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Abstract 
The world around us is getting more connected with each day passing by – new portable 

devices employing wireless connections to various networks wherever one might be. Location-

aware computing has become an important bit of telecommunication services and industry. For 

this reason, the research efforts on new and improved localisation algorithms are constantly 

being performed. Thus far, the satellite positioning systems have achieved highest popularity 

and penetration regarding the global position estimation. In spite the numerous investigations 

aimed at enabling these systems to equally procure the position in both indoor and outdoor 

environments, this is still a task to be completed. 

This research work presented herein aimed at improving the state-of-the-art positioning 

techniques through the use of two highly popular mobile communication systems: WLAN and 

public land mobile networks. These systems already have widely deployed network structures 

(coverage) and a vast number of (inexpensive) mobile clients, so using them for additional, 

positioning purposes is rational and logical. 

First, the positioning in WLAN systems was analysed and elaborated. The indoor test-bed, 

used for verifying the models’ performances, covered almost 10,000m2 area. It has been chosen 

carefully so that the positioning could be thoroughly explored. The measurement campaigns 

performed therein covered the whole of test-bed environment and gave insight into location 

dependent parameters available in WLAN networks. Further analysis of the data lead to 

developing of positioning models based on ANNs.  

The best single ANN model obtained 9.26m average distance error and 7.75m median distance 

error. The novel positioning model structure, consisting of cascade-connected ANNs, improved 

those results to 8.14m and 4.57m, respectively. To adequately compare the proposed 

techniques with other, well-known research techniques, the environment positioning error 

parameter was introduced. This parameter enables to take the size of the test environment into 

account when comparing the accuracy of the indoor positioning techniques. 

Concerning the PLMN positioning, in-depth analysis of available system parameters and 

signalling protocols produced a positioning algorithm, capable of fusing the system received 

signal strength parameters received from multiple systems and multiple operators. Knowing 

that most of the areas are covered by signals from more than one network operator and even 

more than one system from one operator, it becomes easy to note the great practical value of 

this novel algorithm. On the other hand, an extensive drive-test measurement campaign, 

covering more than 600km in the central areas of Belgrade, was performed. Using this 
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algorithm and applying the single ANN models to the recorded measurements, a 59m average 

distance error and 50m median distance error were obtained. Moreover, the positioning in 

indoor environment was verified and the degradation of performances, due to the cross-

environment model use, was reported: 105m average distance error and 101m median distance 

error. 

When applying the new, cascade-connected ANN structure model, distance errors were 

reduced to 26m and 2m, for the average and median distance errors, respectively.  

The obtained positioning accuracy was shown to be good enough for the implementation of a 

broad scope of location based services by using the existing and deployed, commonly 

available, infrastructure. 
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1 Introduction 

1.1 Basic Idea and Motivation 
Nowadays people travel far greater distances in a single day than our not so distant ancestors 

had travelled in their lifetimes. Technological revolution had brought human race in an excited 

state and steered it towards globalization. Nevertheless, the process of globalization is not all 

about new and faster means of transportation nor about people covering superior distances. 

Immense amount of information, ubiquitous and easily accessible, formulate the essence of this 

process. Consequently, ways through which the information flows are getting too saturated for 

free usage. So, for example, frequency spectrum had become a vital natural resource with a 

price tagged on its lease. However, the price of not having the information is usually much 

higher. By employing various wireless technologies we are trying to make the most efficient 

use of the frequency spectrum. These new technologies have brought along the inherent habit 

of users to be able to exchange information regardless of their whereabouts. Higher uncertainty 

of the users' position has produced an increase in the amount of information contained within. 

As a result, services built on the location awareness of the mobile devices and/or networks, 

usually referred to as Location Based Services (LBS, also referred to as LoCation Services – 

LCS), have been created. Example of services using the mobile location can be: location of 

emergency calls, mobile yellow pages, tracking and monitoring, location sensitive billing 

/commercials, etc. With the development of these services, more efforts are being pushed into 

getting the maximum of location-dependent information from a wireless technology. Simply, 

greater the amount of information available – more accurate the location1 estimate is. 

                                                 
1 Sometimes, in literature, the words position and location have different meaning. Most often, position translates 
to the set of numerical values (such as geographical coordinates) which describe the user’s placement, whereas 
the location usually refers to the descriptive information depicting the user’s whereabouts (such as Piccadilly 
Circus, London, UK). Nevertheless, this work treats both words interchangeably. 
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Current research community aims to develop a positioning algorithm that will extract as much 

location dependent information as possible from modern, widely used, radio interfaces. This 

algorithm would have to produce better performing positioning technique. The goal of this 

research was not much different. However, the additional limitation for the research presented 

herein was that it had to be achieved for the already deployed, highly popular and widespread 

mobile radio communication systems without the use of any additional hardware. So, the 

obtained solutions would have to be applicable to any of the many already existing 

communication networks. This had to be achieved by analysing the existing widely used air-

layers and location dependent information therein available. Then the appropriate methods of 

harvesting and employing that extra available information had to be studied, developed and 

verified. 

The main tasks completed during this research were: 

 Overview of the fundamental parameters and properties of the physical layer of WLAN 

and PLMN (Public Land Mobile Network) systems, 

 Planning and execution of the measurement campaigns used to test and verify the 

proposed positioning models, 

 Implementation of the ANN (Artificial Neural Network) based models to positioning in 

WLAN systems, 

 Improvement of the positioning capabilities of the basic ANN based positioning models 

by introducing the novel ANN based positioning model, 

 Comprehensive comparison of the proposed WLAN ANN models with the other, well-

known, WLAN positioning techniques, including the formulation of the new 

positioning performance parameters used to justly compare the aforementioned 

positioning techniques, 

 Devising the positioning algorithm for PLMN positioning that can benefit, in terms of 

positioning performances, from increasing the number of input values from multiple 

systems and multiple network operators,  

 Implementation of the ANN based models to positioning in PLMN systems employing 

the above stated algorithm, and 

 Comprehensive comparison of the proposed PLMN ANN models with the other, well-

known, PLMN positioning techniques. 
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1.2 Thesis Outline 
The work presented in this document, can be fundamentally categorized on the grounds of 

mobile communication system in which the positioning was investigated. Positioning in the 

two popular communication environments were scrutinized: WLAN and modern public land 

mobile networks (GSM/UMTS).  

In order to explore and generate the positioning models, numerous tasks divided into several 

task groups ought to be completed. The methodology of obtaining the models was fairly 

similar for the both communication environments. First of all, the investigation of the 

fundamental properties and parameters of radio interface had to be carried out. Then, the 

measurement campaigns for each environment had to be designed and implemented to include 

the identified location dependent system parameters. After the study and statistical analysis of 

the results obtained by measurement campaign (analysis of the correlation between measured 

parameters, location, etc.) the optimal set of parameters to be used for positioning was 

identified. Next, the optimal positioning algorithms had to be devised, verified and compared 

to the other available positioning solutions.  

The aforementioned steps are the milestones of a several years long work. This document gives 

its summation. 

Chapter two gives an overview of positioning in mobile communication systems. Major 

performance parameters, classifications of positioning systems and approaches to determining 

the position of a user or entity are given therein. In addition, the existing positioning 

techniques in indoor and outdoor environment have been analysed with the emphasis on 

WLAN and cellular positioning systems, respectively. 

An introduction to artificial neural networks and their use for positioning is given in chapter 

three. The neuron model, neural network structures and learning rules are presented to a goal of 

selecting the most appropriate neural network structure from positioning point of view. 

Chapter four illustrates the research on positioning in WLAN environment including the 

chosen test-bed, measurement campaigns and derived models. Mutual model comparison as 

well as comparison to other relevant WLAN positioning techniques concludes this chapter. 

Similar chapter structure is repeated in chapter five, this time with positioning in PLMN. 

Additionally, the performances and benefits of using the introduced positioning models were 

compared in-between WLAN and PLMN positioning. 

Finally, chapter six gathers the essential results of the work and gives guidelines the future 

research might follow upon. 
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1.3 Outputs of the Thesis 
The thesis produced a set of models applicable to the already deployed mobile communication 

networks in both indoor and outdoor environments. It ought to be pointed out that most of the 

other, well-known, research efforts usually strive for uncompromised accuracy, neglecting the 

other equally important parameters (e.g. practical feasibility) along the way. 

The proposed multilayer feedforward ANNs have shown good positioning performances in 

both WLAN and PLMN environments, even with low RPs (Reference Points) density. Single 

ANN models were thoroughly explored in terms of optimal training lengths, variable input 

number and type. The performances of all the models were validated through the use of 

extensive measurement campaigns. 

 Several new performance evaluation parameters that ought to enable the indoor 

positioning techniques to be compared and classified in a more comprehensive and 

inclusive manner were proposed. These parameters take into account the accuracy, size 

of the environment, and the density of the infrastructure. Most importantly, the 

environmental positioning error parameter ought to enable positioning techniques to be 

compared inclusive of the size of their test bed, which was seldom the case before. The 

proposed performance parameters contribute to more broad scrutiny of the indoor 

positioning techniques. 

 The extensive experimental analysis of RSSI (Received Signal Strength Indication), 

SNR (Signal to Noise Ratio) and Noise level parameters usefulness for WLAN 

positioning purposes had shown that, contrary to the common knowledge, SNR 

parameter is equally suitable for WLAN positioning purposes as RSSI parameter.  

 Regarding the PLMN positioning, the devised positioning algorithm, suitable to use 

with the ANNs, benefits from using the RSSI values from multiple systems, belonging 

to multiple operators. Moreover, the PLMN models were tested indoors and the 

degradation of accuracy performances, due to cross-environment model use, was 

reported. 

 Foremost, this work brought the space-partitioning into positioning. The principle 

enables to dismantle the positioning process into two stages and solve each stage 

independently with the most suitable model. Moreover, the cascade-connected ANN 

based models suitable for use with space-partitioning were proposed. This positioning 

solution enhances the accuracy performance parameters: the average and median error 

are reduced whereas the high percentile DEs (Distance Errors) are more or less 

unchanged. It ought to be pointed out that the transformation of the DE distribution 
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function is favourable for the use of overlaid tracking algorithms that would filter-out 

high distance errors and additionally improve the positioning performances. If the 

space-partitioning principle is implemented through the use of cascade-connected 

ANNs, the latency of these models is very good, the scalability is fair, whereas the 

complexity when partitioning to a large number of subspaces might present a slight 

negative side. 
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2 On the Topic of Positioning 

2.1 Performance Parameters 
At the first glance, the determination of user's location can be seen as a simple mechanism 

consisting in calculating the geographic coordinates of the user. However, it is extremely 

difficult to obtain the exact location of a user, in 100% of the cases, wherever the user is and 

whatever his/her environment is. 

Many different factors may have an effect on location determination and the fact is that only an 

estimate of the user’s location can be obtained. It is therefore important to know how close to 

reality this location estimate is. To achieve that, it is necessary to characterise this location 

estimate. Other than that, it is also significant to describe the positioning technique itself in 

terms of its practicality and viability. All this is generally done through a set of performance 

parameters [2.1]. 

The first group of performance parameters is used to characterise the quality of a location 

estimate. 

2.1.1 Accuracy 

Accuracy is undoubtedly the most important performance parameter as it illustrates the 

essential characteristic of a positioning technique. This parameter enables to determine whether 

the calculated position is geographically close to the exact position. To achieve that, three 

different values must be taken into consideration: 

 Distance Error, 

 Uncertainty, and 

 Confidence. 

The Distance Error (DE) corresponds to the difference between the exact location of the user 

(i.e. of his/her terminal) and the calculated position, obtained through a position determination 

method. It is also referred to as Location Error or Quadratic Error in terms of two-dimensional 

positioning. Distance Error is generally expressed in units of length, such as meters. 
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Determining the Distance Error can be very useful in depicting the particular position 

determination cases. However, in order to express the positioning capabilities of a technique it 

is usually much more suitable to exploit the Distance Error statistics via Uncertainty and 

Confidence parameters. 

Bearing in mind that the calculated user's location is not the exact location but is biased by the 

Distance Error, it can be seen that the calculated position does not enable resolving the single 

point at which the user is located, rather an area. Depending on the positioning techniques 

used, this area may have different shapes (e.g. a circle, an ellipse, an annuli, etc). For that 

reason, the Uncertainty value represents the distance from the "centre" of this area to the edge 

of the furthest boundary of this area. In other words, the Uncertainty value can be seen as the 

maximum potential Distance Error. The value of uncertainty is expressed with the same unit as 

for the Distance Error. 

However, the Uncertainty value it is not sufficient to describe the Accuracy of a positioning 

technique. The determination of the Uncertainty value goes through a statistical process and 

does not enable to guarantee that 100% of the calculated positions have a Distance Error lower 

than the uncertainty value. That is the reason why the Uncertainty value is usually associated 

with a Confidence value, which expresses the degree of confidence that one can have into the 

position estimate. This degree of confidence is generally expressed in percentage or as a value 

of probability. 

As a consequence, it is the combination of Uncertainty and Confidence that validly describe 

the accuracy of a positioning technique. The Confidence values commonly used to describe the 

accuracy of a positioning technique comprise 10%, 33%, 50%, 67%, 90%, and 95%. 

Sometimes, the Confidence values are also referred to as percentile DE (e.g. 95-th percentile 

DE). The 50-th percentile DE is the median positioning error. 

If the finite set of DEs is available, the average DE is also used to illustrate the accuracy 

performance: 

 1

n

i
i

x
x

n



, (2.1) 

where  1 2, , , , ,i nx x x xx    is the vector of available DEs. 

The other way of expressing the Accuracy, i.e. the performance or requirement associated to 

location determination, is through the distance error’s Probability Distribution Function (PDF) 

and Cumulative Distribution Function (CDF). If the DE is observed as a continuous random 
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process, and a random DE variable is denoted as X, the PDF of X is a function  f x  such that 

for two numbers, a and b with a b  [2.2]: 

    
b

x a

P a x b f x dx


    . (2.2) 

Fig. 2-1 illustrates the DE's PDFs of two positioning systems where the second one, f2, has 

superior accuracy. 

  

Fig. 2-1 DE's Probability Distribution Function of two positioning systems with different accuracy 

Considering an optimally implemented positioning technique, ideally, the PDF of error for 

each coordinate (x and y) ought to have standard normal distribution. This conclusion can be 

drawn from the following: 

 First, if the distribution function is not centred on zero, simple translation (adding or 

subtracting a constant value) would improve the technique's accuracy. Ergo, in order 

for the technique to be optimal, its coordinate errors distributions must be zero centred. 

 Second, the positioning model ought to "learn" all signal properties and underlying 

relations except for the noise. Therefore, the positioning error for each coordinate, 

ideally, should be solely the product of the noise process. As most actual noise 

processes are considered to be with Gaussian distribution, the optimally implemented 

positioning technique should have the same distribution for the coordinate positioning 

error. 

What about the distribution of quadratic or distance error which consists of more than one 

coordinate? In general, multi-dimensional case, the specific answer might not be easy to find. 

However, if the two-dimensional surrounding is assumed (as will be the case throughout this 
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work) where the coordinate's errors are uncorrelated and of equal variance, the resulting DE 

will have a Rayleigh distribution. This distribution function depicts a random process where 

the components are uncorrelated and normally distributed with equal variances [2.3]: 

   2 22
2

, xx
f x e 


 , (2.3) 

where 2  is the variance. The assumptions made will be fulfilled for general small area surface 

positioning which presents the most common form of positioning problem.  

CDF is the probability that the observed value of X will be at most x, or: 

      
0

x

z

F x P X x f z dz


    , (2.4) 

where z is a dummy integration variable, and f  is the distribution function. 

 

Fig. 2-2 Cumulative Distribution Function of two positioning systems 

Fig. 2-2 illustrates CDFs of two positioning systems with different accuracy performances.  

If we assume there are n position estimations and m possible DE values, starting from eq. (2.1) 

the following can be written: 

 

1 1 2 2

1 2
1 2

i i m m

i m
i m

k x k x k x k x
x

n
k kk k

x x x x
n n n n

    


     

 

 

 (2.5) 
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where 
1

m

i
i

k n


  and ik  is the number of times the DE was equal to ix . Now, it can be clearly 

seen that the ik

n
 terms represent the probability of DE equals ix , or: 

        1 1 2 2 i i m mx p x x p x x p x x p x x       . (2.6) 

For ,m n   eq. (2.6) becomes: 

  
1

0

x x p dp  , (2.7) 

or, in terms of CDF function, F: 

  
1

1

0y

x F y dy



   (2.8) 

From Fig. 2-2, it can be seen that in the region of lower percentiles, the second system has 

superior accuracy –    2 1F x F x , whereas in higher percentiles the first system is more 

precise –    2 1F x F x . If the green areas are denoted as positioning gain, and red areas as 

positioning loss in terms of system two performances over system one, from eq. (2.8) the 

following can be concluded regarding the average DEs:  

 

     

     

1
1

1 1

0

1
1

2 2

0

y

y

x F y dy A B A G

x F y dy A B A R









  

  




, (2.9) 

where the operator  A   denotes the area size. From eq. (2.9) directly follows: 

 

   
   
   

2 1

2 1

2 1

A G A R x x

A G A R x x

A G A R x x

  

  

  

. (2.10) 

In other words, eq. (2.10) stipulates that if the gain and loss areas have the same area size, the 

systems’ average positioning error will be equal. Moreover, if the gain area is greater than the 

loss area the system will have smaller average DE, and the other way around. The actual 

difference of average DEs can be easily expressed as: 

 

   

       
   

1
1 1

1 2 1 2

0y

x x F y F y dy

A B A G A B A R

A G A R

 



    

   

 


. (2.11) 



 

11 

 

    

The PDF can be extracted from CDF and vice versa using the following set of equations: 

 

   

    
0

x

z

F x f z dz

d F x
f x

dx





 


, (2.12) 

In literature, the CDF is more commonly used (than PDF) to depict the accuracy performances. 

Moreover, using the CDF is more inclusive than using Uncertainty/Confidence pair due to the 

fact that a particular Uncertainty/Confidence pair can always be read of the CDF plot for every 

confidence or uncertainty value. 

2.1.2 Other Performance Parameters 

Coverage and Availability – Accuracy is not the only parameter to be considered in order to 

characterise a location estimate. Coverage and Availability must be considered too. These two 

parameters are linked together: 

 The Coverage area for a positioning method corresponds to the area in which 

the location service is potentially available, and 

 The Availability expresses the percentage of time during which the location 

service is available in the coverage area and provides the required level of 

performance. 

Latency – Location information makes sense only if it is obtained within a timeframe which 

remains acceptable for the provision of the LBSs based on this information. Latency represents 

the period of time between the position request and the provision of the location estimate and it 

is generally expressed in seconds. 

Direction and Velocity – Although the herein presented work is restrained to the initial 

position determination algorithms, there are additional tracking algorithms that rely on multiple 

sequential position determinations in order to estimate the speed vector of the user. In such 

cases, two additional parameters have to be calculated: the Direction followed by the user and 

his/her Velocity. These parameters are generally expressed in degrees and meters per second 

respectively. 

Scalability – The scalability is a desired and welcomed characteristic of a positioning system. 

It represents the positioning system’s ability to readily respond to any augmentation. The 

augmentation can be in terms of Coverage area, Availability, frequency and total number of 

positioning requests, etc.  
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Complexity – There are many definitions for complexity depending on the domain of 

application. Nevertheless, in terms of positioning systems, complexity is most often referred to 

as the property that describes the difficulty of setting up the positioning system.  

Cost effectiveness – This abstract characteristic of a positioning system is not entirely 

independent of its other performance parameters (e.g. Complexity and Scalability). For 

example, the greater the Complexity of the system, the lower the Cost effectiveness. One of the 

ways of describing it is as a ratio between the benefits it provides (how broad range of LBSs it 

enables) and the costs it induces for the user. 

As it can be seen from the aforementioned, the latter three parameters do not have standardized 

units and are usually of descriptive nature. 

2.2 Classifications of Positioning Systems  
There are more than a few classifications of positioning systems. Some are very strict and 

others are very arbitrary and overlapping. Without the need to judge or justify any of them, the 

most common ones are given herein. 

Regarding the type of provided information, positioning techniques can be split into two main 

categories. 

 Absolute positioning methods consist in determining user location from scratch, 

generally by using a receiver and a terrestrial or satellite infrastructure. A well-known 

example of systems based on “absolute positioning” is the American GPS. 

 Relative positioning methods consist in determining user location by calculating the 

movements made from an initial position which is known. These methods do not rely 

on an external infrastructure but require additional sensors (e.g. accelerometers, 

gyroscopes, odometers, etc). Inertial Navigation Systems used in commercial and 

military aircraft are a good example of systems based on relative positioning. 

LBSs currently offered by wireless telecommunication operators or by service providers are all 

based on absolute positioning methods and not on relative positioning methods, since these 

services are offered to users whose initial position is generally not known.  

Within the “absolute positioning” family, the measurements and processing required for 

determining user’s location can be performed in many different ways and rely on different 

means. Thus, many different absolute positioning methods can be used for determining user’s 

location. These methods can be clustered into different groups, depending on the infrastructure 

used. Hence, the positioning techniques can be divided into:  

 Satellite-based,  
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 Cellular-based, and  

 Other. 

The first group, which is known by the largest audience, is the “Satellite positioning” group. 

This group relates to the positioning methods which are based on the use of orbiting satellites, 

such as the GPS, GLONASS or Galileo. Many applications and services based on satellite 

positioning have been developed during the past years (e.g. in-vehicle navigation, fleet 

management, tracking and tracing applications, etc), but they generally required the use of 

dedicated receivers. Today, more and more devices such as PDAs or mobile phones include a 

satellite positioning capability, and this trend should persist in the future. 

The second group, the “Cellular positioning” group, corresponds to the location technologies 

which have been developed for Public Land Mobile Networks (PLMN). Initially deployed in 

the US under the pressure of the FCC mandate which forces US carriers to locate users placing 

calls to the E911 emergency number [2.4] and boosted by European E112 [2.5], location 

technologies are now being implemented in most of European wireless telecommunication 

networks for commercial purposes. Most of cellular positioning methods are incorporated in 

mobile telecommunication standards, but some solutions remain based on proprietary 

techniques.  

The third and last group, the “Other positioning” group, corresponds to those technologies 

which have not been developed specifically for positioning purposes, but that can be used, in 

addition to their primary function, for determining user’s location. These technologies 

encompass WLAN and Bluetooth for instance. 

Another distinction can be made, depending on the “place” where the position calculation is 

made. In some cases, the main processing is performed at the terminal level. In other cases, the 

main processing is performed in the network. Therefore, the positioning techniques can be 

classified into: 

 Network-based (also referred to as the mobile-assisted), and 

 Terminal- or Mobile-based (also referred to as the network-assisted). 

Satellite technologies, as a rule, fit in the Terminal-based positioning techniques. As for the 

positioning techniques from the cellular and other groups, they cannot be a priori associated to 

either of the Terminal- or Network-based groups. 

Finally, due to the fact that different physical phenomena dominantly influence the radio 

propagation in indoor and outdoor environments, different propagation models are being used 

to depict the propagation in these environments. Moreover, the main sources of interference in 

these systems are usually distinct. For instance, the intersystem interference is dominant for 

WLAN systems, whereas the intrasystem interference prevails within PLMN systems. Owing 
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to all that, the positioning techniques can also be classified according to the environment of 

their primary coverage into: 

 Outdoor, and 

 Indoor. 

Bearing in mind the ongoing convergence process of telecommunication systems and 

numerous, newly developed, hybrid positioning techniques, the indoor/outdoor categorization 

as well as other aforementioned classifications ought to be regarded more as guidelines than as 

strict lines that divide techniques into disjoint sets. Nevertheless, the last classification was 

used to group the positioning techniques in this document.  

2.3 Approaches to Localization 
The approaches and metrics used in order to obtain the user’s position are also worth 

discussing. There are a few fundamental methods of acquiring the user’s location: 

1) Based on the identification of “base station” to which the user is associated (Cell-ID or 

Cell of Origin – COO) – This simple approach assumes that the estimated location of a 

user is equal to the location of a “base station” to which the user is associated. In other 

words, the user is estimated to be in a location of the “nearest” node of the network.  

 

 

Fig. 2-3 Cell-ID Positioning Approach [2.1] 

This method is used both in indoor and outdoor environments (GSM, UMTS). Its 

popularity, despite usually inferior performances, is due to the simplicity of 

implementation. Obviously, the accuracy is proportional to the density of the network 

nods. This approach is illustrated in Fig. 2-3. 
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2) Based on the time of signal arrival (Time of Arrival – TOA) – Being that the waves 

(electromagnetic, light and sound) are propagating through the free space at constant 

speed – propv , it is possible to assess the distance between the transmitter and a receiver 

based on the time that the wave propagates in-between those two points. This approach 

assumes that the receiver is informed of the exact time of signal’s departure. Being that 

this is not always easily accomplished, the alternative approach takes into account the 

time needed for signal to propagate in both directions (Round Trip Time – RTT). This 

way, one station is transmitting the predefined sequence. The other station, upon 

receiving the sequence, after a strictly defined time interval, tproc, (used for allowing the 

stations of different processing power to process the received information), resends the 

sequence. The station that initially sent the sequence can now, by subtracting the known 

interval of time that the signal was delayed at second station from the measured time 

interval, asses the time that signal propagated to the other station and back and, 

consequently, the distance between the stations: 
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 

 (2.13)  

This approach is a popular one, since it does not require the stations to be synchronised. 

The RTT positioning approach is illustrated in Fig. 2-4. 

 

Fig. 2-4 Round-Trip-Time Positioning Approach 

3) The distance between the stations can be measured based on the differences in times of 

signal arrival (Time Difference of Arrival – TDOA) – With this approach, the problem 
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of precisely synchronised time in transmitter and receiver is resolved by using several 

receivers that are synchronised whereas the transceiver, whose location is being 

determined, does not have to be synchronised with the receivers. Upon receipt of the 

transmitted signal, a network node computes the differences in times of the signal’s 

arrival at different receivers. For each couple of receivers i and j, and the two-

dimensional setting, the following set of equations can be written: 

                        

       2 22 2

ij tx i tx j
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ij
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 

 

  


 

        

 (2.14) 

where ijt  is the measured time difference of arrival, propv  is the wave propagation 

speed, tx it   and tx jt   is the time signal travels from transmitter to receiver i and j, 

respectively. Likewise, tx id   and tx jd   are the distances between the transmitter and 

receivers i and j, respectively, whereas  ,i ix y ,  ,j jx y  and  ,tx txx y  are the 

coordinates of i-th and j-th receiver and the estimated coordinates of the transmitter, 

respectively. The  ,tx txx y  pairs that satisfy the bottom line of eq. (2.14) are located on 

a hyperbola. Hence, the user’s location is determined as a cross-section of two or more 

hyperboles (one for each pair of receivers). Owing to that, these techniques are often 

referred to as hyperbolic techniques. The TDOA approach to positioning is illustrated 

in Fig. 2-5. 
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Fig. 2-5 Time Difference of Arrival Positioning Approach [2.1] 

4) Based on the signal’s angle of arrival (Angle of Arrival – AOA or Direction of Arrival 

– DOA) – The idea, with this approach, is to have directional antennas which can detect 

the angle of arrival of the signal with the maximal strength or coherent phase (Fig. 2-6). 

This procedure grants the spatial angle to a point where the signal originated (and 

whose location is determined). This approach is often implemented through the use of 

antenna arrays. 
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Fig. 2-6 Angle of Arrival Positioning Approach [2.1] 

5) Based on the received signal strength (Received Signal Strength Indication – RSSI2) – 

The free space signal propagation is characterised with predictable attenuation 

dependent on the distance from the source. Moreover, in real conditions, the attenuation 

also largely depends on the obstacles and the configuration of the propagation path. 

That is why there are various mathematical models which describe the wave 

propagation for diverse surroundings and, ultimately, estimate the signal attenuation for 

the observed environment. This approach grants the distance of the entity whose 

position is being determined, to one or more transmitters. 

6) Based on the fingerprint of the location (Database Correlation or Location 

Fingerprinting) – With this approach, the certain, location dependant, information is 

acquired in as many Reference Points (RPs) across the coverage area of the technique. 

This data is stored into so called Location Fingerprints Database. Afterwards, when the 

actual position determination process takes place, the information gathered at the 

unknown location is compared with the pre-stored data and the entity’s position is 

                                                 
2 In some communication systems (mostly outdoor), this parameter is also referred to as the Received Signal 
Strength or Received  Level – Rx Lev. In this work, the RSS and RSSI notation will be used interchangeably. 



 

19 

 

estimated at a location of a pre-stored fingerprint from the database whose data are the 

“closest” to the measured data. 

 

 

d

r1

r2

r3

a) b)

 

Fig. 2-7 The processes of estimating a user location: a) Angulation and b) Lateration (Green circles 

represent the known positions and the red cross stands for the estimated location) 

 

Most often, the estimated position with TOA and RSSI approaches is determined by lateration. 

The process of lateration consists of determining the position of the entity when the distance 

between the entity and one or more points with identified positions is known. To uniquely 

laterate the position in N-dimensional space, the distances (or distance functions) to N+1 points 

ought to be known. With TDOA approach, the estimated position is obtained as a cross-section 

of two or more hyperbolas in two-dimensional space, or three or more hyperbolic surfaces in 

case of three-dimensional space. The process of angulation is employed with AOA and DOA 

approaches. This process estimates the location of a user as a cross-section of at least two rays 

(half-lines) originating at known locations. The lateration and angulation processes are 

depicted in Fig. 2-7. As for the Location Fingerprinting approach, the estimated location is 

obtained by utilizing the correlation algorithm of some sort. This algorithm determines, 

following a certain metric, the “closeness” of the gathered data to the pre-stored samples from 

the location fingerprinting database.  

Apart from these, basic, approaches, there are a number of other choices and hybrid techniques 

that combine the aforementioned approaches when determining the estimated position of the 

user.  
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2.4 Indoor Positioning 
Cellular-based, Computer vision, IrDA (Infrared Data Association), ultrasound, satellite-based 

(Indoor GPS) and RF (Radio Frequency) systems can be used to obtain the user’s position 

indoors. Positioning technologies, specific for indoor environment, such as computer vision, 

IrDA and ultrasound require deployment of additional infrastructural elements [2.6]. On the 

other hand, the performances of the satellite- and cellular-based positioning technologies are 

often unsatisfactory for typical LBSs in an indoor environment [2.6] – [2.8]. Due to the 

proliferation of IEEE 802.11 clients and infrastructure networks, and the fact that a broad 

scope of LBSs can be brought into an existing WLAN network without the need for additional 

infrastructure, WLAN positioning techniques are relevant and established subjects to intensive 

research. 

2.4.1 IrDA Positioning Systems 

IrDA technologies are based on devices with infrared light transceivers. This light occupies the 

part of spectrum between the visible light and the radio-waves (700nm – 1mm wavelengths). 

Upon encountering an obstacle, such as wall, the major part of the IR light’s energy is being 

absorbed. Therefore, in order to communicate properly, two IR devices must have unobstructed 

Line of Sight (LoS) path between them. This poses a limitation for employing this technology 

in positioning purposes. 

The most popular application of this technology for positioning use is the “Active Badge” 

technique [2.9]. The person or entity, whose position is being determined, possesses a device, 

badge alike, which periodically emits its ID code via IR transmitter. The IR sensors must be 

deployed in the coverage area (building). The position of the user is then determined based on 

the Cell-ID principle. With respect to the attributes of the IR light, the sensors must be 

deployed in every room in which the positioning feature is needed. Consequently, the accuracy 

of this technique is on a room level.  

Other techniques based on this technology offer various accuracy and applications. The 

systems with greater number of IR receivers and transmitters on each device are proposed 

[2.10]. These systems are able to accurately estimate the position of a mobile communication 

device (e.g. PDA, laptop, digital camera, etc.) in order to allow them to automatically 

synchronise or perform other location dependent tasks. These activities are supposed to be 

performed on a flat, table alike surface. The obtained distance error is less than 20cm in more 

than 90% of the cases. On the other hand, there are systems that augment the “Active Badge” 

technique by using more IR sensors, micro VGA display and, optionally, video cameras. These 

systems provide so called Augmented Reality [2.11]. The typical application of an Augmented 
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Reality system would be for the museum environment, where the visitor would be, via micro 

display (in eyeglasses, for example), fed with the information related to the exhibit he is 

currently experiencing.  

2.4.2 Ultrasound Positioning Systems 

The term ultrasound is related to the high frequency sound waves, above the part of spectrum 

perceivable to the human ear (20kHz). Although the ultrasound is most frequently used in 

medicine, there are other areas of application such as: biomedicine, industry (e.g. flow-meters), 

chemistry, military applications (sonic weapon), etc. As for the positioning purposes, the 

greatest benefit of using the ultrasound positioning is the product of a fact that ultrasound 

propagates through the air at limited speed, which is by far smaller than the speed of light. 

Therefore, the implementation of techniques based on time of flight (i.e. TOA, TDOA) of the 

signal is very much facilitated. Moreover, the mechanic nature of sound waves grants 

ultrasound positioning techniques immunity to electromagnetic interference which could also 

be considered as an advantage. It ought to be pointed out that ultrasound waves do not 

penetrate, but rather reflect of walls. Therefore, the ultrasound receiver, in order to detect the 

signal, must be in the same room as transmitter but the LoS is not necessary.  

Ultrasound positioning systems can be classified according to the number of ultrasound “base 

stations” (transmitters and/or receivers) in each room [2.12]. The basic ultrasound positioning 

technique comprises one receiver in each room, and an ultrasound emitting tag which is worn 

by the entity that needs to be positioned. In this case, the accuracy is on the level of the room. 

These systems are commercially available for some time now. 

More sophisticated ultrasound positioning systems invoke the use of a greater number of 

transmitters in each room as well as the use of RF (seldom IR) signals for precise determining 

the time delay [2.13]. In this case, the controlling unit, which is connected to all the ultrasound 

emitters in one room as well as with RF transmitter, determines the exact time when each of 

the transmitters is about to send its chirps. Commonly, the RF signal is emitted first and then 

the chirps from all ultrasound transmitters are emitted separated by known time intervals. The 

receiver, knowing the separating time intervals and the propagation speed of RF and ultrasound 

waves, can now calculate, based on the time it received each of the chirps, the distance to each 

of the ultrasound emitters. The position is then determined by lateration. Consequently, for 

three-dimensional positioning at least four transmitters per room are required. The accuracy is 

in range of 10cm in 90% of the cases. 

Furthermore, the system that eliminates the need for RF transmitter has been developed [2.14]. 

With this system, the processing power of the receiver can be reduced, and the whole system is 
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less complex. The transmitters are cyclically emitting chirps in constant time intervals whereas 

the receiver is employing an extended Kalman filter for resolving the chirp transmission and 

receipt times.  

2.4.3 RF Positioning Systems 

The RF (30 kHz – 300 GHz frequencies) positioning techniques employ different parts of the 

frequency spectrum. Some are implemented on existent short-range radio interfaces and serve 

as added services, while others are especially developed for positioning. The most common RF 

technologies which, through the use of these techniques, enable positioning are: RFID, UWB, 

Bluetooth and WLAN. 

Being that the WLAN positioning is one of the main topics of the thesis, the positioning 

systems for this environment shell be explored in more details. 

2.4.3.1 RFID (Radio‐Frequency IDentification) Positioning Systems 

The beginnings of this technology go far back to the time of the second World War. Over the 

recent years, due to the cheaper RFID components, the expansion of this technology is 

occurring.  

RFID system consists of tags, reader with antenna and accompanying software. The tags are 

usually placed on entities whose position needs to be determined. The Line of Sight between 

the tag and a reader is usually not necessary. The tags can contain additional information apart 

from its ID code which broadens the usage of this technology.  

There are three types of RFID tags: 

 Passive tags do not have their own power supply. In order to operate, they use the 

energy, induced on their antenna, from the incoming radio wave from the reader. Using 

that energy, the passive tag replays by emitting its ID code and, optionally, additional 

information. Passive tags have very limited range (from a few cm up to a couple of 

meters). Their advantage is within the scope of cheap construction, compact size and 

cheap production.  

 Active tags are encompassed with a power supply which enables them unrestrictive 

signal emission. This kind of tags are more reliable and immune to highly polluted RF 

environments. Their range can go up to a few hundreds of meters. 

 Semi-active tags are equipped with battery power supply. Recent constructions enable a 

battery life span of more than 10 years. 

RFID devices can operate in different frequency bands: 100 – 500 kHz, 10 - 15 MHz, 850 – 

900 MHz, and 2.4 – 5.8 GHz [2.15].  
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RFID positioning techniques are based on knowing the position of the reader. When the tagged 

object enters the range of the reader, its position is assumed to be equal to the position of the 

reader (similar to Cell-ID). Correspondingly, it is possible to deploy tags across the coverage 

area. In that case the reader is mounted on the entity whose position is being determined. The 

accuracy depends on the density of deployed objects (tags/readers) across the coverage area. 

With active tags, the positioning accuracy can be upgraded with the RSSI information. 

Most common application areas of RFID technology are in replacing the barcode readers, 

product tracking and management, personal documents identification, identification implants 

for humans and animals, etc. It is interesting to mention that the latter aforementioned 

application raises numerous ethical issues and there are organized groups worldwide opposing 

the implementation of this technology. 

2.4.3.2 Bluetooth Positioning Systems 

Bluetooth is a short-range, low-consumption radio interface for data and voice communication 

[2.16]. Initially conceived in the mid 90s by the Ericsson Mobile Communication as a 

technology that ought to replace the cable in personal communications, Bluetooth shortly 

gained significant popularity. Ericsson was joined by IBM, Microsoft, Nokia and Toshiba. 

They formed Bluetooth Special Interest Group (SIG) with an aim to standardize Bluetooth 

specifications. Independent group, called the Local Positioning Working Group, had a goal of 

developing the Bluetooth profile which would define the position calculation algorithm as well 

as the type and format of the messages that would enable Bluetooth devices to exchange 

position information.  

The basic Bluetooth specification does not support positioning services per se [2.17], [2.18]. In 

absence of such support, various research efforts have produced diverse solutions. Bahl and 

Padmanabhan first used the RSSI information for in-building locating and tracking [2.19]. Patil 

introduced the concept of reference tags and readers [2.20]. He also investigated separately the 

cases when Bluetooth supports and does not give support to RSSI parameter. On the other 

hand, the research by Hallberg, Nilsson and Synnes goes to say that RSSI parameter is 

unreliable for positioning purposes and that its employment ought to be avoided with Bluetooth 

positioning systems [2.21]. 

In addition, there are ideas of exploiting other parameters than RSSI for positioning purposes. 

Link Quality and Bit Error Rate (BER) are the most commonly referred in this context. 

However, it should be stated that these solutions are still under development, and that the Link 

Quality is not uniquely defined and is therefore dependent on the equipment manufacturer. 

Also, BER parameter is not defined in the basic Bluetooth specifications and must be 
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extrapolated from the message received as a response to echo command supported at L2CAP 

layer. All in all, these parameters undoubtedly contain location dependent information, but the 

extraction of that information is still subject to research.  

The accuracy of Bluetooth positioning systems is decreasing with the increase in the maximal 

range of the system [2.22]. That is, with the range increase, the positioning system uncertainty 

is increased as well, therefore the accuracy is worsened. The improvement of accuracy can be 

achieved through communicating with more than one Bluetooth nodes and possibly utilizing 

some of the aforementioned parameters (RSSI, Link Quality, BER). Finally, the major 

application of Bluetooth technology is expected in ad-hoc networks and the positioning 

techniques and LBS should be conceived and designed accordingly. 

2.4.3.3 UWB (Ultra‐WideBand) Positioning Systems 

Ultra-wideband is a short-range high data throughput radio technology. The ultra-wideband 

signal is defined [2.23] as a radio-signal that occupies at least either 500MHz of frequency 

spectrum or 20% of the central frequency of the band. There are many ways in which the UWB 

signal can be generated. Two, most important from the positioning point of view, are:  

1) Impulse UWB – By generating very short impulses, with sub nanosecond duration, that 

are mutually separated several tenths of nanoseconds. Clearly, this signal inherently 

possesses very wide band. 

2) Frequency Hopped UWB – By generating the typical DSSS (Direct-Sequence Spread 

Spectrum) with the signal spectrum ranging from 10 to 20MHz which is then hopped 

around 1GHz frequency, applying between 10 and 100 thousands of hops per second. 

Unlike conventional radio-signals, the impulse UWB signals are practically immune to 

multipath propagation problems. With conventional signals, the reflected component of the 

signal is, in its large part, overlapped with the component that is travelling the direct path. 

Hence, the direct and reflected component interfere at the receiver causing fading. Contrary to 

that, with the impulse UWB technology, due to the very short pulse duration, the reflected 

component is most often arriving at the receiver after the direct component has been 

completely received. With respect to this feature, the UWB positioning techniques utilising 

high resolution TOA approach come as the logical choice. Typically, the position accuracy of 

1m in more than 95% of the cases is achievable. 

Employing the mobile nods of the UWB network for accuracy improvement is also under 

research. Computer simulation [2.24] shows that the positioning error could be further reduced 

by employing a larger number of antennas with the beamforming capabilities. 
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Bearing in mind the amount of research in this area, the commercialisation of indoor UWB 

positioning systems can be expected in proximate future. 

2.4.3.4 WLAN Positioning Systems 

Positioning techniques in WLAN networks are becoming very popular. The reason for their 

popularity can be looked in-between the widespread of 802.11 networks and the fact that a 

broad scope of LBSs can be brought into an existing network without the need for any 

additional infrastructure. There are a number of approaches to the positioning problem in 

WLAN networks. Unquestionably, the most popular ones are based on the Received Signal 

Strength Information (RSSI). Nevertheless, there are other approaches that depend on timing 

measurements or require additional hardware but offer superior accuracy and/or faster 

implementation in return [2.25] – [2.27]. 

 Positioning with the use of RSSI parameter can be, in its essence, regarded as the path loss 

estimation problem. The nature of the path loss prediction in an indoor environment is 

extremely complex and dependent on a wide variety of assumptions (e.g. type of the building, 

construction, materials, doors, windows, etc.)[2.28]. Even if these basic parameters are known, 

precise estimation of the path loss remains a fairly complex task.  

Depending on the side on which the position calculation process takes place, positioning in 

WLAN networks with the use of RSSI parameter can be either network-based or client-based. 

Whereas the client-based solutions gather the RSSI vector from the radio-visible APs (Access 

Points), the network-based solutions have a central positioning engine which collects the 

client’s signal strength vector from the APs and produces the position estimate. The network-

based solutions do not require clients to have a specific software installed which is of great 

essence for security purposes. Moreover, the client does not need to be associated with the 

network – the positioning can be done solely based on the probe requests the client sends (in 

case of active scanning). Network-based solutions could also have an important advantage over 

the client-based ones when used in WLAN networks employing the Automatic Radio 

Management (ARM). This centralized mechanism is used to obtain the optimal radio coverage 

by changing the channel assignment and adjusting the output power and/or radiation pattern of 

the APs. Contrary to the client-based solutions, the network-based positioning engine could 

take into account the changes made by ARM mechanism while the ARM mechanism would 

present a setback for the client-based solutions. On the other hand, client’s Network Interface 

Cards do not have to be consistent regarding the radiated power which may, depending on the 

positioning algorithm used, present an analogue problem for network-based solutions. In this 
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work, for explanatory purposes, usually the client-based solution will be presented. However, 

the reader should keep an open mind towards the analogue network-based option. 

Regarding the approach used to determine the user’s position, WLAN positioning techniques 

can be categorised as: propagation model based, fingerprinting based or hybrid.  

 Propagation model based techniques rely on statistically derived mathematical 

expressions that relate the distance of an AP with the client’s received signal strength. 

The estimated position of the user is then obtained by lateration. Therefore, if there are 

less than three radio-visible APs (for two-dimensional positioning) the estimated user’s 

position is ambiguous. Also, the model derived for one specific indoor environment is 

usually not applicable to other indoor environments. 

 Fingerprinting techniques are most commonly used for WLAN positioning. They are 

conducted in two phases: the off-line or training phase, and the on-line or positioning 

phase. The off-line phase comprises collecting the RSSI vectors from various APs and 

storing them, along with the position of the measurement, into a fingerprinting 

database. In the on-line phase, the estimate of the user’s position is determined by 

“comparing the likeliness” of the RSSI vector measured during the on-line phase with 

the previously stored vectors in the database. The fingerprinting process is shown in 

Fig. 2-8. These techniques have yielded better performance than other positioning 

techniques, but are believed to have a longer set-up time.  

 Hybrid techniques combine features from both propagation modelling and 

fingerprinting approaches, opting for better performances than propagation model 

techniques and shorter set-up time than fingerprinting techniques [2.29]. 
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Fig. 2-8 Two phases of positioning: a) training phase – mobile client is recording RSSI vectors across RPs and 

stores them in fingerprint database, and b) positioning phase – based on the measured RSSI vector and database 

access, the algorithm estimates the user’s location 

The prospects of using RSSI parameter for indoor positioning were first systematically 

analysed in “RADAR” [2.19]. According to this research, it is better to use RSSI than SNR 

(Signal to Noise Ratio) for positioning purposes since the RSSI parameter is much more 

dependent on the client’s position than SNR. Two algorithms to establish the user’s location 

were proposed. The first one is the Nearest Neighbour (NN) algorithm which compares the 

RSSI vector of a mobile client against the RSSI vectors previously stored in the fingerprinting 

base. The performances of NN algorithm have been given in Table 2-I. For comparison, the 

authors also gave the performances of the Cell-ID like algorithm (the user is being assigned the 

location of the AP with the strongest RSSI) and the "random" algorithm which randomly gives 

the location estimates regardless of the inputs. 

Table 2-I Accuracy performances summary of nearest neighbour empirical algorithm [2.19] 

Method 
25th percentile DE 

[m] 
50th percentile DE 

[m] 
75th percentile DE 

[m] 

Empirical (NN) 1.92 2.94 4.69 

Strongest (Cell-ID) 4.54 8.16 11.5 

Random 10.37 16.26 25.63 

 

An extension to the proposed NN algorithm was also considered: the estimated location is not 

identified as only one RP whose RSSI vector is closest to the observed RSSI vector, but 
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calculated as a “middle” point of k closest RPs (kNN algorithm). This analysis has shown that 

algorithm performance improved for k = 2 and k = 3. For larger k, the performance had started 

to decrease. The second algorithm is based on a simple propagation model with Rician 

distribution assumed. It ought to be emphasized that both approaches require a minimum of 

three radio visible access points (APs). The reported performances were 3m and 4.3m median 

errors for empirical kNN and propagation model approaches, respectively. The measuring 

campaign comprised 70 RPs. At each RP measurements were made for four orientations of the 

receiver, and each measurement was averaged from 20 samples. 

To produce the maximum amount of information from the received RSSI vectors, the Bayesian 

approach was proposed [2.30]. This concept yields better results than the NN algorithm. The 

Bayes rule can be written as: 

                  | |p l o p o l p l N
t t t t t

 , (2.15) 

where lt is location at time t, ot is the observed RSSI vector at time t, while N is a normalizing 

factor that enables the sum of all probabilities to be equal to 1. In other words, at a given time t, 

the probability that a client is at location lt, if the received RSSI vector is ot, is equal to the 

product of the probability to observe RSSI vector ot at location lt and the probability that the 

client can be found at location lt. The process of estimating client’s location is based on 

calculating the conditional probability  |
t t

p l o  for each RP. The estimated client’s location is 

equal to the RP with the greatest conditional probability. To accomplish this task, two terms on 

the right hand side of Eq. (2.15) ought to be calculated. The first term, also referred to as the 

likelihood function, can be calculated based on the RSSI map (for all RP) using any approach 

that will yield probability density function of observation ot for all RPs. As for the a priori 

probability  tp l , it ought to be calculated according to the client’s habits. However, for most 

cases the assumption of uniform distribution across all RPs is valid. Using this approach, the 

authors managed to achieve the 2m median error. The measurements were made at 70 RPs. As 

with the previously discussed techniques, the measurements were made for four orientations of 

a receiver, and each measurement was averaged from 20 samples. 

Another project, named Horus [2.31], [2.32], had the goal of providing high positioning 

accuracy with low computational demands. This is also a probabilistic approach in which time 

series of the received signal strength is modelled using Gaussian distribution. Due to the time 

dependence of the signal strength from an observed AP, the authors of this project have shown 

that the time autocorrelation between the time adjacent samples of signal strength can be as 

high as 0.9. To describe and benefit from such behaviour, they have suggested the following 

autoregressive model: 
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              1 , 0 1
1

s s
t t t

         (2.16) 

where t  is the noise process and ts  is a stationary array of samples from the observed AP. 

Throughout the off-line phase, the value of parameter   is assessed at each RP and stored into 

the database along with Gaussian distribution parameters   and  . In the on-line phase, 

Gaussian distribution is modified according to the corresponding values of   retrieved from 

the fingerprinting database. Alike to the kNN algorithm, the Horus system estimates the 

client’s location as a weight centre of k RPs with the highest probabilities. The principal 

difference to the kNN algorithm is that, in case of Horus system, the k most likely RP are 

multiplied with their corresponding probabilities. For verification purposes, the authors made 

measurements at 612 RPs, and each measurement was averaged from 110 samples. The 

attained median error was 2m. 

More relevant information about the statistical modelling approach towards location estimation 

can be found in [2.33] and in the references found therein. 

Battiti et al. [2.34] were the first to consider using Artificial Neural Networks (ANNs) for 

positioning in WLAN networks. This approach does not insist upon a detailed knowledge of 

the indoor structure, propagation characteristics, or the position of APs. A multilayer 

feedforward network with two layers and one-step secant training function was used. The 

number of units in the hidden layer was varied. No degradation in performance was observed 

when the number of units grew above the optimal number. For verification purposes, 

measurements were made at 56 RPs, and each measurement was averaged from 100 samples. 

This way, the median error of 1.69m was obtained. The authors also studied how the increasing 

number of measured RSSI samples in each RP impacts the accuracy. The obtained dependency 

is given in Fig. 2-9 and shows the increasing accuracy with the additional measured samples. 

In most studies, WLAN positioning techniques are compared on the subject of their accuracy 

while other attributes of a positioning technique such as latency, scalability, and complexity 

are neglected (often enough even omitted). Another aspect that is seldom analyzed is the size 

of the environment in which the technique is implemented. The comparison of the WLAN 

positioning techniques regarding the accuracy and other available performance parameters will 

be given in Section 4.4. 
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Fig. 2-9 Influence of the number of samples per RP on positioning accuracy [2.34] 

It also ought to be pointed out that averaging the RSSI vectors in the on-line phase has an 

immense impact on the technique’s latency, so the scope of location based services that could 

be utilized with such techniques might be significantly narrowed. Moreover, bearing in mind 

that all presented approaches had at least three radio-visible APs in each RP (which is seldom 

the case in most WLAN installations), feasibility of sound frequency planning is uncertain. 

Consequently, the degradation of packet data services is inevitable with respect to positioning 

in larger indoor areas (i.e. large number of APs is required). Enabling the radio-visibility of 

three APs across the indoor environment is usually constructively irrational and economically 

unjustified. Hence, the presented techniques cannot be applied to the majority of existing 

WLAN networks optimized for packet data services. 

Finally, there are other studies that accompany the research for sophisticated positioning in 

WLAN networks. Other relevant research efforts comprise the impact of Network Interface 

Card on the RSSI parameter, compensation of small-scale variations of RSSI, clustering of 

locations to reduce the computational cost of positioning, use of spatial and frequency 

diversity, methods for generating a larger location fingerprinting database by interpolation, and 

unequal fusing of RSSI from different APs [2.35] – [2.41].  
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2.5 Outdoor Positioning 
This section describes the positioning solutions that primarily aim at procuring location 

information in outdoor environment. Based on the network infrastructure, the satellite and 

cellular positioning systems are presented. Considering the scope of the thesis, the latter group 

of positioning systems has been granted significantly greater attention. 

2.5.1 Satellite Positioning Systems 

The present section focuses on the positioning systems that use a satellite infrastructure to 

determine the location of a mobile user. The systems considered in this chapter are GPS (and 

DGPS), GLONASS and Galileo. 

2.5.1.1 Global Positioning System (GPS) 

GPS is an Global Navigation Satellite System (GNSS) operated by the US Department of 

Defence and consists of a satellite infrastructure composed of at least 24 orbiting satellites (21 

operational satellites and 3 active back-up satellites) and of a terrestrial infrastructure (1 Master 

Control Station in Colorado Springs and 5 other monitoring stations around the world). 

Positioning is performed by a receiver that measures its distance to GPS satellites transmitting 

spread spectrum signals. This requires that the receiver knows the exact location of the 

satellites at the time the measurement is made. 

 Distance measurement to at least four satellites enables three dimensional positioning 

and compensation of clock error. 

 Distance measurement to three satellites enables two dimensional positioning and 

compensation of clock error. 

 The accuracy of the location estimates obtained with GPS varies depending on the 

environment (GPS offers better performance in open areas than in areas where a large 

part of the sky may be masked, e.g. city centres). 

 The average accuracy of GPS is contained between 10 m and 100 m depending on the 

environment. 

The US Department of Defence has commissioned a new set of GPS satellites (so called Block 

II F group) whose deployment started in 2005. This upgraded GPS is not yet entirely available 

but, upon deployment, it should offer an accuracy of 2 m – 6 m. 

The overall availability of GPS is very high except in areas where the visibility to satellites is 

low or null (e.g. urban canyons, indoors). 

The Time to First Fix (TTFF) of a GPS receiver varies depending on the type of start: 
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 Cold start: no information is available in the receiver (almanac, ephemeris, time of Day, 

etc). Then, TTFF is generally included between 30s and 30 min. 

 Warm start: time of day, almanac and last position are known by the receiver but the 

ephemeris is no longer valid (this corresponds to a situation where the receiver has not 

seen satellites for the past few hours). Then, TTFF ranges from a few seconds to 60 s. 

 Hot start: this corresponds to the most favourable situation where all the necessary 

information is available in the receiver and the satellites have been seen during the last 

two hours. In such a case, the TTFF is under 20 s. 

The main limitation of conventional GPS concerns its lack of availability in indoor or heavily 

masked environment. 

New techniques for the acquisition, demodulation, decoding and interpretation of GPS signals 

could enable to determine positioning with a shorter latency, even in signal obstructed 

environments. This capability could be available to stand-alone GPS units or integrated into 

wireless devices such as mobile telephones and PDAs. In this latter case, this would enable to 

achieve A-GPS (Assisted-GPS) performance level without requiring any assistance from a 

third party (cellular network in this case). In particular, and contrary to A-GPS, the positioning 

would require no capacity, investment or operational modifications on cellular network. 

This technology is readily available as there are many different GPS receivers available on the 

market and many applications and services based on GPS are currently deployed all around the 

world. 

The performance of basic GPS can be improved through the use of augmentations to the basic 

system. Up to now, augmentations generally aimed at improving the accuracy and integrity 

performances. However, more and more studies and projects are addressing the possibility to 

improve availability in highly constrained environments. 

The most significant improvement of accuracy is known as Differential GPS (DGPS). DGPS 

consists of broadcasting differential corrections obtained with a reference station. The 

reference station knows its exact location and compares it permanently with the calculated GPS 

position. This enables to calculate corrections that are broadcast continuously and can be used 

by GPS receivers to improve their own position determination. 

2.5.1.2 GLONASS Positioning System 

GLONASS is a Russian satellite positioning system based on a concept similar to the US GPS. 

Some receivers are able to decode both GPS and GLONASS signals, thus enabling to use an 

increased number of satellites compared with basic GPS. However it must be noted that these 
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dual receivers have not a wide diffusion and their cost is very high, thus making their use 

almost impossible for mass-market applications. 

2.5.1.3 Galileo Positioning System 

Galileo is also a GNSS currently being built by the European Union and European Space 

Agency (ESA). This project is an alternative and complementary to the U.S. Global 

Positioning System (GPS) and the Russian GLONASS. A reason given for Galileo as an 

independent system was that, though GPS is now widely used worldwide for civilian 

applications, it is a military system which as recently as 2000 had Selective Availability (SA) 

feature that could, if enabled, significantly decrease the performances in particular areas of 

coverage. Therefore Galileo's proponents argued that civil infrastructure, including aeroplane 

navigation and landing, should not be left relying solely upon GPS. 

The Galileo fully deployed system should consist of 30 satellites in Medium Earth Orbit 

(MEO) and should be operational by 2013 but later press releases suggest it was delayed to 

2014 [2.42]. 

When in operation, it will have two ground operations centres, one near Munich, Germany, and 

another in Fucino, Italy.  

Galileo is intended to provide more precise measurements than those available through GPS or 

GLONASS (Galileo will be accurate down to the metre range) including the height (altitude) 

above sea level, and a better positioning services at high latitudes.  

Like with GPS, use of basic (open) Galileo services will also be free for everyone. However, 

more qualified services will be accessible with pecuniary or military restrictions. 

2.5.2 Cellular Positioning Systems 

GSM (Global System for Mobile Communications) is the most popular standard for PLMN in 

the world. This second generation system introduced digital communication and thereby 

significantly improved the quality of experience for mobile telephony users. Moreover, GSM 

pioneered short text messages and packet data services. The GSM Association, estimates that 

80% of the global mobile market uses the standard [2.43]. 

Universal Mobile Telecommunications System (UMTS), the successor of GSM, is one of the 

third-generation (3G) cellular technologies. The most common form of UMTS uses W-CDMA 

(Wideband Code Division Multiple Access) as the underlying air interface. It is standardized 

by the 3GPP, and is the European answer to the ITU IMT-2000 requirements for 3G cellular 

radio systems.  
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The popularity and widespread of GSM and UMTS had made researchers to turn their focus 

towards finding a superior positioning technique for this technologies. 

Location techniques, proposed in the Access Networks, GSM (ETSI) and UMTS (3GPP) 

standards are: 

GSM [2.44] 

 Cell Id + Timing Advance (TA), 

 Time of Arrival (TOA) based on handover measurements at different BTS, 

 Enhanced Observed Time Difference (E-OTD) based on BCCH timing measurements 

from different cells at target MS (Mobile Station), and 

 Assisted Global Positioning System (A-GPS). 

UMTS [2.45] 

 Cell Id + Round Trip Time (RTT) - similar to GSM Cell Id + TA method, 

 Angle of Arrival (AOA), 

 Observed Time Difference of Arrival (OTDOA) - similar to GSM E-OTD method, and 

 Assisted-GPS - similar to GSM’s A-GPS. 

Cell ID + TA (RTT in UMTS) – The position of a target mobile station (or UE - User 

Equipment in UMTS) is estimated with the knowledge of its serving cell. The accuracy varies 

according to the size of the cell. The radius of a cell may vary from less than a 100m to 35 km 

(for GSM). Accuracy is generally greater in urban areas with a dense network of smaller cells 

than in rural areas where there are fewer BTSs (Node-B stations in UMTS). The TA (RTT) 

parameter is an estimate of the time needed for signal to propagate from the serving BTS 

(Node B) to the MS (UE) and back. It is used to synchronize the bursts arriving from mobile 

handset to BTS (Node-B). 

Drawbacks: 

 Low accuracy varying from 100 - 1100 m. 

Advantages: 

 No modifications to handset. Requires only MLC (Mobile Location Centre) in the 

network. Low cost, 

 Usable for all existing equipment and across networks, and 

 Fast response, approximately 1 sec. 

Observed Time Difference of Arrival - Idle Period Down Link (OTDOA - IPDL) – This 

method is quite similar to TOA in GSM, except that the UE also performs the calculations. 

OTDOA is a time-based method, whereby the handset measures the arrival of time of signals 

transmitted from the 3+ Node-Bs and this requires new function in handset. In UE-assisted 

OTDOA, the timing measurements are transferred from UE to the SRNC (Serving Radio 
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Network Controller) using standardized LBS signalling. The position of the UE is estimated 

using trilateration and this also requires the accurate position of each Node-B. In UE-based 

OTDOA, the handset performs the position calculation and the information is returned to the 

SRNC. For unsynchronized networks, the real time difference between the Node-Bs must be 

measured using a fixed Location Measurement Unit (LMU) whose location is known. LMU 

receives the signals between pair of Node-Bs to perform measurements and return them to 

SRNC. LMU can be avoided by synchronizing Node-Bs with GPS.  

Drawbacks: 

 Average accuracy between 50-200 m, 

 Added software required in the handset and high impact on the network - high cost, 

 For roaming, implementation of E-OTD requires major modifications since the roamed-

to network must have LMUs, and 

 Non resistant to multi-path propagation. 

Advantages: 

 Fast response – approximately 5 s, depending on the network latency. 

Angle of Arrival (AOA) – The angle of arrival method requires the installation of directional 

antennas or antenna arrays. The method determines location of the MS based on angulation. 

The intersection of two directional lines each formed by a radial from a Node-B defines a 

unique position for the UE. This method requires the UE to have knowledge of a minimum of 

two Node-Bs (or one pair). If available, more than one pair can be used (most common is three 

Node-Bs which yields two pairs). The method also requires LoS to the involved Node-Bs for 

the position estimate to be accurate.  

Drawbacks: 

 Susceptible to multipath interference, 

 Relatively low accuracy (approx. 300 m), and 

 Larger infrastructure costs for installation of additional directional antennas. 

Advantages: 

 No modification to handset necessary, and 

 Requires only a minimum of 2 cells sites to determine a user’s location. 

Assisted Global Positioning System (A-GPS) – The assisted GPS is a time-based method, 

whereby the handset measures the arrival time of signals transmitted from 3+ GPS satellites, to 

determine its position. Adding GPS functionality has high impact on the handset with new 

hardware (GPS receiver) and software required. The impact on the network is low, requiring 

only support from the SRNC. The conventional GPS might normally require few minutes to 

obtain a first position and the time is too long. In A-GPS, the assistance information is sent 
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from the reference GPS receiver in the network (SRNC) to reduce that time. The wireless 

network, based on the approximate location of the handset (generally the location of the closest 

cell site), determines which GPS satellites should be relevant for calculating its position. This 

additional information is provided to the UE. The handset then takes a reading of the proper 

GPS signals, calculates its distance from all satellites in view and sends this information back 

to the network. There are two implementations of A-GPS. UE assisted, whereby the 

measurements are passed back to the network for position calculation and UE based, where the 

position is calculated in the handset. A-GPS implementation mainly impacts UE and SRNC 

and has low dependency on Radio Access Network. 

Drawbacks: 

 Heavy battery-use of handset, 

 Initial response time slow compared to other technologies, 

 Integration of GPS receiver required in handset – high impact, and 

 Low availability in indoor environments. 

Advantages: 

 High accuracy (10-50 m), 

 Proven technology, 

 Avoids expensive modifications to the network, and 

 Roaming can be supported easily. 

From the aforementioned, it is obvious that there is no ideal positioning solution for UMTS 

users and that there is much more space for further improvement left. Due to the fact that 

UMTS networks are seldom found without collocated GSM networks and that most of the 

techniques standardized for UMTS have evolved from similar GSM positioning techniques, the 

research presented herein will address positioning techniques that use the information available 

from both the UMTS and GSM networks. 

Basically, all the standardised positioning techniques come with a few drawbacks as well. That 

is why there is no unique solution widely accepted by the network operators. On the other 

hand, the same reasons induced an increasing part of research community to work on 

improving the aforementioned positioning solutions by adding various tricks of trade. Usually, 

they depend on additional signal processing [2.46] in order to improve on positioning 

performances.  

The most basic techniques are founded on serving cell identification (Cell-ID) [2.47]. In this 

way, the MS can be located with the accuracy given by the cell radius. Bearing in mind that the 

cell radius can be extended beyond 35km (in case of GSM), it becomes obvious that this 

technique does not grant preferable accuracy. On the other hand, it is considered to be the 
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simplest technique within PLMN based positioning systems. Various non-standardized 

augmentations to this plain technique have been made. Adaptive enhanced Cell-ID is a self 

learning method that uses precise position results of opportunity, together with fingerprinting 

radio measurements to populate the fingerprinting database. The method can also make use of 

other information like signal strength and time measurements. This approach has yielded a 20-

50% reduction in the size of the area where the user equipment is located. The paper [2.48] 

reports this method's field results.  

Most of the other positioning algorithms enrich the Cell-ID information with RSS (Received 

Signal Strength) measurements. Simulation results using statistical modelling of RSS [2.49] 

achieved accuracy of 320m with 67% confidence (320m | 67%) which is 70 – 75% better than 

basic Cell-ID technique's performances. Accuracy performances of this approach are 

summarized in Table 2-II. 

 

Table 2-II Summary statistics for the simulation of Statistical Modelling Approach [2.49] 

DE 
Statistical Modelling 

Approach 
Cell-ID 

Average DE [m] 279 1092 

Median DE [m] 237 773 

67th percentile DE[m] 320 1262 

95th percentile DE [m] 620 3108 

Maximum DE [m] 1930 5015 

 

Genetic algorithms are an optimisation technique that was tried-out for positioning. Their 

employment in the UMTS network [2.50] resulted in accuracy of 450m | 72%. The parameters 

that were used for genetic algorithms optimisation technique are shown in Table 2-III. There is 

an additional issue with using the genetic algorithms for positioning. Namely, with each 

positioning request the whole population/selection simulation has to be rerun. Therefore, their 

latency, is usually unsustainable for a broad number of LBS. In this study, the reported 

computing time (latency) was 7s. 

 

Table 2-III Parameters of genetic algorithms used for positioning [2.50] 

Fitness Function Cumulative Error 

Population Size 100 
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Parent Size 20 

Selection Algorithm 
Tournament 

Selection 

Number of Generations 50 

Ratio of Elite, Crossover & Mutation 
Children 

4:80:16 

 

When regarding the Database Correlation Method (DCM) with RSS, the fingerprinting 

database can be constructed two-fold: from actual field measurements, or from RSS estimates 

obtained by some form of propagation model. The first approach produces more accurate 

fingerprinting database, however, it consumes significantly more time for measurement 

campaign. In [2.51], the DCM was used on a fingerprinting database obtained with commonly 

used propagation models. For correlation metrics the following equation was used: 

                   2

i i
i

d k f g k p k    (2.17) 

where if  is the RSS measured by the MS on the i-th channel,  ig k  is the RSS of the k-th 

database fingerprint on the same channel, i refers to the number of selected cells or channels, 

and  p k  is the penalty term contributed by the channels that are radio-visible in only one of 

the fingerprints. Actual field RSS measurements were used to verify the accuracy 

performances. The method achieved an accuracy of 483m | 67% in the urban environment. 

Other accuracy performances of this method are presented in Table 2-IV. 

 

Table 2-IV Accuracy summary for RSS DCM positioning technique 

DE Rural 
Suburba

n 
Urba

n 

Minimum DE [m] 168 204 198 

Maximum DE [m] 906 782 1008 

Average DE [m] 475 371 653 

  

Another course in PLMN positioning uses timing parameters, such as Timing Advance (TA) 

parameter in GSM, or Round Trip Time (RTT) and the Rx-Tx observed time difference in 

UMTS. It should be noted that these parameters can only estimate the distance between the 

mobile terminal and the serving base station (or Node B in case of UMTS). Only in the case 

when there are more than two Nodes B in the active set (Node Bs involved in a soft handover 
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procedure) can the location estimate be obtained through the process of multilateration. It 

ought to be pointed out that this situation occurs seldom. In case of GSM the situation is even 

less favourable. At any given time there is only one TA parameter available. Therefore, this 

type of information by itself is generally insufficient for precise positioning and is, most often, 

combined with RSS measurements. Moreover, the RTT parameter is not even available in all 

UMTS networks.  

In [2.52], a simulation of the database correlation method using RTT and power delay profile 

yielded a 15m median DE, 25m | 67%, and 135m | 95% accuracy. Similar accuracy 

performances (15m median DE, 20m | 67%, and 115m | 95%) were recorded in [2.53] where a 

novel selection criterion was used to choose the three optimal RTT values (in non-line-of-sight 

conditions) for subsequent trilateration. Nevertheless, none of the studies involving real 

measurements endorse such superb accuracy.  

Note that none of the presented techniques offers straightforward precise positioning in PLMN. 

Positioning based on timing measurements (TDOA based) require additional network 

components. RSS and hybrid RSS + TA (RTT) solutions have not shown sufficient accuracy 

thus far. Even if the satellite based techniques are included, they up to date fail to provide 

seamless indoor-outdoor positioning and the handset impact in terms of price and battery 

consumption remains an issue.  

The initial location estimate can further be improved if consecutive estimations can be 

obtained. In this case the algorithm is referred to as the “tracking algorithm”. Kalman filter 

[2.54], post filtering using a state-space model [2.55] and probabilistic approaches [2.56] can 

be used as tracking algorithms. Moreover, the initial location estimate can be improved by a 

map matching process which coerces the estimated location to a specific area on the map 

[2.57]. Nevertheless, this work investigates only the initial location determination stage and 

overlaid algorithms fall outside its scope. 
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3 Artificial Neural Networks (ANN) 

3.1 Introduction 
Artificial Neural Networks (ANNs) are computational models inspired by biological networks 

of neurons. They are based on closely interconnected groups of artificial neurons. Essential 

characteristic of these networks is their adaptive nature, which grants them the ability to model 

complex relations between inputs and outputs by changing their inner structure during the 

learning phase. When compared to other approaches, this ability gives the ANNs notable 

advantage in cases when there is not enough knowledge of the problem or the problem cannot 

be entirely understood. On the other hand, in order to make use of ANN, sufficient amount of 

training data must be made available. The extent of ANN efficiency is exceptionally high 

concerning the implementations on systems with parallel architecture as well as direct 

hardware implementations. 

The ANNs, as suitable computational systems, can be used to solve a large number of 

problems where, due to the complexity of data or functions, other models fail to adequately 

perform. Some of the typical applications of ANNs include: pattern recognition, speech 

recognition and synthesis, adaptive interfaces between human and complex physical systems, 

function approximation, financial applications, diagnostics in medicine, spam filters for e-mail, 

image compression, associative memories, prediction, optimisation, modelling of non-linear 

systems, unmanned vehicle control, etc. 

The application of ANNs for positioning purposes has been the subject of many recent studies. 

However, there is still opportunity for further improvement. For that matter, the overview of 

fundamental theoretical knowledge given in this section has the purpose to facilitate the 

understanding of the ANNs application on positioning problem in current radio systems. 

Additionally, the feedforward ANNs, which are known to efficiently solve the electric field 

level prediction problem [3.1], have been described in more detail. More details on theoretical 

foundation and ANN application analysis can be found in [3.1]. 
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3.2 ANN Architecture Analysis 

3.2.1 The Model of Computational Neuron 

The "artificial neuron" is the atom of an ANN. It translates several inputs into a single output. 

The basic transfer function of an artificial neuron was initially proposed by McCulloch and 

Pitts in 1943 [3.2]. They suggested a Linear Threshold Gate – LTG as a computational neuron 

model (Fig. 3-1). The basic task of LTG is to classify the input vector x into one of the two 

possible values of the output, y. The LTG's transfer function is given as:  

 i i
1

1, if w x

0, otherwise

n
T

i

T
y 


  



w x
, (3.1) 

where x=[x1x2...xn]T and w=[w1w2...wn]T are input and weight column vectors, respectively, 

while T is the threshold value. 


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Fig. 3-1 McCulloch-Pitts neuron model [3.1] 

To simplify the notation, the threshold value T is usually expressed through an additional 

neuron input as w0= -T, and x0=1.  

As the areas of ANN application grew, there has been several modifications of McCulloch-

Pitts neuron. Perhaps the most significant one is related to the change in activation function 

(threshold function – f). Besides the LTG, activation function can be implemented in form of 

piecewise linear, sigmoid or Gaussian functions as depicted in Fig. 3-2. The sigmoid activation 

function is used most commonly and will be discussed in more details in the forthcoming 

sections.  
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a) b) d)c)  

Fig. 3-2 Activation functions: a) threshold, b) piecewise linear, c) sigmoid, and d) Gaussian 

3.2.2 ANN Architectures 

If ANNs are observed as directed graphs, neurons become the vertices and the connections 

between the neurons (with weight coefficients) become directed edges. Based on the analysis 

of topology of such graphs, the ANNs can be split into two main categories: 

 feedforward networks – associated graph has no recurrent edges, and 

 recurrent or feedback networks – associated graph has recurrent edges. 

One of the most significant families of feedforward networks is a multilayer perceptron 

network. With the networks of this architecture, the neurons are organized in at least three 

layers and the activation function is non-linear. By using the multilayer perceptron ANN it is 

possible to solve the problem of non-linear data classification (line in case of 2D, plane in case 

of 3D and hyperplane in case of multidimensional problem). Multilayer perceptron ANN as 

well as other commonly used ANN architectures are shown in Fig. 3-3. 

 

Fig. 3-3 Feedforward and recurrent/feedback ANN architectures [3.1], [3.3] 

The characteristics of ANNs are mostly dependent on the manner the vertices are 

interconnected. Generally, feedforward networks are of static nature [3.1]. As opposed to 

recurrent networks, they have no memory and, therefore, for a single input set always produce 

the same output. On the other hand, recurrent/feedback networks are dynamic systems where 

the output of the network depends not only on its current input but on the state the network is 
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in. Consequently, new input set changes not only the outputs, but also the current state of the 

network. 

3.2.3 Learning Rule 

Fundamental and the most important feature of an ANN is learning based on the network's 

inputs. The learning process in neural networks is based on a defined procedure called the 

learning rule. This process consists of the gradual adaptation of the weight coefficients with the 

goal of reducing the predefined error.  

In the ANN context, the learning process can be best observed as an optimization procedure. 

More precise, the learning process can be comprehended as "searching" for the extreme of the 

criterion function in the multidimensional parameter space (the weight coefficient space). 

There are three essential learning rules: supervised learning, unsupervised learning, and 

reinforcement learning. In general, any of these learning rules can be applied to any of the 

ANN architectures. With supervised learning, for each set of input data, the network is 

supplied with a desired network output. That way, the network, going through the learning 

process, adapts its weight coefficients so as to minimize the cost (difference) function between 

the outputs and the desired (genuine) values. The most commonly used cost function is the 

mean-square error. On the other hand, with reinforced learning rule, the network is given the 

assessment of the produced outputs rather than the exact outputs. Finally, unsupervised 

learning rule does not require the knowledge of the each output value. The function network 

should perform is defined through criterion function. This learning rule is suitable for detecting 

the structures in data, data mining and classification. 

3.2.4 ANN Architecture Suitable for Positioning 

If the problem of positioning a user in mobile radio systems based on the received signal 

strength is taken into consideration, for a given number of inputs there are usually only two or 

three outputs (i.e. the coordinates of a user). Based on that, and the aforementioned overview 

of neural network architectures and learning rules, it is fair to assume that the positioning 

problem would be best solved by the feedforward neural network architecture. Recurrent or 

feedback networks better model dynamic problems, where the outputs of the network depend 

not only on its inputs, but on its previous state. There are research efforts invested in overlaid 

tracking algorithms, used to improve the initial position estimation by consecutive localization 

requests. For such applications, recurrent networks may find their use. However, the herein 

presented work is restrained only to initial positioning which is, in its nature, a different type of 

problem. The position determination based on received signal strength may be regarded as the 

electric field level estimation problem. If the initial positioning is observed, the localization is 
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usually performed for mutually uncorrelated cases. Therefore, this problem can be labelled as 

static, i.e. given inputs invoke unambiguous outputs, which can be best achieved by using the 

feedforward network architecture. 

Being that the position estimation of a user in a multidimensional space does not belong to a 

linear class of problems, a simple single-layer perceptron network architecture cannot provide 

the adequate solution. Hence, the appropriate ANN architecture should be looked in-between 

multilayer perceptron and Radial Basis Function (RBF) networks. 

In the context of prediction and function approximation, both the multilayer perceptron and 

RBF networks have performed well [3.4]. Generally, multilayer perceptron networks have 

shown better performances in cases when the training set is difficult to generate (or, likewise, 

not economically justified) or when the execution speed is important (which is the case for 

positioning application) [3.1]. 

It has been shown that multilayer perceptron networks perform global optimisation on the 

training data. This feature translates to superior generalisation characteristics in comparison to 

RBF networks. Moreover, the multilayer perceptron networks have shown better extrapolation 

properties [3.1] (which may be significant for positioning application). This comes as a 

consequence of a fact that multilayer perceptron networks with sigmoid activation functions in 

hidden layer perceptrons perform not only approximation of the function, but its derivative as 

well. Although the RBF networks have considerably shorter training times, bearing in mind the 

processing power of modern computers, this advantage comes with a limited relevance. On the 

other hand, with multilayer perceptron networks, all network weights are adjusted in each 

epoch of the training process. For the type of application where the training data is easily 

collectable and/or the on-line training is required (e.g. for some adaptive processes), the RBF 

network would be superior. However, in the positioning context, where collecting the training 

data is sometimes a highly time consuming task (e.g. indoor environment where no automated 

reference positioning is available) and the training process is seldom performed, multilayer 

perceptron networks have considerable advantages compared to RBF and other investigated 

ANN architectures. Forthcoming sections give details on the fundamentals of multilayer 

perceptron networks operation and learning processes. 

3.2.5 Multilayer Feedforward Networks 

This section describes one of the most commonly used neural network architectures – 

multilayer feedforward neural network. Fig. 3-4 shows an example of multilayer feedforward 

network with two hidden layers. 
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Fig. 3-4 Typical three-layer feedforward neural network architecture 

In more general notation, typical feedforward network with L layers implies an input layer 

(which is not counted in the total number of layers because it only stores the input data without 

multiplying them with weight coefficients), L-1 hidden layers and an output layer. Layers 

consist of neural units (vertices of the network), interconnected according to the 

aforementioned feedforward principle. The edges (links) between the units of the same layer, 

the units of non-adjacent layers and recurrent links do not exist. This type of networks is 

commonly coupled with the supervised learning paradigm. The introduction of the error 

backpropagation learning rule has made multilayer feedforward neural network one of the 

most commonly applied ANNs. 

3.2.6 Error Backpropagation Learning Rule 

Error backpropagation or just backprop defines an efficient numerical method for altering the 

weight coefficients in feedforward networks with differentiable neuron activation functions. 

This method is suitable for use with supervised learning and has been successfully applied onto 

solving diverse non-linear problems such as: shape recognition, function approximation, non-

linear system modelling, electric field level prediction, image compression and reconstruction, 

etc. 

Fig. 3-5 depicts a two-layer feedforward network architecture. Network inputs are denoted as 

{x0,x1,x2,...,xn}, where x0=1. This set of data forms an input vector xRn+1. The layer which 

gathers the input data is referred to as the first hidden layer (in this case also the only one). The 
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hidden layer in Fig. 3-5 has J neurons. The output of the hidden layer is (J+1)-dimensional real 

vector z=[z0,z1,z2,...,zJ]T, where z0=1. The outputs of the hidden layer, vector z, are, at the same 

time inputs of the output layer consisted of L neurons. The output layer generates L-

dimensional vector y which corresponds to the input vector x. If the network is optimally 

trained, the output vector should be close to the "desired" output vector d.  

 

wji

y1

x = 10 

yl

yL

d1

dl

dL

wlj

1 1

j

J L

l

z = 10 

x1

xi

xn

z1

zj

zJ

 

Fig. 3-5 Two-layer fully connected feedforward network [3.1] 

For further analysis, the neurons in hidden layers are assumed to have differentiable activation 

functions – fh. Typically, fh is defined either as a logistic function – fh(net)=1/(1+e-net), or as 

a hyperbolic tangent – fh(net)=tanh(net), where  and  are close to 1. The sigmoid activation 

function is a special case of logistic function. Another assumption made is that all neurons in 

output layer have the same activation functions fo. The form of fo is determined based on 

properties of the output signal. For example, if the output signal is a real value (function 

approximation) then the linear activation function fo(net)=net may be used. On the other 

hand, if the network is used to implement the classification procedure with binary outputs, 

usually the non-linear function similar to fh is used. Finally, the weight coefficient of the j-th 

hidden neuron associated with the xi input signal will be noted as wji. Likewise, wlj will stand 

for the weight coefficient of the l-th output neuron associated with the hidden signal zj. 

Let us assume the set of m input/output pairs {xk,dk}, where dk is L-dimensional vector 

representing the known outputs of the network for given inputs xk. Based on this set of 

input/output parameters, J(n+1)+L(J+1) weight coefficients should be determined in order for 
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network to adequately learn the given training set. Being that the network outputs are known, 

the cost function, measuring the extent of achieved approximation for a given set of weight 

coefficients, can be defined. Often, the Root Mean Square (RMS) function is taken as a cost 

function. Once the cost function is defined, the learning process can be observed as the process 

of optimisation. For example, if the differentiable criterion function is chosen, the gradient of 

such function may inherently lead to a learning rule. This idea was independently conceived by 

Amari (1967, 1968) [3.5], [3.6], Bryson and Ho (1969) [3.7], Werbos (1974) [3.8] and Parker 

(1985) [3.9]. Let us assume that the cost function that needs to be minimized based on the 

training data set is defined as: 

    
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
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where w is the set of all weight coefficients in the network. 

Being that the set of input/output parameters is known, the so called "delta" rule for adjusting 

the weight coefficients wlj can be directly applied: 
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where l=1,2,...,L, j=0,1,...,J, o is the learning speed, net w zl lj j
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j

J

0

is the weighted sum for l-

th output neuron, fo
' is the derivative of fo with respect to net, whereas wlj

new and wlj
c are new 

and current values of the weight coefficient, respectively. zj values are obtained by propagating 

the input vector x through the hidden layers: 
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The learning rule for weight coefficients of the hidden layer is not so evident due to the lack of 

defined values at the outputs of the neurons from hidden layers. However, the learning rule for 

the hidden units can be obtained by minimizing the error of the output layer. In other words, by 

propagating the error (dl-yl) backwards from the outputs to hidden layers, the "dynamic" 

desired values for hidden units can be obtained. This learning rule is called the error 

backpropagation learning rule. To define the rule for changing the weight coefficients of the 

hidden units, alike to the procedure with the output layer, it is necessary to define the gradient 

of the criterion function, eq. (3.2), with respect to the weight coefficients of the hidden layer: 
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where the partial derivative is calculated for the current value of the weight coefficients. The 

partial derivative (3.5) can be expressed as:  

 j j
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Inserting the equations (3.7), (3.8) and (3.9) into equation (3.6) and using the equation (3.5), 

the aforementioned learning rule is obtained: 
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Comparing the eq. (3.10) with eq. (3.3) the "estimated desired value" dj for j-th hidden neuron 

can be defined through the cost function:  
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Quite often, it is possible to express the derivatives of the activation function, from eq. (3.3) 

and (3.10), as a function of the activation functions themselves. For example, for logistics 

activation function, 

      1f net f net f net      (3.12) 

and for hyperbolic tangent 

    21f net f net      (3.13) 

The previously defined learning rules can be expanded to the feedforward neural networks with 

more than one hidden layer. The following text shows the complete procedure for changing the 
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weight coefficients for two-layer network architecture given in Fig. 3-5 [3.1]. This procedure 

defines the learning rule known as incremental error backpropagation learning rule: 

1) Initialize all weight coefficients and label them as current weight coefficients wlj
c and 

wji
c. 

2) Assume small, positive values for learning speeds o and h (close to 0.1). 

3) Assume (randomly) one input set xk from input/output training data set and let it 
propagate through the network. That way, the outputs of the hidden and output neurons, 
based on current values of the weight coefficients, are generated.  

4) Based on the output of the network and the desired output dk associated to the chosen 
input xk, using the eq. (3.3), calculate the correction of the weight coefficients of the 

output layer units – wlj. 

5) Using the eq. (3.10) calculate the correction of all weight coefficients for hidden layer 

units wji. In these steps, use the current values of the weight coefficients. Generally, 

greater error correction (i.e. faster convergence) can be achieved if the calculation uses 

the newly obtained output layer neurons weight coefficients wlj
new=wlj

c+ wlj. On the 

other hand, this invokes recalculating yl and fo'(netl). 

6) Calculate the new weight coefficients wlj
new=wlj

c+ wlj and wji
new=wji

c+ wji for the 

output and the hidden layer, respectively. 

7) Test the convergence. This may be achieved by checking the value of the previously 
defined cost function. If the obtained value is below the defined threshold, the process 
is halted. Otherwise, the wlj

c=wlj
new and wji

c=wji
new are set and the procedure is repeated 

from step 3). Commonly, the test function is chosen in form of RMS function given as 

2E mLr / ( ) , where Er is given by eq. (3.14). To test the convergence, a much more 

sophisticated test, called the cross-validation, may be used. It should be noticed that the 
backprop learning rule may fail to find the solution which satisfies the convergence 
test. In this case, the re-initialisation of the network, readjustment of the leaning 
parameters or adding the hidden neurons may improve the results.  

The previously described procedure is based on "incremental" learning, i.e. weight coefficients 

of the network are changed after consideration of each input/output training pair. The 

alternative is so called "batch" learning, where the weight coefficients are corrected only after 

all available input/output pairs are considered. Batch learning rule is formally obtained by 

adding the right hand sides of the eq. (3.3) and (3.10) for all input/output pairs. This is 

equivalent to the application of the gradient onto the following criterion function: 
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The correction of the weight coefficients according to the batch learning rule moves the w in 

the direction of the calculated gradient for each epoch of the training process. 

Incremental rule has the following advantages: it consumes less memory, and the obtained path 

in the weight coefficient space is stochastic (with each step the input/output pair is selected 

randomly), which enables covering the wider space and, potentially, obtaining better solution 

[3.1].  

In cases when the backprop is converging, it converges towards a local criterion function 

minimum [3.10]. Using the stochastic approximate theory [3.11], [3.12] it can be shown that 

for "very low" learning speeds (which converge to zero), incremental backprop and batch 

backprop approaches, basically, provide the same results. However, for small but constant 

learning speeds the stochastic nature in the training process becomes negligible, rendering the 

process unable to avoid the shallow local minima. That is why the solutions obtained by using 

the incremental learning are usually better. The local minima problem can be further reduced 

heuristically, by adding the random noise to the weight coefficients [3.13] or by adding the 

noise to the training inputs [3.14]. In both cases, as the process advances, some of the 

procedures to dynamically decrease the added noise must be applied.  

3.2.7 Procedures for improving the solution 

The backprop learning process is, in its essence, slow [3.15]. This, most commonly, comes as a 

consequence of the cost function form which has flat and steep regions. In the search direction, 

usually there are many flat regions in which the learning process is slow. This problem is more 

evident in cases when the training set is limited in volume [3.16]. 

Many studies suggested (and still suggest) improvements and variations of the backprop 

learning rule in order to enhance the obtained solution. Most commonly, these improvements 

and variations are performed heuristically with the goal of increasing the speed of 

convergence, avoid local minima and/or boost the generalization capacities of the network. 

Such studies include: 

 changing the weight coefficients initialisation strategy [3.17]–[3.20], 

 defining the optimal strategy for learning speed determination [3.21]–[3.33], 

 speeding up of convergence by introducing the momentum [3.21], [3.34]–[3.48], 

 dealing with flat-spot problem by modifying the activation function [3.35], [3.49]–
[3.60], 

 reducing the size of the network to an optimal number of neurons [3.21], [3.61]–[3.65], 
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 strategies for increasing the generalisation capacities of the network [3.62], [3.66]–
[3.68], 

 optimal choice of criterion function [3.69]–[3.71], and 

 optimal incremental learning rule selection strategy [3.72]–[3.74]. 

3.3 Practical guidelines used for designing ANN positioning 

models 
For the benefit of a broad scope of built-in functions for creating, initializing, training and 

simulation of neural networks, the herein given ANN based models were implemented in 

Matlab. For training purposes, the traingda – gradient descent training function with adaptive 

learning rate was selected. All neural units (perceptrons) use the hyperbolic tangent sigmoid 

transfer function (except from the output ones which had a linear transfer function). Being that 

the input probability distribution function of RSSI values is shown to be near Gaussian, the 

Mean Square Error (MSE) was selected as a criterion function [3.71].  

Regarding the purpose that ANN models are intended for and, moreover, the nature of the 

problem, the multilayer feedforward neural networks with error backpropagation have 

substantial advantages in comparison to other structures [3.4]. Multilayer feedforward 

networks can have one or more hidden layers with perceptron units. The hidden layers with 

corresponding perceptron units form the inner structure of the ANN. There is no exact 

analytical method for determining the optimal inner structure of the network. However, there 

are algorithms that, starting with an intentionally oversized network, reduce the number of 

units and converge to the optimal network structure [3.4]. Also, there are other algorithms, 

such as the Cascade-Correlation Learning architecture [3.75], that build the network towards 

the optimal structure during the training process. However, being aware of the fact that these 

procedures can be complex and that determining the most optimal structure was not the central 

scope of this research, the networks' inner structures have been slightly oversized knowing that 

an oversized network will not yield degradation in performance. There is also an advantage to 

slightly over-sizing the network due to the fact that, in general, more unknown parameters 

(weights) induce more local and global minima in the error surface, making it easy for a local 

minimization algorithm to find a global or nearly global minimum [3.76]. The stance that the 

first hidden layer ought to have more perceptrons than the input layer so that the input 

information is quantified and fragmented into smaller pieces was also adopted [3.77]. The 
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number of perceptrons in the following hidden layers ought to decrease, converging to the 

number of perceptrons in the output layer.  

The general ANN structure used in all models consists of an input layer, three hidden layers 

and an output layer. The number of perceptron units per layer is changed to accommodate the 

previously stated guidelines and the network's number of inputs and outputs. 

The outer interfaces of the ANN must equal the number of the RSS values used, on the input 

side, and the number of values that are expected as a result on the output side of the ANN (e.g. 

two outputs if the model is used for two-dimensional positioning).  

The aforementioned rules were applied to all of the following models based on ANNs. 
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4 WLAN Positioning Using ANNs 

The goal of Indoor Positioning System (IPS) research was to develop a low-complexity, high-

accuracy positioning model. The model ought to be used in environments with already 

deployed infrastructural WLAN network optimised for Internet access. The models herein are 

based on Artificial Neural Networks (ANN) which are an optimisation procedure known to 

yield good results with noise polluted processes [4.1]. The approach including the ANNs does 

not insist upon a detailed knowledge of the indoor structure, propagation characteristics, or the 

position of APs.  

4.1 Chosen Test-bed 
The performance of a positioning technique largely depends on the choice of an appropriate 

verification surrounding. Thus, the building which is to be used as a test-bed should be chosen 

with care. 

Indoor WLAN positioning techniques are commonly explored in a two-dimensional test-bed. 

This is because in an indoor environment the altitude parameter (Z) is usually a discrete 

parameter depicting the floor on which the user is located, and is evaluated through the 

probability that the estimated floor is correct. Extending the positioning algorithm to cover 

multiple floors would not be complicated and it is expected that, due to the significant 

attenuation of the obstacles in-between the floors, the Z parameter would plainly be assessed.  

The essential requirements that a test-bed had to meet are:  the number of APs and their 

deployment optimized for Internet access, and not for positioning,  dimensions large enough 

so that the accuracy of the positioning technique could be fully investigated,  a complex 

building structure with different room types, invoking a number of radio-propagation effects 

(e.g. the tunnel effect) which would increase the test-bed’s complexity – positioning wise.  

Since all of the aforementioned requirements were met by the ground floor of the Technical 

Schools’ building at the University of Belgrade, this setting was used as the test-bed. The 

dimensions of this floor are 147.1 m x 66.1 m, with more than 80 lecture theatres, classrooms, 

long corridors and offices of different sizes and interiors. Extended Service Set (ESS) 
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comprised eight IEEE 802.11 b/g APs placed so as to provide optimal radio coverage for 

wireless Internet access. Fig. 4-1 depicts the layout of the chambers and APs. 

 

Fig. 4-1 The verification surroundings and the placement of APs 

4.2 Measurement campaigns 
During the course of this research, two measurement campaigns have been conducted. The 

principal difference between the two was the number of the measurements and the orientation 

of the receiver at each RP. 

4.2.1 First Measurement Campaign 

The First Measurement Campaign (FMC) consisted of experiments performed on a number of 

nearly uniformly distributed RPs. A laptop computer with Cisco Aironet 802.11a/b/g Cardbus 

AIR-CB21AG-E-K9 wireless card and encompassing software was used as measuring 

equipment. The orientation of the receiver was randomly chosen for each RP. At each RP the 

RSSI vector was recorded along with the position of the measurement equipment and the room 

number and room type the equipment was in. The elements of RSSI vector ranged from -100 

dBm to -40 dBm (dynamical range of the measuring receiver). The information that an AP is 

not radio-visible at a RP was coded with -105 dBm. The measuring campaign comprised 433 

RPs. The layout of the test-bed as well as the positions of APs and RPs are shown in Fig. 4-2. 
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Fig. 4-2 First measurement campaign: The red “x” signs denote positions of the RPs 

The measurements repeatability was also evaluated. Bearing in mind that all positioning 

techniques reside on the existence of correlation between the physical values repetitively 

measured on the same location, it can be concluded that measurement repetitiveness and 

positioning technique accuracy are directly related. For the purpose of quantifying 

measurements repeatability, the measurements on a number of RPs were repeated. 

Measurements repeatability was evaluated through a set of three parameters: the probability 

that the subset of radio-visible APs will be the same on both the first and the repeated 

measurement (
1 2

P  ), the mean absolute difference of RSSI from the observed AP ( ) and 

standard deviation of the mean absolute difference ( ). Obtained repeatability results are 

shown in Table 4-I. 

Table 4-I The repeatability of the first campaign measurements 

Parameter 
1 2

P   [%]   [dB]   [dB] 

Value 20 5.12 4.13 

 
From the results shown in Table 4-I, it can be seen that repeatability is extremely low which 

indicates limited positioning capabilities (regardless of WLAN technique used). Two main 

reasons can be accounted for such low repeatability: the complexity and dynamic behaviour of 

the test environment and the short time that receiver spends measuring on a channel (which 

was chosen intentionally so that the obtained results would be applicable for a broad range of 

wireless adapters and drivers). 
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Since these were the first measurement results the statistical properties of the signal were also 

surveyed. This was done in order to reveal the basic propagation characteristics of the 

environment in which the WLAN was deployed. 

The entire measurement set was split into two more homogenous groups. The first group (G1) 

comprised of measurements collected from RPs in the corridors whereas the second group (G2) 

was made from the measurements conducted in closed chambers.  

The performed statistical analysis consisted of determining the RSSI parameter Probability 

Mass Function (PMF). This was done by classifying the RSSI values received at all RPs into 

5dB intervals, from -95dBm to -40dBm (boundary values included). Then, by counting the 

number of samples in each interval and dividing it with the overall number of samples, the 

PMF of a discrete random variable (each interval was regarded as a discrete value) was 

obtained. This process was conducted both for each AP separately and for the entire collection 

of the APs. 

Concerning the G1 measurements, the average number of radio-visible APs was 3.54. The 

probability that a particular AP is radio-visible on a RP was 44%. With G2 measurements, the 

average number of radio-visible APs was only 1.72, whereas the probability that a particular 

AP is radio-visible on a RP was merely 30%. The radio-visibility parameters are summed in 

Table 4-II. 

Table 4-II The radio-visibility parameters of the measurement from the first campaign 

Bearing in mind that the space distribution of RPs is nearly uniform, the size of the covering 

areas for each APs can be evaluated through Table 4-II. 

Measurement Group 
Probability that an AP is radio-visible [%] 

AP01 AP02 AP03 AP04 AP05 AP06 AP07 AP08 

G1 46 31 36 51 56 41 47 49 

G2  27 13 17 33 31 16 19 15 



 

68 

 

 

Fig. 4-3 RSSI PMFs for the individual AP and G1 measurements (FMC) 

Fig. 4-3 illustrates the RSSI PMFs for each of eight APs. The results have been obtained by 

using the measurements from G1, and the value of PMFs are equal to zero in the omitted 

intervals. 

Concerning the results from Table 4-II and Fig. 4-3, it can be concluded that the APs deployed 

around the corners of the test-bed (AP1, AP4, AP5 and AP8) have greater probability of being 

radio-visible than other APs. Moreover, their RSSI PMFs are translated to greater power with 

respect to the lateral APs (AP2, AP3, AP6 and AP7). Bearing in mind that corner APs are 

placed at a cross-section of two corridors and that they obtain a better radio-coverage (than the 

lateral APs), the aforementioned behaviour can be regarded as logical and expected. 

Fig. 4-4 shows the RSSI PMF from all the APs together. The results have been obtained by 

using the measurements from G1, and the value of PMFs are equal to zero in the omitted 

intervals. 
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Fig. 4-4 Joined RSSI PMFs for all APs and G1 measurements (FMC) 

Fig. 4-5 illustrates the separate RSSI PMFs for each of the eight APs where the results have 

been obtained by using the measurements from G2. Finally, the RSSI PMF from all the APs 

together and the results from G2 measurements are shown in Fig. 4-6. 

Focusing on the measurements from G2, made in the offices, lecture theatres, laboratories, etc, 

the similar conclusions can be drawn from Table 4-II and Fig. 4-5 as with measurements from 

G1. The corner APs are more radio-visible with the exception of the AP8, whose reduced 

radio-visibility can be explained with the specific content of the chambers in that part of the 

test-bed (large machines and equipment limits the service zone of this AP). With respect to the 

G1, all PMFs are translated to smaller power, and there is no such distinguishable difference 

between the corner and the lateral APs as was the case with G1 measurements. The only 

noticeable difference between the RSSI PMF of the corner and the lateral APs is that the PMFs 

of the lateral APs are more inclining towards the uniform distribution than the corner ones. 
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Fig. 4-5 RSSI PMFs for the individual AP and G2 measurements (FMC) 

If the joined RSSI PMFs are observed, from Fig. 4-4 and Fig. 4-6, it can clearly be noticed that 

the power profile with G2 measurements is shifted towards smaller power. This comes as a 

consequence of the fact that APs are deployed in corridors and the LoS condition cannot exist 

with G2 measurements (at least one wall between the AP and the client) whereas the LoS 

condition is most often met with G1 measurements. 
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Fig. 4-6 Joined RSSI PMFs for all APs and G2 measurements (FMC) 

Being that the propagation conditions are largely varied across the covering areas of some APs, 

the implementation of a propagation model based positioning technique with trilateration 

would not present a comprehensive and sound solution. This claim is supported by the average 

number of radio-visible APs, as well as the results from Table 4-I. All these goes to say that 

trilateration procedure would be feasible only on a part of corridors, but it would be practically 

impossible to determine the user’s position in a closed chamber in this manner. 

The presented statistical analysis indicates that the chosen test-bed is extremely “hostile” 

regarding the WLAN IPS implementation. 

4.2.2 Second Measurement Campaign 

As with the FMC, the Second Measurement Campaign (SMC) consisted of experiments 

performed on a number of nearly uniformly distributed RPs. The measurement set was the 

same as with the FMC. It consisted of a laptop computer with Cisco Aironet 802.11a/b/g 

Cardbus AIR-CB21AG-E-K9 wireless card and AirMagnet Laptop Analyzer software. The 

principal difference in comparison to FMC was that, at each RP, RSSI, Signal to Noise (SNR) 

and Noise (N) samples were collected in four orthogonal receiver orientations. RSSI vectors 

were then stored into the database along with the corresponding position. The elements of 

RSSI and N values ranged from -100 dBm to -40 dBm, and the information that an AP is not 
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radio-visible at a RP was coded with -105 dBm. As for the SNR values, they ranged from 0 dB 

to 60 dB. The extensive measuring campaign comprised the total of 403 RPs. Since the 

concluded measurements do not require time averaging of samples, collecting a single RSSI 

vector sample is done almost instantaneously, whereas the measurement for one receiver 

orientation, inclusive of equipment rotation and/or relocation, lasted about 15 s on average. 

Therefore, the total effective time spent for measurement campaign was slightly over 400 

minutes. The positions of APs and RPs, are shown in Fig. 4-7. 

 

Fig. 4-7 Second measurement campaign: The red “+” signs denote positions of the RPs 

As with the FMC, the measurement repeatability was evaluated through the same set of 

parameters: the probability that the subset of radio-visible APs will be the same in both the first 

and the repeated measurement (
1 2

P  ), the mean absolute difference of RSSI from the 

observed AP ( ) and standard deviation of the mean absolute difference ( ). Obtained 

repeatability results are shown in Table 4-III. 

Table 4-III The repeatability of the second campaign measurements 

Parameter 
1 2

P   [%]   [dB]   [dB] 

Value 50.55 4.70 4.25 

 

The results shown in Table 4-III indicate better repeatability of the SMC than with the FMC. 

However, even the SMC repeatability can be considered as low to moderate which will 

condition the positioning capabilities of any WLAN positioning technique implemented in this 

test-bed.  
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Following the same methodology as with FMC, the results obtained from this measurement 

campaign were evaluated and statistically analysed. However, on the contrary to the FMC, the 

herein obtained results were not separated in two, more homogenous groups (the similar effects 

were expected). The individual RSSI PMFs of APs are presented in Fig. 4-8, whereas the 

joined RSSI PMFs for all APs are shown in Fig. 4-9. 

Regarding the radio-visibility, the parameters are summed in Table 4-IV. 

Table 4-IV The radio-visibility parameters of the measurement from the second campaign 

Bearing in mind that the space distribution of RPs is nearly uniform, the size of the covering 

areas for each APs can be evaluated through Table 4-IV. 

In comparison to FMC it can be concluded that the radio-visibility has increased. Also, it can 

be noticed, from Fig. 4-8 and Fig. 4-9, that the RSSI distributions are now more regular and 

resemble slightly right-skewed distribution. 

Probability that an AP is radio-visible [%] 

AP01 AP02 AP03 AP04 AP05 AP06 AP07 AP08 

41.36 22.9 39.95 45.33 45.09 33.64 33.88 27.34 
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Fig. 4-8 RSSI PMFs for the individual AP (SMC) 
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Fig. 4-9 Joined RSSI PMFs for all APs (SMC) 

4.3 ANN Positioning Models 
In the way the measurement campaigns were carried out, the herein presented positioning 

algorithms fall into client-based positioning solutions group. However, it should be stated that 

the derived models themselves can equally be implemented as a network-based solution with 

the only difference made in the measurement campaign: instead of having a client collecting 

RSSI samples from APs, the client’s RSSI at each RP ought to be collected at various APs. 

The ANNs do not fall entirely into any of the WLAN positioning system categories 

(propagation model based, fingerprinting or hybrid). However, the ANNs are generally 

classified as a fingerprinting technique. In the off-line phase, the set of collected RSSI 

fingerprints is used to train the network and set its inner coefficients to perform the positioning 

function. In the on-line phase, the trained network replaces multilateration and position 

determination processes. Using ANNs requires no detailed knowledge of the APs positions or 

the indoor environment in which the positioning technique is implemented. 

4.3.1 Models Obtained from the FMC 

4.3.1.1 The Single ANN Position Estimation Model 

This model, comprised of a single feedforward ANN, ought to provide position estimate from 

the APs RSSI vector. The block scheme of this model is given in Fig. 4-10. 
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Fig. 4-10 Block scheme of a single ANN position estimation model 

The outer interfaces of the ANN must be in compliance with the number of the APs, on the 

input side, and with the number of values that are expected as a result on the output side of the 

ANN. Since this model ought to provide position coordinates estimate (two coordinates, since 

our test-bed consisted of only one floor), the chosen ANN has eight neural units (perceptrons) 

on the input end and two neural units on the output end. 

Given the guidelines for constructing the ANN's inner structure, presented in section 3.3, the 

number of perceptron units per layer is (from input to output) 8, 15, 9, 5 and 2. The inner 

structure of this model is illustrated in Fig. 4-11. It has been derived through the trial-and-error 

procedure. 

For the purpose of determining the optimal training parameters as well as the optimal training 

length (in epochs), the complete set of measurements was split in two subsets containing 10% 

and 90% of the RPs. The larger subset was used to train the ANN, while the smaller was used 

to validate the obtained model. To verify the performance of the obtained model with higher 

accuracy, this process was repeated 10 times and each time different RPs were taken for 

validation purpose. This way, the verification set of 433 measurements was obtained. The 

performance of a single ANN position estimation model were evaluated for training lengths of 

1000, 1500, 2000, 3000, 5000, 10000, 20000, 50000 and 100000 epochs. The results are shown 

in Fig. 4-12. 
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Fig. 4-11 The inner structure of a single ANN position estimation model 

 

Fig. 4-12 Distance error vs. training – graph parameter are confidence percentiles (probability that a positioning 

error, for a given training length, is under the curve), except for the grey dotted line which represents the average 

absolute positioning error 
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Optimal training length could be defined as a “bottom” of some of the curves depicted in Fig. 

4-12. Which curve’s minimum should be concerned as optimal training length depends mostly 

on the expected set of LBS technique ought to comply with. However, for a broad range of 

services, it is good enough to optimize the network according to minimum of the average 

absolute positioning error. Fig. 4-12 shows a minimum of the average absolute positioning 

error at 20000 epochs of training for which this error equals 9.58 m. 

Because of the disproportion between the width and length of the test-bed, the positioning error 

results obtained by verification were split to X and Y axes. For optimally trained network, the X 

axes median positioning error equals 5.46 m, while the Y axes median positioning error was 

only 3.75 m. This result shell be discussed later on in the document. 

4.3.1.2 The Single ANN Room Type and Number Estimation Model 

This model was used to provide the Room Number (RN) and Room Type (RT) estimates. The 

ground floor of the Technical Universities building in Belgrade has more than 80 lecture 

theatres, classrooms and offices of different sizes. Rooms were numbered in circular fashion 

and classified with respect to propagation characteristics into the following six categories: long 

corridors, short corridors, hall, lecture theatres, classrooms (laboratories) and offices.  

Again, the outer interfaces of the ANN must be in compliance with the number of the APs, on 

the input side, and with the number of values that are expected as a result on the output side of 

the ANN. Since this model ought to supply room and room type estimates, network should 

provide two outputs. Therefore, the chosen ANN has the same outer and inner structure as the 

model previously described in section 4.3.1.1 (Fig. 4-11), but with different outputs function, 

as depicted in Fig. 4-13. 

RN Est

RT Est
 

Fig. 4-13 Block scheme of a single ANN RN and RT estimation model (RN Est and RT Est are scalar values 

estimating the room number and room type the user is located in, respectively) 

The same training and verification sets of measurements were used as with the single ANN 

model that estimates the user’s position. The performances of this model were evaluated for the 

set of training lengths comprising 1000, 1500, 2000, 3000, 5000, 10000, 20000, 50000 and 

100000 epochs. Results obtained by training and validation are summarized in Table 4-V. The 

accuracy of this model could not be evaluated in an ordinary fashion due to the nature of its 
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estimates. Therefore, this model was evaluated through the use of two parameters: probability 

that the room number was correctly estimated ( �RN RN
P


) and probability that the room type was 

correctly estimated ( �RT RT
P


). 

Table 4-V Performance of the single ANN room type and number estimation model 

Training Length [epochs] �RN RN
P


 [%] �RT RT

P


 [%] 

1000 5.34 41.98 

1500 4.58 45.40 

2000 6.87 46.06 

3000 7.63 48.60 

5000 6.62 46.82 

10000 8.40 51.66 

20000 8.91 55.72 

50000 11.45 62.34 

100000 11.20 62.34 

 
According to Table 4-V, this model shows its best performances for training length of 50000 

epochs. For this training length, the room in which the user is located is correctly estimated in 

11.45% of the cases and the user’s room type is correctly estimated in 62.34% of the cases.  

Since this approach yielded less promising results, and other well-known WLAN positioning 

techniques do not attempt room locating, this model will not be taken into further comparison 

with the other presented techniques. 

4.3.2 Models Obtained from the SMC 

4.3.2.1 The Single ANN Position Estimation Models 

Four single ANN models for positioning, employing different input vectors and two different 

ANN structures, have been implemented and verified. The principal difference between the 

ANN models was in their input vector values: 

 RSSI, 

 SNR, 

 Noise level (N), and  

 RSSI & SNR. 

It should be noted that the noise level value includes, not only the background noise, but also 

the interfering signals from other transmitters. 
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As mentioned above, the outer interfaces of the ANN must be in compliance with the number 

of the APs on the input side, and with the number of values that are expected as a result, on the 

output side of the ANN. The exception to this rule is the ANN model that ought to support both 

RSSI and SNR values from all the APs. In this case, the number of inputs to the ANN must be 

equal to twice the number of APs. 

 

APs SNR

APs N

APs SNR

a)

b)

c)

d)

 

Fig. 4-14 Block scheme of a single ANN position estimation models: a) with RSSI vector as inputs, b) with SNR 

vector as inputs, c) with N vector as inputs, and d) with RSSI and SNR vectors as inputs 

 

All ANN models ought to provide an estimate of relative position coordinates (two 

coordinates, since our test-bed consisted of only one floor and was considered as two-

dimensional). Therefore, two output units are common for all ANN models. The chosen ANN 

models have eight neural units on the input end and two neural units on the output end in case 

of RSSI, SNR and Noise level values as inputs. In case of the ANN model combining both 

RSSI and SNR values as inputs, 16 neural units on the input end and two neural units on the 

output end were implemented. The block scheme of the these ANN models is illustrated in Fig. 

4-14. The RSSI, SNR and N input vectors were denoted APs RSSI , APs SNR , APs N , 

respectively while the output, position estimation vector, was denoted Pos Est . 
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Conveying to the aforementioned principles, the inner structure of all ANN models consisted 

of the input layer, three hidden layers and the output layer. When concerning the ANN models 

with RSSI, SNR or noise level values as inputs, the inner structure was identical to the model 

described in section 4.3.1.1. Namely, the number of perceptron units per layer was (from input 

to output) 8, 15, 9, 5 and 2, whereas in the case of ANN model with both RSSI and SNR values 

as inputs the number of perceptron units per layer was (again, from input to output) 16, 24, 16, 

6 and 2. 
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Fig. 4-15 Positioning distance error (DE) vs. training process for ANN with a) RSSI, b) SNR, c) Noise level, and 

d) both RSSI and SNR inputs. Graph parameters are confidence percentiles (probability that a positioning error, 

for a given training length, is less than the corresponding DE), except for the solid yellowish line (with markers) 

which represents the average absolute positioning error 

 

For the purpose of determining the optimal training parameters, as well as the optimal training 

duration, the complete set of measurements was split in two subsets. The larger subset was 

used to train the ANNs, while the smaller, containing measurements from a 100 randomly 

chosen RPs, was used to validate the obtained model.  
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The performance of described ANN models were evaluated for training lengths ranging from 

1000 to 500000 epochs. Fig. 4-15 shows the obtained results in terms of distance error for 

different ANN models. The performance of positioning model with RSSI values as ANN 

inputs is depicted in Fig. 4-15 a), with both RSSI and SNR values as ANN inputs in Fig. 4-15 

b), with Noise level values as ANN inputs in Fig. 4-15 c), and with SNR values as ANN inputs 

in Fig. 4-15 d). 

Again, the network training process was optimized according to minimum of the average 

absolute positioning error.  

Fig. 4-15 shows a minimum of the average absolute positioning error at 50000 epochs of 

training for models using RSSI, SNR and both RSSI and SNR values as inputs. As for the 

ANN model relying on Noise level inputs, its minimum of the average absolute positioning 

error is reached after 200000 epochs of training. The positioning performance parameters of all 

ANN models (optimally trained) are shown in Table 4-VI. 

 

Table 4-VI Positioning performance parameters of all ANN models for optimal training length 

Parameter RSSI SNR Noise RSSI & SNR 

Optimal Training [kepochs] 50 50 200 50 

Average DE [m] 9.26 9.13 13.9 9.17 

DE (10th percentile) [m] 2.92 2.80 3.87 2.76 

DE (33th percentile) [m] 5.63 5.92 7.93 5.21 

DE (median) [m] 7.75 7.44 11.8 7.24 

DE (66th percentile) [m] 10.3 9.62 15.4 9.22 

DE (90th percentile) [m] 16.8 15.7 25.5 17.1 

 

From Table 4-VI, as expected, it can be seen that by far the worst positioning performances are 

achieved by Noise level based ANN model shown in Fig. 4-15 c). In comparison to other 

models shown in Fig. 4-15 a), b) and d), Noise level based model attains its best performances 

for greater training durations. Bearing in mind that, for a chosen test-bed, a positioning system 

that has no location dependant information as its inputs, would have the average positioning 

error equal to 53.76m (see section 4.4) it can be concluded that Noise level vectors indeed 

contain location dependant information. On the other hand, worse accuracy of Noise level 

based model (in comparison to other model) suggests that Noise level parameter is less 

location dependant information than RSSI or SNR parameter. 
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Regarding the RSSI and SNR models, from Fig. 4-15 a) and b), it can be seen that for under-

trained ANN, RSSI model performs slightly better. This result might indicate that SNR is more 

influenced by the noise process than RSSI values. However, when optimally trained, both 

RSSI and SNR models achieve similar performances as shown in Table 4-VI. As for the model 

that uses both RSSI and SNR values as ANN inputs, from Fig. 4-15 it can be noticed that it has 

almost the same performances, when regarding the training duration, as RSSI based model. 

This implies that the noise process information is included in both RSSI and SNR values. To 

further clarify this, the reverse case might be observed. If the noise process was to contain 

location information independent to those of RSSI or SNR processes, the RSSI&SNR model 

would achieve superior positioning performances (because it contains separate information 

about RSSI and noise processes). Since, that is not the case, it can be concluded that the 

aforementioned hypothesis, that the noise process location dependent information is included 

in both RSSI and SNR values, is valid. In other words, this validates that the noise 

measurement process includes, not only the background noise, but also the part of the signal 

from some other access points. This is perhaps most obviously visible in Fig. 4-16 which 

depicts the cumulative distribution function (CDF) of the distance error for optimally trained 

ANN models. Certainly, to obtain a full scrutiny of a positioning technique one should not 

disregard technique’s latency, scalability or implementation costs. However, when concerning 

solely the positioning capabilities of a technique, they are most comprehensively described 

with distance error’s CDF. In those terms, as shown in Fig. 4-16, the positioning performances 

of the three models using RSSI, SNR and both RSSI and SNR as ANN inputs, are virtually the 

same whereas the Noise level based model underperforms. 

 The obtained results show that, contrary to the common knowledge, SNR parameter is equally 

suitable for WLAN positioning purposes as RSSI parameter. Furthermore, positioning in 

WLAN environments can be achieved relying solely on Noise level information. However, 

noise level distribution is shown to be less location dependent than RSSI or SNR distributions 

and, therefore, yields worse positioning capabilities. Finally, the model with RSSI & SNR 

inputs performs slightly better that the model with RSSI inputs. Nevertheless, the increase in 

model's complexity (due to the greater number of inputs) can hardly be justified with the minor 

improvement in performances. 
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Fig. 4-16 Cumulative distribution function (CDF) of the distance error for optimally trained ANN models 

4.3.2.2 The Cascade‐Connected ANN Position Estimation Models 

When testing the single ANN models, due to the disproportion between the width and the 

length of the test-bed, the obtained positioning error results (DEs) were split into X and Y axes. 

For the optimally trained single RSSI ANN model discussed within section 4.3.2.1, the X axis 

median positioning error equals 5.43 m, while the Y axis median positioning error was only 

3.01 m. As the accuracy along the X axis is worse than along the Y axis, it was worth 

considering that, given the constant AP density, the performance of the positioning technique 

degrades with the increase in the dimensions of the test-bed. Hence, we decided to evaluate the 

performances as a function of a test-bed size.  

To further verify the impact of test-bed size on accuracy, the same positioning technique was 

applied on a smaller part of the original test-bed. The single RSSI ANN structure discussed in 

section 4.3.2.1 was used and trained with measurements collected at 60 RPs. The absolute 

average distance (positioning) error obtained in this small-scale test-bed, which consisted of 

two offices and a classroom with overall dimensions of 18 m x 12 m, was 1.82 m, while the 

median error was only 1.67 m. It should be noted that, in the case of a smaller test-bed, the 

estimated position is always forced to be inside that test-bed, which may decrease the 

positioning error given that the AP density remains the same.  
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Bearing in mind the aforementioned, the idea of a positioning process where the environment 

is being partitioned in subspaces has risen. The positioning would then be, according to this 

paradigm, segmented into a two-stage process. The first stage has the classification task, i.e. to 

estimate the subspace in which the user resides. The second stage has the task of estimating the 

position of a user within the particular subspace (which is identical to the single ANN model, 

only in a smaller part of the environment). The benefits of using this approach should come as 

a consequence of the positioning process splitting in two phases where each phase can be 

solved independently with the most adequate model.  

In this work, the space-partitioning process is utilizing cascade-connected (C-C) ANNs. The 

block structure of this system is depicted in Fig. 4-17. The input of this structure is the 

observed RSSI signal vector, APs RSSI , and the position estimate vector, Pos Est , is its 

output. 

In the first stage, an ANN (type 2) is used to determine the likeliness of a measured RSSI 

vector belonging to one of the subspaces. This ANN (type 2) also has 8 inputs and the number 

of outputs is equal to the number of subspaces the environment is partitioned to. Each output 

corresponds to the likeliness that a received RSSI vector originates from a particular subspace. 

The outputs of the type 2 ANN, SubSp Ln , are connected to the Forwarding block which, 

depending on the inputs, employs only one of the second stage networks by forwarding the 

APs RSSI  vector. 

 

First Stage Second Stage  

Fig. 4-17 Cascade-connected system structure with space-partitioning 

The inner structure of ANN (type 2) was designed using the same guidelines as with other 

models. Therefore, it also has three hidden layers and the number of perceptron units in those 

layers is varied, according to the previously stated principles, to fit the different number of 

subspaces. The second stage ANNs are type 1 networks with structure identical to the 

previously described ANN used with single ANN approach. The second stage may be 
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considered as a collection of single ANN models for smaller parts of the environment, 

employed when a client is presumed (by the first stage ANN) to be in a particular subspace. 

In the off-line phase, type 2 ANN is trained with the fingerprinting database that originates 

from the whole environment. The targeted output vector has only one non-zero element (equal 

to 1). The index of that element corresponds to the number of the subspace from which the 

RSSI vector originates. Type 1 networks are trained following the training methodology from 

the single ANN approach with the only difference being that each type 1 ANN is trained with 

only the part of the fingerprinting database which originates from a particular subspace.  

In the on-line phase, the appropriate subspace, from which the measured RSSI vector is most 

likely to originate, is chosen by the first stage ANN (type 2) and a proper second stage ANN 

(type 1) is employed using the Forwarding block. In order to make use of the best fitting 

second stage network, the Forwarding block searches for the maximum value in the output 

vector from the ANN (type 2). The appropriate second stage ANN then determines the 

estimated position of the user and a collecting block forwards that estimate to the structure 

output. 

Several space separation patterns were conducted yielding a different number of subspaces 

ranging from 4 to 44. The space-partitioning patterns that have been engaged are shown in Fig. 

4-18. 

a)

d)

g)

b)

e)

h)

c)

f)

i)

 

Fig. 4-18 Space-partitioning patterns: a) no space-partitioning (1x1), b) 2x2, c) 2x3, d) 2x4, e) 3x4, f) 4x6, g) x24, 

h) x32, and i) x44 

The partitions with a smaller number of subspaces were made strictly on geometrical bases. 

However, with the increase in the number of subspaces, the subspace size decreased so, 

eventually, the subspace size has come to a room size level. It was then worth to consider 
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partitioning space in another manner. Starting with 24 subspaces (which was also portioned on 

geometrical bases), the partitions were made on “logical” bases (i.e. x24, x32 and x44). This 

logical separation opted for subspaces to be as homogeneous as possible in the propagation 

manner. For future comparison, the single ANN model is herein referred to as 1x1 partitioning. 

The results obtained for different space partition patterns, for optimally trained ANNs, are 

presented in Table 4-VII.  

 

Table 4-VII Performance overview for different partitioning patterns 

Pattern 1x1 2x2 2x3 2x4 3x4 4x6 x24 x32 x44 

Overall Average DE [m] 9.26 9.00 8.97 8.91 8.54 8.28 8.14 8.58 9.11 

Overall Median DE [m] 7.75 7.49 6.87 5.86 5.59 5.10 4.57 4.70 4.44 
Average DE in Incorrect Subspace 

[m] 
- 21.35 22.66 21.22 18.99 18.04 18.37 19.53 19.22

Median DE in Incorrect Subspace 
[m] 

- 15.41 17.41 15.30 16.34 14.72 17.50 15.81 16.11

Average DE in Correct Subspace 
[m] 

9.26 8.35 6.99 6.96 5.76 4.20 4.07 3.78 3.72 

Median DE in Correct Subspace 
[m] 

7.75 7.33 6.13 5.52 4.40 3.87 3.56 3.39 3.32 

Probability of Correct Subspace 
Estimation 

1.00 0.95 0.87 0.86 0.79 0.71 0.72 0.69 0.65 

Probability of Correct Room 
Estimation 

0.26 0.42 0.48 0.52 0.58 0.62 0.66 0.62 0.61 

 

From Table 4-VII, it can be seen that, with geometrical partitioning, the overall median and 

average distance errors decrease with the increase in the number of subspaces. This behaviour 

is even more emphasized with the distance errors in the correctly chosen subspace which 

confirms the influence of environment size on positioning accuracy. When concerning the 

logical partitioning, it obtains slightly better results for 24 subspaces (4x6 vs. x24) but, with the 

further increase in the number of subspaces, their average distance error is starting to rise 

again. Also, with the increase in the number of subspaces the probability of correct subspace 

being chosen declines as expected while the probability of correct room estimation rises from 

26% for a 1x1 positioning to as much as 66% for a x24 configuration after which it starts 

declining slightly. This behaviour is illustrated in Fig. 4-19. 
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Fig. 4-19 Probabilities of correct subspace and room estimation 

As for the distance errors in incorrectly chosen subspaces, they are influenced by the two 

colliding factors. Firstly, the subspaces are decreasing in average size inducing the positioning 

error of the adjacently chosen subspace to decline. On the other hand, as the probability of 

correctly chosen subspace decreases, the chances of incorrectly chosen subspace not being 

adjacent to the correct one are rising.  

The distance errors presented in Table 4-VII are depicted in Fig. 4-20. 
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Fig. 4-20 Distance Error vs. Space Partition Pattern 

 

To further evaluate the performances of C-C ANNs with space-partitioning, we observed and 

compared the distance error’s Cumulative Distribution Function (CDF) of a single ANN 

approach with the C-C ANNs. The obtained CDFs are presented in Fig. 4-21. 
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Fig. 4-21 Cumulative Distribution Function of distance error: a) 1x1and 2x2 partitioning and correct subspace 

estimation – 2x2 H; b) 1x1and 2x3 partitioning and correct subspace estimation – 2x3 H; c) 1x1and 2x4 

partitioning and correct subspace estimation – 2x4 H; d) 1x1and 3x4 partitioning and correct subspace estimation 

– 3x4 H; e) 1x1and 4x6 partitioning and correct subspace estimation – 4x6 H; f) 1x1and x24 partitioning and 

correct subspace estimation – x24 H; g) 1x1and x32 partitioning and correct subspace estimation – x32 H; h) 

1x1and x44 partitioning and correct subspace estimation – x44 H 

The green filled areas in Fig. 4-21 could be considered as a partitioning gain in comparison to 

1x1 positioning, while the red filled areas could be considered as partitioning loss. It can be 

seen that, with geometrical partitioning, the gain areas are increasing with the increase in the 

number of subspaces and the crossing point between the geometric space-partitioning and 1x1 

positioning is always in-between 80 and 90%. This value is also affected by two conflicting 

factors. The rising of the probability of incorrect subspace detection ought to be pushing this 

crossing point towards the lower percentages. Still, it appears that, with the increase of the 

number of subspaces, there is a growth in the number of errors in the incorrectly chosen 

subspaces that are smaller than in 1x1 positioning case. This tends to drive the crossing point 

towards higher percentages. When concerning logical space-partitioning Fig. 4-21 f) – h), it 

can be noticed that the best performances are obtained with x24 pattern – average distance 
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error 8.14m, median error 4.57m. With the further increase in the number of subspaces, the 

benefit of decreasing the median error has faded, even though the median error in correct 

subspace continues to decrease, whereas the average distance error is starting to rise again. In 

other words, with the further increase in the number of subspaces, the partitioning gain 

surfaces are still expanding however, the partitioning loss surfaces are rising as well. 

Furthermore, it should be noticed that with the increase in the number of subspaces, the CDF is 

starting to create a knee roughly around 60th percentile. This has two effects: the green surfaces 

are getting larger as discussed and the crossing angle between the space-partitioning model and 

1x1 positioning is increasing while the crossing point between the two is being pushed towards 

lower percentiles. The latter of the two effects has a negative impact on positioning 

performances (especially when bearing in mind that the upper limit on the Fig. 4-21 is 97.5th 

percentile so the entire partitioning loss is greater in this case). 

The increase in the number of subspaces causes a larger training time for the first ANN 

cascade (due to the larger number of perceptron units). Although an individual second stage 

ANN is trained slightly faster when it covers smaller area (more subspaces – fewer RPs), the 

overall training time somewhat increases with the increase in the number of subspaces. For the 

given subspace divisions, the computational times for training the C-C ANNs were never more 

than 15% greater than those in the single ANN approach. 

Fig. 4-22 shows the DE's PDF functions for the bordering cases – 1x1 and x44 models. The 

transformation of PDF function with space-partitioning can be observed. Clearly, the variance 

of PDF ( ) is decreasing with the use of space-partitioning. Moreover, the PDF of x44 is 

again greater than the one of 1x1 with high DEs (over 20m). This confirms the separation 

effect the space-partitioning has on the DE. Namely, the errors, with the increase in the number 

of subspaces are divided into two subsets: one containing small DEs (less than 5m) and the 

other one containing large DEs (more than 20m). In other words, with space-partitioning, the 

probability of obtaining a position estimate with a medium sized error (in this case 5 to 20m) is 

decreasing. This might even be useful. If the overlaying mechanism for detecting such large 

DEs could be devised then the additional increase in the number of subspaces might be 

exploited to further benefit the positioning performances. For instance, the system that could 

recognize potentially large DEs, could opt to reassess the position in such cases. 
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Fig. 4-22 Transformation of the DE's PDF with space-partitioning in WLAN environment 

 

As for the latency of this technique, once the ANN cascade structure is trained, its increase, 

which is caused by the increased number of subspaces, is negligible, as it takes nothing more 

than a series of multiplications and additions to provide positioning information. The real-time 

positioning is not perceivably affected by the number of subspaces, once the training is 

performed. 

Scalability wise, the expansion of network infrastructure would impact the first stage (type 2) 

network and some second stage (type 1) networks. The second stage networks that would be 

affected are the ones covering the subspaces bordering with the new part of the environment. 

As a result, there is no need for recollecting the complete fingerprinting database, rather 

supplementing it with measurements from the expanded areas. 

4.3.2.3 The Cascade‐Connected ANN SOFT Position Estimation Model 

This model has an identical block scheme to the C-C ANN models illustrated in Fig. 4-17. The 

only difference to those models is that with SOFT model, the forwarding and collecting block 

have somewhat different function. 

The Forwarding block does not send APs RSSI vector to only one second stage ANN (type 1). 

It forwards the APs RSSI to all of the second stage networks regardless of the 

SubSp Ln  vector. On the other hand, the function of the Collecting block with the soft model 

is to normalize the SubSp Ln  vector so that its values 1 2, , , , ,i np p p p   (where n is the 
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number of subspaces) resemble the probabilities of a user being detected in a certain subspace, 

i.e. 
1

1
n

i
i

p


 . Then the position estimate can be obtained with:  

 
1

i

n

i
i

p


Pos Est Pos Est  (4.1) 

In Eq. (4.1), iPos Est  is the output of the i-th second stage ANN and Pos Est is the overall 

position estimate. As a result, this model supports soft decision making, being that the overall 

user’s location is not only dependent on one second stage ANN estimate, but all of them. The 

leverage of individual outputs of the second stage ANNs is proportional to the probability that 

a user is presumed in a given subspace. 

Following the training and verification methodology from the previously described models, the 

soft C-C model was implemented on 4x6 space-partitioning pattern and the obtained CDF in 

comparison to 1x1 positioning is given in Fig. 4-23. 
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Fig. 4-23 Cumulative Distribution Function of distance error for 1x1and 4x6 soft space-partitioning 

It can be seen from Fig. 4-23, that soft C-C model underperforms in comparison to single ANN 

model (red coloured surface) with the exception of the extremely low percentiles region where 

it’s slightly more accurate (green surface). 

Bearing in mind that this model is more complex than regular C-C ANNs model and that it 

gives unpromising results, it will not be taken into further comparison. 
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4.4 Comparison 
First, let us consider the effect of the test-bed size on accuracy. If the overall DEs in correct 

subspace for geometrical partitioning strategy (from Table 4-VII) are compared with the 

average subspace area (the total environment size divided by the number of subspaces), it can 

be seen that with the increase in the size of the subspaces (for this purpose regarded as separate 

test-beds) the increase in DEs is getting saturated. This behaviour is illustrated in Fig. 4-24. 

The obtained values have been connected with the shape-preserving interpolant curves. So, 

given the constant APs and RPs density, it can be concluded that the further increase in the size 

of the test-bed should induce only the minor rise of the DE. This also goes to say that the 

chosen verification environment was large enough to adequately include the influence of the 

test-bed size on positioning performances. 

 

 

Fig. 4-24 Distance error vs. the test-bed area size 

 

To account for the influence of the environment size on positioning accuracy a new 

comparison parameter, is introduced. This parameter, referred to as the environment 

positioning error, is solely a function of the environment and is not technique dependent. This 

parameter would be equal to the mean positioning error, given that a positioning technique has 

no input information other than the size of the test-bed. In other words, if a two-dimensional 

rectangular environment and a two-dimensional, uniformly distributed random variable as a 

position of the user are assumed, this parameter can be calculated as the mean absolute 
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difference of two uniformly distributed random variables (user’s position and user’s position 

estimate). It can be easily shown that the mean absolute difference of two uniformly distributed 

random variables on [0,1] interval is equal to 1/3 [4.2]. Therefore, if we denote the dimensions 

of test environment as a and b, environment positioning error,  ,env a b , is given as: 

   1 2 2,
3

a b a b
env
    (4.2) 

This error could be considered as the maximal positioning error of the environment and is 

similar to the random error used in Table 2-I. 

To normalize the positioning errors regarding the size of the test-beds we used the ratio 

between the environment positioning error and the median error for a particular test 

environment where specific techniques were implemented. This parameter is intended to show 

the level of relative accuracy the specific technique achieved in a given environment. 

Table 4-VIII Comparative analysis of WLAN positioning systems 
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Test-bed size – a x b  
[m] x [m] 

43 x 22 25 x 15 59 x 19 20 x 15 144 x 66 144 x 66 144 x 66 

Covering area – S [m2] 946 375 1121 300 9504 9504 9504 

Number of APs – 
AP

N  3 5 12 3 8 8 8 

m2 per AP – 1

AP
   315 75 93 100 1188 1188 1188 

Required APs number to 
cover chosen test-bed area 

size with same density 
30 127 102 95 8 8 8 

RPs 70 132 110 56 433 403 403 
Rx orientation at each RP 4 4 1 1 1 4 4 
No. of samples for avg. 20 20 300 100 1 1 1 

Average covering area of a 
RP [m2] 

13.51 2.84 10.19 5.35 21.95 23.58 23.58 

Total no. of samples / m2 5.92 28.2 120 18.7 0.04 0.17 0.17 

Median error – 
50%
  [m] 3 / 4.3a 2 2 1.69 8.4 7.75 4.57 

Env. error – 
env
 [m] 16.1 9.72 35.8 8.33 52.8 52.8 52.8 

50%env   5.36 / 
3.74 a 

4.86 17.9 4.93 6.24 6.81 11.55 

a fingerprinting approach /propagation model approach 
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From Table 4-VIII, it can be seen that the best performance3, regarding exclusively accuracy, is 

achieved by Battiti et al. ANN technique (excluding herein presented single ANN approach on 

a small-scale test-bed which has a median positioning error of 1.67 m). On the other hand, the 

accuracy of techniques implemented in the full-size test-bed (Fig. 4-1) is somewhat worse than 

other presented techniques. However, herein presented approaches can be successfully applied 

in widespread WLAN networks implemented above all for Internet access. In particular, all 

other techniques require a minimum of three radio-visible APs (more often, that number is 

significantly higher), while with our test-bed (which is also the case with most other WLAN 

networks), the average number of radio-visible access points was only 2.38. Furthermore, in 

61% of the RPs less than three APs were “visible” (for SMC, while for FMC this difference is 

even more emphasized). Hence, the derived parameters, which are used to give the insight into 

the technique’s ability to be used in a real WLAN network, should be granted considerable 

attention. 

The most significant comparison can be made concerning the ratio between the environment 

and median positioning error. Regarding this ratio, the C-C ANNs and single ANN approaches 

(FMC & SMC) fall to the second, third and fourth place, respectively, while the Horus 

technique is unjustifiably favoured. Namely, in this case (Horus) the measurements were made 

solely in corridors with outer dimensions 59 m x 19 m while the offices surrounded by the 

corridors and outside of the corridors were not taken into account for positioning. In this way, 

the actually covered surface was significantly smaller than the one used for this comparison. 

So, the test-bed that was used for the Horus positioning technique would make an excellent 

example for space-partitioning approach. Moreover, the accuracy of the Horus technique 

benefits from time correlation of the samples, but there is another end to such approach. Taking 

more time samples in the on-line phase increases the latency of the technique and narrows the 

potential range of the LBSs it can be used for.  

The density of APs should not be neglected, either. Frequency spectrum is a scarce resource in 

WLAN networks (the 2.4 GHz band has a total of 14 channels of which only 3 can be non-

overlapping). If we were to implement the existing WLAN positioning techniques in even 

remotely larger areas, such as the environment in which the herein presented techniques were 

implemented, the increased interference due to a number of APs working on the same channel 

would induce a major setback regarding the packet data services. This would have the highest 

impact on the ANN (Battiti et al.), Horus and Bayesian approaches because the density of 

                                                 
3 The accuracy performances of techniques other than the single ANN and C-C ANN models were copied from 
the respective publications. 
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deployed APs, within these approaches, is primarily optimized towards the use of the LBS and 

practically hinders any efforts on frequency planning. Certainly, the increase in price of the 

network (network devices, cabling, etc.) should be considered as well.  

Finally, the effort put into the collection of off-line measurements should be stated too. The 

total number of measurements made per square meter is by far the smallest with our approach 

(0.04 measurements per m2 – for SMC). All other techniques have a significantly greater 

measurement density, the worst case being the Horus technique (120 measurements per m2). 

The implementation of Horus technique in our test-bed would require 90 APs and more than 

1,000,000 measurements which is, of course, very impractical. 

As we noted before, a single ANN approach can obtain superb accuracy when applied to a 

small-scale test-bed. The same approach, applied on the full-scale test-bed, has somewhat 

worse accuracy than other well-known techniques. It is shown that such accuracy degradation 

comes as a result of increase in environment induced error. When regarding the C-C ANNs 

approach, it has been shown that it yields better accuracy than the single ANN approach. At 

first, the partition benefit augments with the number of subspaces. But there is a limit to such 

behaviour. Nevertheless, the optimal number and size of subspaces as a function of the size and 

type of the environment, number and density of RPs, is to be the object of upcoming research. 

Bearing in mind that ANNs have superior latency compared to other commonly used 

positioning methods [4.3], once the training is performed, proposed C-C ANNs positioning is 

performed in real-time regardless of the number of subspaces. As for the scalability of C-C 

ANNs, it can be considered comparable with other well-known WLAN positioning techniques. 
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5 Positioning in PLMN Using ANNs 

The number of PLMN subscribers has been growing significantly for years. Increased user 

mobility and ubiquitous coverage are some of the key reasons for the great efforts applied to 

finding appropriate positioning techniques in this environment.  

The most commonly implemented second generation PLMN technologies comprise GSM and 

DCS. DCS is technically very similar to GSM but translated to the higher frequency band 

(1800MHz instead of 900MHz for GSM). As for the third generation of PLMN systems, the 

UMTS is mostly represented. The research on positioning in these three systems is the object 

this chapter. 

The research on the topic of positioning in PLMN can be divided into two major categories. 

The first one includes empirically modelled behaviour of the timing advance parameter 

(GSM/DCS) and a specific mathematical algorithm for estimating the MS position. The 

second, more broad, group continues the efforts from the previous chapter – RSS parameters, 

gathered from GSM, DCS and UMTS systems, were measured and single and C-C ANN 

models have been implemented and verified. 

5.1 Measurement Campaigns 

5.1.1 TA Measurement Campaign (GSM, DCS) 

The Cell-ID method estimates the position of the MS as the location of the BTS (Base 

Transceiver Station), which the MS is served by. Cell-ID+TA, however, uses Timing Advance 

(TA) parameter to decrease the positioning error. Namely, GSM uses multicarrier TDMA 

(Time Division Multiple Access) at its air interface [5.1]. Due to the variable distances 

between BTS and MSs the synchronization of bursts arriving to a BTS is required. TA 

parameter, assigned to each MS by the serving BTS, is proportional to the propagation delay of 

the round trip from BTS to MS. Timing advance parameter is coded with 6 bits. TA takes value 

from the interval [0,63], where one increment of TA corresponds to approximately 550m. 

Therefore, by using TA parameter the distance between the MS and the BTS (d) can be 

described as [5.2]:  
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 (5.1) 

Thus, this method locates the MS in annuli (rings) defined by the eq. (5.1). Cell-ID+TA can be 

upgraded using triangulation. However, the techniques [5.3], [5.4] made using this upgrade 

show limited improvement due to a significant number of situations where TA circles, defined 

by eq. (5.1) do not overlap. In such cases the position of MS cannot be determined.  

Measurements [5.2], [5.3] show that in different propagation environments TA can differ from 

the expected values given in eq. (5.1). This is because the eq. (5.1) corresponds to ideal 

conditions (line of sight, maximum propagation speed, etc.). Phenomena like multipath 

propagation (reflections, diffractions, scattering) produce further jitter and delay, therefore 

affecting the assigned TA value. 

To solve this inadequacy, the TA parameter was modelled [5.2]. The distance between MS and 

BTS (d) can take values from the interval [0, 35km] (GSM has a maximum cell radius of 

35km). The model for each TA value (i) is described by a probability function fi :  

 Pr{ , } ( ) 0,63 [0,35 ]iTA i d f d i d km     (5.2) 

The sum of all probability functions satisfies the following condition: 

  
63

0

[0,35 ] ( ) 1i
i

d km f d


 
   

 
  (5.3) 

In order to determine three different sets of probability functions fi, for urban, suburban and 

rural propagation environments, over 1800 measurements have been made. Each measurement 

included recording the distance between the MS and the BTS (using a GPS receiver), and the 

TA value assigned by that BTS. The results were classified as (d, TA, environment) triplets, 

and processed using SQL (Structured Query Language) queries. 

5.1.2 RSSI Measurement Campaign (GSM, DCS, UMTS) 

For the purpose of exploring RSSI based positioning in PLMN, a new, massive measurement 

campaign was qualitatively designed and implemented. The campaign covered the urban area 

of the capital of Serbia – Belgrade. For this campaign, the specialized measurement system – 

TSMQ & ROMES (Rohde&Schwarz), shown in Fig. 5-1, was mounted in a specially adopted 

vehicle [5.5]. TSMQ Radio Network Analyzer is the fundamental element of this system. This, 

state of the art measurement system is able to measure and record many physical layer 

parameters of GSM, DCS and UMTS systems. Up-to-date BTS/Node-B databases, along with 

their coordinates, from both “Telekom Serbia” and “VIP Mobile” network operators were 

obtained. At the time, the first network operator (MTS) had roughly 200 GSM BTSs, 130 DCS 
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BTSs and 120 UMTS Nodes B across the city area. The second operator - VIP, due to allocated 

frequency bands, had just a few GSM BTSs for macro-coverage, around 170 DCS BTSs and 

more or less 70 active UMTS Nodes B.  

In addition, measuring system has a differential GPS receiver attached, and all measurements 

made are georeferenced. This system can usually achieve under 5m median error [5.6] which is 

by order of a magnitude better than the accuracy expected from PLMN positioning system. 

Therefore, it can be used for reference localization. The measurement and GPS location data 

was acquired by using a laptop computer equipped with "R&S Romes v4" software. This 

software can load the BTS/Node B database and directly produce distances from measured 

sites along with measured parameters. 

 

Fig. 5-1 Specialized Measurement System – TMSQ & ROMES (Rohde&Schwarz) 

The measurement campaign was carried out during the first quarter of the 2009. It comprised 

about 50 hours of measurement. During this period, a distance of more than 600 km was 

covered and measurements on more than 1,000,000 locations were performed. Almost every 

single street in Belgrade was covered with this measurement campaign and a total of more than 

10GB data was collected. Among other, the received signal strength of every radio-visible base 
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station (often more than 20) was recorded along with the power delay profile of the serving 

Node B. 

With this campaign, a set of measurements of truly respectable proportions and quality was 

obtained. Future research work should immensely benefit from this measurement campaign.  

5.2 TA Based Positioning Model (GSM/DCS) 

5.2.1 TA Model 

The TA model was obtained from the TA measurement campaign depicted in section 5.1.1. 

Positioning based on TA values has two main entities: the statistical TA model (different for 

each environment and for each TA value), and the core positioning algorithm that relies on 

modelled TA behaviour to estimate the user's position. This algorithm is also referred to as 

Enhanced Cell-ID + TA or E-CIDTA. 

The database of TA values obtained by measurements was used to derive a statistical TA 

model. The process of deriving TA probability functions was divided into the following steps: 

1) Initially determine the type and parameters of the distribution functions from the 

collected data for representative TA values in different environments (one TA value for 

each environment). 

2) Interpolate the probability functions for other TA values for respective environments. 

3) Correct/validate the model based on a test series of location estimation measurements. 

The analysis was performed using a simple Matlab program. The obtained model gives a 

probability that a TA parameter will take a certain value at distance d, in a predefined 

environment. 

Since the algorithm that was eventually going to use the TA models was implemented and run 

on the computer, the domain of probability functions (d) was chosen to be discrete. In favour of 

minimizing the additional error, the probability functions were sampled on every 5m. The 

quantifying step presents a trade-off between execution time of the algorithm and the error that 

model itself brings into computation. Using Matlab, the model for each environment was 

created and stored into an ASCII file. ASCII files are divided into sections corresponding to 

different TA values for which the probability is greater than zero. These files are further used 

by the algorithm. 

To determine the type and parameters of the distribution function f1(d) (probability function for 

TA=1) approximately 700 measurements, made in a suburban environment, were used. The 

observed interval of distances from the measurement location to BTS was [200m, 1300m], 

which, according to eq. (5.1), should be wide enough to record f1(d).  
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Fig. 5-2. Measurement results (bar graph) and the model of the probability function f1(d) 

 

Fig. 5-2 shows the results obtained by TA parameter modelling process, where the values of 

f1(d) for the omitted distances are very close to zero.  

Graph bar in Fig. 5-2 denotes the measured f1(d) averaged on 50m intervals. It can be shown 

that for a certain value d no more than two adjacent TA values are likely to be assigned. 

Furthermore, in-between the ascending and descending edges of an f1(d) exists a region where 

  11Pr TA . The domain of the probability function can therefore be contained within the 

finite distance interval and divided into three regions: the ascending edge (with the width4 wa), 

the central region (where the f1(d) is nearly constant), and the descending edge (with the width 

wd). The Gaussian distribution functions are also given in Fig. 5-2, and represented with thick 

blue lines. The parameters of these distribution functions (mean value and variance) can be 

determined from the Fig. 5-2 as well, to obtain the best-fit.  

Based on the full set of measurements the following conclusions can be made: 

1) The ascending and descending edges are symmetrical in respect to central distance dc 

and have the same width www da   

2) The widths of the edges, for a specified environment, are the same for all TA values 

3) When crossing from rural to urban environment the widths of edges increase, while the 

central region narrows. Also, all probability functions translate to smaller distances. 

Obtained values of the width of edges and central distances for different types of environments 

and several most commonly assigned TA values are given in Table 5-I. The models of other 

TA values can be deduced using the Table 5-I and the aforementioned conclusions. 

 

                                                 
4 The edges were defined as areas where f1(d)(0.05,0.95). 
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Table 5-I The width of edges and central distances of TA regions 

TA 
RURAL SUBURBAN URBAN 

dc [m] w [m] dc [m] w [m] dc [m] w [m] 

0  260  300  380 

1 827,5 260 787,5 300 767,5 380 

2 1382,5 260 1342,5 300 1322,5 380 

3 1937,5 260 1897,5 300 1877,5 380 

 

5.2.2 E‐CIDTA Positioning Algorithm 

The input data for the E-CIDTA algorithm are the triplets that correspond to: geographic 

position of the BTS, TA value assigned by the BTS and the TA model for the appropriate 

propagation environment. The number of input entries is equal to the number of assigned TA 

values (radio-visible BTSs). 

The algorithm uses "a map" as an abstraction that represents real space in which BTSs and 

MSs reside. The map is a two-dimensional array of points. Each point, apart from its 

coordinates, contains a list of values mk  which represent the probabilities obtained from TA 

models for that point. Main operations on the map are "the population" and computing the 

estimated location. 

The first stage of the position estimation is the map population. This process is done for each 

pair of (BTS, point) separately. First, the distance between the observed point and the BTS is 

calculated (to the multiple of 5m). Then, section of the ASCII file containing the recorded TA 

value and propagation environment (specific to the BTS) is observed. If the coefficient that 

matches the calculated distance exists (i.e. differs from zero), it is copied from the ASCII file 

section into the point’s list of values. After the map is populated, the number of elements in the 

point’s list is named the level of that point (n) and the maximum level of all the points in the 

map (nmax) is also referred to as the level of the map. The process of map population is 

illustrated in Fig. 5-3. 
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Fig. 5-3 The map population process 

Further computing of the estimated location can be divided into three steps: 

1) Derive the equivalent coefficient 

The function that computes the point’s equivalent coefficient ( )1(
ekvk ) from the list of values 

must fulfil the following: the result must reside in [0,1] interval and the function must be 

additive. The simple function that meets these requirements is the average of the list values 

( mk ): 

  
1 2

(1)
1 2

, 1
, , ,

0, 0

n

ekv n

k k k
n

k f k k k n
n

     
 



  (5.4) 

2) Multiply the equivalent coefficient with "scaling factors" –  max, nnF  

The role of the scaling factors is to decrease the density of points with relatively low level, thus 

emphasizing the points with level close to the level of the map. The exponential characteristics 

of the scaling factors, given in eq. (5.5), have been proposed. Based on a series of test 

measurements, it was determined that these scaling factors give good performance results for 

urban environment. 
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 (5.5) 

Each point’s density can now be defined by the  2
ekvk as: 

 (2) (1)
max( , )ekv ekvk F n n k    (5.6) 

3) Estimate location 

The location estimate is equal to the weight centre of the map where density of each point is 

equal to )2(
ekvk  of that point. 

The first two operations are done for each point separately, for as many times as there are 

points in the map, while the third operation treats all the points in the map and is performed 

only once. The E-CIDTA algorithm was implemented using Microsoft Visual C++. 

The described algorithm was tested in an urban environment. A complete new set of 

measurements was performed for the purpose of evaluating the performances of E-CIDTA. TA 

values were collected from all “visible” BTSs, and processed using the E-CIDTA algorithm. 

Fig. 5-4 shows the map after the population process. Each point on the map is presented with 

its equivalent coefficient )1(
ekvk . Darker points on the map have greater )1(

ekvk value. Fig. 5-5 shows 

the map after multiplication of )1(
ekvk  with the scaling factors. Each point on the map is presented 

with its )2(
ekvk . Darker points on the map have greater )2(

ekvk value. 
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Fig. 5-4 The map after the population process – expressed via )1(
ekvk  

 

Fig. 5-5 The map after multiplication of the equivalent coefficients with scaling factors – expressed via )2(
ekvk  
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Cell-ID+TA defines the user location in the annulus (ring). The accurate position largely 

depends on the assigned TA value, since the area in which the user is located increases with the 

TA value. Measurements show [5.7] that in an urban environment the error of Cell-ID+TA is 

283m with 67% accuracy. Generally, E-CIDTA has better performance over Cell-ID and Cell-

ID+TA, and somewhat worse performance than TOA, E-OTD, and A-GPS (all of these require 

additional hardware components installed either in the network and/or in the handset). The 

location error, in urban environment, with E-CIDTA is 135m with 67% accuracy, and 245m 

with 95% accuracy. 

The availability of E-CIDTA is very high, since in the case of only one available BTS, this 

technique degrades to Cell-ID (or Cell-ID+TA in the case of sectored cells). The other location 

techniques have less or equal availability. The accuracy of E-CIDTA increases with the 

number of BTSs the MS is receiving TA value from, as shown in Table 5-II. 

Table 5-II The influence of the number of BTSs to E-CIDTA accuracy 

Number of BTSs Accuracy [m] (67%) 

2 – 3 595 

4 – 5 425 

6 – 7 200 

8 – 9 105 

 

Fig. 5-6 illustrates the dependence of technique's performances on the number of radio-visible 

BTSs.  

The latency of this technique could not be determined precisely, since the TA measurement 

process itself increased the time to obtain the position, and this additional latency could not 

have been adequately measured. The estimate should increase depending on the number of 

BTSs from which the TA value is taken. However, the time to obtain the position should be 

less than 10s, which is comparable to other available techniques.  

The presented technique overcomes some of the major flaws inherent in Cell-ID+TA with 

triangulation, and gives better performance than two basic techniques Cell-ID and Cell-ID+TA.  

The presented algorithm can be further improved using additional data like Rx level (RSSI) to 

improve precision in suburban and rural environments.  
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Fig. 5-6 The illustration of technique’s accuracy vs. the number of BTSs in calculation (digits indicate the amount 

of BTSs involved in position estimation whereas the associated dots indicate corresponding estimated position; 

user’s position is denoted with thick blue dot) 

Additionally, the algorithm can be enhanced by selecting optimal coefficients for the scaling 

factors. The algorithm can easily be adapted for UMTS, due to similarity between RTT (round 

trip time) and TA, which should probably decrease the positioning error [5.7].  

However, for implementation, E-CIDTA requires additional signalling to be conducted in the 

GSM network.  
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5.3 ANN RSSI Positioning Models 

5.3.1 Single ANN Positioning Models 

5.3.1.1 Positioning Method 

New implementations of GSM/DCS signalization allow for up to 32 neighbouring cells to be 

included in the BA list (Broadcast Control Channel Allocation List) [5.8]. The RSS levels 

(RxLev parameters) from these cells are measured periodically at the MS in idle mode and 

could be transferred back to the network in the form of standardized report. The cells in the BA 

list are defined by the network operator. However, the network operator can include, besides its 

own cells, cells from other operators into its cell's BA list. This opens the door for the use of 

RSS values from other network operators for positioning the mobile station. In addition, 

UMTS capable MSs can measure a number of Received Signal Code Power (RSCP) 

parameters (CPICH_RSCP_LEV [5.9]) belonging to serving and other networks. Reports 

containing these values are also sent to the network. The set of RSS values, including both 

RxLev and CPICH_RSCP_LEV parameters obtained at MS, will be referred to as the 

Reference Inputs (RIs).  

Ideally, the MS should be served by the closest node of the network. That would invoke the 

highest probability that an MS is served by the cell with the strongest signal. However, due to 

the other system limitations (ping-pong handover effect, load balancing, etc.) the criterion for 

serving BTS is somewhat more complicated. Being that these system limitations do not affect 

the positioning algorithm, in the proposed algorithm, the cell with the highest RSS value was 

used instead of the serving cell as a model selection criterion. When regarding the general 

operation of the algorithm, once the positioning request is received, the Serving Location 

Mobile Centre (SLMC), based on the Cell-ID of the highest reported RSS value, employs a 

matching model for the particular site (i.e. for each site a specific positioning model is 

applied). The Model Inputs (MIs) are RSS values of a particular set of BTSs (significant RSS 

inputs). The number of these inputs can vary and different MI selection criteria can be applied. 

The RI list is then, in SLMC, matched with the MIs, specific for the area of the particular 

model. The RI values that do not have corresponding MIs are discarded whereas the missing 

MIs are entered with the threshold value (-130dBm for CPICH_RSCP_LEV and -110dBm for 

RxLev). The overall functioning of the proposed positioning algorithm is illustrated in Fig. 5-7 

a) whereas the major phases in providing the location estimate are given in Fig. 5-7 b). 
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Fig. 5-7 The functioning of the positioning algorithm: a) illustration and b) phases diagram 

 

The models used for positioning were based on ANNs. The multilayer perceptron feedforward 

network, depicted in section 3.2.5, with a varying number of perceptron units formed the 

structure of every positioning model. The guidelines followed for the inner network structure 

are the same given in section 3.3. 

5.3.1.2 Model Generation 

To train, validate and verify the proposed models, the data from the measurement campaign 

given in 5.1.2 was used.  

Being that each model corresponds to an individual site, at first, the MTS site in a light urban 

environment was selected for the purpose of examining the proposed models. This site shall 

hereon be referred to as S1. The geographic area from which the measurements are used to 

train the model and, moreover, the area in which the model can estimate the user position is 

referred to as the model area. The shape of this area was chosen to be circular, centred to the 

position of the BS. To determine the radii of the model area, the measured locations where the 

highest measured RSS was received from the chosen cell were observed first. Next, the radii 

were chosen (in 100m steps) so that more than 99.9% of the observed locations were inside this 

area. A limitation of this kind had to be induced in order to minimize the model area size. The 

model area determination procedure is illustrated in Fig. 5-8. Regarding the S1, the 

aforementioned procedure resulted in a database of measurements performed on 31,391 

locations inside 1km radius from the BS. 

The models that were tested on S1 can be split into the following categories: group 1 (G1) – 

models using several significant RSS inputs from one or more systems belonging to one 

operator, group 2 (G2) – models using several significant RSS inputs from multiple systems 
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belonging to multiple operators, and group 3 (G3) – models using all available inputs from 

multiple systems belonging to multiple operators. It should be noted that the G3 models have a 

much greater number of MIs than G1 and G2 models (one of the G3 models has as much as 

163 MIs). G1 – G3 models and their descriptions are presented in Table 5-III. 

 

Fig. 5-8 Model area radius determination criterion 

Table 5-III Positioning models for S1 

Group Model Label Model Inputs 

G1 

M1 7G(MTS) 7 GSM RSS (MTS) 

M2 7D(MTS) 7 DCS RSS (MTS) 

M3 3U(MTS) 3 UMTS RSS (MTS) 

M4 7G7D(MTS) 7 GSM and 7 DCS RSS (MTS) 

M5 7G7D3U(MTS) 7 GSM, 7 DCS and 3 UMTS RSS (MTS) 

G2 
M6 7G(MTS)&7D(VIP) 7 GSM RSS (MTS) and 7 DCS RSS (VIP) 

M7 7G7D3U(MTS)&7D3U(VIP)
7 GSM, 7 DCS, 3 UMTS RSS (MTS) and 7 DCS, 3 UMTS RSS 

(VIP) 

G3 

M8 G(MTS)&G(VIP) All available GSM RSS from both operators 

M9 D(MTS)&D(VIP) All available DCS RSS from both operators 

M10 U(MTS)&U(VIP) All available UMTS RSS from both operators 

M11 GD(MTS)&GD(VIP) All available GSM and DCS RSS from both operators 

M12 GDU(MTS)&GDU(VIP) All available GSM, DCS and UMTS RSS from both operators 

 

For models using only significant RSS inputs (groups G1 and G2), it should be pointed out that 

the MIs were chosen based on the probability of their radio-visibility throughout the model 

area. This parameter was calculated as the ratio between the number of locations in which the 

particular cell's RSS was recorded (as RI) against the overall number of locations across the 

model area. The top seven RSS were selected (due to the typical cell structure comprising the 

serving cell and six neighbouring cells) except in the case of UMTS where, due to the worse 
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coverage and less Nodes B in the area, this number was reduced to only three (the remaining 

UMTS RSS had radio-visibility of less than 10%).  

The current signalling schemes cannot support the transfer of all available RSS signals 

measured by the MS to the network. On the other hand, MS has the hardware capability and 

could easily be adapted to measure and monitor a great number of RSSs (e.g. by using "R&S 

Romes to go" software [5.10]). Then, additional signalling would be required to send the 

measured values back to the network. To perform this, first the BA list should be expanded 

(this has already been done in some proprietary solutions). Then, the measuring report ought to 

be changed to support transferring more RSS values. This should not have a high impact on the 

network capacity. However, the standardized signalling cannot carry this extra data and would, 

therefore, have to be altered. Overall, making use of all available RSSs could be performed 

requiring only software changes and maintaining the existing hardware infrastructure intact. 

Hence, the impact, on both the network and the handset side, would be limited. 

5.3.1.3 Performance Assessment 

a) S1 models' performances 

The training of models was performed by using only 10% of the model measurement data set 

due to its immense size. The validation of models was performed using 40% and the final 

verification of the models' performances was done with the remaining 50% of the data set 

(verification subset). The database was divided into the aforementioned subsets randomly, with 

a uniform distribution. The subsets were filtered and only the measurements where the 

strongest RSS belonged to the modelled site were actually used (other measurements would be, 

according to the algorithm, dispatched to their corresponding models). To validate the 

performances, the models were trained with different training lengths ranging from 100 to 

500,000 epochs. The obtained validation performances are shown in Tables 5-IV – 5-VI for 

model groups G1 – G3, respectively. 

Table 5-IV Validation Distance Error – DE for G1 models 

Group Model 
Average DE 

[m] 
Median DE 

[m] 
67% DE [m] 95%DE [m] 

Optimal training 
length [epochs]

G1 

M1 157 126 173 389 150k 

M2 217 168 229 604 50k 

M3 447 398 601 888 300k 

M4 113 91 124 281 150k 

M5 110 88 119 276 150k 

 

Table 5-V Validation Distance Error – DE for G2 models 
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Group Model 
Average DE 

[m] 
Median DE 

[m] 
67% DE [m] 95%DE [m] 

Optimal training 
length [epochs]

G2 
M6 108 87 118 262 200k 

M7 88 70 97 223 200k 

 

Table 5-VI Validation Distance Error – DE for G3 models 

Group Model 
Average DE 

[m] 
Median DE 

[m] 
67% DE [m] 95%DE [m] 

Optimal training 
length [epochs]

G3 

M8 92 65 100 260 500k 

M9 76 57 80 223 500k 

M10 127 101 141 324 200k 

M11 59 48 68 146 500k 

M12 60 51 69 139 500k 

 

The performances of G1 models, in terms of absolute average and various percentile (50%, 

67% and 95%) Distance Errors (DEs), first improved with the increase in training length. After 

roughly 50k epochs of training, the improvement in performances enters saturation or even 

starts decreasing slightly. The criterion used in the selection of the optimal training length for 

all models was the minimal sum of average and median DE. Being that some LBSs are limited 

by the average and some by the median DE, this criterion was chosen to equally account for 

the influence of both DEs. The obtained validation performances for G1 models are shown in 

Table 5-IV. 

Concerning the G2 models and Table 5-V, the optimal training length, according to the 

aforementioned criterion, has moved towards a longer training duration (200k epochs). As for 

the G3 models, as can be seen from Table 5-VI, the optimal duration of training is further 

moved to greater number of epochs. Such results indicate that the increase in the number of 

MIs (i.e. more complex ANN structure) invokes a higher optimal training duration. Although 

most of the G3 models achieve their best performances for 500k epochs, the difference in 

performances for 300k and 500k epochs are usually minor. Bearing in mind the time needed to 

perform the training, the models were not trained for more than 500k epochs.  

The performances of the optimally trained models have been verified with the measurement 

verification subset for the selected site S1. The obtained DE’s Cumulative Distribution 

Functions (CDFs) for models 1-5 are shown in Fig. 5-9. CDFs for models 6-7 are shown in Fig. 

5-10, whereas the CDFs for models 8-12 are presented in Fig. 5-11. The regions below 2.5% 

and above 97.5% have been omitted due to the relatively small number of samples therein. 
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Fig. 5-9 DE's CDF for G1 models 

From Fig. 5-9, it can be seen that the models employing signals from individual systems (M1 

to M3) have performances generally proportional to the number of MIs. The exceptionally 

poor performances that the 3U(MTS) model demonstrates could be explained by significant 

areas inside the model area with no UMTS coverage (from the three selected UMTS cells). In 

this case all MIs are equal to the threshold value and the model estimates all such locations into 

a single point producing almost uniformly distributed distance errors over the model area. On 

the other hand, even though the UMTS had the worst radio-visibility, this system still adds a 

bit to the overall performance of 7G7D3U(MTS) model. Another interesting point is that 

although the DCS and GSM antennas are usually collocated (often enough deployed as single 

multi-band antenna), the 7G7D(MTS) significantly improves in performance when comparing 

to either of the two models employing RSS from individual systems.  

Fig. 5-10 shows the performances of two models employing a limited number of RSS values 

from both network operators. Being that they have the same number of inputs from the 

corresponding systems, it might be interesting to discuss and compare the performances of 

M4::7G7D(MTS) and M6::7G(MTS)&7D(VIP) models. As can be seen, the M6 model slightly 

outperforms the M4 model. Being that the 7G(MTS) and 7D(VIP) signals have similar 

visibilities, the difference in performance can be explained as a result of the additional 

transmitter locations in case of the M6::7G(MTS)&7D(VIP) model. In other words, this result 

indicates that the additional transmitter carries more location dependent information if it is on a 

different location than previously used RSS sources – which is logical. 
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Fig. 5-10 DE's CDF for G2 models (Models 1-5 are also shown in faded gray, with the markers and a line-style 

consistent to those shown in Fig. 5-9) 

Positioning models employing all the available RSS inputs are presented in Fig. 5-11. If the 

models employing different numbers of RSSs only from a single system are mutually 

compared, it can be seen that all models have vastly improved in terms of their accuracy with 

the increase in the number of RSS inputs. Models employing UMTS – 3U(MTS) and 

U(MTS)&U(VIP) still have the worst positioning performances. Yet, contrary to the 7G(MTS) 

model outperforming the 7D(MTS) model, the D(MTS)&D(VIP) performs better than 

G(MTS)&G(VIP). This again confirms the influence of the number of RSS inputs to the model 

accuracy since the VIP network operator has very limited GSM coverage. The 

GD(MTS)&GD(VIP) and GDU(MTS)&GDU(VIP) models further excel in their performances. 

These two models have basically the same accuracy performances which goes to show that at a 

certain point the additional RSSs cease to benefit the overall positioning performances. This 

might be induced by poor radio-visibility of the UMTS system. On the other hand, difference 

in the high percentiles (above 90%), which these two models experience indicates that the 

increase in the number of MIs, even if they belong to a system with poor radio-visibility, limits 

the maximal positioning error.  
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Fig. 5-11 DE's CDF for G3 models (Models 1-7 are also shown in faded gray, with the markers and a line-style 

consistent to those shown in Figures 5-9 and 5-10) 

Table 5-VII G1 – G3 Models Accuracy Performance Summary 

Group Model Label Avg. DE [m] 50% DE [m] 67% DE [m] 95% DE[m] σ DE [m] 

G1 

M1 7G(MTS) 175 148 199 399 118 

M2 7D(MTS) 218 170 230 604 179 

M3 3U(MTS) 450 419 598 883 266 

M4 7G7D(MTS) 114 90 123 288 96 

M5 7G7D3U(MTS) 110 88 118 272 93 

G2 
M6 7G(MTS)&7D(VIP) 106 86 117 258 83 

M7 7G7D3U(MTS)&7D3U(VIP) 88 70 96 223 69 

G3 

M8 G(MTS)&G(VIP) 92 65 100 260 85 

M9 D(MTS)&D(VIP) 75 57 79 215 65 

M10 U(MTS)&U(VIP) 129 102 141 340 101 

M11 GD(MTS)&GD(VIP) 59 47 68 145 44 

M12 GDU(MTS)&GDU(VIP) 59 50 68 137 41 

 

The models’ accuracy overview, obtained by using a verification subset and optimally trained 

models, are presented in Table 5-VII. 

 

b) Performance verification on different cell sites 

In order to verify and confirm the previously obtained positioning performances, two 

additional sites were selected and models with inputs corresponding to G3 models (M8 – M12) 

have been created. Site two (S2) is in an urban surrounding. The aforementioned selection 

criterion for a model area resulted in a database of measurements comprising 22,221 locations 

inside an 800m radius from the BS. The same criterion applied to site three (S3) that is located 
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in a light urban area with tall buildings rendered 33,140 locations inside 1100m radius from the 

BS. The S3 area is specific regarding the signal propagation. Due to the somewhat sporadically 

positioned high buildings, the situations where for proximate locations propagation paths have 

significantly different length (direct path vs. one or more reflections) frequently occur. This 

behaviour impairs the performances of the positioning model. 

As stated, the overall aim of verification on additional cell sites was to show general 

consistency of the previously obtained performances. Besides that, the comparison with S2 

ought to demonstrate the transformation of positioning performances with the urbanisation of 

the environment. S3 ought to illustrate the behaviour of the models in an environment which is 

considered to be even more challenging in terms of the received signal power estimation.  

Group four (G4) models M13 to M17 (S2), and group five (G5) models M18 to M22 (S3) 

correspond to G3 models M8 to M12, respectively. As with G3 models, M13 and M18 use all 

the available GSM signals, M14 and M19 use all the available DCS signals, M15 and M20 use 

all the available UMTS signals, and M16 and M21 use all the available GSM and DCS signals. 

Finally, M17 and M22 make use of all the available signals within their respective model areas. 

Description of G4 and G5 models is given in Table 5-VIII. 

 

Table 5-VIII Positioning models for G4 (S2) and G5 (S3) 

Group Model Label Model Inputs 

G4 

M13 G(MTS)&G(VIP) All available GSM RSS from both operators 

M14 D(MTS)&D(VIP) All available DCS RSS from both operators 

M15 U(MTS)&U(VIP) All available UMTS RSS from both operators 

M16 GD(MTS)&GD(VIP) All available GSM and DCS RSS from both operators 

M17 GDU(MTS)&GDU(VIP) All available GSM, DCS and UMTS RSS from both operators 

G5 

M18 G(MTS)&G(VIP) All available GSM RSS from both operators 

M19 D(MTS)&D(VIP) All available DCS RSS from both operators 

M20 U(MTS)&U(VIP) All available UMTS RSS from both operators 

M21 GD(MTS)&GD(VIP) All available GSM and DCS RSS from both operators 

M22 GDU(MTS)&GDU(VIP) All available GSM, DCS and UMTS RSS from both operators 

 

Group four (G4) models M13 to M17 (S2), and group five (G5) models M18 to M22 (S3) 

correspond to G3 models M8 to M12, respectively. As with G3 models, M13 and M18 use all 

the available GSM signals, M14 and M19 use all the available DCS signals, M15 and M20 use 

all the available UMTS signals, and M16 and M21 use all the available GSM and DCS signals. 

Finally, M17 and M22 make use of all the available signals within their respective model areas. 

Description of G4 and G5 models is given in Table 5-VIII. 

Tables 5-IX and 5-X show the validation performances of G4 and G5 models, respectively. 
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Table 5-IX Validation Distance Error – DE for G4 (S2) Models 

Group Model 
Average DE 

[m] 
Median DE 

[m] 
67% DE [m] 95%DE [m] 

Optimal training 
length [epochs]

G4 

M13 67 48 71 190 500k 

M14 69 57 77 174 500k 

M15 118 92 119 239 500k 

M16 53 43 59 134 500k 

M17 53 45 61 124 500k 

 

Table 5-X Validation Distance Error – DE for G5 (S3) Models 

Group Model 
Average DE 

[m] 
Median DE 

[m] 
67% DE [m] 95%DE [m] 

Optimal training 
length [epochs]

G5 

M18 49 37 50 136 300k 

M19 79 61 87 206 500k 

M20 92 75 105 218 500k 

M21 46 36 50 119 500k 

M22 46 37 52 113 500k 

 

Fig. 5-12 illustrates the DE's cumulative distribution function of S2 models M13 – M17. 

 

 

Fig. 5-12 DE's CDF for G4 models (Models M8 – M12 are displayed in faded gray, with markers and a line-style 

consistent to those shown in Fig. 5-11) 

 

The more urban environment (higher density of BSs) of S2 has rendered a smaller model area 

(800m radius) and yet a larger number of available BSs (maximal available number of MIs). 

Also, respective to the number of MIs, positioning performances have generally improved. The 
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most significant improvement is noticeable with the M13::G(MTS)&G(VIP) model compared 

to the M8::G(MTS)&G(VIP). This can be explained as a result of the most noticeable increase 

in the number of GSM BTSs. Regarding the S2, the number of GSM and DCS BTSs is almost 

the same (whereas with S1 there were significantly more DCS BTSs), which then translates 

into significant improvement in positioning performances. 

Fig. 5-13 depicts the DE's cumulative distribution function of G5 models M18 – M22. G5 

models achieve superior performances with M21 and M22 reaching under 40m median errors. 

This result ought to be even more emphasized in light of the challenging propagation 

environment in which the G5 models operate. This radio-environment rendered the model area 

radius of 1100m which then invoked an even higher number of MIs (total of 262). 

 

 

Fig. 5-13 DE's CDF for G5 models (Models M8 – M12 are displayed in faded gray, with markers and line-styles 

consistent to those shown in Fig. 5-11) 

Table 5-XI shows a summary of the accuracy performances of G4 and G5 models. Bearing in 

mind Figures 5-125-12 and 5-13, as well as Table 5-XI, it can be concluded that, generally, the 

improvement in the models' positioning accuracy is proportional to the number of MIs, i.e. to 

the density of the visible BTSs. Nonetheless, there is a limit to such behaviour. The best 

example for that is the M18 which has almost identical performances to those of the M21 and 

M22 models. Conversely, as indicated earlier, it seems that the higher number of model's 

inputs still helps limit the maximal positioning error (lowering the DE with high percentiles). 

Table 5-XI Models Accuracy Performance Summary for G4 – G5 

Group Model Label Avg. DE [m] 50% DE [m] 67% DE [m] 95% DE[m] σ DE [m] 
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G4 

M13 G(MTS)&G(VIP) 67 49 72 191 62 

M14 D(MTS)&D(VIP) 68 54 75 187 56 

M15 U(MTS)&U(VIP) 103 89 120 237 79 

M16 GD(MTS)&GD(VIP) 53 43 59 132 39 

M17 GDU(MTS)&GDU(VIP) 52 45 60 121 36 

G5 

M18 G(MTS)&G(VIP) 51 37 51 140 45 

M19 D(MTS)&D(VIP) 80 62 87 206 66 

M20 U(MTS)&U(VIP) 95 77 106 226 76 

M21 GD(MTS)&GD(VIP) 46 35 50 121 37 

M22 GDU(MTS)&GDU(VIP) 45 37 48 114 33 

 

Fig. 5-14 illustrates the positioning capabilities of the M22 model. From Fig. 5-14 it can 

clearly be seen that the areas in which the signal from the modelled BS is the strongest (blue 

circles) are only a subset of the model area. As a result, the model areas of different cells 

overlap. The errors are evenly distributed across both sides of the streets. Therefore, it can be 

assumed that, with a proper map matching and/or overloaded tracking algorithm, this model's 

accuracy would be sufficient so that it could be used for vehicle navigation LBS. 
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Fig. 5-14 Positioning with M22 model (the red dashed circle represents the boundaries of the model area, the 

green dots represent locations at which the measurements were conducted, the blue circles are the actual user 

positions whereas the red "x" signs stand for the estimated positions) 

c) Indoor performances  

Most studies exploring PLMN based positioning are based on simulation results only. Even 

those research efforts based on actual measurements do not tend to investigate the degradation 

of performances if the positioning is applied in an environment the model was not primarily 

made for (e.g. positioning in an indoor environment when the model was optimised for an 

outdoor environment). This can be very important if the positioning service aims to provide 

seamless cross-environment positioning capabilities. For this purpose additional measurements 

on a number of indoor locations throughout the S1 model area have been made. Being that 

these measurements have been made with a cell phone equipped with Ericsson's pocket TEMS 

[5.11] with no logging capabilities and that the access to personal households was limited, the 
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number of measurements was restricted to only 30 measurements. Hence, the indoor 

positioning performances have been explored less thoroughly than it was the case with outdoor 

performances. On the other hand, it might be good enough to give an insight into how to 

optimise the positioning model for the indoor environment. 

The G3 models, verified for the previously stated range of training lengths, were validated 

using the measurement set obtained in an indoor environment. 

Table 5-XII Distance Error – DE for G3 Models in Indoor Environment 

Group Model 
Average DE 

[m] 
Median DE 

[m] 
67% DE [m] 95%DE [m] 

Optimal training 
length [epochs]

G3 

M8 180 138 176 369 2k 

M9 110 82 144 241 5k 

M10 179 166 190 340 20k 

M11 121 95 172 236 10k 

M12 105 101 107 158 5k 

 

The results given in Table 5-XII may be interpreted as significantly worse than those presented 

in Table 5-VI. Another noticeable point is that the optimal training lengths are shifted towards 

the lower number of epochs. The fact that the optimal training length for indoor positioning is 

achieved with lesser training lengths shows that more noisy processes with worse overall 

performances (i.e. indoor positioning) invoke lesser optimal training lengths. This behaviour is 

illustrated in Fig. 5-15 through the average DE for the M12 positioning model. However, there 

might be another angle to it. When the results from Tables 5-VI and 5-XII at optimal training 

lengths for indoor positioning are compared, the differences between the two become slighter. 

Table 5-XIII provides an insight into the extent of performance degradation due to cross-

environment model use. From Table 5-XIII, it can be seen that the positioning errors 

significantly rise for models that are not optimally trained for a particular environment. 
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Fig. 5-15 Average DE of M12 model for the indoor and outdoor environment 

Table 5-XIII Comparison of G3 Models' Positioning Performances for Indoor-Outdoor Optimal Training 

Group Model DE type 
I/IO 
[m] 

O/IO 
[m] 

I/OO 
[m] 

O/OO 
[m] 

I – O loss (IO) 
[%] 

I – O loss (OO) 
[%] 

G3 

M8 

Average DE 180 154 350 92 17 280 

Median DE 138 141 358 65 -2 451 

67% DE 176 180 383 100 -2 283 

95% DE 369 315 617 260 17 137 

M9 

Average DE 110 108 175 76 2 130 

Median DE 82 99 144 57 -17 153 

67% DE 144 129 259 80 12 224 

95% DE 241 219 333 223 10 49 

M10 

Average DE 179 162 348 127 10 174 

Median DE 166 140 341 101 19 238 

67% DE 190 182 435 141 4 209 

95% DE 340 370 588 324 -8 81 

M11 

Average DE 121 93 176 59 30 198 

Median DE 95 83 177 48 14 269 

67% DE 172 110 219 68 56 222 

95% DE 236 202 311 146 17 113 

M12 

Average DE 105 104 177 60 1 195 

Median DE 101 97 149 51 4 192 

67% DE 107 123 202 69 -13 193 

95% DE 158 206 395 139 -23 184 
I – indoor, O – outdoor, IO – model training length optimised for indoor environment, OO – model training length optimised 

for outdoor environment 
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d) Models' complexity and latency 

In order to fully explore the herein presented models, their complexity and latency have also 

been analysed. 

There are many definitions for complexity depending on the domain of application. In terms of 

positioning systems, complexity is most often referred to as the difficulty of setting up the 

positioning system. Regarding the neural networks models, besides the time needed to collect 

the measurement database, the complexity mostly relates to the time needed to optimally train 

the network for positioning purposes. This property has been investigated through the time 

needed to train the particular model depending on the length of training and the size of the 

neural network structure. The processor time consumption is given to illustrate the relative 

energy needed to perform the training operation. Table 5-XIV shows the complexity 

parameters for all presented models. 

Bearing in mind the size of one operator's network (in terms of the number of nodes), the 

training of models for the complete network might present a time consuming task. However, it 

should be stated that models in the suburban and rural environment have far less inputs and 

their training is much more prompt. Fewer inputs might indicate worse positioning capabilities 

in these environments. On the other hand, the propagation in these environments is considered 

"cleaner" (i.e. fewer reflected components) which could act to improve the positioning 

performances. 

Location information makes sense only if it is obtained within a timeframe which remains 

acceptable for the provision of the LBSs. Latency represents the period of time between the 

position request and the provision of the location estimate. The total latency consists of 

propagation delays and the time the model uses to provide the positioning information. When 

considering PLMN the propagation delay can usually be contained within a few seconds. On 

the other hand, the mere process of obtaining a position estimate, in case of the models 

presented herein, takes nothing more than a series of multiplications and additions which 

consume a negligible amount of time. This is considered a rather good attribute of ANNs 

[5.12]. 
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Table 5-XIV Models' Complexity 

Model Site No. of inputs 
Total no. of 
perceptron 

units 

Training time per 
epoch [ms] 

Training time for 
optimally trained 
model [hours] a 

M1 S1 7 38 29 1.2 

M2 S1 7 38 33 0.5 

M3 S1 3 18 31 2.6 

M4 S1 14 68 101 4.2 

M5 S1 17 77 55 2.3 

M6 S1 14 68 99 5.5 

M7 S1 27 114 85 4.7 

M8 S1 53 220 183 25.4 b 

M9 S1 68 275 237 32.9 b 

M10 S1 42 179 140 7.8 b 

M11 S1 121 438 416 57.8 b 

M12 S1 163 479 454 63.1 b 

M13 S2 85 301 180 25.0 

M14 S2 89 305 182 25.3 

M15 S2 54 225 120 16.7 

M16 S2 174 486 306 42.5 

M17 S2 228 592 592 82.2 

M18 S3 102 334 313 26.1 

M19 S3 98 309 279 38.8 

M20 S3 62 259 232 32.2 

M21 S3 200 522 493 68.5 

M22 S3 262 648 679 94.3 
aModels were trained on a single core of the Pentium Dual Core CPU E5200@2.5GHz (60W) with 2GB of 
RAM, bFor the outdoor environment 

 

 

5.3.2 Cascade‐connected ANN Structures 

Following the same basic idea from section 4.3.2.2, we were tempted to test the use of space-

partitioning process with cascade-connected (C-C) ANN structures for outdoor/PLMN 

positioning. This two-step process estimates the subspace in which the user resides, in the first 

phase, and resolves the location estimate within the subspace, using the specially adopted 

model for each subspace, in the second phase. Being that the areas covered by a single ANN 

model, in case of PLMN positioning, are much larger than the ones at which the WLAN 

systems are usually deployed on one side, and knowing that the use of C-C structures was 

initiated by the influence of test-bed size on positioning on the other, investigating the use of 

C-C ANN structures made even more sense. 

The implementation of the most inclusive (best performing) single ANN models for PLMN 

positioning, discussed in previous sections, required slight changes in system signalling 

schemes. Besides, UMTS system occasionally has limited or no coverage, especially in rural 
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areas. On the other hand, one of the main goals with the C-C ANN (Fig. 4-17) models in 

WLAN environment was to show the performance benefit (not so much the performances per 

se) in comparison to the single ANN models. Bearing in mind the aforesaid, for the C-C ANN 

models, we opted to simplify and use only widely available 2G signals (GSM and DCS) and 

reduce the number of inputs so that the presented models would be entirely applicable in the 

existing GSM networks. To achieve this, the positioning algorithm shown in Fig. 5-7, with the 

only difference being the positioning model which is now implemented in form of a C-C ANN 

structure, was employed. The RI list was restricted to 7 entries so that the complete RI list 

could be carried in the form of standardized report. Also, the number of MIs was limited to 32 

to follow the maximal number of entries in the BA list.  

The S1 model area was selected for the C-C ANN models verification. As indicated earlier, it 

is a MTS network operator site in light urban environment. The base stations that were on the 

MI list were selected based on their radio-visibility inside the model area. RSS from the top 32 

radio-visible base stations belonging to one of the two measured network operators (MTS and 

VIP) assembled the MIs vector.  

 

 

Fig. 5-16 The S1 model area (red dashed line), locations of the measurements (blue “x” symbols) and location of 

the BTS (green “+” symbol) 
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The database for the S1 area consists of measurements performed on 31,391 locations. This 

area and the locations within, where the measurements were taken, are shown in Fig. 5-16. 

Taking into account only the locations where the strongest received signal originated from this 

site, the database was filtered and narrowed to 7,331 locations.  

The block structure of this system is virtually the same as one depicted in Fig. 4-17. There is a 

slight difference in the number of inputs, though. The structure inputs (the type 2 network 

inputs) should now accommodate the MIs vector which has 32 elements (instead of 

APs RSSI  which had 8). Being that this vector is also the input of the second stage networks 

(type 1), their number of inputs must be expanded to 32 as well. Likewise, the number of 

outputs of the first stage ANN is equal to the number of subspaces the environment is 

partitioned to – SubSp Ln , and the number of outputs of the type 1 networks (also the output 

of the structure, Pos Est ) is two – Northing and Easting. 

The inner structure of both the type 1 and 2 ANNs was designed using the same guidelines as 

with previously described models. The network had three hidden layers. The number of 

perceptron units in those layers was varied so that the structure could accommodate for the 

different number of subspaces.  

To thoroughly explore the use of space-partitioning for PLMN positioning a series of models 

with a different number of subspaces, ranging from 4 to 400, was constructed and analysed. All 

partitions were made strictly on geometrical bases (i.e. straight lines separating the model area 

into rectangles). For future comparison, the single ANN model with the same model database, 

RIs and MIs, is herein referred to as 1x1 partitioning. 

The training of models was performed in a similar manner to the training of the single ANN 

models. Only the measurements where the strongest RSS belonged to the modelled site were 

actually used (other measurements would be, according to the algorithm, dispatched to their 

corresponding models). The filtered set was further divided into three subsets, for training, 

validation, and verification, containing 10%, 40% and 50% of the measurements, respectively. 

The database for a particular site was divided into the aforementioned subsets randomly. Next, 

the training of the type 1 networks was performed with the same 10% as for the first stage 

network (type 2). Of course, each second stage network was trained only with a subset of the 

training set containing the measurements from its corresponding subspace. The validation and 

verification of the second stage networks was done with the same validation and verification 

sets (containing 40% and 50% of the total filtered data set, respectively). Only, this time, the 

measurements from these sets were dispatched to the second stage networks according to the 

validation and verification outputs of the first stage network.  
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To analyse the performances, the models were trained with different training lengths ranging 

from 100 to 500,000 epochs. The results obtained for different space partition patterns, for 

optimally trained ANNs, are presented in Table 5-XV.  

From Table 5-XV, it can be seen that the overall average, median and 67th percentile DEs are 

decreasing with the increase in the number of subspaces. Slight exception to this behaviour can 

be noticed with 5x5 pattern. As for the behaviour of 95th percentile DE, it is not clearly 

distinguishable: its large variation could be partially explained by relatively small number of 

samples (position estimates) within 5% of the total set. Also, this DE is dominantly influenced 

by the cases where the subspace was incorrectly selected by the first stage network. The 

variance of error in these cases can be significant. For instance, if the first stage network 

selected the adjacent subspace to the actual one, DE may not be large. On the other hand, if the 

selected subspace is not adjacent to the correct one, the DE is, in all likeliness, very large. 

Likewise, there is no apparent rule for the behaviour of the DEs in the incorrect subspaces. 

Although, the average DE in incorrect subspaces appears to be decreasing with the final 

increase in the number of subspaces. 

 

Table 5-XV Performance overview for different partitioning patterns 

Pattern 1x1 2x2 3x3 4x4 5x5 10x10 20x20 

Overall Average Distance Error 
[m] 

81.8 43.9 40.5 31.3 34.0 27.0 25.7 

Overall Median (50p) Distance 
Error [m] 

72.4 20.5 12.9 10.2 10.8 3.3 1.8 

Overall 67p Distance Error [m] 90.2 32.7 22.5 18.8 20.8 7.4 4.0 

Overall 95p Distance Error [m] 176.7 160.1 176.8 139.2 141.5 131.8 167.8 
Average Distance Error in 

Correct Subspace [m] 
81.8 37.3 30.4 22.8 23.7 10.9 5.3 

Median Distance Error in Correct 
Subspace [m] 

72.4 19.8 11.6 9.6 10.0 2.8 1.5 

Average Distance Error in 
Incorrect Subspace [m] 

- 250.3 203.9 223.2 231.3 194.7 176.3 

Median Distance Error in 
Incorrect Subspace [m] 

- 138.8 113.0 167.5 201.6 138.9 135.4 

Probability of Correct Subspace 
Estimation 

1.00 0.98 0.93 0.96 0.96 0.91 0.89 

 

The behaviour of overall average and median DEs, as well as average and median DEs in 

correct subspaces are illustrated in Fig. 5-17. 

Several moments can be noticed from Fig. 5-17. First, if the two sets, the overall median DE 

and its subset, the median DE in correctly chosen subspaces, are observed, it can be seen that 

they are hardly differentiable. The reason for such behaviour should be looked in high 

probability of correct subspace estimation as can be seen in Table 5-XV. In other words, being 
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that in only 2 – 11% of the cases the subspace is incorrectly estimated, the difference between 

the two sets originates from the samples with high DE. The lower percentile DEs are virtually 

the same for both sets. On the other hand, due to the same explanation – spread of the higher 

DEs in the overall DE, the overall average DE and the average DE in correctly chosen 

subspaces are parting with the decrease in the correct subspace estimation (i.e. with the 

increase in the number of subspaces). 
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Fig. 5-17 Overall average and median DEs, average and median DEs in correct subspaces 

Also, from Fig. 5-17, one can notice that the curves are likely to have entered saturation and 

that further increase in the number of subspaces would not induce significant decrease of the 

DEs. Therefore, the "range" of selected space-partitioning patterns are sufficient to thoroughly 

explore the positioning performances.  

 To illustrate the abovementioned behaviour, the distance error’s Cumulative Distribution 

Function (CDF) of a single ANN approach (1x1) is compared with other applied partitioning 

patterns. The obtained CDFs are presented in Fig. 5-18. 
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Fig. 5-18 Cumulative Distribution Function of distance error: 

a) 1x1and 2x2; b) 1x1 and 3x3; c) 1x1and 4x4; d) 1x1and 5x5; e) 1x1and 10x10; and f) 1x1and 20x20; 

 

In Fig. 5-18, the areas below 2.5% and above 97.5% have been omitted due to the insufficient 

number of samples in those regions. Let the green surfaces in Fig. 5-18 be regarded as 

partitioning gain and the red surfaces, visible only in Fig. 5-18 b) and f), as partitioning loss. 

The balance between the two areas translate to equal average DE. Green areas larger than red 

areas mean lower average DE and vice versa. From Fig. 5-18 a), it can be noticed that the 

crossing point of the 1x1 and 2x2 partitioning is in-between 95% and 97.5%. Therefore, there 

is almost no partitioning loss for this case and the positioning performances of 2x2 positioning 

are superb for all but the highest percentile errors. The similar behaviour can be observed for 

all other partitioning patterns except partially for 3x3 and 20x20 patterns which produce 

somewhat lower crossing points with 1x1 and, hence, somewhat larger loss areas. Bearing in 

mind the absolute size of the loss areas, it can be concluded that they hardly affect the 

positioning performances apart from the slight increase in the spread of high DEs. Nonetheless, 

the dominant effect is the growth of the gain areas with the increase in the number of 

subspaces. To better illustrate this effect, the CDFs for 1x1, 2x2, 4x4, 10x10 and 20x20 have 

been overlapped in Fig. 5-19. To avoid impairing the readability of the figure, 3x3 and 5x5 

patterns have been omitted. 
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Fig. 5-19 Partitioning gain with the increase in the number of subspaces 

The most substantial gain, from Fig. 5-19, is observed between 1x1 and 2x2 patterns. In other 

words, this presents the greatest absolute difference in overall average DEs (which concurs 

with the data shown in Table 5-XV). Also, further increase in the number of subspaces, 

induces additional enhancement in the positioning performances. 

To better visualize the obtained positioning performances, the actual map with user locations 

and estimated locations, for 1x1, 2x2, 4x4, 10x10 and 20x20 patterns, have been shown in 

Figures 5-20 through 5-24, respectively. The red dashed circle represents the boundaries of the 

model area, the blue circles are the actual user positions whereas the red "x" signs stand for the 

estimated positions. Green lines connecting the actual and estimated user position correspond 

to the positioning DE. To maintain the readability of the figures, only 10% of the total 

verification set was uniformly selected and shown. 
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Fig. 5-20 Positioning with 1x1 partitioning 

 

Fig. 5-21 Positioning with 2x2 partitioning 
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Fig. 5-22 Positioning with 4x4 partitioning 

 

Fig. 5-23 Positioning with 10x10 partitioning 
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Fig. 5-24 Positioning with 20x20 partitioning 

 

 

Fig. 5-25 Transformation of the DE's PDF with space-partitioning in outdoor environment 

Figures 5-20 through 5-24 confirm that the location estimates are getting more precise with the 

additional segmentation of the model area. Starting with 1x1 partitioning, it can be seen that 

the DEs are spread over various values (green lines of various lengths). However, in this case, 

there are no extremely large DEs. Starting with 2x2 pattern shown in Fig. 5-21, the 

differentiation of distance errors can be noticed. Eventually, with 20x20 partitioning shown in 
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Fig. 5-24, there are only a few estimates with extremely large DEs and the vast majority with 

superb accuracy for this type of positioning technique. This behaviour is best observed through 

DE's PDF functions shown in Fig. 5-25 for bordering cases – 1x1 and 20x20 patterns. 

Using the C-C ANN structures increases the overall complexity of the positioning models. The 

complexity parameters of the presented C-C models are given in Table 5-XVI.  

Table 5-XVI Complexity of cascade-connected ANN models for PLMN positioning 

Model 
No. of 

perceptrons 
– Stage I 

No. of 
perceptrons – 

Stage II 

Total no. of 
perceptrons 

Training time 
per epoch – 
Stage I [ms] 

Training time 
per epoch – 

Stage II [ms] 

Training time for 
optimally trained 
model [hours] a 

1x1 - 128 128 - 111.0 6.2 

2x2 55 512 567 18.1 124.0 7.1 

3x3 84 1152 1236 104.7 136.9 10.5 

4x4 124 2048 2172 120.4 158.1 10.5 

5x5 176 3200 3376 160.2 213.0 20.7 

10x10 607 12800 13407 500.7 665.7 64.8 

20x20b 464 9600 10064 462.9 616.0 59.9 
a Models were trained on a single core of the Pentium Dual Core CPU E5200@2.5GHz (60W) with 2GB of RAM, 
b Due to increasing complexity the ANNs were scaled to fit only the subspaces that contained measurement locations (75 for 20x20) 

 

From Table 5-XVI, it can be seen that the number of perceptrons in both the first stage and the 

second stage of the model are rising with the increase in the number of subspaces. The first 

stage networks (type 2) are growing due to the increase in the number of subspaces whereas 

the second stage networks (type 1) remain of the same size, however, their number is 

increasing. Interestingly, although the number of perceptrons is growing much faster in the 

second stage, the (stage) training times per epoch remain comparable. This is due to the fact 

that each network in the second stage is trained with only a subset intended for its subspace. 

Consequently, the overall training time for the entire C-C ANN structure is increasing linearly 

with respect to the increase in the number of subspaces. The exception is made with 20x20 

model, where the experiment to increase the efficiency was carried out. Being that, with the 

increase in the number of subspaces, the size of subspaces is getting smaller, there are more 

and more subspaces with no measured locations within (e.g. all the measurements from a 

subspace have been dispatched to the models for other sites). The 20x20 model, was sized 

according to the number of subspaces containing training data (measurements). As there are 

only 75 subspaces with measurements, this model appears even less complex than 10x10 

model. The down side of this rationalization is the loss of generalisation – the model cannot 

estimate the position of a user to all of the subspaces (only the ones containing measurements). 

As this case (position estimation in a subspace with no training data) was not even tested, this 

rationalisation did not affect the accuracy performances, merely the complexity.  
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5.4 Comparison 
If the positioning techniques are required to have the outdoor availability, usually satellite- and 

cellular-based positioning techniques are considered. The first group has superior accuracy but 

comes with a few drawbacks of their own. High impact on the handset (due to increased energy 

consumption and price) and questionable indoor availability are the two major ones (military 

owned infrastructure should not be neglected either). Although there are efforts in mitigating 

these issues there is still an apparent need for positioning system that would be able to provide 

both remarkable accuracy and indoor availability. 

By using the available information in signals from PLMN, the user can be located two-folded: 

by timing measurements (e.g. TA, RTT, TDOA) and signal strength, phase and delay profile 

measurements (e.g. RSS and AOA). Overview of the several PLMN standardized positioning 

solutions was presented and their draft accuracy performance comparison is shown in Table 

5-XVII.  

Table 5-XVII Location error for standardized PLMN positioning techniques [5.13] 

Positioning 
Technique 

Location error interval 
[m] 

Cell-ID 100-1000 

Cell-ID+TA - 

AOA >125 

E-OTD 50-150 

TOA 85-100 

A-GPS 30-100 

 

Each of the techniques presented in Table 5-XVII has its own downside. Although fairly 

simple to implement, Cell-ID technique has the unsatisfactory accuracy performance (as well 

as Cell-ID + TA in most cases). AOA and E-OTD techniques offer somewhat better accuracy 

but incur significant implementation costs. As for the A-GPS, several flaws inherent from GPS 

are still present. The research community has offered improvements to these positioning 

techniques5 and they are, along with the positioning models presented in this work, mutually 

compared in Table 5-XVIII. 

 

 

                                                 
5 The accuracy performances of techniques other than the ECIDTA, single ANN and C-C ANN models were 
copied from the respective publications. 



 

139 

 

Table 5-XVIII Comparative analysis of PLMN positioning models 
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Statistical Modelling Approach [5.14] 279 237 320 620 - 

Genetic Algorithm [5.15] 324 - 450b - U 

RSS DCM [5.16] 371 - 483 - R 

RTT+PDP RSS [5.17] - 15 25 135 U 

RTT SC [5.18] - 15 20 115 U 

E-CIDTA 130 105 135 245 U 

Single ANN – M12 59 50 68 137 U 

Single ANN – M12 indoor 105 101 107 158 I 

C-C ANNs 1x1 82 72 90 177 U 

C-C ANNs 20x20 26 2 4 168 U 
a U – Urban, R – Residential, I – Indoor 
b 450m with 72% confidence 

 

The performances of statistical modelling and genetic algorithm approaches are unsatisfactory 

for most of the LBSs. Basically, they are somewhat better than basic Cell-ID positioning 

technique with the additional drawback, in case of genetic algorithm model, of high latency (7s 

computational time which further narrows the set of LBSs this technique might serve). The 

only worse performances are recorded with RSS DCM technique. With this technique the 

database was filled with simulated RSS values (obtained through propagation modelling) while 

the model was tested with the actual RSS measurements. The poor performances this technique 

exhibits might be an indicator for the lack of credibility of positioning techniques whose 

positioning performances are verified only by the computer simulations such as RTT SC and 

RTT+PDP RSS positioning techniques. Indeed, these two models display excellent accuracy 

with 15m median DE. Nonetheless, such accuracy was obtained only in simulations and has 

not been endorsed by the actual measurements. Moreover, the RTT SC deals with the selection 

of the three optimal RTT values whereas the actual UMTS signalling do not procure more than 

one RTT parameter for the most of the time (especially in residential and rural environments). 

Also, many UMTS networks do not even use the RTT parameter. Similar problem has to be 

resolved in order for the E-CIDTA positioning technique to be implemented. This technique, 

although offering fair positioning accuracy, uses as many TA parameters as there are radio 

visible BSs and, therefore, cannot be implemented without the changes in signalling. On the 

other hand, E-CIDTA shows improvement in performances with the increase in the redundant 

(more than three) TA values used. This raises the question whether the subset of three 

optimally selected RTT values (which is the main contribution of RTT SC technique) would 
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yield more location dependant information than the whole set. However, to follow upon this 

discussion would lead outside the scope of this work. 

Regarding the RSS based PLMN techniques introduced in this work, the single ANN M12 (all 

available signals from both operators) shows the maximal achievement of a single ANN model 

which uses all available signals from multiple PLMN systems. The degradation of 

performances for indoor positioning is shown with the M12 indoor model. Both of these 

models display fair accuracy performances and the changes needed for their implementation 

can be regarded as software and signalling changes. On the other hand, the performances of C-

C ANNs 1x1 model (which is still a single ANN model) can be regarded as the performances 

obtainable by a single ANN within the existing GSM system. Finally, using the same database 

as 1x1 model, the CC ANN models shows good positioning performances and clearly display 

the benefit of using the space-partitioning. The accuracy gain is the greatest at lower percentile 

DEs, and fades with high percentile DE (e.g. 95th percentile DE of 1x1 – 177m vs. 168m with 

20x20 model). Small latency is a good property of ANN based positioning models. However, 

rapidly increasing volume of the ANN structures with the increase in the number of subspaces 

and, consequently, high training times might present an down side for PLMN C-C ANN 

models. The complexity of these structures might be an especially degrading property with the 

large areas (with numerous sites) covered by the PLMN network. On the other side, these 

models can be successfully employed in cases where high precision is required on a subset of 

the environment (e.g. positioning of bus and cab vehicles). Bearing in mind the algorithm 

which assigns the appropriate positioning model (for each site), the slight mitigation of the 

complexity problem might be found in the fact that the models for each site can be trained and 

processed independently, enabling the positioning to be introduced gradually. 

Also, it should be noted that, due to the potentially "boundless" coverage areas of PLMN (i.e. 

test-bed), the manner of implementation of the positioning algorithms is different to the one 

shown in WLAN. Hence, the environmental positioning error parameter is not easily 

applicable for PLMN models. 

When comparing the results of space-partitioning in PLMN against the results obtained in 

WLAN environment, the partitioning gain is much more emphasized with outdoor positioning. 

This is most noticeable through the decrease in the average DE which was 10-15% within 

WLAN environment and goes up to four times in PLMN environment (partitioning gain is 

much greater than loss, i.e. almost no partitioning losses). The decrease in the median DE is 

also more noticeable in PLMN outdoor environment. The attained 1.8m median DE with 

20x20 pattern is very good. However, some justifications for such performances can be 

offered. First of all, there are as much as 32 reference transmitters as MIs in PLMN C-C ANN 
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models, whereas there are only 8 with WLAN. Then, the radio visibility of these reference 

transmitters is much higher in PLMN than in WLAN environment which generates more 

location dependent fingerprints. These two facts cause the probability of correct subspace 

estimation to be better in the PLMN positioning case. In other words, there is a smaller number 

of estimates with wrongly determined subspace, i.e. extremely large DEs. Consequently, the 

partitioning loss areas are diminishing. Ergo, the average DE in outdoor positioning is 

decreasing significantly. Then, the scanner and equipment used for measurement were of 

notable capabilities. Basically, the whole GSM and DCS spectrums were scanned at a rate 

close to 1Hz6. In other words, new measurement for each channel was available every second. 

Due to the high spatial density of the measurements, the locations that lay on the paths covered 

by the measurements are accurately estimated. However, it might be the case that this way the 

generalisation capabilities of the C-C ANN structure have been impaired and that the 

localization requests made from outside the measuring paths would have notably worse 

accuracy. Further tests should prove or dispute the previous hypothesis. On the other hand, the 

benefit of using the C-C ANN structures against a single ANN was undoubtedly shown. 

Having the statistically same training and verification subsets, the C-C ANN have shown 

significantly better performances.   

Finally, there is an aspect of outdoor positioning that has not been explored completely. The 

performances in WLAN indoor environment have been proven to first improve with the 

increase in the number of subspaces. With the final increase in the number of subspaces, those 

performances enter saturation (or even worsen slightly). In other words, the optimal number of 

subspaces in terms of accuracy was observed. The same behaviour, although anticipated, was 

not proven in outdoor PLMN positioning. Most likely, if the tests with even greater number of 

subspaces were conducted in PLMN this phenomenon would be recorded. However, due to the 

complexity of the C-C ANN models with higher number of subspaces and the time needed to 

train them, further tests were omitted. This matter may also be looked the other way around. 

Bearing in mind the greater RPs density within PLMN than WLAN environment, a valid 

assumption might be that the greater density of RPs increases the optimal number of subspaces. 

However, this premise shall be the object of further research. 

                                                 
6 It can be expected that, in the proximate future, the mobile terminals of comparable hardware capabilities will be 
made available.  
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6 Conclusion 

6.1 Thesis Summary 
This work tackles the problem of positioning in contemporary mobile communication systems. 

Development and verification of a positioning model in mobile communication systems often 

presents a complex task. Besides the satisfying accuracy, planning the positioning service 

ought to consider an extensive set of performance parameters such as: 

 Required latency for the defined set of costumer services, 

 Coverage, 

 Scalability, 

 Flexibility (the technique's openness for future enhancements),  

 Availability, and  

 The costs. 

If the implementation costs of a positioning service are discussed, the implemented 

infrastructure support for other services except positioning (e.g. voice or data transport) ought 

to be taken into account. In other words, there are communication systems where positioning 

services present additional – value added services. Such is the case with both radio 

environments discussed in this work – WLAN and PLMN. Positioning techniques 

implemented in these mobile environments have substantial advantage in terms of 

implementation costs over most other positioning systems. 

Within the WLAN environment, statistical and especially fingerprinting techniques have 

shown better accuracy performances than techniques using the propagation modelling 

approach. According to the previous studies, the average DE (Distance Error) with propagation 

modelling approach is above 3m whereas the fingerprinting techniques attain under 2m 

average DE. It should be pointed out that the other performance parameters (i.e. costs, 

scalability, flexibility, time needed to collect the fingerprinting database, etc.) were usually 

disregarded. Consequently, the shown accuracy performances ought to be regarded as the best 

case scenario or potentially achievable. 
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Considering the other available WLAN techniques, the ANNs as positioning algorithm, offer 

most preferable ratio between the accuracy and the time spent in model development (i.e. 

adopting the model to the propagation environment). Also the availability of ANN positioning 

is preferable, since these models do not insist upon three radio-visible APs. 

This work compiles a number of new positioning models. All models (apart from one: E-

CIDTA model) have been implemented with the use of ANNs. The analysis of existent ANN 

structures showed that the multilayer feedforward ANNs are preferable for positioning using 

the RSS information. The ANN model replaces the traditional electric field level estimation 

and subsequent estimation procedures (e.g. trilateration). The ANN as a positioning model 

successfully overcomes some of the flaws of the other techniques (e.g. detailed environment 

layout knowledge needed for propagation modelling approaches). The implementation does not 

require a large database of fingerprints (comparing to other models) and the detailed 

knowledge of the environment is not called for. 

Two comprehensive measurement campaigns in a carefully selected WLAN environment were 

conducted. The first one comprised 433 RPs (Referent Points) where the measurements were 

carried in only one receiver orientation. The second campaign consisted of 403 RPs where in 

each RP the measurements were taken in four orthogonal receiver orientations. 

The analysis of the ANN training process has been performed on WLAN positioning models in 

terms of maximizing the performances of presented models. The training lengths ranged from 

100 to 500,000 epochs. The obtained WLAN models were compared to the other well-known 

indoor positioning models regarding the accuracy, availability, latency, feasibility in already 

deployed WLAN environments and implementation costs.  

It has been shown that the single ANN approach presents a good choice for the positioning 

technique in already deployed WLAN networks that can readily respond to the requirements of 

a broad scope of LBSs. Its normalized accuracy as well as latency are amongst the best 

compared to other WLAN positioning techniques. The obtained average and median DEs with 

single ANN approach were 9.26m and 7.75m, respectively. Moreover, the model that uses 

cascade-connected (C-C) ANNs and space-partitioning has shown considerable advantages 

regarding, not only to the single ANN approaches, but also to the other known techniques 

which are well documented in the literature. Optimal space-partitioning increases the 

technique’s accuracy in terms of the median and average absolute position errors – the median 

DE was reduced to 4.57m, whereas the average DE decreased to 8.14m. When comparing to 

the single ANN model with no space-partitioning, in a x24 space partitioned positioning with 

ANNs, the average absolute positioning error was reduced by 12%, while the median error was 

reduced by as much as 41%. The research had also shown that further increase in the number 
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of subspaces cease to benefit the positioning performances. Ergo, the optimal number of 

subspaces, 24, was recorded. 

No rising issues with the C-C ANN models' scalability or latency were found. The latency with 

this approach is only slightly higher than for the single ANN approach. The single ANN 

approach is known to be very good in terms of latency – as pointed out before. As for the 

scalability, when the network infrastructure is expanded, the proposed technique does not 

require the complete fingerprinting database to be recollected, thus proving this technique to be 

reasonably scalable. 

In addition, the extensive experimental analysis of RSSI, SNR and Noise level parameters 

usefulness for WLAN positioning purposes was conducted. Four ANN models with RSSI, 

SNR, Noise and RSSI & SNR parameters as inputs were tested. Analysis had shown that, 

contrary to the common knowledge, SNR parameter is equally suitable for WLAN positioning 

purposes as RSSI parameter – the models with RSSI, SNR and RSSI & SNR had almost 

identical positioning performances. In addition, as expected, the obtained results pointed out 

that the space distribution of the noise level parameter contains less location dependant 

information than RSSI or SNR. 

The positioning in PLMN environment was also scrutinised. The behaviour of GSM’s timing 

advance parameter was modelled and new E-CIDTA positioning technique that make use of 

TA models was presented. This mathematical model yielded 135m accuracy with 67% 

confidence. 

The main efforts regarding the PLMN positioning were carried with the ANN models. Actual 

measurements obtained through an extensive measurement campaign, carried on more than 

1,000,000 locations in Belgrade, were used to train and validate the presented models. The 

training lengths spanned 100 to 500,000 epochs.  

Twenty-two models based on a single ANN architecture, using the RSS parameters for 

localization purposes were presented and scrutinised. The use of RSS parameters originating 

from one or more PLMN systems belonging to one or more network operators were 

considered. The single ANN models were employing RSS parameters from GSM, DCS, and 

UMTS systems, as well as their combinations. Single ANN models were verified on three 

different cell sites in light urban to urban environment. 

The results undoubtedly demonstrated an initial increase in the accuracy of the models with an 

increase in the number of MIs (Model Inputs). This is best noticeable by observing the average 

DE of M1 model (seven GSM RSS values from one network operator) against the average DE 

of M8 (all available GSM signals from both network operators). The average DEs of the two 

models are 175m and 92m, respectively. A further increase in the number of MIs tends to 



 

147 

 

reduce dominantly the maximal positioning error (high-percentile DE) which can be seen from 

Table 5-VII. Another interesting effect was observed. Having the same number of MIs 

originating from a larger number of different physical BTS locations has a positive effect on 

positioning performances. This indicates that radio sources from an additional location can 

procure more location dependent information than the sources that collocate with previously 

used inputs. The aforementioned hypothesis can be deduced from M6 model (7 GSM inputs 

from MTS operator and 7 DCS inputs from VIP operator) outperforming the M4 model (7 

GSM and 7 DCS inputs, all from MTS operator). Although both models have 14 RSS inputs, 

M4 model obtains its inputs from fewer BTS sites and achieves 90m median error whereas M6 

model attains 86m median error. 

The most inclusive models implemented in all three tested cell sites achieved less than 50m 

median DE and less then 70m DE in 67%. Bearing in mind that the models used solely RSS 

parameters, which are readily available in already deployed networks, this result becomes even 

more significant. Moreover, these models, with the use of an overloaded tracking algorithm 

and map matching feature, could be used for a broad range of LBS.  

The obtained results were compared to other relevant PLMN positioning techniques. They 

overperformed all but the two models, RTT+PDP RSS [6.1] and RTT SC [6.2], that were based 

on timing measurements and, foremost, were not verified with actual RSS measurements but 

with computer simulation only. 

The degradation of performances when the models are used in an indoor environment has also 

been investigated. The median error of 101m was attained. If one takes into account the fact 

that the models were trained with the measurements performed outdoors, this presents a fair 

result.  

A slight drawback of the presented positioning models might be the additional signalling 

required to deliver all available RIs (Reference Inputs) to the network as well as the 

considerable setup time for a high-density network. On the other hand, the latency of the 

presented models ought to be negligible.  

Finally, the additional 7 models employing the C-C ANN structures and different space-

partitioning patterns were tried for PLMN positioning. The effect of using the space-

partitioning was similar in both the WLAN and PLMN environments whereas the extent of 

benefits from using the space-partitioning was much greater in case of PLMN environment. 

The 1x1 model showed the fair performances that can be attained with a single ANN and the 

existing GSM infrastructure and signalling. Using the same signals (and the database of 

fingerprints) the new C-C ANN models improve in their accuracy with the increase in the 

number of subspaces. The model with most subspaces, 20x20 model, achieves better accuracy 
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performance comparing to all other cellular-based solutions. Namely, the median DE of only 

2m was achieved. Moreover, the latency of these models is only slightly increased. With the 

ever increasing computer processing power, even the complexity of C-C models with a large 

number of subspaces, considered as a downside, should not present a significant drawback.  

6.2 Contributions of the Thesis 
The proposed multilayer feedforward ANNs have shown good positioning performances in 

both WLAN and PLMN environments, even with low RPs density. Single ANN models were 

thoroughly explored in terms of optimal training lengths, variable input number and type. The 

performances of all the models were validated through the use of extensive measurement 

campaigns. 

 Several new performance evaluation parameters that ought to enable the indoor 

positioning techniques to be compared and classified in a more comprehensive and 

inclusive manner were proposed. These parameters take into account the accuracy, size 

of the environment, and the density of the infrastructure. Most importantly, the 

environmental positioning error parameter ought to enable positioning techniques to be 

compared inclusive of the size of their test bed, which was seldom the case before. The 

proposed performance parameters contribute to more broad scrutiny of the indoor 

positioning techniques. 

 The extensive experimental analysis of RSSI, SNR and Noise level parameters 

usefulness for WLAN positioning purposes had shown that, contrary to the common 

knowledge, SNR parameter is equally suitable for WLAN positioning purposes as RSSI 

parameter.  

 Regarding the PLMN positioning, the devised positioning algorithm, suitable to use 

with the ANNs, benefits from using the RSSI values from multiple systems, belonging 

to multiple operators. Moreover, the PLMN models were tested indoors and the 

degradation of accuracy performances, due to cross-environment model use, was 

reported. 

 Foremost, this work brought the space-partitioning into positioning. The principle 

enables to dismantle the positioning process into two stages and solve each stage 

independently with the most suitable model. Moreover, the C-C ANN based models 

suitable for use with space-partitioning were proposed. This positioning solution 

enhances the accuracy performance parameters: the average and median error are 

reduced whereas the high percentile DEs are more or less unchanged. It ought to be 
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pointed out that the transformation of the DE distribution function is favourable for the 

use of overlaid tracking algorithms that would filter-out high distance errors and 

additionally improve the positioning performances. If the space-partitioning principle is 

implemented through the use of C-C ANNs, the latency of these models is very good, 

the scalability is fair, whereas the complexity when partitioning to a large number of 

subspaces might present a slight negative side. 

6.3 Future Work 
All valid research efforts end up pointing to more directions than there were at the beginning of 

the research. That is also the case with this work. There are many ideas for the further 

improvement.  

The space-partitioning patterns might be adopted to make use of the user’s behaviour. That is, 

the subspace boundaries could be made to cross over the areas where the user is less likely to 

be, thus increasing the probability of correct subspace detection and, consequently, improving 

the positioning performance. Furthermore, bearing in mind the transformation of DE's PDF 

induced by space-partitioning (the DEs are being divided into two groups – small and large, 

while the medium DEs are less likely to occur), decision making by majority voting (e.g. two-

out-of-three decision making) could be applied to the first stage of the C-C structure in order to 

reduce the probability of extremely large DEs. 

On a more formal side, it might be worth to mathematically express and justify the gain 

obtained by using space-partitioning starting from the theory of information. However, this 

does not present an easy and straightforward mission. 

Further research would evaluate the performances of presented structures against the varying 

density of RPs. The greater density of RPs should invoke larger optimal number of subspaces 

and, probably, additional benefit from space-partitioning.  

Regarding the PLMN ANN models, they could be enriched with system timing parameters 

such as TA and/or RTT (where available). Another direction might be to add the power delay 

profile to the fingerprint database. Both the timing and the power delay profile are location 

dependent information and should improve the overall positioning performances.  
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