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Abstract—ElectroCardioGram (ECG) signals are widely used
for diagnostic purposes. However, it is well known that
these recordings are usually corrupted with different type of
noise/artifacts which might lead to misdiagnosis of the patient.
This paper presents the design and novel use of Infinite Impulse
Response (IIR) filter based Discrete Wavelet Transform (DWT)
for ECG denoising that can be employed in ambulatory health
monitoring applications. The proposed system is evaluated and
compared in terms of denoising performance as well as the
computational complexity with the conventional Finite Impulse
Response (FIR) based DWT systems. For this purpose, raw ECG
data from MIT-BIH arrhythmia database are contaminated with
synthetic noise and denoised with the aforementioned filter banks.
The results from 100 Monte Carlo simulations demonstrated that
the proposed filter banks provide better denoising performance
with fewer arithmetic operations than those reported in the open
literature.

Keywords—ECG denoising, Discrete Wavelet Transform, FIR
wavelets, IIR wavelets.

I. INTRODUCTION

The ECG signals are usually contaminated with various
noise where the noise and signal spectra overlap and the
conventional filtering techniques are insufficient to remove
this noise. DWT is a popular tool in the field of non-
stationary signal processing that provides simultaneous time
and frequency information, and has been used to detect such
overlapping noise. In ECG denoising literature a vast amount
of research employed FIR filter banks with various wavelet
families, most popular ones being the Daubechies such as
Haar, db2, and db4, Symmlets and Coiflets [1]–[3]. On the
other hand, IIR wavelet filter bank studies are less extensive
and limited to image processing and compressing applications
[4], [5]. This paper presents the design of IIR DWT filter
banks and their novel application in ECG signal denoising.
To the best knowledge of the authors’, this is a first in the
open literature and the results showed that the proposed IIR
DWT filter banks achieve higher output Signal-to-Noise Ratio
(SNR) and lower Mean Square Error (MSE) with reduced
arithmetic operation complexity compared to the conventional
FIR wavelets.

Section II provides brief information regarding the theory
of IIR wavelet design followed by the details of the designed
IIR wavelets. Section IV introduces the wavelet thresholding
technique employed and the noisy test data generated. Com-
parative analysis on the noise suppression performance of the
proposed IIR and FIR wavelets for different noise scenarios
are presented in Section V. Finally, Section VI presents the
conclusions.

II. IIR WAVELET ANALYSIS FILTER BANK PROPERTIES

The analysis part of a two channel Perfect Reconstruction
(PR) IIR filter bank can be realized with a halfband lowpass
and a halfband highpass filter denoted by H0(z) and H1(z),
respectively. These filters are based on the parallel connection
of two real all-pass filters [6], [7] and 1-level transform matrix
for the analysis filter bank is given in (1).
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where A0(z) and A1(z) are M th order allpass filters with a
general transfer function,
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As it can be observed from (1), H0(z) and H1(z) are power
complementary filters, since they satisfy the following prop-
erty.

|H0 (z)|2 + |H1 (z)|2 = 1 (3)

The scaling and wavelet functions associated with the afore-
mentioned filters, can be achieved by iterating the filter bank J
times on its lowpass branch as shown in (4). This will result in
transfer functions Φ (z) and Ψ (z) with lowpass and bandpass
spectrum where their impulse responses are the scaling (φ (n))
and wavelet (ψ (n)) functions, respectively.
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It is well known that, the regularity of wavelets defines the
smoothness of the wavelet function and has a crucial effect
for noise reduction applications. It is directly related to the
wavelet’s vanishing moments which is the number of times
the wavelet spectrum vanishes (goes to zero) at ω = 0 i.e∣∣Ψ(ejω)

∣∣
ω=0

= 0 where z = ejω. Thus, the aforementioned
H0 (z) and H1 (z) needs to be designed with an additional
flatness condition as shown in (5) [8].
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for k = 0, 1, ...K − 1, where K corresponds to the number of
zeros of H1 (z) at z = 0 and H0 (z) at z = −1 i.e. Nyquist
frequency. This design procedure can be reduced to the design
of H0 (z) due to the power complementary properties given
in (3). For a given filter order, a trade of between frequency
resolution and wavelet regularity exists. Therefore, it is critical
to identify needs of the application and select the best possible
frequency selectivity for a given flatness condition [6].

III. IIR WAVELET ANALYSIS FILTER BANK DESIGN

In this study, IIR wavelet design methodology introduced
by Zhang et. al [6] is adopted for implementing IIR wavelet
filters with 3 and 5 vanishing moments and are referred to
as ilet3 and ilet5, respectively in the rest of this document.
Both wavelets filters are designed as maximally flat filters in
order to achieve the maximum number of zeros at the Nyquist
leading to the maximum possible smoothness of the scaling
and wavelet functions. The number of vanishing moments
are selected in order to closely match the most commonly
used wavelet basis functions in ECG denoising applications
including, db2, and db4 with 2 and 4 vanishing moments,
respectively. Recalling (1), H0 (z) can be re-written as,
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where U(z) is an allpass filter with a general transfer function
given in (2). For ilet5 wavelets U(z) is chosen to be a second
order filter with real coefficients a2, a1, and a0 = 1. Thus, for
M = 2, its transfer function is expressed as,
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The frequency response of H0 (z) is calculated by evaluat-
ing (6) on the unit circle and the magnitude response is given
by, ∣∣H0
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)∣∣ = cos
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2
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where θ(ω) is the phase response of z−1U
(
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)
. Therefore,

for ilet5, θ(ω) and
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As mentioned before, the smoothness of the wavelet func-
tion is determined by the number of zeros at the Nyquist,
which is computed by substituting the numerator of (10) into
(5). Then, filter coefficients a1 = 10 and a2 = 5 are calculated
by solving the linear equations obtained. The same steps are
applied for ilet3 with M = 1 and K = 3. This results in
a1 = 3. Following (7), the poles of U(z) that lies inside the
unit circle corresponds to the poles of A1(z) and the poles
outside the unit circle corresponds to the zeros of A0(z).
By assigning the poles correctly, two stable allpass filters are
obtained. The magnitude responses and pole-zero locations of
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Fig. 1. ilet3; (a) Magnitude response and (b)Pole-Zero locations. ilet5; (c)
Magnitude response and (d) Pole-Zero locations.

(a) (b)

Fig. 2. Scaling (φ (n)) and Wavelet (ψ (n)) functions of (a) ilet3 and (b)
ilet5 after 8 iterations.

H0(z) and H1(z) and corresponding impulse responses, φ(n)
and ψ (n) for ilet3 and ilet5 are presented in Fig. 1 and Fig.
2, respectively.

IV. METHOD

There is various types of noise such as powerline interfer-
ence, baseline wander, and muscle contraction artifacts that
are assumed to be additive and independent from the the ECG
signal which is generally modelled as xn (n) = xc (n)+e (n),
where xn (n), xc (n), and e (n) are the noisy ECG, clean
ECG and composite noise, respectively. Although powerline
interference can be eliminated by a digital notch filter, the
spectrum of other noise sources overlap with the spectrum of
the ECG signal. In such circumstances, wavelet thresholding
can be employed where the noisy signal is decomposed
into several levels, denoised and reconstructed [9]. For this
study, the noisy ECG signal is decomposed into 7 levels and
each of the detail coefficients (i.e. outputs of H1(z) at each
level) are thresholded using the soft thresholding method, in



which the threshold is computed using the Rigorous SURE
(Stein’s Unbiased Risk Estimator) criterion [10]. The baseline
wander is removed by nullifying the finest level approximation
coefficients (i.e. H0(z) output at level 7) and the denoised
signal is reconstructed from the thresholded detail coefficients.
The thresholding method and threshold criterion is empirically
determined where soft thresholding is well-known for deliv-
ering smoother outputs and the Rigorous SURE threshold se-
lection scheme is known for successfully identifying the small
details of signal overlapped with noise. A good comparison of
different threshold selection and thresholding methods can be
found in [11].

A. Generated ECG data and Synthetic Noise Sources

Four raw ECG records (’103’, ’105’, ’109’, and ’118’) are
randomly taken from the MIT-BIH arrhythmia database which
are resampled to 256 Hz. In order to obtain clean control
data, preprocessing stages are applied, including notch and
highpass filtering (cut-off frequency (fc) = 0.5 Hz), to remove
60 Hz powerline interference and baseline wander, respec-
tively. Then, the ElectroMyogram (EMG) interference (xe (n))
is modelled as white Gaussian noise, whereas the baseline
wander is modelled as additive combination of deterministic
and random data with frequency content below 1 Hz as shown
in (11).
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where 0 < fi ≤ 1 for i = 1, 2, . . . , P , fs is the sampling
frequency and W (n) is lowpass filtered (fc = 1 Hz) white
Gaussian noise. Thus, the composite noise is obtained by
e (n) = A(xe (n)+xbw (n)) where A is the input noise scaling
factor that is determined by the desired input SNR and is
computed via;
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B. Quantitative Evaluation

The ECG signal denoising performance of ilet3 and ilet5
as well as Haar, db2, db4, sym4, and coif2 wavelet filter
banks are evaluated and compared by computing the SNR
improvement and MSE which are obtained from;
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where xd (n) is the denoised ECG signal.

V. RESULTS AND DISCUSSIONS

Four records (’103’, ’105’, ’109’, and ’118’) are con-
taminated by adding the synthetically generated EMG and
baseline wander with SNR ranging from −12 to 20 dB. Fig. 3

Fig. 3. Top to bottom;10 seconds of clean record ’103’,EMG noise, Baseline
Wander, Noisy ECG, and Denoised ECG.

presents (top to bottom) the clean ECG record ’103’, generated
synthetic EMG and baseline wander, noisy ECG contaminated
with composite noise with SNR = 4 dB, and finally the
denoised ECG with ilet5 wavelet filter bank. For each data
record and at each SNR, 100 Monte Carlo Simulations are
performed and the average SNR and MSE are computed.
Results for the noisy record ’103’ are shown in Fig. 4. As it can
be observed, the ilet5 wavelet filter bank provides the highest
SNR improvement and the lowest MSE when compared to
others, where ilet3 provides the second best results. In Table
I, the average SNR improvement (in dB) figures obtained for
ilet3, ilet5, db4 and Haar wavelets are also presented for
four noisy ECG records. As expected, ilet5 provides the best
results compared to the FIR wavelets, followed by ilet3 both
under high and relatively low noise power. This is due to
the better frequency selectivity achieved with the IIR wavelets
despite having lower vanishing moments,i.e. in the ilet3 case.
Although, Haar wavelet is the simplest FIR wavelet filter
which makes it desirable for power limited applications, it
achieves the lowest denoising performance. On the other
hand, ilet3 filter with one distinct coefficient provides better
denoising performance making it a favourable choice amongst
the others. For applications where the denoising performance
is critical and the power consumption can be compromised
then the ilet5 can be employed which uses only two distinct
coefficients. In addition, Table II presents the average MSE
results where the ilet5 and ilet3 wavelets provide the two
minimum MSE results. This is an indication of a relatively
smaller signal distortion after denoising which is a significant
factor for diagnostic applications. In terms of computational
complexity except from the Haar filter, rest of the FIR filters
employ 4, 8 and 12 rational coefficients. Thus, based on the
selected filter structure, the arithmetic and storage complexity
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Fig. 4. Average (a) SNR Improvement (dB), and (b) MSE, after wavelet denoising with ilet3, ilet5, db2, db4, sym4, Haar and coif2.

TABLE I
SNR IMPROVEMENT AFTER WAVELET DENOISING.

Input SNR = -12 dB Input SNR = 4 dB
ilet3 ilet5 db4 Haar ilet3 ilet5 db4 Haar

’103’ 13.07 13.92 12.18 9.49 9.13 9.4 8.72 5.55
’105’ 13.71 14.58 12.72 9.67 9.21 9.90 8.72 5.32
’109’ 13.92 14.92 12.98 9.68 10.18 11.38 9.20 5.27
’118’ 13.68 14.42 12.56 9.61 8.24 9.34 6.93 4.72

TABLE II
MSE AFTER WAVELET DENOISING

Input SNR = -12 dB Input SNR = 4 dB
ilet3 ilet5 db4 Haar ilet3 ilet5 db4 Haar

’103’ 0.07 0.06 0.09 0.17 0.0046 0.0044 0.005 0.011
’105’ 0.06 0.05 0.07 0.16 0.0045 0.0038 0.0049 0.011
’109’ 0.12 0.098 0.15 0.17 0.0074 0.0056 0.0086 0.022
’118’ 0.11 0.096 0.14 0.29 0.0101 0.0078 0.0129 0.022

will always be higher for the FIR wavelets in comparison to the
IIR wavelets. Also, it is a well known fact that for fixed-point
implementations, FIR filters are more sensitive to coefficient
quantization which require higher word-lengths compared to
allpass based halfband polyphase IIR filters, further increasing
the system complexity.

VI. CONCLUSIONS

In this paper, the novel use of IIR wavelet filter banks
for ECG signal denoising is presented. For this purpose, two
maximally flat and stable IIR wavelet filters, ilet3 and ilet5
are designed. Both filters are computationally efficient where
ilet3 and ilet5 employs one and two distinct coefficients,
respectively that can be implemented with simple shift and
add operations without using costly multipliers. A comparative
analysis of ECG signal denoising based on the aforementioned
IIR wavelet filters and state-of-the-art FIR wavelet filters is
carried out. The denoising performance of all filter banks are
evaluated through the generation of the synthetic noisy signals
and compared by means of the SNR improvement and the

output MSE. The results obtained demonstrated that the IIR
wavelets achieve the best ECG denoising performance with the
least signal distortion amongst the others with fewer arithmetic
operations. This study demonstrates that IIR wavelets can
be included in more sophisticated denoising applications in
portable devices due to their better frequency selectivity with
lesser arithmetic operations.
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