 2014), and executive function (EF) (Evans et al., 2012). 

While a relationship between individual differences in CAR magnitude and executive function 

has been demonstrated in between-subjects studies (e.g. Aas et al., 2011; Cullen et al., 

2014; Evans et al., 2012), the impact of daily variation in the CAR on EF has not been 

explored. The aim of the present study was to use an individual case study approach to 

explore associations between daily variations in the CAR and a measure of EF.

EF can be understood as a range of functions including inhibition and interference control, 

working memory, and cognitive flexibility (Diamond, 2013; Miyake et al., 2000). One of the 

aspects of cognitive flexibility is the ability to switch between task demands, often assessed 

using attention switching paradigms (for review, see Diamond, 2013). Evans et al. (2012) 

indicated that better performance on one of these tasks, form B of the Trail Making task 

(Arbuthnott & Frank, 2000), is associated with a larger CAR in older adults. 
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Current theories for the role of the CAR within the human circadian rhythm suggest that it 

serves to provide an unspecified physiological or psychological ‘boost’ upon awakening 

(Adam et al., 2006; Clow et al., 2010; Fries et al., 2009). These theories are supported by 

studies reporting state associations between the CAR and both negative prior day 

psychological experience and anticipation of demand in the day ahead (e.g. Adam et al., 

2006; Stalder et al., 2010). Such theories might support the idea of a state association 

between the CAR and EF, as optimising EF could serve as a homeostatic response suitable 

for tackling the expected challenges of the waking day.

The aim of the present study was to use a researcher-participant case study design to 

investigate in detail whether daily variation in the CAR predicted daily variation in EF at the 

end of the CAR period. The primary hypothesis was that the magnitude of increase in 

cortisol secretion post-awakening (CAR) would be predictive of subsequently better EF 

performance in the same morning.

2. Methods

2.1. Design

Ethical approval was provided by the Institutional Ethics Committee. The study employed a 

50-day researcher-participant case study design based upon the novel study of Stalder et al. 

(2009, 2010). The advantages of such a design are two-fold: use of a researcher-participant 

provides a novel and convenient method for reducing the reliance on participant adherence 

to the protocol. Non-adherence to the requested saliva sampling protocol, of as little as 5 

minutes between awakening and collection of the first sample, can lead to inaccurate CAR 

assessment      (see: Clow et al., 2004; Kudielka et al., 2003; Smyth et al., 2013; Thorn et 

al., 2006). Intensive testing over 50 days is exceptionally demanding for participants and it 

has been reported that participant adherence decreases over a period of just 7 days 



Page 5

(Broderick et al, 2004). The researcher-participant design ensures sustained motivation and 

commitment to the study, maximising adherence (which is checked by electronic monitoring) 

and reducing data wastage. The possibility of introducing bias was avoided as all data were 

logged and analysed at the end of the study.  The participant could not be aware of daily 

CAR magnitude, avoiding the possibility of biasing the results, consciously or unconsciously.     

The researcher-participant (RL) was a 24 year old non-smoking male in postgraduate 

education, who described himself as healthy and free from medication. 

2.2. Materials and measures

While EF and cognitive flexibility can be assessed using a broad range of tasks, many of 

these are subject to practice effects and therefore unsuitable for repeated assessment 

(Basso et al., 1999; Rabbitt, 1997). Therefore the Attention Switching Task (AST) was 

selected from the Cambridge Neuropsychological Test Automated Battery (Cambridge 

Cognition, Cambridge, UK). The AST was self-administered using a laptop computer with a 

two-button (left-right) response keypad. The task consisted of repeated presentation of an 

arrow that can appear on either side of the screen (left or right) and can point in either 

direction (left of right). The presentation of the arrow is accompanied by a response 

instruction which can either require the participant to respond to either the spatial location or 

the direction of the arrow presented. The participant responds by pressing the appropriate 

key on the response pad (left or right). There are 160 individual arrow presentations in each 

assessment, with the complete test taking around 6 min to complete. Crucially the 

presentation sequence in this test is randomised so as to prevent sequence learning. 

Outcome measures of the AST include both simple reaction time (ms), number of errors, and 

switch cost. The switch cost measure is an index of mental flexibility (and in turn, executive 

function), calculated as the difference in mean reaction time for trials following a switch in the 

task requirement compared to the mean reaction time for non-switched trials. As such, a 

smaller switch cost score is representative of better EF performance (though note that for 
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the purposes of presentation, these scores were inverted in the present analysis such that 

the switch cost variable, ‘EF’, is positively scored).

To alleviate the risk of an AST learning effect the participant completed a short pilot prior to 

study commencement.  A practice effect was observed, such that mean reaction times on 

the AST task decreased with successive trials. However a relatively consistent level of 

performance was achieved prior to commencement of the case study reported here.  

Prior evening alcohol consumption and prior day exercise duration were both measured by 

self-report. Alcohol was recorded in estimated 10ml units of alcoholic content, and exercise 

was recorded in the number of hours of self-assessed high-intensity, sustained aerobic or 

anaerobic exercise during the day. To objectively assess fatigue, critical flicker frequency 

(FF) was measured using a flicker fusion system (Lafayette instrumentation, Indiana, USA). 

This is a measure of the frequency at which rapid flickering light becomes impossible to 

detect to the human eye. FF is subject to within-individual variation and is a well-validated 

and widely used, objective measure of central fatigue (e.g. Davranche and Pichon, 2005; 

Simonson and Brozek, 1952).

To provide an objective measure for validation of self-reported sleep onset and awakening 

times, actigraphical recordings were collected using a wrist-worn Actiwatch (Philips 

Respironics, Surrey, UK).

2.3. Procedure

Data were collected on a total of 50 days, at 3-day intervals, so as to match the procedure of 

a previous CAR case study (Stalder et al., 2009). Fifty study days provided statistical power 

to test the hypothesis and collection at regular intervals, 3-days apart, standardised the 

protocol and minimised study fatigue in the participant (which might happen with daily 
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testing). Data collection took place in the United Kingdom between the months of January 

and May. Salivary cortisol was assessed at 5 time points across the post-awakening hour: 

immediately on awakening (0 min), and then at 15, 30, 45 and 60 min post-awakening. The 

participant took nil-by-mouth apart from water during the post-awakening period to avoid 

possible confounding effects of abrasion and micro-vascular leakage. Wrist actigraphy was 

used throughout the study to check self- reported sleep onset and awakening time with an 

objective measure of awakening time and sleep duration.

On each evening prior to morning cortisol sampling, the participant recorded the duration of 

exercise and total units of alcohol consumption for the pre-study day. Shortly after 

awakening, and immediately after collecting the first cortisol sample, the participant 

completed the flicker fusion task, followed by a short break before taking the second saliva 

sample at 15 min post-awakening. On each measurement day the AST was completed at 

approximately 45 minutes post-awakening (after collection of the fourth saliva sample and 

prior to collecting the 60 min post-awakening sample). On all mornings, though required to 

be seated for the psychological testing, the participant was otherwise free to move around 

throughout the sampling period. 

On half of the study days (alternating with the protocol described above) the procedure was 

adapted to incorporate a second AST, completed immediately following the flicker fusion 

(prior to the 15 minute post-awakening cortisol sample). This additional test was included in 

order to provide some limited estimates of association between EF performance earlier in 

the post-awakening period and both subsequent CAR magnitude and later EF performance. 

This also allowed for exploration of whether inclusion of cognitive testing earlier in the post-

awakening period influenced the CAR-EF association at 45 min post-awakening

In-line with the previously published researcher-participant studies (Stalder et al., 2009; 

2010), all data handling and analysis was carried out after completion of data collection.
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2.4. Cortisol Analysis

Saliva samples were collected with a cotton swab, which was chewed for 1-2 min and stored 

in a capped ‘Salivette’ (Sarstedt Inc.). Samples were then frozen at −20 °C within one day of 

collection and stored at this temperature until analysis. Samples were thawed and 

centrifuged at 1,500 x g (at 3,000 rpm) for 10 minutes, after which cortisol concentrations 

were determined by Enzyme Linked Immuno-Sorbent Assay (ELISA; Salimetrics, USA). 

Intra- and inter-assay variations were below 10% in all cases.

2.5. Treatment of data

Data were analysed using mixed regression modelling (Blackwell et al., 2006) of variation in 

cortisol concentrations in the first hour after awakening.  In healthy males the first 0-30 min 

period, typically characterises the CAR, and the 30-60 min period is typically characterised 

by decline in cortisol concentrations. Each period was addressed in independent analyses 

comprising the running of two consecutive models. In model A (within day), time of sampling 

(0, 15, and 30 min) was entered as a fixed covariate with day of study (0-50) as the subject 

variable. In model B (within day + between-day) the covariate of z-scored EF (AST 

performance) was added to the model together with its interaction with time of sampling. As 

noted in 2.2, for the purposes of presentation the EF variable was produced by inverting the 

switch cost variable, such that high scores represent better EF performance. At each 

modelling point, three ways of modelling residual covariance were compared: random 

intercept only (equivalent of compound symmetry for repeated measure covariate), random 

intercept + random time, and finally a first level autoregressive (AR1) covariance structure. 

In all cases AR1 provided the best fit of the data as indicated by minimizing of the Schwarz’s 

Bayesian Criterion (BIC), and all models presented here adopted an AR1 covariance 

structure for the repeated measure of cortisol sampling time. Finally, further modelling was 
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undertaken to check that any findings from the principal model were not compromised by 

extraneous and potentially confounding variables, including the passage of time (5 months) 

over the course of the trial.

3. Results

3.1. Descriptives

The cortisol data showed a similar pattern of state variation across the 50 day period to that 

previously observed in participant TS (Stalder et al., 2009). Table 1 presents descriptive data 

for all relevant variables. As expected the peak in cortisol is found at 30 min post-awakening, 

followed by a decline until 60 minutes post awakening.  

-- Insert Table 1 here --

3.2. Modelling of data

3.2.1. Cortisol from 0-30mins post-awakening

Model A analysis of the rise in cortisol secretion from 0-30 min post-awakening showed the 

expected association with sampling time (t = 13.39, p = <.001). The intercept coefficient 

(10.15) indicates a predicted concentration of cortisol of 10.15 nmol/l at awakening. The 

slope coefficient of 0.26 indicates a predicted rise of 0.26 nmol/l per minute over the 30 min 

period, giving an estimated rise (CAR value) of 7.8 nmol/l.

Model B of the 0-30 min data (introducing main and interactive terms for EF) indicated the 

same rise in cortisol (i.e. the CAR) as observed in model A with regard to intercept for slope 

(10.15) and slope coefficient for sample time (.26). Further, in regard to the overall effect on 
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cortisol of day differences in EF no difference was observed in prevailing starting values (t = 

-1.66, p = .101). However, the slope interaction between sample time and z-scored EF (ZEF) 

is significant (t = 2.29, p = .024), indicating that the slope of the mean line varies with EF 

performance. For every standard deviation above or below mean EF, there is a 1.2 nmol/l 

increase or decrease in the CAR. Therefore the model predicts that on days when EF is +1 

SD, the slope is 9 nmol/l, and on days when EF is -1 SD, the slope is 6.6 nmol/l. Table 2 

shows coefficient estimates and significance (p) values for the parameters in the modelled 

data.

-- Insert Table 2 here --

Further modelling examined whether the effects observed within the 0-30 min period were 

confounded by the covariates of time (day 1 through day 50), wake time, sleep duration, 

reaction time scores, prior day exercise, prior day alcohol consumption, fatigue on 

awakening (FF), or presence of the AST at 15 min post-awakening. 

These variables were entered separately into the model, so as to achieve a suitable ratio of 

variables to cases and conserve degrees of freedom. The results of these analyses 

indicated that the interaction between CAR-EF proved robust to each of these controls, 

remaining similarly significant with a similar effect size in all cases. However as a subsidiary 

finding, a non-hypothesised post hoc finding emerged such that increased prior-day exercise 

predicted a smaller 0-30 CAR increase (t = -2.03, p = .044), but this was independent of the 

previously reported CAR-EF association (for which t = 2.55, p = .012 when exercise was 

included in Model B). 

3.2.2. Cortisol from 30-60mins post-awakening
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Model A of the cortisol data from the 30-60 min period indicated the expected post-CAR 

general decline in cortisol secretion (t = -5.85, p = <.001), but Model  B did not indicate any 

significant interaction with EF in this period (t = 0.64, p = .527), suggesting that the observed 

cortisol-EF interaction is unique to the 0-30 min rise (CAR). 

3.2.3. Cortisol and earlier AST performance

In addition to these analyses, we also examined the association between the earlier AST 

measure and CAR (performed on half of the study days).  The effect size was substantially 

lower than for the association between the CAR and EF at 45-min post-awakening 

(performed on all study days), and did not reach significance (noting the reduced sample 

size for this analysis) (t = 1.13, p = .26). Finally there was only a very weak and non-

significant relationship between EF functioning measured at 15 min post-awakening and EF 

measured 45 min post-awakening (r = .154, p = .464, two-tailed).

4. Discussion

This study explored daily variation in the CAR and an index of executive functioning in a 

healthy adult male over 50 days. Results indicated that a larger increase in cortisol 

concentrations from 0-30 min post-awakening predicted better EF (attention switching 

performance) at 45 minutes post-awakening, independent of day order effects, awakening 

time, sleep duration, reaction time, prior day exercise, prior day alcohol consumption, earlier 

cognitive demands (a 15-min post-awakening AST) and level of fatigue on awakening. This 

observed relationship between the CAR and EF is thus temporally predictive (given the 

temporal order of CAR and EF measures). The design is nonetheless correlational and the 

phrase ‘predictive’ should be interpreted with caution in regard to strong inferences of 

causation.
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The results of the present study build on the work of Evans et al. (2012) which showed an 

association between trait estimates of CAR magnitude and integrity of EF in older adults, 

with the present data suggesting that the same direction of significant relationship between 

the CAR and EF also exists in the pattern of daily co-variation for at least one normal healthy 

young adult male. This accumulating evidence suggests a potentially important relationship 

between the CAR and pre-frontal functions.  It has been suggested (e.g. see Law et al., 

2013) that a possible role of the CAR may be to regulate peripheral circadian rhythms under 

the influence of the suprachiasmatic nucleus (SCN) of the hypothalamus, acting as a time-

of-day marker to optimise cognitive function appropriately. This is a feasible explanation of 

the CAR-EF relationship, as circadian organization of brain functions via the SCN has been 

suggested to be essential for normal cognitive functioning (Cohen and Albers, 1991; 

Karatsoreos et al., 2010). Moreover, the recent demonstration of an association between 

daily variation in CAR magnitude and capacity for neuroplasticity (Clow et al., 2014) provides 

a possible mechanism which could underpin this relationship. The importance of EF for 

dealing with challenge in the typical waking day is evident (e.g. Manly et al., 2002), and the 

direction of this relationship is certainly in line with the prominent theories that the CAR plays 

a role in preparing or ‘boosting’ the individual for the day ahead (Adam et al., 2006). 

Furthermore, if this predictive ‘state’ relationship between the CAR and EF is in fact causal, 

then given the known progressive decline in both CAR magnitude and EF performance with 

advancing age (e.g. Huizinga et al., 2006; Kudielka & Kirschbaum, 2003; Zelazo et al., 

2004), this in turn could inform the trait relationship observed in older adults (Evans et al., 

2012).

There is good evidence that sustained exposure to high levels of glucocorticoids evokes 

neuronal cell damage and impairs synaptic plasticity and cognitive function (Joels and 

Baram, 2008; Sapolsky et al., 1990; Sapolsky et al., 2000; Suri and Vaidya, 2013).  

However, it has recently become evident that the circadian rhythm of glucocorticoid 

secretion may promote internal homeostasis and optimal brain function (Nader et al., 2010). 
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For example, animal studies indicate that healthy circadian glucocorticoid oscillations boost 

learning-dependent synaptic formation and maintenance (Liston et al., 2013).  It is clear that 

disrupted circadian patterns (not just sustained high levels) of glucocorticoid secretion are 

associated with cognitive deficits (Cho et al., 2000; Evans et al., 2011; Gibson et al., 2010) 

as well as a wide range of neuropsychiatric diseases (Jagannath et al., 2013; Menet and 

Rosbash, 2011; Wulff et al., 2010).  Results from this study are consistent with these 

findings and, whilst other aspects of the circadian pattern of cortisol were not examined, 

suggest a role for the CAR in cognitive function.

A limitation of all case study research is generalizability of the results to the wider population; 

hence the importance of establishing convergence, refinement and replication of effects 

across studies of differing design, with differing strengths and weaknesses. For instance, sex 

differences exist in both CAR magnitude and timing of the peak (Pruessner et al., 1997) and 

the CAR is also associated with menstrual cycle phase (Wolfram et al., 2011); therefore the 

need for replication of these effects in a female sample is evident.  In addition, specific 

characteristics of the participant might limit generalisability.  For example, given the influence 

of sleep on cortisol secretion the reported average sleep duration of 6:21 hours per night 

(below the recommended average of 7-9 hours for his age) may have been a factor in the 

results obtained. While the generalizability of these results might also be limited by the 

dependence on a single EF measure, these findings of temporal covariation in a single 

participant-researcher are directionally in agreement with the between-participants 

covariation findings of Evans et al. (2012), who used a very different EF task (trail-making 

task B).

The subsidiary finding of increased prior day exercise predicting an attenuated 0-30 min 

CAR, though novel, was an unexpected and therefore post-hoc finding. Since it may be of 

interest to some readers, we have reported it here, but caution against over interpretation of 
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what it might mean. From the perspective of this paper, we would simply emphasise that 

controlling for exercise did not influence the principal interactive effect of EF on cortisol rise 

from 0 to 30 mins post-awakening. 

5. Conclusions

The results of the present case study are novel and deserving of further research to confirm 

generalizability.  They provide an exciting first indication of a within-subject association 

between the 0-30 minute CAR and a measure of EF determined after the CAR period. 

Certainly when combined with the earlier demonstration of a trait-like CAR-EF relationship 

(Evans et al., 2012), it is apparent that the relationship between the CAR and EF is a highly 

promising area of investigation, with potentially important implications for the role of the CAR 

within the healthy circadian rhythm in humans. 

Declaration of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content 

and writing of this article.

References

Aas, M., Dazzan, P., Moondelli, V., Toulopoulou, T., Reichenberg, A., Di Forti, M., Fisher, 

H.L., Handley, R., Hepgul, N., Marques, T., Miorelli, A., Taylor, H., Russo, M., Wiffen, B., 

Papadopoulos, A., Aitchison, K.J., Morgan, C., Murray, R.M., Pariante, C.M. (2011). 

Abnormal cortisol awakening response predicts worse cognitive function in patients with first-

episode psychosis. Psychol. Med. 41(3), 463–476.



Page 15

Adam, E. K., Hawkley, L. C., Kudielka, B. M., Cacioppo, J. T. (2006). Day-to-day dynamics 

of experience–cortisol associations in a population-based sample of older adults. Proc. Natl. 

Acad. Sci. U.S.A. 103, 17058-17063.

Arbuthnott, K., Frank, J. (2000). Trail making test, Part B as a measure of executive control: 

validation using a set-switching paradigm. J. Clin. Exp. Neuropsychol. 22, 518–528.

Basso, M. R., Bornstein, R. A., Lang, J. M. (1999). Practice effects on commonly used 

measures of executive function across twelve months. Clin. Neuropsychol. 13 (3), 283-292. 

Bäumler, D., Voigt, B., Miller, R., Stalder, T., Kirschbaum, C., Kliegel, M. (2014). The relation 

of the cortisol awakening response and prospective memory functioning in young children. 

Biol. Psychol. 99, 41–46.

Blackwell, E., Carlos, F., Mendes De Leon, F., Miller, G. (2006). Applying mixed regression 

models to the analysis of repeated-measures data in psychosomatic medicine. Psychosom. 

Med. 68, 870-878.

Broderick, J. E., Arnold, D., Kudielka, B. M., & Kirschbaum, C. (2004). Salivary cortisol 

sampling compliance: comparison of patients and healthy volunteers. 

Psychoneuroendocrinology 29 (5), 636-650.

Cho, K., Ennaceur, A., Cole, J.C., Suh, C. K. (2000). Chronic jet lag produces cognitive 

deficits. J. Neurosci. 20, RC66 (1-5).

Clow, A., Hucklebridge, F., Stalder, T., Evans, P., Thorn, L. (2010). The cortisol awakening 

response: More than a measure of HPA axis function. Neurosci. Biobehav. Rev. 35, 97-103.



Page 16

Clow, A., Law, R., Evans, P., Vallence, A.M., Hodyl, N.A., Goldsworthy, M.R., Rothwell, J.R., 

Ridding, M.C. (2014). Day differences in the cortisol awakening response predict day 

differences in synaptic plasticity in the brain. Stress 17 (3), 219-223.

Clow, A., Thorn, L., Evans, P., Hucklebridge, F. (2004). The awakening cortisol response: 

methodological issues and significance. Stress 7, 29-37.

Cohen, R. A., Albers, E. H. (1991). Disruption of human circadian and cognitive regulation 

following a discrete hypothalamic lesion: A case study. Neurology 41 (5), 726-729.

Cullen, A.E., Zunszain, P.A., Dickson, H., Roberts, R.E., Fisher, H.L., Pariante, C.M., 

Laurens, K.R. (2014). Cortisol awakening response and diurnal cortisol among children at 

elevated risk for schizophrenia: Relationship to psychosocial stress and cognition. 

Psychoneuroendocrinology 46, 1-13.

Davranche, K., Pichon, A. (2005). Critical flicker frequency threshold increment after an 

exhausting exercise. J. Sport Exerc. Psychol. 27 (4), 515-520.

Diamond, A. (2013). Executive functions. Annu. Rev. Psychol. 64, 135–68.

Evans, P., Fredhoi, C., Loveday, Hucklebridge, F., Aitchison, E., Forte, D., Clow, A. (2011). 

The diurnal cortisol cycle and cognitive performance in the health old. Int. J. Psychophysiol. 

79 (3), 371–377.

Evans, P., Hucklebridge, F., Loveday, C., Clow, A. (2012). The cortisol awakening response 

is related to executive function in older age. Int. J. Psychophysiol. 84 (2), 201–204.



Page 17

Fries, E., Dettenborn, L., Kirschbaum, C. (2009). The cortisol awakening response (CAR): 

facts and future directions, Int. J. Psychophysiol. 72, 67-73.

Gibson, E. M., Wang, C., Tjho, S., Khattar, N., Kriegsfeld, L. J. (2010). Experimental ‘Jet 

Lag’ Inhibits Adult Neurogenesis and Produces Long-Term Cognitive Deficits in Female 

Hamsters. PLoS One 5 (12), e15267.

Hellhammer, J., Fries, E., Schweisthal, O., Schlotz, W., Stone, A., Hagemann, D. (2007). 

Several daily measurements are necessary to reliably assess the cortisol rise after 

awakening: state-and trait components, Psychoneuroendocrinology 32, 80-86.

Huizinga, M., Dolan, C. V., Van der Molen, M. W. (2006). Age-related change in executive 

function: Developmental trends and a latent variable analysis. Neuropsychologia 44, 2017–

2036.

Jagannath, A., Peirson, S.N., Foster, R.G. (2013). Sleep and circadian rhythm disruption in 

neuropsychiatric illness. Curr. Opin. Neurobiol. 23, 888–894.

Joels, M., Baram, T. Z. (2009). The neuro-symphony of stress. Nat. Rev. Neurosci. 10, 459-

466.

 

Karatsoreos, I. N., Bhagat, S., Bloss, E. B., Morrison, J. H., McEwen, B. S. (2010). 

Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc. 

Natl. Acad. Sci. U.S.A. 108 (4), 1657–1662.



Page 18

Kudielka, B. M., Broderick, J. E., Kirschbaum, C. (2003). Compliance with saliva sampling 

protocols: electronic monitoring reveals invalid cortisol daytime profiles in noncompliant 

subjects. Psychosom. Med. 65(2), 313-319.

Kudielka, B. M., Kirschbaum, C. (2003). Awakening cortisol responses are influenced by 

health status and awakening time but not by menstrual cycle phase. 

Psychoneuroendocrinology 28, 35–47.

Law, R., Hucklebridge, F., Thorn, L., Evans, P., Clow, A. (2013). State variation in the 

cortisol awakening response. Stress 16, 483–492.

Liston, C., Cichon, J.M., Jeanneteau, F. Jia, Z., Chao, M. V., Gan, W-B. (2013).

Circadian glucocorticoid oscillations promote learning dependent synapse formation and 

maintenance. Nat. Neurosci. 16(6), 698-705.

Manly, T., Lewis, G. H., Robertson, I. H., Watson, P. C., Datta, A. K. (2002). Coffee in the 

cornflakes: time-of-day as a modulator of executive response control. Neuropsychologia 40 

(1), 1–6.

Menet, J. S., Rosbash, M. (2011). When brain clocks lose track of time: cause or 

consequence of neuropsychiatric disorders. Curr. Opin. Neurobiol. 21 (6), 849-857.

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., Wager, T. D. 

(2000). The Unity and Diversity of Executive Functions and Their Contributions to Complex 

“Frontal Lobe” Tasks: A Latent Variable Analysis. Cognitive Psychol. 41 (1), 49–100.

Moriarty, A.S., Bradley, A.J., Anderson, K.N., Watson, S., Gallagher, P., McAllister-Williams, 

R. H. (2014). Cortisol awakening response and spatial working memory in man:



Page 19

a U-shaped relationship. Hum. Psychopharm. Clin. 29(3), 295-8.

Nader, N., Chrousos, G.P., Kino, T. (2010). Interactions of the circadian CLOCK system and 

the HPA axis. Trends Endocrin. Met. 21(5), 277-86.

Pruessner, J. C., Wolf, O., Hellhammer, D., Buske-Kirschbaum, A., Von Auer, K., Jobst, S., 

Kaspers, F., Kirschbaum, C. (1997). Free cortisol levels after awakening: a reliable biological 

marker for the assessment of adrenocortical activity. Life sci. 61, 2539-2549.

Rabbitt, P. (1997). Methodology of frontal and executive function. Psychology Press Ltd., 

East Sussex, UK. 1–38.

Rimmele, U., Meier, F., Lange, T., Born, J. (2010). Suppressing the morning rise in cortisol 

impairs free recall. Learn. Mem. 17, 186-190.

Sapolsky, R. M., Romero, L. M., Munck, A. U. (2000). How do glucocorticoids influence 

stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. 

Endocr. Rev. 21 (1), 55-89.

Sapolsky, R.M., Uno, H., Rebert, C.S., Finch, C.E. (1990). Hippocampal damage associated 

with prolonged glucocorticoid exposure in primates. J. Neurosci. 10(9), 2898-2902.

Simonson, E., Brozek, J. (1952). Flicker fusion frequency: background and applications. 

Physiol. Rev. 32, 349-378.



Page 20

Smyth, N., Clow, A., Thorn, L., Hucklebridge, F., Evans, P. (2013). Delays of 5-15 minutes 

between awakening and the start of saliva sampling matter in assesment of the cortisol 

awakening response. Psychoneuroendocrinology 38 (9), 1476-1483.

Stalder, T., Evans, P., Hucklebridge, F., Clow, A. (2010). Associations between psychosocial 

state variables and the cortisol awakening response in a single case study. 

Psychoneuroendocrinology 35, 209-214.

Stalder, T., Hucklebridge, F., Evans, P., Clow, A. (2009). Use of a single case study design 

to examine state variation in the cortisol awakening response: relationship with time of 

awakening. Psychoneuroendocrinology 34, 607-614.

Suri, D., Vaidya, V. A. (2013). Glucocorticoid regulation of brain-derived neurotophic factor: 

Relevance to hippocampal stuctural and functional plasticity. Neurosci. 239, 196-213.

Thorn, L., Hucklebridge, F., Evans, P., Clow, A. (2006). Suspected non-adherence and 

weekend versus week day differences in the awakening cortisol response, 

Psychoneuroendocrinology 31, 1009-1018.

Wilhelm, I., Born, J., Kudielka, B. M., Schlotz, W., Wüst, S. (2007). Is the cortisol awakening 

rise a response to awakening? Psychoneuroendocrinology 32, 358-366.

Wolf, O. T., Fujiwara, E., Luwinski, G., Kirschbaum, C., Markowitsch, H.J. (2005). No 

morning cortisol response in patients with severe global amnesia.  

Psychoneuroendocrinology 30 (1), 101–105.

Wolfram, M., Bellingrath, S., Kudielka, B. M. (2011). The cortisol awakening response (CAR) 

across the female menstrual cycle. Psychoneuroendocrinology 36(6), 905-12.



Page 21

Wuest, S., Wolf, J., Hellhammer, D. H., Federenko, I., Schommer, N., Kirschbaum, C. 

(2000). The cortisol awakening response-normal values and confounds. Noise Health 2, 79-

88.

Wulff, K., Gatti, S., Wettstein, J. G., Foster, R.G. (2010). Sleep and circadian rhythm 

disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci. 11 (8), 589-

599.

Zelazo, P. D., Craik, F. I. M., Booth, L. (2004). Executive function across the life span. Acta 

Psychol. 115, 167–183



Page 22

Table 1.

Descriptive statistics for cortisol samples (0-60min), sleep variables, reaction time, EF, flicker 

fusion, prior day alcohol consumption and prior day exercise.

Mean SD

Cortisol 1 (0 min) 10.17 4.14

Cortisol 2 (15 min) 13.85 4.81

Cortisol 3 (30 min) 17.86 3.50

Cortisol 4 (45 min) 17.33 4.26

Cortisol 5 (60 min) 14.05 5.27

Wake time (hh:mm) 8:16 1:03

Sleep duration (hh:mm) 6:21 0:52

Overall reaction time (ms) 282.46 20.15

EF (task switching) (ms) 9.18 11.51

Fatigue (flicker frequency) (Hz) 35.22 1.65

Prior day alcohol (units) 0.94 1.91

Prior day exercise (approx. 
hours)

0.39 0.65
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Table 2.

Cortisol increase from 0-30 min associated with better than average Executive Function 

(EF). Comparison between simple Model A including only sample time and cortisol, with 

Model B including z-scored EF (ZEF).

Model A Model B
Coefficent 
(SE)

     P
Coefficent 
(SE)

     P

Fixed effects
     Intercept 10.15 (.57) <.001 10.15 (.57) <.001
     Sample time   0.26 (.02) <.001   0.26 (.02) <.001
     ZEF –0.95 (.57)   .101
     Sample time * ZEF   0.04 (.02)   .024

Variance (SE)      P
Variance 
(SE)

     P

AR Diagonal
     AR1 diagonal 16.36 (2.49) <.001 16.19 (2.50) <.001
     AR1 rho   0.70 (0.05) <.001   0.71 (0.05) <.001

SE = standard error


