
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Design Methodology for Rich Web-based Applications

Dissanayake, N.R.

This is a PhD thesis awarded by the University of Westminster.

© Mr Dissanayake Mudiyanselage Dissanayake, 2024.

https://doi.org/10.34737/ww439

The WestminsterResearch online digital archive at the University of Westminster aims to

make the research output of the University available to a wider audience. Copyright and

Moral Rights remain with the authors and/or copyright owners.

https://doi.org/10.34737/ww439

Design Methodology
for

Rich Web-based Applications

By

Dissanayake Mudiyanselage Nalaka Ruwan Dissanayake

Doctor of Philosophy

July 2024

School of Computer Science and Engineering

i

Abstract

Rich web-based applications (RiWAs), like Facebook or Google apps, improve user experience over

regular web applications with rich GUIs similar to desktop applications and the advanced delta-

communication model (DC) to communicate faster with the server-side and update the current GUI

without loading a new one. The RiWAs development tools, like libraries and frameworks, have

evolved over the last two decades; however, conceptual artefacts like design patterns and design

methods/methodologies have not evolved to cater to the RiWAs’ specificity.

The Unified Modelling Language (UML) is the de facto standard General-Purpose Modelling

Language (GPML). There are UML-based or UML-like designing languages available, like Arc42,

SAP’s TAM and OOA/OOM, ArchiMate, and SysML, where some, like the C4 model, UWE, IFML,

and IAML are explicitly focusing on web applications. These available languages do not address

modelling all the aspects of RiWAs and exclude features like distribution of the business logic and

the Application elements to the tiers and platforms, details of the processing components such as

controllers, and communication granularity, including DC-related processing.

This conceptual research is scoped for browser-based 3-tier RiWAs and focuses more on structural

designing, aligning with the Rich Web-based Applications Architectural style (RiWAArch style).

Real-world use cases demonstrate the use and adoption of the introduced design methodology. The

design methodology is evaluated by triangulating the results of formal methods: a self-evaluation

utilising the use cases as proof of concept, a contextualised comparison, and domain experts’

evaluation.

The following are contributions of the research. A process for implementing a new design

methodology is formulated, which can assist similar research. The study identifies the requirements

for a Domain-Specific Modelling Language (DSML) for RiWAs and introduces a UML extension

with new models, model-elements, and UML profiles. The new DSML introduces a new labelling

format for the model-elements to include more details consistently to improve the designs’ usability.

Rules and guidelines for using the new language in RiWAs design and development are also

provided. Then, this research contributes a design methodology that discusses RiWAs’ design and

engineering approaches based on the introduced DSML and also provides guidelines for integrating

the RiWAs' design activities into an agile environment. The presented design methodology with the

new DSML delivers a simple and adoptable solution (covering the aspects of comprehensiveness,

learnability, readability/understandability, development support, and integrability) for the domain of

RiWAs.

ii

Publications

Publications Related to the Design Method/Methodology for RiWAs

1. Nalaka R. Dissanayake and Alexander Bolotov, "Applications Model: A High-level Design

Model for Rich Web-based Applications," 19th International Conference on Evaluation of

Novel Approaches to Software Engineering - ENASE 2024, 2024, 28-29 April, 2024, Angers,

France.

Publication Related to the RiWAs and the RiWAArch Style

2. Dissanayake N. R., Dias G.K.A. (2021) “RiWAArch Style: An Architectural Style for Rich

Web-Based Applications”. In: Arai K., Kapoor S., Bhatia R. (eds) Proceedings of the Future

Technologies Conference (FTC) 2020, Volume 3. FTC 2020. Advances in Intelligent Systems

and Computing, vol 1290. Springer, Cham. https://doi.org/10.1007/978-3-030-63092-8_20

3. Nalaka R. Dissanayake and G. K. A. Dias, "Rich Web-based Applications: An Umbrella

Term with a Definition and Taxonomies for Development Techniques and Technologies,"

International Journal of Future Computer and Communication, vol. 7, no. 1, pp. 14-20, 2018,

https://doi.org/10.18178/ijfcc.2018.7.1.513

4. Nalaka R. Dissanayake and G. K. A. Dias, “Delta-Communication: The Power of the Rich

Internet Applications”, International Journal of Future Computer and Communication, vol.

6, No. 2, 2017, https://doi.org/10.18178/ijfcc.2017.6.2.484

iii

Table of Content

Abstract ... i

Publications .. ii

Table of Content .. iii

List of Figures.. viii

List of Tables .. xii

List of Abbreviations ... xiii

Acknowledgement ..xiv

Chapter 1. Introduction ..1

1.1. Background ..1

1.2. Problem and Motivation ...3

1.2.1. Design Method/Methodology for RiWAs ..3

1.2.2. Quality Attributes Focused by the Research Problem...4

1.2.3. Summary of the Literature Review ..6

1.3. Research Aim and Hypothesis ..7

1.4. Research Objectives..8

1.5. Methodology ..9

1.5.1. Research Type and Framework ...9

1.5.2. Research Scope ... 12

1.5.3. Implementation of the Proposed Design Methodology ... 13

1.5.4. Demonstrating the Adoption of the RiWAsML/RiWAsDM 18

1.5.5. Evaluation... 19

1.6. The Solution and Research Contributions.. 23

1.7. Structure of the Thesis .. 23

Chapter 2. Background .. 25

2.1. Related Software Engineering Concepts .. 25

2.1.1. Software Engineering Methods ... 25

2.1.2. Software Engineering Methodology .. 26

2.1.3. Software Engineering Approaches... 27

2.2. Software Design Methodologies and Methods... 29

2.2.1. Software Design Methodologies .. 29

2.2.2. Software Design Process ... 30

2.2.3. Software Design Approaches .. 32

2.2.4. Software Modelling Languages ... 33

Table of Content

iv

2.3. Rich Web-based Applications ... 37

2.3.1. Standalone Systems vs Distributed Systems .. 38

2.3.2. Web-based Applications vs Rich Internet Applications vs Rich Web-based
Applications ... 38

2.3.3. Delta-Communication ... 39

2.3.4. Types of Rich Web-based Applications ... 41

2.3.5. General Characteristics and Essential Features of RiWAs 41

2.3.6. Rich Web-based Applications Engineering .. 44

2.4. Chapter Summary ... 45

Chapter 3. Review of Available Related Solutions.. 46

3.1. Architectural Styles for RiWAs... 46

3.1.1. SPIAR: A Component and Push-based Architectural Style for AJAX Applications
(2008) [108] ... 46

3.1.2. jAGA: jQuery-based Ajax General Interactive Architecture (2012) [109] 47

3.1.3. RiWAArch Style: Rich Web-based Applications Architectural Style (2020) [12]... 47

3.1.4. Summary of the Available Architectural Styles Review ... 48

3.2. High-level Design Methods/Methodologies .. 49

3.2.1. Informal Box-and-Line Drawing ... 49

3.2.2. Formal Architectural Description Languages ... 50

3.2.3. UML-based/UML-like Design Methods/Methodologies .. 53

3.2.4. Summary of the Available High-level Design Methods/Methodologies Review 60

3.3. Low-level Design Methods/Methodologies ... 61

3.3.1. UWE (version 3.0, 2016) [23] and UWE-R (2009) [123] 61

3.3.2. WebML [107] and IFML (version 1.0, 2015) [124] ... 63

3.3.3. SysML (Version 2.0 Beta 1, 2023) [126] [127] [128]... 63

3.3.4. Summary of the Low-level Design Methods Review ... 64

3.4. Research Work Related to RiWAs Designing.. 65

3.5. Chapter Summary: The Analysis of the Literature Review .. 70

Chapter 4. Requirements for RiWAsML and RiWAsDM ... 71

4.1. Attributes Required to be Satisfied by the RiWAsDM ... 71

4.1.1. Attr 1. Simplicity .. 71

4.1.2. Attr 2. Adoptability ... 72

4.2. Requirements for Common Model-elements of RiWAs ... 74

4.2.1. R1 – Model-elements Naming Label ... 74

4.2.2. R2 – Communication Channels in RiWAs ... 76

4.3. Requirements for High-level Design of RiWAs... 78

Table of Content

v

4.3.1. R3 – High-level Processing Elements of RiWAs ... 78

4.3.2. R4 – High-level Views Element .. 84

4.3.3. R5 – Additional High-level Elements .. 85

4.3.4. R6 – High-level Design Models .. 85

4.4. Requirements for Low-level Design of RiWAs ... 86

4.4.1. R7 – Low-level Modelling of Views ... 87

4.4.2. R8 – Low-level Modelling of Components .. 90

4.4.3. R9 – Low-level Modelling of Connectors .. 92

4.4.4. R10 – Low-level Design Models for RiWAs ... 93

4.5. Chapter Summary ... 97

Chapter 5. RiWAsML: High-level Modelling Language ... 98

5.1. Notations for General Model-elements of RiWAs ... 98

5.1.1. R1 – Elements Label Notation ... 98

5.1.2. R2 – Communication Channels Notations ... 99

5.2. Notations for High-level Model-elements of RiWAs ... 101

5.2.1. R3 – Notation for Tier Element ... 101

5.2.2. R3 – Notation for Platform Element .. 102

5.2.3. R3 – Notation for Application Element ... 105

5.2.4. R3 – Notations for Components .. 106

5.2.5. R3 – Notation for Connectors .. 108

5.2.6. R4 – Notation for Views ... 108

5.2.7. R5 – Notation for Additional High-level Elements .. 109

5.3. R6 – High-level Design Models and UML Profiles for the RiWAsML 110

5.3.1. Profile for Label Element .. 111

5.3.2. Profile for Communication Channels ... 112

5.3.3. Level 1 Applications Model .. 113

5.3.4. Level 2 View-Process Model .. 116

5.3.5. Level 1+2 Architectural Model ... 117

5.4. Chapter Summary ... 119

Chapter 6. RiWAsML: Low-level Modelling Language ... 120

6.1. Notations for Low-level Model-elements of RiWAs.. 120

6.1.1. R7 – Notations for Low-level Views and Related Elements 120

6.1.2. R8 – Notations for Low-level AppControllers and Related Elements 133

6.1.3. R8 – Notations for Low-level AppModel and Related Elements 141

6.1.4. R9 – Notations for Low-level Connectors and Related Elements 143

6.2. R10 – Low-level Design Models and UML Profiles for the RiWAsML 145

Table of Content

vi

6.2.1. View-Navigation Model .. 145

6.2.2. View Model .. 146

6.2.3. AppControllers Model and ControllerClass Model .. 147

6.2.4. AppModel Model and ModelClass Model ... 149

6.2.5. DC-bus Model and EndpointsCollection Model... 149

6.2.6. View-Controller Model ... 150

6.2.7. View-Process Sequence Model ... 151

6.3. Chapter Summary ... 152

Chapter 7. Rich Web-based Applications Design Methodology .. 154

7.1. Introduction to the RiWAsDM .. 154

7.2. RiWAsML Architecture, Language Reference, and Rules and Guidelines 155

7.2.1. RiWAsML Architecture .. 155

7.2.2. RiWAsML Language Reference.. 157

7.2.3. Rules and Guidelines for Designing RiWAs with RiWAsML 163

7.3. The RiWAsDM Process .. 168

7.3.1. RiWAs Design Approach with RiWAsDM.. 169

7.3.2. RiWAs Engineering Approach with RiWAsDM .. 169

7.3.3. Guidelines for Adopting RiWAsML-based Designing into Agile Environments .. 169

7.4. Chapter Summary ... 171

Chapter 8. Use Cases ... 172

8.1. High-level Design Attributes of the RiWAsML... 172

8.1.1. Shopping System: Improve Simplicity and Readability with Tiers 172

8.1.2. Book Club App: UML Node vs RiWAsML Platform .. 176

8.1.3. MiCADO-Edge – A Cloud-to-Edge Computing Architecture [180] 177

8.2. Learning Management System .. 180

8.2.1. LMS – The Use Case Diagram .. 180

8.2.2. LMS – High-level Design ... 181

8.3. Learning Management System With a Web Service .. 184

8.3.1. LMS with a Web Service – High-level Design .. 184

8.3.2. LMS with a Web Service – Low-level Design ... 185

8.4. Chapter Summary ... 193

Chapter 9. Evaluation... 194

9.1. Self-Evaluation ... 194

9.2. Contextualised Comparisons ... 202

9.3. Expert Evaluation ... 208

9.4. Triangulating the Results .. 210

Table of Content

vii

9.5. Chapter Summary ... 210

Chapter 10. Conclusion .. 212

10.1. Achievements of Research Aim and Objectives... 212

10.1.1. Achievements of the Objectives .. 212

10.1.2. Proving the Hypotheses ... 213

10.1.3. Fulfilment of the Research Aim... 213

10.2. Contributions .. 214

10.3. Reflections on Challenges ... 216

10.4. Limitations ... 217

10.5. Future Work ... 218

10.6. Chapter Summary ... 219

References ... 220

Appendices .. I

Appendix A. Example: Shopping App – Level 1+2 Architecture Diagram (large) I

Appendix B. Use Cases: High-level Designing with RiWAsML ... I

Appendix B.1. Shopping System – Original Architecture Without Using Tiers (large) I

Appendix B.2. Shopping System – Architecture With Tiers (large) .. II

Appendix B.3. Shopping System – Level 1 Applications Diagram (large) III

Appendix B.4. MiCADO-Edge [180] Architecture drawn using the RiWAsML IV

Appendix C. Use Case: Learning Management System (LMS) .. V

Appendix C.1. Use Case: LMS – Use Case Descriptions ... V

Appendix C.2. Use Case: LMS – Architecture (large) .. VIII

Appendix C.3. Use Case: LMS with Web Service – Architecture (large).............................. IX

Appendix C.4. Use Case: LMS – View-Navigation Diagram (large) X

Appendix D. Expert Evaluation ... XI

Appendix D.1. Expert Evaluation Form ... XI

Appendix D.2. Expert 1 Feedback ... XXXVIII

Appendix D.3. Expert 2 Feedback ... L

Appendix D.4. Expert 3 Feedback ... LIX

Glossary ... LXVII

viii

List of Figures

Figure 1.1 SERM framework [31] .. 10

Figure 1.2 DSML implementation process by Ulrich Frank [17] ... 14

Figure 1.3 The hybrid modelling language process model used in the development of IAML [42] 15

Figure 1.4 RiWAsDM implementation process .. 16

Figure 1.5 Micro Process ‘Evaluation and Revision’ of DSML [17] ... 19

Figure 2.1 Software engineering approaches .. 28

Figure 2.2 OMG’s meta-model hierarchy [86] .. 35

Figure 2.3 Example of core elements of UML profile diagram [95] .. 37

Figure 2.4 Taxonomy for the development techniques and technologies of DC [10] 40

Figure 2.5 Taxonomy for the client-component(s) of RiWAs [11] .. 41

Figure 3.1 The Rich Web-based Applications Architectural style (RiWAArch style) [12] 48

Figure 3.2 The list of UML diagrams [119] .. 54

Figure 4.1 Communication channel types between elements in the RiWAArch style 77

Figure 4.2 Processing elements in RiWAs .. 79

Figure 5.1 Proposed notation: communication channels .. 100

Figure 5.2 Proposed notation: communication channel with numbered connectors 100

Figure 5.3 Proposed notation: push-DC .. 101

Figure 5.4 Example: Tier elements ... 102

Figure 5.5 Example: using UML’s nested nodes for platforms [146]... 103

Figure 5.6 Proposed notation: Platform element ... 104

Figure 5.7 Example: nested platforms .. 105

Figure 5.8 Example: Application element ... 106

Figure 5.9 Proposed notation: component element .. 107

Figure 5.10 Example: high-level Controllers and Model components ... 107

Figure 5.11 Example: DC-engine and DC-bus connectors .. 108

Figure 5.12 Proposed notation: Views element (on the left) and an example of the use (on the right)

 .. 109

Figure 5.13 Proposed notation: additional high-level elements.. 109

Figure 5.14 Proposed notation: Notes element .. 110

Figure 5.15 UML meta-model’s labels [119] .. 111

Figure 5.16 UML profile: RiWAsML Label element .. 112

Figure 5.17 UML profile: RiWAsML communication channels .. 113

Figure 5.18 Example: L1 Applications diagram .. 114

Figure 5.19 UML profile: applications model and its elements ... 115

List of Figures

ix

Figure 5.20 Example: View-Process diagrams for the Browser app (left) and Web server app (right)

 .. 116

Figure 5.21 UML profile: view-process model and its elements .. 117

Figure 5.22 Example: shopping app – L1+2 Architectural diagram ... 118

Figure 5.23 UML profile: L1+2 Architecture model ... 118

Figure 6.1 Example: View – a web page... 121

Figure 6.2 Example: View – GUI Input/Output elements .. 122

Figure 6.3 Example: View – nested GUI elements ... 123

Figure 6.4 Example: View – GUI containers/sections ... 124

Figure 6.5 Example: View – GUI popup .. 125

Figure 6.6 Example: View – Viewpart notation for less complex scenarios 126

Figure 6.7 Example: View – Viewpart notation for moderate complex scenarios 127

Figure 6.8 Example: View – Viewpart notation for highly complex scenarios 128

Figure 6.9 Example: View – SharedViewpart ... 129

Figure 6.10 Example: View – SharedViewpart with nested Viewparts for different actors 129

Figure 6.11 Example: Views – menu-based navigation design .. 131

Figure 6.12 Example: views – menu-based navigation design with ViewPackage 132

Figure 6.13 Example: Views – process-based navigation .. 132

Figure 6.14 Proposed notation: ControllerClass element (on the left) and an example use of it (on the

right).. 133

Figure 6.15 Example: View and its ControllerClass – event-trigger notation for a less complex

scenario ... 135

Figure 6.16 Example: View(on the left) and its ControllerClass (on the right) – event-trigger notation

for a complex scenario ... 135

Figure 6.17 Example: View and its ControllerClass – event handler reading data from the view . 136

Figure 6.18 Example: View and its ControllerClass – event handler showing output on the View

 .. 136

Figure 6.19 Example: View and its ControllerClass – event handler showing output on the View –

communication channels with numbered flow connectors... 137

Figure 6.20 Example: View and its ControllerClass – invoking a popup/toggle.......................... 138

Figure 6.21 Example: ControllerClass – communicating with the Client-model 138

Figure 6.22 Example: ControllerClass – communicating with the Client-model – numbered flow

connector notation.. 138

Figure 6.23 Example: ControllerClass – sending a DC request ... 140

Figure 6.24 Example: ControllerClass – DC response handling .. 140

Figure 6.25 Proposed notation: ModelClass.. 141

Figure 6.26 Example: AppModel diagram of a ServerModel .. 142

List of Figures

x

Figure 6.27 Example: ModelClass – communicating with the other elements 142

Figure 6.28 Proposed notation: EndpointsCollection element ... 143

Figure 6.29 Example: EndpointsCollection – communicating with the controller 144

Figure 6.30 Example: EndpointsCollection – communicating with ModelClass 144

Figure 6.31 UML profile: View-Navigation model ... 146

Figure 6.32 UML profile: View model ... 147

Figure 6.33 Example: AppControllers diagram ... 148

Figure 6.34 UML profile: AppControllers model, ControllerClass model, and their elements 148

Figure 6.35 UML profile: AppModel ... 149

Figure 6.36 Example: DC-bus diagram (on the left) and EndpointsCollection diagram (on the right)

 .. 150

Figure 6.37 UML profile: DC-bus model and EndpointsCollection model 150

Figure 6.38 UML profile: View-Controller model .. 151

Figure 6.39 Example: View-Process Sequence diagram .. 151

Figure 6.40 UML profile: View-Process Sequence model... 152

Figure 7.1 RiWAsML architecture ... 155

Figure 7.2 Example: mapping between the RiWAsML’s Packaging layer and development layer

 .. 157

Figure 7.3 RiWAsML diagrams ... 158

Figure 7.4 The scrum framework [176] .. 170

Figure 7.5 The DevOps tool chain [3] .. 170

Figure 7.6 CI-CD life cycle [177] ... 170

Figure 8.1 Use case: shopping system – original architecture .. 173

Figure 8.2 Use case: shopping system – architecture with tiers ... 174

Figure 8.3 Use case: shopping system – Level 1 Applications diagram 175

Figure 8.4 Use case: book club app – platforms designed using UML node elements [179] 176

Figure 8.5 Use case: book club app – platforms designed with RiWAsML 177

Figure 8.6 Use case: MiCADO-Edge – original architecture [180] .. 178

Figure 8.7 Use case: MiCADO-Edge – Architecture drawn using the RiWAsML 179

Figure 8.8 Use case: LMS – use case diagram .. 181

Figure 8.9 Use case: LMS – original box-and-line architecture ... 182

Figure 8.10 Use case: LMS – architecture designed with the RiWAsML 183

Figure 8.11 Use case: LMS with web service – L1+2 Architectural diagram 185

Figure 8.12 Use case: LMS – View-Navigation diagram .. 186

Figure 8.13 Use case: LMS with web service – View-Process Sequence diagram 188

Figure 8.14 Use case: LMS with web service – browse repo View-Controller diagram 189

Figure 8.15 Use case: LMS with web service – DC-bus and an EndpointsCollection diagrams ... 191

List of Figures

xi

Figure 8.16 Use case: LMS with web service – an AppModel diagram 192

Figure 8.17 Use case: LMS with web service – an EndpointsCollection and ModelClass elements in

one diagram ... 192

Figure Appendix A.1 Example: shopping app – level 1+2 architecture (large) I

Figure Appendix B.1 Use case: shopping system – original architecture (large) I

Figure Appendix B.2 Use case: shopping system – architecture with tiers (large).......................... II

Figure Appendix B.3 Use case: shopping system – level 1 applications diagram (large) III

Figure Appendix B.4 Use case: MiCADO-Edge Architecture drawn using the RiWAsML (large) IV

Figure Appendix C.2 Use case: LMS – architecture (large) ... VIII

Figure Appendix C.3 Use case: LMS with web service – architecture (large) IX

Figure Appendix C.4 Use case: LMS – view-navigation diagram (large) X

xii

List of Tables

Table 1.1 Summary of the literature review ..7

Table 1.2 Rating categories of SERM [31] ... 11

Table 1.3 Self-evaluation scale ... 20

Table 1.4 Expert evaluation feedback scale .. 21

Table 2.1 Web applications vs. RiWAs .. 39

Table 3.1 Summary of the architectural styles review ... 49

Table 3.2 Summary of the ADLs review .. 53

Table 3.3 Summary of the UML-based methods/methodologies review .. 59

Table 3.4 Summary of reviews of high-level design methods/methodologies for RiWAs 60

Table 3.5 Summary of low-level design methods review .. 64

Table 3.6 Summary of the review of related solutions .. 70

Table 4.1 Mapping the quality attributes to the requirements .. 97

Table 6.1 A suggested list of shortcodes for GUI elements ... 123

Table 7.1 Models for package and single size of different types of elements 156

Table 7.2 RiWAsML’s general elements and their notations ... 158

Table 7.3 RiWAsML’s high-level diagrams and their notations .. 159

Table 7.4 RiWAsML’s low-level diagrams and their notations ... 161

Table 7.5 RiWAsML’s recommended events handling coding style.. 167

Table 9.1 Evaluation scale (refer to Table 1.2 in Section 1.5.5.2) .. 194

Table 9.2 The analysis of the self-evaluation results ... 195

Table 9.3 The analysis of the contextualised comparison .. 202

Table 9.4 The analysis of the expert evaluation .. 208

Table 9.5 The analysis of the RiWAsDM evaluation .. 210

xiii

List of Abbreviations

ADL – Architecture Description Language

AMDD – Agile Model-Driven Development

ASE – Agile Software Engineering

DC – Delta-Communication

DSML – Domain-Specific Modelling Language

FOMDD – Feature-Oriented Model-Driven Development

GPML – General-Purpose Modelling Language

GUIs – Graphical User Interfaces

IoT – Internet of Things

JS – JavaScript

MBE/MBSE – Model-based Engineering/Model-based Software Engineering

MDE/MDSE – Model-Driven Engineering/Model-Driven Software Engineering

MOF – Meta Object Facility

MVC – Model-View-Controller

OODD – Object-Oriented Design and Development

RIA – Rich Internet Application

RiWA – Rich Web-based Application

RiWAArch style – Rich Web-based Applications Architectural style

RiWAsDM – Rich Web-based Applications Design Methodology

RiWAsML – Rich Web-based Applications Modelling Language

SE – Software Engineering

SDLC – Software Development Life Cycle

SPDC – Simple Pull Delta-Communication

SSAD – Structured System Analysis and Design

TTs – Technologies and Techniques

WS – WebSocket

XMI – XML Metadata Interchange

xiv

Acknowledgement

First, I want to express my gratitude to Prof. Sriyani Wickramasinghe at the Rajarata University of

Sri Lanka for motivating and pushing me to initiate my research life and enter academia.

I’m grateful to my director of studies, Dr Alexandar Bolotov, at the School of Computer Science and

Engineering, University of Westminster, for valuing my previous research work and selecting me as

a candidate for the PhD. Your ultimate support during the entire PhD program is invaluable in all

aspects. I also thank Dr Simon Courtenage for accepting to be my secondary supervisor and for

feedback where necessary.

Also, I’m grateful to the former PhD coordinator, Dr Andrzej Tarczynski, for working with Dr

Alexander to offer me a scholarship; I’ll never forget what you two did to keep the place for me. I

also want to thank the University of Westminster for the offer. I would not be able to start a PhD

without the scholarship.

I want to thank the current PhD coordinator, Dr Alexandra Psarrou, and the other staff members

immensely for the tremendous support provided to convert the mode of the PhD after Covid duration

and for offering me an option to complete the PhD as a full-time resident student; without that option,

I would not be able to complete the PhD.

I must recognise the domain experts who contributed to this thesis by evaluating the research

outcomes. They devoted their valuable effort and time amidst their busy schedules to read the

materials and have deep discussions to accomplish the evaluation based on their expertise.

I have to thank my landlord in London, Mr Athula Badalage, for providing me with a comfortable

environment in which to study without disturbances. Without his caring support, I wouldn’t be able

to manage everything with less stress.

I should thank my friends and colleagues for always motivating me and being there for me while

tolerating my ignorance and mistakes during the heavy workloads. I’m glad you are all around me,

providing a supportive environment.

Last but not least, I’m obliged to my parents, sisters Thushari and Anusha, and brother Surendra; I

know how much this means to you, which drove me to move on till the end, bearing all the

difficulties. Without the sacrifice made by Surendra during the last stage, I wouldn’t have been able

to make the great move to migrate to the UK and finish my PhD.

Thank you to everyone who supported me; by any means, they are all counted.

Nalaka R. Dissanayake (2024)

1

Chapter 1. Introduction

“A designer can mull over complicated designs for months.

Then suddenly, the simple, elegant, beautiful solution occurs to him.

When it happens to you, it feels as if God is talking!

And maybe He is.”

Leo Frankowski [1]

This chapter first briefly discusses the core background concepts of the research in

Section 1.1, laying a foundation. Then, Section 1.2 defines the problem in this

background, and the motivations for addressing the problem are discussed. Section

1.3 sets the research aim and the hypotheses, and Section 1.4 states the research

objectives. After that, Section 1.5 details the methodology used in the research.

Next, the proposed solution and the research contributions are indicated in Section

1.6. Finally, the structure of the thesis is given in Section 1.7.

1.1. Background

This section briefs the core background concepts of the research to provide a foundation for the rest

of the chapter. Chapter 2 includes a complete account of the background research.

Related Software Engineering Concepts

This section gives a summary of the materials detailed in Section 2.1.

Software Engineering (SE) uses methods and methodologies to govern the engineering process. A

SE method is a systematic procedure, concept, or tool that assists in performing a particular type of

work at the global level or within a specific phase to reach a certain goal and/or produce a defined

set of software artefacts [2]. Global methods such as Software Development Life Cycle (SDLC)

models are applied to the entire engineering project, and phase-specific methods like development

methods/tools or testing procedures are utilised within a phase.

SE methodology can be seen as a global framework that governs the engineering project by defining

a set of methods selected for a software engineering project based on specific criteria. These methods

systematically explain how particular tasks are executed within the complete software engineering

project. DevOps [3] and Continuous Integration, Continuous Delivery (CI-CD) [4] are trending SE

methodologies that assist in agile SE (ASE). There are phase/task-specific methodologies, which

mainly pay attention to a specific phase of the SDLC; for example, design methodologies are utilised

in the design phase, which is a type of methodology that overlooks the software designing aspects.

Design methodologies use various methods to design different aspects of software systems; for

example, ER diagrams to model databases and use case diagrams to design requirements. Different

Chapter 1. Introduction

2

SE approaches like Model-Driven Software Engineering (MDSE) and Agile Software Engineering

(ASE) [5] signify design aspects at different levels. However, regardless of the SE approach,

software designing/modelling still plays an important role; thus, software design methods and

methodologies are significantly needful.

Software Design Methodologies and Methods

This section introduces the materials detailed in Section 2.2.

The software design process models different aspects of the software systems, like architecture,

algorithms, and databases [6]. The software design process comprises two levels:

1. High-level/preliminary design (architectural design) is “the process of analyzing design

alternatives and defining the architecture, components, interfaces, and timing and sizing

estimates for a system or component” [6]. Architectural styles offer a framework for

designing system architectures.

2. Low-level/detailed design is “the process of refining and expanding the preliminary design

of a system or component to the extent that the design is sufficiently complete to be

implemented” [6]. The Object-Oriented Design and Development (OODD) paradigm has

become the de facto standard in software designing/modelling and development. This thesis

also considers the low-level design as the development level, which helps map the low-level

design elements to their development by providing enough development-supportive details

(refer to Section 7.2.1).

Software design languages (also called modelling languages) offer models and model-elements to

design various aspects of software systems like structures and behaviours. The Unified Modeling

Language (UML) [7] is the widely accepted General-Purpose Modelling Language (GPML) [8],

which mainly assists in designing low-level aspects of software systems using the OODD paradigm

[9]. The generic characteristics of the UML within its broad scope do not cater to the specificity of

some software systems, such as web-based applications [9]; hence, dedicated Domain-Specific

Modelling Languages (DSMLs) and methodologies are required [8]. UML’s lightweight extension

mechanism is a tool for developing new UML-based DSML meta-models using new UML profiles

(refer to Section 2.2.4 for software modelling languages and related concepts).

Rich Web-based Applications

This section briefs the materials detailed in section 2.3.

Rich Web-based Applications (RiWAs) [10] are a type of web-based system that provides a higher

user experience similar to using desktop applications compared to traditional web applications.

RiWAs provide rich Graphical User Interfaces (GUIs) – identical to the GUIs in desktop

applications – which use an advanced communication model named Delta-Communication (DC)

Chapter 1. Introduction

3

[11] to communicate with the server-side components faster and asynchronously (refer to Section

2.3.2 for the definition of the RiWAs and comparison with the standard web applications, and Section

2.3.3 for the DC). Commonly used modern apps, such as Facebook, Google apps, and Microsoft

apps, are examples of RiWAs. The RiWAs are complex systems; besides, the general

characteristics and essential features of RiWAs are identified (refer to Section 2.3.5), which are

realised by the Rich Web-based Architectural Style (RiWAArch style) [12] (refer to Section 3.1.3).

RiWAs development tools like libraries, frameworks, IDEs, and dependency management and build

tools have immensely evolved over the last two decades to cater to the RiWAs’specificity [10] by

assisting in developing the rich GUIs, DC, and related components. However, other RiWAs

engineering concepts – like design patterns and testing methods – and tools for them have not been

advanced much [13].

1.2. Problem and Motivation

The problem this thesis addresses is the unavailability of a simple and adoptable design

methodology for the RiWAs. The following subsections elaborate on the focused aspects of the

problem.

1.2.1. Design Method/Methodology for RiWAs

The RiWAs’ development issues are solved in ad-hoc manners by the RiWA engineers/developers,

and the methods/techniques used to address these issues may have introduced some extra work to

the development of the RiWAs [14] [13]. For example, the developers may decide to implement a

new processing layer for a particular RiWA to handle client-side events and business logic – without

using proper style or pattern – which may increase the development complexity and, thus, efforts. In

this setting, the RiWAs’ complex client-server communication using the DC model further increases

the development efforts [15].

When the development issues are handled ad-hoc, the unsystematic nature of engineering causes the

components – which are already constructed for a specific RiWA – to lower the reusability [14]. For

example, due to the difference in business logic, the client-side events and business logic handling

layer implemented in the above case may not be used for another RiWA. Also, the same technique

of implementing a layer for client-side events and business logic handling might not be suitable when

distinct development tools are utilised. In such an environment, the experience gained from

engineering one RiWA would not be applied to other projects as the situations are handled in unique

ad-hoc ways.

This nature of RiWAs engineering can be considered a result of the lack of abstract models that can

realise the RiWAs’ general characteristics and essential features, which can directly assist in

development. The conceptual abstraction stipulated by a dedicated systematic design methodology

Chapter 1. Introduction

4

with a DSML – which provides enough models to realise the RiWAs – and rules and guidelines to

use them can possibly support the development of the RiWAs to overcome the said issues.

Even though there are some dedicated design methods/methodologies for the web-based application,

they are not strong enough to support the specificity of RiWAs. A few styles and design methods

have been introduced that are trying to realise the complexity of the RiWAs. These available

solutions are reviewed in Chapter 3, and a summary is given in Section 1.2.2. It is noted that none of

these available design methods or methodologies provides a simple and adoptable set of tools to

design the RiWAs’ general characteristics and essential features discussed in Section 2.3.5.

The literature survey noted that the design research and methods for RiWAs were not very active.

Since the early stages of the RIAs/RiWAs, the requirements for modelling solutions have been

discussed [16]; however, development tools have rapidly evolved, but other aspects have not [13].

SE engineers following agile software engineering methodologies and tools more in the direction of

rapid development might be the reason for the lack of conceptual evolution. In that setting,

contemporary SE relies on agile methodologies, and the need for a design methodology can be

questioned. Agile-SE-related aspects are discussed in Section 2.1.3, stating the importance of

software designing and discussing the advantages of the hybrid approach: Agile Model-Driven

Development (AMDD), motivating this study to address the research problem.

It is understood that development activities are directly affected by design concepts such as styles

and patterns, and also, software design knowledge can positively influence development. Busch and

Koch [15] (page 9) say that “we need a model language that provides model-elements that allow us

to model these distinguishing features of RIAs. Depending on the level of abstraction, we require a

different type of model-elements”. They continue stating that “on design level, these features need a

refinement indicating, e.g. more precisely how is the user interaction and the client-server

communication. Finally, when building the platform-specific model or at the code level, the

technologies used need to be specified in detail”. This discussion helps understand the importance of

having a dedicated design methodology for RiWAs.

1.2.2. Quality Attributes Focused by the Research Problem

The main attributes focused by the research problem are simplicity and adoptability [17] [8]. The

adoptability is discussed in this thesis by 4 attributes: comprehensiveness, usability, development

support, and integration support. These attributes are generally explained in Section 2.2.4.2, and

their context for a RiWAs design methodology is set in Section 4.1. This section elaborates on the

problem by discussing the issues related to the lack of simplicity and adoptability and the motivation

for incorporating them by a design methodology.

Chapter 1. Introduction

5

Simplicity

This attribute expresses the less complex nature of a system/solution maintained by applying the

principle of separation of concerns [18] [19] [20]. Decomposing a system towards identifying and

separating the system elements provides greater realisation and, thus, management, which helps

reduce complexity [18] [19]. A modelling language must identify the separate elements of the target

systems and provide enough models and model-elements to design the general characteristics of the

target systems in a less complex manner, maintaining a higher simplicity, which leads the modelling

language to be a comprehensive solution [17]. The available solutions do not precisely identify the

abstract elements of the RiWAs– especially the elements that handle distributed logic and DC –

which cause the adoptability of these solutions to be low.

Adoptability

A solution should be practically adoptable into engineering without being limited to a conceptual

artefact. The following attributes are elected to ensure the adoptability of a design methodology.

Comprehensiveness

The general characteristics and essential features of the RiWAs have been understood in literature

(refer to Section 2.3.5) [14] [21] [12]. Available design methods/methodologies introduced for

RiWAs focus on specific and limited characteristics; for example, the RUX-model [22] only

discusses the GUIs and presentation concerns. None of the available solutions addresses all these

general characteristics and essential features of the RiWAs; thus, they cannot be considered complete

design solutions for RiWAs. Several methods/methodologies may be learned and utilised to design

RiWAs; for example, the RUX method can be combined with UWE [23] to facilitate the GUI

designing aspect [24]. This approach may not be feasible due to time, cost, and complexity factors.

Moreover, since the available methods use different approaches and are involved with various

notations, integration compatibility issues may arise, and new complexity and learning efforts can be

introduced. On the contrary, adopting a single comprehensive solution is more beneficial.

A complete design methodology with enough models for the systematic development of the RiWAs

can be seen as a contemporary requirement for the RiWAs [17], where it can provide enough support

for modelling all the general features of RiWAs, including the DC and the business logic distributed

between the client and server [14]. The criteria that define the comprehensiveness of the proposed

RiWAsDM are discussed in the relevant sections (refer to Sections 2.2.4.2 and 4.1.2.1).

Usability (Learnability, Readability/Understandability)

The readability of designs is a vital attribute [25] towards reducing the overhead of understanding

the models and model-elements [26]. Higher readability and understandability of a design language

can immensely assist in learning the language in the direction of improving usability. The available

Chapter 1. Introduction

6

design methods/methodologies exhibit many usability issues, as reviewed in Chapters 3, 5, 6, and 9,

which should be addressed to improve the adoptability.

The complexity of design language plays a crucial role in usability [17] since, in the context of

software systems, complexity encloses the difficulties in understanding, where it speaks about the

psychological complexity of the system [27]. A complex solution can be seen as composed of many

elements that interact [28], and relationships between elements are not perfectly known or familiar

[29]. This thesis values associating the available knowledge of RiWAs’ general characteristics,

essential features, and development practices in the direction of reducing the complexity of a RiWAs

design language towards improving usability and, hence, adoptability.

Development Support

The design of a system should assist in the system’s development, not only by providing enough

realisation of the system but also by supporting the conversion of the designs into working code. For

example, UML class diagrams can be directly converted to code, and some CASE tools even offer

features to generate code for a target language using the class diagram. Available design solutions

primarily provide conceptual results, mostly eliminating development-related discussions.

This thesis expects a RiWAs design language to produce diagrams which can be mapped into

development and to offer rules and guidelines to support development based on the designs. If a

design language provides ample support for development, reducing the design to development

mapping efforts, the language can be considered a more adoptable solution.

Integration Support (Integrability)

Currently, SE projects are primarily based on agile methodologies; discussing how to integrate

design activities into agile-based environments is essential [30]. The available web

applications/RIA/RiWAs design solutions do not provide this facility and, therefore, can be seen as

less adoptable. If a design methodology offers a process with rules and guidelines to incorporate the

design activities into agile-SE, it can be considered an adoptable methodology.

1.2.3. Summary of the Literature Review

A comprehensive literature review is given in Chapter 3. A literature review summary is provided in

Table 1.1 to evidence the problem’s existence among the available design solutions.

As given in Table 1.1, the available solutions are either general, do not support DC and related

aspects, are limited to high-level/low-level designing, or do not offer development or integration

support. If a language is based on UML, this thesis considers it more usable, given that UML is the

de facto standard software modelling language, and the software engineers generally know UML.

Grounded in this notion, UML-based DSMLs are believed to be more usable than new languages

which are not based on UML.

Chapter 1. Introduction

7

Table 1.1 Summary of the literature review

Solution Context Comprehensiveness Usability
Dev and

Integration

MDA with

UML

-General. -Primariliy low-level
-No DC

-De facto standard -None

Arc42 -General -Primariliy low-level
-High-level diagram
-No DC

-UML-based
-Primarily
documentation

-None

SAP’s

OOA/OOM

-General -TAM is high-level
-Primariliy low-level
-No DC

-UML-based -None

ArchiMate -General -No DC -UM-like new lang. -None
C4 -RiWAs -Primarily high-level

-No DC
-No formal syntax
(box-and-line)

-None

UWE/UWE-R -Web/RIA -Low-level
-No DC

-UML-based -None

IFML -RiWAs
-Interaction
flows

-Low-level
-front-end
-No DC

-UM-like new lang. -None

SysML -General -Low-level
-No DC

-UML-based -Highly support
agile-SE

IAML -RIA/RiWA -Primarily low-level -UML-based -None

1.3. Research Aim and Hypothesis

This research aims to introduce a simple and adoptable design methodology for the RiWAs,

named RiWAs Design Methodology (RiWAsDM), whose adoptability is demonstrated with use cases

and evaluated with multiple methods to ensure its validity. The core element of the RiWAsDM is a

novel UML-based DSML meta-model for the RiWAs called RiWAs Modelling Language

(RiWAsML), which is defined as a UML extension. Refer to section 1.5.2 for the scope of the

RiWAsDM. The simple and adoptable attributes are generally explained in Section 2.2.4.2, and their

context is set in Section 4.1 under requirements for the RiWAsML/RiWAsDM. These attributes are

chosen to ensure the simplicity of the RiWAsML, and the RiWAsDM can be practically adopted into

actual RiWA engineering instead of being limited to a conceptual solution.

The following hypotheses are established to assist in achieving the research aim. These hypotheses

are confirmed using reasoning in Section 10.1.2, and the fulfilment of the research aim is discussed

in Section 10.1.3.

Hypothesis 1 [H01]

It is essential to realise the abstract and complete architectural formalism of the RiWAs since the

architecture provides the blueprint for the system. The realisation required to introduce a

comprehensive set of design models and model-elements for RiWAs can be gained via an abstract

architectural style, which can realise all the general characteristics and essential features of the

RiWAs. Further, the comprehensive realisation of such an architectural style can ensure the

simplicity and adoptability of the models. Based on this argument, the H01 is set as follows.

Chapter 1. Introduction

8

H01: A comprehensive set of RiWAs design models and model-elements can be identified to

design all the general characteristics and essential features of the RiWAs based on a solid abstract

architectural style, maintaining higher simplicity and adoptability.

Hypothesis 2 [H02]

Utilising the models and model-elements identified while proving the H01, a simple and adoptable

DSML for RiWAs can be produced. This DSML should be based on UML for higher usability.

UML’s extension mechanism can be used to implement UML-based DSML, creating UML profiles

for the new models and model-elements. Considering these facts, the H02 is defined as follows.

H02: A simple and adoptable UML-based DSML for RiWAs can be implemented using the

comprehensive set of models and model-elements identified while proving the H01.

Hypothesis 3 [H03]

Based on the DSML introduced while proving the H02, a simple and adoptable design methodology

can be implemented, which discusses the RiWAs design and engineering approaches and provides

guidelines for adopting the RiWAs designing activities into agile SE projects. Built on this notion,

the H03 is set as follows.

H03: A simple and adoptable RiWA design methodology can be produced – utilising the UML-

based DSML introduced while satisfying the H02 – which provides RiWAs design and engineering

approaches and guidelines for adopting RiWAs designing into agile-SE.

1.4. Research Objectives

The following objectives were set in order to achieve the research aim while proving the hypotheses.

Obj 1. Identify an abstract comprehensive architectural style for the RiWAs: To introduce a

novel design methodology, it is crucial to understand the abstract architectural formalism of the

RiWAs, which can realise the general characteristics and essential features of RiWAs. The lack of

realisation of the architectural formalism of the RiWAs can be seen as a reasonable circumstance for

the available RiWAs design methods/methodologies to be highly diverse; hence, incomplete and not

adoptable. Since architectures help to reduce complexity by increasing the realisation of the systems,

it is practical to identify a solid abstract comprehensive architectural style and implement a DSML

based on it to reduce the complexity and increase the adoptability. Considering this position,

identifying an abstract comprehensive architectural style, which can provide a foundation for the

Chapter 1. Introduction

9

RiWAsML, is set as the first objective of the research. This objective is satisfied in section 3.1,

helping to prove research hypothesis 1.

Obj 2. Introduce the RiWAsML: Introduce the proposed RiWAsML to design the general

characteristics and essential features of the RiWAs based on the abstract comprehensive architectural

style identified while achieving Obj 1, utilising: the knowledge gained via extensive literature survey,

the study of the RiWAs development technologies and techniques, RiWAs development experience,

and intensive brainstorming. This objective is satisfied in Chapters 4, 5, and 6 while proving the

research hypotheses 1 and 2.

Obj 3. Introduce the RiWsDM: This objective is set to introduce the proposed simple and adoptable

design methodology for the RiWAs based on the RiWAsML implemented by Obj 2. Chapter 7

satisfies this objective, also proving the research hypothesis 3.

Obj 4. Demonstrate the utilisation of the RiWAsDM through use cases: introducing a conceptual

designing methodology does not practically provide adequate assistance to actual RiWAs

engineering unless it is demonstrated and discussed how the methodology is practically utilised.

Therefore, it is crucial to demonstrate the utilisation of the introduced RiWAsDM through use cases,

and this objective is set to accomplish that. The use cases are given in Chapter 8, as proof of concept

of the RiWAsDM’s adoptability.

Obj 5. Evaluate the introduced RiWAsDM: The final objective is set to finalize the research aim

by evaluating the produced RiWAsDM using multiple methods stated in Section 1.5.5 to ensure its

simplicity and adoptability. The evaluation is discussed in Chapter 9.

1.5. Methodology

The literature survey found no methods or methodologies for introducing a new design methodology.

This research’s methodology is primarily based on the methods utilised to produce the RiWAArch

style [12], which was inspired by Fielding’s work that introduced the REST architectural style [19].

1.5.1. Research Type and Framework

Two main aspects governed the selection of research methods: the research type and the research

framework, which are discussed in the following sections.

Research Type

Many aspects of the research are related to the conceptual and qualitative aspects, as follows. This

research aims to produce a design methodology with a design language, which is a conceptual

artefact. Software designing is creative work, and designing a modelling language can also be seen

as creative; consequently, conceptual and qualitative. It is not very practical to gather requirements

from the general users of software models, who are the RiWAs designers, as they may not have

Chapter 1. Introduction

10

enough academic-level experience and conceptual understanding of the abstraction required to

produce a DSML; finding experts with strong academic knowledge and engineering experience is

not much feasible. The outcomes of the research are a design model and its notations, which are

conceptual and cannot be executed, and gather results for analysis; therefore, the validation of the

outputs heavily depends on intensive brainstorming and reasoning rather than on empirical evidence.

The research attempts to satisfy quality attributes like simplicity, learnability, readability, and

understandability, which cannot be quantitatively measured, and the effects of these attributes are

qualitatively analysed. Considering these characteristics, this research can be seen as qualitative,

where quantitative research methods are not applicable. These aspects make this research a

conceptual and qualitative work.

A few empirical activities took place, such as (1) studying the available solutions and gathering

details related to their models and model-element and (2) collecting data from domain experts to

evaluate the RiWAsDM. However, these data were analysed employing reasoning instead of

statistical methods. Therefore, the type of this research is reflected as a qualitative and conceptual

study, which draws arguments based on qualitative/conceptual facts rather than data or empirical

study; hence, suitable qualitative/conceptual methods are utilised over empirical methods.

Research Framework

The framework provided by the Software Engineering Research Methodology (SERM) [31] is

selected to govern the research methodology, and SERM’s rating categories are utilised to rate the

research. SERM realises major research paradigms such as post-positivism and provides a framework

with three pillars: conceptual, formal, and development, as shown in Figure 1.1.

Figure 1.1 SERM framework [31]

The SERM defines SE research as a combination of Conceptual (C), Formal (F), and Development

(D) dimensions as expressed by the function Software Engineering = fn(C, F, D). Based on this

framework, SERM also provides a mechanism to categorize and rate the SE research, as explained

in Table 1.2.

Conceptual

Formal Developmental

Software Engineering = fn(C,F,D)

Chapter 1. Introduction

11

Table 1.2 Rating categories of SERM [31]

Rating

 Research Dimensions

Conceptual Formal Developmental

High Major extensions or
generalizations of an existing
concept or a new concept

Defined in math and logic
terms; formal definition or
proofs; mathematical
description.

Prototype or model
with validation and
verification

Medium Incremental extension and/or
generalization of
an existing concept

Definitional without the math
and/or logic proofs; establishes
correctness criteria.

Prototype or model
with limited
functionality

Low Existing concept with
limited extensions

Descriptive details and
conjectures

Discussion of
program
requirements

None No new concept No formal definitions No implementation
described

Based on the SERM rating mechanism, this research can be recognized as follows.

Conceptual: This thesis produces a novel design methodology with a new DSML for RiWAs. The

RiWAsML is implemented as a UML extension; however, the UML extension mechanism is a tool

to implement new DSML; therefore, the RiWAsML can be considered a new concept as well as the

RiWAsDM. According to the SERM, this research’s rating of conceptual dimension can be

recognized as high.

Formal: Since this is conceptual and qualitative research, despite using quantitative mathematical

methods, this thesis uses suitable qualitative methods based on logical reasoning for the RiWAsDM

implementation and evaluation. A process is formulated for implementing the RiWAsDM (see

Section 1.5.3), and the RiWAsML is based on UML, which is a formal modelling language. Multiple

formal methods are utilised to evaluate the introduced methodology (refer to section 1.5.5).

Considering these aspects, this research’s rating of formal dimension can be acclaimed as medium.

Developmental: This research identifies the requirements for a design methodology and implements

it with a new DSML, which includes a comprehensive set of models to design RiWAs and also

provides rules and guidelines to map the design to development. The adoptability of the design

methodology is verified with real-world use cases while discussing the development of the designs.

The design methodology is further validated by evaluating it with multiple methods. These artefacts

can set the research’s developmental dimension’s rating as high.

According to the SERM, the research can be ranked high, considering its conceptual, formal, and

development ratings.

Chapter 1. Introduction

12

1.5.2. Research Scope

This section specifies the scope of the research in the direction of setting the context for the target

systems. The research narrows the scope and focuses on the core aspects of the RiWAs and RiWAs

designing with the notion that if the core aspects can be successfully satisfied, then future work can

efficiently extend the research (see Section 10.5 for future work). The following scope limitations

are applied to the research.

The size of the RiWAs: the 2-tier client-server architecture is the core formalism of the web-based

systems. However, the RiWAs process data and use databases for persistence; therefore, the 3-tier

architecture can be considered the core formalism of the RiWAs. If a SE concept can realise the

RiWAs’ core formalism, it can be extended to address the expanded forms of the target systems.

Based on this notion, this research limits the size of the target RiWAs to the 3-tier architecture. Once

a DSML is introduced for the 3-tier RiWAs, the DSML would be extended to larger n-tier RiWAs

later.

Type of the RiWAs: as web-based systems, browser-based systems are the main type of the RiWAs.

Hence, this research primarily studies browser-based RiWAs. Still, the research considers RiWAs

with mobile-based and IoT-based clients and web services where necessary and discuss some related

details.

RiWAs implementation/deployment: the implementation/deployment technologies are limited to

the 3-tier systems, aligning with the RiWAs’ size scope, avoiding the below.

 Service Oriented Architecture (SOA) or micro-services.

 Cloud computing and integration, and edge computing.

 Cloud services for deployment.

Feature of the RiWAs: this thesis narrows the scope of the target RiWAs to the systems that perform

CRUD operations on the database, eliminating the following.

 Use of third-party services to implement features like authentication, email, SMS, or payments.

 Push notifications and/or real-time updates.

 Multimedia uploading, processing, and streaming.

 Data Science (DS), Artificial Intelligence (AI), or Machine Learning (ML) related features such

as analytics and chatbots. These are functions/features of a system and can be implemented as

modules/services extending a RiWA; therefore, they can be seen as future work (refer to Section

10.5 for future work).

Chapter 1. Introduction

13

RiWAs design: this research’s primary focus on the design-related aspects lies in the following.

 RiWAArch style-based high-level designing: The RiWAArch style was selected since it

firmly realises the general characteristics and essential features of the RiWAs, as well as high-

level elements and their configurations (refer to Section 3.1.3).

 Structural designing: A strong understanding of a system’s structural aspects is required for

behavioural designing; thus, attention is given to realising structural formalism.

 Top-down designing: Since the RiWAArch style is selected as the base formalism, the high-

level designing is accompanied by the style, which can aid the low-level design.

 UML-based design: UML is selected since it is the de facto standard software design language

(refer to Section 3.2.3.1) and provides the extension mechanism for implementing DSMLs (refer

to Section 2.2.4.5).

RiWAs Design Methodology: The RiWAsDM’s primary focus is on implementing the RiWAsML

and discussing the integration of RiWAsML-based designing into RiWAs engineering by

introducing a design methodology. Therefore, some other aspects, like implementing CASE tools or

support for other phases like requirements engineering or testing, are kept out of the scope.

1.5.3. Implementation of the Proposed Design Methodology

A challenging task of this research was the implementation of the proposed RiWAsDM since no

formal methods or methodologies for implementing new methods/methodologies were found in the

literature. Several accessible publications which produce approaches, methods, and methodologies

were referred to [22] [32] [33] [34] [35] [36] [37]; it was noted that they mainly present their new

approach/method/methodology and do not underpin the research methodology of producing their

results.

Some research publications that produce UML profiles for target domains were examined, and the

following points were noted, which provided some insight.

 The paper titled UML Profile for Aspect-Oriented Software Development (2003) briefly states

some requirements for their new UML profile [38].

 The publication A real-time profile for UML (2006) [39] analyses the target systems, identifies

the characteristics, and defines the context for a new UML profile. Also, a running example is

discussed, and the target system characteristics are examined profoundly.

 Towards a UML profile for data intensive applications (2016) [40] uses an approach with 4

steps: (1) produce conceptual models for each abstraction level, (2) identify concepts for quality

assessments, (3) define the proposed profile, and (4) assess the new profile using case studies.

 The authors of the paper An UML profile for representing real-time design patterns (2018) [41]

have examined the target systems and specified the context for the target domain. A case study

Chapter 1. Introduction

14

example is also given to depict the implementation of the proposed profile and evaluate its

effects. The authors further evaluate their new profile using a comparative analysis by

comparing the profile with similar solutions using a context comprised of the properties

Variability, Expressivity, Consistency, Completeness, Traceability, and Composition with a

scale of 3 values: Partially verified, Not verified, and Verified.

More systematic approaches to implementing DSMLs were found in the following work.

 The research report Outline of a Method for Designing Domain-Specific Modelling Languages

(2010) by Ulrich Frank [17] presents a process with 8 steps to implement DSML, given in Figure

1.2.

Figure 1.2 DSML implementation process by Ulrich Frank [17]

These steps are executed similarly to the iterative waterfall method, allowing feedback loops.

Each step consists of an iterative micro-process to improve the process’s simplicity and support

the execution. However, 8 steps with micro-processes in each make it a complex process.

 The PhD thesis, A Modelling Language for Rich Internet Applications (2011) by Wright [42],

produces a new DSML for RIAs named IAML. The research uses a process shown in Figure

1.3 to introduce the IAML.

Chapter 1. Introduction

15

Figure 1.3 The hybrid modelling language process model used in the development of IAML [42]

Overall, this is a linear sequential process with a loop in the middle for modelling,

implementation, and evaluation steps to iterate evolutionarily. The development loop is

allocated to develop a CASE tool for the IAML. Not revisiting the requirements and analysis

to update them may immensely limit the scope to enhance the quality of the results.

 Brambilla et al. (2012) [8] give a process with the 3 steps below for developing a DSML meta-

model.

 Step 1. Modelling domain analysis: set the context by identifying the target domain’s

purpose, realisation, and content.

 Step 2. Modelling language design: define the formal syntax and models for the meta-

model.

 Step 3. Modelling language validation: demonstrate with use cases to validate the

completeness and correctness.

This process is simple yet robust and focuses on all the aspects of introducing a DSML.

When looking at the literature which produces DSML, it can be understood that setting the context

for a DSML by specifying the characteristics of the target type of systems is mandatory. Also,

demonstrating the use of the produced DSML using examples is essential as a proof of concept and

to explain the practical usage and value of the introduced DSML.

Inspired by the DSML implementing methods in literature and based on the methods utilised to

produce the RiWAArch style [12], a design methodology implementation process is formed to

implement the RiWAsDM, including the steps required to implement the RiWAsML, illustrated in

Figure 1.4. This process contains 3 main steps that intend to assist in achieving research objectives

1, 2, and 3.

Chapter 1. Introduction

16

Figure 1.4 RiWAsDM implementation process

1.5.3.1. Step 1. Set Requirements for RiWAsML/RiWAsDM

Identifying and setting the context for a DSML is mandatory [26] [17] [8], thus, also for a design

methodology. This step is allocated to set the context for the RiWAsML/RiWAsDM by identifying

the requirements for a DSML within the research scope stated in Section 1.5.2 while covering

research objectives 1 and 2.

Unlike the requirements for a software system, it is not straightforward to identify the requirements

for a design methodology. The users of a design methodology are software engineers, and they might

not exactly know what to expect from a comprehensive design methodology for RiWAs in general

since their knowledge and experience can be limited to a specific type of RiWAs. First, it was decided

to conduct a data survey to collect some data from the engineers in the domain of RiWAs and utilise

the results to understand the requirements. However, after some discussion with three domain

experts, it was noted that the knowledge and experience of the engineers are narrowed down to the

work they are engaged with; therefore, a comprehensive overall understanding would not be gained.

After that, to formalise the requirements for the RiWAsDM, it was decided to study the RiWAs

deigning related concepts through an extensive literature survey and combine the acquired

knowledge with the experience of the author of this thesis, gained by researching in the domain over

a decade. The requirements were defined step by step, as discussed below.

Step 1.1. Identify an Abstract Comprehensive Architectural Style for RiWAs

As the first step of this phase, it was required to identify the general characteristics and essential

features of RiWAs to be addressed by the RiWAsML. The general characteristics and essential

features of RiWAs are already understood [21] [12] (refer to Section 2.3.5), and learning the RiWAs’

general formalism, which can realise these general characteristics and essential features, is required.

2.1 Define high-level language elements and models
2.2 Define low-level language elements and models

Step 2.

Implement the
RiWAsML

3.1 Provide RiWAsML architecture
3.2 Provide rules and guidelines for RiWAsML-based

designing
3.3 Provide RiWAsDM process

Step 3.

Implement the
RiWAsDM

1.1 Identify an abstract comprehensive architectural style for RiWAs
1.2 Set requirements for high-level design aspects of RiWAs
1.3 Set requirements for low-level design aspects of RiWAs

Step 1.

Set Requirements for
RiWAsML/RiWAsDM

Chapter 1. Introduction

17

It was decided to identify an architectural style that can realise the RiWAs’ general characteristics

and essential features, relying on the benefits gained from an architectural style to realise the systems.

Section 3.1 reviews the available styles for RiWAs and selects the RiWAArch style [12] as the

foundation formalism for the RiWAsML/RiWAsDM. This step fulfils the research objective 1 (refer

to Section 1.4).

Step 1.2. Set Requirements for High-level Design Aspects of RiWAs

Using the RiWAArch style as a framework, the requirements for high-level design models and

model-elements were identified and set in this step. These requirements explain the architectural

details to be included in the RiWAs’ high-level designs and propose the models and model-elements

for them. Section 4.3 presents the requirements for high-level design aspects of RiWAs. This step

partially achieves research objective 2, which is completed by step 1.3.

Step 1.3. Set Requirements for Low-level Design Aspects of RiWAs

Based on the RiWAArch style and the requirements set for high-level design aspects in step 1.2, the

requirements for low-level design aspects of RiWAs are identified and set in Section 4.4. The

outcomes of this step, combined with the results of step 1.2, fulfil research objective 2.

1.5.3.2. Step 2. Implement the RiWAsML

This step is dedicated to implementing the RiWAsML in the direction of achieving research objective

2. The RiWAsML is UML-based; therefore, the models and model-elements are introduced as a

UML extension.

Step 2.1. Define High-level Language elements and Models

RiWAsML’s primary focus is the high-level structural modelling of the RiWAs. This step produces

high-level structural design models, model-elements, and UML profiles to satisfy the requirements

set in step 1.2 (refer to Chapter 5).

Step 2.2. Define Low-level Language elements and Models

This step implements low-level models, model-elements, and UML profiles for the RiWAsML to

satisfy the requirements set in step 1.3, aligning with the high-level models and model-elements

implemented in step 2.1. This step also produces some behaviour models for RiWAs to support the

development of RiWAs. Chapter 6 discusses the outputs of this step.

Chapter 1. Introduction

18

1.5.3.3. Step 3. Implement the RiWAsDM

This step focuses on implementing the RiWAsDM based on the RiWAsML produced in step 2. The

implementation of the RiWAsDM completes research object 3.

Step 3.1. Provide RiWAsML Architecture

Understanding the architecture of a modelling language is crucial to gaining the maximum benefit

from it. RiWAsDM discusses the RiWAsML architecture towards assisting in understanding the

mapping between RiWAs high-level and low-level designs and development (refer to Section 7.2.1)

Step 3.2. Provide Rules and Guidelines for RiWAsML-based Designing

Rules and guidelines are essential to understand the proper utilisation of a modelling language to

design the RiWAs accurately in the direction of supporting the development. Section 7.2.3 provides

a set of rules and guidelines to be followed by the RiWAsML-based RiWAs designing.

Step 3.3. Provide RiWAsDM Process

Implementing a DSML would be advantageous only if its features can be integrated into actual

RiWAs engineering. The RiWAsDM process is defined in this step to fill this gap and assist in

integrating RiWAsML-based design activities into the agile SE environments. This process is given

in Section 7.3, which discusses a design and engineering approach for RiWAsML and guidelines for

adopting RiWAsML-based designing activities into agile SE methodologies.

1.5.3.4. Execution of the Process

This process only focuses on implementing the RiWAsML/RiWAsDM, and the demonstration and

evaluation methods are discussed separately. Even though the RiWAsDM implementation process

is presented as a set of sequential steps, it was executed evolutionarily and iteratively, similar to the

iterative waterfall model. The requirements were amended throughout the research, and the

RiWAsML was upgraded accordingly. Even while working with the use cases, some more

requirements were identified, and all the related sections of the thesis were appropriately updated.

1.5.4. Demonstrating the Adoption of the RiWAsML/RiWAsDM

Introducing a conceptual design methodology would not benefit RiWA engineering unless the

utilisation of the introduced methodology is demonstrated and discussed with examples. Literature

producing the DSML utilises use cases as proof of concepts to evaluate the new DSML and

demonstrate its use. However, these use cases are hypothetical, and scenarios are mostly limited in

scope to demonstrating a particular model or a set of related models instead of using a comprehensive

scenario to demonstrate the complete DSML [43] [44] [45] [46] [47]. IAML [42] provides a complete

demonstration of system designing based on a hypothetical scenario.

Chapter 1. Introduction

19

This thesis uses real-world use cases to demonstrate the adoptability of the RiWAsML/RiWAsDM

in Chapter 8, achieving research objective 4. Two actual use cases are employed to discuss the

RiWAsML’s attributes based on the high-level models and model-elements. Then, a comprehensive

real-world use case is utilised to demonstrate all the features of the RiWAsML/RiWAsDM, discuss

how the designed functions are developed in reality, and discuss the adoption of design activities into

an agile environment.

1.5.5. Evaluation

Evaluating a design methodology is highly challenging as it is a conceptual artefact and

straightforward evaluation methods for design methodologies are unavailable. DSML implementing

literature evaluates the DSML primarily with use cases as proof of concept.

Frank provides a process with 6 steps to evaluate DSML, given in Figure 1.5 [17]. This process is

supposed to be executed by the participants: Domain Expert, User, Language Designer, and Tool

Expert. This process is likely to be exploited to evaluate a design methodology. Nevertheless, this

process only focuses on the use-case-based evaluation and may not produce convincing results

without comparing the new DSML against the available ones.

Figure 1.5 Micro Process ‘Evaluation and Revision’ of DSML [17]

Wright [42] uses metrics to compare the IAML against the available DSMLs for RIAs. The use of

metrics to evaluate a DSML is a controversial topic. A DSML is a conceptual artefact, and its

application as a design tool can be highly subjective. Even though metrics can be used to measure

some aspects of a DSML, the use of metrics to compare DSML is questionable because of the

following reasons. A new DSML is introduced since the available DSMLs do not cater to the target

systems. If the available DSMLs are identified as not being helpful in designing the target systems,

why use metrics to measure their inability to value the new DSML? Further, it is difficult to obtain

a proper idea of the level of strengths or weaknesses by examining the quantitative values of the

Chapter 1. Introduction

20

metrics. Due to these aspects, it isn’t easy to justify using metrics to evaluate the DSMLs or a design

methodology.

Since evaluating a conceptual implementation like a design methodology highlighting its strengths

is not straightforward, this thesis exploits multiple qualitative evaluation methods to identify the

strengths and weaknesses of the RiWAsDM based on the evaluation of the RiWAArch style [12],

inspired by the work of Fielding [19]. A self-evaluation, contextualised comparisons, and expert

evaluation were performed, and the results were triangulated by reasoning to draw the ultimate

outcomes. The evaluation of the RiWAsDM is given in Chapter 9, achieving research objective 5.

1.5.5.1. Self-Evaluation

A qualitative self-evaluation is used to analyse and identify the strengths and weaknesses of the

RiWAsDM against the requirements. Also, the satisfaction level of the requirements within the

context is assessed. In the self-evaluation, all the features of the RiWAsDM are evaluated against the

requirements one by one, by discussing their contributions to satisfying the requirements based on

the use cases. The effectiveness of a particular feature against a specific requirement is indicated

using the scale given in Table 1.3.

Table 1.3 Self-evaluation scale

Symbol Interpretation

++ Very high effect

+ High effect

-+ Moderate effect

- Less effect

-- Very low or no effect

NA Not/None Applicable

The ultimate results are drawn by considering the cumulative effect of the RiWAsDM’s features

under each requirement. Section 9.1 contains the results of the self-evaluation.

1.5.5.2. Contextualised Comparisons

Contextualised comparison is a comparative analysis [48] [49], which is a qualitative evaluation

method, and it has been utilised by conceptual SE research working with qualitative attributes [19]

[41] [12] [50]. This thesis performs contextualised comparisons to compare the RiWAsDM against

the available solutions to reflect its advancements and limitations. The context is based on the

requirements set for the RiWAsDM. The degree of satisfaction of the requirements identified in the

self-evaluation is exploited in the contextualised comparison when judging the RiWAsDM against

the available methods/methodologies. The same scale given in Table 1.3 is used to indicate the

Chapter 1. Introduction

21

comparative effect of the solutions, including the RiWAsDM. The results of the contextualised

comparison are discussed in Section 9.2.

1.5.5.3. Expert Evaluation

Renmans and Pleguezuelo [51] show that qualitative methods are the most commonly used in realist

evaluations, and 97% of all realist evaluations use interviews. Frank [17] suggests that experts should

participate in evaluating the DSMLs. Domain experts can contribute to assessing a concept with their

knowledge and experience gained while working in the target domain. A qualitative expert

evaluation has been conducted to get the opinions of the domain experts based on their knowledge

and experience, and the results are given in Section 9.3. Some aspects related to the expert evaluation

are discussed below.

Expert Evaluation Medium

This is a document-based evaluation. A document was created, including all the related details for

the experts to refer to and an evaluation form to fill out. A document-based method is selected to

provide the experts with all the relevant information, allow them to go through everything at their

own pace, study the RiWAsDM before attempting to fill out the evaluation form, and justify their

evaluation based on their expertise [52].

A pilot evaluation was conducted with some students to identify the concerns of the document and

finalise it. These students are 2nd-year undergraduate students who completed a UML-based system

designing module. They were given the document by the semester's end after completing the said

module. They found that the RiWAsML is easy to use, and the main concern was not having enough

details of the RiWAsML to refer to when required. The RiWAsML language reference (refer to

Section 7.2.2) was improved based on their feedback and included in the expert evaluation form. The

finalized expert evaluation document is given in Appendix D.1.

The evaluation document provides a use case and asks for the experts’ feedback for each requirement.

They have to examine the use of RiWAsML/RiWAsDM in the use case and rate the satisfaction of

the requirements using the scale in Table 1.4.

Table 1.4 Expert evaluation feedback scale

Symbol Interpretation

5 Very high effect

4 High effect

3 Moderate effect

2 Less effect

1 Very low or no effect

Chapter 1. Introduction

22

Since this rating can be subjective and biased, the experts are asked to justify it using natural language

to gain insights from their expertise.

The main issue of the document, which was identified while executing the evaluation, is that the

context and its scope were not mentioned. It allowed the experts to think outside of the scope and

feedback. However, it helped validate this research’s identified limitations and future work, which

are discussed in Sections 10.4 and 10.5.

Selection of Experts

The experts were selected from the following two categories.

1. Industry experts with strong hands-on experience in engineering the RiWAs.

2. Academic experts with a deep understanding of the RiWAs design and development concepts.

Multiple experts from the use case projects and universities were contacted with the evaluation

document, and the ones who agreed to take part in the evaluation were identified. It was decided to

initiate the expert evaluation with two experts from each category. If there were disputes or

conflicting ideas between the feedback on a particular criterion, the evaluation should be extended

to more experts until the researcher is saturated [53] [54]. Since there were no disputes or conflicts,

the expert evaluation was finalised with feedback from two experts from each category.

Execution of the Expert Evaluation

The evaluation document was mailed to the selected experts, who were assigned 2 weeks to complete

the evaluation. They were expected to study the materials by themselves and attempt the initial

review to control the assessment of the quality attributes: learnability, readability, and

understandability. They were asked to contact the researcher when they required assistance

understanding the materials.

Once they submitted the evaluation document with the filled form, the researcher carefully examined

the form to identify unclear or inconsistent points. The points with issues were commented on with

details and sent back to the expert to answer with clarifications. This step was repeated until both the

researcher and the expert were satisfied and agreed with the results.

Once feedback from all the experts was gathered and verified, the analysis started. Under each

requirement of the RiWAsDM, all the participating experts’ feedback was examined, and the effects

were recorded using the same scale given in Table 1.3 in Section 1.5.5.1. The cumulative effect on a

particular requirement was decided by calculating the averages of the ranks under each requirement

and analysing the feedback of all the experts under that requirement. This was repeated for all the

requirements to obtain the ultimate results as given in Section 9.3.

Chapter 1. Introduction

23

1.6. The Solution and Research Contributions

This research introduces a novel design methodology for the RiWAs, named the RiWAsDM, to fulfil

the research aim. The contributions of the thesis to the domain of RiWAs designing and UML-based

designing are listed below, which are detailed in section 10.2.

1. A design methodology implementation process.

2. A new RiWAs modelling language named RiWAsML offers unique features such as

controller and DB-bus modelling.

3. A new UML extension for the RiWAsML.

4. A new design methodology named RiWAsDM for the RiWAs.

5. Demonstration of the use of the RiWAsML/RiWAsDM through a real-world use case.

1.7. Structure of the Thesis

An overview of the thesis structure is given below to help understand the flow of the discussions.

Additionally, at the beginning of each chapter, an introduction is given, explaining the chapter’s

intention and the main points covered; at the end of each chapter, a summary is presented,

highlighting the essential outputs of the chapter.

Chapter 2. Background: This chapter discusses the background concepts to provide a foundation

for the rest of the thesis, highlighting the position of systems designing within software engineering

and RiWAs.

Chapter 3. Review of Available Related Solutions: This chapter reviews the available solutions

for RiWAs designing under 4 sections: architectural style for RiWAs, high-level design

methods/methodologies, low-level design methods/methodologies, and research work related to

RiWAs designing.

Chapter 4. Requirements for RiWAsML and RiWAsDM: This chapter sets the requirements for

the RiWAsML/RiWAsDM based on the RiWAArch style, which realises the general characteristics

and essential features of RiWAs.

Chapter 5. RiWAsML: High-level Modelling Language: This chapter introduces RiWAsML’s

high-level models, model-elements, and UML profiles to design the RiWAs’ architectural aspects.

Chapter 6. RiWAsML: Low-level Modelling Language: This chapter introduces RiWAsML’s

low-level models, model-elements, and UML profiles to design the RiWAs’ development-level

aspects.

Chapter 7. Rich Web-based Applications Design Methodology: Based on the RiWAsML

introduced in chapters 5 and 6, this chapter implements the RiWAsDM.

Chapter 1. Introduction

24

Chapter 8. Use Case: The adoption of the RiWAsML/RiWAsDM into practical RiWA engineering

is demonstrated in this chapter using real-world use cases as proof of concept.

Chapter 9. Evaluation: This chapter evaluates the RiWAsDM using multiple methods and

triangulating their results.

Chapter 10. Conclusion: This chapter concludes the thesis by showing the achievements of the

research objectives, proving the hypotheses, and discussing the fulfilment of the research aim. Also,

the research contributions, challenges, limitations, and future work are discussed.

25

Chapter 2. Background

This chapter gathers knowledge related to the primary concepts of this research –

Software Engineering and Software Design, and Rich Web-based Applications

(RiWAs) – and details them towards building a solid framework for the rest of the

thesis. While conducting the literature survey, it was noted that the terminologies

and the definitions of the related concepts are not strongly specified, and experts

discuss and interpret them differently; also, the relationships between these concepts

are not clearly defined. Therefore, it is not easy to understand the position of these

concepts and utilise them in discussions. This chapter sets the terminology for the

rest of the thesis, defining them and highlighting the relationships among them in

the direction of straightforward referencing throughout the thesis.

2.1. Related Software Engineering Concepts

The use of the term Software Engineering (SE) runs back to the 1960s [55] [56], which represents

the discipline of engineering software systems, covering all the related artefacts such as SE methods

and guidelines. Since then, over time, the domain of SE has grown rapidly, introducing numerous

concepts, including methodologies, standards, protocols, frameworks, etc., which are continuously

evolving. The interrelationships of these SE concepts are highly complex, where the terminologies

used to discuss them are not firmly defined (or defined in different ways by many) and, thus, unclear.

The section’s intention is not to discuss what SE means; instead, it discusses the concepts related to

this research within the domain of SE towards setting a firm foundation for indicating the place for

the software design process within it while specifying a taxonomic arrangement of the related

concepts like SE methodologies and approaches, for easier reference within the scope of this

research. This section first discusses the terms method and methodology, setting definitions to form

a context for this thesis. Then, SE approaches are discussed towards appreciating the use of software

designing activities to motivate the title of this thesis.

The terms method, model, and methodology are controversial and often interchangeably exploited by

many. Since this thesis introduces a new design methodology, a strong notion of these terms is

essential. This thesis defines them as follows in the direction of framing the concept of methodology

to set a context for the rest of the discussions.

2.1.1. Software Engineering Methods

SE method can be defined as “a systematic procedure or technique of doing work in software

engineering in order to reach a certain goal and/or produce a defined set of software artefacts” [2]

(page 414), which is dedicated to a particular type of activity like development or testing. A method

may specify a particular tool, like a model, framework, or environment/platform, which is used to

Chapter 2. Background

26

accomplish the target activity. There are many methods associated with different phases of SE; the

following can be given as some examples in two distinct levels.

 Global methods, which apply to the entire engineering project

 Software Development Life Cycle (SDLC) models

 Documentation standards

 Project management methods

 Phase specific methods

 Requirements phase: requirement-gathering methods like surveys and observations

 Design phase: architectural styles, design patterns, structured design, and Object-Oriented

design

 Development phase: Frameworks/languages and libraries

 Testing phase: black-box-testing and white-box-testing

 Implementation phase: virtualization and cloud services

 Any other phase-specific methods like tools, standards, techniques, rules, practices,

policies, etc.

Based on these aspects, this thesis defines the SE method as follows.

SE method is a concept or tool that supports a specific task at the global or particular phase level.

2.1.2. Software Engineering Methodology

The software engineering methodologies cover all the aspects of the SE projects, including the SDLC

model, diverse methods for different phases and activities, rules and guidelines, and standards. Some

of the available definitions are given below.

Software Development Glossary: 88 Essential Terms by Anna Peck, a senior SEO specialist at

Clutch.co [57], defines methodology as a “technique that enables the design and development of

software to be implemented.”

Mnkandla [58] defines the software methodology by surveying multiple definitions as “a group of

methodologies used in the development of applications.” Mnkandla extends that the “methodologies

will give details of what should be done in each phase of the software development process. You will

notice that the methodologies do not necessarily specify how things should be done. That level of

detail is usually left to the organization to tune the methodology to its environment by for example

developing templates, and other documents that spell out how things should be done” [58].

Disagreeing with stipulating the methodology as a framework, Mnkandla states that “the major

difference between a methodology and a framework is that a framework should be used at a more

abstract level, which means you will need a methodology or more in order to implement a

Chapter 2. Background

27

framework” [58]. Mnkandla’s notion of the methodology is more like a method where the author

uses the term framework in the level of methodology; however, the idea is unclear.

Laplante [18] says that a methodology “identifies how to perform activities for each period, how to

represent the activities and products, and how to generate products.”

Pressman [59] explains a methodology is a process with a collection of techniques for accomplishing

a specific software development goal, including a process model.

This thesis defines the SE methodology at a global level of engineering projects as follows, in the

context of this research, by considering the available definitions and explanations.

Software engineering methodology at the global level is a framework that governs SE projects by

defining a set of methods selected based on some specific criteria. These methods systematically

explain how tasks in different phases are executed within an SE project. The following are some

decent examples of SE methodologies: rapid development methodologies such as Scrum [60] [61],

DevOps [3], and Continuous Integration - Continuous Delivery (CI-CD) [4].

There are phase/task-specific methodologies as well, which specify a collection of methods to be

utilised within the phase/task. For example, PRINCE2 Methodology [62] is a structured project

management methodology focusing only on project management and related aspects. Likewise,

software design methodologies provide a dedicated set of methods that pay attention to the design

phase activities within the SDLC, which emerged in the 1960s as an independent scientific discipline

[63]. This research focuses on the concept of design methodology, which is further discussed in

section 2.2, and related design methods/methodologies are reviewed in chapter 3.

2.1.3. Software Engineering Approaches

This thesis exploits the SE approaches to classify the SE methodologies based on their significance

for the design activities since this research concentrates on the software designing aspects. The SE

methodologies can be classified into two main significant contemporary approaches as stated below,

appreciating the attention given to software designing activities.

1. Model-Driven Software Engineering (MDSE):– also called Model-based Software

Engineering (MBSE), or just Model-Driven Engineering (MDE) or Model-based Engineering

(MBE).

2. Agile Software Engineering (ASE).

The MDSE is based on software design aspects, proposing to spend considerable time and effort on

system designing. The strength of the MDSE has been identified, and it has served well for decades

[18] [8] [64]; therefore, in-depth discussions are avoided in this thesis. Opposed to MDSE, the ASE

is based on the Agile Manifesto [5], which stresses delivering “working software over comprehensive

Chapter 2. Background

28

documentation” [5], where this documentation includes the design documents. ASE is compared

with the MDSE, and its advantages are discussed by many academic publications as well as online

articles [65] [66] [67] [68] [69]; hence, this thesis avoids discussing them further.

Different types of MDSE approaches are available, and they are separated based on the attention

given to different design aspects of software systems, as stated below [64].

1. Basic Model Driven Architecture (MDA): this emphasizes the importance of extensive designing

of the entire system.

2. Feature-Oriented Model-Driven Development (FOMDD): this attempts to create models with

predefined parts to compose the complete system.

3. Agile Model-Driven Development (AMDD): focuses on modelling just enough to continue with

the development. This approach inherits features from both MDA and ASE.

The classification discussed above is illustrated in Figure 2.2.

Figure 2.1 Software engineering approaches

When conversing about the ASE, there is an impression that the design aspects are entirely ignored,

and the engineering should focus only on the development. The agile manifesto never restricts

modelling; furthermore, the principles behind the agile manifesto also specify that “the best

architectures, requirements, and designs emerge from self-organizing teams” [5] [70]; therefore, we

can argue that agile methodologies can also benefit from software modelling. The domain experts

also state the necessity of software modelling, even with the ASE methodologies [71] [72]. Based on

these thoughts, this thesis emphasizes and concludes that, regardless of the SE approach, software

designing/modelling still plays an important role; thus, the software design methods and

methodologies are significantly needful even in agile SE environments [30]. The AMDD is an

approach inheriting features from both the MDSE and ASE, which is the focus of this thesis.

Chapter 2. Background

29

2.2. Software Design Methodologies and Methods

This section discusses the concepts related to software designing, which is also called software

modelling, in the direction of providing the necessary knowledge to the targeted concept, the RiWAs

design. According to the IEEE definitions [6], software designing is “the process of defining the

architecture, components, interfaces, and other characteristics of a system.” Software designing

plays a vital role in SE, providing a blueprint for implementing software systems [73] [74], regardless

of the SE approach, as discussed in section 2.1.3. The following sections discuss the design

methodologies, design process, design approaches, modelling languages, and associated concepts.

The knowledge delivered by this section is essential for discussing and introducing a design

methodology for RiWAs.

2.2.1. Software Design Methodologies

A software design method can be considered a concept or tool that assists in performing a software

design activity, such as modelling a particular aspect or function of a software system and

documenting the designs. Modelling languages, CASE tools, and design approaches are design

methods that offer knowledge and resources to the designers to perform design activities. Designing

is a creative process; hence, design methods cannot provide exact instructions for designing for a

specific problem [20]; instead, they offer guidelines to follow and discuss the utilisation of the

methods.

Dedicated methodologies that overlook the software design aspects are called software design

methodologies. The designing activities are controlled by two main aspects: (1) the SDLC model,

which is under the supervision of the SE methodology and approach, and (2) the software design

methodology. The software design phase within the SLDC typically follows the requirements phase

and followed by the development phase. Once the requirements are gathered, the software system

can be designed using an appropriate design methodology and then developed based on the design.

Selecting a proper design methodology is vital to improve productivity and accuracy. The number of

iterations and the amount of work in each iteration depend on the SDLC model used by the SE

methodology and approach. The linear SDLC models are usually associated with Model-Driven

Engineering, where the entire system is first designed and then developed. Contrarily, the iterative

SDLC models are exploited mainly by the agile SE approaches, in which a system is developed part

by part, where each piece is designed and developed in separate iterations, allowing incremental

system development. However, as concluded in section 2.1.3, regardless of the SE approach, SE

methodology, or the SDLC model used, software designing has marked its place as necessary.

Therefore, identifying a proper design methodology is highly useful to get the maximum out of

software modelling since an appropriate software design methodology can guide the designing

process towards improving the efficiency and productivity of the SE project.

Chapter 2. Background

30

Naturally, the software design and development concepts, such as design patterns and algorithms,

are discussed together, as the development activities are highly associated with and directly affected

by the software design. This thesis identifies two major paradigms to discuss software design and

development methods. The earlier one is the Structured System Analysis and Design (SSAD), which

is based on the procedural/structural development disciplines, and the latter one is the Object-

Oriented Design and Development (OODD) paradigm, based on the Object-Oriented concepts. Since

the OODD has become the de facto standard in SE, this thesis limits the research to focus on the

OODD-based design methods/methodologies and techniques.

Identified design methods/methodologies for web engineering are reviewed in Chapter 3; hence, they

are not discussed in this section. Instead, the following sections discuss needful related concepts to

gain the knowledge required when introducing the proposed RiWAsDM.

2.2.2. Software Design Process

The software design process can basically be divided into the preliminary design (high-level

design) and detailed design (low-level design), which are discussed in detail in the sub-sections

below, also stating the related artefacts. The proposed RiWAsML is discussed based on these levels

in chapters 5 and 6.

2.2.2.1. High-Level Design (Preliminary Design / Software Architectural Design)

Preliminary design is “the process of analyzing design alternatives and defining the architecture,

components, interfaces, and timing and sizing estimates for a system or component”, where

architectural designing is “the process of defining a collection of hardware and software components

and their interfaces to establish the framework for the development of a system” [6]. Based on this

notion, this thesis considers the preliminary high-level design as the software architectural design.

Some literature refers to software designing as software architecting in general; for example, model-

driven architecture (MDA) reflects that in systems architecting, “models can represent systems at

any level of abstraction or from different viewpoints” [75]. In contrast to referring to software

designing as software architecting, this thesis uses the term architectural design only to denote the

high-level design.

Software Architecture

The software architecture (or technically the architectural design) provides an overall abstract picture

of the architectural elements and their relationships within a system at its run time, assisting in

realising the system [19]. Architecture is the foundation of any software system, and the support

gained from a carefully designed sound architecture is significant throughout all the phases of SE

projects. The increased realisation helps reduce complexity [76] since the meaning of software

complexity encloses the difficulties in understanding [27].

Chapter 2. Background

31

Software Architectural- Elements

Fielding [19] explains that the software architecture is defined by a Configuration of the elements:

Components, Connectors, and Data. The Constraints on the relationships between these elements

help to achieve the desired set of Architectural Properties. His definitions of these elements are as

follows: “A Component is an abstract unit of software instructions and internal state that provides

a transformation of data via its interface”; “A Connector is an abstract mechanism that mediates

communication, coordination, or cooperation among components”; and “A Datum is an element of

information that is transferred from a component, or received by a component, via a connector.”

Fielding defines Configuration as “the structure of architectural relationships among components,

connectors, and data during a period of system run-time.” Fielding explains architectural properties

as “the set of Architectural Properties of a software architecture includes all properties that derive

from the selection and arrangement of components, connectors, and data within the system.

Properties are induced by the set of constraints within an architecture.” Referring to Ghezzi et al.

Fielding’s notion about constraints is that “Constraints are often motivated by the application of a

software engineering principle to an aspect of the architectural elements.”

Architectural Styles

Architectural styles offer a framework for designing system architectures [77]. As per David Garlan,

“an architectural style typically specifies a design vocabulary, constraints on how that vocabulary

is used, and semantic assumptions about that vocabulary” [78]. This thesis attempts to identify an

architectural style for RiWAs (refer to research objective 1 in Section 1.4) and introduce the DSML

for RiWAs, named the RiWAsML, based on the identified style (refer to research objective 2 in

Section 1.4).

Architectural Description Language

A design methodology should include tools for designing system architectures as well. Architectural

Description Languages (ADLs) provide notations and tools to design and draw software

architectures. These ADLs can be categorised into three distinct approaches, as discussed below. The

available ADLs are reviewed in Section 3.2.

1. Informal box-and-line drawing: this informal technique is an early practice of drawing

software architectures using boxes and lines [78], where boxes denote the elements and lines

are used to illustrate the communication channels between the boxes. Some available methods,

like the C4 model [79] and Arc42 [80], use this approach. This method is simple without proper

syntax but incorporates considerable usability issues without formal language elements and

semantics. Formal languages with models, model-elements, rules, and guidelines are introduced

to overcome the problems of this method. Refer to Section 3.2.1 for the review of the box-and-

line approach.

Chapter 2. Background

32

2. Formal ADLs: A set of more formal languages, such as AADL [70], are available, which are

generally referred to as ADLs in this thesis. These formal ADLs follow standards like

ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architecture description [81].

Formal ADLs use a coding approach to generate the system architectures. Refer to Section 3.2.2

for the review of the available ADLs.

3. Semi-formal graphical languages: Graphical languages provide models and model-elements

to design system architectures. UML is a graphical GPML for software design, and some UML-

based languages, such as TAM [82], have been introduced to cater to the specificity of designing

architectures. Refer to Section 3.2.3 for the review of the available high-level UML-based

methods/methodologies.

2.2.2.2. Low-Level Design: Detailed Design of System Components

Low-level design (or detailed design) is defined as: “the process of refining and expanding the

preliminary design of a system or component to the extent that the design is sufficiently complete to

be implemented” [6]. The low-level design of a software system describes the internal elements of

the components, connectors, and even offers designs of data structures, providing fine-grained details

to develop these elements. Different aspects, such as algorithms, components, databases, and

networks, use distinct modelling methods. A design methodology needs to provide enough tools to

assist with low-level design aspects of a system. This thesis considers the lowest-level design as the

development-level, which helps map the design elements to their development by providing enough

development-supportive details (refer to Section 7.2.1).

2.2.3. Software Design Approaches

There are two approaches to designing software, which are briefly discussed below.

1. The top-down approach: the top-down approach starts with the high-level architectural design,

“and then a process of decomposition begins to work downward toward more detail. The

starting point is the highest level of abstraction. As decomposition progresses, the design

becomes more detailed until the component level is reached” [83].

2. The bottom-up approach: the bottom-up approach begins with the low-level design

components “that are needed for the solution, and then the design works upward into higher

levels of abstraction. Various components can then be used together, like building blocks, to

create other components and, eventually, larger structures. The process continues until all the

requirements have been met” [83].

Further details – including the pros and cons of these approaches and the methods and tools used –

are not discussed here, considering they are out of the scope of this study.

Chapter 2. Background

33

2.2.4. Software Modelling Languages

In software designing, various methods are utilised to model different aspects of the software

systems; for example, flowcharts are used to design algorithms, entity-relationship (ER) diagrams

are used to model databases, and UML use case diagrams are used to model requirements. These

methods use distinct modelling languages to design the target aspects. General-Purpose Modelling

Language (GPML) is a language that provides modelling elements to software systems in general,

without specifically focusing on a type of system such as web applications or mobile applications

[8]. The models and model-elements of the GPMLs may provide tools to design some general aspects

of any system; for example, UML’s class diagram can be used to design the domain logic of many

types of software systems, including desktop, web, and mobile apps. However, the GPMLs fail to

address the specificity of different types of software systems; for example, UML does not provide

tools to design GUI-related aspects, which are essential for many modern apps, including web and

mobile apps. To design unique features specific to a domain, engineers may use a Domain-Specific

Modelling Language (DSML), which offers enough tools to design the essential features of the

systems in that particular domain [8]. Identified DSMLs for the domain of web-based applications

are reviewed in Chapter 3.

2.2.4.1. Modelling Language- Elements

A model is an abstract presentation of a particular aspect of a software system made of model-

elements [8]. The modelling languages provide models (structure) and model-elements for them,

with syntax (notations with rules) and semantics (meaning) to design different aspects of a software

system [8]. A single model expresses a selected set of features or a particular view of a software

system, and a modelling language may provide multiple models and their model-elements to

represent different aspects of a software.

A system is designed by drawing diagrams based on the models using the given syntax and rules of

the model’s elements, ensuring that the requirements are expressed semantically. Some languages

like UML also refer to the design diagrams as models; nonetheless, this thesis refers to the user

designs based on language models as diagrams. A design diagram may contain textual descriptions

as well. Design models and diagrams are paramount for understanding, documenting, and sharing

knowledge about complex software systems [8].

2.2.4.2. Modelling Language Attributes

There are attributes to express the validity of modelling languages, such as simplicity, consistency,

completeness, extensibility, scalability, readability, understanding, correctness, generality, and

power of integration [17] [8]. The attributes selected for the RiWAsML/RiWAsDM – the simplicity

and adoptability – are generally discussed below, and their context is set in Section 4.1 under the

requirements for RiWAsML/RiWAsDM.

Chapter 2. Background

34

1. Simplicity – A modelling language should be less complex to assist in understanding the systems

designed using it straightforwardly [18] [20]. Simplicity can be preserved by incorporating the

separation of concerns principle, which appreciates decomposing a system and identifying and

separating the modules for greater realisation, thus, management [19]. A DSML must identify

enough models and model-elements to design all the general characteristics of the target systems,

maintaining a higher simplicity [17].

2. Adoptability – If a modelling language provides enough assistance in designing the target

systems, it will be highly adopted into engineering as a quality tool without being limited to a

theoretical solution. The following attributes are selected to validate the adoptability, which

looks into various dimensions of assistance a language provides to improve the adoptability.

2.1. Comprehensiveness – A modelling language has to provide enough elements to construct

expressive yet intuitive models [84]. A modelling language can be considered

comprehensive when it gives the following: 1.) models and model-elements to design all

the general aspects of target systems, 2.) rules and guidelines for designing the target

systems using the language and mapping the designs into development, and 3.) design and

engineering approaches to follow and guidelines to adopt into agile SE environments [17].

2.2. Usability (Learnability and Readability/Understandability) – Usability is an essential

attribute for the new DSMLs [17]. The models and model-elements provided by modelling

language must be expressive yet intuitive and easy to learn [84]. UML is a well-known

design language, and if a DSML is based on UML, it can be considered easy for engineers

with UML knowledge to learn and use. Also, suppose the low-level models and model-

elements of a DSML are more related to the actual development of the target systems; in

that case, the engineers can quickly learn the language as they may have the development

experience and knowledge. When a language syntax contains many development-oriented

details, and the models provide much relevant information, the designs become more

readable and understandable. A highly readable, understandable, and learnable language

can be seen as a significantly usable and, thus, adoptable tool.

2.3. Development support – The primary need of a modelling language is to design a system

to support its development. Even though a design is conceptually good but cannot be

converted into actual development, the conceptual support provided by the language is not

of much value. A language must give enough assistance to map the designs into

development to consider it a worthy tool to adopt into engineering.

2.4. Integrability – performing design activities in an agile SE environment is challenging as

agile methodologies prioritize development over design and documentation. If a design

language/methodology guides how to integrate the design activities into agile SE

methodologies, resulting in AMDD, it will adequately assist in adopting the

language/methodology into engineering.

Chapter 2. Background

35

2.2.4.3. OMG Meta-modelling Process

To define a new modelling language, Object Management Group (OMG) provides the Meta Object

Facility (MOF) specification with the meta-modelling process [85], which the language specification

is referred to as a meta-model. This process is based on a 4 layered meta-model hierarchy shown in

Figure 2.3 [85].

 Layer M3 (the meta-meta-model): The M3 layer defines the language that can be used to

describe new modelling languages. The M3 language can be seen as a language of modelling

languages for specifying the M2 meta-models. The MOF is the language used in the OMG’s

meta-modelling process M3 [85].

Figure 2.2 OMG’s meta-model hierarchy [86]

 Layer M2 (the meta-model): This layer defines the modelling languages which provide meta-

models with syntax for designing software. UML is an example of the M2 meta-model defined

by the MOF (refer to Section 3.2.3.1). DSMLs, defined as UML extensions, are also considered

M2 meta-models.

 Layer M1 (user models): The elements of this layer are the user models constructed based on

an M2 meta-model. This thesis refers to these models as diagrams.

 Layer M0 (instance models): This layer explains the running system, where its elements are

the actual runtime instances within the system. The M1 user models define a system’s particular

elements and their configuration at the M0 level.

In order to support integrating the modelling languages into the CASE tools, OMG offers an XML-

based format named XML Metadata Interchange (XMI) [87] [88]. Further, OMG provides a process

Chapter 2. Background

36

to submit proposals for new specifications, which the new DSML can get approved by the OMG as

a standard [89].

2.2.4.4. Define Domain-Specific Modelling Language

A GPML like UML cannot assist in designing the domain-specific features of a software system and

requires DSML to cater to the specificity of the target system’s context [9]. If a DSML is unavailable

for any specific domain, one can introduce a new DSML. There are two main approaches to defining

a DSML, following the OMG as the international standards provider [90].

1. One approach to defining a DSML is using OMG’s MOF [85] and introducing a new meta-

model like UML.

2. The other approach is to use the UML’s extension mechanism to introduce a UML-based meta-

model as a set of new UML profiles.

The advantages of implementing a DSML as a UML extension – over introducing a new meta-model

using the MOF – have been recognized towards higher adoptability [9] [91]. UML profiles respect

the UML semantics and, therefore, are intuitive for designers, providing a lower learning curve, and

the available UML tools can highly support UML profiles. These facts highlight the benefits of using

UML profiles and undoubtedly outweigh if there are any limitations [9] [91] [8]. Considering these

benefits, this research opts for the UML extension over a new MOF-based DSML to introduce the

RiWAsML.

2.2.4.5. UML Extensions and Profiles

As mentioned above, new DSMLs can be defined as UML profiles using UML’s lightweight

extension mechanism. This section elaborates on the elements of the UML’s extension mechanism.

 A metaclass is a class/component/element in a meta-model like UML, which can be extended

by one or more stereotypes.

 The Stereotype is a class that defines how an existing metaclass is extended as a part of a

profile [92].

 Constraints are associated with the stereotypes, imposing restrictions on the corresponding

meta-model-elements – such as pre-and post-conditions of operations, invariants, derivation

rules for attributes and associations, the body of query operations, etc. – which can be expressed

using either a natural language or the formal Object Constraint Language (OCL) [9].

 Properties of a stereotype are referred to as tag definitions or metaproperties, where the values

of these tag definitions are referred to as tagged values when a stereotype is applied to a model-

element [92].

Chapter 2. Background

37

 A Profile is defined as a package [9] [93] [8], which is stereotyped as <<profile>>, that can

extend either a meta-model like UML or another profile by respecting the original semantics [9]

[94].

 Profile diagram is a structured diagram that utilises the UML’s lightweight extension

mechanisms’ Stereotypes, Tagged Values, and Constraints for specializing the model-

elements to define a customized extension to the generic UML as a DSML to address a specific

domain [9] [95]. An example of a Profile diagram is illustrated in Figure 2.4. All the

customizations are grouped into a single package called a profile [9].

Figure 2.3 Example of core elements of UML profile diagram [95]

As per the uml-diagrams.org, “the Profiles mechanism is not a first-class extension mechanism. It

does not allow to modify existing meta-models or to create a new meta-model as MOF does. A Profile

only allows adaptation or customization of an existing meta-model with constructs that are specific

to a particular domain, platform, or method. It is not possible to take away any of the Constraints

that apply to a meta-model, but it is possible to add new Constraints that are specific to the profile”

[95].

2.3. Rich Web-based Applications

Rich Web-based Applications are a type of web-based distributed system. This section discusses

distributed systems in general in the direction of introducing web-based systems, then distinguishes

between web-based applications, Rich Internet Applications (RIAs), and Rich Web-based

Applications (RiWAs). After that, this section talks about Delta-Communication (DC) and the types

of RiWAs. Then, the general characteristics and essential features of the RiWAs are discussed in the

Chapter 2. Background

38

direction of setting the context of the RiWAs for the RiWAsML and RiWAsDM. Finally, some

aspects of RiWAs engineering are discussed.

2.3.1. Standalone Systems vs Distributed Systems

Standalone systems are a type of system whose elements are executed within the same

device/platform, such as a desktop computer or laptop. Opposed to the standalone systems are

distributed systems, in which the elements are distributed across many devices/platforms, as defined

below.

Distributed systems are comprised of elements distributed across multiple devices/platforms in

different tiers (at least between the client and the server), where these elements communicate over

a data network [96].

The distribution systems offer many advantages, such as resource sharing, while improving

distribution transparency, extensibility, and scalability [96]. Note that this thesis’s notion of the

concept of distributed systems is not in the context of distributed computing and only focuses on the

distribution of the elements across tiers and platforms, which communicates using network protocols

such as HTTP.

After the introduction of the Hyper Text Transfer Protocol (HTTP), the World Wide Web (WWW)

[97] emerged; then, the engineering of distributed systems and their use in the WWW became

popular, where the demand for web-based systems [98] increased rapidly. These web-based systems

swiftly evolved into much more advanced systems, which are discussed in the next section.

2.3.2. Web-based Applications vs Rich Internet Applications vs Rich Web-based

Applications

The distributed systems that utilise the service of the web are considered web-based applications,

which are defined as follows.

Web-based applications are a type of distributed system with elements on the client-side that

communicate(s) with elements in a web server for processing data and producing information

based on the service of the web with HTTP, client-server architecture, request-response model,

and other related techniques and technologies [98].

Standard web applications are thin client applications where the data captured from the clients are

sent to server elements for processing, which implements the business logic. They use simple GUIs

over the traditional page sequential paradigm, resulting in slow responses and, thus, a lack of user

experience. Addressing the web-based applications’ lower user experience, which is caused by the

poor GUIs and slower responses, the Rich Internet Applications (RIAs) marked a paradigm shift,

Chapter 2. Background

39

introducing thick client applications in the era of web2. Widening the coverage of the concept of the

RIAs, the term Rich Web-based Applications (RiWAs) [10] acts as an umbrella term to address the

types of web-based systems which provide higher user experience via their rich GUIs, which are

capable of partial page rendering enabled by the client-side event handling, client-side model, and

advanced communication model named Delta-Communication (DC) [11]. The RiWAs are defined

as follows.

Rich web-based application is a type of web-based application in which the client-side elements

contain rich graphical user interfaces, which are capable of partial page rendering using the

advanced processing capabilities enabled by client-side events handling and a client-side model.

Other than standard HTTP, Delta-Communication techniques and technologies are used for faster

communication, which can be implemented in synchronous or asynchronous mode. Rich graphical

user interfaces of the rich web-based applications, together with faster Delta-Communication,

provide an enhanced and rich user experience [10].

Modern web applications, including Facebook, Google apps, and Microsoft apps, are RiWAs. The

online version of Microsoft’s Word, Excel, and PowerPoint applications includes the same features

as their desktop versions, maintaining the look and feel. The table below compares the standard web

applications against the RiWAs, which are detailed in Section 2.3.5.

Table 2.1 Web applications vs. RiWAs

Web applications RiWAs

Poor GUIs using page sequence paradigm
and/or page refresh

Rich GUIs, which can perform partial page
rendering

Thin client - Browser-based client (no client-
side events handling and model)

Thick client with events handling and model -
Browser-based, mobile app, desktop app, IoT
app

Standard web server-side application web server-side applications and web services

HTTP HTTP and DC

2.3.3. Delta-Communication

The advanced communication model of the RiWAs is generally known as Asynchronous

Communication, and the popular technique to develop this communication model is the

Asynchronous Javascript And XML (AJAX) [99], which is based on the technology named

XmlHttpRequest (XHR) object [100]. However, the capabilities of this advanced communication

model go beyond the notion of asynchronous communication, and also a variety of technologies and

techniques have been introduced after AJAX to develop diverse aspects of this communication. The

umbrella term Delta-Communication (DC) is introduced in our previous work [11] to address all

Chapter 2. Background

40

these features and different development techniques/technologies. The term DC covers various

development techniques and technologies, which are denoted by the taxonomy in Figure 2.5 [10],

proving a general concept to address them all. Since the DC techniques/technologies in this taxonomy

are already discussed in the literature [10], they are not explained again in this thesis. The DC is

defined as follows.

Delta-Communication is the rich communication model used by the RiWAs for client-elements

to communicate with the server-elements, to exchange only the needful dataset – for a particular

feature executed at the time – which is smaller, compared to the size of the request/response of

standard HTTP communication. Since the size of the data set communicated is smaller, the

communication completes faster, eliminating the work-wait pattern. The processing of the

response is done by the client-components in the background; therefore, the page refreshes are

eliminated and replaced by partial page rendering to update the content of the current GUI with

the results of the response [11].

The DC can be implemented in both pull and push communication modes. In pull-communication,

the data is explicitly requested by the client and pulled from the server; in push-communication, the

server pushes data to the client(s) when required, even without a request [11]. The RiWAs’

communication technologies and techniques are depicted in Figure 2.5.

Figure 2.4 Taxonomy for the development techniques and technologies of DC [10]

Chapter 2. Background

41

Since in-depth details of the DC have already been discussed in different forums [11], only the

highlights of the DC are listed in this thesis, which are given below.

 DC can be implemented in both pull and push communication modes.

 DC can be implemented in either synchronous or asynchronous mode.

 DC is processed behind the GUI, unnoticed by the user.

 DC enables GUI partial rendering, eliminating full page refresh.

 The amount of the data communicated by the DC is smaller than a full page refresh; therefore,

the data are communicated faster.

 By utilising the above features, DC helps improve the user experience.

2.3.4. Types of Rich Web-based Applications

The types of RiWAs can be categorized according to the nature of the client-component, as shown

in Figure 2.6.

Figure 2.5 Taxonomy for the client-component(s) of RiWAs [11]

In the case of browser-based RiWAs, the proprietary plug-in-based technologies such as Adobe Flash

[101] or Java Applets are not used anymore; instead, the standard JavaScript (JS) based techniques

like AJAX [99] have become the de facto standard [102]. For the non-browser-based category, a

client-component can be developed to run without a browser, either as a standard desktop app, mobile

app, or even as an embedded application in an Internet of Things (IoT) enabled device [11].

2.3.5. General Characteristics and Essential Features of RiWAs

A large number of technologies/techniques like AJAX, Comet, WebSocket (WS) [103], and

frameworks/libraries/plugins have been introduced throughout the last two decades to develop the

RiWAs [102]. Regardless of the complexity, the diversity of the types of RiWAs, and the variety of

technologies/techniques used to develop them, some general characteristics and essential features of

RiWAs are identified [21], which are realised by the RiWAArch style [12]. This section discusses

Chapter 2. Background

42

the general characteristics and essential features of RiWAs towards setting the context for the

RiWAsML and RiWAsDM, achieving the research’s objective 2 (refer to Section 1.4) by aligning

with the step 1.1 of the RiWAsDM implementation process (refer to Section 1.5.3.1). Further

examples and elaborations of these characteristics and features are given in Chapters 4, 5, and 6 while

introducing the RiWAsML.

2.3.5.1. General Characteristics of RiWAs

1. Rich GUIs: Rich GUIs are the key advantage of the RiWAs, which improve the user experience

by providing rich content similar to desktop applications. Traditional web applications use

multiple web pages to implement a function based on the page sequence paradigm, where the

RiWAs may implement the same function on a single GUI. For example, consider an email client

application; a traditional web application may show the folders on a page, asking the user to

select a folder to navigate to the next page, which contains the emails in the selected folder. Then,

the user may select an email on that page to navigate to another page to open the selected email.

A RiWA may implement this on a single page with three columns, where the left column shows

the folders, the middle column shows the emails on the selected folder, and the right column

shows the content of the selected email.

More importantly, even though the traditional web application may implement a GUI similar to

a RiWA, as a thin client, it still engages page refreshes on each and every click of the user,

slowing down the system and impairing the user experience. A RiWA can replace the page

refreshes with partial page rendering – which is a vital feature of the rich GUIs – with the help

of client-side events handling, client-model, and DC, which improves the user experience

compared to the traditional web application.

2. A collection of applications: A traditional web application acts as a single browser-based

application, and a RiWA can be seen as a collection of Application elements (as defined in

Section 4.3.1.1) running together, which communicate with each other at runtime. Any RiWA

contains at least two Application elements, one on the client-side and the other on the server-

side. These Application elements communicate using HTTP and/or DC. The client of a traditional

web application is always browser-based; however, the client-side Application element of a

RiWA can be a browser-based app, mobile app, desktop app, or even a program running on an

IoT-based device. Further, unlike the traditional web applications, the server-side Application

element of a RiWA can be a standard web server-side application running in a web server, a web

service, a micro-service, a cloud-based service, or a process capable of handling HTTP or DC

communication.

A RiWA may consist of multiple Application elements of different types that run on distinct

platforms in different tiers. For example, the use case of a learning management system in

Chapter 2. Background

43

Chapter 8 (refer to Figure 8.11 in Section 8.3.1) includes two client-side Application elements (a

browser-based app and a mobile app) and two server-side Application elements (a web app and

a web service).

3. Client-side events handling: Traditional web applications – as thin clients – implement event

handlers on the server-side, and when a user triggers an event on the client, a request is sent to

the server to handle the event. This process always engages page navigation or refresh, slowing

down the system and decreasing the user experience. In RiWAs, users may trigger events – like

a button click, text type, or drag and drop – on the rich GUIs while interacting with them; with

the help of advancements in client-side development technologies/techniques like JavaScript, the

event handlers can be implemented on the client-side – to handle the events on the client with

the help of client-model – instead of sending the event data to the server for processing. The

client-side event handling eliminates the page navigation or refreshes in the direction of

improving the user experience by responding to the events faster. If server-side components are

required for processing, then the client-side event handlers use DC to communicate with the

server components and get the results faster than traditional HTTP-based communication,

minimizing the response time and thus improving the user experience. The client-side event

handlers are capable of updating the current GUI with the results by partially rendering the

necessary GUI sections, eliminating the page refreshes.

4. Split business logic between client and server: With advanced client-side technologies, it is

possible to develop processing components on the client-side, making the RiWAs thick client

applications. In such a setting, business logic can be implemented on both the server and client

sides by splitting the model, and the client-side event handlers can utilise the client-model as

required without consulting the server-model, making the RiWAs more responsive and scalable

than traditional web applications.

5. Use of DC: The RiWAs’ Application elements primarily use DC to communicate with each

other, which is faster, thus improving the user experience. Refer to section 2.3.3 for the features

of the DC.

2.3.5.2. General Essential Features for RiWAs

1. MVC-based modularization: Modularization splits the features of a system into components

based on their functionality, satisfying the separation of concern principle [97] towards

increasing simplicity and modifiability [104]. MVC has served well as an architectural style and

a design pattern to separate the development aspects into modules based on presentation, event

handling, and business logic. Considering the general characteristics of the RiWAs, it is essential

to use MVC to improve the simplicity of RiWAs’ formalism to assist in development by using

the MVC to separate the rich GUIs, client-side event handlers, and split business logic into client-

Chapter 2. Background

44

model and server-model [105]. The RiWAArch style [12] realises MVC based on a version

named Balanced Abstract Web MVC (BAW-MVC) [105], which is specialized for RiWAs.

2. DC handling connectors: Since DC is RiWAs’ primary communication type, proper elements

for DC handling and management in both client and server are essential. These elements can

support separating the DC handling logic from the business logic and selecting proper

technologies/techniques to develop DC and related features. The RiWAArch style realises the

DC and provides a comprehensive DC connector with the DC-engine on the client-side and the

DC-bus on the server-side [10].

3. Database: Modern RiWAs necessarily process data and save it for persistence; therefore,

databases are used. Considering this viewpoint, 3-tier architecture can be seen as the core

formalism of the RiWAs. Hence, contemplating database and related functions is essential for

RiWAs.

2.3.6. Rich Web-based Applications Engineering

Traditionally, standard SE methodologies like MDA [75] have been used for developing standalone

applications. However, after the introduction of the Hyper Text Transfer Protocol (HTTP), the World

Wide Web (WWW) [97] emerged, and the use of web-based systems became popular, and the

demand for them increased rapidly. In this setting, web engineering was recognized as a dedicated

discipline in the late 1990s, introducing new methodologies, tools, processes, etc., to assist web-

based systems engineering [106].

Since the RiWAs is a type of web-based application, the RiWAs engineering aspects – including the

designing – are accompanied by the web engineering discipline. This section denotes the position for

the RiWAs designing within web engineering, which is a sub-discipline of the software engineering

domain. A few styles, design methods, and methodologies have been introduced in an attempt to

realise the RiWAs’ complexity; the related ones are reviewed in Chapter 3. However, RiWAs still

lack strong, dedicated design methods/methodologies to cater to their specificities throughout

engineering.

High-level Designing of Rich Web-based Applications

Some architectural styles have been presented to support the high-level architectural modelling of

RiWAs, which are reviewed in section 3.1. Among them, the RiWAArch style [12] can be marked as

a comprehensive style, which can realise the general characteristics and essential features of RiWAs,

discussed in section 2.3.5. The RiWAArch style is shown in Figure 3.1 and reviewed in Section 3.1.3.

The completeness of the RiWAArch style can assist in exploiting it as the standard architecture for

RiWAs in general. This thesis utilises the benefits of the RiWAArch style by employing it as the

foundation formalism when introducing the RiWAsML.

Chapter 2. Background

45

Low-level Designing of Rich Web-based Applications

The UML is a GPML; therefore, it fails to address the specificity of web-based applications. Different

UML extensions have been introduced to support web application designing, such as UML-based

Web Engineering (UWE) [23] and WebML [107]. However, since the RiWAs contain unique features

on top of the traditional web applications – like rich GUIs, client-side events handling, DC, and

distributed logic – the web application design tools are not strong enough to support the specificity

of RiWAs’ designing. Some UML extensions and new design methods have been introduced for

RIAs/RiWAs, which are reviewed in Sections 3.3 and 3.4. Based on the reviews, it can be understood

that none of these available design methods provides a complete set of tools to design every aspect

of the RiWAs. This problem is elaborated on in section 1.2. As a solution, this thesis introduces a

UML-based design methodology named RiWAsDM to cater to the specificity of the RiWAs (refer

to Chapters 4 to 7).

2.4. Chapter Summary

The Agile Model Driven Development (AMDD) approach merges the benefits of Model Driven

Software Engineering (MDSE) and Agile Software Engineering (ASE) by adopting the DMSE’s

design activities into ASE. Software design methodology governs the design activities by providing

enough design methods, including modelling language for high-level and low-level design, rules

and guidelines, CASE tools, etc. The high-level design produces architecture, which can realise the

system’s high-level architectural elements and their configuration, and low-level design details the

high-level design elements, assisting in mapping the designs into development. Software design may

use either the top-down approach or the bottom-up approach.

Software modelling languages offer models, model-elements, and rules and guidelines to design

software systems. UML is the de facto standard General-Purpose Modelling Language (GPML),

and Domain-Specific Modelling Languages (DSMLs) can be introduced using UML’s extension

mechanism. Attributes like simplicity, adoptability, learnability, readability, and understandability

express the quality of a modelling language.

RiWAs’ general characteristics and essential features are rich GUIs, a collection of Application

elements, client-side events handling, split business logic between client and server, use of DC and

DC connectors, MVC-based modularizing, and use of databases, which are realised by the

RiWAArch style. A DSML and a design methodology for RiWAs should cover them all.

46

Chapter 3. Review of Available Related Solutions

The available related solutions are reviewed under four categories: architectural

styles, high-level design methods/methodologies, low-level design

methods/methodologies, and research works. The reviewing criteria are given at

the beginning of each section. Only an overall review of the available related work

is presented in this chapter, and in-depth model and model-elements level reviews

are given where necessary in Chapters 4 to 7 while implementing the

RiWAsML/RiWAsDM.

3.1. Architectural Styles for RiWAs

This section reviews the architectural styles available for RiWAs towards selecting a strong style to

be exploited as a framework for the proposed design methodology, aligning with Step 1.1 of the

RiWAsML implementation process (refer to Section 1.5.3.1). The styles available for RiWAs are

reviewed using the following criteria, which are defined towards understanding their simplicity and

adoptability.

1. Specificity for RiWAs.

2. Realise general characteristics and essential features of RiWAs (refer to Section 2.3.5) towards

comprehensiveness.

3. Abstract: independent from development technologies/techniques, hence, portable.

4. Based on known available style(s), and thus, it is easy to learn/understand.

5. Adoption is discussed; therefore, it supports development.

3.1.1. SPIAR: A Component and Push-based Architectural Style for AJAX

Applications (2008) [108]

In this research, Mesbah and Deursen introduce an architectural style named Single Page Internet

Application aRchitectural style (SPIAR style) for single-paged browser-based RiWAs, which

focuses more on the front-end implementation. SPIAR style tries to “minimize user-perceived latency

and network usage, and improve data coherence and ultimately user experience” [108]. Since SPIAR

only focuses on single-page browser-based systems, it does not realise other types of RiWAs, like

systems with mobile client apps.

As the name of the research paper denotes, its context is only AJAX applications; hence, SPIAR

cannot be considered abstract. Furthermore, the SPIAR style is based on the characteristics of some

available frameworks: Echo2, GWT (a web framework offered by Google), Backbase (a commercial

package delivered by Backbase), cometd (a server-side push framework), and Dojo (a client-side

framework to work with cometd). Because of these technological constraints, the SPIAR does not

provide an abstract solution.

Chapter 3. Review of Available Related Solutions

47

The DC-related aspects are addressed by the SPIAR as follows. The requests from the AJAX Engine,

which is on the client-side, are handled by an element named Decoder on the server-side, and the

responses are sent back to the AJAX engine by an element named Encoder. The Ajax Engine,

together with the Encoder and Decoder, create a connector for pull-DC. A connector with a Push-

Server component in the server and a Push-Client component in the client is used to handle push-

DC. These connectors improve the visibility and simplicity of the SPIAR style. However, the SPIAR

style does not depict how non-DC communication is integrated. Since the SPIAR style targets single-

page applications, standard HTTP communication is eliminated after the application’s first time

loading; thus, it does not require non-DC for page navigation. SPIAR uses a novel modularization

unrelated to MVC, and the implementation of business logic or controllers is not explicitly discussed,

which lowers the simplicity more.

SPIAR does not incorporate available styles; only the AJAX engine is taken from the AJAX general

architecture. The other new elements and the configuration need to be learned in order to adopt the

SPIAR. As a novel approach with some new components, SPIAR incorporates a high initial learning

curve for anyone without experience with the frameworks mentioned above. How the SPIAR style

is adopted in development is not discussed, even for the mentioned frameworks, limiting it to a

conceptual solution with low usability and, thus, low adoptability.

3.1.2. jAGA: jQuery-based Ajax General Interactive Architecture (2012) [109]

This research introduces an architecture for AJAX-based RiWA, named jAGA. jAGA focuses on

browser-based RiWAs; thus, support for other types of RiWAs, like mobile apps, cannot be gained.

Since jAGA is based on jQuery and AJAX, it is not abstract, and as aforesaid, it only targets browser-

based RiWAs, limiting the scope of the platform and technologies/techniques. Cumulatively, as a

result, it has lower portability and adoptability.

The simplicity of jAGA is mainly based on its AJAX sub-operations, and a strong MVC-like module

separation is not applied. jAGA does not explicitly discuss how the DC is separated from non-DC;

nevertheless, the AJAX sub-operations may help separate the AJAX-based DC from the other

elements, which is a jAGA’s strength. jAGA uses a novel approach to realise the AJAX-based

RiWAs, consisting of several modules and sub-modules based on some new concepts, without

inheriting characteristics from available architectural styles; hence, the usability of jAGA can be

marked low. Further, jAGA does not discuss development-related details, further lowering the

adoptability.

3.1.3. RiWAArch Style: Rich Web-based Applications Architectural Style (2020) [12]

RiWAArch style is a comprehensive style for RiWAs since it realises the general characteristics and

essential features of the RiWAs (refer to section 2.3.5) with a higher simplicity. The RiWAArch style

Chapter 3. Review of Available Related Solutions

48

does not depend on any technology/technique or platform, making it an abstract, portable, and, hence,

adoptable solution for RiWAs engineering.

Modularization of the RiWAArch style is firmly based on MVC, improving simplicity by separating

business logic from presentation and event handling. Simplicity in RiWAArch style is enhanced by

unscrambling the DC handling entirely from the MVC modules. The RiWAArch style centralizes

DC handling by using a DC connector, separating DC from non-DC, further enhancing simplicity,

and also improving visibility, modifiability, and performance properties.

As a hybrid of well-known styles like client-server, MVC, and message-bus styles, the RiWAArch

is easy to learn/understand and, hence, highly usable. Also, adoption is demonstrated via a

comprehensive use case, explaining every aspect of the style.

All these aspects make the RiWAAsrch style a highly adoptable solution for RiWAs engineering.

The RiWAArch style is shown in Figure 3.1.

Figure 3.1 The Rich Web-based Applications Architectural style (RiWAArch style) [12]

3.1.4. Summary of the Available Architectural Styles Review

Table 3.1 summarises the review of the available architectural styles, aligning with the review

criteria.

 C1: Specificity for RiWAs.

 C2: Realise general characteristics and essential features of RiWAs (refer to section 2.3.5)

towards comprehensiveness.

 C3: Abstract – independent from development technologies/techniques, hence, portable.

 C4: Based on known available style(s), and thus, usable by being easy to learn/understand.

 C5: Adoption is discussed; therefore, it supports development.

Chapter 3. Review of Available Related Solutions

49

Table 3.1 Summary of the architectural styles review

Style\ Criteria C1 C2 C3 C4 C5

SPIAR Single paged Partial Based on some
frameworks

Lower
usability

Lower
adoptability

jAGA Browser-based Partial jQuery and
AJAX

Lower
usability

Lower
adoptability

RiWAArch RiWAs in
general

Comprehensive Abstract Higher
usability

Higher
adoptability

Based on the review, considering the high satisfaction of the review criteria, this research values the

RiWAArch style as an abstract, comprehensive style that can realise the general characteristics and

essential features of the RiWAs, which is highly adoptable to RiWAs engineering. Therefore, the

RiWAArch style is selected to provide the foundation for the RiWAsML, fulfilling the research

objective 1 (refer to Section 1.4) by following Step 1.1 of the RiWAsML implementing process (refer

to Section 1.5.3.1). Chapters 4 to 7 discuss how the RiWAArch style is utilised to implement the

RiWAsML.

3.2. High-level Design Methods/Methodologies

There are three main approaches for designing software architectures: informal box-and-line

drawing, formal Architectural Description Languages (ADLs), and UML-based languages (refer to

sub-section Architectural Description Language in Section 2.2.2.1). These approaches and the

methods/methodologies used in them are reviewed based on the criteria below.

1. Usability: easy to learn and read/understand employing syntax and semantics

2. Adoptability: adoptable to RiWAs engineering by means of usability and development support.

3.2.1. Informal Box-and-Line Drawing

This section reviews the box-and-line approach in the direction of highlighting the importance of

formal design languages.

The box-and-line approach is the earliest and probably the most used technique to draw software

architectures. In this approach, formal notations are not provided, and the architect has the freedom

to define syntax and semantics for them. The elements/entities are denoted using boxes, and the

communication or any other relationship between the elements is depicted using lines. This technique

is an easy way of drawing diagrams without restrictions where anything can be flexibly included and

illustrate architectures completely. Therefore, all the aspects related to RiWA architectures –

specified by the review criteria – can be depicted using boxes and lines.

The main disadvantage of the box-and-line approach is when the boxes are used to illustrate the

entities and lines are used to depict relationships or communication channels, the semantics of the

elements are omitted from the design [110]. As per Garlan [78], there are many disadvantages related

Chapter 3. Review of Available Related Solutions

50

to the box-and-line technique, such as “the meaning of the design may not be clear since the graphical

conventions will likely not have a well-defined semantics. Informal descriptions cannot be formally

analysed for consistency, completeness, or correctness. Architectural constraints assumed in the

initial design are not enforced as a system evolves.” Since formal syntax and semantics are missing

in the box-and-line approach, different diagrams may use diverse meanings for boxes and lines, and

the comparison of diagrams is problematic due to inconsistencies. Also, an initial effort and a

learning curve are engaged with each diagram to learn the syntax and semantics used for the diagram.

Formal design languages are introduced to address the issues of the box-and-line approach, which

are reviewed in the following sections. OMG’s MDA [75] explains the advantages of having a formal

modelling language in the direction of improved communication, as listed below.

 Provides well-defined terms and notations that assist in a common understanding of the context.

 Provides a foundation for models as semantic data to be managed, versioned, and

communicated.

 Provides libraries of reusable (asset) models and model-elements as a standard vocabulary with

rules, reusable processes, business object models, or design patterns.

 Models and model-elements become part of the “corporate memory” for designing within an

organization.

Considering all these concerns, the box-and-line approach can be seen as lacking usability and, thus,

adoptability.

3.2.2. Formal Architectural Description Languages

RiWAsML/RiWAsM focuses on the UML-based design, and Architectural Description Languages

(ADLs) are considered out of the scope; however, they are reviewed in this section to show their lack

of usability/adoptability.

Formal ADLs use programming-like languages to define software architectures whose code can

generate visual diagrams. Each formal ADL uses a dedicated set of syntax and semantics; hence,

they always incorporate a higher initial learning curve compared to the methods/methodologies using

the semi-formal UML-based approach.

Formal ADLs have been introduced since the early 90s and are mentioned in the literature, for

example, AADL, ADML, Darwin, Koala, Rapide, SBC-ADL, UniCon, and Wright. However, it

appears that the ADLs had not been much accepted due to their higher learning curve and

inflexibility; hence, they were not maintained over time, and their development has ended. Therefore,

these early ADLs are not reviewed in this section.

After surveying the ADLs, Ozkaya and Kloukinas [111] conclude that the lack of interest shown for

the ADLs can be the “consequence of three main problems that no ADL has managed to solve at the

Chapter 3. Review of Available Related Solutions

51

same time: (i) lack of support for formal analysis of architectures, (ii) notations that sometimes make

specifying large and complex system architectures harder than it should be, and (iii) potential un-

realizability of system architectures.” The requirements of web-based systems were rapidly evolving,

and the ADLs had not been updated to cater to these requirements, which can be seen as another

reason for ADLs to become out of favour.

The formal ADLs identified during the literature survey as still maintained are reviewed below within

the context of this thesis.

3.2.2.1. xADL (version 3.0, 2002) [112]

The latest related publication was in 2002 [113], and the official website [112] has no other timeline

details related to the releases, and it looks obsolete. xADL is defined as a set of XML schemas that

provide unprecedented extensibility and flexibility, which are the strengths of the xADL. xADL

allows engineers to “write new XML schemas extending xADL to add your new modelling constructs”

[112]. xADL’s official website does not provide many details about the current schema and how it

can be used. However, based on the extensibility of the xADL, we can think that it can provide the

expected support to design the RiWAs’ architectural elements and ways to show additional details

on the architecture. The disadvantage of this extensibility is once the xADL is extended for a project,

the extensions are less formalized and may exhibit all the weaknesses of informal notations like the

box-and-line approach. This problem can be overcome by introducing formal extensions, focusing

on particular types of systems.

3.2.2.2. Acme (2011) [114]

Acme is a generic ADL for software systems, which is built on a core ontology of seven types of

entities for architectural representation: components, connectors, systems, ports, roles,

representations, and rep-maps. As a general ADL, it does not address the specificity of the web-

based systems and, thus, RiWAs. Even though Acme has syntax to represent the elements system,

components, and connectors, entities/elements like tiers and platforms cannot be specified.

Since Acme is a generic ADL, DC communication and related aspects are not given. Nevertheless,

Acme can include details with the communication channels, which can be helpful in denoting DC-

related information to specify the DC channels.

Acme has no exact ways to define additional entities like databases. Nevertheless, Acme supports

including additional properties in the architecture description, which can be exploited to specify

different entities and include more details like metadata. However, this method is complex and makes

Acme less usable.

Chapter 3. Review of Available Related Solutions

52

3.2.2.3. xAcme with xArch (2001) [115]

xAcme is an extension of Acme that describes Acme using xArch. xArch is an XML-based standard

that specifies the architectural structure of software systems, which defines the ComponentInstance,

ConnectorInstance, LinkInstance, GroupInstance, and ArchInstance. Yet, xArch needs more details

like properties, families, and constraints, which are in Acme. xAcme tries to add these details using

XML to the xArch to describe all the features provided by Acme. xAcme extends xArch to support

the Acme extensions: properties, acmeProperties, families, constraints, and acmeConstraints.

However, since xAcme is a general early approach, it lacks features that serve the RiWAs. xAcme is

an approach to satisfy Acme through xArch; hence, xAcme includes Acme’s shortcomings in the

context of RiWAs. The entities/elements above the components level, such as tiers and platforms,

cannot be defined in xAcme and the communication-related aspects are weakly addressed. There are

no explicit ways to include additional entities or details to the architecture description; however, the

properties and constraints might be exploited to add these details.

3.2.2.4. AADL: Architecture Analysis and Design Language (2022) [116] [117]

AADL is a maintained ADL; its official website was updated in 2022 [117]. AADL offers standards

for defining guidelines for design and analysis through a DSML. As per the official website, “AADL

captures large designs through high-level architectural concepts built after domain expertise:

component categories that describe key building blocks, such as processor, devices, threads, and

rules to assemble them. Through careful abstractions, complex designs can be captured as smaller

models amenable to inspection and analysis” [117]. Regardless of all the benefits offered by the

AADL, as an ADL, it still incorporates complexity, lowering the usability.

3.2.2.5. Summary of the Review of ADLs

Table 3.2 summarises the ADLs review based on the criteria below.

 C1: Context – Is the ADL generic, or can it be extended for domain-specific features?

 C2: Status – is the ADL maintained or obsoleted?

ADLs can be seen as an outdated approach to designing software systems. However, this review

identified that AADL is a living and maintained ADL, and xADL can also be marked as a potential

solution that can be extended towards providing features to design RiWAs architectures. Still, they

may have adoptability issues because of their complex nature.

Chapter 3. Review of Available Related Solutions

53

Table 3.2 Summary of the ADLs review

ADL \ Criteria C1 C2

xADL Generic but can be
extended

Obsoleted

Acme Generic Obsoleted

xAcme xArch Generic Obsoleted

AADL Generic. Can integrate
with languages like
SysML

Maintained

3.2.3. UML-based/UML-like Design Methods/Methodologies

This section primarily reviews solutions available for high-level designing, which are based on UML

or similar to UML. Since some of these methods can be deemed as methodologies, the review of

identified methodologies is merged with the review of high-level methods. This section only provides

an overall review, and the model-element-level details are further reviewed in Chapters 5, 6, and 7

while introducing the proposed RiWAsML and RiWAsDM.

The review criteria are based on the requirements set for the high-level design aspects of RiWAs in

Section 4.3.

1. Context: offer generic or specific features towards web-based applications or RiWAs.

2. The simplicity of elements: realise the architectural elements and offer syntax for them – tiers,

platforms (hardware, OS, and application-level virtualization), applications, components (model

and controller), and connectors.

3. The simplicity of communication channels: realise the different types of communication

channels and provide notations for them – HTTP, DC, data reading, and method calls.

4. Additional architectural elements: supply high-level elements like users, data sources, web

services, and networks.

5. Additional details: assist in showing further information on the designs using text-based notes.

3.2.3.1. MDA (version 2, 2014) [75] with UML (version 2.5.1, 2017) [7]

OMG’s Model Driven Architecture (MDA) [75] can be seen as a software design methodology,

which is based on the MDSE (refer to section 2.1.3). MDA suggests starting with platform-

independent models and then converting to platform-specific models to assist domain-specific

implementation. The basic concepts of MDA are System, Model, Modeling Language, Architecture,

View and Viewpoint, Abstraction, Architectural Layers, Transformation, Separation of Concerns,

and Platform. MDA also discusses MDA Model Transformation and Execution, System Lifecycle

Support in MDA, and Set of MDA Standards. The discussions on SDLC support generally state

Chapter 3. Review of Available Related Solutions

54

MDA's impact on the SDLC; however, integrating MDA into other SE methodologies, especially the

Agile SE, is not discussed.

UML is MDA’s standard modelling language, and the fundamental details of the UML as an MOF

meta-model are discussed in Section 2.2.4. Among software modelling languages, the UML [7] –

introduced and maintained by the OMG [118] – is probably the widely accepted and used modelling

language for low-level software designing under the OODD paradigm [9]; therefore, can be seen as

the de facto standard software modelling language. The UML is a GPML enriched with a set of

models to cater to the general requirements of OO software systems designing. When going through

the literature, it is evident that UML is lasting compared to ADLs; therefore, the UML-based

approach can be marked as a better approach to software designing, including architecture.

Since UML is a GPML, the UML models and model-elements do not provide enough features to

design the software architectures [78] [111]. Models like the Component diagram and Deployment

diagram allow designing some aspects related to the high-level architecture; however, these models

are unable to capture all the architectural aspects since the UML notations are “limited by their lack

of support for formal analysis and their lack of expressiveness for some architecturally relevant

concepts” [78]. Hence, some solutions extend UML to cater to the specificity of architectural

designing.

UML’s diagram list is given in Figure 3.2 under two main categories: structure and behaviour.

Figure 3.2 The list of UML diagrams [119]

The generic characteristics of the UML within its broad scope do not cater to the septicity of some

software systems, such as web-based applications. For example, UML does not include tools to

model the presentation, DC, and related aspects of the RiWAs. UML provides an extension

mechanism to define DSMLs by extending the UML’s abstract meta-model (refer to Section 2.2.4.5).

Chapter 3. Review of Available Related Solutions

55

3.2.3.2. Arc
42

(Version 8, 2022)

[80]

[120]

Arc42 can be considered a methodology that “provides a template for documentation and

communication of software and system architectures” using the following 12 template sections with

tips, which include designs [80].

1. Introduction and goals: Requirements, stakeholder, (top) quality goals (24 tips)

2. Constraints: Technical and organizational constraints, conventions (5 tips)

3. Context and scope: Business and technical context, external interfaces (19 tips)

4. Solution strategy: Fundamental solution decisions and ideas (6 tips)

5. Building block view: Abstractions of source code, black-/whiteboxes (28 tips)

6. Runtime view: Runtime scenarios: How do building blocks interact (11 tips)

7. Deployment view: Hardware and technical infrastructure, deployment (10 tips)

8. Crosscutting concepts: Recurring solution approaches and patterns (11 tips)

9. Architecture decisions: Important decisions (10 tips)

10. Quality: Quality tree and quality scenarios (8 tips)

11. Risks and technical debt: Known problems, risks and technical debt (6 tips)

12. Glossary: Definitions of important business and technical terms (6 tips)

Arc42’s primary focus is to document the software systems, and “since a complete package of

templates is given, the efforts to document architectural details are minimized” [80]. The following

sections in the Arc42 document template include designs.

 Building block view: a high-level architectural view with 4 levels, starting with the scope and

context and then decomposing the elements down into Level 1, Level 2, and Level 3.

 Runtime view: describes concrete behaviour and interactions of the system’s building blocks

in the form of scenarios. The runtime view uses sequence diagrams and activity diagrams.

 Deployment view: captures the technical infrastructure and the mapping of (software) building

blocks to that infrastructure elements. The deployment and component diagrams are utilised in

this view.

Arch42 does not provide syntax to design architectures; instead, it provides some guidelines for the

building block view, which is similar to the C4 model [79] (refer to Section 3.2.3.5). The low-level

designing under the runtime and deployment views are based on the UML.

3.2.3.3. SAP’s OOA (Version: 16.7.07, 2023) [45] with TAM [82]

SAP provides a tool called PowerDesigner to design systems using Object-Oriented Modelling

(OOM) concepts, and the complete process is called Object-Oriented Architecture (OOA). OOA

discusses aspects like web services designing, generating and reverse engineering OO source files,

generating models from an OOM, checking an OOM, and using language-related details on models

such as Java, VB, C++, and C#.

Chapter 3. Review of Available Related Solutions

56

SAP’s OOA is mainly based on the standard UML and additionally offers a standard for architecture

modelling named Technical Architecture Modeling (TAM), which provides as few models as

possible but as many as necessary to maintain simplicity as the primary focus, defining and

describing the following.

 Which diagram types are allowed to model technical architecture at SAP?

 What elements in a particular diagram type are allowed, optional, or prohibited?

 Which extensions of the UML meta-model have been made for specific diagram types?

 What are the semantics of newly added elements in diagram types, and how can those elements

be used?

Even though the name says architectural modelling, TAM discusses other aspects, such as

requirements modelling using use case diagrams and low-level designing. The documentation

mentions that “TAM does not contain nor refer to any profiles” [82], and it is unclear how TAM

differs from standard UML.

As per TAM’s documentation, TAM introduces a new diagram named the Component/Block

diagram [82], which is based on the UML component diagram. The component/block diagram

contains some syntaxes useful for RiWAs’ architectural modelling, and it shows “the compositional

structure of any system that processes information and illustrates how agents access data in storages

and communicate over channels” using the syntax below [45].

 Elements: Boundary Line, Protocol Boundary, Agents, Human Agents, Storages, Common

Feature Areas, and Multiple Dots

 Communication: Request/Response, Unidirectional, and Bidirectional Communication

Channels

 Access: Read, Write, and Modify Accesses

These syntaxes do not include tiers, platforms, and DC-related elements. Also, other than the high-

level component/block diagram, the low-level design models for views, controllers, and DC

connectors are not provided.

3.2.3.4. ArchiMate (version 3.2, 2022) [121]

ArchiMate provides “an integrated architectural approach that describes and visualizes the different

business domains and their relations” [122]. The ArchiMate is an independent language – which is

inspired by UML but not based on the UML – with a core framework with 5 layers (business,

application, technology, physical, and Strategy) and 3 aspects (passive structure, behaviour, and

active structure) to classify the elements of the language [121]. The model-elements in each layer are

listed below.

Chapter 3. Review of Available Related Solutions

57

 Business Layer: Business Actor, Business Role, Business Collaboration, Business Process,

Business Function, Business Interaction, Business Event, Business Service, Business Interface,

Business Object, Product, Contract, and Representation

 Physical Layer: Equipment, Facility, Distribution Network, and Material

 Technology Layer: Node, Device, System Software, Technology Interface, Technology

Function, Technology Service, Technology Collaboration, Technology Interaction, Technology

Event, Technology Process, Artifact, Communication Path, and Network

 Application Layer: Application Collaboration, Application Component, Application Service,

Application Function, Application Interaction, Application Interface, Application Process,

Application Event, and Data Objects

 Strategy Layer: Resource, Capability, and Course of Action

Further, some other notations are given under the categories below.

 Motivation Elements: Stakeholder, Driver, Assessment, Goal, Outcome, Principle,

Requirement, Constraint, Meaning, and Value

 Implementation & Migration Extension: Plateau, Gap, Deliverable, Work Package, and

Implementation Event

 Relationships: Composition, Aggregation, Assignment, Realisation, Serving, Access,

Influence, Triggering, Flow, Specialization, Association, and Junction

ArchiMate has a large set of notations, also including colour codes. The examples of the ArchiMate

show that the tiers can be separated using a dashed line, and the type of tier can be written on the

dashed line. ArchiMate includes notations for node, device, system software, product, component,

and interface. The device and system software can define the platform; however, the system software

can also denote environments like an application server, a database system, or a workflow engine.

The product can depict an application, and the components can be defined using the component

notation, and the connectors can be defined using the interface syntax. Notations to include many

additional entities/elements to the architecture, like users, roles, databases, networks, and events, are

provided by ArchiMate, with more notations to add additional details like meaning and value. With

a massive amount of syntax, the simplicity of ArchiMate is improved; however, in the context of

RiWAs, these elements do not offer sufficient abstract realisation.

Even though ArchiMate is inspired by UML and has some similar syntax, the new framework and

notations enable a higher learning curve for UML users, lowering its usability. Further, similar to

UML, as a generic language, ArchiMate does not include syntax to depict RiWAs-specific DC and

related aspects. Therefore, the ArchiMate cannot be considered an adoptable solution for RiWAs

engineering.

Chapter 3. Review of Available Related Solutions

58

3.2.3.5. C4 model [79]

The C4 model can be considered a design methodology which looks at a system at four abstract

levels. It uses an approach similar to Data Flow Diagrams (DFDs), where the overall context is

designed in top-level diagrams, and the inner content of the elements is detailed in the lower level,

as stated below.

 Context level: The system context is the topmost layer made of containers of applications and

data stores.

 Container level: A container comprises components, which are logical units that interact

within the container.

 Component level: A component encompasses code-level elements like classes and algorithms,

which require lower-level designing.

 Code level: A component’s code-level design model can be considered a class diagram.

The C4 model is inspired by UML; however, it is primarily based on box-and-line notation.

Following the concept “abstraction first, notation second”, C4 uses minimal notations to depict

system context, container, database, mobile app, browser, person, and relationship [79]. The

designer has the freedom to introduce and use new notations; in that case, the C4 model suggests

providing a legend of the notations used. This nature makes the C4 model more like an approach

than a method or a methodology with formal syntax and semantics.

The C4 model does not explicitly realise the separation of tiers and depicts the platform as limited to

mobile apps and browsers. When illustrating the communication channels, the C4 model appreciates

using unidirectional lines with annotations. Since any other details related to the communication lines

in the C4 model are not strongly defined, the communication channels can be vague without stating

the proper type or mode. Further, as a general approach, the C4 model does not provide formal

guidelines to explicitly realise DC and related aspects. However, annotations can be exploited to

include more details informally. The users and DBs can be included in designs; still, the flexibility

of having more notations can be exploited to add more entities/elements to the design. The C4 model

highly appreciates including more textual details to describe all design aspects sufficiently.

Large systems may benefit from the C4 model’s approach of designing the system in different layers

when it is complex to illustrate everything in a single overall architectural diagram. With the

flexibility of including new design elements in modelling, the C4 model could cater to the specificity

of the RiWAs. However, the lack of syntax and rules in the C4 model engages all the issues related

to the informal box-and-line approach, as discussed in Section 3.2.1.

Chapter 3. Review of Available Related Solutions

59

3.2.3.6. Summary of UML-based/UML-like Design Methods/Methodologies

Table 3.3 summarises the UML-based methods/methodologies review based on the following criteria

in the context of architectural design.

 C1 – Context

 C2 – The simplicity of elements

 C3 – The simplicity of communication channels

 C4 – Additional architectural elements

Table 3.3 Summary of the UML-based methods/methodologies review

Solution\Criteria C1 C2 C3 C4

MDA with UML - Methodology
- General
- Primarily low-
level designing

- Package - can be
exploited for tier
- Node=platform
- Component
-
Connector=interface
(no DC support)

- No DC - Available

Arc42 - A general methodology focuses on documenting the software
- No syntax is provided, and mainly UML-based
- Some guidelines are given for the building block view, which is for architectural
modelling and similar to the C4 model

SAP’s

OOA/OOM with

TAM

- Process + tool
- General
- UML-based

- Protocol boundary
line to denote tiers
like separation
- Agent is likely to
be exploited for
Application element
- Components
- Connectors are
similar to UML
interfaces

- Direction and
some types are
available
- No DC

- Storages and
agents

ArchiMate - General
- A framework
and a large
collection of
notations
- Not UML-based

- Node=platform
- product is similar
to application

- No DC - Provides many
notations

C4 - RiWAs
- Box-and-line

- Mobile and
browser platforms
- Containers are
similar to
applications
- Components

- Unidirectional
lines with
annotations.
- No DC.

- Informally can
add more
elements
- Text-based
details can be
included

The available solutions for architectural designing are mostly generic and unable to cater to the

specificity of the RiWAs. They commonly lack notations depicting tiers, Application elements,

views, and DC-related aspects. TAM’s component/clock diagram is likely to be specialized for

RiWAs by providing the lacking elements. C4 is a potential approach that can be improved with

formal syntax to cater to the specificity of RiWAs architecture modelling. These design

methods/methodologies are compared against the RiWAsML/RiWAsDM in Section 9.2 in the

Evaluation chapter.

Chapter 3. Review of Available Related Solutions

60

3.2.4. Summary of the Available High-level Design Methods/Methodologies Review

Table 3.4 summarises reviews of high-level design approaches, indicating their pros and cons by

analyzing them in the context of completeness and usability as follows.

 C1: Comprehensiveness – support RiWAs designing by providing high-level processing and

communication-related elements, communication channels and related aspects, additional

entities, and additional textual details

 C2: Usability – UML-based and able to utilise for RiWAs architecture designing, with a lower

learning curve

Table 3.4 Summary of reviews of high-level design methods/methodologies for RiWAs

Method \ Criteria C1 C2

Box-and-line All the aspects can be
designed.

Can be easily used for RiWAs.

No formal syntax; hence, it lacks usability.

ADLs Some aspects can be
designed.

Not specialized for RiWAs.

Complex, incorporates a higher learning
curve, and is less usable.

UML-like Some aspects can be
designed.

Not specialized for RiWAs.

Usable (UML-based solutions are highly
usable).

When the box-and-line approach is used, all the aspects of the RiWAs architectures can be included

in the design. However, this approach introduces many issues due to the informal syntax and

semantics, which stresses the requirement for more formal approaches.

Available and maintained ADLs are capable of depicting most of the entities/elements and details

needed for RiWAs architecture. As a type of programming like languages, ADLs always incorporate

a higher learning curve. None of the available ADLs is specialized for RiWAs; hence, it cannot be

adopted to RiWAs architectural designing without extensions. For example, xADL can be extended

to support all the requirements, which needs extra effort. However, the complexity of the ADLs

makes them a less usable approach.

The available UML-like/UML-based methods can depict most entities/elements and details of the

RiWAs, yet they primarily do not support DC and related aspects. Therefore, none of the available

UML-based/UML-like methods can completely design RiWAs architectures, and they cannot be

directly adopted for RiWAs architecture designing. However, since they are based on UML or similar

to UML, the learning curve is lower than that of ADLs; hence, they are more usable.

Chapter 3. Review of Available Related Solutions

61

3.3. Low-level Design Methods/Methodologies

Web engineering design methods/methodologies have been introduced since the beginning of the

web era in the late 1990s. The emergence of RIAs started in the early 2000s; since then, some web

engineering methods have been extended, and new methods/methodologies have been introduced to

support RIAs/RiWAs engineering. The RIAs/RiWAs design methods/methodologies generally focus

on the low-level modelling aspects; the early methods/methodologies have been reviewed [16].

This thesis selects available relevant design methods/methodologies and briefly reviews them based

on the following criteria:

1. Context: if method/methodology is specifically for RiWAs.

2. Comprehensiveness: if the method/methodology supports low-level designing of the general

characteristics and essential features of the RiWAs, discussed in Section 2.3.5.

3. Simplicity (of elements): if the method/methodology realises RiWAs’ low-level views,

controllers, models, and connectors.

4. Simplicity (of communication types): if the method/methodology realises RiWAs’ low-level

communication types.

5. Development and integration support: if the method/methodology discusses developing the

low-level elements and integrating RiWAs designing into RiWAs engineering.

This review provides an overview, and more detailed information is looked into where required in

the relevant sections of chapters 4, 5, and 6. Since UML is a GPML and has already been reviewed

in Section 3.2.3, it’s not included in this section.

3.3.1. UWE (version 3.0, 2016) [23] and UWE-R (2009) [123]

UML-based Web Engineering (UWE) is a lightweight extension of the UML [23], which extends the

standard UML and provides the following models and model-elements for web application

designing.

 Requirements model

 Use case model: browsing, processing, and webUseCase.

 Activity model: userAction, systemAction, displayAction, navigationAction, displayPin,

and interactionPin.

 Content model: similar to UML class diagram.

 Navigation model: navigationClass, menu, index, query, guidedTour, processClass, and

externalNode.

 Presentation model: presentationGroup, presentationPage, text, textInput, anchor, fileUpload,

button, image, inputForm, customComponent, presentationAlternatives, and selection.

Chapter 3. Review of Available Related Solutions

62

 Process Model

 Process Structure Model – similar to the class diagram, derived from the navigation

diagram.

 Process Flow Model – an activity diagram with userAction and systemAction elements.

Due to these additional artefacts on top of UML, UWE incorporates a higher learning curve. The

UWE official website provides examples of various use cases to learn designing with UWE to

improve its usability. The latest UWE profile is version 3.0, which was released on 18/06/2016, and

after that, the official website [23] stopped releasing updates on 10/08/2016, stating, “This website

won’t be updated anymore. Last update: 2016-08-10” on the footer, abandoning it to question the

suitability for modern RiWAs.

UWE generally supports web applications and does not address the characteristics and features of

the RiWAs. UWE-R [123] is a lightweight extension for the UWE to realise the RIAs, which contain

new model-elements that inherit structure and behaviour from the UWE elements [15]. UWE-R does

not modify UWE metaclass; instead, it provides an extension to conceive as add-ons to UWE to

express RIA concepts [123]. The following extensions for UWE with model-elements are provided

by UWE-R [123].

 Navigations extensions: Dialogue, RichNavigationClass, and RichNavigationLink.

 Presentation extensions: Canvas, Panel, TreePanel, TabbedPanel, AccordionPanel, Audio,

Video, and DialogueWindow.

 Process extensions: AutonomousAction, ClientProcessClass, ServerProcessClass, and

ControlMessage.

The UWE-R attempts to cover some aspects of the DC and the distributed logic of the RIAs/RiWAs

and, thus, can be seen as a potential solution. The use of the extensions is demonstrated using Google

Maps as a use case; however, the actual development of the designs is not discussed, limiting the

UWE-R to a conceptual solution.

Even though UWE-R is a lightweight extension for UWE, UWE-R inherits the complexity of UWE

and further increases it through additions. The UWE-R’s extensions do not significantly add to UWE,

catering to the modern RiWAs, especially in client-side controllers, model, and DC handling. UWE-

R has not developed beyond the initial research paper, which makes it an unusable solution; thus, its

contributions are not taken into account in this thesis; instead, UWE is further reviewed and discussed

where necessary when introducing new design elements and models. Even though model-elements

and diagrams are presented, neither UWE nor UWE-R provides rules and guidelines to make them a

complete methodology, limiting their scope to a modelling language.

Chapter 3. Review of Available Related Solutions

63

3.3.2. WebML [107] and IFML (version 1.0, 2015) [124]

WebML can be used to design “a data-intensive Website amounts to specifying its characteristics in

terms of various orthogonal abstractions, each captured by a distinct model” [107], and now it is

converged to Interaction Flow Modeling Language (IFML), and the WebML official website is not

further available. The IFML supports a wide range of application types, including desktop

applications, mobile applications, traditional client-server applications, and RIAs; it has been

adopted by OMG as a new standard and published in 2015 [124]. However, OMG has noted that

IFML does not cover the modelling of the presentation issues [124], and its primary focus is on user

interaction and control behaviour of the front end of software applications.

The IFML uses a new meta-model instead of extending the UML; hence, it incorporates new

notations and models. Therefore, the learning curve can be considered higher; however, it comprises

a small set of model-elements, which makes it not highly complex or challenging to learn. Since the

IFML focuses on the interaction flows, it does not cover the split business logic and the DC aspects

of the RIAs; hence, IFML can be considered incomplete for RiWAs designing. IFML’s official

website [124] indicates that it was copyrighted from 1997 - 2018, indicating that it was not updated

after 2018. Also, OMG’s IFML specification web page [125] states that the latest update of IFML is

in 2018. Looking at the updates, the validity of IFML for modern RiWAs is questionable.

3.3.3. SysML (Version 2.0 Beta 1, 2023) [126] [127] [128]

SysML is a GPML for hardware and software systems, which is defined as a UML 2 Profile [126].

SysML provides the following models and model-elements.

 Requirement diagram [new]: performanceRequirement, interfaceRequirement,

designConstraint, and designConstraint.

 Structure Diagrams

 Block Definition Diagram (similar to UML class diagram) – a block can be a software,

hardware, mechanical, or wetware (persons, organizations, facilities) component. The

Block Definition Diagram specifies the system’s static structures to be used for Control

Objects, Data Objects, and Interface Objects.

 Internal Block Diagram (similar to UML composite structure diagram): Parts,

Properties, Connectors, Ports, and Interfaces.

 Parametric Diagram [new]: Constraints, Value Properties, and Parameters.

 Package diagram (similar to UML package diagram): models, views, model libraries,

and frameworks.

Chapter 3. Review of Available Related Solutions

64

 Behavior Diagrams

 Activity diagram (similar to UML activity diagram)

 Sequence diagram (similar to UML sequence diagram)

 State Machine diagram (similar to UML state machine diagram)

 Use Case diagram (similar to UML use case diagram)

SysML features a comprehensive hypothetical Griffin Space Vehicle Project example to demonstrate

the utilisation of the language. SysML is aligned with Model-based Software Engineering (MBSE)

and Model-based System Development (MBSD); further, it discusses integrating with Agile SE best

practices, resulting in an approach named Agile MBSE.

Even though the official website states that SysML “has emerged as the de facto standard system

architecture modelling language” [126], it still lacks the essentials to model high-level architectural

aspects of software systems. In the web context, the details related to tiers and platforms cannot be

explicitly specified, and the communication-related elements are not much improved than standard

UML; thus, the DC-related concepts cannot be depicted. As a GPML, SysML cannot be seen as a

handy solution for RiWAs engineering.

3.3.4. Summary of the Low-level Design Methods Review

The review of low-level design solutions is analysed according to the following criteria, which are

detailed at the beginning of the section.

 C1: Context

 C2: Comprehensiveness and simplicity of elements

 C3: Comprehensiveness and simplicity of communication types

 C4: Development and integration support

Table 3.5 Summary of low-level design methods review

Method \ Criteria C1 C2 C3 C4

UWE/UWE-R Web/RIA Presentation,
navigation,
process

UWE-R tries to
capture
asynchronous
communication

Presentation, class,
sequence

IFML GPML
Interaction flows

front-end user
interaction

Navigation and data
flow

Presentation,
events, and actions

SysML GPML

Does not focus on web-related
features

Integration with
agile SE is highly
discussed

As a GPML, SysML fails to cater to the specificity of the RiWAs. IFML’s scope is limited to front-

end interactions and lacks the tools to support designing RiWAs. UWE is a good solution for web

applications, and the UWE-R is a potential solution for RiWAs; nevertheless, they do not strongly

realise the granularity of the distribution of the domain logic, client-side controller, and DC

Chapter 3. Review of Available Related Solutions

65

connectors; hence, they lack simplicity and comprehensiveness. These design

methods/methodologies are compared against the RiWAsML/RiWAsDM in Section 9.2 in the

Evaluation chapter.

3.4. Research Work Related to RiWAs Designing

Many research papers, books, and articles have been published since the beginning of the web era,

discussing web-based application designing activities and related concerns. This section briefly

reviews the UML-based solutions identified in the literature survey, focusing on these solutions’

context, comprehensiveness, usability, and development support.

Modeling Web Application Architectures with UML (1999) [129]

This is an old publication, and even though the paper title says “architecture”, it mainly discusses

some basic web page presentation-related design concerns. This paper is reviewed in this thesis to

evidence that web-based systems designing has been looked into since the beginning of the web era.

Web applications have evolved immensely; however, the design activities remain unsupported as the

evolution of web-based applications and their development technologies have been much faster than

web application modelling research.

Systematic Design of Web Applications with UML (2001) [130]

This is a book section that offers a systematic design method for web applications that takes into

account the navigation space and presentational aspects of the web applications. The introduced

method extends the previous approaches of Baumeister et al. (1999) and Hennicker & Koch (2000),

extensively trying to model navigational and presentation aspects by providing multiple models and

model-elements given below.

 Navigation space model: Navigational Class and Direct Navigability.

 Navigation structure model: Index, Guided Tour, Query, and Menu.

 Static presentation model: Frameset, Presentational class, Text, Anchor, Button, Image, audio

video, Form, Collection, and Anchored collection.

 Dynamic presentation model: Window.

The presentation aspects are mainly Frameset-based, which is outdated and unuseful. In the case of

navigational elements, how to map the navigational models to actual development is not discussed.

Modelling the User Interface of Web Applications with UML (2001) [131]

This work is based on the UWE’s [23] design process and focuses on navigational and presentation

aspects, offering the following models and model-elements.

 Navigational model: menu-based navigation modelling using index and menu elements.

Chapter 3. Review of Available Related Solutions

66

 Storyboarding process: to identify user interfaces.

 Presentation model: decide where the navigation objects and access elements will be presented

to the user. Elements used are target, window, frameset, frame, displays, links, and targets.

The authors discuss the method of producing these models under each model with some examples.

A UML Profile for Modeling Framework-based Web Information Systems (2007) [132]

This study produces a development-framework-based web information systems design method,

enabling “designers to produce diagrams that represent framework concepts, and developers

(maybe, in the future, CASE tools) to quickly and directly translate these diagrams to code”. It

provides the following models.

 Domain Model: “UML class diagram that represents classes of objects from the problem

domain and their Object/Relational (OR) mappings” [132].

 Persistence Model: a UML class diagram that represents the Data Access Object classes

responsible for the persistence of domain objects.

 Navigation Model: “UML class diagram that represents the different components that form the

Presentation Logic tier, such as Web pages, HTML forms and action classes” with stereotypes

for the elements: page, template, form, and binary. A standard class is proposed to represent a

“class to which the Front Controller framework delegates the action execution” [132].

 Application Model: “UML class diagram that represents service classes, which are responsible

for the implementation of use cases”, which is more like an MVC-based model to implement

business logic [132].

This paper does not provide examples or discuss how to use these models in actual development,

limiting it to a conceptual solution.

Designing Interaction Spaces for Rich Internet Applications with UML (2007) [133]

This paper presents a design process for RIAs with 5 models and an activity.

 Data Model: describes the domain classes.

 Use Case Model: provides the context.

 Task Model: refines each use case by describing the activities performed during the use case,

utilising a UML statechart diagram.

 Interaction Space Model: is a refinement of each task model. It describes the structural details

of corresponding task flows where a user interaction is needed.

 Guide Model: is a refinement of the task model. It provides details on navigation and

synchronization of user interaction from a software behaviour point of view.

Chapter 3. Review of Available Related Solutions

67

 Mapping to Implementation: maps the design abstractions to the appropriate implementation

according to the UML principles employing – tagged values, side effect actions, and

transformations to the running system.

These models use some new notations; however, the models are based on UML class and statechart

diagrams. The paper does not discuss the models and model-elements in detail and only demonstrates

their utilisation using a simple use case.

RUX-model (2007) [22]

RUX-model has explicitly been introduced for the RIAs, and it also incorporates the adaptation of

the legacy systems to RIAs. However, the RUX-model only focuses on the GUI expectations,

eliminating the other aspects like the DC and business logic models of the RIAs, thus, making it

incomplete. However, it can be combined with other methods like UWE [23] for better results [24].

From the learning curve perspective, the RUX-model provides an entirely novel approach and,

therefore, incorporates a higher learning curve. Since the RUX-model lacks specifications,

documentation, or tutorials, it cannot be considered a practical solution, and hence, it is not further

examined in this thesis.

OOH (2003) [134] and OOH4RIA (2008) [35]

Object-Oriented Hypermedia (OOH) [134] extends the UML to support traditional web application

designing, providing the following models and model-elements.

 Navigation access diagram: navigation classes, navigation targets, navigation links, and

collections.

 Two-fold presentation layer

 Abstract presentation diagram

 Composite layout diagram

OOH4RIA [35] extends the OOH by introducing additional models, as stated below.

 Conceptual Model

 Presentation Model: to design GUIs

 Orchestration Model: an extension of “UML state diagram which captures interaction patterns

from presentation widgets as well as the navigation between screenshots of a RIA” [35].

 Transformation Model: for model-to-model transformations and “model-to-text

transformations which establish a mapping from the models to the implementation” [35].

The OOH4RIA authors discuss an “OOH4RIA model-driven development process” to assist in

developing RIAs. The OOH4RIA-based development depends on the Google Web Toolkit (GWT);

therefore, it is not abstract. Since OOH and OOH4RIA introduce many new models and model-

Chapter 3. Review of Available Related Solutions

68

elements, they incorporate a higher complexity and learning curve. The OOH4RIA does not address

the DC model or the distributed logic of the RIAs; thus, it can be seen as incomplete. The concept of

the OOH4RIA is presented in a conference paper, and there is no implementation beyond the article

discussing the application into real engineering to make it a more practical solution.

UML-based Web Engineering - an Approach Based on Standards (book chapter, 2008) [84]

This chapter discusses using UML for web application designing based on UWE [23]. It provides a

comprehensive use case demonstrating the use of UWE models to design an online movie database.

This book chapter does not add to the UWE; it’s more of a tutorial that discusses the use of UWE in

web engineering. Since UWE cannot cater to the modern RiWAs, the content of this book chapter is

less valuable in contemporary RiWAs engineering.

A Profile Approach to Using UML Models for Rich Form Generation (2010) [135]

This paper proposes a UML profile to generate GUI forms using an Object Relational Mapping

(ORM) profile based on the Java Persistence API (JPA) and supports user input validation. The

authors produce a UML profile for JPA-based ORM and a profile for Hibernate input validator,

which are mainly based on Java annotations. A GUI form builder profile, which can generate GUI

forms, is introduced based on the new UML profiles. The main focus of this work is to support the

design and development of the GUI forms and related CRUD operations on databases, and

navigational, business logic, and DC aspects are not looked into.

IAML – A Modelling Language for Rich Internet Applications (thesis, 2011) [42]

This doctoral thesis presents Internet App Modelling Language (IAML), which attempts to capture

client-side events and user interactions. This research also offers a CASE tool to improve the

adoption of the IAML. The use of IAML is demonstrated using a hypothetical yet comprehensive

use case named Ticket 2.0. The IAML has much more potential than the other available solutions

and provides the following models and model-elements for RiWAs designing.

 Logic model: Function, Complex term, Parameter value, and Value.

 Function model: Function, Predicate, Boolean property, and Bulatin property.

 Event-Condition-Action model: Event, Condition, Action, and Operation.

 Wires model: Wire, Wire source, Wire destination, and Wireable.

 Constructs model: Changeable.

A complete specification of the modelling language is given in this work; however, the models and

model-elements are briefly explained with fewer examples. And even though the use case

demonstration provides a set of figures containing the IAML diagrams, they are not elaborate enough

to gain a clear understanding. These limitations make the usability of IAML low.

Chapter 3. Review of Available Related Solutions

69

The IAML mainly focuses on low-level presentation and processing, ignoring high-level modelling.

The concept of the Event-Condition-Action model looks promising towards capturing client-side

events handling; still, without enough discussions, it’s not very usable. Also, the communication

handling concerns are poorly addressed.

Looking at these weak points of the IAML, its usefulness in actual RiWAs engineering is

questionable despite its conceptual strengths in low-level designing.

A UML 2.0 Profile Web Design Framework for Modeling Complex Web Applications (2014)

[136]

This paper proposes the following UML-based web application design models under three aspects.

 Conceptual model

 Information model: provides a general structure of the web applications.

 Dynamic model: identifies dependent processes to be extensively designed using activity

and sequence diagrams.

 Navigational model

 Navigation Structure: designs the nodes and objects that can be visited by navigating

through the web applications.

 Navigation Space: designs how the nodes and objects are reached while navigating.

 Navigation UML interaction: captures how navigation classes are reached and appeared

on the screen.

 User interface model

 Abstract Interface Model: designs structural organization of the web applications.

 Graphical User Interface Model: designs GUI-related aspects.

This paper does not provide a use case or discuss the development aspects, leaving it to be a

theoretical solution.

Summary of the Review of the Related Research Work

The available research publications mainly focus on the presentation and navigation concerns of

web-based systems, ignoring the client-side processing and DC aspects. However, in the navigational

and presentation aspects, they are not trying to capture the RiWAs’ abilities to implement multiple

related features on the same view and enable them to be accessed through different paths for different

actors.

Among the identified related research work, IAML (refer to section 3.4.11) is a conceptually

advanced solution; nevertheless, adopting it into real RiWAs engineering is uncertain without enough

discussions and use cases to demonstrate its design and development support. Further, without high-

Chapter 3. Review of Available Related Solutions

70

level design support, IAML is incomplete. Still, since the context of IAML is RIAs/RiWAs, it is

further reviewed where necessary when introducing the RiWAsML in Chapters 5 and 6.

3.5. Chapter Summary: The Analysis of the Literature Review

The box-and-line approach has many usability issues due to its lack of formal syntax. ADLs are

complex and less prevalent in the community of software engineers. UML-based

methods/methodologies are popular and can address both high-level and low-level design aspects;

therefore, they can be seen as a better option for a RiWAs design methodology. New DSMLs have

been introduced to cater to the specificity of the RIAs/RiWAs, where most are extensions to the

standard UML. Table 3.6 contains the summary of most related UML-like/UML-based solutions.

Table 3.6 Summary of the review of related solutions

Solution Context Comprehensiveness Usability
Dev and

Integration

MDA with

UML

-General. -Primariliy low-level
-No DC

-De facto standard -None

Arc42 -General -Primariliy low-level
-High-level diagram
-No DC

-UML-based
-Primarily
documentation

-None

SAP’s

OOA/OOM

-General -TAM is high-level
-Primariliy low-level
-No DC

-UML-based -None

ArchiMate -General -No DC -UM-like new lang. -None
C4 -RiWAs -Primarily high-level

-No DC
-No formal syntax
(box-and-line)

-None

UWE/UWE-R -Web/RIA -Low-level
-No DC

-UML-based -None

IFML -RiWAs
-Interaction
flows

-Low-level
-front-end
-No DC

-UM-like new lang. -None

SysML -General -Low-level
-No DC

-UML-based -Highly support
agile-SE

IAML -RIA/RiWA -Primarily low-level -UML-based -None

Most available solutions are either general, do not support DC and related aspects, are limited to

high-level/low-level designing, or do not offer development or integration support. Therefore, none

of them can be considered comprehensive as they do not address all the general characteristics and

essential features of the RiWAs.

71

Chapter 4. Requirements for RiWAsML and RiWAsDM

This chapter sets the requirements for the proposed RiWAsML and RiWAsDM to

realise the general characteristics and essential features of the RiWAs (refer to

Section 2.3.5) based on the RiWAArch style (refer to Section 3.1.3). This chapter

contains the results of Steps 1.2 and 1.3 of the RiWAsDM implementation process

(refer to Figure 1.4 in Section 1.5.3) while achieving research objective 2 (refer to

Section 1.4).

4.1. Attributes Required to be Satisfied by the RiWAsDM

This research aims to introduce a simple and adoptable design methodology (refer to Section 1.3);

these attributes are selected to evaluate the practicality of the RiWAsDM and are generally explained

in Section 2.2.4.2. The benefits of these attributes are discussed under motivation in Section 1.2.2.

The simple and adoptable attributes are expected to be satisfied by the RiWAsML/RiWAsDM as

requirements, and this section sets the context for them.

4.1.1. Attr 1. Simplicity

Simplicity refers to the less complex nature of a modelling language that is improved by employing

the separation of concerns principle, which appreciates decomposing a system and identifying and

separating the modules for greater realisation, thus, management [18] [19]. A design methodology’s

DSML benefits from simplicity towards improving the understanding of the system elements and

can be considered an essential attribute to enhance the methodology’s quality [17] [8] [75]. A design

language must separate and identify the models and model-elements to provide a profound realisation

of the target systems. The RiWAsML is expected to answer the questions below, aligning with the

RiWAArch style to maintain greater simplicity.

1. What are the high-level Application elements in a RiWA and their platforms in different tiers,

and how do they communicate with each other?

2. What are the high-level elements inside the Application elements, and how do they communicate

with each other and with the internal high-level elements of the other Application elements in

the system?

3. What are the low-level/development-level elements of the high-level elements inside the

Application elements, how do they communicate with other low-level/development-level

elements, and what technologies/techniques can be utilised to develop them?

RiWAArch style is recognised as a style with high simplicity (refer to Section 3.1.3), and the

RiWAsML is expected to be based on it towards ensuring high simplicity.

Chapter 4. Requirements for RiWAsML and RiWAsDM

72

4.1.2. Attr 2. Adoptability

The following attributes are opted to evaluate the adoptability of RiWAsML/RiWAsDM into real-

world RiWAs engineering.

4.1.2.1. Attr 2.1. Comprehensiveness

Considering the assistance expected by a design methodology, the RiWAsDM is chosen to require

the following features to reflect it as a comprehensive solution.

1. The RiWAsML should provide enough models and model-elements to design all the abstract

high-level and low-level elements and their configurations aligning with the RiWAArch style

(refer to Section 3.1.3). The comprehensiveness attribute is also related to the simplicity

discussed in Section 4.1.1, and the expected model-elements and their configuration in different

levels are stated below, based on the RiWAArch style to address the general characteristics and

essential features of the RiWAs (refer to Section 2.3.5).

a. Application elements executed on dedicated platforms in different tiers and their

configuration. The requirements R3, R4, and R6 in Section 4.3 identify the related models

and model-elements.

b. Additional high-level elements, like databases and external services, which are utilised by

the Application elements. The requirements R5 and R6 in Section 4.3 discuss the related

models and model-elements.

c. For each Application element, the internal elements, their configuration, and their

interactions with the internal elements of the other Application elements. The requirements

R3, R4, and R6 in Section 4.3 discuss the related models and model-elements.

d. The low-level constructs of the Application elements’ internal elements and their

communication with the other low-level elements. The requirements R7 – R10 in Section

4.4 discuss the related models and model-elements.

e. The RiWAArch style realises the high-level elements and helps identify the development-

level elements (refer to Section 3.1.3); therefore, the RiWAsML’s high-level models and

model-elements should be discovered based on the RiWAArch style.

2. Provide rules and guidelines for designing RiWAs using the RiWAsML and mapping the

RiWAsML models to development.

3. Provide design and engineering approaches for RiWAsML-based designing.

4. Provide guidelines for adopting the RiWAsML-based designing into agile SE environments.

Suppose a single design methodology provides all these features; in that case, it will be considered a

comprehensive solution by this thesis that offers sufficient assistance for RiWAs’ agile model-driven

development.

Chapter 4. Requirements for RiWAsML and RiWAsDM

73

4.1.2.2. Attr 2.2. Usability (Learnability and Readability/Understandability)

If a solution is more usable, the adoptability of the solution can be considered high. The usability

attribute tries to ensure the adoptability of the RiWAsML/RiWAsDM through the following two

aspects.

Learnability

The RiWAsDM is required to assist in learning the RiWAsML to increase its usability and, hence,

adoptability by offering the following features.

1. UML is the de facto standard modelling language, and the RiWAsML should be based on UML;

hence, the RiWAs engineers with UML knowledge can quickly learn and use the RiWAsML.

2. The RiWAsML must deliver models and model-elements based on the RiWAArch style, and

then the RiWAs engineers, with the knowledge of the RiWAArch style, can effortlessly learn

the RiWAsML.

3. The RiWAsML should provide textual details to identify model-elements and their types instead

of having many different graphical notations (refer to requirement R1 in Section 4.2.1), which

assists in RiWAsML learning without referring to many new visual symbols. Also, the textual

details must be self-explanatory to minimise the learning efforts.

4. The low-level elements of the RiWAsML should be more development-related, and the

engineers with RiWAs development experience can quickly learn and apply the RiWAsML.

5. Provide rules and guidelines to learn how to use the RiWAsML, develop the RiWAsML-based

designs, and integrate RiWAs designing activities into the RiWAs engineering.

Readability/Understandability

If the designs are more readable/understandable, they are much more usable and can quickly be

adopted into engineering. To improve the readability/understandability, the RiWAsML should

incorporate the following.

1. Include more textual details on the diagrams so the engineers can easily read and understand

them instead of referring to graphical notations. The RiWAsML must attempt to use fewer

graphical elements and more text-based information to assist in development (refer to

requirement R1 in Section 4.2.1).

2. The low-level models and model-elements should be more development-oriented; therefore,

engineers with RiWAs development experience can read and understand them easily.

4.1.2.3. Attr 2.3. Development Support

A design language is more adoptable if it supports the actual development without being limited to

a conceptual solution. The RiWAsML/RiWAsDM should support RiWAs development via the

following features.

Chapter 4. Requirements for RiWAsML and RiWAsDM

74

1. The RiWAsML models and model-element should not be based on a particular development

technology/technique and should be abstract enough to be adopted into RiWAs development. To

ensure this, the RiWAsML is supposed to realise the general characteristics and essential features

of the RiWAs based on the RiWAArch style, which is identified as an abstract formalism (refer

to Section 3.1.3).

2. The low-level designs should include development-related details and be flexible to contain

development tools-based specifics that match the language, frameworks, and libraries selected

for the RiWAs development; thus, the designs can be easily converted into code.

3. The RiWAsML should provide rules and guidelines for designing RiWAs and map the designs

into actual development.

4.1.2.4. Attr 2.4. Integrability

Contemporary software engineering projects largely follow agile practices, which tend to minimize

design activities but would still benefit design thinking [30] (refer to Section 2.1.3). The RiWAsDM

should provide guidelines by discussing integrating RiWAsML-based design activities into RiWAs

engineering projects by enabling AMDD.

4.2. Requirements for Common Model-elements of RiWAs

Before setting the requirements for high-level and low-level language elements, requirements for

common elements’ syntaxes should be identified and addressed. This section specifies requirements

for the label element and communication channels, which are common for both high-level and low-

level design.

4.2.1. R1 – Model-elements Naming Label

Visual modelling languages use labels to set names for the model-elements in designs for

identification purposes. RiWAsML exploits the naming label to improve the usability of the

language. This section discusses the requirement for the RiWAsML’s label under the following two

aspects towards maintaining consistency and making the language less complex and highly usable.

4.2.1.1. Symbol vs Text

Modelling languages offer many model-elements to improve their simplicity and

comprehensiveness. The general practice is to use different visual notations to identify the model-

elements distinctly. For example, UML uses various shapes for distinct elements such as nodes,

components, classes, and activities; UML-based languages introduce more notations using graphical

notations like shapes, icons, and colours to specify the model-elements.

The problem with using visually different graphical notations is that when there are many model-

elements, it is not easy to provide noticeably dissimilar visual elements to represent all the elements;

Chapter 4. Requirements for RiWAsML and RiWAsDM

75

the notations become more similar and complex to distinguish between them, reducing the

readability/understandability. Also, when there are many notations, the language users must

remember them all and the concepts they represent, which negatively affects the language’s

learnability. Lower learnability and readability/understandability reduce the language’s usability and

decline the adoptability. Therefore, a better technique is required to effectively assist in RiWAsML’s

learnability and readability/understandability.

This thesis proposes using a text-based technique to address the said problem in the direction of

reducing the number of distinct graphical notations yet providing sufficient details to read,

understand, and use the elements correctly. Text is powerful in adequately interpreting the meaning,

which helps in learning and understanding [25]; it is a matter of embracing a proper technique.

Instead of adding more textual details to the designs using additional means like notes, RiWAsML

is proposed to exploit the naming label by providing a new naming format for the model-elements.

The related aspects are discussed in the following section.

4.2.1.2. Name vs Three-segment Label

UML and UML-based languages generally use a single name to label the model-elements. Usually,

meta-model-element classes are identified by the visual symbol, and the label is only used to set a

name for the element. The stereotypes use additional tags to denote the type of the element; for

example, the UML node element’s <<device>> stereotype denotes hardware devices [137]. Since

the RiWAsML proposes to use the label to identify the element class, the label requires a specialized

format to hold all the necessary details. A design language includes many model-elements, and a

robust labelling convention is needed to maintain consistency and readability/understandability

across the model-elements.

This thesis proposes a label format with 3 segments to provide the necessary details towards

maintaining consistency for higher readability/understandability. Also, this format is expected to

help in learning the language without referring to a specification of graphical notations or

remembering the visual symbols.

 Element: The Element segment is required to specify the element’s class, for example, if the

element represents a tier, an Application, a view, a component, or a connector. The user should

be able to learn or read/understand the element’s class by reading the label’s element segment.

 Type: The Type segment is required to state the technological details. The possible values for

the Type should be specified for each element class.

 Name: The Name segment is needed to assign a custom name to the element for identification

purposes based on the scenario.

Section 5.1.1 introduces the notation of the RiWAsML Label element.

Chapter 4. Requirements for RiWAsML and RiWAsDM

76

4.2.2. R2 – Communication Channels in RiWAs

The communication channels between the system elements help define the system’s configuration,

denoted by the design diagrams. The RiWAsML should satisfy the following requirements to realise

the communication channels with high simplicity and assist in readability/understandability.

4.2.2.1. Line vs Arrow

The first concern to address is the symbol of the communication channel. The candidates are line and

arrow. The web communication between two elements at a given time is directional; hence, the arrow

is more suitable. However, the core model of web communication is the request-response model;

thus, it is always bi-directional. In that case, the use of a bi-directional arrow is questionable as the

bi-directional communication can also be depicted using a line. RiWAsML appreciates the

consistency of the syntax for improved usability and requires the employment of the same notations

at the top-to-bottom levels of design. At the high-level, a single communication channel can denote

the request-response communication pair using a single bi-directional channel; nevertheless, in the

low-level design of the same elements, the same request-response pair might be taking place between

different development-level elements and in such a case, two uni-directional channels are required

to depict that.

For example, a single bi-directional communication channel is sufficient to denote the

communication between high-level view and controller elements. Yet, at the low-level design,

consider that the request is from the view’s button to the controller’s event handler, and the response

is from the controller’s different method to the view’s output element. In this example, 2 directional

arrows are required to model the low-level communication. Accordingly, to maintain consistency,

the RiWAsML is required to use arrows to denote all the communication channels.

4.2.2.2. Single Arrow Type With a Label vs Multiple Arrow Types

There are many types of communication between the elements in RiWAs, like HTTP and DC, and

they require different syntax to distinguish between. UML uses different types of lines, arrows, and

also stereotype labels like <<deploy>> to illustrate relationships between the elements. The candidate

options for RiWAsML are single arrow style with stereotype labels and unique arrow style per

communication channel type.

Even though the RiWAsML appreciates the text-based identification over graphical symbols, in the

case of communication channels, it was experienced while working on the use cases that the

stereotype labels make the design untidy and less readable. Thus, for communication channels, the

RiWAsML requires the use of different arrow styles to distinguish between the communication

channels, as discussed in the following section.

Chapter 4. Requirements for RiWAsML and RiWAsDM

77

4.2.2.3. Required Communication Channels Types

Web-based applications’ primary communication mechanism is the request-response model. The

RiWAs are also mainly based on the request-response communication model; nevertheless, they use

other mechanisms to exchange data between views, models, and controllers. The communication

between the elements can be realised through the RiWAArch style, as shown in Figure 4.1.

Figure 4.1 Communication channel types between elements in the RiWAArch style

According to the RiWAArch style, there are 5 main types of communication occurring between the

elements in RiWAs as follows:

1. Read data and show information: the controller reads data from the view for processing and

displays the information on the view. At the runtime, the view initiates the process by triggering

an event on the GUI, which calls the relevant event handler on the view’s controller, and the

controller does what is needed and updates the view. This process can be realised by the request-

response model as follows: the view requests from the controller to take an action, and the data

read by the controller can be considered the data of the request; after processing the view’s

request, the controller updates the view with the results, which can be regarded as the response.

2. Method calls and returns: the controller and the DC-bus call the methods of the classes in the

model and receive the results. This communication can be described by the request-response

model, where the controller or DB-bus requests from the model by calling a method, and the

model responds by returning the results. The parameters passed with the method call can be seen

as the request’s data.

3. HTTP requests and responses: the hyperlinks in views and redirecting commands of the

controller send standard HTTP requests to the server. The server responds to the client by sending

the next view and the related resources. Note that this is only for the RiWAs with browser-based

clients.

Chapter 4. Requirements for RiWAsML and RiWAsDM

78

4. DC requests and responses: the DC-engine requests from the DC-bus, and the DC-bus responds

to the DC-engine using a compatible DC technology/technique like AJAX [100].

5. Utilising external entities: the RiWAArch style allows the model to consume external entities,

and the communication between the model and an external entity can be realised with the request-

response model, where the model is requesting data or service from an external entity and the

external entity is responding with results. Even a case of model writing data to a file or database

can be explained as follows: the model is requesting to write data, and the file or database

responds with the status of data writing once completed.

By analysing the above types of communication, the following factors are derived to consider

regarding the communication channels in RiWAs.

 Direction: all the types of communication between the elements in RiWAs are bidirectional and

can be realised with the request-response model.

 Type: the type of communication should be out of the five types discussed.

The RiWAsML should provide suitable arrow notations to understand the direction and the type of

communication channels straightforwardly. Section 5.1.2 introduces the notations for the RiWAs’

communication channels.

4.3. Requirements for High-level Design of RiWAs

This section completes step 1.2 of the RiWAsDM implementation process given in Figure 1.4 in

Section 1.5.3 by setting the high-level requirements for the RiWAsML. Requirements are set and

discussed under different aspects: processing elements, view elements, additional high-level

elements like data stores, and finally, models that utilise these elements. These requirements must

address the general characteristics and essential features of the RiWAs (refer to Section 2.3.5),

aligning with the RiWAArch style (refer to Section 3.1.3).

4.3.1. R3 – High-level Processing Elements of RiWAs

This section discusses the processing elements identified, based on the RiWAArch style, required to

design RiWAs’ architecture, which should be provided with dedicated notations to illustrate them

uniquely within the design. The processing elements and the infrastructures needed are shown in

Figure 4.2, according to their parent-child relationships. Note that the visual symbols in this Figure

are only used to distinguish them from each other and are not related to the RiWAsML notations.

Chapter 4. Requirements for RiWAsML and RiWAsDM

79

Figure 4.2 Processing elements in RiWAs

The requirements for the processing elements in Figure 4.2 are discussed in depth in the following

sub-sections.

4.3.1.1. Application Element

The general characteristics of RiWAs (refer to Section 2.3.5.1) realise that a RiWA is a collection of

Application elements. This thesis defines the Application element as follows.

An Application element in a RiWA is an element that is comprised of processing elements such

as components and connectors and is independently executable/runnable on a dedicated platform.

An Application element communicates with the other Application elements in a RiWA to

accomplish functions, and the role of the Application element depends on the tier to which it

belongs. The client-side Application elements may contain views.

The Application element is the highest-level processing element in RiWAs and essentially requires

a model-element. Some use cases to explain the Application element’s behaviour are discussed

below, emphasising the requirement for a dedicated model-element for the Application element.

 It is possible to use multiple Application elements of a RiWA on a single device. Consider a taxi

booking RiWAs. A driver may install both the driver’s and the passenger’s apps on a mobile

phone to use them when needed as a driver or a passenger.

 A user may work with different types of Application elements on multiple devices. For example,

a user can utilise a RiWA by a browser-based app on a laptop and a mobile app on a mobile

phone.

Chapter 4. Requirements for RiWAsML and RiWAsDM

80

From the engineering point of view, the Application elements exhibit the following behaviours.

 It is possible for multiple Application elements to implement the same functions. For example,

the user’s browser app and mobile app are supposed to deliver the same set of functions; hence,

the same logic should be implemented in both Application elements’ components. However,

since they should be executed on different platforms, they must be developed using different

technologies; therefore, it is vital to show them as separate elements in the design.

 The concept of the Application element suggested by this thesis can be seen as a wrapper for a

group of elements that are developed using dedicated technologies. Different Application

elements may have different sets of internal elements, such as views, components, and

connectors. It mainly depends on the type of the Application element (client-side, server-side,

browser-based, mobile, micro-service, etc.)

 Internal elements of an Application element communicate with each other and with the internal

elements of other Application elements.

The RiWAsML’s syntax for the Application element should assist in modelling these behaviours.

Section 5.2.3 introduces the RiWAsML’s Application element,

4.3.1.2. Tier Element

Layered architecture style improves the simplicity and visibility of a system by separating the

elements into layers/tiers based on their roles [138]. Distributed systems like web-based systems

highly benefit from layered styles like 2-tier client-server architecture, 3-tier, and n-tier architectures

as the tiers also help understand the deployment of the elements and their communication

technologies. As web-based applications, RiWAs’ elements are at least separated from client and

server tiers. Advanced RiWAs’ elements are distributed across many tiers for various purposes like

routing, load balancing, caching, and external service usage, and each Application element in a

RiWA should belong to a particular tier. This thesis defines the tiers for RiWAs as follows.

The tier is the highest level of separation, which logically separates architectural elements by

grouping similar elements. This separation is mainly based on the elements’ role/purpose and

distribution rather than technological aspects. The tiers help organise the elements, providing a

clear understanding of the relationship between the containing elements, their role as a group

within the tier, and their geographical or platform distribution.

The RiWA design probably benefits from denoting the tiers for improved simplicity, and it will also

enhance the readability of the design. Refer to the use case in Section 8.1.1 for an example of tiers

enhancing the readability of a design. Section 5.2.1 introduces the RiWAsML’s Tier element syntax.

Chapter 4. Requirements for RiWAsML and RiWAsDM

81

4.3.1.3. Platform Element

Each Application element in a RiWA runs on a dedicated platform. Also, storage elements like

databases require platforms for deployment. Hence, it is essential for RiWAs’ high-level design to

include the platform details to understand the deployment of the elements. The platform is defined

by this thesis as follows.

The platform provides the environment for elements such as Application elements and databases

to deploy and run.

The platform is a complex concept that involves the three levels below.

1. Hardware: a device like a computer, mobile phone, or any other physical device capable of

running software systems such as the devices in the Internet of Things (IoT). In the case of IoT,

the device can be even a TV, a vehicle, or any other custom device.

2. Operating system (OS): The OS is required to manage the hardware resources at the hardware

platform level. Desktop or laptop computers use OSes like Windows or Linux, mobile phones

use OSes like Android or IOS, and other hardware devices may even use custom OSes to hide

the hardware layer’s complexity and provide a platform for the runnable elements.

3. Application-level virtualization: Some Application elements require software – like web

servers, DB servers, runtimes like JRE or .NET, or tools like browsers – to run within a device.

These application software provide the virtualised environment the Application elements require

to run.

The nature of the platform of an Application element depends on many factors, as discussed below.

 The device and OS are usually tightly coupled, and application-level virtualization is optional.

For example, a mobile device with its OS provides the platform for a mobile app without

requiring an application-level virtualization platform.

 A single device+OS can accommodate multiple application-level platforms. For instance,

consider a computer running both a web server and a DB server, which are two different

application-level platforms.

 In the case of having multiple application-level platforms within a device, they can be different

tiers. Considering the previous example, the web server is in the application tier, and the DB

server belongs to the data tier.

 When using resources like cloud-based services for deploying the Application elements or data

stores, these services can be considered application-level virtualization environments, and their

hardware and OS platform details may not be required.

The RiWAs’ platform syntax should be able to realise these levels and factors. Section 5.2.2

introduces the notation of the RiWAsML’s Platform element.

Chapter 4. Requirements for RiWAsML and RiWAsDM

82

4.3.1.4. High-level Components

As per Figure 4.2, an Application element comprises components and connectors. This thesis defines

the components as follows.

A component is a processing element within an Application element that implements event

handling and/or business logic.

Since the RiWAs implement client-side event handling and split business logic (refer to general

characteristics in Section 2.3.5.1), all client-side and server-side Application elements contain

components, and related models and model-elements are required to design the associated aspects. It

is essential to realise the components using MVC (refer to the essential features in Section 2.3.5.2);

hence, the components are discussed under the controller and model, aligning with the RiWAArch

style. Section 5.2.4 introduces the RiWAsML’s syntax for the Component elements.

High-level AppControllers Element

The controller is a controversial element in the MVC style, and many frameworks exploit it

differently. For example, server-side frameworks like Laravel use the controller to handle incoming

requests [139]; in such a case, the controller can be considered a connector instead of a component.

Aligning to the original definition by the Smalltalk-80 [140] [141], the RiWAArch style uses the

controller for events handling triggered on the views [12] [105], considering it as a component. Based

on that viewpoint, the high-level model-element named AppControllers is defined as below.

The AppControllers is a high-level element in a client-side Application element that implements

event handling for views.

Client-side event handling is a general characteristic of RiWAs (refer to Section 2.3.5.1); thus, a

controller is an essential element in RiWAs’ design. The AppControllers element must satisfy the

following features.

 At the high level, the AppControllers element should realise all the controllers within a

particular client-side Application element.

 The AppControllers elements implement the event handlers for the views; therefore, the

AppControllers elements communicate with the high-level views element (refer to Section

4.3.2).

 AppControllers elements may use the client-model to process data based on business logic when

handling events.

 AppControllers elements may communicate with the server-side Application elements via the

DC-engine.

Chapter 4. Requirements for RiWAsML and RiWAsDM

83

The RiWAsML is required to realise these high-level features of the AppControllers elements and

should be able to model them precisely.

High-level AppModel-element

The RiWAArch style contains two models by realising the RiWAs’ split business logic general

characteristic (refer to Section 2.3.51): the client-model and the server-model. Both implement the

business logic and considered components, and this thesis defines the AppModel element as follows.

An AppModel is a component in a client-side or server-side Application element that implements

business logic. All the Application elements in a RiWA contain a single dedicated AppModel

element. The AppModel also considers the runtime data and data structures utilised by the logic.

The RiWAsML is supposed to offer notations for high-level AppModel components to design the

following aspects aligning with the RiWAArch style.

 The AppModel element’s type should be defined as client-model or server-model.

 AppControllers element can utilise the client-side AppModel element by calling its methods.

 DC-bus can utilise the server-side AppModel element by calling its methods while handling the

DC requests.

 For browser-based RiWAs, the views may use the server-side AppModel element by calling its

methods before being sent to the browser.

 Server-side AppModel elements can communicate with the databases to perform CRUD

operations.

4.3.1.5. High-level Connector Elements

Connectors are the architectural elements that realise a software system’s communication and related

aspects. RiWAs generally use DC, and it is essential for RiWAs to have DC handling connectors

(refer to Section 2.3.5). The RiWAArch style uses the DC-engine on the client-side and the DC-bus

on the server-side to implement a comprehensive DC connector pair [12]. Based on these aspects,

this thesis defines the Connector element as follows.

A Connector element is a processing element dedicated to implementing communication logic.

The DC-engine is a client-side Connector element that sends DC requests and accepts DC

responses; the DC-bus is a server-side Connector element that accepts DC requests and sends DC

responses.

RiWAsML must offer a high-level Connector element to assist in designing the following features.

 DC-engine is considered the AppControllers element’s internal Connector element, utilised to

send DC requests to a DC-bus and accept the DC responses.

Chapter 4. Requirements for RiWAsML and RiWAsDM

84

 DC-bus implements the DC request handlers to accept the DC requests.

 DC-bus reads the data from the DC requests and passes it to its Application element’s server-

model for processing. Then, the result returned by the server-model is sent to the requested DC-

engine as the response.

Section 5.2.5 introduces the notations for the RiWAsML’s Connector element.

4.3.2. R4 – High-level Views Element

RiWAs generally use rich GUIs, which are realised as views by the RiWAArch style based on the

MVC style (refer to Section 2.3.5) [12] [105]. Regarding MVC, the views are for the presentation

and thus cannot be seen as components.

In the browser-based RiWAs implementation, the views are implemented as web pages; nevertheless,

executable code can be written on the views. For example, on a web page – either HTML, PHP, ASP,

or any other compatible type – some JS code can be written to be executed on-page-load to update

the view with some visual effects. In such cases, it should be understood that these code is not a part

of the view, even if the code is written on the same web page. In this example, the code should be

executed upon an event, the on-page-load event, which is supposed to be a part of the controller that

handles the events. Maybe the logic that generates the view’s visual effect is based on some business

logic, which should be implemented in the AppModel element that the AppControllers element

invokes. Likewise, it is essential to understand that processing is necessarily a role of the

components, and the views cannot be considered as components.

This thesis defines the View element for the RiWAsML as follows.

The View element is a client-side element that implements the rich GUIs for the users to interact

with the RiWAs. The content on a View element can be dynamically generated or updated by its

controller.

The high-level view element of the RiWAArch style represents all the views in the RiWA; therefore,

the RiWAsML requires a high-level wrapper, which realises all the actual views on the high-level

design. Note that this high-level element should be named “Views” in plural form. Based on the

definition of the Views element, the high-level Views element is defined as below.

The high-level Views element is an abstract element which realises all the views within its

Application element.

The RiWAsML has to assist in capturing the following views-related features.

 The Views element communicates with the AppControllers element by invoking the event

handlers when the user triggers the events.

Chapter 4. Requirements for RiWAsML and RiWAsDM

85

 The event handlers do the needful processing and dynamically generate content on the Views

element or update the view by changing or removing content.

Section 5.2.6 introduces the RiWAsML’s notation for the high-level Views element.

4.3.3. R5 – Additional High-level Elements

The high-level design may include some more entities than the abovementioned ones. The RiWAs

essentially use databases (refer to Section 2.3.5.2) and may also use entities like users, files, web

services, Enterprise Service Bus (ESB), and networks. These elements should be able to be nested

into platforms in appropriate tiers as needed.

Moreover, the RiWA architecture benefits from including additional textual details and requires the

use of proper elements for that purpose. A note is a potential element, and the RiWAsML should

provide a note element to include related textual details on the designs.

Section 5.2.7 introduces the syntax for these required additional elements.

4.3.4. R6 – High-level Design Models

This section identifies the models required to provide abstract interpretations of different high-level

aspects of the RiWAs and sets the requirements for them.

4.3.4.1. Level 1 Applications Model Requirements

A RiWA is generally a collection of applications and databases (refer to Section 2.3.5). A model is

required to realise all the Application elements and databases in a RiWA and show their

configuration; it is proposed to be named the Level 1 Applications model (L1 Applications model, in

short). The requirements for the L1 Applications model are as follows.

 The L1 Applications model should include all the Application elements in a RiWA.

 The L1 Applications model should also recognise the platforms the Application elements run

and the tiers they belong to.

 The L1 Applications model should realise the data stores, external services, and also their tiers

and platforms where necessary.

 The L1 Applications model should realise the communication between the Application elements

by means of HTTP or DC and other standard communication between the Application elements

and the data stores or external services.

Section 5.3.3 introduces the RiWAsML’s L1 Applications model and its UML profile.

4.3.4.2. Level 2 View-Process Model Requirements

MVC-based modularization and DC-handling connectors are essential features for RiWAs (refer to

Section 2.3.5.2). RiWAs need a model to realise the high-level MVC modules, DC connectors, and

Chapter 4. Requirements for RiWAsML and RiWAsDM

86

their configuration within the Application elements identified by the L1 Applications model. The

required model is named the Level 2 View-Process model (L2 View-Process model, in short), which

will help understand the high-level elements necessary to develop each Application element. The L2

View-Process model should satisfy the following features.

 For a given client-side Application element, the L2 View-Process model should assist in

capturing the Views elements, AppControllers, client-side AppModel, DC-engine, and their

configuration.

 For a given server-side Application element, the L2 View-Process model should realise the app-

server-model, DC-bus, and, in the case of browser-based RiWAs, the server-side Views element.

The configuration between these elements should be realised.

 The communication between the elements within the L2 View-Process model and the other

Application elements of the RiWA should be realised.

Section 5.3.4 introduces the RiWAsML’s L2 View-Process model and its UML profile.

4.3.4.3. Level 1+2 Architectural Model Requirements

RiWAs need an abstract architectural model to realise all the high-level aspects discussed under the

L1 Applications model and the L2 View-Process model within a single model where necessary. This

model may assist in capturing all the high-level details within a single design when the RiWA is not

large and complex and a single diagram is sufficient. Section 5.3.5 introduces the Level 1+2

Architecture model (L1+2 Architecture model, in short) and its UML profile to design RiWAs’ high-

level aspects in a single diagram.

4.4. Requirements for Low-level Design of RiWAs

This section performs Step 1.3 of the RiWAsDM implementing process (see Figure 1.4 in Section

1.5.3) in the direction of fulfilling research objective 2. This thesis mainly focuses on the structural

modelling aspects of the RiWAs based on the RiWAArch style; therefore, in low-level design, the

RiWAsML attempts to look into the detailed structural modelling requirements of the high-level

elements proposed in Section 4.3.

The RiWAsML’s low-level designs should provide enough details to support the development of the

lowest-level elements, which participate in executing processes. The RiWAs generally offer rich

GUIs (refer to Section 2.3.5.1) for users to interact more with the system towards improving the user

experience, and the processes are initiated by the user’s actions when interacting with the rich GUIs

of the views. Therefore, rich GUIs play a vital role in the perspective of users and engineers.

Considering this, the RiWAsML tends to be view-centric in low-level designing. The following

sections set requirements for low-level model-elements and models to be satisfied by the RiWAsML.

Chapter 4. Requirements for RiWAsML and RiWAsDM

87

4.4.1. R7 – Low-level Modelling of Views

The high-level Views element in client-side Application elements (refer to Section 4.3.2) represents

all the views in a RiWA, and low-level model-elements are required to capture the features of the

individual view within a high-level Views element.

RiWAs offer rich GUIs in general (refer to Section 2.3.5.1); under view designing, there are two

main traits: the content of the GUIs and their aesthetic considerations like colours, placements,

animations, and responsive layouts. This research focuses on designing the content-related features

required to implement interactions and functionalities instead of aesthetic designing. Views need

proper low-level model-elements to capture the details required to implement the functionalities in

the direction of improving the user experience. The requirements for different aspects of modelling

low-level details of the views are discussed in the following sub-sections, aligning with the definition

for view given in Section 4.3.2. The notations for the RiWAsML’s view-related elements are

introduced in Section 6.1.1.

4.4.1.1. GUI elements

Most available solutions, like UWE [142], try to define the GUI elements explicitly, which is

impractical. Modern GUI development concepts/tools – such as Bootstrap, JS-based widgets, GUI

component-based development, and mobile GUI elements – provide a wide variety of GUI elements

and defining them all for a modelling language is not feasible. Giving space to accommodate the

available GUI development tools, the RiWAsML is expected to offer abstract GUI element classes

instead of explicitly specifying the GUI elements.

GUI elements are defined for the RiWAsML as follows.

GUI elements are abstract visual element classes used to implement functions in views.

This thesis identifies the following abstract GUI element classes for the RiWAsML.

Input/Output Elements

The RiWA users primarily enter data and commands to the rich GUIs’ input elements and receive

information on the views’ output elements in return. The input and output GUI elements are defined

as below.

Input elements are the GUI elements that allow users to input data and commands to the RiWAs.

Output elements are used to show information to the users on the GUIs.

The data input elements are textboxes, radio buttons, etc.; command input elements are buttons, enter

key, drag and drop areas, etc. Some input elements can act as both data and command elements by

triggering events. For example, when selecting the gender by using a radio button, it can trigger a

Chapter 4. Requirements for RiWAsML and RiWAsDM

88

command to show the title compatible with the gender. Output elements can be tables, lists, images,

etc. Advanced visualizing elements, such as media players and graphs, are available, which can be

considered output elements. These output visual elements are bound with data, further discussed in

section 4.4.1.3. In some cases, some GUI elements can act as input and output elements; for example,

some data is shown on a check box group and asks the user to select the options.

The RiWAsML is supposed to offer model-elements for the input and output elements that participate

in processes.

Containers/Sections

The rich GUIs often implement multiple related features on a single view, and different

containers/sections may be used to visually separate the content on a large GUI. For example,

consider a view performing the CRUD operations on some items; on the top, there can be a form to

enter data, and below the form, the list of items can be displayed. If sorting and filtering

functionalities exist, the relevant GUI elements can be shown at the top of the list in a dedicated

container/section, visually grouping and separating them from the list and the form. It is vital that the

GUI elements are appropriately grouped, not only to improve user experience but also to increase

the clarity of designs towards supporting the development. Based on this discussion, the

containers/sections are defined as follows.

Container/section are GUI elements to visually group the view elements to improve the user

experience, as well as increase the clarity of the view designs for higher usability towards support

in development.

Popups and Toggles

Since RiWAs are capable of partial view rendering, they tend to implement many functionalities on

the same view instead of making the user navigate through a series of pages to complete a single task

based on the traditional page sequence paradigm [143] [50]. Further, some RiWAs, like Google

sheets, implement the entire app on a single page. In that setting, popups and toggles are widely used

to manage the content while keeping the user in the same view yet performing more related

functionalities. Popups/toggles are defined for RiWAsML as follows.

Popups/toggles are GUI widgets that show/hide or enable/disable content sections to implement

more features on the same view with improved user experience.

When designing views, including details related to the popups/toggles would be beneficial when they

contain GUI elements, which are part of functions. Moreover, it is necessary for a design to include

details of the results of the actions performed on the popups/toggles, primarily if the results affect

Chapter 4. Requirements for RiWAsML and RiWAsDM

89

the main view. For example, a popup allows changing the font of the text on the main view, and

when the font is selected and applied in the popup, the font of the text on the main view is changed.

Viewparts

In RiWAs, different types of users may use the same particular view, which allows them to perform

a group of related functionalities, where some user types are allowed to perform additional functions

based on the authorization level. For example, consider a list of items displayed on a view of an

online shop. The buyers may see the list of items with their details, whereas the admins see more

elements to perform special functions, for example, editing and updating items’ details. In such cases,

instead of developing multiple views per user type, the practice is to employ the advancement of the

rich GUIs and DC development technologies to implement all the functionalities on a single view

and show/hide or enable/disable the additional features based on the current user’s authorization

level. This thesis introduces the concept named “Viewpart”, which is defined below, to provide the

required support in such cases.

A Viewpart is a GUI section which implements functions for a particular user type.

The RiWAsML should assist in designing views with Viewpart elements specifying their target user

types.

Shared Content

In multi-view RiWAs, it is common for the views to share some content, such as headers, footers,

menus, and sidebars. The shared content can be developed as separate GUI widgets and included in

the sharing views. It is vital to identify them and design carefully toward improved simplicity,

reusability, extensibility, and modifiability. Therefore, the RiWAsML is required to provide

sufficient model-elements to design shared content in the direction of supporting its development.

Section 6.1.1.1 introduces the GUI-related elements for the RiWAsML.

4.4.1.2. Navigation

Designing/developing navigation in websites and web applications has been a concern, and different

methods have provided solutions. In a multi-view RiWA, the navigation between the views can be

complex, especially when the views contain Viewpart elements and different user types can navigate

to these views via different routes (this is further discussed in Section 4.4.4.1). The RiWAsML should

address these concerns since it helps identify the views with Viewpart elements for different actor

types and supports their actual development.

RiWAs may use several navigation techniques. Link-based navigation is the typical approach that

allows users to navigate via links. On the browser-based RiWAs, links can be implemented in

hypermedia – including text, images, and videos – to navigate to a different place on the same view

Chapter 4. Requirements for RiWAsML and RiWAsDM

90

or to a different view, principally without requiring any processing since it’s a browser feature. The

menu-based approach is the standard link-based navigation implementing method, where a menu is

a list of links. Additionally, the RiWAs may also use process-based navigation, where the user is

navigated as a part of a process. For example, in a shopping app, when the user adds items to the

shopping cart and clicks the checkout button, the user is navigated to the checkout view to continue

the process.

The RiWAsML should provide enough models and model-elements to capture the said navigational

aspects, satisfying the following requirements.

 The RiWAsML should realise link-based and process-based navigation.

 For link-based navigation, the shared menus/links should be captured.

 Different navigation paths to navigate to common views should be denoted.

 Different navigation paths for different user types should be realised.

Section 6.1.1.2 introduces the RiWAsML’s navigation-related elements.

4.4.1.3. Data

Views capture data to send to server-side Application elements and/or show information using the

data received from the server-side Application elements; hence, the views associate datasets.

Components are supposed to process these captured data and produce information to show on the

GUIs. In that setting, the data to be captured by a view or information to be shown in a view are

directly related to the data processed by the components. It is crucial to have a clear understanding

of the data related to the views, and the RiWAsML should contain enough tools to present data-

related aspects – like data types and structures – on view designs.

4.4.1.4. Related Controller

According to the BAW-MVC [105] used in the RiWAArch style [12], each view should have a

dedicated controller; therefore, the controllers are directly related to the views, and modelling this

relationship is essential to assist the development, and the RiWAsML must have sufficient models

and model-elements to design the relationship between the view and its controller. The controller is

a component; hence, the discussions on the controller and related aspects are given in section 4.4.2.1.

4.4.2. R8 – Low-level Modelling of Components

There should be models and model-elements in the RiWAsML to design the internal structural

aspects of the RiWAs high-level components discussed in Section 4.3.1.4. This section discusses the

requirements related to the components’ low-level aspects in the direction of supporting their

development. The following requirements are set to be satisfied by RiWAsML’s low-level

component design.

Chapter 4. Requirements for RiWAsML and RiWAsDM

91

1. A component should be designed using independent elements similar to UML classes.

2. It is necessary to show which high-level component’s internal implementation is designed by the

low-level design models.

3. The low-level implementation details of the component’s interfaces should be depicted. For

example, which method of which class implements a particular interface?

The requirements specific to the low-level component elements named ControllerClass and

ModelClass are discussed in the following sub-sections.

4.4.2.1. Low-level Modelling of AppControllers

The high-level AppControllers element (refer to Section 4.3.1.4) contains the individual

ControllerClass elements of a given client-side Application element. The AppControllers element is

an active and complex client-side component in RiWAs, which directly communicates with the other

elements, as discussed in Section 4.3.1.4. The individual ControllerClass elements may

communicate with the other low-level elements, aligning with the high-level communication, as

discussed below.

Controller-view communication: according to the BAW-MVC style [105] used in the RiWAArch

style [12], each view is coupled with a dedicated controller, and a ControllerClass element

implements the client-side event handlers for a particular view. Available solutions like IAML [42]

try to define a set of events for RiWAs explicitly. However, due to the availability of a wide variety

of GUI elements for different platforms (as discussed in Section 4.4.1.1), the RiWAsML is not

expected to define events for the ControllerClass elements explicitly. Instead, the RiWAsML

requires a suitable technique for the controller design to accommodate platform/tool-specific events

as needed, according to the development technologies.

Controller-client-model communication: when a ControllerClass element needs to process view

data using business logic, the ControllerClass element should be able to utilise the client-model. The

controller can call methods in the client-model by passing the data read from the view, catching the

results returned by the client-model, and showing them on the view.

Controller-server-application communication: The AppControllers element contains the DC-

engine, which is utilised for communicating with the server-side Application elements. The

controller’s DC-engine implements the DC response handlers to capture the DC responses and

process the results sent by the server-side Application elements.

The RiWAsML is required to provide model-elements to capture all these low-level details related

to the AppController element’s ControllerClass elements; Section 6.1.2 introduces the syntax for

related elements.

Chapter 4. Requirements for RiWAsML and RiWAsDM

92

4.4.2.2. Low-level Modelling of AppModel

An AppModel is an abstract unit that implements the system’s business logic as a black box exposed

to the outside via interfaces. An AppModel element is a collection of classes named by the RiWAsML

as ModelClass elements, and they can be wrapped into packages. The ModelClass elements’

interfaces can be implemented as public methods, exposing the AppModel to the other elements.

Designing low-level aspects of the RiWAs AppModel elements is expected to be assisted with model-

elements and models to capture the internal mechanism of both the server-model and client-model

and their communication with the other elements. Section 6.1.3 offers the notations for the related

elements.

4.4.3. R9 – Low-level Modelling of Connectors

The RiWAsML is required to provide models and model-elements to design the internal mechanisms

of the high-level Connector elements discussed in Section 4.3.1.5. The low-level modelling

requirements for the connectors are discussed in the following sub-sections.

4.4.3.1. DC-Engine

The AppControllers element uses the DC-engine to send DC requests to the server and receive the

responses. The RiWAsML should be able to realise the relationship between the controller and the

DC-engine and provide model-elements and models to design the DC-engine-related features as

given below.

 Upon ControllerClass elements’ need, the DC-engine sends DC requests to the DC-bus.

 DC-engine sets a DC response handler to catch the DC-bus’s response.

 The ControllerClass elements should be able to utilise the data in the DC response captured by

the DC-engine.

4.4.3.2. DC-Bus and EndpointsCollections

The RiWAsML is expected to decompose the high-level DC-bus element to low-level elements,

which can be realised based on the OODD. The DC-bus implements the APIs for DC-engines in a

RiWA, which are usually developed as endpoints using a compatible technique/technology like

SOAP [144] or REST [145]. Therefore, the RiWAsML names the internal elements of the DC-bus

as EndpointsCollection elements and defines them as follows.

An EndpointsCollection element implements the APIs for a DC-bus based on the OODD practices.

A DC-bus is comprised of a related set of EndpointsCollection elements.

The RiWAsML should provide models and model-elements to realise the following features of the

DC-bus and EndpointsCollection elements.

Chapter 4. Requirements for RiWAsML and RiWAsDM

93

 The relationships between the EndpointsCollection elements within a DC-bus should be

depicted based on the OODD.

 An EndpointsCollection element’s endpoints accept the DC-engine’s DC requests, and an

endpoint should be able to denote the data accepted from the request.

 An endpoint can call the methods in the server’s ModelClass and catch the returned results.

 An endpoint can send the response to the DC-engine with a dataset, and the details of the dataset,

such as data type, should be denoted in the design.

Section 6.1.4 introduces the required model-elements and their notations for the RiWAsML.

4.4.3.3. Data and Structures

Connectors may use different types of data to communicate between the client and the server, such

as URL query string, plain text, wrapping methods like XML or JSON, or files [10]. The connectors

should be able to depict the data types used in the designs.

4.4.4. R10 – Low-level Design Models for RiWAs

The RiWAsML is required to offer low-level design models for the detailed designing of all the high-

level elements: Views, AppControllers, AppModel, and Connector elements. This section identifies

the models needed to provide abstract viewpoints of different low-level aspects covering the general

characteristics and essential features of RiWAs (refer to Section 2.3.5) based on the RiWAArch style

(refer to Section 3.1.3) and sets the requirements for them.

4.4.4.1. View-Navigation Model and View Model

Since the RiWAs combine related functions and develop them on common views, and such a view

can be navigated via various routes by different user types, a model is required to capture these

features detailed in Section 4.4.1.2. To explain this further, consider the Item view of a shopping

RiWA. The Item view can implement the view item details function for the buyers, and they can

navigate to the view via an item list on the browse items view. The same Item view can implement

the edit item function for admins, where they can navigate to the Item view via the manage items

view.

The RiWAsML proposes two models to capture the navigational and rich GUI aspects of the RiWAs.

View-Navigation model: The RiWAsML requires this model to design the navigational

characteristics of the views in a RiWA. The View-Navigation model is required to assist in detailing

the following aspects.

 The set of views: the View-Navigation model should include all the views in a RiWA, helping

to decide to add/remove views based on the functions they implement.

Chapter 4. Requirements for RiWAsML and RiWAsDM

94

 Common views: identify the common views that implement multiple related functions for

different user types. The engineers can decide to merge or split views towards improving the

user experience and managing the development.

 Navigation to each view: the model should assist in capturing the navigation paths to all the

views, including multiple navigation paths to common views, which are used by different types

of users.

 Navigation type: engineers can decide whether the navigation should be linked-based or

process-based in the direction of improving the user experience.

 Shared navigation elements: the model should help identify the shared navigation elements,

such as main menus.

View model: The RiWAsML needs this model for the detailed design of the views included in the

View-Navigation model. Since rich GUIs are important in improving the user experience (refer to

Section 2.3.5.1), it is vital to understand all the functions to be implemented on a view and design

the view to support the development of the functions. The following requirements are set for the

View model.

 The View model is required to capture the abstract GUI elements discussed in Section 4.4.1.1 to

implement the view’s functions, considering the users’ interactions with the view and how these

interactions should be handled.

 The View model is required to assist in denoting the view’s interactions with its controller (refer

to Section 4.4.4.5).

Section 6.1.1 introduces the syntax for the related model-elements, Section 6.2.1 provides the View-

Navigation model and its UML profile, and Section 6.2.2 provides the View model and its UML

profile.

4.4.4.2. AppControllers Model and ControllerClass Model

Client-side event handling is an important general feature of the RiWAs (refer to Section 2.3.5.1)

towards minimizing the response time, thus improving the user experience. High-level

AppControllers element implement the client-side event handling in individual elements named by

the RiWAsML as ControllerClass elements. Each View element may have a dedicated

ControllerClass, which implements the event handlers and related functions of that particular View.

Models are required for the detailed design of the AppControllers and ControllerClass elements. The

features of these models are discussed below.

AppControllers model: This model is required to capture all the ControllerClass elements in a

given high-level AppControllers element of a particular Application element of a RiWA, providing

the following features.

Chapter 4. Requirements for RiWAsML and RiWAsDM

95

 A ControllerClass is tightly coupled with its View and has no relationship with other

ControllerClass elements.

 It is not mandatory for a View to have a ControllerClass; thus, the number of ControllerClass

elements can be less than the number of View elements within a particular client-side

Application element.

ControllerClass model: This model is required to depict the details of a particular ControllerClass

element in an AppControllers model. The ControllerClass model should capture the following

features.

 The event handlers for the ControllerClass element’s view, the GUI element which triggers the

event, and the event type should be captured. Some event handlers are required to show/hide

GUI content, such as popups/toggles and hidden sections, which should be distinctly depicted.

 Reading data from its View, and which GUI elements need to be updated with the results should

be included.

 A ControllerClass element’s methods may implement some general view-related logic without

using the AppModel element for processing. For example, reading the birthday from the view,

calculating the age, and displaying it on the view without consulting the model.

 For business logic, ControllerClass elements must utilise the model in two ways: directly use

the client-model or communicate with the server-model via the DC connectors.

Section 6.1.2 introduces the syntax for the related model-elements, and Section 6.2.3 provides the

AppControllers model, ControllerClass model, and UML profile for them.

4.4.4.3. AppModel Model and ModelClass Model

The MVC-based modularization is an essential feature for RiWAs (refer to Section 2.3.5.2), and

models are required to capture the business logic details. In RiWAsML, AppModel elements

implement the business logic, and the RiWAsML requires the following models to capture the low-

level details of the AppModel elements.

AppModel model: this model is required to capture the ModelClass elements required to implement

an AppModel model and their relationships within a given Application element. The AppModel

model is similar to the UML class diagram.

ModelClass model: this model is required for the detailed design of a particular ModelClass element

of an AppModel model, denoting the following features.

 Public methods, which are used to expose an AppModel element to the other elements.

 For server-models, the interactions with the databases.

These design models can directly assist in developing the AppModel elements aligning with the

OODD practices.

Chapter 4. Requirements for RiWAsML and RiWAsDM

96

Section 6.1.3 introduces the syntax for the related model-elements, and Section 6.2.4 provides the

AppModel model, ModelClass model, and UML profile for them.

4.4.4.4. DC-bus Model and EndpointsCollection Model

The RiWAsML requires the following models to design the connectors using the elements discussed

in Section 4.4.3.

DC-bus model: this model is required to capture the EndpointsCollection elements within the server-

side Application elements’ connector of DC-Bus type and their relationships. The

EndpointsCollection elements and their relationships should be captured based on the OODD

practices.

EndpointsCollection model: this model is required for the detailed design of a particular

EndpointsCollection element of a given DC-bus diagram.

Section 6.1.4 introduces the syntax for the related model-elements, and Section 6.2.5 provides the

DC-Bus model, EndpointsCollection model, and UML profile for them.

4.4.4.5. View-Controller Model

Since a view and its controller work closely to implement the client-side event handling, the View-

Controller model is required to capture this relationship and related aspects. The View-Controller

model is necessary to design the development-supportive details of a view’s functions as a view-

controller pair. This model would use the View model and ControllerClass model to denote their

relationships. This model will help improve the user experience by identifying better ways to

implement the view’s functions and assist in developing the functions by ensuring all the required

event handlers are included in the view’s controller.

Section 6.2.6 provides the View-Controller model and its UML profile.

4.4.4.6. View-Process Sequence Model

UML sequence diagram is a valuable tool for designing the execution flows of functions within a

system, assisting in identifying the classes and their attributes and methods. The RiWAsML requires

a model to feasibly integrate the UML sequence diagram aligning with the RiWAsML’s other models

and model-elements, offering the following features.

 The design should realise the Application elements and their internal elements – including View

and its ControllerClass, ModelClass elements, and EndpointsCollection elements – which are

participating in the process.

 The communication types between these elements should be reflected. For example, it should

be shown as DC between the ControllerClass element and the EndpointsCollection element.

Section 6.2.7 provides the View-Process Sequence model and its UML profile.

Chapter 4. Requirements for RiWAsML and RiWAsDM

97

4.5. Chapter Summary

This chapter sets the following attributes required to be satisfied by the RiWAsDM and the

requirements for the model-elements and models for the RiWAsML.

 RiWAsDM Attributes: (Attr 1) Simplicity and (Attr 2) adoptability. The adoptability is

expected under (Attr 2.1) comprehensiveness, (Attr 2.2) usability (learnability and readability

/understandability), (Attr 2.3) development support, and (Attr 2.4) integrability.

 Common model-elements: (R1) naming label and (R2) communication channels with different

styles of arrows.

 High-level model-elements: (R3) processing elements (Application, Tier, Platform,

AppControllers, AppModel, and Connector), (R4) Views element, and (R5) additional elements

(databases, files, web-services, ESB, users, and notes).

 (R6) High-level models: Level 1 Applications model, Level 2 View-Process model, and L1+2

Architectural model.

 Low-level model-elements: (R7) View (GUI elements, navigation, data, and related controller),

(R8) Component (AppControllers and AppModel), (R9) Connector (DC-engine and DC-bus),

and EndpointsCollection element.

 (R10) Low-level models: View-Navigation model and View model; AppControllers model and

ControllerClass model; AppModel model and ModelClass model; DC-bus model and

EndpointsCollection model; View-Controller model; and View-Process Sequence model.

Table 4.1 maps the quality attributes to the requirements to comprehend the relationship between

them clearly.

Table 4.1 Mapping the quality attributes to the requirements

Requirements

Attributes

R
1
 E

le
m

e
n

t
n

a
m

e
s

R
2
 C

o
m

m
 c

h
a

n
n

e
ls

R
3
 P

r
o
ce

ss
in

g
 e

le
m

e
n

ts

R
4
 V

ie
w

s
(h

ig
h

-l
e
v
e
l)

R
5
 A

d
d

it
io

n
a
l

e
le

m
e
n

ts

R
6
 H

ig
h

-l
e
v

el
 m

o
d

el
s

R
7
 V

ie
w

s
(l

o
w

-l
e
v

el
)

R
8
 C

o
m

p
o

n
e
n

ts

R
9
 C

o
n

n
e
ct

o
r
s

R
1
0

 L
o
w

-l
e
v
e
l

m
o

d
e
ls

Attr 1 Simplicity X X X X X X X

Attr 2.1 Comprehensive X X X X X X X X X

Attr 2.2 Usability X X X

Attr 2.3 Dev support X X X X X X

Attr 2.4 Integrability X X X

98

Chapter 5. RiWAsML: High-level Modelling Language

This chapter introduces model-elements, models, and UML profiles to design high-

level aspects of the RiWAs in the direction of satisfying the requirements set in

Sections 4.2 and 4.3. The outputs of this chapter fulfil Step 2.1 of the RiWAsDM

implementation process given in Figure 1.4 in Section 1.5.3, partially achieving the

research objective 2.

5.1. Notations for General Model-elements of RiWAs

This section provides the notations for the element label and communication channels, which are

common for high-level and low-level designing.

5.1.1. R1 – Elements Label Notation

Section 4.2.1 sets the requirements for the element label.

UML meta-model does not provide a naming convention for the model-elements. In general, the

element class/type is identified by the graphical symbol, and the element label is used to assign a

custom name. For stereotypes, a pair of guillemets << >> are used above the element name to mention

the stereotype name. The UML-based languages inherit this naming style. The engineers may use

element names based on the project’s scenario, domain, or development tools like frameworks.

The RiWAsML provides a unique element label format to satisfy the requirements set in Section

4.1.2, as discussed below.

Label structure: since the RiWAsML is a UML extension, the model-elements will be stereotypes

of the UML meta-model. Therefore, the RiWAsML model-element label’s text should be within a

pair of guillemets << >>. The label content should include 3 segments: Element class, Type, and

Name. The Guillemet helps wrap the label segments and visualize them as a single unit.

Segments separator: a space, comma, dash, and colon were considered to separate the label

segments. A space would not provide a robust visual separation and may reduce the label’s

readability. A comma is a potential candidate; however, the comma is utilised for separating the

platforms within the element’s class and type segments (refer to Section 5.2.2). The dash is mainly

used in computing to denote the subtraction operation; hence, it may express a different meaning.

Colon is used in the natural language to join sections and has no strong and specific impression in

computing. Considering these points, the colon has opted to separate the segments in the element

label. The finalized element label format is shown below.

<< Element : Type : Name >>

Chapter 5. RiWAsML: High-level Modelling Language

99

Some guidelines to be followed as standards for element labels are stated below.

 Based on the OODD practices, for all the label segments, use the Pascal case for class-like

elements and the Camel case for object-like elements (this will be indicated where necessary

when introducing new RiWAsML elements). These values can be directly utilised in the

development as names for namespaces/packages/classes.

 When the label is long, break the links after the colon.

 When a specific name segment value is not necessary, provide the type segment value for the

name segment.

The RiWAsML model-elements will use this label notation, and the values for each new notation’s

element class and type segments will be specified. Section 5.3.1 provides the UML profile for

RiWAsML’s Label element.

5.1.2. R2 – Communication Channels Notations

Section 4.2.2 sets the requirements for the RiWAsML’s communication channels.

 UML meta-model provides the Relationship abstract element, which is inherited to depict

various relationships between the model-elements. The UML’s Deployment diagram [146] uses

a type of association relationship named communication path to denote the communication

between the nodes using a regular line. A label can be used to indicate the type of

communication which declines the readability of the design. Graphical bidirectional interface

connectors are given for components whose readability is low compared to the arrows or lines.

 TAM [82] provides syntax named Channles to indicate the data flows of volatile information

between agents (processing elements in TAM) using a line with a small circle in the middle,

which is optionally directional. Unidirectional arrows are provided to indicate the access flows

such as read, write, and modify. UML-like interface connectors are given for components.

 Archimate [121] uses a bidirectional dashed arrow notation named Communication Path for

nodes to exchange data or material.

 The C4 model [79] uses dashed unidirectional arrows only to show the relationships between

the elements.

 UWE’s [147] Navigation Model uses association stereotypes with labels to show the links.

 IFML [124] uses a unidirectional arrow notation named Navigation Flow to show the “sending

and receiving of parameters in the HTTP request” and a dashed arrow notation named Data

Flow to denote data passing between View Components.

These notations of the available solutions are unable to denote different communication channel

types, for instance, HTTP vs DC; they do not realise the request-response model in all the

communication types, and they are not consistent across all the models of the language.

Chapter 5. RiWAsML: High-level Modelling Language

100

This thesis analyses the communication channels between the elements in RiWAs into 5 abstract

types (refer to section 4.2.2). The RiWAsML addresses the direction and type aspects of the

communication channels’ syntax as below.

Direction: At the high-level design, bidirectional arrows can represent the request-response model.

At the low-level design, unidirectional arrows can be used when the request and response are taking

place between separate elements. The requesting and the responding elements should be understood

based on the RiWAArch style, as discussed in Section 4.2.2.

Type: The RiWAsML offer the arrow styles in Figure 5.1 to realise the communication channel types

specified in Section 4.2.2.3.

Figure 5.1 Proposed notation: communication channels

 Standard communication: a regular, black-headed arrow to denote standard communication

like HTTP or other protocols like TCP/IP to communicate with databases or compatible external

entities.

 DC: a thick black-headed arrow.

 View-controller: a regular white-headed arrow to denote the communication between the view

and its controller.

 Method calls and returns: a thick white-headed arrow,

 Sequence diagram returns: the same arrow styles with dashed stems should be used to

illustrate the returns of the calls. For example, for the return of DC, a black-headed arrow with

a thick dashed stem should be used.

When the elements on the other end of the communication are unavailable on the same diagram, the

RiWAsML offers numbered connectors, as shown in Figure 5.2. In that case, an arrow with the

correct direction and type should be used between the element and the connector.

Figure 5.2 Proposed notation: communication channel with numbered connectors

Chapter 5. RiWAsML: High-level Modelling Language

101

Even though elements 1 and 2 are on the same diagrams, communication channels with numbered

connectors may be used to reduce complexity and improve readability. The communication channel

can be of any type, and the arrow can be either unidirectional or bidirectional, as required.

This thesis keeps push communication and related aspects out of the scope; however, a notation for

push DC is proposed for future extensions, as shown in Figure 5.3. It is a thick black arrow similar

to DC, with a doubled line stem.

Push DC channel

Figure 5.3 Proposed notation: push-DC

Further element-specific communication-related notations are given and discussed in relevant

sections where necessary. Section 5.3.2 provides the UML profile for the RiWAsML’s

communication channel syntax.

5.2. Notations for High-level Model-elements of RiWAs

The following sections provide the RiWAsML notations for the high-level model-elements to satisfy

the requirements set in Section 4.3.

5.2.1. R3 – Notation for Tier Element

Section 4.3.1.2 sets the requirements for the RiWAsML’s Tier element. Some similar elements of

available solutions are discussed below.

 UML’s Package element can be exploited to denote the tiers [148]; however, it lacks the

semantics.

 Arc42’s [80] Building Block View allows showing tiers in the architecture design; anyhow, it

suggests using lines and boxes instead of providing proper model-elements for different types

of blocks.

 TAM [82] uses a dashed line to indicate the protocol boundaries and explains that “Protocol

boundaries usually partition a diagram in order to accentuate certain boundaries in

communication.” This notion of separation differs from the tier concept, and it will not indicate

the role or distribution of the containing elements. Also, it cannot depict the use of multiple

protocols between layers; for example, HTTP, XMLHTTP, and WS communication between

the client and server cannot be shown.

 Archimate’s [121] Physical layer provides some containers: Equipment, Facility, Distribution

Network, and Material for different levels of separation; nevertheless, they do not provide a high

level of separation similar to tier.

Chapter 5. RiWAsML: High-level Modelling Language

102

 SysML provides a more abstract concept called Block, which is likely to be used to denote tier

[127]. The Block “defines a collection of features to describe a system or other element of

interest” [127], and it can be exploited to model tiers; however, semantically, it’s a low-level

element.

The RiWAsML specifies a rectangular block notation to indicate the tier. A RiWA comprises at least

three tiers: the client, server, and data tiers. A tier block can be stacked either horizontally or

vertically to denote multiple tiers. Vertical tiers may give an impression of a top-to-bottom parent-

child-like relationship; horizontal tiers mainly provide an impression of left-to-right flow, which is

more suitable with the client tier on the left as the workflows start with the client. Considering these

points, the RiWAsML suggest horizontal tiers. The adjacent tiers may share the side borderlines, as

shown in Figure 5.4.

Figure 5.4 Example: Tier elements

The tier label’s element segment should use the keyword “Tier”. Since the RiWAArch style is based

on the 3-tier architecture, this thesis only specifies three values for the type segment of the label:

Presentation, Application, and Data/Storage. The name segment may contain a suitable value to

identify the tier based on the system’s requirements, as indicated in Figure 5.4.

5.2.2. R3 – Notation for Platform Element

The platform comprises three levels: the hardware, the OS, and the application-level virtualisation,

as per the requirements set in Section 4.3.1.3.

 The UML meta-model uses the node element [137] to specify the platform details on the

deployment diagram [149], which represents a deployment target of computational resources

[119]. UML offers two levels of platform: device and execution environment, where the OS and

application-level virtualizations are considered execution environments. The designer can

specify the levels and denote the required details using multiple nested nodes, as shown in Figure

5.5.

Chapter 5. RiWAsML: High-level Modelling Language

103

Figure 5.5 Example: using UML’s nested nodes for platforms [146]

Using multiple nested nodes to model the platform details lacks consistency due to the unavailability

of standards and reduces the readability by making the design untidy with many nested nodes. Refer

to Section 8.1.3 to understand the issue with using the UML meta-model’s node element and how it

is addressed with RiWAsML’s proposed platform syntax. The UML-based methods/tools use the

UML meta-model’s node to denote the platform, and they inherit the same issues with nested nodes,

as discussed above.

 Arc42’s [80] Building Block View enables denoting platform but uses boxes and lines without

proper model-elements. Arc42’s Deployment View uses the UML node without additional

dedicated notations.

 ArchiMate’s Technology Layer uses the node as a “computational or physical resource that

hosts, manipulates, or interacts with other computational or physical resources” [150].

Archimate further provides some more notations – such as System Software, Technology

Function, Technology Service, and Technology Collaboration – to include platform-related

details in a model. The complexity, hence, the learning curve of Archimate, could be increased

by having many notations for similar concepts.

 The C4 model [79] does not explicitly specify notations for platforms; however, platform details

can be denoted in the level 2 Container diagram using boxes, which lacks semantics.

 SysML’s [127] Block Definition Diagram provides notations like AbstractDefinition, which can

be exploited to include the platform details into a model. However, semantically, they are low-

level elements.

The RiWAsML proposes using the UML’s node notation for the Platform element. Besides, the

RiWAsML intends to reduce the use of nested nodes by exploiting the label to provide more details

on a single node. The proposed Platform notation is given in Figure 5.6.

Chapter 5. RiWAsML: High-level Modelling Language

104

Figure 5.6 Proposed notation: Platform element

The following rules are provided to name the Platform element.

 The element segment of the label should be “Platform”.

 In addition, in the element segment, within brackets, the platform levels presented by the

element should be indicated using the shortcodes HW for hardware, OS for operating systems,

and App to denote the application-level virtualization. The levels should be separated using

commas.

 For the type segment of the label, the technical details of the platform levels mentioned in the

element segment should be specified in the same order, separated by commas.

 The name segment of the label should contain a name for the platform for identification

purposes.

A browser on an Android mobile phone can be labelled as follows.

<< Platform (HW, OS, App) : Mobile phone, Android, Browser : User’s browser >>

If explicit requirements exist to show different platform levels using distinct elements, the

RiWAsML proposes the following rules to separate the platform levels into two nested Platform

elements.

 In any device, the hardware and operating system are a tightly coupled pair of platforms;

therefore, at the parent level Platform element, it is required to state the hardware and operating

system, which specifies the device.

 A child Platform element can be used to represent the application-level platform details. In this

case, the labels’ element and type segments should only indicate the necessary details.

 Moreover, when multiple application-level platforms are available within the same device, they

can be denoted using children nodes within the same parent-level node. If the child platforms

belong to multiple tiers, the parent platform can stretch across the tiers.

Figure 5.7 illustrates an example of nested platforms for each case described above.

Chapter 5. RiWAsML: High-level Modelling Language

105

Figure 5.7 Example: nested platforms

In the presentation tier, the client uses a mobile device’s browser to access the system, and the mobile

device is shown using a single Platform element. The hardware platform is the mobile phone, which

uses the Android OS. The Platform element is named “Buyer’s phone” to express that this is the

mobile phone device of the user type buyers. On the server side, both the web server and the DB

server are installed on the same server device; in that case, the parent node is stretched across the

Application and Data tiers. The children nodes are placed within the appropriate tier, stating only the

application-level platform type and assigning names for each application-level platform.

When using cloud services to host Application elements and databases, where the hardware and OS

details are not required, it is enough to provide a single Platform element with the cloud service

details as the application-level platform.

5.2.3. R3 – Notation for Application Element

Section 4.3.1.1 sets the requirements for the Application element. None of the available solutions

offer semantically similar elements to the Application element. Some comparable notations are

discussed below.

 UML meta-model uses the artefact model-element [151], where an artefact can be a script or

executable file. However, the artefact’s purpose is to represent some physical entity, including

text document, source file, script, binary executable file, archive file, and database table, and it

is conceptually different from the Application element.

 Arc42 [80] can specify and denote an Application element using a box in its Building Block

View, which lacks standard notation and, thus, semantics.

 TAM’s [82] Component/Block Diagram model-element named common feature area [45],

which is likely to be exploited to represent applications by grouping components. Also, the

agent element is an active element that can be exploited for an Application element. However,

both common feature area and agent elements are semantically different from the Application

element required by the RiWAsML.

Chapter 5. RiWAsML: High-level Modelling Language

106

 The model-element named product in Archimate’s Business layer [152] is closer to the concept

of application; however, it characterizes a higher-level abstraction. The Archimate’s application

layer’s application component is more of a UML component, which can be exploited to denote

Application elements; yet, it’s semantically a low-level element.

 The primary purpose of the C4 model’s [79] level 2 container diagram is to show the

applications and their associations. The container represents an application, yet since C4 uses

boxes and lines, it lacks proper syntax and semantics.

The RiWAsML uses a rectangle with the label format << Application : Type : Name >> to model

the concept of the Application element. An example is given in Figure 5.8, which shows a mobile

application named “ShoppingApp”, which runs on an Android mobile phone’s browser.

Figure 5.8 Example: Application element

The Application elements’ label’s element segment should be “Application”, the type should be a

custom value indicating the actual type of the application, and the name should contain the suitable

name, which can be exploited as a namespace or package name in development.

5.2.4. R3 – Notations for Components

The RiWAsML required two types of high-level components: controllers and model, according to

the requirements set in Section 4.3.1.4. Available solutions offer the following elements, which

attempt to realise the controllers and model components.

 UML meta-model includes a model-element for components [153] with a notion similar to the

architectural component, explained as “a self-contained unit that encapsulates the state and

behaviour of a number of Classifiers” [119], and the UML-based methods/tools inherit it. UML

component does not explicitly realise controllers or models semantically.

 Some documents on the web discuss a design pattern named Entity-Control-Boundary (ECB)

pattern [154], originating from Ivar Jacobson [155], which is similar to the MVC where the

Entity is like the Model, and the Boundary is like the View. These documents on the web provide

some UML notations for the ECB elements [154], and some UML tools even support using

them on diagrams [156]. According to the UML 2.5 specification, the UML meta-model uses a

stereotype <<Entity>>, which applies to the component to denote a “persistent information

Chapter 5. RiWAsML: High-level Modelling Language

107

component representing a business concept” [119], which is semantically the data aspects of a

model. Other than that, the ECB-like concept was not found in UML.

 The C4 model’s component diagram uses the components to denote the processing elements

within containers. However, these components do not have formal syntax and semantics.

The RiWAsML stays with the UML component notation instead of using different notations for the

model and controller. The component’s label’s type segment is exploited to indicate if the component

is a high-level controller or model.

Figure 5.9 illustrates the proposed notation for the component.

Figure 5.9 Proposed notation: component element

The label’s element segment should be “Component”; the type segment is proposed to denote the

component type as follows.

 AppControllers: for the AppControllers elements, the label’s type segment should be

“Controllers”, which is always plural.

 AppModel: there can be only one model for the MVC triad; however, for RiWAs, the

RiWAArch style [12] splits the model between the client and the server based on the BAW-

MVC [105]. In this setting, the RiWAsML suggests using the types “ClientModel” and

“ServerModel” for the AppModel component elements.

A suitable name can be assigned to the components for identification purposes, which may be related

to the application name. The component’s name can be used as a namespace or package name in the

development. Examples of the components are shown in Figure 5.10.

Figure 5.10 Example: high-level Controllers and Model components

RiWAsML considers the communication between the components and connectors in RiWAs based

on the RiWAArch style and uses the communication flow arrows discussed in Section 5.1.2.

Therefore, the UML meta-model’s component interfaces are not utilised. The communication flows

between the components are discussed in necessary sections where required.

Chapter 5. RiWAsML: High-level Modelling Language

108

5.2.5. R3 – Notation for Connectors

This section provides the high-level notation for Connector elements satisfying the requirements set

in Section 4.3.1.5.

 UML already has a model-element called Connector [103], which relates to the interfaces. The

semantics of the UML’s connector discuss low-level communication between the components

via the interfaces; therefore, it is unsuitable to express high-level connector elements, which

wrap low-level details. Other UML-based methods/tools also use a similar concept to include

communication details in a design at the interface level; thus, they are not reviewed here.

The RiWAArch style has a dedicated high-level connector pair for DC, DC-engine and DC-bus; thus,

a high-level model-element is required to model the connectors in RiWAs. Since the connector is

also considered a processing element (refer to section 4.3.1), the RiWAsML suggests using the same

component notation given in Section 5.2.4 with a Connector stereotype. An example of the proposed

notation is shown in Figure 5.11.

Figure 5.11 Example: DC-engine and DC-bus connectors

The element segment of the connector’s label should be “Connector”. The main types of

communication in RiWAs are standard HTTP and DC, which can be stated in the connector label’s

type segment. The type segment may explicitly specify DCEngine or DCBus. The RiWAArch style

does not include HTTP connectors; anyhow, it is possible to have HTTP connectors in the server-

side Application elements to handle the HTTP requests from the views or the controllers. In the case

of DC, the name segment of the label can be set as DCEngine, DCBus, or any other suitable name

for identification of the connectors. For example, the name of the DC-engine Connector element in

a mobile application could be named as MobileDCEngine.

5.2.6. R4 – Notation for Views

Section 4.3.2 sets the requirements for the RiWAs’ high-level Views element. The positions of the

available solutions are stated below.

 UML meta-model does not address presentation-related concerns and, hence, does not include

model-elements for views and related aspects. Many other UML-based methods/tools try to fill

this void by introducing new model-elements and models for views; however, they are primarily

low-level design solutions and are discussed in Chapter 6 under RiWAsML’s low-level

modelling.

Chapter 5. RiWAsML: High-level Modelling Language

109

 TAM includes a rectangular notation for views in some sample diagrams [82]; nevertheless,

discussions were not found in TAM’s documentation.

The RiWAsML proposes to use a rectangle notation for the high-level views element, as illustrated

in Figure 5.12.

Figure 5.12 Proposed notation: Views element (on the left) and an example of the use (on the right)

The Views element label’s element segment should be “Views”; note that it’s in plural form. The

type segment should indicate the type of views, as in “WebPages” for browser-based apps,

“Activities” for mobile apps, and “Windows” for desktop apps. The name segment should use a

proper name related to the Application element for identification purposes.

Modelling aspects of an individual view within this high-level Views element are discussed in

Chapter 6 under low-level design.

5.2.7. R5 – Notation for Additional High-level Elements

Section 4.3.3 discusses the requirements for the additional high-level elements for the RiWAsML.

Available solutions provide many additional elements to support high-level and low-level designing,

as given below.

 UML – Users/actors, notes, artefacts, database systems, and schema.

 Arc
42 – Users/actors and notes.

 TAM – Users/actors and databases.

 ArchiMate – Users/actors, roles, objects, databases, and files.

 C4 model – Persons, devices, databases, and notes.

The RiWAsML offer the notations in Figure 5.13 for the model-elements specified in section 4.3.3,

which help model high-level aspects of the RiWAs.

Figure 5.13 Proposed notation: additional high-level elements

Chapter 5. RiWAsML: High-level Modelling Language

110

The element segment of these support elements may use the values specified in Figure 5.13, the type

segment may contain suitable values, and the name segment may have proper names to identify the

elements.

The RiWAsML provides a Notes element with the notation depicted in Figure 5.14. When using a

Notes element, it should point to the element which it describes. The Notes element does not use a

label and contains the details of the element as text which it describes.

Figure 5.14 Proposed notation: Notes element

5.3. R6 – High-level Design Models and UML Profiles for the RiWAsML

This section provides the UML profiles for the RiWAsML’s general model-elements discussed in

Section 5.1 and high-level models set in Section 4.3.4, which use the notations proposed in Sections

5.1 and 5.2.

UML meta-model elements, which are mostly considered for the RiWAsML extensions, are

specified below.

 Namespace is an abstract named element that can own (contain) other named elements and

can be seen as a container for named elements [157].

 Package is a namespace used to group together elements that are semantically related and

might change together [158]. A package can own the packageable elements such as Type,

Classifier, Class, Component, and Package [158].

 Classifier is an abstract metaclass that describes (classifies) a set of instances with common

features, and the classifier inherits from both the namespace and redefinable element [159].

 A class is a classifier which describes a set of objects that share the same features,

constraints, and semantics (meaning) [160].

RiWAsML proposes two-level hierarchical models for the high-level designing of RiWAs (refer to

Section 4.3.4), similar to Arc42’s [80] Building Block View and C4 model [79]. It will help design

large and complex RiWAs in two-level smaller diagrams for improved usability. However, in the

case of small RiWAs, it is viable to amalgamate the two levels into the same diagram. These aspects

are detailed in the Sections 5.3.3, 5.3.4, and 5.3.5.

Chapter 5. RiWAsML: High-level Modelling Language

111

5.3.1. Profile for Label Element

Section 5.1.1 offers the RiWAsML’s syntax for the Label element.

UML meta-model uses label notation to indicate the element name for identification purposes. UML

core includes a UMLLabel class, which inherits the UMLShape class [119]. The UMLLabel class is

inherited by 4 sub-classes: UMLKeywordLabel, UMLNameLabel, UMLTypedElementLabel, and

UMLRedefinesLabel, as shown in Figure 5.15.

Figure 5.15 UML meta-model’s labels [119]

UMLNameLabel is used to name the model-elements with text, which specializes the UMLLable

class. Usually, a label contains a single string segment. Since the RiWAsML requires a three-

segmented element naming format (refer to section 4.2.1), the UMLNameLabel is extended to a new

class named ElementNameLabel, which specifies the label format given in section 5.1.1.

ElementNameLabel is a composition of LabelSegmentElement, LabelSegmentType, and

LabelSegmentName, which are allocated to the element label’s class, type, and name segments of the

RiWAsML’s Label element. The UML profile for the Label element is given in Figure 5.16.

RiWAsML specifies values for the label’s element segment; therefore, the Label element’s UML

profile uses an enumerator with the stipulated values for the element segment, which includes the

values of all RiWAsML’s high-level and low-level elements. Even though some values are specified

for the label’s type segment, the LabelSegmentType stereotype is constructed with a string tag

definition labelSegmentType, allowing the designers to use custom values according to the

requirements. The label’s name segment can use custom names; hence, it is constructed using a

UMLNameLabel stereotype with a string tag definition labelSegmentName.

Chapter 5. RiWAsML: High-level Modelling Language

112

Figure 5.16 UML profile: RiWAsML Label element

5.3.2. Profile for Communication Channels

Section 5.1.2 provides the syntax for the RiWAsML’s communication channels. The following UML

elements are the candidates for the RiWAsML’s communication channel profile.

 UML uses a communication channel named InformationFlow as “some kind of ‘information

channel’ for unidirectional transmission of information from sources to targets” [161]. The

notation uses a dashed unidirectional arrow, inheriting from DirectedRelationship.

 UML’s Object flow edges use straight-lined unidirectional unfilled arrows for data flows of

objects [162].

 UML Messeges offer a set of unidirectional arrows for Synchronous call, asynchronous call,

asynchronous signal, Create, Delete, and Reply in the sequence diagram [163]. The message is

a specific use of message flow and is not suitable for RiWAsML’s communication channels.

 UML Communication path “is an association between two deployment targets, through which

they are able to exchange signals and messages” [164].

RiWAsML’s communication channels opt to extend UML association, similar to the UML

communication path. The UML profile for RiWAsML communication channels is given in Figure

5.17. This profile extends the UML’s association metaclass for the 4 types of RiWAsML’s

communication channels (standard, DC, view-controller, and method calls and return) for the

Chapter 5. RiWAsML: High-level Modelling Language

113

bidirectional arrows, unidirectional arrows, and unidirectional arrows with dashed stems for the

View-Process Sequence model (refer to Section 4.4.4.6).

Figure 5.17 UML profile: RiWAsML communication channels

5.3.3. Level 1 Applications Model

The requirements for the RiWAsML Level 1 Applications model are set in Section 4.3.4.1. Some

similar models in available solutions are as follows.

 UML does not provide any models for high-level architectural design. The UML’s package

diagram can be exploited to design high-level layered designs [148]. However, it does not have

sufficient semantics for comprehensive high-level modelling.

 UML meta-model uses the deployment diagram to design the deployment details using

platforms, and UML-based methods mainly utilise the deployment diagram to denote the

platform and related information. The deployment diagram does not explain the grouping of

platforms into tiers and may use multiple nested nodes to indicate the complete platform details.

The deployment diagram can also include more information like deployable artefacts,

Chapter 5. RiWAsML: High-level Modelling Language

114

specifications, and schemas [149], which may provide additional information related to the core

elements. The deployment diagram does not realise tiers and applications.

 TAM’s [82] Component/Block diagram uses a tier-like separation primarily based on the

communication protocol and does not include platform details or proper elements to denote the

RiWAs Application elements.

 Arc42’s [80] Building Block View tries to capture the architectural elements but lacks proper

notations and definitions for its levels.

 The C4 model’s Container diagram provides guidelines to capture the Application elements;

however, it lacks readability without appropriate notations and rules. Also, the tier and platform

details cannot be depicted in the C4 model.

None of the available solutions provides models to satisfy the requirements of the RiWAsML’s Level

1 Applications model set in Section 4.3.4.1. Figure 5.18 illustrates an example L1 Applications

diagram for a RiWA with a database.

Figure 5.18 Example: L1 Applications diagram

This sample L1 Applications diagram satisfies the requirements for the L1 Applications model as

follows.

 All the Application elements needed for the RiWA are realised.

 The Platform and Tier elements for the Application elements are realised.

 The database and its platform and tier are realised.

 The communication between the Application elements is realised. There are two communication

channels between the ShoppingAppClient and the ShoppingAppServer: the upper channel is for

HTTP communication, and the lower channel is for the DC. The ShoppingAppServer

communicates with the database using the standard communication channel.

The UML profile for the L1 Applications model is given in Figure 5.19.

Chapter 5. RiWAsML: High-level Modelling Language

115

Figure 5.19 UML profile: applications model and its elements

The L1ApplicationsModel profile comprises the stereotypes ApplicationsModel, Tier, Platform, and

Application, which extends the UML metaclasses as discussed below.

 Tier: Since the UML meta-model has no particular diagrams for high-level design, there is no

notation to denote tier. UML suggests exploiting packages for designing layered architectures,

even for web applications [148]. A layer in the layered architecture is not necessarily a tier, and

a layer can even be an abstract concept like a view/controller/model for a standalone desktop

application; thus, using the UML package to specify the tier concept is not straightforward. Due

to the semantical difference between the RiWAsML’s tier and the UML’s package, extending

the UML’s package to derive the RiWAsML’s tier is not recommended. Stipulating the tier as

a high-level element with internal elements which can communicate, RiWAsML extends the

UML namespace to derive the Tier stereotype.

 Platform: Since the UML’s node can realise device and execution environment elements,

RiWAsML extends the UML’s node for the Platform element.

 Application: At the high level, the Application element acts as a package, which groups the

views, controllers, and model. Generally, the purpose of a package is only to group the

containing elements to show the ownership, and the communication between the packages or

owning elements is not denoted. Therefore, the package is not considered a potential metaclass

to extend for the Application element. At the lower level, the Application elements do not share

common features since client-side applications like mobile apps and server-side applications

like web services may have different features; hence, the Application element cannot be

considered a class or a classifier. Considering these facts, RiWAsML opts for the UML’s

abstract namespace element to extend for the Application element.

A real-world use case of the L1 Applications model is discussed in Section 8.1.3.

Chapter 5. RiWAsML: High-level Modelling Language

116

5.3.4. Level 2 View-Process Model

This section discusses the RiWAsML’s L2 view-process model in the direction of satisfying the

requirements set in Section 4.3.4.2. The similar models provided by the available solutions are stated

below.

 UML Component diagram [165] is used to design the configuration between a set of

components and sub-components. However, these components are not specified as controllers,

models, or connectors, and the views are not realised.

 UML’s Composite Structure diagram can capture the internal structures of a classifier [166],

which is similar to the component diagram and cannot realise views, controllers, models, and

connectors.

 Arc42’s Building block view may capture component-level formalism in levels 1 and 2.

However, without a formal model and model-elements, it’s not much usable.

 The C4 model’s Component diagram can generally capture components without realising the

controllers and model. Also, the views and connectors are not realised.

Example diagrams of the L2 View-Process model are given in Figure 5.20. These diagrams are for

the Application elements: Browser app and Web server app in Figure 5.18. Note that two different

L2 View-Process diagrams are included in the same figure for ease of demonstration and discussion.

Figure 5.20 Example: View-Process diagrams for the Browser app (left) and Web server app (right)

These diagrams satisfy the requirements set in Section 4.3.4.2 as follows.

 The views, controllers, client-model, and DC-engine elements and their communication are

depicted in the client-side Application element.

 The views, server-model, DC-bus, and their communication are denoted in the server-side

Application element.

 Communication channels with numbered flow connectors indicate the standard HTTP

communication between the client-side and server-side Application elements, which are based

on the RiWAArch style. The client’s Views and AppControllers elements can send HTTP

Chapter 5. RiWAsML: High-level Modelling Language

117

requests to the server-side Application element, and the client-side Application element receives

the response sent by the server’s Views element, which is a webpage and its resources.

 DCEngine and DCBus elements use bidirectional DC communication channels with numbered

flow connectors.

 A bidirectional communication channel with a numbered flow connector denotes the

communication between the Server-Model and the database.

Note that the Views elements are separated by stating the ClientWebpages and ServerWebpages on

the type segment.

The UML profile for the L2 View-Process model is given in Figure 5.21.

Figure 5.21 UML profile: view-process model and its elements

The UML Component is extended for RiWAsML Component and Connector elements. The UML

Class is extended for the Views element, considering that all the views are composed of a set of

abstract elements.

5.3.5. Level 1+2 Architectural Model

The Level 1+2 Architectural model is introduced here, satisfying the requirements set in Section

4.3.4.3. For small RiWAs, the RiWAsML allows combining the L1 Applications model and L2 View-

Process model into a single model, named the L1+2 Architectural model, to support capturing all

the high-level aspects into one diagram.

The TAM’s [82] Component/Block diagram is the only similar model identified in the literature,

which includes many details required for the RiWAs. However, it does not contain sufficient

elements to realise the MVC and DC aspects.

An example of the RiWAsML’s L1+2 Architectural model is given in Figure 5.22. A larger version

of the same diagram is provided in Appendix A.

Chapter 5. RiWAsML: High-level Modelling Language

118

Figure 5.22 Example: shopping app – L1+2 Architectural diagram

The arrows from the server’s Views element to the client’s Views element, as depicted in the

RiWAArch style, are not included in the L1+2 Architectural diagram. However, it should be

understood that for the browser-based RiWAs, at the runtime, a single view is loaded to the client-

side Application element from the server’s views collection. The RiWAs, with mobile and desktop

clients (without a browser-based client), do not require Views elements on the server-side, and also,

the HTTP requests from the client elements to the server are not necessary.

Figure 5.23 provides the UML profile for the L1+2 Architectural model. Since other model-elements

are included in the profiles of the L1 Applications model and L2 View-Process model, the L1+2

Architectural model’s profile only consists of the ArchitectureModel stereotype.

Figure 5.23 UML profile: L1+2 Architecture model

Chapter 5. RiWAsML: High-level Modelling Language

119

5.4. Chapter Summary

This chapter introduces the following model-elements, models, and UML profiles of the RiWAsML,

for the high-level modelling of RiWAs.

 General model elements: Label element and Communication channels (Standard

communication, DC, View-Controller communication, Method call and return).

 High-level model elements: Tier, Platform, Applications, Component (Controllers, Client-

model, and Server-Model), Connector (DC-engine and DC-bus), Views, and additional high-

level elements (Database, File, WebService, User, Network, ESB, and Notes).

 High-level models and their UML profiles: L1 Applications model, L2 View-Process model,

and L1+2 Architectural model.

120

Chapter 6. RiWAsML: Low-level Modelling Language

This chapter introduces model-elements and models for designing low-level aspects

of the RiWAs in the direction of satisfying the requirements set in Section 4.4. Also,

UML profiles, which are required for the new models and model-elements, are

produced. The outputs of this chapter fulfil Step 2.2 of the RiWAsDM

implementation process given in Figure 1.4 in Section 1.5.3. The results of this

chapter, together with the results of Chapter 5, achieve research objective 2.

6.1. Notations for Low-level Model-elements of RiWAs

This section introduces the RiWAsML’s low-level model-elements to satisfy the requirements set in

Section 4.4. These model-elements use the same labelling format proposed in Sections 4.2.1 and

5.1.1. At the low-level design phase, the design models are closer to the development aspects like

classes, attributes and methods. Hence, support for development is focused on when proposing the

model-element notations and models, considering how easily the design can be mapped to code.

6.1.1. R7 – Notations for Low-level Views and Related Elements

Many GUI designing tools are available to support both the content and aesthetic details [114], some

of which provide advanced features like prototyping and code generation. However, these tools do

not offer modelling notations or methods. The RiWAsML focuses on the view details, which assist

the development of the functionalities, eliminating the aesthetic aspects, which explain how the views

will actually look. According to the literature review performed in this thesis, UWE, UWE-R, IFML,

SysML and the research publications concern view/GUI modelling aspects (refer to Sections 3.3 and

3.4 for their reviews), as investigated below.

 UWE [23] addresses some presentation and navigation concerns of web applications, and

UWE-R [123] extends it for RIAs/RiWAs by supporting the design aspects of RiWAs’ rich

GUIs by introducing some GUI elements, whose scope is minimal compared to the modern

RiWAs.

 IFML’s [124] main focus is on the presentation and interactive flows; hence, it provides some

model-element groups, View Containers and View Components and an element named

Activationy Expression for boolean expression-based GUI elements handling. Even though

IFML offers some useful abstract GUI elements, the navigation and related controller aspects

are not looked into.

 SysML [127] uses a stereotype named View, which extends the UML’s class element to include

view-related details in the designs, which concerns more about the data-related aspects rather

than visual aspects.

Chapter 6. RiWAsML: Low-level Modelling Language

121

 RUX-model [22] has introduced GUI-related model-elements for RIAs, mainly focusing on

low-level aspects like special, temporal, and interaction presentations. The RUX model is more

of a process and does not offer model-elements.

 OOH4RIA [35] focuses more on presentation and navigation-related modelling and introduces

diagrams and notations for them. It tries to specify a lot of GUI elements, which is not an

effective technique (refer to Section 4.4.1.1). It does not try to capture implementing functions

and related aspects like the controllers.

 IAML [42] attempts to address view-related concerns by identifying visible elements, events

on them, and navigational aspects. IAML explicitly specifies a set of GUI elements and events,

which is a less effective technique (refer to Section 4.4.1.1).

The RiWAsML looks into offering abstract GUI element classes in the direction of assisting the

implementation of the functionalities and views’ navigation, data, and related controller aspects to

satisfy the requirements set in Section 4.4.1. The following sub-sections discuss these aspects,

producing the required model-elements.

6.1.1.1. GUIs

The highest level abstraction of a GUI is a view, which can be of different types, for instance, a

webpage of a browser-based RiWA, an activity of a mobile-based RiWA, or a desktop window of a

window-based RiWA. Section 4.4.1.1 sets the requirements for the RiWAs GUI elements. Similar

elements in available solutions are discussed below.

 UWE’s presentation model [142] provides a class-like notation with an icon to denote a view

as a paresentationPage or presentationAlternatives elements using a label to name the element.

These elements are only for designing webpages, and other view types are not supported.

 IFML [124] uses a class-like element called View Container to show a webpage, window, or

pane, which may use a stereotype to indicate the type and a label to name the element.

The RiWAsML gives a rectangle with its label, as shown in Figure 6.1.

Figure 6.1 Example: View – a web page

The label’s element segment should be “View”, the type segment can be “Webpage”, “Activity”

(for mobile apps), or “Window” (for desktop apps), and the name segment may contain the custom

name of the view. The body of the View can have the internal elements required to implement the

functions of the View. The RiWAsML introduces the following abstract element classes to design

the interior elements of views.

Chapter 6. RiWAsML: Low-level Modelling Language

122

Input/Output Elements

The View’s input elements are used to enter the user’s data and commands, and the output elements

display results to the user. The available solutions commonly provide an explicitly defined set of

input/output elements. This RiWAsML proposes a technique that allows engineers to define the

input/output elements in a way that aligns with their development technologies. This technique uses

a rectangle notation, which exploits the RiWAsML’s label to define the input/output elements. An

example is given in Figure 6.2.

Figure 6.2 Example: View – GUI Input/Output elements

For the element segment of the label, 3 classes are provided: ViewI for input elements, ViewO for

output elements, and ViewIO for the elements, which act as both input and output elements. For

example, consider a list which shows a list of items; in that case, the list and the list items can be

regarded as output elements. A user can click an item on the list and see details on a popup; in this

situation, the list item acts as an input element by allowing the user to click, which is a command

input. Further, additional functionalities can be implemented to enhance user experience, which

makes the input elements produce output and vice versa. For example, an email field may verify the

correct email format as the user types in the email and indicates the email text in red if it’s wrong or

in green if it’s accurate. If these extra features were decided at the design time and included in the

design, they would assist development. Therefore, it’s vital to make decisions related to user

experience and incorporate them in the design by precisely mentioning the nature of the required

GUI elements.

For the type segment of the label, the RiWAsML recommends using a short code indicating the

element type. A suggested list of shortcodes for the common GUI elements is given in Table 6.1,

inspired by the components in Visual Studio IDE.

Chapter 6. RiWAsML: Low-level Modelling Language

123

Table 6.1 A suggested list of shortcodes for GUI elements

 Button - btn

Calendar - clnd

Check box - chk

Checklist box - chlb

Colour dialog - clrdia

Drop down list - ddl

List box - lstb

Menu - mnu

Print dialog - prntdia

File dialog - fildia

Font dialog - fontd

Label - lbl

Password box - psd

Progress bar - pabr

Radio button - rdo

Scroll bar - scrlbar

Tab - tab

Text box - txt

The name segment should be utilised to indicate a meaningful name for the GUI element. The

shortcode used for the type segment of the label and the name together would be used to make up

the GUI element’s development name. For example, consider the view in Figure 6.2; the username

textbox’s development name could be txtUname, and the login button’s development name could be

btnLogin. It may help to maintain the relationship between the design and the development.

Composite GUI elements like menus, lists, and dialogues may include nested GUI elements where

required. An example is given in Figure 6.3.

Figure 6.3 Example: View – nested GUI elements

This diagram explains a menu on the home page containing two links to home and Login. The menu

element displays the available menu items and allows clicking them; therefore, it is considered

ViewIO. The menu items are for clicking and navigating rather than showing the item name; hence,

they are considered ViewI. Instead of explicitly defining the input and output elements, the

RiWAsML provides space for the engineers to select the appropriate type according to the functions

designed.

Chapter 6. RiWAsML: Low-level Modelling Language

124

Containers/Sections

Some available solutions offer similar elements.

 UWE’s presentation model [142] uses named boxes with icons to illustrate containers:

presentationGroup and inputForm.

 IFML [124] uses a model-element named view component to define a section or a widget, which

is shown using a grey, rounded corner rectangle with a stereotype label to indicate the type of

the element as a <<list>>, <<form>>, etc. and a name to denote the actual implementation of

the element as in message list or customer information. IFML also allows marking an abstract

section using a rounded corner rectangle drawn in a dotted line and then using a separate diagram

to design lower-level aspects. It helps keep the diagrams more readable as the IFML uses many

notations to include the interaction flow details, which may increase the diagram’s complexity.

The RiWAsML suggests using the container/section only for content separation for readability.

Inspired by the IFML, the RiWAsML gives a grey, rounded corner rectangle without a label. Some

text could be used to state the function implemented in the section, which can be the section heading

of the actual development. For example, consider the view in Figure 6.4, which contains a registration

form for new members and a login form for the existing members on the same view.

Figure 6.4 Example: View – GUI containers/sections

These containers are used to separate the content on the design for clarity and may or may not be

used in the actual development.

Popups/Toggles

Similar elements in available solutions are discussed below.

 UWE’s presentation model [142] uses boxes with icons to include popups in a presentationPage

as presentationAlternatives. UWE’s approach is to design the popup in a separate presentation

diagram as a presentationAlternative and include it as an object in the presentationPage. This

is a good technique to reduce the design’s complexity towards improving readability.

Chapter 6. RiWAsML: Low-level Modelling Language

125

 IFML [124] provides two concepts named modal window and modeless window to design the

popups, where the modal window blocks the main window, and the modeless window allows the

main window to be interactive. Blocking/non-blocking factors are essential to consider.

Moreover, IFML uses a notation named XOR View Container, which comprises “child View

Containers that are displayed alternatively” [124].

RiWAsML provides popup and toggle elements whose element segment of the label should be

Popup or Toggle. For popups, the type segment should specify if it is “Blocking” or “NonBlocking”;

for toggles, it should specify the initial state as “Show/Hidden/Enabled/Disabled”. The name

segment of the label may contain a suitable name for the popup or toggle. An example of the proposed

notation is illustrated in Figure 6.5.

Figure 6.5 Example: View – GUI popup

The element on the main view, which triggers the popup/toggle to change its state, should be shown

by drawing an arrow from the triggering element to the popup/toggle; a black circle at the beginning

of the arrow indicates the GUI element triggers an event to cause the popup/toggle to change the

state (refer to section 6.1.2.1 for more discussions on event handling). The diagram in Figure 6.5

states that the Login link in the menu opens the User Login popup on the same view instead of

navigating to a different view. The internal elements of the popups/toggles can also be designed using

the input/output elements.

Note that some View elements may directly invoke the popup/toggle without utilising an event

handler. For example, Bootstrap provides many GUI elements/widgets to implement popups/toggles

for browser-based views without the use of a controller. Some bootstrap widgets provide JS code;

nevertheless, these codes can be considered a part of the view instead of the controller.

Chapter 6. RiWAsML: Low-level Modelling Language

126

Viewparts, ActorViews, and ViewPackages

The literature survey results show that the available methods/tools do not address these aspects

explicitly. The RiWAsML offers notation for the Viewpart and related aspects discussed in this

section.

The Viewpart uses a rectangle notation with a label; the element segment should be “Viewpart”, and

the type segment should state the target actor of the Viewpart. If there are multiple actors, a comma-

separated list can be provided. The name segment should indicate the functions implemented by the

Viewpart. The RiWAsML gives 3 approaches to using Viewparts in a design, considering the case’s

complexity.

1. Less complex scenarios: If a view has a few Viewparts, each including only a few GUI elements,

the Viewparts can be included in the same view. Refer to Figure 6.6 for an example. The figure

says that only an admin can see the Viewparts, which include the add member form on the top

of the View element and the delete button on the member table.

Figure 6.6 Example: View – Viewpart notation for less complex scenarios

2. Moderately complex scenarios: When including Viewparts on the same view makes the

diagram complex, the RiWAsML recommends designing the Viewparts separately and

wrapping all the view’s content using a ViewPackage element. For the label of the

ViewPackage, the element segment should be “ViewPackage”, the type should be the

containing view’s type, and the name should be the view’s name. The Viewparts should be

designed outside the owning View, and placeholders for the Viewparts should be included

inside the View. The placeholder should use the Viewpart object element without internal

content; the element segment of the label should indicate that it’s an object of the actual

Viewpart by using “ViewpartOBJ”. Figure 6.7 provides an example of the proposed notation.

Chapter 6. RiWAsML: Low-level Modelling Language

127

Figure 6.7 Example: View – Viewpart notation for moderate complex scenarios

The Viewpart object’s actual Viewpart design can be indicated using an association link for

the clarity and readability of the diagram.

3. Highly complex scenarios: when the different Viewparts hold more distinguished content,

the RiWAsML suggests designing them independently and wrapping them into a

ViewPackage. The ViewPackage notation is similar to the moderately complex scenarios.

Independent views are required to use “ActorView” for the element segment of the label and

the target actor for the type segment. The name segment may contain a suitable name for

each actor’s View or use the same name as given in the package, depending on the scenario.

An example of the proposed notation is shown in Figure 6.8, which models a scenario where

the members can see the available member list using the “View member” ActorView web page,

and admins can perform the add and delete operations on the member list using the “Manage

Members” ActorView web page. Both ActorViews are actually implemented in a single web

page named Members as specified on the ViewPackage; it should be understood that the web

page’s development name is Members, and it’s presented to each type of actor using a display

name as specified in each ActorView. The display names can also be the same as the

development name where necessary.

Chapter 6. RiWAsML: Low-level Modelling Language

128

Figure 6.8 Example: View – Viewpart notation for highly complex scenarios

SharedViewparts

UWE allows the modelling of the menus using separate nodes in the Navigation Model [147];

however, UWE does not discuss whether it is sharable. The RiWAsML offers an element named

SharedViewpart to design the shared content separately and indicate its use on a view using an object

similar to the ViewPart. The element segment of a Viewpart with shared content should use

“SharedViewpart”, and the type segment should state the type of the content, for example, header,

footer, or menu. The name segment may use a suitable name for identification.

The SharedViewpart’s placeholder on the View should use “SharedViewpartOBJ”. The

SharedViewpartOBJ may use association links to connect to the SharedViewpart to improve the

diagram’s readability. Refer to Figure 6.9 for an example of the proposed SharedViewpart notation.

Chapter 6. RiWAsML: Low-level Modelling Language

129

Figure 6.9 Example: View – SharedViewpart

The same techniques discussed in the previous section under Viewparts can be used if different actors

require dedicated content in a SharedViewpart; an example is given in Figure 6.10. As per the

diagram in this Figure, the SharedViewpart named Main menu provides Home and Manage members

links for the admins and Home and View members menus for the members.

Figure 6.10 Example: View – SharedViewpart with nested Viewparts for different actors

6.1.1.2. Navigation

Section 4.4.1.2 sets the requirements for the RiWAs navigation aspects. Many available solutions

and research work have looked into navigation aspects, which are briefly stated in Sections 3.3 and

3.4. Some of the significant work is detailed below.

 UWE provide a model named Navigation model [147] to capture the navigation details using

an approach with node-link where nodes are not only the web pages but also can be menu, index,

query, or processClass, and a link can be either a navigational link or a process link. UWE’s

Navigation model has a higher learning curve, and it can be much more complex as the number

of views increases due to the various types of nodes and their links. UWE’s Navigation model

Chapter 6. RiWAsML: Low-level Modelling Language

130

[147] uses processLinks to depict the process-based navigation between the nodes. The nodes’

details do not assist in understanding their implementation as in a view, a view section, or a

popup. Also, the details of the GUI elements triggering the process are not included in the

navigation model.

 IFML’s [124] focus is on interactive flows; therefore, IFML does not address link-based

navigation. However, while modelling the interactive flows, IFML captures some process-based

navigation. Even though the IFML allows the events to be included in the view components, it

does not explicitly indicate the GUI elements that trigger the events. The details of the action

performed by the event are also presented in the design with the parameters bound to the action,

mixing the pieces from views and controllers into the same diagram; still, some other required

details supporting the actual development – such as elements triggering the event and the type

of event – are missing.

 Popular GUI design tools like Adobe XD [100] and Figma [101] use storyboarding to implement

prototypes [102] [103], which gives an overview of the navigation between the views.

 González et al. [167] have studied the available methods and introduced an MDA approach to

design the navigational aspects, focusing on hypermedia, which is suitable for the RiWAs.

However, their approach does not concern factors like views with Viewparts and multiple routes

to navigate to views for different actors.

The RiWAsML’s proposal for modelling the navigation in RiWAs is inspired by storyboarding,

considering its simplicity. When designing navigation between views, authentication and

authorization requirements of the RiWA should be taken into account while satisfying the

requirements set in Section 4.4.1.3.

Link-based/Menu-based Navigation

Link-based or menu-based navigation is the typical type of navigation in computer systems, which

is valid for RiWAs. A shared menu can be modelled using a SharedViewpart, and the navigation is

proposed to be modelled using RiWAsML’s HTTP communication channel, denoting an HTTP

request. When modelling the navigation, it is sufficient to show the request arrow from a view

indicating the target view to navigate. Figure 6.11 provides an example of the menu-based navigation

design, which is an updated version of the diagram in Figure 6.10.

Chapter 6. RiWAsML: Low-level Modelling Language

131

Figure 6.11 Example: Views – menu-based navigation design

The design in Figure 6.11 depicts a typical scenario of menu-based muti-paged RiWA. The two types

of actors, admin and member, are given different main menu items where the admin gets Home and

Manage members menu items, and the member is provided with Home and View members menu

items.

This RiWA can be further improved by implementing a single view for Manage members and View

members. In such cases, a common view or a ViewPackage with Viewparts for multiple actors can

be introduced in the design. An example is given in Figure 6.12, which is an improved version of the

diagram in Figure 6.11. This design also includes additional menu items and views to raise the

complexity for demonstration purposes.

For navigation designing, detailed designs of the views are not required; including only the View or

ViewPackage elements without internal elements – other than the shared menus – is sufficient. The

detailed design of a View or the ViewPackage can be given in a separate diagram. For example, the

detailed design of the common ViewPackage named members in Figure 6.12 can be considered the

diagram in Figure 6.7. Note that the View/ViewPackage label in the navigation diagram and the

detailed View/ViewPackage diagram should be the same.

Chapter 6. RiWAsML: Low-level Modelling Language

132

Figure 6.12 Example: views – menu-based navigation design with ViewPackage

Process-based Navigation

The RiWAsML provides a more straightforward technique to capture only the navigation-related

information of process-based navigation without mixing other process details. The proposed

approach is to include the GUI element that triggers the process, which causes navigation, and to use

an arrow from that triggering GUI element to the target view. An example is given in Figure 6.13.

Figure 6.13 Example: Views – process-based navigation

Chapter 6. RiWAsML: Low-level Modelling Language

133

This design explains that the Login button on the Login page triggers an event, which navigates the

user to the home page. It should be understood that this navigation happens only on successful

authentication. The other pages on the system use a shared Main menu containing the Logout link

button to trigger an event to navigate to the login page. The Logout link button performs the logout

function, which initiates a complete logout process involving the client and server processing

elements instead of merely navigating the user to the login page.

This technique only captures the navigation and does not explain the logic of the process which

causes the navigation. It should be understood that the navigation starting from hyperlinks is always

link-based, and the navigation starting from other types of GUI elements is process-based.

6.1.1.3. Data

Views are often associated with datasets to display information on the GUIs; however, utilising and

processing these data is a component task. Therefore, the view-related data discussions are delegated

to the views’ controllers in section 6.1.2.

6.1.1.4. Related Controller

Discussions on view-related controllers are allocated to section 6.1.2.

6.1.2. R8 – Notations for Low-level AppControllers and Related Elements

This section satisfies the requirements discussed in Sections 4.4.1.4 and 4.4.2.1. The high-level

AppControllers element contains a set of controllers for the views within the AppControllers

element’s Application element.

6.1.2.1. ControllerClass Element

A controller is basically a collection of event handlers, related properties, and methods, and these

event handlers can be developed using functions/methods; hence, a controller can be seen as a class.

The UML tools [156], which support the Entity-Control-Boundary (ECB) pattern [154], also use the

UML’s class element to denote the controllers. The RiWAsML also use the UML’s class element

with specialized features. The RiWAsML’s ControllerClass element notation is illustrated in Figure

6.14, along with its example use.

Figure 6.14 Proposed notation: ControllerClass element (on the left) and an example use of it (on the right)

The element segment of the ControllerClass’s label should be “Controller.” Even though the

controller is always on the client-side, for the consistency of naming, the type segment should be

Chapter 6. RiWAsML: Low-level Modelling Language

134

indicated as “Client”. The ControllerClass’s label’s name segment should use the exact name of the

related view’s name.

Note that the high-level element containing all the controllers is the AppControllers element (refer

to section 5.2.4). When there are multiple client Application elements in a RiWA, there is supposed

to be an AppControllers element per Application element. In such cases, RiWAsML suggests

indicating the Application element’s type for the ControllerClasses’ type segment. For example, if

there are two client Application elements for the browser and mobile phone in high-level design, then

the type of the ControllerClasses in the browser app could be BrowserClient, and the type of the

ControllerClasses in the mobile app could be MobileClient.

When modelling the communication between the ControllerClasses and other elements, the

RiWAsML’s communication channels notations should be used instead of the UML meta-model’s

standard interfaces: Provided Interface, and Required Interface [153]. The following sections will

discuss the ControllerClasses’ communication with other elements, where necessary.

6.1.2.2. View Events Handling in Controller

Some available solutions attempt to capture the details related to the views’ events handling.

 UWE’s Navigation model [147] tries to capture the event-based navigation but ignores the

event-related details, such as which elements trigger the events, which

structures/functions/methods handle the events, and what data requirements are related to the

events. UWE uses a stereotype arrow <<processLink>> to indicate the process-based navigation

upon triggered events.

 Compared to UWE, IFML [124] captures more details related to the events using the model-

elements Catching Event, Throwing Event, and Activation Expressions. IFML indicates the

events on the GUI elements, expressing the relationship between the GUI elements and the

events. IFML uses an arrow with a circle at the beginning of the GUI element, which triggers

the event to another GUI element or an Action. Further, IFML states the Actions related to the

events on diagrams. IFML’s primary purpose is to capture the interaction flows, and the details

required for the implementation of the event handlers or Actions are not concerned.

Event triggering is a special type of communication between the view and controller. Therefore, the

RiWAsML proposes to use a new communication channel to denote a view that triggers an event to

invoke a handler of its controller. This communication channel notation specialises the view-

controller communication channel given in section 5.1.2 by using a black circle at the beginning of

the arrow, inspired by the IFML, as introduced in Figure 6.5 in Section 6.1.1.1. An example is

denoted in Figure 6.15.

Chapter 6. RiWAsML: Low-level Modelling Language

135

This channel may also indicate that the event handler reads data from the view, eliminating using

another communication channel to denote the data reading. The RiWAsML recommends the

following options to denote event-triggers, depending on the complexity of the design.

Less Complex View and Controller

When the view is not very complex, and there are a few event handlers in the controller, include both

the View and the related ControllerClass on the same diagram, as shown in Figure 6.15.

Figure 6.15 Example: View and its ControllerClass – event-trigger notation for a less complex scenario

Note that the View’s name “User login” is used for the ControllerClass in the class name format as

“UserLogin.” The ControllerClass implements the onBtnLoginClick() event handler for the View’s

Login button, and that relationship is depicted using an arrow from the button to its event handler.

This relationship inherits the view-to-controller relationship from the high-level L2 View-Process

model (see Figure 5.20 in Section 5.3.4). The RiWAsML suggests using the event handlers’ names

in the format - on + GUI elementName + Event - reflecting the event to handle, inspired by

development languages/libraries/frameworks such as JavaScript, jQuery, and ASP.Net.

Complex View And Controller

The RiWAsML provides notations for complex cases to design the View and its ControllerClass on

separate diagrams and link them using communication channels with numbered flow connectors, as

shown in Figure 6.16. Note that two different diagrams are drawn on the same figure for

demonstration purposes.

Figure 6.16 Example: View(on the left) and its ControllerClass (on the right) – event-trigger notation for a complex

scenario

Chapter 6. RiWAsML: Low-level Modelling Language

136

6.1.2.3. Read Data from View in Controller

When an event is triggered to initiate a process, the event handler may read data from its View for

processing. The RiWAsML proposes to use the event handler’s parameters to model this function,

denoting the data to be read from the View. See Figure 6.17 for an example of the proposed notation.

Figure 6.17 Example: View and its ControllerClass – event handler reading data from the view

The event handler’s parameters follow the UML class notation as in paramName : datatype. The

parameter name of an event handler is proposed to use the combination of the type and name

segments of the view’s GUI elements. The string value of the User login view’s textbox named

uname is specified as a parameter named txtUname for the onBtnLoginClick() event handler;

similarly, the pwdPword parameter. When there are many elements from which to read data, it is

advised to use a form element on the View and specify the form as the input parameter in the event

handler; in that case, the data type could be defined as an object.

6.1.2.4. Show Information on View by Controller

The RiWAsML uses the response arrow from an event handler to a GUI element on the View to

denote that the event handler is producing an output on the GUI element. Figure 6.18 depicts an

example of this function.

Figure 6.18 Example: View and its ControllerClass – event handler showing output on the View

This diagram explains that the onBtnLoginClick() handler’s output is dynamically shown on the

stsMsg label. Note that the event hander’s return type is String. For example, an error message is

shown on the stsMsg label when the username or password is wrong. It is possible for an event

handler to update multiple view elements or sections to display output.

Chapter 6. RiWAsML: Low-level Modelling Language

137

In complex situations, the output arrow may also use a numbered connector. An example is given in

Figure 6.19.

Figure 6.19 Example: View and its ControllerClass – event handler showing output on the View – communication

channels with numbered flow connectors

The RiWAsML recommends using multi-level numbers for the flow connectors to group the request-

response pairs. Note that in the Figure 6.19 diagram, the first level number is the same – in this case,

(1) – for all the flow connectors, denoting they belong to the same request-response pair. The second

level uses (1) for the request and (2) for the response. In the case of an event handler updating

multiple view elements, all the output view elements should use the same corresponding number on

the flow connector.

6.1.2.5. Invoke Popups/Toggles by Controller

The popups/toggles are invoked by an event of another GUI element, and this event’s handler invokes

the popup/toggle to change the state. The event-triggering GUI element to event handler

communication is the same as discussed in the previous section. Event handler invoking the

popup/toggle requires a specific notation as it should realise the invocation type: show, hide, enable,

and disable.

The options to depict the invocation of a popup/toggle are (1) using new arrow notation and (2) using

a stereotype label on the Controller to View communication arrow. The stereotype label was

considered the better option towards maintaining usability for two reasons: (1) introducing new arrow

notations for 4 different types may reduce the usability, and (2) the stereotype label only requires 7

or less characters to denote the invocation type.

To show the state change of a popup/toggle between show/hide/enable/disable, RiWAsML

recommends using <<show>>, <<hide>>, <<enable>>, or <<disable>> stereotype labels

appropriately. An example of this notation is given in Figure 6.20.

Chapter 6. RiWAsML: Low-level Modelling Language

138

Figure 6.20 Example: View and its ControllerClass – invoking a popup/toggle

It should be understood that the popup’s default state is hidden, and when clicking the Details button,

the onBtnDetailsClick() event handler shows the popup. Usually, the popups have a close button to

hide it.

6.1.2.6. Use the Client-Model by Controller

The only communication between the controller and the client-model is when the ControllerClass

calls a method in the Client-ModelClass and receives the return value. Hence, RiWAsML proposes

to use the bi-directional communication channel to denote this scenario, inherited from the L2 View-

Process model referring to Figure 5.20 in Section 5.3.4. An example of this communication is

illustrated in Figure 6.21. Refer to Section 6.1.3 for the notation of the ModelClass. Note that it’s not

only the event handlers that utilise the client-model; any method in a controller may communicate

with the client-model as required.

Figure 6.21 Example: ControllerClass – communicating with the Client-model

A flow connector can be used for complex diagrams, as discussed previously, and an example is

given in Figure 6.22.

Figure 6.22 Example: ControllerClass – communicating with the Client-model – numbered flow connector notation

Chapter 6. RiWAsML: Low-level Modelling Language

139

6.1.2.7. Use the Server-Model by Controller

The flow of controller-to-server-model communication is not straightforward as it happens via the

DC connectors. It was noted during the literature survey that none of the available solutions address

this and provide tools to model the DC-related aspects. RiWAsML uses a development-based

approach to realise the mechanism of the communication between the controller and the server-model

to propose model-elements and the ways of utilising them.

From the controller’s perspective, even though the controller’s intention is to communicate with the

server-model, the immediate communication happens with the DC-engine, where the DC-engine

communicates with the DC-bus. This section only focuses on modelling the communication between

the controller and the DC-bus through the DC-engine.

The communication between the controller and the DC-engine is discussed in two steps, focusing on

their development nature.

DC Request Through DC-engine

In actual development, the DC-engine can be a tool provided by a language/library/framework. For

example, for pull-DC in browser-based RiWAs, JS Fetch API [168] or jQuery’s AJAX function [169]

can be utilised as the DC-engine. Consider the following sample code of an event handler in a

ControllerClass.

$(document).on("click", "#btnDeleteItem", function (event)

{

 event.preventDefault();

 event.stopPropagation();

 itemID = $(this).val();

 $.ajax({

 url: "DC-bus/items/" + itemID,

 type: "DELETE",

 processData: false,

 contentType: "application/x-www-form-urlencoded",

 complete:function(response, status) {

 onDeleteItemDCComplete(response.responseText, status); }

 });

});

The handler is developed for a delete button to delete an item, where the handler sends an AJAX

request to the server using jQuery’s ajax() function. The ajax() function can be seen as the DC-

engine, and the ControllerClass’s event handler’s call to the ajax() function can be considered the

controller to DC-engine communication. On the design, this can be denoted by indicating which

event handler on the ControllerClass is utilising the DC-engine.

Chapter 6. RiWAsML: Low-level Modelling Language

140

RiWAsML proposes to use a thick arrow – which is the DC communication channel – from an event

handler or any other method to denote that the event handler or the method is utilising the DC-engine

to send a DC request, as shown in Figure 6.23.

Figure 6.23 Example: ControllerClass – sending a DC request

This notation explains that the event handler utilises the DC-engine and sends a DC request even

though the DC-engine is not included as a model-element on the diagram. The RiWAsML considers

the DC-engine is a part of the ControllerClass and will not offer a model-element for the DC-engine.

DC Response Handling

The RiWAsML uses a similar technique of depicting the DC request on the ControllerClass for the

DC responses. In the previous sample code, the last line in the ajax() function registers a new event

handler named onDeleteItemDCComplete to handle the DC response of that particular DC request,

which should be developed separately within the ControllerClass. The sample code for this DC

response handler is given below.

function onDeleteItemComplete(response, status)

{

 if (status == "success")

 {

 $("#lblStatus").html("Item is deleted successfully ");

 }

 if (status == "error")

 {

 const error = JSON.parse(response);

 $("#lblStatus").html ("Error: " + error);

 }

}

RiWAsML proposes the notation given in Figure 6.24 to model this implementation by updating the

ControllerClass of Figure 6.23.

Figure 6.24 Example: ControllerClass – DC response handling

Chapter 6. RiWAsML: Low-level Modelling Language

141

The ControllerClass in Figure 6.24 uses numbered flow connectors, which denote the

communication as a request-response pair. This diagram explains that the onBtnDeleteItemClick()

event handler sends a DC request, and the onDeleteItemDCComplete() event handler is set to handle

the DC response for the said DC request. The onDeleteItemDCComplete() event handler accepts the

results from the server as a JSON parameter. The other end of this communication should be designed

in a separate DC-bus diagram, as discussed in Section 6.1.3.

6.1.3. R8 – Notations for Low-level AppModel and Related Elements

High-level AppModel elements are comprised of a set of related ModelClasses. This section

introduces the model-elements required for the AppModel elements as specified in Section 4.4.2.2.

6.1.3.1. ModelClass Element

The model component implements the business log; hence, designing the model is straightforward,

as the UML provides the class diagram for this purpose. The available solutions also utilise the

UML’s class diagram to design business logic, generally called the domain model. RiWAsML

follows the same method; however, the class notation is altered to align with the rest of the model-

elements using the RiWAsML Label element. The proposed class notation is given in Figure 6.25.

Figure 6.25 Proposed notation: ModelClass

The element segment of the ModelClass’s label should be “Class”, and when an object of the class

should be represented, the element segment may use “Object”. The type should be either

“ClientModel” or “ServerModel” (or only “Client” or “Server”), and the name segment should state

the class’s name.

The class syntax is for the detailed design of a single class; the RiWAsML recommends using a class

diagram to capture all the classes and their relationships of a particular AppModel element and

wrapping the class diagram using the AppModel element, as shown in Figure 6.26.

Chapter 6. RiWAsML: Low-level Modelling Language

142

Figure 6.26 Example: AppModel diagram of a ServerModel

In this diagram, it is enough to state the class names of the classes instead of using the complete

RiWAsML element label and denoting the classes’ properties and methods is optional. When the

detailed design of a particular class is required, that class can be designed in a separate diagram,

including all the required details (refer to Section 6.2.4).

6.1.3.2. Communication with Other Elements

The RiWAsML provides a thick white-headed arrow to denote utilising the AppModels (refer to

Section 5.1.2), and the same syntax should be used on the ModelClasses to indicate the utilisation of

the methods. Unlike HTTP or DC request-response pairs, a ModelClass method is called, and the

return is captured by the same event handler or method of other elements; hence, a single

bidirectional arrow can be utilised for a low-level ModelClass element’s method. An example of

communication between a ModelClass and other elements is given in Figure 6.27.

Figure 6.27 Example: ModelClass – communicating with the other elements

In the case of client-model, the event handlers or methods in the ControllerClass elements call the

methods of the ModelClass elements. For the server-model, the DCBus utilises the ModelClass

elements. It is possible for multiple controllers to utilise the same method in a ModelClass; in such

a case, all the flow connectors of the controllers should use the same connector number of the

ModelClass method.

Chapter 6. RiWAsML: Low-level Modelling Language

143

ModelClass elements can use UML’s standard relationship notations as required, such as association,

generalization, composition, aggregation, use, multiplicity, interfaces, and packages.

6.1.4. R9 – Notations for Low-level Connectors and Related Elements

Even though there are two types of connectors (DC-engine and DC-bus), the DC-engine is considered

part of ControllerClass elements (refer to Section 6.1.2.7); therefore, low-level notations are required

only for the DC-bus and related aspects. This section satisfies the requirements set for the DC-bus in

Section 4.4.3.2.

6.1.4.1. EndpointsCollection Element

The EndpointsCollection element is defined in Section 4.4.3.2. When designing the low-level details

of the DC-bus, it’s recommended to group the API endpoints based on OODD towards improved

semantics, and implement them as EndpointsCollection units. A DCBus connector element may

contain one or more EndpointsCollection elements. In actual development, an EndpointsCollection

can be developed in a separate class or script/file for better management. Based on this notion, the

RiWAsML offers UML class-like syntax for the EndpointsCollection element, as shown in Figure

6.28.

Figure 6.28 Proposed notation: EndpointsCollection element

The element segment of the label should be “Endpoints”, and the name segment may contain a

suitable name for the group of endpoints. The type segment should be DCBus; however, it is possible

to implement EndpointsCollection elements of the type HTTPBus to serve the standard HTTP

requests from the views and controllers, even though it is not included in the RiWAArch style. If

HTTP endpoints are required, a server-side Application element may include an HTTPBus

component element, which comprises the EndpointsCollection elements of HTTPBus type.

6.1.4.2. Communication with ControllerClass

RiWAsML proposes the two-level numbered flow connector notation for the EndpointsCollection

element to denote the communication with the controller via the DC-engine, as discussed in Section

6.1.2.7. The communication channels should use thick-lined arrows since they are for DC. An

example of the use of the notation is given in Figure 6.29. This EndpointsCollenction can be

considered the one communicated by the ControllerClass in Figure 6.24 in Section 6.1.2.7.

Chapter 6. RiWAsML: Low-level Modelling Language

144

Figure 6.29 Example: EndpointsCollection – communicating with the controller

The EndpointsCollection named Items in the DC-bus accepts a DC request from the controller to

delete an item. The onDeleteItem() endpoint takes the itemID as a parameter from the controller and

responds with a JSON object.

Instead of ruling out how the endpoints should be grouped and how the EndpointsCollections should

be implemented, the RiWAsML recommends following the OODD practices. A suitable

technique/technology like SOAP or REST with Ajax can be used to implement the endpoints in DC-

bus.

6.1.4.3. Communication with the Server-Model

To denote the communication between an endpoint in an EndpointsCollection and a method of the

server-model’s ModelClass, a bi-directional arrow is proposed by the RiWAsML. Figure 6.30

provides examples of the use of the direct flow notation and numbered flow connector notation for

denoting the communication between an EndpointsCollection and a ModelClass.

Figure 6.30 Example: EndpointsCollection – communicating with ModelClass

The diagrams in Figure 6.30 show that the onDeleteItem() endpoint calls the deleteItem() method on

the server-model’s Items class. The deleteItem() method returns a string value – consider it as a status

message – and the onDeleteItem() endpoint wraps it in a JSON object with other related data as

required, which will be sent to the controller as the response.

Note that the RiWAsML does not specify the data and their structures for communication at this

level, and it’s considered the designer’s responsibility to select them according to the scenario.

Chapter 6. RiWAsML: Low-level Modelling Language

145

6.2. R10 – Low-level Design Models and UML Profiles for the

RiWAsML

This section proposes models to design low-level aspects of the RiWAs utilising the notations offered

in Section 6.1. Also, UML profiles for these models and model-elements – which extend the UML

meta-model based on OMG’s Meta-model Hierarchy [85] – are given. These models satisfy the

requirements set for them in Section 4.4.4.

6.2.1. View-Navigation Model

The requirements for the View-Navigation model are set in Section 4.4.4.1.

Some available solutions attempt to capture the navigational aspects of the web applications and

RIAs. They primarily model the navigation between the views regardless of considering the functions

implemented in the views and the navigation of the different user types.

 UWE’s Navigation Model [147] captures both link-based and process-based navigation. It does

not provide a clear understanding of the set of views in the system and the functions they

implement.

 IFML [124] does not intend to model the navigation; nevertheless, the process-based navigation

can be understood to some extent through the interaction flows.

An example of a View-Nagivation diagram is given in Section 8.3.2.1, and how it satisfies the

expected features is also discussed. The RiWAsML’s View-Navigation model is not merely a

behavioural model; it captures structural details, such as which views implement multiple related

functions, and assists in making decisions on merging/splitting views to improve the user experience.

The UML profile for the View-Navigation model is given in Figure 6.31. Note that this profile

contains a subset of the View model’s elements presented in the next section, which are required to

depict the views and navigation-related elements in the View-Navigation diagram.

Chapter 6. RiWAsML: Low-level Modelling Language

146

Figure 6.31 UML profile: View-Navigation model

The justifications for the View-Navigation model’s elements are given in the next section under the

View model’s profile.

6.2.2. View Model

The requirements for the RiWAsML’s View model to design a single view of a RiWA are set in

Section 4.4.4.1. As mentioned in Section 6.1.1, the RiWAsML’s intention is to capture and model

the View elements required to implement the functionalities of the system and how they interact with

the components of the system; therefore, the aesthetic details, like calligraphy, colours, media, and

placements are not included in the View model.

 UWE’s Presentation model [142] provides tools to design GUIs, including layout details. Notes

can be added to the Presentation model to include information related to the functionalities of

GUI elements; for example, a note on an update button may state that it shows the contact update

page. However, the Presentation model does not capture the relationships of the GUI elements

with the other components of the system to implement the functionalities; for example, a view’s

and its controller’s relationship cannot designed.

 IFML [124] diagrams capture more details related to implementing functionalities on views;

however, since IFML does not model the low-level details of the actions, the IFML’s view

designs limit the scope for modelling the interaction flows. Further, the IFML designs lack GUI

element details such as element type and name, which can help development.

Chapter 6. RiWAsML: Low-level Modelling Language

147

Examples of View designing are given in Section 6.1.1 while introducing the View and related model-

elements, and a more comprehensive example is provided in Section 8.3.2.3. The UML profile for

the View model is given in Figure 6.32, based on the discussions in Section 6.1.1.

Figure 6.32 UML profile: View model

The GUI-elements extend the UML Class as they are abstract groups of elements. In the profile, they

are grouped only for readability. The ViewPackage element extends the UML Package metaclass as

its purpose is to package the GUI elements. The Association stereotype links the ViewpartOBJ and

SharedViewpartOBJ elements with the corresponding Viewpart and SharedViewpart elements; it

extends UML’s Association metaclass.

6.2.3. AppControllers Model and ControllerClass Model

The requirements for the AppControllers and ControllerClass models are set in Section 4.4.4.2. The

available solutions poorly address controllers and related features like events and DC handling, and

none of them offer explicit models to design the RiWAs controllers and associated aspects discussed

in Section 6.1.2. IFML [124] captures controller-related features such as events and actions;

Chapter 6. RiWAsML: Low-level Modelling Language

148

however, they are mixed with the view’s details on the same diagram without providing enough

details to support development.

The AppControllers model can be seen as a class diagram, which captures all the ControllerClass

elements within a client-side Application element. The AppControllers model is a bridge to map the

high-level controller component to the low-level ControllerClass elements. An example of an

AppControllers diagram is shown in Figure 6.33.

Figure 6.33 Example: AppControllers diagram

For the detailed design of a ControllerClass in an AppController diagram, the RiWAsML offers the

ControllerClass model. The features to be satisfied by the model are set in Section 4.4.4.2. It is

unnecessary to design all the ControllerClass elements in the AppControllers diagram; only the

selected ControllerClass elements, requiring more low-level details, would be further designed using

the ControllerClass model. Figure 6.34 provides the profile for the AppControllers model and the

ControllerClass model. Since the Component element of the Controllers type is already included in

the L2 View-Process model’s profile (see Figure 5.21 in Section 5.3.4), it is not included again in the

AppControllersModel profile.

Figure 6.34 UML profile: AppControllers model, ControllerClass model, and their elements

Chapter 6. RiWAsML: Low-level Modelling Language

149

6.2.4. AppModel Model and ModelClass Model

Section 4.4.4.3 sets the requirements for AppModel and ModelClass models. The UML provides the

class diagram to design the business logic, which is commonly referred to as the domain model.

UML or the available solutions do not attempt to capture the relationship between the Application

element, AppModel element, and the ControllerClass elements as required by the RiWAsML.

The RiWAs AppModel model abstracts a particular AppModel component of a given Application

element. An example AppModel diagram is shown in Figure 6.26 in Section 6.1.3, and a real-world

example is provided in Section 8.3.2.5, including examples of ModelClass diagrams.

The profile for the AppModel model and ModelClass model is given in Figure 6.35.

Figure 6.35 UML profile: AppModel

Since the Component element of the model type is already included in the L2 View-Process model’s

profile (see Figure 5.21 in Section 5.3.4), it is not included again in the AppControllerModel profile.

6.2.5. DC-bus Model and EndpointsCollection Model

The requirements for the DC-bus and EndpointsCollection models are set in Section 4.4.4.4. None

of the available solutions explicitly provide models or model-elements to design the DB-bus and

related aspects discussed in section 6.1.4.

RiWAsML offers the DC-bus model to capture the EndpointsCollection elements within a Connector

element of DC-Bus type and their relationships. An example DC-bus diagram is given on the left

side of Figure 6.36. The EndpointsCollection elements in a connector may or may not have

relationships with each other. The RiWAsML recommends following the OODD practices to arrange

the endpoints into EndpointsCollection elements and identify if they have relationships. Figure 8.15

in Section 8.3.2.4. provides a DC-bus diagram comprising the EndpointsCollection elements with

relationships.

Chapter 6. RiWAsML: Low-level Modelling Language

150

Figure 6.36 Example: DC-bus diagram (on the left) and EndpointsCollection diagram (on the right)

The EndpointsCollection model helps design the lower-level details of an individual

EndpointsCollection element in a DC-bus diagram. An example is illustrated on the right in Figure

6.36. Other elements’ communication with the endpoints can be depicted on the EndpointsCollection

model as discussed in Sections 6.1.4.2 and 6.1.4.3. An example is given in Figure 8.17 in Section

8.3.2.5.

The UML profile for these models and their elements are given in Figure 6.37.

Figure 6.37 UML profile: DC-bus model and EndpointsCollection model

Since the Connector element is already included in the L2 View-Process model’s profile (see Figure

5.21 in Section 5.3.4), it is not included again for the DCBusModel profile.

6.2.6. View-Controller Model

Section 4.4.4.5 sets the requirements for View-Controller model. IFML [124] models the

relationship between the view and the event handlers. Yet, it lacks the controller concept and how

the view and its event handlers interact with the rest of the system since the primary purpose of IFML

is to capture the interaction flows.

Section 6.1.2. discusses much of the communication between the view and its controller. Section

8.3.2.3. gives an advanced View-Controller diagram from a real-world use case. Figure 6.38 provides

the UML profile for the View-Controller model.

Chapter 6. RiWAsML: Low-level Modelling Language

151

Figure 6.38 UML profile: View-Controller model

The model-elements related to the views and controllers are already included in the profiles of the

View model and ControllerClass model. In addition, the View-Controller model requires special

communication channels to denote the view triggering a controller’s event handler and a controller

invoking the popups/toggles of a view, which are discussed in Sections 6.1.2.2 and 6.1.2.5. These

communication channels are extended from the UML association, aligning with the RiWAsML’s

other communication channels.

6.2.7. View-Process Sequence Model

Requirements for the View-Process Sequence model are set in Section 4.4.4.6. The UML offers the

sequence diagram to model the execution flow of a function. UML-based solutions use the sequence

diagram for the same purpose. The RiWAsML’s View-Process Sequence model integrates the UML

sequence diagram, aligning with the RiWAsML’s other models and model-elements. An example

diagram of designing a login process of a library system is given in Figure 6.39.

Figure 6.39 Example: View-Process Sequence diagram

The View-Process Sequence diagram uses the complete RiWAsML label on the lifelines. For view,

controller, and DC-bus’s EndpointsCollection, the lifelines are the element classes, and for the

Chapter 6. RiWAsML: Low-level Modelling Language

152

server-model, it’s an object of the User class. Application elements wrap the lifelines to show which

Application element contains the view and process elements. These Application elements should use

the same labels as those mentioned in the high-level design.

The RiWAsML communication channels are utilised as follows for the communication between the

lifelines.

 The view to the controller communication channel is illustrated as an event-based

communication channel by indicating the event triggered on the view with a black circle at the

beginning of the arrow. The event handler onLoginBtnClick() call is given parameters username

un and password pw, implying the controller is reading the values from the view.

 The communication channels between the controller and the DC-bus’s EndpointsCollection are

illustrated with thick lines representing DC.

 The server-model to DC-bus and DC-bus to controller return arrows are labelled with the return

value to understand the flow control’s status.

 The controller’s return arrow continues to the actor through the view’s lifeline with the label

“Navigate” to denote that the controller redirects the actor to the view specified on the label

(Dashboard web page) on the actor’s successful login.

Figure 6.40 provides the UML profile for the View-Process Sequence model.

Figure 6.40 UML profile: View-Process Sequence model

Model-elements required for this model are already included in the profiles of other models;

therefore, the profile for the View-Process Sequence model contains only the stereotype for the

ViewProcessSequenceModel.

6.3. Chapter Summary

This chapter introduces the following models, their model-elements, and UML profiles.

 View-Navigation model and View model: View, GUI elements (Input/output elements,

Containers/sections, Popups/toggles, Viewpart, ViewpartOBJ, ActorView, ViewPackage,

Chapter 6. RiWAsML: Low-level Modelling Language

153

SharedViewpart, and SharedViewpartOBJ), and Navigation (linked-based navigation, process-

based navigation).

 AppControllers model and ControllerClass model: ControllerClass

 AppModel model and ModelClass model: ModelClass

 DC-bus model and EndpointsCollection model: EndpointsCollection

 View-Controller model: Invoke and Trigger

 View-Process Sequence Model

Together with the results of Chapter 5, this chapter fulfils the research objective 2.

154

Chapter 7. Rich Web-based Applications Design Methodology

This chapter introduces the proposed Rich Web-based Application Design

Methodology (RiWAsDM). Section 7.1 presents the elements of the RiWAsDM,

and the following sections discuss these elements in detail. Refer to Section 3.2.3

for the review of available software designing methodologies. The introduction of

the RiWAsDM achieves the research’s objective 3 (refer to Section 1.4), aligning

with step 3 (refer to Section 1.5.3.3) of the RiWAsDM implementing process (refer

to Figure 1.4 in Section 1.5.3).

7.1. Introduction to the RiWAsDM

The introduction of a DSML would not be sufficient unless processes, rules, and guidelines for

efficient utilisation of the DSML are provided. Based on this notion, this thesis introduces the

RiWAsDM to gain the maximum benefits out of the RiWAsML. The RiWAsDM discusses the

architecture of the RiWAsML and offers rules and guidelines for its accurate utilisation; the

RiWAsDM also provides a design process to govern the RiWAs designing activities within RiWAs

engineering. MDA, Arc42, ArchiMate, and SysML are identified as available design methodologies;

they are reviewed in Sections 3.2.3 and 3.3.3 and evaluated against the RiWAsDM in Section 9.2.

The modules of the RiWAsDM and their focused attributes (refer to Section 4.1) are given in the

following list.

1. The RiWAsML: This modelling language is the core of the RiWAsDM

1.1. RiWAsML’s architecture: the architecture of the RiWAsML helps understand the DSML,

exhibiting the RiWAsML’s simplicity, comprehensiveness, and usability.

1.2. RiWAsML reference: A complete DSML reference is given to assist in the DSML’s

usability.

1.3. A set of rules and guidelines for the RiWAsML-based design and development: these

rules and guidelines improve the RiWAsML’s usability and development support.

2. The RiWAsDM process: This process intends to satisfy the usability and integrability of the

RiWAsDM by discussing the following.

1.1. Design approach: discusses the RiWAsML’s support for the design approaches.

1.2. Engineering approach: discusses the RiWAsML’s support for the engineering approaches.

1.3. Guidelines for RiWAsML-based AMDD: discusses adopting RiWAsML-based designing

into Agile Model-Driven Development (AMDD).

The following sections discuss these modules of the RiWAsDM in detail. The evaluation chapter

discusses how these RiWAsDM modules satisfy the attributes stated in the above list.

Chapter 7. Rich Web-based Applications Design Methodology

155

7.2. RiWAsML Architecture, Language Reference, and Rules and

Guidelines

This section first discusses the RiWAsML’s architecture, then provides a complete reference to the

RiWAsML models and model-elements introduced in Chapters 5 and 6, and finally, offers a list of

rules and guidelines to be followed when using the RiWAsML.

7.2.1. RiWAsML Architecture

The architecture of a language helps realise the language towards accurate utilisation of it. The

RiWAsML architecture is given in Figure 7.1. This architecture is based on the RiWAArch style

[12], reviewed in Section 3.1.3. The RiWAArch style provides the foundation for the RiWAsML,

enriching the simplicity, which is further discussed in section 9.1.11, under evaluation.

Figure 7.1 RiWAsML architecture

The RiWAsML architecture consists of 4 horizontal layers: system, deployment, packaging, and

development, which are elaborated below.

1. System Layer: this layer sets the context to be modelled, which is RiWA.

2. Deployment Layer: the RiWAs comprise the tiers and platforms on the highest level; these

platforms offer environments for the Application elements and storages to be deployed and run,

where these platforms are organized into tiers by preserving simplicity at the uppermost level,

improving the readability and understandability of the design. RiWAsML’s L1 Applications

model realises the deployment layer.

3. Packaging Layer: Application elements package their internal elements – views and processes.

Processes encompass components and connectors where controllers and models are components,

and DC-engine and DC-bus are connectors. The Application elements and their internal elements

Chapter 7. Rich Web-based Applications Design Methodology

156

communicate with each other using the RiWAsML’s communication channels. The Level 2

View-Process model realises the packaging layer and helps denote the view and process elements

packaged by the Application elements in a RiWA.

4. Development Layer: RiWAsML provides models and model-elements to design the low-level

aspects of the views, controllers, models, and DC-buses, which can assist in mapping these

elements into development based on the OODD concepts and practices.

The packaging layer to the development layer mapping is given in Table 7.1.

Table 7.1 Models for package and single size of different types of elements

Size \ Element View Controller Model DC-bus

Package
View-Navigation
model

AppControllers
model

AppModel model DC-bus model

Single View model
ControllerClass
model

ModelClass model
EndpointsCollection
model

The mapping in Table 7.1 is detailed below.

1. View: the View-Navigation model captures the views of a client-side Application element, and

each view can be detailed using the View model.

2. Controller: the AppControllers model identifies the ControllerClass elements required for a

client-side Application element, and individual ControllerClass element in it can be detailed

using the ControllerClass model.

3. Model: the AppModel model realises the ModelClass elements of a client-model in a client-side

Application element or server-model in a server-side Application element. Each ModelClass

element within an AppModel diagram can be detailed using the ModelClass model.

4. DC-Bus: the DC-Bus model encompasses the EndpointsCollection elements of a DC-bus in a

server-side Application element, and each EndpointsCollection element can be detailed using the

EndpointsCollection model.

An example of this mapping is given in Figure 7.2 using a shopping RiWA use case. Each Views,

AppControllers, AppModel, and Connector element shows a single example inner element.

Chapter 7. Rich Web-based Applications Design Methodology

157

Figure 7.2 Example: mapping between the RiWAsML’s Packaging layer and development layer

7.2.2. RiWAsML Language Reference

Figure 7.3 shows all of the RiWAsML’s models under structural and behavioural categories; the

models are referred to as “diagrams”, considering it as the generic term. This section gives the

RiWAsML complete language reference for all these models and their model-elements.

Under the structure diagrams, the L1+2 Architecture diagram is for RiWAs’ high-level designing;

for large and complex RiWAs, the architecture can be decomposed into two different diagrams in

two levels: Level 1 Applications diagram and Level 2 View-Process diagram. All the other models

are offered to design the low-level aspects of the RiWAs.

To design the execution flow of a task, the RiWAsML’s version of the UML Sequence diagram is

the View-Process Sequence diagram, which provides more details of the elements within the

Application elements and their interactions to complete a specific task’s execution.

The RiWAsML suggests drawing multiple diagrams together for inclined realisation; by default, the

View-Controller diagram is given as the view and its controller are tightly coupled. Some beneficial

and practical combinations are View+ControllerClass+ModelClass (clientModel) and

ControllerClass+EndpontsCollection+ModelClass (serverModel). There is an example of an

EndpointsCollection and a ModelClass in one diagram in Figure 8.17 in Section 8.3.2.5.

Chapter 7. Rich Web-based Applications Design Methodology

158

Figure 7.3 RiWAsML diagrams

7.2.2.1. General Notations

This section provides notations for the RiWAsML’s label and communication channels. The

elements and their notations are given in Table 7.1.

Table 7.2 RiWAsML’s general elements and their notations

Element Type Notation

Label

-NA-
<< Element : Type : Name >>

Communication
channels

Standard communication (HTTP
and other standard protocols)

Regular

Return (sequence diagram)

Chapter 7. Rich Web-based Applications Design Methodology

159

Element Type Notation

Communication
channels

Delta-Communication

Regular

Return (sequence diagram)

Delta-Communication – push
(reserved)

View-Controller

Regular

Return (sequence diagram)

Method call and return

Regular

Return (sequence diagram)

With numbered connectors

7.2.2.2. High-level Diagrams and Their Notations

This section provides notations for the RiWAsML’s high-level diagrams and their elements in Table

7.3. For most of the elements, the types are specified by the RiWAsML, as given in Table 7.3.

Table 7.3 RiWAsML’s high-level diagrams and their notations

Element

Label

(Element and Type

segments)

Notation

Level 1 Applications Diagram

Tier – horizontal
grouping of elements
based on their roles

Element: Tier
Type: Presentation,
Application, and
Storage.

Platform – provides the
environment for an
Application element to
run.

Element: Platform

Level: HW, OS, and App

Chapter 7. Rich Web-based Applications Design Methodology

160

Application – An
element executable
within its platform,
communicating with
other Application
elements in the system
to perform functions.

Element: Application
Type: WebApp,
MobileApp,
DektopApp, and
ServerApp

Level 2 View Process Model

Component – a logic
processing element
within an Application
element.

Element: Component
Type: Controllers,
ClientModel, and
ServerModel

Connector – a
communication
processing element
within an Application
element, enabling the
Application element to
communicate.

Element: Connector
Type: DCEngine and
DCBus

Views – element
containing a collection
of views of a client-side
Application element.

Element: Views
Type: WebPages,
Activities, and
Windows

Other high-level

elements – High-level
elements commonly
used in RiWAs

Element: DB, File,
WebService, User/Actor
Network, ESB

Notes – element to add
related text-based
details.

-NA-

Chapter 7. Rich Web-based Applications Design Methodology

161

7.2.2.3. Low-level Diagrams and Their Notations

This section provides notations for the RiWAsML’s low-level diagrams and their elements in Table

7.4. For most of the elements, the types are specified by the RiWAsML, as given in Table 7.4.

Table 7.4 RiWAsML’s low-level diagrams and their notations

Element
Label

(Element and Type

segments)
Notation

View Model, View-Navigation Model

View – a single GUI
implementation

Element: View
Type: WebPage,
Activity, and
Window

ViewPackage – an element
that wraps a GUI
implementation and its
supporting elements.

Element: ViewPackage
Type: WebPage,
Activity, and
Window

ActorView – A view
implementing element
containing elements of a
particular actor.

Element: ActorView

Type/Actor: The actor of
the Viewpart, according to
the scenario

Input/output elements of
GUIs/views.

Element: ViewI, ViewO,
View I/O
Type: Refer to Table 6.1

Container/Section – a
virtual section of a view.

Element: -NA- (identified
by the grey, round
cornered rectangle)
Type: -NA-

Popup/Toggle – a widget
in a view which can be
shown/hidden or
enabled/disabled.

Element: Popup/Toggle
Type: Blocking,
NonBlocking,
Show, Hidden, Enabled,
and Disabled

Trigger communication

channel – connect the GUI
element, which triggers an
event to the event handler
of the controller.

-NA-

Chapter 7. Rich Web-based Applications Design Methodology

162

Viewpart – a GUI section
for a particular actor.

ViewpartOBJ – an object
of a Viewpart.

Element: Viewpart,
ViewpartOBJ
Actor: The actor of the
Viewpart according to the
scenario.

SharedViewpart – a
Viewpart for a particular
actor, shareable with
multiple views.

SharedViewpartOBJ – a
SharedViewpart object.

Element:
SharedViewpart,
SharedViewpartOBJ
Type: Refer to table 6.1

AppControllers Model, ControllerClass Model, and View-Controller Model

AppControllers – wraps
the ControllerClass
elements of an Application
element.

Same as the High-level
Component element of the
Controller type

Same as the High-level Component
element of the Controller type

ControllerClass – a class
which implements event
handling and related
methods for a particular
view.

Element: Controller
Type: Client
NOTE: The name should
be the same as the related
view’s name

Invoke – indicate a
controller’s method
invoking a popup/toggle.

Type:
Show/hide/enable/disable

AppModel Model, and ModelClass model

AppModel – wraps the
ModelClass elements of an
Application element.

Same as the High-level
Component element of the
Model type

Same as the High-level Component
element of the Model type

ModelClass – a class that
implements domain logic
for an Application element.

Element: Class
Type: ClientModel,
ServerModel

DC-bus Model and EndpointsCollection Model

DC-Bus – wraps the
EndpointsCollection
elements of an
Application element.

Same as the High-level
Connector element of the DC-
Bus type

Same as the High-level Connector
element of the DC-Bus type

EndpointsCollection
– a class that
implements
communication APIs
of a server
Application element.

Element: EndpointsCollection
Type: DCBus and
HTTPBus

Chapter 7. Rich Web-based Applications Design Methodology

163

7.2.3. Rules and Guidelines for Designing RiWAs with RiWAsML

This section offers the rules and guidelines to follow when using the RiWAsML. Most rules and

guidelines are already discussed in related sections, while the RiWAsML models and model-

elements are introduced. Those rules and guidelines are listed in this section, with further

elaborations as required for clarity and reference. The rules are given as “Rule:” to be followed when

using the RiWAsML, and the guidelines are mentioned as “Guideline:” to be considered best

practice. This section performs Step 3.2 of the RiWAsDM implementing process (refer to Figure 1.4

in Section 1.5.3).

7.2.3.1. Rules and Guidelines for General Elements of RiWAsML

This section sets the rules and guidelines for the RiWAsML’s Label and communication channels.

Further, some overall guidelines are given in the direction of improving the simplicity and readability

of the design.

Label

Rule: The RiWAsML model-elements should use the RiWAsML label format.

Rule: The RiWAsML model-elements should use the specified values for the element segment of

the label.

Rule: The RiWAsML model-elements should use the specified values for the type segment of the

label when the element type is exact.

Guideline: When the element is of a type the RiWAsML does not specify, a suitable custom type

could be assigned.

Guideline: RiWAsML suggests using the following cases for the values of the element, type, and

name segments of the RiWAsML’s model-elements to align with OODD practices.

 Use the Pascal case for naming, in general.

 Use the Camel case to name objects such as ViewpartOBJ and SharedViewpartOBJ, as well as

method names and attributes.

Communication Channels

Guideline: RiWAsML realises the communication between the architectural elements based on the

request-response model. Thus, the bidirectional arrows (or unidirectional arrow pairs in low-level

models), which depict the communication channels, have a specific meaning, and the requesting and

requested elements are known as follows.

Chapter 7. Rich Web-based Applications Design Methodology

164

 Between view and controller: The view requests the controller by triggering events and passing

the data to the controller. The controller responds by processing the data and updating the view

with information.

 Between controller and client-model: A controller calls a client-model’s method, and the

method processes the request and returns the result.

 Between controller and DC-bus: A controller sends a DC request to the DC-bus via the DC-

engine. The DC-bus processes the request, and the results are sent using the DC response to the

controller via the DC-engine.

 Between DC-bus and server-model: The DC-bus calls a server-model’s method, and the

method processes the request and returns the result.

 Between other elements: Standard communication protocols can be used to request services

from external elements and receive the responses. For example, the server-model may request

the database for CRUD operations and receive the results using TCP.

Guideline: It is possible to use unidirectional arrows when required. For example, when views and

controllers of a browser-based client send HTTP requests to the server.

Guideline: A bi-directional arrow can still be used when required to denote communication between

the methods of the same class or multiple classes. In controllers, event handlers always call the

other methods; hence, the calling and the called methods are straightforward. For communication

between methods other than the event handlers, use a black circle on the calling method to depict the

caller, similar to the event handling view elements.

General Guidelines

Guideline: the RiWAsML suggests using colours for the model-elements as necessary to improve

simplicity and readability.

7.2.3.2. Rules and Guidelines for High-level Designing with RiWAsML

This section specifies the rules and guidelines for the Level 1 Applications diagram, Level 2 View-

Process diagram, Level 1+2 Architecture diagram, and their elements.

Guideline: The high-level aspects can be hierarchically designed using the separated Level 1

Applications diagram and Level 2 View-Process diagram or can be included in a single design using

the Level 1+2 Architecture diagram depending on the size and the complexity of the RiWA. Priority

may given to the readability of the design.

Guideline: In RiWAs with browser-based clients, the RiWAsML does not depict the case of the

server sending views to the client as the response to the HTTP requests on the diagrams, considering

it is a well-known fact.

Chapter 7. Rich Web-based Applications Design Methodology

165

Guideline: The Tier elements are not required to have the same height and width (see Figure 8.10 in

Section 8.2.2).

Guideline: The Platform elements can expand across the tiers as required (see Figure 8.3 in Section

8.1.1).

Guideline: On high-level diagrams, the Views and AppControllers elements always use plural form

for the label’s element, type, and name segments.

7.2.3.3. Rules and Guidelines for Low-level Designing with RiWAsML

This section specifies the rules and guidelines for the low-level design diagrams and their elements.

Additionally, some development-supportive rules or guidelines are given as “Rule [development]:”

or “Guideline [development]:”.

View Diagram

Guideline: A View diagram may not contain all the GUI elements and may show only the GUI

elements required to implement functionalities.

Guideline: A View diagram is not required to provide the actual layout.

Guideline: It is suggested that a view be designed with its dedicated controller as a pair on the same

diagram as a View-Controller diagram.

Guideline [development]: Use a GUI element’s type and name label segment values to derive its

development name. For example, consider the element with the label << ViewI : btn : Delete >>; in

that case, use btnDelete as the development name of it. This value can be used for both the ID and

Name attributes of the GUI elements of webpages.

Guideline: Use Viewparts to improve the readability of the design; they may or may not be used in

actual development.

Guideline [development]: For a ViewPackage with ActorViews, the view’s actual development

name is the name of the ViewPackage. Use the names of the ActorViews as the display names of the

view for the actors of each ActorView.

Rule [development]: For Popups, use the label’s type segment to specify the behaviour of the Popup

as “Blocking” or “NonBlocking”. For Toggles, use the label’s type segment to specify the initial state

as Show/Hidden/Enabled/Disabled.

Guideline [development]: Do not mix the JavaScript code with the view’s HTML code for browser-

based client apps. If the controller has less code and decides to write it on the HTML file, always

write the JS code in the head’s script section without mixing it with HTML code anywhere else in

the document. However, on the design, it should be given as a separate controller.

Chapter 7. Rich Web-based Applications Design Methodology

166

Guideline: Each view should be available on the View-Navigation diagram. There cannot be any

views not included in the View-Navigation diagram.

View-Navigation Diagram

Guideline [development]: The primary purpose of the View-Navigation diagram is to identify the

views that can implement multiple sets of related features and denote the different routes to navigate

for different actors (refer to Section 4.4.4.1). It is crucial to identify the multiple features developed

in each view, the actors of these features, and the various navigation paths to these views, and then

design them using the View-Navigation diagram to assist in realising the arrangement of all the views

in a RiWA towards reducing the complexity of the development.

Guideline [development]: The View-Navigation diagram captures all the views to be developed in

the RiWAs and the navigation between them (refer to section 4.4.4.1). There cannot be any diagram

of view that is not included in the View-Navigation diagram. However, it is sufficient to design only

the required views using the View diagram, and it is not necessary to design all the views available

on the View-Navigation diagram using View diagrams.

Guideline [development]: Navigation links starting from hyperlink GUI elements are always link-

based navigation and developed as standard hyperlinks on the views. Navigation links starting from

other types of GUI elements are process-based and should be implemented in the view’s controller.

AppControllers Diagram and ControllerClass Diagram

Guideline: It is not mandatory for all the views to have a dedicated controller; for example, views

with only readable content, like a help page, do not necessarily need a controller. Therefore, the

number of controllers in the AppControllers diagram can be less than the number of views in the

View-Navigation diagram. It is practical to identify which views require a controller and include

them on the AppControllers diagram.

Guideline: It is beneficial to design a ControllerClass with its related view on the same design using

the View-Controller diagram.

Guideline: Decide the rich features to be developed on the view, identify all the event handlers

required on the controller to implement them, and include them on the design with notes explaining

their functionalities.

Rule: Even though the parent AppControllers element of the AppControllers diagram is a

component, the parent AppControllers element or the ControllerClass elements in it should not use

the UML component’s standard interfaces; instead, they should always use the RiWAsML

communication channels.

Chapter 7. Rich Web-based Applications Design Methodology

167

Guideline [development]: Do not mix the event handling code with the view’s code; always write

the event handlers’ registering code on the controller. Examples of improver vs proper coding style

suggested by the RiWAsML are given in Table 7.5.

Table 7.5 RiWAsML’s recommended events handling coding style

Improper code style Proper code style

View –

HTML

<button

onclick="deleteItem()">

 Delete

</button>

<button id="btnDelete">

 Delete

</button>

Controller –

JS/jQuery

Function deletedItem()

{

 //delete item code

}

$("#btnDelete").on("click",

function() {

 //delete item code

});

AppModel Diagram and ModelClass Diagram

Guideline: Each AppModel diagram comprises a complete class diagram.

Rule: An AppModel diagram should use a parent model component element.

Rule: Even though the model is a type of Component, it does not use UML’s standard interfaces;

instead, the model component and its classes should always use the RiWAsML communication

channels to indicate the communication with the outside.

Guideline [development]: Even if the client-model is developed using a language like JavaScript

without OODD practices, the ModelClasse elements could be developed in separate files as depicted

in the design.

Guideline [development]: Some web server-side frameworks provide a concept named “model” for

database Object Relational Mapping/Model (ORM) or Object Data Model (ODM) implementations

[170] [171]. These ORM/ODM models are different from the RiWAArch style’s concept of model,

which is based on the MVC. The ORM/ODM models can be considered a part of the RiWAArch

style’s model, which assists in implementing the database-related functionalities within the

RiWAArch style’s model.

DC-Bus Diagram and EndpointsCollection Diagram

Guideline: Even though the RiWAsML considers the connector a type of component, using the

component symbol on the connector elements is not mandatory to maintain the visual separation

between the connectors and components.

Chapter 7. Rich Web-based Applications Design Methodology

168

Guideline [development]: A web service API development concept like SOAP [144] or REST [145]

can be used to develop the DC-bus. Consider the relevant rules and guidelines of the selected API

development technology when designing and developing DC-bus and EndpointsCollections.

Guideline [development]: Web server-side development frameworks typically use the term

“controller” for the DC-bus-related aspects [139] and “route” for the endpoint [172] [173] [174],

which are derived from MVC and REST. Be aware of these terms, and do not substitute the

RiWAArch style’s and RiWAsML’s controller and endpoint concepts with them.

Guideline [development]: Multiple EndpointsCollections can be developed on the same class/script

where necessary, maintaining the conceptual separation as denoted in the design.

Guideline [development]: Select a consistent data wrapping technique/technology like XML or

JSON for the endpoints and denote that on the DC-bus diagram and/or EndpointsCollection diagram

using notes. Also, the structure of the datasets can be included in the design using notes.

View-Process Sequence Diagram

Guideline: Wrap the swimlanes of the same application using an Application element.

Guideline: The Application elements and their view, controller, connectors, and models should be

aligned with the other design diagrams of the same RiWA.

Other Related Design Concerns

Guideline: Use a suitable designing method/tool like Entity-Relationship diagrams (ER diagrams)

to design the databases.

Guideline: Use a suitable designing method/tool like Flowcharts to design the algorithms inside

methods of the controller, model, and endpointsCollection classes.

Guideline: The RiWAsML suggests drawing multiple diagrams together for improved realisation.

Some beneficial and practical combinations are View+ControllerClass+ModelClass (clientModel)

and ControllerClass+EndpontsCollection+ModelClass (serverModel). There is an example of an

EndpointsCollection and a ModelClass in one diagram in Figure 8.17 in Section 8.3.2.5.

Guideline: Other standard UML diagrams, like network architecture diagram and activity diagram,

shall be used as required. However, it is advisable to use the RiWAsML label on the UML elements

in a suitable way that aligns with the rest of the RiWAsML diagrams.

7.3. The RiWAsDM Process

This section discusses adopting the RiWAsML-based designing into the RiWAs engineering. These

discussions align with step 3.1 of the RiWAsDM implementing process (refer to Figure 1.4 in Section

1.5.3).

Chapter 7. Rich Web-based Applications Design Methodology

169

7.3.1. RiWAs Design Approach with RiWAsDM

Refer to Section 2.2.1.3 for software design approaches. RiWAsDM appreciates using the top-down

design approach; the RiWAs share high-level common characteristics and essential features, which

can be realised with the RiWAArch style (refer to Section 2.3.5); hence, it is easy to start from the

high-level architecture and design from top to bottom.

Besides, it’s not inappropriate to use the bottom-up approach when the low-level details of the

features of the RiWA are precisely identified, and the engineering team members have some

experience in RiWA engineering. In a case where the engineers have knowledge of the RiWAArch

style, they can emphasize recognising the low-level elements and use the bottom-up approach based

on the high-level realisation offered by the RiWAArch style.

7.3.2. RiWAs Engineering Approach with RiWAsDM

Refer to Section 2.1.3 for software engineering approaches. RiWAsDM recommends using the Agile

Model-Driven Development (AMDD) approach for RiWAs engineering to benefit from both MDSE

and agile SE since design thinking is essential for improving the quality of software [30]. Available

solutions like SysML [47] strongly appreciate using AMDD [175], which is pointed out in Section

9.5.15.

7.3.3. Guidelines for Adopting RiWAsML-based Designing into Agile Environments

This section discusses adopting the RiWAs designing activities into RiWAs engineering, aligning

with the top-down design approach and AMDD approach. RiWAsDM has selected three popular

agile development life cycles: Scrum [60] [61], DevOps [3], and Continuous Integration, Continuous

Delivery (CI-CD) [4] to discuss the integration of RiWAs designing activities.

Since the agile development methodologies are discussed in the literature [3] [4] [60] [61], this

section’s attention is given to providing guidelines to integrate the RiWAsML-based RiWAs

designing activities into RiWAs engineering into these agile methodologies. The life cycles of these

agile methodologies are briefly discussed to obtain an overview of them, focusing on the design

activities. The scrum framework is given in Figure 7.4, the DevOps tools chain is shown in Figure

7.5, and the CI-CD life cycle is illustrated in Figure 7.6.

Chapter 7. Rich Web-based Applications Design Methodology

170

Figure 7.4 The scrum framework [176]

Figure 7.5 The DevOps tool chain [3]

Figure 7.6 CI-CD life cycle [177]

A common feature of these agile-based engineering life cycles is that they develop systems

incrementally and iteratively. An iteration usually takes a few days, and a planning stage is included

in each iteration. RiWAsDM suggests exploiting this planning stage to integrate design activities.

Some guidelines on integrating the RiWAsML-based designing activities are given below.

Chapter 7. Rich Web-based Applications Design Methodology

171

Guideline: Include a dedicated designer on the team, or the developers may also act in the designer

role and design the features they develop.

Guideline: Perform basic requirements modelling and high-level design at the beginning of the

engineering project, then revise them and do the amendments as required in each iteration throughout

the project’s life cycle.

Guideline: In each iteration, during the planning stage, design and document the selected functions

to be developed and revise the design at the end of the iteration if required.

Guideline: At the end of each iteration, verify that the low-level design diagrams align with each

other and the high-level design. Resolve any conflicts and apply them to the development before

leaving the iteration.

Guideline: When design-related issues are identified in other phases like development, testing,

deploying, or configuring, document them and keep them in a backlog to be addressed at both design

and development levels in the following iterations.

7.4. Chapter Summary

This chapter introduces the RiWAsDM with the following modules.

1. The RiWAsML

1.1. RiWAsML’s architecture (Section 7.2.1)

1.2. RiWAsML reference (Section 7.2.2)

1.3. A set of rules and guidelines for the RiWAsML-based design and development (Section

7.2.3)

2. The RiWAsDM process (Section 7.3)

2.1. Design approach (Section 7.3.1)

2.2. Engineering approach (Section 7.3.2)

2.3. Guidelines for RiWAsML-based AMDD (Section 7.3.3)

172

Chapter 8. Use Cases

This chapter demonstrates the adoption of the RiWAsDM into RiWA engineering

through real-world use cases in which I was an engineering team member. These

use cases demonstrate the use of RiWAsML towards providing proof of concept,

primarily focusing on the attributes expected from the RiWAsDM (refer to Section

4.1). Most diagrams are simplified to fit into A4 pages; thus, they may not contain

all the details; however, they have enough details to demonstrate the features of the

RiWAsML’s models and model-elements. Larger versions of some diagrams are

given in appendices as cited in relevant sections. The development aspects are not

discussed in depth to maintain the length of this chapter. Demonstration of adopting

the RiWAsDM through use cases fulfils the research’s objective 4.

8.1. High-level Design Attributes of the RiWAsML

RiWAsML pays much attention to modelling the high-level structural aspects based on the

RiWAArch style towards improving the realisation of the system through comprehensive

architectural design. This section’s use cases principally attempt to evidence how the RiWAsML

improves diagrams’ simplicity and usability (learnability, readability/understandability).

8.1.1. Shopping System: Improve Simplicity and Readability with Tiers

This section focuses on discussing how the simplicity and readability of a RiWA architecture can be

improved using the Tier elements. The architecture discussed in this section is of an online shopping

system of an existing shopping chain. The system is already integrated with modern technologies to

use AI, ML, and big data concepts for functionalities like analytics, customer classification, and

recommendations towards improved sales. The recommendation system required ranking the

recommending items, and my role was to research introducing a Learning To Rank (LTR) module

[178], which was commenced by the end of 2018. I had to study LTR to identify the required

parameters and implement a prototype using JAVA to integrate LTR into the available shopping

system to rank the recommended products based on the customer’s preferences.

My primary necessity was to understand the current system in order to integrate an LTR module, and

I was given the system’s architecture by the lead architect. A simplified version of the architecture

is shown in Figure 8.1, and a larger figure of the same is given in Appendix B.1. The architecture is

drawn using the informal boxe-and-line approach (refer to Section 3.2.1), and the Application

elements and storage elements are scattered all over the diagram, which immensely reduces the

simplicity and usability of the design. Due to the informal syntax and lack of simplicity, the

architecture is less readable and substantially vague. Separate teams develop different modules of

the system, and only the team leads have the proper architectural understanding of the elements they

Chapter 8. Use Cases

173

work with. I had to consult all these team leads to obtain details of the high-level elements they were

working with.

Figure 8.1 Use case: shopping system – original architecture

It was tedious to consult many individuals to learn diverse sections of architecture and combine the

knowledge to realise the complete architecture in order to extend it to integrate an LTR module. This

task could be much easier if the architecture is drawn using a formal language and all the necessary

details are included. After implementing the RiWAsML, I selected this use case to test how the

RiWAsML can improve this architectural design, focusing on simplicity and usability.

The significant issues of this architectural design are as follows. The dashed vertical line, which

separates the architecture into two sections, looks like a tier separation, which is not. The left section

is labelled as “Internet”, which is extremely vague and the right side is labelled as “Cloud platform”,

which is a type of platform as the name implies. The “Cloud storage” box contains more boxes; their

labels indicate that these elements represent data; however, the symbols used give an impression of

components.

I first attempted to organize the architectural elements into tiers to improve simplicity by separating

the Application and storage elements. The resulting architecture is given in Figure 8.2, and a larger

version is provided in Appendix B.2. This version helps realise the type of the elements by their tiers

distinctly; therefore, it’s more readable compared to the architecture without the tiers. The application

tier contains all the Application elements, and the data tier holds the storage elements. Also, the client

is wrapped into the presentation tier, further improving the simplicity of the application tier. It is

Chapter 8. Use Cases

174

more understandable that the REST API element is also a server-side Application element deployed

separately from the cloud platform.

Figure 8.2 Use case: shopping system – architecture with tiers

In the data tier, the role of the elements within the tier is clear – even the databases and other storage

elements use different notations – and there is no risk of misreading the Cloud storage elements as

Application elements or components.

After separating the elements into tiers, I tried to use the RiWAsML to reproduce the architecture.

Since I’m not currently working on the project and obtaining more details about the architecture is

not feasible at this stage, only the Level 1 Applications diagram is produced using the available

details, concentrating on improving the readability and understandability of the architecture by

utilising the RiWAAsML model-elements. The produced L1 Applications diagram is illustrated in

Figure 8.3, and a scaled-up version is provided in Appendix B.3.

The platforms are introduced to include the deployment details of the Application elements. Since

the actual platform details are unavailable, substitute values are used for the demonstration. In the

case of the cloud service platform, it is enough to use an application-level platform node; anyhow, if

specific hardware and OS-level resources are incorporated, their details can be denoted on the

Platform element. For additional platform details such as the number of processors, amount of RAM,

Chapter 8. Use Cases

175

version of OS, and configurations, RiWAsML recommends using a Note element on the Platform

elements.

Figure 8.3 Use case: shopping system – Level 1 Applications diagram

The Job Scheduler element is considered an Application element, and its internal elements are treated

as components. Even though the RiWAsML L1 Applications diagram does not contain components,

they were kept on this diagram to demonstrate the flexibility of the RiWAsML.

This high-level diagram still lacks details and requires further improvement. For example, most of

the arrows are uni-directional and do not denote the actual communication, hence provide a false

impression. The arrow from the Client app to the REST API can be considered a request, and the

response is missing. Arrows are given from the REST API to the Load balancer and the Event

Collecting Service elements, but a return is not given to the REST API from any of the other elements.

Arrows are coming to the Analytical DB denoting data income; however, data is not read from this

database. The component named Flow Processer sends data to the flow data storage; nevertheless,

this component is not connected to any other element. It is important to address all these concerns

and produce a complete diagram for all the stakeholders to have a mutual realisation, eliminating

ambiguities. This use case also emphasizes the importance of using a formal design language for

producing usable design diagrams.

Chapter 8. Use Cases

176

8.1.2. Book Club App: UML Node vs RiWAsML Platform

This use case utilises a deployment diagram of a book club web application, which is given as an

example of the UML deployment diagram by uml-diagrams.org [179]. This use case attempts to

explain how the RiWAsML Platform element improves the readability of the high-level diagrams by

eliminating/reducing the nested elements required to denote the platform details compared to the

UML node element.

The original UML example deployment diagram, which is taken from uml-diagrams.org [179], is

given in Figure 8.4, which uses 3 nodes to specify the platform for the book_club_app and 2 nodes

to set the platform for the database schemas.

Figure 8.4 Use case: book club app – platforms designed using UML node elements [179]

Even though multiple nodes are utilised, the OSes are not depicted; more nodes are required to

include the OSes in the design. Using multiple nested nodes to denote platforms makes the diagram

less readable, mainly when the system contains many Application elements and databases running

on dedicated platforms; for example, consider the architecture diagram with 4 Application elements

in Figure 8.11 in section 8.3.1.

RiWAsML’s Platform element is more abstract compared to the UML’s node element and can denote

the platform details of 3 levels using a single element. This feature facilitates keeping the diagram

tidy and much readable. Consider the diagram given in Figure 8.5, which designs the platforms of

the book club app and its database using RiWAsML’s Platform element.

Chapter 8. Use Cases

177

Figure 8.5 Use case: book club app – platforms designed with RiWAsML

The diagram in Figure 8.5 includes all the details of the diagram in Figure 8.4; however, the reduced

number of elements diminishes the complexity of the diagram, improving its readability. Also, in

Figure 8.5, the communication channel is drawn between the Application element and the database,

which is semantically precise compared to Figure 8.4’s communication channel, which is depicted

between the nodes.

RiWAsML’s focus is to capture the Application elements’ platform details, and the deployment

details are not fully addressed as in UML; therefore, elements like deployment specs and artefacts

are not provided by the RiWAsML. They are used in Figure 8.5 only to compare it with Figure 8.4.

Anyhow, if these details are required to be included, RiWAsML advises using the UML model-

elements or Note elements where necessary.

8.1.3. MiCADO-Edge – A Cloud-to-Edge Computing Architecture [180]

The MiCADO-Edge [180] is an architectural style that extends the cloud orchestration solution

named MiCADOscale [181] to realise cloud-to-edge resource orchestration. The MiCADO-Edge

research’s architectural diagrams are sketched using the box-and-line approach, and a legend is given

to assist in understanding the different elements. However, even with the legend, the architecture is

difficult to comprehend since it is incomplete, which leads to many questions discussed later in this

section. A series of conversations were conducted with the research lead of the MiCADO-Edge

research to verify the concerns. Then, I attempted to re-design the MiCADO-Edge architectural style

[180] using the RiWAsML even though the context differs from the core RiWAs characteristics and

features in this thesis. This activity aimed to verify that the RiWAsML can produce more readable

and complete architectural diagrams using its formal syntax and the provided rules and guidelines.

The original MiCADO-Edge architectural style [180] is given in Figure 8.6.

Chapter 8. Use Cases

178

Figure 8.6 Use case: MiCADO-Edge – original architecture [180]

Preliminary questions, which require answers regarding this diagram are as follows.

 What is the type of the TOSCA ADT element?

 Do the container elements represent Application elements running in containers?

 Why are the non-container components, like App components, isolated without communicating

with the other elements?

 With what elements do the non-container components communicate?

After studying the MiCADOscale and MiCADO-Edge architectures and finding answers to the above

questions, combined with the knowledge obtained from the MiCADO-Edge lead researcher, I

produced the following diagram in Figure 8.7 using the RiWAsML; a larger version is given in

Appendix B.4. This diagram denotes the tiers and platforms of all the Application elements in the

system; it can be seen as an L1 Applications diagram of the RiWAsML.

Chapter 8. Use Cases

179

Figure 8.7 Use case: MiCADO-Edge – Architecture drawn using the RiWAsML

The diagram is compressed by reducing the spaces between the elements to ensure it fits into the

page, which causes it to look compact. Anyhow, it answers the above questions and provides more

details than the original diagram, making the architecture more readable and understandable. Some

points to take into consideration are given below.

 TOSCA ADT element provides a description of infrastructure and policies. It is a configuration

file written in YAML.

 Container platforms run Application elements in them.

 Non-container components in the original diagram are, in fact, Application elements, which are

parts of the KubeEdge cloud orchestration infrastructure.

 KubeEdge elements communicate with each other to manage containers.

This diagram was sent to the MiCADO-Edge’s lead researcher, who verified the design’s accuracy

and complimented the clarity. Since this is a complex diagram, providing separate L2 View-Process

diagrams for the Application elements is recommended rather than producing an L1+2 Architectural

diagram when it requires more high-level details. This use case is also a good example of a scenario

for using separate L1 Applications diagram and L2 View-Process diagrams over a single L1+2

Architectural diagram.

Chapter 8. Use Cases

180

8.2. Learning Management System

Smartest [182] is a learning management system (LMS) which uses a graph-based approach to

present the learning resources to the students for a more resourceful navigational experience through

the repositories in a clear, visual format that is easy to follow and understand. When I joined the

Smartest project in March 2023, a working web application with all the core functions had been

developed. The project’s next step was to convert the web application into a RiWA with a web service

in the back end. A team of two developers were working on the web service, and I joined as a front-

end developer. My main task was to convert the web application into a RiWA, detaching the browser-

based client application from its server application in order to communicate with the new web

service. While trying to understand the system to apply the required conversion, I produced some

design diagrams using the RiWAsML, which are discussed in this section and Section 8.3. The

Smartest project largely contributed to improving the RiWAsML to its current version.

The core development technology stack of the Smartest system is as follows.

 Views – HTML, CSS, Bootstrap

 Front-end development – JavaScript, jQuery, vis.js for graphs editor

 Back-end development – Node, Express, Mongoose, EJS template engine

 Database – MongoDB

 Deployment – Heroku [183]

This section first provides the system’s scenario with a use case diagram and then discusses the

architecture of the Smartest web application and its conversion to a RiWA. Section 8.3 discusses the

integration of the web service and low-level design aspects.

8.2.1. LMS – The Use Case Diagram

This section discusses the scenario of the Smartest system to understand its essential functions. The

use case diagram is given in Figure 8.8, and some non-trivial use cases are described in Appendix

C.1.

The main registered user types are Admin, Teacher, and Student; for the moment, the Researcher

user type is considered a type of Student and shares the student’s functions, and later, the Researcher

is expected to provide some Teacher-level functions to manage entries.

In Smartest, the admins and teachers create the learning materials in a repository, which are stored

and presented as graphs, where a graph is known as an “Entry”. The registered users can browse and

view the graph-based content in the repository or repo in short.

Chapter 8. Use Cases

181

Figure 8.8 Use case: LMS – use case diagram

8.2.2. LMS – High-level Design

The architecture diagram, which was available when I joined the Smartest project, is shown in Figure

8.9. Even though the system’s functionalities are straightforward, understanding the development by

looking at the code was stressful. I first created the UML use case diagram to gain a strong

understanding of the functions and familiarized myself with the terminologies; then, I got it verified

and finalized with the tech lead. After that, I started examining the original architectural diagram in

Figure 8.9 to realise the implementation of the system.

Chapter 8. Use Cases

182

Figure 8.9 Use case: LMS – original box-and-line architecture

The questions I had while studying this architecture are stated below.

 Are Graph Management and AuthN/AuthZ elements (the blue elements on the left numbered 1

and 3) part of the API?

 What are the types of Graph and User elements shown as clouds?

 What is the type of the JSON Web Token element (components, data objects, etc.)?

 What are the types of AuthN and AuthN/AuthZ elements (on the right)?

After receiving the answers to the above questions from the tech lead and understanding the elements

in this architecture, I drafted the architecture given in Figure 8.10 using the RiWAsML. A scaled-up

version of the diagram is given in Appendix C.2. The User, AuthN/AuthZ, Graph, and Graph

Management are internal modules of the server-model; therefore, they are not shown as elements in

the new architecture.

The client with Graph-less GUI in the original architecture was not developed, and it was not planned

to be developed in the next version (the RiWA with the web service); hence, it was not included in

the new architecture. The HTTP and DC APIs are implemented in the HTTPBus and DCBus, which

substitute the API element in the original architecture in Figure 8.9. The JSON Web Token (JWT) is

used as a data element to implement the authentication, which is not an architectural element; it is

included in the low-level design in Section 8.3.

Chapter 8. Use Cases

183

Figure 8.10 Use case: LMS – architecture designed with the RiWAsML

The web application is deployed on the Heroku [183] cloud platform, and the database is deployed

on MongoDB [184]; thus, the Web server and DB server platforms only specify the application-level

platforms without the hardware and OS levels. It was planned to use external authentication services

like Google authentication in future; to assist that function, the Auth Service Application element is

depicted in the External Tier.

This architecture provided sufficient knowledge to realise how the Smartest web application’s high-

level elements are developed and deployed. Further, this new architecture helped plan how these

architectural elements can be reused when converting the web application into a RiWA. The

development aspects of the high-level elements, which align with the RiWAArch style, are

elaborated below.

 The Back-endApp is developed using NodeJS and related technologies.

 The RESTful APIs in HTTPBus and DCBus are developed using the NodeJS library named

Express.

 The views are developed using HTML, CSS, and Bootstrap. The NodeJS’s EJS template engine

is used to dynamically generate content from the data retrieved by the views from the

ServerModel and structure them within the web server before a view is sent to the user’s

browser.

 The ServerModel uses the Mongoose library to use – and communicate with – the MongoDB.

 The ClientControllers and ClientModel elements are developed using JavaScript and related

technologies.

Chapter 8. Use Cases

184

8.3. Learning Management System With a Web Service

The Smartest project’s [182] next step was to detach the server model logic from the web application

and implement it in a web service, then convert the web application to a RiWA client of the web

service. The back-end team was working on implementing the web service with RESTful DC APIs,

and I was working on developing the browser-based client using the web application’s web pages.

This section discusses some issues we faced while implementing the Smartest RiWA with a web

service and the solutions we came up with through the help of RiWAsML diagrams.

We used the top-down approach; we started with designing the architectural aspects and decided how

to manage the development and deployment. The web service was already deployed into Heroku for

testing; the web app’s Application element was then deployed in a new Heroku instance, and I was

working with that to build the client and server-side Application elements of the web app, which

communicate with the web service. In the initial iteration, I designed how the login function should

be implemented (refer to Section 8.3.2.2) and developed it since the authN and authZ functions are

required to build and test the rest of the functions. After that, in each and every iteration, the team

leader and I selected a function and then designed, developed, tested the function and deployed the

new version of the web app. When we came across communication issues with the web service,

discussions took place with the web service developers to identify the problems and come up with

solutions.

8.3.1. LMS with a Web Service – High-level Design

The architecture of the Smartest web application, as shown in Figure 8.10, was updated for

conversion to a RiWA. The Smartest RiWA architecture is presented in Figure 8.11, and a larger

diagram is given in Appendix C.3.

This Smartest RiWA architecture applies the following changes to the system in Figure 8.10.

 The core business logic is removed from the ServerModel and implemented in the

ServiceModel, which is exposed to the clients via the APIDCBus.

 The Mobile app and the Browser app utilise the APIService Application element to process

business logic.

 The APIService Application element utilises the database, and the Back-endApp does not.

 The APIService Application element utilises the Auth Service application, and the Back-endApp

does not.

Chapter 8. Use Cases

185

Figure 8.11 Use case: LMS with web service – L1+2 Architectural diagram

The low-level design and development are expected to address the following aspects.

 The ServerModel should only handle the authentication-related features for the Browser app’s

web pages.

 UserPages should only utilise the ServerModel for authentication and session management-

related functions.

 The ServerModel should use the APIService Application element for user authentication.

 Since the ServerModel does not contain business logic and does not utilise the database, EJS

templating should be removed from the UserPages.

 Since the UserPages of the Browser app retrieve data from the APIService application, a client-

side templating technology should be used to generate and structure dynamic content using the

data retrieved from the APIService Application element.

The following section elaborates on how these aspects are addressed in low-level design and

development with some examples.

8.3.2. LMS with a Web Service – Low-level Design

This section has selected some functions of Smartest RiWA, which required much attention in

development due to their complexity and needed design assistance to understand them clearly. The

selection of the functions to be discussed in this section is also influenced by the need to demonstrate

all of RiWAsML’s low-level design diagrams.

Chapter 8. Use Cases

186

8.3.2.1. LMS with a Web Service – View-Navigation Diagram

Smartest’s View-Navigation diagram is depicted in Figure 8.12, and a larger version is given in

Appendix C.4.

Figure 8.12 Use case: LMS – View-Navigation diagram

The Smartest system has two menus: a public menu for the general public on public web pages and

the main menu for the registered users.

 A registered user can access the login page via the public menu, and once logged in, the user is

navigated to the dashboard page.

 The registered users’ menu contains three common menu items: Logout, Dashboard, and

Browse Repo; other menu items vary according to the user type.

 The logout menu item on the registered user’s menu logs out the user and navigates to the public

home page.

This View-Navigation diagram does not contain all the views; only a subset of the menu items and

their views are included to maintain the diagram’s size and make it fit into this thesis. Some key

points to note are as follows.

 Admin users can access the Manage Users view to perform all the CRUD operations on their

organisation’s users.

Chapter 8. Use Cases

187

 The Entry web page is a complex view that implements many related features for different types

of users, and it can be accessed via three different paths by different types of users.

 All the user types can see the available public entries of the organization on the Browse

Repo view, where the admins can also view private entries, and the teachers can view

collaborating entries even if they are private. Users can see a selected entry by clicking on

the entry’s ViewEntry link button in the EntryList table. The entry will be then opened on

the Entry view for viewing. Admins and the entry’s owning and collaborating teachers can

also edit the entry on the Entry view.

 Admins and teachers are given permission to perform CRUD operations of the entries on

the Manage Entries view, and they are provided with a menu item, Manage Entries, on the

main menu to navigate to the view. Similar to the Browse Repo view, they are given an

EntryList table on the view where admins can see all the organisation’s entries, and the

teachers can see all the owning and collaborating entries within the organization. Admins

and teachers can click on an entry and navigate to the Entry view to edit the entry.

 Students are given a menu item named Continue Module to navigate to the Continue

Module view, where they can see a list of entries they have started to follow, which they

can continue. Similar to the Browse Repo and Manage Entries views, the list of entries the

student has started to follow is given in the EntryList table, and the student can click a

selected entry’s link button to open the entry on the Entry view.

By looking at the three navigation pathways to the Entry view, we can understand that the Browse

Repo, Manage Entries, and Continue Module views share some features, and they can be

implemented on a common view instead of developing three different views. Identifying such

development-related possibilities is an excellent insight the View-Navigation diagram provides. In

Smartest, the Browse Repo view contains some advanced filtering and searching functions (refer to

Section 8.3.2.3), and the Manage Entries view contains features for performing CRUD operations

on the entries; therefore, combining these views and implementing all these features on a shared view

will increase the complexity of the view. In that case, the view should be carefully designed to

accommodate all the features and enable/disable or show/hide them based on the user type and

navigation path while maintaining a higher user experience.

8.3.2.2. LMS with a Web Service – View-Process Sequence Diagram for the Login Use Case

After the business logic is transferred to the WebService from the WebApp, the authentication is

handled by the WebService. However, the WebApp still needs to identify the user to authorize access

to the views; for example, the WebApp should not provide access to the admin’s views for other types

of users. Hence, there is a requirement to pass the user’s authentication details to the WebApp after

the WebService authenticates the user. This authentication function’s process is designed using a

View-Process Sequence diagram to realise it strongly, which is given in Figure 8.13.

Chapter 8. Use Cases

188

Figure 8.13 Use case: LMS with web service – View-Process Sequence diagram

The authentication process involves all three Application elements, and the steps are elaborated

below with justifications where necessary.

 A registered user navigates to the UserLogin view, enters the username (un) and password (pw),

and then clicks the login button to initiate the process.

 The UserLogin view triggers the login button’s click event, and the UserLogin controller’s

onLoginBtnClick() event handler is invoked, which will read the un and pw from the view.

 The UserLogin controller sends a DC request, including the un and pw, to the User

EndpointsCollection of the APIDCBus of the APIService Application element.

 The APIDCBus calls the login() method of the ServiceModel’s User class, passing the un and

pw as parameters.

 The User class validates the user and returns a JWT object to the APIDCBus, which is then sent

to the UserLogin controller as the DC response.

 Upon receiving a successful DC response from the APIDCBus, the UserLogin controller sends

the next DC request to the Back-endApp’s DCBus element’s User EndpointCollection, with un,

pw, and the JWT-object received from the WebService.

 The User EndpointCollection calls the login() method of the User class in the ServerModel by

passing the un, pw, and the JWT-object as parameters.

 The Back-endApp cannot validate the user as it does not contain the required logic and does not

have access to the database. Therefore, the Back-endApp sends a DC request with un, pw, and

the JWT-object to the APIDCBus of the WebService to verify the user.

Chapter 8. Use Cases

189

 The APIDCBus’s User EndpointsCollection calls the verify() method of the ServiceModel’s

User class by passing the un, pw, and the JWT-object as parameters.

 The User class verifies if the user is a valid and already logged-in user and returns true (a success

message) to the APIDCBus, which is then forwarded to the Back-endApps’s User class as the

DC response.

 Upon receiving a success message from the APIService, the User class of the Back-endApp sets

the session-related data on the WebApp and returns true (a success message) to the DCBus,

which is then sent to the UserLogin controller as the DC response.

 Upon receiving a success message from the Back-endApp, the UserLogin controller redirects

the user to the next view, which is the user’s Dashboard view in this case.

 Note that the error cases are not denoted on this diagram. If any error occurs during this process,

an error message should be displayed on the UserLogin view instead of redirecting the user.

8.3.2.3. LMS with a Web Service – View-Controller Diagram of Browse Repo

This section discusses the View-Controller diagram of the Browse Repo function, which includes a

View diagram and the related ControllerClass diagram. The View-Controller diagram of the Browse

Repo function is illustrated in Figure 8.14.

Figure 8.14 Use case: LMS with web service – browse repo View-Controller diagram

The View-Controller diagram answers the event handling and DC-related development concerns

based on the RiWAArch style. The functions included in this diagram are explained below.

Chapter 8. Use Cases

190

 The controller’s properties are initialized with default values, and only the user property, which

contains the JWT object, is dynamically assigned at the server when the view is requested from

the Web app server. The JWT object is sent to the APIService with each DC request for user

authentication. The entries property stores the set of entries as a JSON object sent by the

APIService, as discussed later in this section.

 When the view is loaded to the browser, the controller’s onViewLoad() event handler is invoked,

which sends DC requests to the APIService to fetch data for the Type, Creator, and Subject drop-

down lists.

 The onDdlsLoad() event handler is invoked upon receiving the DC responses to the above

request, which reads the JSON data from the DC response and loads them to the drop-down lists

(DDLs). Note that in actual development, three DC requests are sent to load data to DDL, and

three separate DC response handlers are set to receive and process the responses. The diagram

in Figure 8.14 is simplified to fit into this thesis’s page.

 Once the DDL data is loaded, the onDdlsLoad() calls the loadEntriesPage(), which sends a DC

request to the APIService with the default values of the controller’s properties.

 The onEntriesPageLoad() is invoked upon receiving the DC response, which reads the JSON

object sent by the APIService with the set of matching entries for the page (page number 1 is

the default to start with) and sets the JSON object to the entries property of the controller.

 The table named Entries on the view is developed using the jQuery template library [185], which

is denoted in the diagram’s note. The onEntriesPageLoad() assigns the entries JSON object to

the template, which dynamically generates the table data (denoted by connector 9).

 After the initial data load, when the user changes the DDLs or clicks on a page number on the

Paginator, the relevant event handler on the controller is invoked, and the event handlers of the

DDLs and paginator update the controller’s appropriate property and call the loadEntriesPage()

to send a new DC request to the APIService. When the DC response is received, it’s processed

again, as explained above.

On the table Entries of the view, the admin and teacher users are provided with EditEntry and

DeleteEntry buttons to perform additional actions on the entries in the table. As mentioned in the

view’s note on the diagram, an admin can edit/delete entries of his school’s repo, and a teacher can

edit/delete an entry if only the owner or a collaborator.

The users are directed to the Entry view to view or edit a selected entry, as discussed in Section

8.3.2.1, and it is not to be included in the Browse Repo design. The delete entry feature requires more

event handlers and DC-engine use; these artefacts and related discussions are kept out of the scope

of this section to maintain the discussion’s length.

Chapter 8. Use Cases

191

8.3.2.4. LMS with a Web Service – DC-bus Diagram and EndpointsCollection Diagram

This section discusses the DC-bus and endpoints designing of the Back-endApp’s DCBus connector.

The DC-bus diagram of the DCBus connector and the EndpointsCollection diagram of the DCBus’s

endpoints collection named RoutesRegUser are given in Figure 8:15.

Figure 8.15 Use case: LMS with web service – DC-bus and an EndpointsCollection diagrams

The Smartest LMS with a web service has moved the business logic from the Back-endApp to the

APIService; thus, the Back-endApp’s DCBus only implements the endpoints to serve the web pages

to the BrowserApp. The DC requests are first served by the RoutesIndex endpoints collection, which

checks if the request is for a public view or a registered user’s view and forwards it to the appropriate

endpoints collection.

The DC-bus diagram conceptually looks like it contains the RoutesIndex parent class and

RoutsPublic and RoutesRegUsers children classes; actually, the relationships are associations, not

inheritance. These are developed as separate Express controllers [173], and there is no parent-child

relationship as in OOP. Furthermore, the RoutesRegUsers endpoints collection could be further

decomposed based on the actors; however, in this case, since only view request handling endpoints

are implemented in these, they do not contain many endpoints; hence, the endpoints for all the

registered users are implemented in a single EndpointsCollection element.

The RoutesRegUsers EndpointsCollection diagram explains that four properties are available to hold

paths for each registered user type. The actions/methods represent the request handlers for the

registered users’ views; only three request handlers for the admin’s views are given in this diagram

to maintain the diagram size for the thesis. The Express controllers implement the request handlers

for RESTful requests, and the name of each action/method indicates the HTTP verb as “Get” to

specify that the requests to be handled are HTTP GET requests, and the return is in the type of view.

Note that the request handlers may use appropriate HTTP verbs, as required, to indicate the type of

the request to be handled.

Chapter 8. Use Cases

192

The DC-bus diagram helps to realise the overall arrangement of the DC handling of the Application

element and, together with the EndpointsCollection diagram(s), provides enough guidance for the

actual development.

8.3.2.5. LMS with a Web Service – AppModel Diagram and ModelClass diagram

This section briefly discusses the AppModel diagram of the APIService’s ServiceMode, which is

illustrated in Figure 8.16.

Figure 8.16 Use case: LMS with web service – an AppModel diagram

This is a simplified AppModel diagram without the properties and actions in the classes, and the

model classes use only the RiWAsML label’s name segment. Since the AppModel diagram is similar

to the standard UML class diagram, in-depth discussions are avoided in this section. Each model

class in the AppModel diagram can be independently designed as required, similar to a controller

class. Also, if needed, the model classes can be designed together with EndpointsCollection elements

to understand the model class’s methods called by the endpoints. An example is given in Figure 8.17.

Figure 8.17 Use case: LMS with web service – an EndpointsCollection and ModelClass elements in one diagram

A simplified Admin class is given with only the methods required by the ManageUser endpoints

collection. The endpoints collection’s adminData property is required to authenticate and authorise

the system’s current user’s JWT object, and the userData property is the user’s data that the admin

manages in the manage user function.

Chapter 8. Use Cases

193

In the Smartest system, the ServiceModel is developed using NodeJS’s features: controllers, models,

middleware, and services.

8.4. Chapter Summary

This chapter demonstrates the adoption of RiWAsDM, including RiWAsML, through the following

use cases, most of which are real-world systems.

 A shopping system demonstrates the improvement of the simplicity and usability of high-

level designs using the Tier element.

 Book club app: This is a hypothetical use case taken from the uml-diagrams.org [179] to

demonstrate how RiWAsML’s Platform element improves the design’s usability while

preserving the simplicity compared to the UML’s node.

 MiCADO-Edge: This is an architectural style for cloud-to-edge computing in a research

publication [180], originally drawn as an incomplete architecture using the box-and-line

approach. The style is reproduced using the RiWAsML to demonstrate the language’s

usability.

 Smartest Learning Management System: this use case demonstrates the conversion of a

web application into a RiWA with the help of RiWAsDM/RiWAsML. The RiWA

engineering of this use case utilises the top-down design approach in an AMDD

environment. Both high-level and low-level design aspects are discussed to demonstrate the

RiWAsML’s models and model-elements, and their development is also discussed where

necessary.

194

Chapter 9. Evaluation

This chapter evaluates the RiWAsDM using three different methods and then draws

the final evaluation results by triangulating the outcomes of these methods (refer to

Section 1.5.5). The evaluation of the RiWAsDM fulfils research objective 5 (refer

to Section 1.4).

9.1. Self-Evaluation

This section initiates the evaluation of the introduced RiWAsDM by discussing the satisfaction of

the requirements within the context (refer to Section 1.5.5.1 for the self-evaluation method). The

evaluation scale, which assesses the requirements satisfaction level, is given in Table 9.1.

Table 9.1 Evaluation scale (refer to Table 1.2 in Section 1.5.5.2)

Symbol Interpretation

++ Very high effect

+ High effect

-+ Moderate effect

- Less effect

-- Very low or no effect

NA Not/None Applicable

The self-evaluation analysis is presented in Table 9.2. The facts in Table 9.2 are elaborated based on

the use cases presented in Chapter 8 as proof of concepts. The effect of the RiWAsML/RiWAsDM

elements/modules is examined against the requirements set in Chapter 4, and the overall effect of

each requirement is considered the cumulative effect of the corresponding criteria.

R1 Element Names (refer to Section 4.2.1)

The RiWAsML primarily uses rectangles for model-element syntax instead of providing a dedicated

symbol per element, and the model-elements are identified using a new descriptive Label element in

the direction of improving learnability and readability. The RiWAsML’s label with the three-segment

format helps identify the element’s class and type, which expresses some technical aspects, and a

custom name can be assigned to identify the element within the designed RiWA uniquely. The details

provided by the three-segment label format improve learnability, readability, and understandability

while supporting development by stating technical information. Refer to Section 5.1.1 for a detailed

discussion of RiWAsML’s Label element. This new label is successfully used on all the new model-

elements provided by the RiWAsML in use cases. These features together highly satisfy the R1 with

a very high effect.

Chapter 9. Evaluation

195

Table 9.2 The analysis of the self-evaluation results

Criteria/

Requirement

Model and

elements R
1
 E

le
m

e
n

t
n

a
m

e
s

R
2
 C

o
m

m
 c

h
a
n

n
e
ls

R
3
 P

r
o
ce

ss
in

g
 e

le
m

e
n

ts

R
4
 V

ie
w

s
(h

ig
h

-l
e
v
e
l)

R
5
 A

d
d

it
io

n
a
l

e
le

m
e
n

ts

R
6
 H

ig
h

-l
e
v
el

 m
o
d

el
s

R
7
 V

ie
w

s
(l

o
w

-l
e
v
el

)

R
8
 C

o
m

p
o
n

e
n

ts

R
9
 C

o
n

n
e
ct

o
r
s

R
1
0
 L

o
w

-l
e
v
e
l

m
o
d

e
ls

A
tt

r
 1

 S
im

p
li

c
it

y

A
tt

r
 2

.1
 C

o
m

p
re

h
e
n

si
v
e

A
tt

r
 2

.2
 U

sa
b

il
it

y

A
tt

r
 2

.3
 D

e
v
 s

u
p

p
o
r
t

A
tt

r
 2

.4
 I

n
te

g
r
a
b

il
it

y

Label ++ NA NA NA NA NA NA NA NA NA ++ ++ ++ + NA

Comm
channels

NA ++ NA NA NA NA NA NA NA NA ++ ++ ++ NA NA

L1 App.
Model
-Tier
-Platform
-Application

++ ++ ++ NA + ++ NA NA NA NA ++ ++ ++ + NA

L2 View-
Proc. Model
-Views
-Components
-Connectors

++ ++ ++ ++ NA ++ NA + + NA ++ ++ ++ NA NA

L1+2 Arch.
Model ++ ++ ++ ++ + ++ NA + + NA ++ ++ ++ NA NA

Additional
elements ++ NA NA NA + NA NA NA NA NA + ++ ++ NA NA

View-
Navigation
Model

++ ++ NA NA NA NA ++ NA NA ++ NA ++ ++ ++ NA

View Model ++ NA NA NA NA NA ++ NA NA ++ ++ ++ ++ ++ NA

App-Cont.
and Cont.
Models

++ NA ++ NA NA NA NA ++ NA ++ ++ ++ ++ ++ NA

View-Cont
Model ++ ++ NA NA NA NA ++ ++ NA ++ NA ++ NA NA NA

AppModel
and
ModelClass
Models

++ NA ++ NA NA NA NA ++ NA ++ ++ ++ ++ ++ NA

DC-bus
Model and
Endp. Coll.
Model

++ NA ++ NA NA NA NA NA ++ ++ ++ ++ ++ ++ NA

View-Proc.
Seq. Model ++ ++ ++ NA NA NA + ++ ++ ++ NA ++ ++ ++ NA

RiWAsML
architecture

NA NA NA NA NA NA NA NA NA NA ++ ++ ++ ++ NA

RiWAsML
rules and
Guidelines

NA NA NA NA NA NA NA NA NA NA NA ++ ++ ++ NA

RiWAsDM
Process

NA NA NA NA NA NA NA NA NA NA NA ++ + + ++

Overall

effect
++ ++ ++ ++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Chapter 9. Evaluation

196

R2 Communication Channels (refer to Section 4.2.2)

The RiWAsML categorizes communication channels in RiWAs into 5 types and realises them based

on the request-response model. An arrow denotes the communication channel and its direction, where

different line and arrowhead styles are used to recognise the communication channel type (refer to

Section 5.1.2). Further, the RiWAsML provides some more techniques like the use of numbered flow

connectors for complex diagrams (refer to Section 6.1.2.), the use of a dot at the beginning of the

arrow to indicate the event triggers (refer to Section 6.1.1.1), and use of stereotype labels (refer to

Section 6.1.2.4) in low-level design to depict additional details on the communication channels. The

communication channels are effectively utilised in high-level and low-level models: The View-

Navigation model, View-Controller model, and View-Process Sequence model. These features of the

communication channels satisfy the R2 with a very high effect.

R3 Processing Elements (refer to Section 4.3.1)

RiWAsML separates the model-elements based on the RiWAArch style into tiers, platforms,

applications, models, controllers, and connectors in high-level designing (refer to Section 5.2), which

are utilised in the L1 Applications model, L2 View-Process model, and L1+2 Architectural model

(refer to Sections 5.3.3, 5.3.4, and 5.3.5). Further, the internal elements of the high-level elements:

Views, AppControllers, AppModel, and Connector are identified, and the following models are

provided to design them: View-Navigation model, View model, AppControllers model,

ControllerClass model, View-Controller model, AppModel model, ModelClass model, DC-bus

model, EndpointsCollection model, and View-Process Sequence model. These processing elements

and the models which use them satisfy the R3 with a very high effect.

R4 Views (High-level) (refer to Section 4.3.2)

The RiWAsML provides a model-element to denote the high-level views on the L2 View-Process

model and L1+2 Architectural model (refer to Sections 5.2.6, 5.3.4 and 5.3.5) aligning with the

RiWAArch style, which satisfies the R4 with a very high effect.

R5 Additional Elements (refer to Section 4.3.3)

The RiWAsML provide additional model-elements to show actors, databases, files, external web

services, networks, EBSs, and notes on the L1 Applications model and L1+2 Architecture model,

which satisfies the R5 (refer to Section 5.2.7). However, since a deep study, analysis, or discussions

on the required additional elements were not done during this study, the R5 satisfaction level is

considered (+) high effect rather than (++) very high effect.

Chapter 9. Evaluation

197

R6 High-level Design Models (refer to Section 4.3.4)

The RiWAsML provides the L1 Applications model to capture the Application elements within a

RiWA, their platforms, and distribution in tiers (refer to Section 5.3.3). The L2 View-Process model

is offered to design the high-level Views, AppControllers, AppModel, and Connector elements within

an Application element (refer to Section 5.3.4). Further, the L1+2 Architecture model is provided to

combine the L1 and L2 diagrams for less complex RiWAs to illustrate all the high-level aspects

within a single diagram (refer to Section 5.3.5). Sections 8.1, 8.2.2, and 8.3.1 demonstrate the use of

these high-level models using real-world development examples. These models satisfy the R6 with

a very high effect.

R7 Views (low-level) (refer to Section 4.4.1)

The RiWAsML provides a set of elements to model the views-related low-level aspects: Views,

ViewI, ViewO, ViewIO, Container, Section, Popup, Toggle, Viewpart, ViewpartOBJ,

SharedViewpart, SharedViewparOBJ, and ViewPackage, which are utilised in View-Navigation

model (Section 6.2.1), View model (Section 6.2.2), and View-Controller model (Section 6.2.6).

Moreover, the View-Process Sequence model employs the Views element to denote the GUIs with

which the user interacts and initiates the process (Section 6.2.7). The provision of these models that

utilise the views and related elements satisfies the R7 with a very high effect.

R8 Components (low-level) (refer to Section 4.4.2)

The RiWAsML provides models and model-elements to design the low-level aspects of both high-

level AppControllers and AppModel elements – which are the components included in the high-level

L2 View-Process diagram and L1+2 Architecture diagram – mapping them into the low-level design.

The controller is an essential element in RiWAs; the RiWAsML’s AppControllers model helps

capture all the controllers in an Application element, and the ControllerClass model assists in the

detailed designing of individual controllers. The View-Controller model assists in capturing the

details of the events, events-handling, reading data from its view, and producing output on the view.

Further, the View-Controller model can denote the invocation of popups and toggles. The

ControllerClass model can depict communication with client-model and DC-bus, including DC

response handling, which are unique features of the RiWAsML (refer to Sections 6.2.3 and 6.2.4).

The AppModel model and the ModelClass model of the RiWAsML provide additional details over

the standard UML class diagram to state the model’s communication with its server Application

element’s views and DC-bus’s EndpointsCollection elements (Section 6.2.5).

Moreover, how the components in different Application elements are involved in a single process

can be captured using RiWAsML’s View-Process Sequence diagram (Section 6.2.7).

These features ensure the satisfaction of R8 with a very high effect.

Chapter 9. Evaluation

198

R9 Connectors (low-level) (refer to Section 4.4.3)

The RiWAsML captures high-level connector details using the L2 View-Process model and L1+2

Architectural model. The low-level details of these connectors can be further explained using the

DC-bus model and the EndpointsCollection model, using the elements DC-Bus and

EndpointsCollection (refer to Section 6.2.5). Designing RiWAs’ connectors is another unique feature

of the RiWAsML, and it can ensure the satisfaction of R9 with a very high effect.

R10 Low-level Design Models (refer to Section 4.4.4)

The RiWAsML offers models to design the low-level aspects of the high-level elements Views,

Controllers, Model, and Connector, through the View-Navigation model, View model,

AppControllers model, ControllerClass model, AppModel model, ModelClass model, DC-bus

model, and EndpointsCollection model. Also, the View-Controller model is provided to capture the

interactions between a view and its controller. Further, some utility elements are given to denote

more interactions between the elements in models; for example, numbered flow connectors can be

used with ModelClasse elements to show the communication with EndpointsCollection elements.

Section 8.3.2 demonstrates the utilisation of RiWAsML’s low-level models using an actual RiWA

engineering project. All these models and model-elements offer a comprehensive toolkit to design

all the aspects of the RiWAs aligning with the RiWAArch style. Considering these points, the R10

can be regarded as satisfied with a very high effect.

Attr 1 Simplicity (refer to Section 4.1.1)

The RiWAsML’s selection of model-elements is based on the RiWAArch style [12], and the

RiWAsML inherits the RiWAArch style’s simplicity by providing model-elements for all the

RiWAArch style’s architectural elements. This is further explained by the RiWAsML architecture

as briefed below (refer to Figure 7.1 in Section 7.2.1 for a detailed discussion).

 For the high-level design, RiWAsML provides model-elements in two levels:

 Level 1: The Tier, Platform, and Application elements capture the deployment of the

Application elements. Additional high-level elements like databases are given to denote the

elements required by the Application elements.

 Level 2: The Views, Controllers, Model, and Connector elements – which are the internal

elements of the Application elements – denote the packaging details to assist the

development of the low-level elements.

 For the low-level design, RiWAsML provides model-elements to design the internal aspects of

the views, controller, models, and DC-bus, supporting their development.

The RiWAsML’s label helps identify the model-elements separately based on the element’s class

and the type without having to remember visual symbolic notations. The communication channels

Chapter 9. Evaluation

199

provide different syntaxes to identify the 5 different communication channel types in RiWAs; further,

their semantics can be easily understood by the elements engaged in the communication.

Considering the identification and provision of these elements, the simplicity of the RiWAsML can

be marked as very high.

Attr 2.1 Adoptability – Comprehensiveness (refer to Section 4.1.2.1)

The discussion in Section 9.1.11 shows that the RiWAsML offers the model and model-elements to

satisfy the features expected from the RiWAsML, which are set in Section 4.1.2.1.

The RiWAsDM provide the following modules to assist RiWAs engineering (refer to Chapter 7),

satisfying the features expected from the RiWAsDM, which are set in Section 4.1.2.1.

 The RiWAsML provides models and model-elements to design all the aspects of the

RiWAArch style, covering the general characteristics and essential features of the RiWAs (refer

to Section 2.3.5) as discussed above under R1 to R10, which are listed below.

 Rich GUIs: The View-Navigation model captures the views in a RiWA and their navigation

aspects, focusing on implementing rich features on views. The View model helps design

the GUI aspects to implement the rich features.

 A collection of applications and databases: The high-level L1 Applications model and

L1+2 Architectural model can capture the Application and Database elements and their

configuration within a RiWA.

 Client-side events handling, Split business logic between client and server, and MVC-

based modularization: Aligning with the RiWAArch style, the RiWAsML offers models

to capture these aspects based on BAW-MVC [105] using the models: View model,

AppControllers model, ControllerClass model, View-Controller model, AppModel model,

and ModelClass model.

 Use of DC and DC handling connectors: At the high level, the RiWAsML provides the

Connector element to denote the DC-engine and DC-bus in the L2 View-Process model

and L1+2 Architectural model, and at the low level, the DC-Bus model and

EndpointsCollection model are given for the detailed design of the DC-bus.

 The RiWAsML architecture (refer to Figure 7.1 in Section 7.2.1) ensures the provision of

model-elements for designing all the RiWAArch style’s elements and their development

aspects. Further, it helps understand how the high-level elements are mapped to low-level

elements and further mapped to development-level models and elements.

 The RiWAsML rules and guidelines (refer to Section 7.2.3) assist in adopting the RiWAsML

into RiWAs designing and also guide some development aspects of the low-level models.

 The RiWAsDM process (refer to Section 7.3) discusses adopting the RiWAsML into RiWAs

engineering, enabling agile model-driven development (AMDD) (refer to Section 7.3.3).

Chapter 9. Evaluation

200

These modules make the RiWAsDM a complete methodology for RiWAs designing with a very high

effect in the context of Attr 2.1 comprehensiveness (refer to Section 4.1.2.1).

Attr 2.2 Adoptability – Usability (Learnability, Readability/Understandability) (refer to

Section 4.1.2.2)

The RiWAsML satisfies the features set in Section 4.1.2.2 as follows.

1. The RiWAsML is an extension of the UML therefore, inherits many features from the UML; for

example, the Platform element is similar to the UML Node element, and ControllerClass,

ModelClass, and EndpointsCollection elements are similar to UML Class. Therefore, engineers

with UML knowledge may find it easy to learn the RiWAsML.

2. The RiWAsML is based on the RiWAArch style and realises the high-level views, controllers,

models, DC-engine, and DC-bus elements and their configuration. Thus, for engineers who know

the RiWAArch style, learning, reading, and understanding the RiWAsML designs would be

easier. However, other than the DC-related aspects, the high-level tiers, platforms, Application

elements, views, controllers, and models are generally known by RiWAs engineers; therefore,

RiWAsML-based high-level designing would engage a low learning curve for them.

Additionally, the RiWAsML architecture (refer to Figure 7.1 in Section 7.2.1) helps understand

mapping the RiWAArch style-based high-level elements to development-level elements.

3. The RiWAsML uses a new Label element to distinguish between the model-elements over using

many graphical symbols in the direction of assist in learning and understanding the language

(refer to Section 4.2.1 for the Label element’s requirements and Section 5.1.1 for the introduction

of the Label element). Also, the RiWAsML encourages the use of notes to include more textual

details on the designs to improve readability/understandability.

4. The low-level elements ControllerClass, ModelClass, and EndpointsCollection are primarily

based on UML classes, which the software engineers generally know; thus, RiWAsML-based

low-level designs would be easy to learn, read, understand, and directly use in development.

5. The RiWAsDM offers rules and guidelines for learning and understanding the proper use of

RiWAsML in RiWAs’ design and development (refer to Section 7.2.3).

6. Furthermore, the RiWAsDM process (refer to Section 7.3) assists in understanding the use of

RiWAsML in RiWAs engineering by explaining the design approach, engineering approach, and

integration of the RiWAsDM with agile methodologies.

Considering these aspects, the usability of the RiWAsML can be marked as satisfied with a very high

effect in the context of learning, reading, and understanding.

Chapter 9. Evaluation

201

Attr 2.3 Adoptability – Development Support (refer to Section 4.1.3)

The RiWAsDM provides the following elements to support the development of the RiWAsML

models and adopt RiWAs designing activities in engineering, satisfying the features set in Section

4.1.2.3 towards supporting development.

1. The RiWAsML models and model-elements align with the RiWAArch style’s abstract

formalism, realising the RiWAs’ general characteristics and essential features as discussed in

Section 9.1’s Attr 2.1. Further, the RiWAsML is not based on any development

technology/technique and is abstract, allowing it to be adopted into RiWAs engineering

regardless of the development technology/technique.

2. The RiWAsML’s low-level elements like View, ControllerClass, ModelClass, and

EndpointsCollection are similar to the UML class and can be directly mapped into development.

The RiWAsML is flexible, and some model-elements, such as GUI elements, events, and data

types, are defined abstractly, allowing them to include details related to the development

environment based on the languages and frameworks used. Also, the RiWAsML recommends

including more development-related information using notes to improve the development

support.

3. The RiWAsDM provides some rules and guidelines for the RiWAsML-based design to

effectively map the low-level diagrams into development (refer to Section 7.2.3).

In addition to these features, the RiWAsDM presents the following in the direction of strengthening

the development support.

 The RiWAsML architecture (refer to Figures 7.1, 7.2, and Table 7.1 in Section 7.2.1) assists

in understanding the mapping of the high-level elements to low-level and development-level

elements.

 The RiWAsML’s Label element enables denoting some valuable details for development,

especially the platform details, on which the development technologies depend. Also, it suggests

selecting names using the Pascal case, which can then be used as package, module, or class

names.

 The high-level designs provide details of the tiers and platforms to assist decision-making in

selecting the development technologies and tools.

 The views and related models offer details required for implementing the functions for them;

for example, which elements trigger events, which elements need templating, and which

functions can be developed together on a view (refer to Sections 8.3.2.1 and 8.3.2.3 for use

cases).

Chapter 9. Evaluation

202

 A real-world use case is employed to demonstrate the use of the RiWAsML, and the

development details are discussed to understand how the RiWAsML models can be developed

(refer to Section 8.3).

 The RiWAsDM process discusses the design approach, engineering approach, and guidelines

for integrating the RiWAsDM (refer to Section 7.3) to assist in understanding the adoption of

the RiWAsDM in actual RiWAs engineering.

These points help understand that the RiWAsDM highly support RiWAs development without being

limited to a conceptual solution.

Attr 2.4 Adoptability – Integrability (refer to Section 4.1.4)

The RiWAsDM provides a process that discusses how the RiWAsML-based design activities can be

integrated into the RiWAs engineering life cycle in the direction of having an agile model-driven

engineering (AMDD) methodology (refer to Section 7.3). The RiWAsDM process provides insight

into making it a highly integrable solution in the context of the required level.

9.2. Contextualised Comparisons

Section 1.5.5.2 states the use of contextualised comparison as an evaluation method of the

RiWAsDM. Only the UML-based available solutions are selected for the comparison (which are

reviewed in Chapter 3), and the solutions limited to research publications are not chosen, except the

IAML, which is in the same context and is much related (refer to Section 3.4). The analysis of the

contextualised comparison is given in Table 9.3.

Table 9.3 The analysis of the contextualised comparison

Criteria/

Requirement

Solutions

R
1
 E

le
m

e
n

t
n

a
m

e
s

R
2
 C

o
m

m
 c

h
a

n
n

e
ls

R
3
 P

r
o

ce
ss

in
g
 e

le
m

e
n

ts

R
4
 V

ie
w

s
(h

ig
h

-l
e
v
e
l)

R
5
 A

d
d

it
io

n
a
l

e
le

m
e
n

ts

R
6
 H

ig
h

-l
e
v

el
 m

o
d

el
s

R
7
 V

ie
w

s
(l

o
w

-l
e
v

el
)

R
8
 C

o
m

p
o

n
e
n

ts

R
9
 C

o
n

n
e
ct

o
r
s

R
1
0
 L

o
w

-l
e
v
e
l

m
o

d
e
ls

A
tt

r
 1

 S
im

p
li

c
it

y

A
tt

r
 2

.1
 C

o
m

p
re

h
e
n

si
v

e

A
tt

r
 2

.2
 U

sa
b

il
it

y

A
tt

r
 2

.3
 D

e
v
 s

u
p

p
o

r
t

A
tt

r
 2

.4
 I

n
te

g
r
a

b
il

it
y

MDA+UML -+ -+ -+ - - + - NA -+ NA -+ - - + -+ +

Arc42 -+ -+ -+ - - + -+ NA NA NA -+ - - + -+ -+

TAM -+ -+ -+ -+ + + NA -+ NA -+ - - + -+ - -

ArchiMate -+ -+ -+ - - + - NA -+ NA -+ - - - -+ +

C4 model -+ -+ -+ - - + -+ NA -+ NA - -+ - -+ -+ - -

UWE -+ -+ NA NA NA NA + -+ NA -+ -+ - + -+ - -

IFML -+ -+ NA NA NA NA -+ -+ NA - - - + -+ - -

SysML -+ -+ NA NA NA NA NA - NA - - - + -+ ++

IAML -+ -+ NA NA NA NA -+ + NA + -+ - + -+ - -

RiWAsDM ++ ++ ++ ++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Chapter 9. Evaluation

203

Under each requirement, first, the effect of the UML or RiWAsML is discussed within the

requirement’s context and then used as a benchmark for other solutions. Since the available solutions’

models and model-elements are already reviewed in detail in Chapters 3, 5, and 6, they are only

discussed briefly in this section.

R1 Element Names

The UML-based software modelling languages generally use a single string value to label the model-

elements, which indicates the element’s class, type, or name. Usually, graphical symbols are given

to identify the element’s class; therefore, the element’s label particularly states the element’s type or

name. UML’s stereotype labels provide an additional naming level to identify the element type. The

main issue with the general element naming convention is that it does not assist in the language’s

and/or its designs’ learnability and readability/understandability. Considering this limitation, this

evaluation ranks the general UML-based naming convention as satisfying the R1 with a moderate

effect.

The RiWAsML’s element naming label aids in learning the language elements and reading and

understanding the diagrams; hence, the R1 is satisfied with a very high effect compared to the other

solutions’ naming labels.

R2 Communication Channels

The available solutions do not explicitly realise the RiWA’s communication channel types or request-

response model. However, they can still denote the communication between the elements using

unidirectional/bi-directional paths; hence, we can think the R2 is satisfied with a high effect. Still,

the available solutions primarily do not realise the DC, which pulls down the impact of the known

solution on the R2 and can be marked as a moderate effect within the context.

The RiWAsML consistently identifies the expected types of communication paths based on the

request-response model across all the diagrams, satisfying the R2 with a very high effect compared

to the other solutions.

R3 Processing Elements (High-level)

The available high-level design solutions provide some of the RiWAs’ high-level elements, and some

of the available solutions’ elements are likely to be exploited for the RiWAs’ high-level elements.

Anyhow, none of them offer elements for high-level connectors. Considering the elements provided

and not provided, they are generally marked as satisfying the R3 with a moderate effect.

The RiWAsML delivers all the expected high-level processing elements: Tier, Platform,

Application, Component (Model and Controller), and Connector, satisfying the R3 with a very high

effect compared to the other solutions.

Chapter 9. Evaluation

204

R4 Views (High-level)

Only TAM provides a high-level view element on the component/block diagram [82]; nevertheless,

this element is not included in the specification and is only shown on sample diagrams; thus, the

TAM’s effect on the R4 is considered moderate instead of high. Since other high-level design

solutions do not provide architectural elements to denote views, they are marked as having no effect

on R4.

The RiWAsML provides a high-level Views element, which supports multiple view types in different

platforms, and the effect on the R4 is very high considering the other solutions.

R5 Additional Elements

RiWAsML and other available solutions provide some additional supportive elements to be included

in the architectural design. This thesis generally considered that all the solutions satisfy the R5 with

a high effect.

R6 High-level Design Models

UML’s package diagram can be exploited for the tiers, and UML provides the deployment diagram

to design the deployment of the system elements. The UML component diagram can realise the high-

level components. However, these diagrams are disconnected and do not provide an overall

architectural realisation. Therefore, UML’s effect on R6 is considered less effective.

Arc
42 and the C4 model provide a practical hierarchical high-level designing approach to realise the

architectural formalism of the systems sufficiently. Nevertheless, they are not specified for the

RiWAs, do not use formal notations, and lack formal guidelines; hence, they are measured as having

a moderate effect on R6 compared to the UML.

TAM’s component/block diagram is an effective architectural diagram with formal syntax,

potentially satisfying R6 with a high effect. Anyhow, the component/block diagram is not specialized

for RiWAs and cannot realise DC and related aspects; thus, the effect on R6 cannot be considered

very high.

RiWAsML’s L1 Applications diagram, L2 View-Process diagram, and L1+2 Architectural diagram

strongly realise the RiWAs by aligning with the RiWAArch style, satisfying the R6 with a very high

effect.

R7 Views (low-level)

UWE’s presentation model provides a limited set of GUI elements to design views, and the

navigation model captures link-based and process-based navigation between views. These features

cause the UWE to have a substantial effect on the R7.

Chapter 9. Evaluation

205

IFML provides some GUI elements that are just enough to capture the interaction flows of the views.

IFML’s effect on R7 can be considered moderate compared to the UWE.

Even though IAML discusses some view-related aspects, it lacks examples and discussions,

lowering its effect on R7 compared to UWE and marked as a moderate effect.

RiWAsML provides a set of abstract GUI element classes to design views’ functional aspects using

the View model, and the View-Navigation model is given to capture the related functions to be

implemented on the common views and different navigation paths to them. These features help the

RiWAsML to satisfy R7 with a very high effect compared to the other solutions.

R8 Components

UML, TAM, UWE, C4 model, and UWE assist in designing models using class diagrams; however,

the controller is overlooked. Hence, the effect on R8 is considered moderate.

Arc42 does not discuss domain modelling; therefore, it is marked as not applicable for R8.

IFML does not use the class diagram, yet it captures the event handling, which is a part of the

controller, and is marked as having a moderate effect on R8.

IAML discusses domain modelling as well as the client-side events and related aspects; hence, its

effect on the R8 can be considered high. The lack of model-elements and examples reduces the

IAML’s effect on R8 to a moderate effect.

RiWAsML explicitly provides the required elements to capture RiWA’s model and controller

elements, having a very high effect on R8 compared to the other solutions.

R9 Connectors

The connector element is a unique feature of the RiWAsML, and none of the other available solutions

look into connector design aspects for RiWAs. Because of this, the RiWAsML can be considered to

satisfy the R9 with a very high effect compared to the other solutions.

R10 Low-level Design Models

Most of the available solutions, including UML, Arc
42, TAM, ArchiMate, and UWE, provide low-

level design models. However, they are general and do not cater to the specificity of the RiWAs;

they can be used to design some aspects of the RiWA; for example, the RiWAs’ model can be

designed using the UML’s class diagram. Hence, the effect on the R10 is considered to be moderate.

Even though the C4 model is for the RiWAs, it mainly focuses on high-level modelling, and the

effect on the R10 is less compared to the other solutions stated earlier.

IFML’s scope is limited to designing the interaction flows, and the effect on R10 is less.

Chapter 9. Evaluation

206

Compared to the other solutions mentioned before, SysML provides fewer low-level models, which

can be used for RiWAs, causing less effect on R10.

IAML’s context is RIAs/RiWAs, and its models are provided for low-level designing; compared to

other solutions, IAML has a higher effect on R10. However, it lacks models for DC-related aspects,

which limits the effect on R10 to stay at a high level instead of a very high level.

RiWAsML provides low-level design models for all view, controller, model, and DC-bus elements,

having a very high satisfactory level on R10.

Attr 1 Simplicity

UML, Arc
42, TAM, Archimate, and SysML are general solutions, and they do not provide RiWAs-

specific tools; therefore, they have less effect on Attr1.

IFML’s scope is limited to the interaction flows and has less effect on Attr1.

The C4 model appropriately identifies some high-level elements of the RiWAs, so the simplicity is

higher than the other solutions. Nevertheless, it lacks support for low-level design aspects, which

limits the effect on Attr 1 and can be considered moderate.

UWE and IAML capture some low-level elements of the RiWAs and can expect a high effect on

Attr1. Still, they do not identify high-level elements; hence, they are considered to have only a

moderate impact on Attr 1.

RiWAsML identifies all the required high-level elements of the RiWAs based on the RiWAArch

style and further separates the high-level elements’ internal elements in low-level designing in the

direction of mapping them to development. The simplicity of the RiWAsML is very high in the

context of this research compared to the other solutions.

Attr 2.1 Adoptability – Comprehensiveness

Most available solutions are general and do not support the RiWAs context. Further, the available

solutions only provide either high-level or low-level modelling tools. Therefore, none of them can

be seen as comprehensive solutions in the context of RiWAsML and have less effect on Attr 2.1.

The RiWAsML addresses both high-level and low-level design aspects of the RiWAs and provides

models and model-elements to satisfy R1 – R10; hence, the RiWAsML can be considered a highly

comprehensive design solution compared to the available solutions.

Attr 2.2 Adoptability – Usability (Learnability, Readability/Understandability)

ArchiMate is not based on UML and engages a higher learning curve; thus, the usability is less

compared to the UML-based languages within the context of this research.

Chapter 9. Evaluation

207

The C4 model is not difficult to use; however, it uses the informal box-and-line approach; thus, the

usability is considered moderate in the context of the usability of UML-based methods.

The RiWAsML is UML-based and can be expected to be highly usable for software engineers in

general, as the UML is the standard GPML. Moreover, the RiWAsML’s label helps include more

details in the designs to improve readability/understandability. The sufficient information provided

by the new label format also helps RiWAs engineers learn the language with less effort. These

features make the RiWAsML have a very high effect on Attr 2.2.

Other solutions are based on the UML and considered to have a good effect on Attr 2.2, which is still

lower than the RiWAsML.

Attr 2.3 Adoptability – Development Support

Available solutions primarily aid in designing systems using their models and model-elements;

however, they use some design diagrams, for example, class diagrams, which can map into the

development, so we can think they support development. Still, they do not intensely discuss how

these designs should be developed and/or provide rules and guidelines to help the development.

Further, since most of the available solutions are generic and do not support designing view,

controller, and connector elements, they do not support the development of these elements. From the

RiWAs-related solutions, the C4 model does not address views and connectors, IFML only focuses

on the interaction flows, and IAML does not realise connectors and DC. Considering all these points,

the development support provided by the available solutions is generally ranked moderate.

The RiWAsML provides models to design the views, controllers, models, and DC-bus, which are

similar to the class diagram, and further detailed down to the level of individual detailed classes (refer

to Section 9.1.14). Additionally, the RiWAsML/RiWAsDM provides rules and guidelines for

development (refer to Section 7.2.3.3). These features make the RiWAsML/RiWAsDM very highly

development-supportive compared to the other solutions.

Attr 2.4 Adoptability – Integrability

TAM, C4 model, UWE, IFML, and IAML do not discuss how to integrate their designs into

engineering and are marked as not affecting Attr 2.4.

MDA provides a guide [75] to integrate UML-based designing into MDSE, positively affecting Attr

2.4.

Arc
42’s document template helps document some aspects like quality goals, architectural constraints,

system designs, risks and technical details, which can assist in integrating the design into engineering.

Taking them into account, Arc42’s effect on Attr 2.4 is considered moderate compared to MDA.

Chapter 9. Evaluation

208

ArchiMate, as an independent solution and a framework, discusses many integration aspects,

providing resources like guidelines, articles, and examples [186] [187]; therefore, it can be seen as a

highly integrable solution.

SysML heavily discusses its integration into Agile MBSE [175], and it can be considered a highly

integrable solution.

The RiWAsDM discusses integrating RiWAsML-based designing into RiWAs engineering (refer to

Section 7.3) and can be seen as a highly integrable methodology.

9.3. Expert Evaluation

This section discusses the results of the expert evaluation, which was conducted using the method

stated in Section 1.5.5.3. The experts’ original feedback, including the experts’ bios, is provided in

Appendix D, and the summary is given in Table 9.4. In some criteria, the average of the related

feedback sections is considered. For example, for R3 processing elements, the average of the Tier,

Platform, Application, Component, and Connector elements’ ranks is taken. The 2nd academic

expert’s feedback was not finalized by the submission time of the thesis; hence, not included in this

section.

Table 9.4 The analysis of the expert evaluation

Criteria/

Requirement

Solutions

R
1

 E
le

m
e
n

t
n

a
m

e
s

R
2

 C
o

m
m

 c
h

a
n

n
e
ls

R
3

 P
r
o

ce
ss

in
g
 e

le
m

e
n

ts

R
4

 V
ie

w
s

(h
ig

h
-l

e
v
e
l)

R
5

 A
d

d
it

io
n

a
l

e
le

m
e
n

ts

R
6

 H
ig

h
-l

e
v

el
 m

o
d

el
s

R
7

 V
ie

w
s

(l
o

w
-l

e
v

el
)

R
8

 C
o

m
p

o
n

e
n

ts

R
9

 C
o

n
n

e
ct

o
r
s

R
1

0
 L

o
w

-l
e
v
e
l

m
o

d
e
ls

A
tt

r
 1

 S
im

p
li

c
it

y

A
tt

r
 2

.1
 C

o
m

p
re

h
e
n

si
v

e

A
tt

r
 2

.2
 U

sa
b

il
it

y

A
tt

r
 2

.3
 D

e
v
 s

u
p

p
o

r
t

A
tt

r
 2

.4
 I

n
te

g
r
a

b
il

it
y

G
iv

e
n

 o
v
e
ra

ll
 r

a
ti

n
g

Expert 1 5 5 4.4 5 5 5 4.6 5 4.5 4.6 5 4 4.5 5 4 4
Expert 2 4.9 5 5 5 5 5 5 5 5 5 5 5 4.9 5 5 5
Expert 3 5 5 5 5 5 5 4.7 5 5 5 5 5 5 4 4 4.5
Cumulative

rating
5 5 4.8 5 5 5 4.8 5 4.8 4.8 5 4.6 4.8 4.6 4.3 4.5

Overall, the experts have appreciated how the RiWAsDM satisfies most of the requirements. Some

valuable points made by the experts are discussed below.

R3 Processing Elements

 Expert 1 [Application element]: “it could be valuable to present a design in which a few

executable applications run and interact within one platform. For instance, it would be

interesting to see a diagram expanded for a solution including several microservices, which

could potentially increase the overall learnability and comprehensiveness.”

Chapter 9. Evaluation

209

o Discussion: It is indeed necessary to provide more use cases to demonstrate different

criteria.

 Expert 1 [Connector element]: “With modern solutions such as message queuing services,

it would be interesting to see how some alternative communication means could be

represented on the diagram, too.”

o Discussion: Addressing advanced features and technologies is acknowledged as

future work.

R7 Views and Related Elements (low-level)

 Expert 1 [SharedViewpartOBJ element]: “The main characteristics of the

SharedViewpartOBJ elements were not always that easy to distinguish from the

SharedViewpart elements for me, as they can share the same types and names, impacting

the overall readability.”

 Expert 2 [SharedViewpartOBJ element]: “Regarding ViewPartOBJ and

SharedViewPartOBJ, to me, the “OBJ” wording seemed a bit too abstract and I thought

another more descriptive word could be used instead, like “Region” or “section”; I may

be wrong as I may not have as clear a picture behind the use of OBJ. I also think the use

of capitalization and abbreviation of “Object” to “OBJ”, doesn’t quite fit in with the rest

of the naming style used for the other elements.”

 Expert 3 [SharedViewpartOBJ element]: “The purpose of this is not very clear.”

o Discussion: The notations of the objects should be revised, and a better technique should

be used to improve their usability.

View-Navigation Model

 Expert 1: “usefulness could potentially be increased by providing more guidelines

regarding the most effective selection of the views and their corresponding elements.”

o Discussion: This is a valid aspect that needs to be further studied and incorporated.

DC-Bus Model and EndpointsCollents model

 Expert 1: “Comprehensiveness and development support could potentially be increased by

introducing a higher level of detail for each endpoint, with some additional information

regarding the request methods (as the method name might not always state it) or media

types.”

o Discussion: This is an important point and should be incorporated.

Development Support and Integrability

 Expert 3: It is difficult to evaluate this attribute only by looking at the given examples.

o Discussion: More use cases should be provided to demonstrate the RiWAsML.

Chapter 9. Evaluation

210

9.4. Triangulating the Results

This section triangulates the results of the self-evaluation, contextualised comparison, and expert

evaluations in the direction of drawing conclusions on the evaluation of the RiWAsDM. The analysis

of the evaluation is given in Table 9.5.

Table 9.5 The analysis of the RiWAsDM evaluation

Criteria/

Requirement

Solutions

R
1
 E

le
m

e
n

t
n

a
m

e
s

R
2
 C

o
m

m
 c

h
a
n

n
e
ls

R
3
 P

r
o
ce

ss
in

g
 e

le
m

e
n

ts

R
4
 V

ie
w

s
(h

ig
h

-l
e
v
e
l)

R
5
 A

d
d

it
io

n
a
l

e
le

m
e
n

ts

R
6
 H

ig
h

-l
e
v
el

 m
o
d

el
s

R
7
 V

ie
w

s
(l

o
w

-l
e
v
el

)

R
8
 C

o
m

p
o
n

e
n

ts

R
9
 C

o
n

n
e
ct

o
r
s

R
1
0
 L

o
w

-l
e
v
e
l

m
o
d

e
ls

A
tt

r
 1

 S
im

p
li

c
it

y

A
tt

r
 2

.1
 C

o
m

p
re

h
e
n

si
v
e

A
tt

r
 2

.2
 U

sa
b

il
it

y

A
tt

r
 2

.3
 D

e
v
 s

u
p

p
o
r
t

A
tt

r
 2

.4
 I

n
te

g
r
a
b

il
it

y

RiWAsDM ++ ++ ++ ++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

MDA+UML -+ -+ -+ - - + - NA -+ NA -+ - - + -+ +

Arc42 -+ -+ -+ - - + -+ NA NA NA -+ - - + -+ -+

TAM -+ -+ -+ -+ + + NA -+ NA -+ - - + -+ - -

ArchiMate -+ -+ -+ - - + - NA -+ NA -+ - - - -+ +

C4 model -+ -+ -+ - - + -+ NA -+ NA - -+ - -+ -+ - -

UWE -+ -+ NA NA NA NA + -+ NA -+ -+ - + -+ - -

IFML -+ -+ NA NA NA NA -+ -+ NA - - - + -+ - -

SysML -+ -+ NA NA NA NA NA - NA - - - + -+ ++

IAML -+ -+ NA NA NA NA -+ + NA + -+ - + -+ - -

Expert
evaluation

5 5 4.8 5 5 5 4.8 5 4.8 4.8 5 4.6 4.8 4.6 4.3

The self-evaluation shows that the RiWAsDM meets the requirements with a very high effect, based

on the use cases as proof of concept and reasoning. The contextualized comparison verifies that the

RiWAsDM satisfies the requirements with a higher impact than the available solutions. The expert

evaluation states that the RiWAsDM delivers the features to satisfy the requirements with high

effectiveness. Altogether, the RiWAsDM can be considered a simple and adoptable design

methodology for the RiWAs.

9.5. Chapter Summary

This chapter evaluates the RiWAsDM, and the following results are observed.

 The self-evaluation finds that the RiWAsDM satisfies all the requirements set in Chapter 4

with a very high effect except for the R5 Additional elements. More elements to extend the

RiWAs from the core 3-tier architecture should be studied in depth and considered a future

work.

Chapter 9. Evaluation

211

 The contextualised comparison reflects that the RiWAsDM satisfies all the requirements set

in Chapter 4 with a very high effect, which is higher than the available solutions in all the criteria

except two cases. (1) R5 Additional elements requirement is considered high effect similar to

other high-level design solutions and requires more profound study. (2) in the case of Attr 2.4

Integrability, SysML also exhibits a very high effect. This thesis recommends conducting a

study to examine SysML’s integrability and identify potential aspects that could strengthen the

RiWAsDM’s integrability.

 The expert evaluation shows that the RiWAsDM meets the requirements with high

effectiveness.

By triangulating the results of the self-evaluation, contextualised comparison, and expert evaluation,

it can be concluded that the RiWAsDM is a simple and adoptable design methodology for the

RiWAs.

212

Chapter 10. Conclusion

This chapter first discusses the achievements of the research objectives, proof of the

hypotheses, and the fulfilment of the research aim. Then, the research contributions

are stated, the challenges faced are reflected, and identified limitations are

discussed. Finally, possible future work is pointed out by concluding the thesis.

10.1. Achievements of Research Aim and Objectives

This section concludes the following aspects: the achievements of the objectives, proof of the

research hypotheses, and the fulfilment of the research aim.

10.1.1. Achievements of the Objectives

The research objectives set in Section 1.4 are revisited here, judging their achievements by the

outputs produced by this thesis.

Obj 1. Identify an abstract comprehensive architectural style for the RiWAs: The RiWAArch

style is identified in Section 3.1 as a potential style that can realise the RiWAs’ general

characteristics and essential features given in Section 2.3.5. The RiWAsML is introduced based

on the formalism of the RiWAArch style.

Obj 2. Introduce the RiWAsML: Chapter 4 sets the requirements for the RiWAsML based on the

RiWAArch style in the direction of addressing the RiWAs’ general characteristics and essential

features, and Chapters 5 and 6 introduce the RiWAsML to design high-level and low-level aspects

of the RiWAs’ respectively.

Obj 3. Introduce the RiWsDM: Chapter 7 implements the RiWAsDM, based on RiWAsML,

introducing a process to adopt RiWAsML-based designing into RiWAs engineering with the agile

model-driven development (AMDD) approach.

Obj 4. Demonstrate the utilisation of the RiWAsDM through use cases: Chapter 8 demonstrates

the adoption of the RiWAsML/RiWAsDM using real-world use cases.

Obj 5. Evaluate the introduced RiWAsDM: Chapter 9 evaluates the RiWAsDM and shows that

the requirements are satisfied with high effectiveness, and the simplicity and adoptability are more

effective than the available solutions. The expert evaluation verifies the RiWAsDM’s simplicity

and adoptability are in high rank. Overall, the ultimate triangulated evaluation results ensure that

the RiWAsDM is a simple and adoptable solution for the RiWAs.

Considering these aspects, it can be concluded that all the research objectives are fulfilled within the

context of this thesis.

Chapter 10. Conclution

213

10.1.2. Proving the Hypotheses

This section proves the research hypotheses set in Section 1.3 using reasoning based on the fulfilment

of the research objectives discussed in the previous section.

 Hypothesis 1 (H011): Achievement of research objective 1 ensures that an abstract

comprehensive architectural style named the RiWAArch style, which realises the RiWAs’

general characteristics and essential features, is identified. Chapter 4 identifies a complete set

of models and model-elements to design RiWAs, covering all the general characteristics and

essential features realised by the RiWAArch style and sets requirements for these models and

model-elements. The identification of a set of models and model-elements required to

completely design RiWAs based on the RiWAArch style, addressing all the RiWAs’ general

characteristics and essential features, proves the H01.

 Hypothesis 2 (H022): The fulfilment of research objective 2 confirms that a UML-based DSML

named RiWAsML for RiWAs is implemented to satisfy the requirements set for the DSML’s

models and model-elements while proving H01. Achievement of objective 5 guarantees that the

introduced RiWAsML is evaluated and its simplicity and adoptability are recognized. These

aspects prove the H02.

 Hypothesis 3 (H033): Research objective 3 ensures that the RiWAsDM is introduced based on

the RiWAsML, which includes design and engineering approaches and guidelines for adopting

RiWAs designing into AMDD. Research objective 5 is fulfilled by ensuring the RiWAsDM is

simple and adoptable with a very high effect. These points confirm that the H03 is proven.

10.1.3. Fulfilment of the Research Aim

Proof of research hypotheses confirms that the proposed RiWAsDM is implemented. Research

objectives 4 and 5 ensure the RiWAsDM’s simplicity and adoptability by demonstrating it with real-

world use cases and rigorously evaluating it with multiple methods to show its validity. These

features prove that the research aim4 is effectively achieved.

1 H01: A comprehensive set of RiWAs design models and model-elements can be identified to design all the
general characteristics and essential features of the RiWAs based on a solid abstract architectural style,
maintaining higher simplicity and adoptability.

2 H02: A simple and adoptable UML-based DSML for RiWAs can be implemented using the comprehensive
set of models and model-elements identified while proving the H01.

3 H03: A simple and adoptable RiWA design methodology can be produced – utilising the UML-based DSML
introduced while satisfying the H02 – which provides RiWAs design and engineering approaches and
guidelines for adopting RiWAs designing into agile-SE.

4 The aim of the research is to introduce a simple and adoptable novel design methodology for the RiWAs,
named RiWAs Design Methodology (RiWAsDM), whose adoptability is demonstrated with use cases and
evaluated with multiple methods to ensure validity.

Chapter 10. Conclution

214

10.2. Contributions

This thesis contributes the following artefacts to the domains of RiWAs engineering, UML-based

designing, and DSML.

1. A design methodology implementation process: Even though some DSML implementing

processes are available, they do not discuss extending the DSML into a design methodology.

This thesis offers a new process with 3 steps to introduce a domain-specific design methodology

with a new DSML (refer to Section 1.5.3).

2. A new simple and adoptable Rich Web-based Applications Modelling Language: This thesis

introduces a new DSML for RiWAs named RiWAsML, which includes the following unique

features.

2.1. A Label element with a new naming format convention: The RiWAsML’s Label element

with a new format (refer to Sections 4.2.1 and 5.1.1) can be seen as the strength of the

RiWAsML, which improves the usability by reducing the use of new graphical symbols as

notations and increasing the text-based details on the diagrams.

2.2. The communication channels notation: RiWAsML introduces a set of request-response

model-based communication channel notations, which can be seen as an effective concept

for improving the designs’ clarity and usability. These communication channels provide

syntax to denote the communication between the elements across the high-level to low-level

diagrams in a consistent manner.

2.3. A comprehensive set of models and model-elements for RiWAs: The models and model-

elements of the RiWAsML cater to the specificity of the RiWAs by realising the general

characteristics and essential features of the RiWAs based on the RiWAArch style, and these

models offer the following unique features (refer to Section 4.1.2.1 for the criteria of

Comprehensiveness).

2.3.1. RiWAs Architecture: A comprehensive set of architectural designing tools, with 3

models and their model-elements, which can realise the following based on the

RiWAArch style: RiWAs’ Application elements, their deployments to the platforms,

their logical arrangements into the tiers, and also the internal high-level elements – the

views, controllers, models, and connectors – of the Application elements and their

configuration.

2.3.2. View-Navigation model: This model captures – not only the navigation, like the

available solutions – but also the related functions to be implemented on common

views and multiple paths to navigate to them by different actors. The information

captured by a View-Navigation diagram helps make decisions on merging/splitting the

views based on their functions in the direction of improving the user experience and

better management of the development.

Chapter 10. Conclution

215

2.3.3. View model: This model provides abstract GUI element categories to design the

function-related GUI elements towards support developing them with the target

technologies.

2.3.4. View-Controller model: Capture the views’ events handling and related processing to

support the controller development based on OODD practices towards improving the

user experience.

2.3.5. DC-bus model and EndpointsCollection model: Design the server-side APIs and

their communication with the other elements based on OODD practices.

2.4. The RiWAsML is simpler, more usable (learnable and readable/understandable), and

more development-supportive: The models and model-elements are based on the

RiWAArch style [12]; hence, firmly maintain the principle of separation of concerns,

assisting the DSML to be simpler compared to the available solutions. The RiWAsML’s

new Label element assists in learning the DSML without remembering/referring to various

graphical symbols. The Label element also promotes the DSML’s

readability/understandability, ensuring that anyone with some RiWAs engineering

knowledge can read and understand the RiWAsML designs even if the DSML is unknown.

Further, based on the RiWAArch style, the RiWAsML’s model elements are much related

to the actual development elements that provide development support, which is further

enhanced by the RiWAsML’s rules and guidelines.

3. A new UML extension for the RiWAsML: A set of new UML profiles for the new models and

model-elements are introduced to guarantee the RiWAsML is a UML extension.

4. An integrable new design methodology for the RiWAs named RiWAsDM: This

methodology provides rules and guidelines to design RiWAs using the RiWAsML and map the

designs to development, and most importantly, offers a process to integrate RiWAsML-based

designing into RiWAs engineering enabling AMDD approach.

5. Demonstration of the use of the RiWAsML/RiWAsDM through real-world use case:

Available solutions offer hypothetical use cases to demonstrate the use of their models; the

RiWAsML models’ utilisation is shown using some real-world use cases, which can be seen as

a distinctive feature of this thesis. Further, the utilisation of the RiWAsML’s models and model-

elements is demonstrated using a dedicated single real-world use case, showing the connectivity

of all the design diagrams based on the top-down design approach and AMDD approach (refer

to Sections 8.2 and 8.3).

Chapter 10. Conclution

216

10.3. Reflections on Challenges

The challenges faced by this research are stated in this section.

 Research methodology: This is a conceptual research aiming to introduce a design

methodology that satisfies some quality attributes such as simplicity, learnability, readability,

and understandability. Constructing a methodology for conceptual and qualitative software

engineering research was difficult due to the lack of related literature. At the core of this thesis’s

research methodology, first, the design language implementation method was created based on

the waterfall method and literature, and then it was upgraded to the design methodology

implementation level inspired by the RiWAArch style implementation method (refer to Section

1.5.3). The other research methods were incorporated to assist the core methods and produce a

complete research methodology for this thesis.

 Implementing the RiWAsML: Even though it was decided to be based on the RiWAArch

style, it wasn’t easy to figure out how to initiate implementing the RiWAsML. It took longer

than expected to finalize the high-level elements and their notations. When selecting notations,

after many iterations, the decision to exploit the element label to identify different element

classes and types was taken, and then it took more time to experiment and come up with the

label format. When the RiWAsML grows from the high-level elements to the low-level aspects,

some decisions taken at later levels affected the already completed work; in order to maintain

the consistency between the already constructed and new work, there were numerous incidents

to go back and update the completed work; consequently, redraw or amend many diagrams and

text. For example, while working on the low-level View and ControllerClass models, it was

noted that at the high level, the relevant elements should be plural (Views and Controllers

elements), even though they are in singular form on the RiWAArch style. For another example,

the communication channel notations were first experimented with many variations and

finalized using labels. After that, when working on the Smartest system (refer to Sections 8.2

and 8.3), these communication channels with labels were tried, and it was noted that they make

the diagrams untidy. Hence, better techniques were required, and then the communication

channels were re-analysed, and the current arrow style-based notations were formalized. The

new communication channel syntax led to revising old discussions on the communication

channels and redrawing all the previously drawn diagrams with the new notations.

 Examples and Use Cases: It was tough selecting the examples and use cases to demonstrate

the utilisation of the RiWAsML. The example scenarios were required to show the utilisation

of the model-elements and models presented during the introduction of the RiWAsML in

Chapters 5 and 6. These scenarios were hypothetical and had to be designed to match the context

while exhibiting all the required features of the models and model-elements. Finding matching

real-world use cases is phenomenal, and it could be an impossible task; I personally think I was

Chapter 10. Conclution

217

extremely fortunate to work on the use cases discussed in Chapter 8, especially the Smartest

project, during the final year of the research, thanks to my director of studies, Dr Alexander

Bolotove, who offered me a place to work in the project as an architect and a developer.

 Implementing the RiWAsDM: There is no literature discussing how to implement a design

methodology or what should be exactly included in a design methodology. The available

methodologies like MDA, ArchiMate, or SysML do not explicitly discuss the features of a

design methodology, and they include some different features. The modules of the RiWAsDM

are selected intuitively, considering the research context and the known contemporary status of

the industry through personal experience. Validating these features is challenging, and this

research is merely based on the feedback of the expert evaluation for supporting the RiWAsDM.

 Evaluating the RiWAsML and RiWAsDM: Evaluating conceptual and qualitative work is

extremely challenging, especially with minimal literature support. One could argue that

assessing a software engineering artefact without empirical evidence is subjective and cannot

be accepted. I personally think that it’s only a matter of time to observe the acceptance of a

concept by the industry, and collect evidence over time to evaluate the actual validity of the

concept.

10.4. Limitations

The work presented by this thesis is mainly limited by the scope given in Section 1.5.2. Some other

identified limitations are as follows.

 Single-paged RiWAs: RiWAs can be developed as single-paged applications (SPA), where all

the functionalities are developed in a single web page. The SPAs may have specific general

characteristics; this thesis does not look into the SPAs specifically.

 Integration with UML notations: Some UML diagrams, such as activity diagrams and state

chart diagrams, can be helpful in RiWAs designing. Utilising them with the RiWAsML is not

straightforward because of the RiWAsML’s new label and model-elements. This thesis does not

discuss the use of the available UML models and model-elements together with the RiWAsML.

 Language specification: This thesis does not provide an OMG-compatible, complete

specification for the RiWAsML.

 Tools and exchange format: This thesis does not attempt to develop a case tool for the

RiWAsML or give an XMI-based specification to support integrating the RiWAsML into the

available CASE tools.

Chapter 10. Conclution

218

10.5. Future Work

Possible future work as the follow-up of this thesis is given below.

 Complete RiWAsML specification: The next step of this research should be to compile a

comprehensive specification for the RiWAsML, identify the steps required and get approval

from OMG to make it a recognized standard. The OMG assists in drafting ISO standard

specifications and submitting them to ISO for approval. The OMG also publishes the finalized

specifications.

 Implement a CASE tool and produce XMI for CASE tool integration: The practical use of

a DSML would not be feasible without a CASE tool, and it is essential to develop a CASE tool

for the engineers to start utilising the new DSML. Also, providing XMI specifications is vital

for engineers using the RiWAsML/RiWAsDM in their regular CASE tools.

 Study integrating UML meta-model diagrams and elements with RiWAsML: It would be

beneficial to utilise the UML meta-model’s diagrams and elements when required rather than

specifying a new version of them for the RiWAs; for example, the UML activity diagram can

be used to model the processes in RiWAs. This aspect should be further studied to identify the

possibilities, concerns, and solutions.

 Expand the scope of the RiWAsML by addressing the limitations of the work: Further

research is required to expand the scope of the RiWAsML to assist larger and more complex

RiWAs with cutting-edge functions engineered with advanced technologies (refer to the scope

in Section 1.5.2). Primarily, cloud computing, DS/AI/ML, IoT, and micro-services-related

functions are suggested for consideration.

 Use cases: The RiWAsML/RiWAsDM require more use cases to demonstrate its adoption in

various types of RiWAs in different sizes in the direction of supporting

RiWAsML/RiWAsDM’s learning and utilisation. In the case of expanding the scope of the

RiWAsML, adopting the new versions of the RiWAsML should be comprehensively

demonstrated through use cases.

In order to put the RiWAsDM into practice, a complete language specification and CASE tool

support are essential. Within the context of this thesis, the RiWAsDM is a simple and adoptable

solution for RiWAs engineering. Even though the scope of the RiWAs is limited to the basic RiWAs

in 3-tier architecture, the use cases evident that the RiWAsML/RiWAsDM is potential for supporting

RiWAs with web services (refer to Section 8.3) and Application elements running in cloud services

(refer to Section 8.1.3), and hopefully the RiWAsML/RiWAsDM can be utilized for n-tier RiWAs

with the features beyond the specified scope limitations. Once the RiWAs engineers start utilising

the RiWAsDM in real-world projects, the factual requirements for integrating the RiWAsML’s

models with standard UML models and expansions over the scope limitations could be precisely

Chapter 10. Conclution

219

identified. In parallel, studies can be conducted to understand the requirements for support designing

the RiWAs with advanced functionalities with AI/ML/big-data-related features.

10.6. Chapter Summary

This chapter concludes the thesis by discussing the following and delivering some concluding

knowledge.

 The final status of the research artefacts below is verified by reasoning.

 Research objectives: It is shown that all the research objectives are strongly fulfilled.

 Research hypotheses: All the research hypotheses are effectively proven.

 Research aim: It is discussed that the aim of the research was successfully achieved.

 The following research contributions are explained.

 A design methodology implementation process.

 A new Rich Web-based Applications Modelling Language named RiWAsML.

 A new UML extension for the RiWAsML.

 A new design methodology for the RiWAs named RiWAsDM.

 Demonstration of the use of the RiWAsML/RiWAsDM through real-world use cases.

 The challenges faced while working on the following research artefacts are mentioned.

 Implementing the research methodology.

 Implementing the RiWAsML.

 Selecting examples and use cases.

 Implementing the RiWAsDM.

 Evaluating the RiWAsML and RiWAsDM.

 Identified limitations under the following aspects are discussed.

 Single-paged RiWAs.

 Integration with UML notations.

 Language specification.

 CASE tool and exchange format.

 Possible future work to follow the work in this thesis is acknowledged.

 Complete RiWAsML specification.

 Implement a CASE tool and provide XMI.

 Study integrating UML meta-model diagrams and elements with RiWAsML.

 Expand the scope of the RiWAsML by addressing the scope limitations.

 Provide more use cases.

220

References

[1] L. Frankowski, The Cross-Time Engineer, Del Rey/Ballantine, 1986.

[2] G. Engels and S. Sauer, "A Meta-Method for Defining Software Engineering Methods,"

Graph Transformations and Model-Driven Engineering, vol. 5765, p. 411–440, 2010.

[3] E. Freeman, DevOps For Dummies, John Wiley & Sons, Inc., 2019.

[4] P. P. Dingare, CI/CD Pipeline Using Jenkins Unleashed: Solutions While Setting Up CI/CD

Processes, Apress, 2022.

[5] K. Beck, M. Beedle, A. Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning,

J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. Martin, S. Mellor, K. Schwaber, J.

Sutherland and D. Thomas, "Manifesto for Agile Software Development," 2001. [Online].

Available: http://agilemanifesto.org/. [Accessed 20 Feb 2024].

[6] I. The Institute of Electrical and Electronics Engineers, "IEEE Standard Glossary of Software

Engineering Terminology," 2002.

[7] OMG, "ABOUT THE UNIFIED MODELING LANGUAGE SPECIFICATION VERSION

2.5.1," Object Management Group, 2023. [Online]. Available:

https://www.omg.org/spec/UML/2.5.1/About-UML. [Accessed 04 12 2023].

[8] M. Brambilla, J. Cabot and M. Wimmer, Model-Driven Software Engineering in Practice,

Morgan & Claypool Publishers, 2012.

[9] L. Fuentes and A. Vallecillo, "An introduction to UML profiles," UPGRADE The European

Journal for the Informatics Professional, vol. V, no. 2, pp. 6-13, 2004.

[10] N. R. Dissanayake and K. Dias, "Rich Web-based Applications: An Umbrella Term with a

Definition and Taxonomies for Development Techniques and Technologies," International

Journal of Future Computer and Communication, vol. 7, no. 1, pp. 14-20, 2018.

[11] N. R. Dissanayake and G. Dias, "Delta Communication: The Power of the Rich Internet

Applications," International Journal of Future Computer and Communication, vol. 6, no. 2,

pp. 31-36, 2017.

[12] N. R. Dissanayake and K. Dias, "RiWAArch Style: An Architectural style for Rich Web-

based Applications," in Proceedings of the 2020 Future Technologies Conference (FTC),

Canada, 2020.

References

221

[13] N. R. Dissanayake and G. K. A. Dias, "Abstract concepts: A contemporary requirement for

Rich Internet Applications engineering," in 9th International Research Conference of KDU

(KDU-IRC 9), Colombo, Sri Lanka, 2016.

[14] R. Rodríguez-Echeverría, "Ria: more than a nice face," in Proceedings of the Doctoral

Consortium of the International Conference on Web Engineering, 2009.

[15] M. Busch and N. Koch, "Rich Internet Applications - State-of-the-Art," Ludwig-Maximilians-

Universitat, Munchen, 2009.

[16] J. Preciado, M. Linaje, F. Sanchez and S. Comai, "Necessity of methodologies to model Rich

Internet Applications," in Proceedings of the 2005 Seventh IEEE International Symposium on

Web Evolution, 2005.

[17] U. Frank, "Outline of a Method for Designing Domain-Specific Modelling Languages," ICB-

Research Report, vol. 42, pp. 1-62, 2010.

[18] P. A. Laplante, WHAT EVERY ENGINEER SHOULD KNOW ABOUT SOFTWARE

ENGINEERING, CRC Press, 2007.

[19] R. T. Fielding, "Architectural Styles and the Design of Network-based Software

Architectures," University of California, Irvine, 2000.

[20] D. Budgen, SOFTWARE DESIGN, Essex, England: Pearson Education Limited, 2003.

[21] N. R. Dissanayake and G. K. A. Dias, "Essential Features a General AJAX Rich Internet

Application Architecture Should Have in Order to Support Rapid Application Development,"

International Journal of Future Computer and Communication, vol. 3, no. 5, pp. 350-353,

2014.

[22] M. Linaje, J. C. Preciado and F. Sanchez-Figueroa, "Engineering Rich Internet Application

User Interfaces over Legacy Web Models," Internet Computing, IEEE, vol. 11, no. 6, pp. 53-

59, November-December 2007.

[23] UWE, "UWE – UML-based Web Engineering," UWE, 10 Aug 2016. [Online]. Available:

http://uwe.pst.ifi.lmu.de/index.html. [Accessed 20 Feb 2024].

[24] J. C. Preciado, M. Linaje, R. Morales-Chaparro, F. Sanchez-Figueroa, G. Zhang, C. Kroiß

and N. Koch, "Designing Rich Internet Applications Combining UWE and RUX-Method," in

Eighth International Conference on Web Engineering, 2008.

References

222

[25] H. Koning, C. Dormann and H. v. Vliet, "Practical guidelines for the readability of IT-

architecture diagrams," in SIGDOC '02: Proceedings of the 20th annual international

conference on Computer documentation, 2002.

[26] M. Petre, "UML in Practice," in ICSE '13: Proceedings of the 2013 International Conference

on Software Engineering, 2013.

[27] H. Zuse, Software Complexity Measures and Models, New York: de Gruyter & Co., 1992.

[28] Wikipedia, "Complex system," [Online]. Available:

https://en.wikipedia.org/wiki/Complex_system. [Accessed 20 Feb 2024].

[29] J. M. SUSSMAN, The New Transportation Faculty: The Evolution to Engineering Systems,

1999.

[30] J. C. Pereira and R. Russo, "Design Thinking Integrated in Agile Software Development: A

Systematic Literature Review," Procedia Computer Science, vol. 138, pp. 775-782, 2018.

[31] D. G. Gregg, U. R. Kulkarni and A. S. Vinzé, "Understanding the Philosophical

Underpinnings of Software Engineering Research in Information Systems," Information

Systems Frontiers , vol. 3, no. 2, pp. 169-183, 2001.

[32] P. Gu, M. Hashemian, S. Sosale and E. Rivin, "An Integrated Modular Design Methodology

for Life-Cycle Engineering," CIRP Annals, vol. 46, no. 1, pp. 71-74, 1997.

[33] S. Kumar, A. Jantsch, J.-P. Soininen and M. Forsell, "A Network on Chip Architecture and

Design Methodology," in Proceedings of the IEEE Computer Society Annual Symposium on

VLSI (ISVLSIí02), 2002.

[34] S. Ahmed, S. Kim and K. M. Wallace, "A Methodology for Creating Ontologies for

Engineering Design," Transactions of the ASME, vol. 7, no. 2, pp. 132-140, 2007.

[35] S. Meliá, J. Gómez, S. Pérez and O. Díaz, "A Model-Driven Development for GWT-Based

Rich Internet Applications with OOH4RIA," in Eighth International Conference on Web

Engineering, 2008.

[36] F. Rademacher, S. Sachweh and A. Zündorf, "Modeling Method for Systematic Architecture

Reconstruction of Microservice-Based Software Systems," Enterprise, Business-Process and

Information Systems Modeling, p. 311–326, 2020.

References

223

[37] B. G. Assefa and Ö. Özkasap, "RESDN: A Novel Metric and Method for Energy Efficient

Routing in Software Defined Networks," IEEE Transactions on Network and Service

Management, vol. 17, no. 2, pp. 736 - 749, Jun 2020.

[38] O. Aldawud, T. Elrad and A. Bader, "UML profile for aspect-oriented software development,"

in Proceedings of Third International Workshop on Aspect-Oriented Modeling, 2003.

[39] S. Graf, I. Ober and I. Ober, "A real-time profile for UML," International Journal on Software

Tools for Technology Transfer, vol. 8, p. pages113–127, 2006.

[40] A. Gómez, J. Merseguer, E. D. Nitto and D. A. Tamburri, "Towards a UML profile for data

intensive applications," in QUDOS 2016: Proceedings of the 2nd International Workshop on

Quality-Aware DevOps, 2016.

[41] H. Marouane, C. Duvallet, A. Makni, R. Bouaziz and B. Sadeg, "An UML profile for

representing real-time design patterns," Journal of King Saud University - Computer and

Information Sciences, vol. 30, no. 4, pp. 478-497, 2018.

[42] J. M. Wright, "A Modelling Language for Rich Internet Applications," Massey University,

Turitea, New Zealand, 2011.

[43] uml-diagrams.org, "UML Diagrams Examples," uml-diagrams.org, 2024. [Online].

Available: https://www.uml-diagrams.org/index-examples.html. [Accessed 20 Feb 2024].

[44] arc42.org, "144 tips and 33 examples how to use the arc42 template," arc42.org, [Online].

Available: https://docs.arc42.org/examples/. [Accessed 20 Feb 2024].

[45] SAP, Object-Oriented Architecture - SAP PowerDesigner Documentation Collection, 16.7.07

– 2023-05-29 ed., SAP, 2023.

[46] visual-paradigm, "CH 12 – ArchiMate: Learn by Examples," visual-paradigm, [Online].

Available: https://archimate.visual-paradigm.com/category/archimate-concepts/ch-11-

archimate-learn-by-examples/. [Accessed 20 Feb 2024].

[47] SysML.org, "SysML Diagram Tutorial," SysML.org, 2024. [Online]. Available:

https://sysml.org/tutorials/sysml-diagram-tutorial/. [Accessed 20 Feb 2024].

[48] V. Pattyn, A. Molenveld and B. Befani, "Qualitative Comparative Analysis as an Evaluation

Tool: Lessons From an Application in Development Cooperation," American Journal of

Evaluation, vol. 40, no. 1, pp. 55-74, 2017.

References

224

[49] CECAN, "Qualitative Comparative Analysis: a pragmatic method for evaluating

intervention," CECAN, 2016.

[50] A. Mesbah and A. v. Deursen, "An Architectural Style for AJAX," in Software Architecture,

2007. WICSA '07. The Working IEEE/IFIP Conference, Mumbai, 2007.

[51] D. Renmans and V. C. Pleguezuelo, "Methods in realist evaluation: A mapping review,"

Evaluation and Program Planning, vol. 97, 2023.

[52] F. C. Mukumbang, B. Marchal, S. V. Belle and B. v. Wyk, "Using the realist interview

approach to maintain theoretical awareness in realist studies," Qualitative Research, vol. 20,

no. 4, p. 485 –515, 2020.

[53] J. M. Morse, "Data Were Saturated . . .," Qualitative Health Research, vol. 25, no. 5, pp. 587-

588, 2015.

[54] S. Elsie, Baker and R. Edwards, "How many qualitative interviews is enough," National

Centre for Research Methods (NCRM), 2021.

[55] B. Randell, "SOFTWARE ENGINEERING IN 1968," in Proc. of the 4th Int. Conf. on

Software, Munich, 1979.

[56] M. S. Mahoney, "The roots of software engineering," CWI Quarterly, vol. 3, pp. 325-334,

1990.

[57] A. Peck, "Software Development Glossary: 88 Essential Terms," Clutch, 29 Mar 2023.

[Online]. Available: https://clutch.co/resources/software-development-glossary-88-essential-

terms. [Accessed 20 Feb 2024].

[58] E. Mnkandla, "About Software Engineering Frameworks and Methodologies," in IEEE

AFRICON 2009, Nairobi, Kenya, 2009.

[59] R. S. Pressman, Software Engineering A PRACTITIONER ’ S APPROACH, New York,

United States: McGraw-Hill, Inc., 2009.

[60] Scrum.org, "Welcome to the Home of Scrum!™," Scrum.org, 2024. [Online]. Available:

https://www.scrum.org/. [Accessed 20 Feb 2024].

[61] K. Schwaber and J. Sutherland, "The Scrum Guide," Scrum.org, 2020.

[62] Prince2, "PRINCE2 Methodology," Prince2, 2024. [Online]. Available:

https://www.prince2.com/uk/prince2-methodology. [Accessed 20 Feb 2024].

References

225

[63] H. Zhu, Software Design Methodology: From Principles to Architectural Styles, Butterworth-

Heinemann, 2005.

[64] T. Kapteijns, S. Jansen, S. Brinkkemper, H. Houët and R. Barendse, "A Comparative Case

Study of Model Driven Development vs Traditional Development: The Tortoise or the Hare,"

in 4th European Workshop on “From code centric to model centric software engineering:

Practices, Implications and ROI”, 2009.

[65] S. Al-Saqqa, S. Sawalha and H. AbdelNabi, "Agile Software Development: Methodologies

and Trends," International Journal of Interactive Mobile Technologies, vol. 14, no. 11, pp.

246-269, 2020.

[66] "Agile Methodology: Advantages and Disadvantages," University of Minnesota, 11 Feb

2022. [Online]. Available: https://ccaps.umn.edu/story/agile-methodology-advantages-and-

disadvantages. [Accessed 20 Feb 2024].

[67] T. Tran, "The Desirable Benefits of Agile Methodology in Software Development," Orient,

16 Jun 2022. [Online]. Available: https://www.orientsoftware.com/blog/benefits-of-agile-

methodology/. [Accessed 20 Feb 2024].

[68] Segue-Technologies, "8 Benefits of Agile Software Development," Segue Technologies, 25

Aug 2015. [Online]. Available: https://www.seguetech.com/8-benefits-of-agile-software-

development/. [Accessed 20 Feb 2024].

[69] Kissflow, "The 9 Key Benefits of Using the Agile Methodology," Kissflow, 21 Dec 2023.

[Online]. Available: https://kissflow.com/project/agile/benefits-of-agile/. [Accessed 20 Feb

2024].

[70] agilemanifesto.org, "Principles behind the Agile Manifesto," agilemanifesto.org, 2001.

[Online]. Available: https://agilemanifesto.org/principles.html. [Accessed 20 Feb 2024].

[71] J. D. Haan, "Why there is no future for Model Driven Development," 25 Jan 2011. [Online].

Available: http://www.theenterprisearchitect.eu/blog/2011/01/25/why-there-is-no-future-for-

model-driven-development/. [Accessed 20 Feb 2024].

[72] B. Ross, "Can model-driven architecture be used on Agile development projects?," 24 Nov

2015. [Online]. Available: https://www.equinox.co.nz/blog/model-driven-architecture-on-

agile-development-projects. [Accessed 20 Feb 2024].

[73] G. Tremblay, "CHAPTER 3 SOFTWARE DESIGN," 2002.

[74] P. Bourque and R. Fairley, "SWEBOK v3.0," IEEE, 2014.

References

226

[75] OMG, "Model Driven Architecture (MDA) - MDA Guide rev. 2.0," OMG, 2014.

[76] D. Hough, "Rapid Delivery: An eveolutionary approach for application development," IBM

SYSTEM JOURNAL, vol. 32, no. 3, pp. 397-419, 1993.

[77] D. M. Selfa, M. Carrillo and M. d. R. Boone, "A Database and Web Application Based on

MVC Architecture," in Electronics, Communications and Computers, 2006.

CONIELECOMP 2006. 16th International Conference, 2006.

[78] D. Garlan, "Software architecture: a travelogue," in FOSE 2014: Future of Software

Engineering Proceedings, Hyderabad India, 2014.

[79] S. Brown, "The C4 model for visualising software architecture," https://simonbrown.je/,

2023. [Online]. Available: https://c4model.com/. [Accessed 20 Feb 2024].

[80] P. Hruschka and G. Starke, "arc42," arc42, 2024. [Online]. Available: https://arc42.org.

[Accessed 20 Feb 2024].

[81] iso-architecture.org, "Welcome to the ISO/IEC/IEEE 42010 Website," iso-architecture.org,

18 Apr 2023. [Online]. Available: http://www.iso-architecture.org/42010/index.html.

[Accessed 20 Feb 2024].

[82] SAP, Standardized Technical Architecture Modeling - Conceptual and Design Level, SAP,

2007.

[83] J. Ingeno, Software Architect's Handbook, Packt Publishing, 2018.

[84] N. Koch, A. Knapp, G. Zhang and H. Baumeister, "UML-BASED WEB ENGINEERING -

An Approach Based on Standards," in Web Engineering: Modelling and Implementing Web

Applications, Springer, 2008, pp. 157-191.

[85] O. 2. E. Team, "Meta-Modeling and the OMG Meta Object Facility (MOF)," OMG, 2017.

[86] J. Pearce, "The UML Meta-Model," [Online]. Available:

https://www.cs.sjsu.edu/~pearce/modules/lectures/uml2/index.htm. [Accessed 20 Feb 2024].

[87] IBM, "Exchanging model data by using XMI," IBM, 20 Feb 2024. [Online]. Available:

https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/design-

rhapsody/9.0.2?topic=tools-exchanging-model-data-by-using-xmi. [Accessed 20 Feb 2024].

[88] OMG, "XML Metadata Interchange (XMI) Specification," 2015.

References

227

[89] OMG, "OMG PROCESS INTRODUCTION," OMG, 2024. [Online]. Available:

https://www.omg.org/gettingstarted/processintro.htm. [Accessed 20 Feb 2024].

[90] OMG, "POPULAR OMG STANDARDS," OMG, 2024. [Online]. Available:

https://www.omg.org/about/omg-standards-introduction.htm. [Accessed 20 Feb 2024].

[91] I. Malavolta, H. Muccini and M. Sebastiani, "Automatically bridging UML profiles to MOF

Metamodels," in 41st Euromicro Conference on Software Engineering and Advanced

Applications, Funchal, Portugal, 2015.

[92] uml-diagrams.org, "UML Stereotype," 2024. [Online]. Available: https://www.uml-

diagrams.org/stereotype.html. [Accessed 20 Feb 2024].

[93] uml-diagrams.org, "UML, Meta Meta Models and Profiles," 2024. [Online]. Available:

https://www.uml-diagrams.org/uml-meta-models.html. [Accessed 20 Feb 2024].

[94] uml-diagrams.org, "UML Profile," 2024. [Online]. Available: https://www.uml-

diagrams.org/profile.html. [Accessed 20 Feb 2024].

[95] uml-diagrams.org, "UML Profile Diagrams," 2024. [Online]. Available: https://www.uml-

diagrams.org/profile-diagrams.html. [Accessed 20 Feb 2024].

[96] M. v. Steen and A. S. Tanenbaum, Distributed Systems, 2017.

[97] W3C, "Architecture of the World Wide Web, Volume One," 15 Dec 2004. [Online].

Available: http://www.w3.org/TR/webarch/. [Accessed 20 Feb 2024].

[98] N. R. Dissanayake and G. Dias, "Web-based Applications: Extending the General Perspective

of the Service of Web," in 10th International Research Conference of KDU (KDU-IRC 2017)

on Changing Dynamics in the Global Environment: Challenges and Opportunities,

Rathmalana, Sri Lanka, 2017.

[99] J. J. Garrett, "Ajax: A New Approach to Web Applications," adaptive path, 18 February 2005.

[Online]. Available: https://designftw.mit.edu/lectures/apis/ajax_adaptive_path.pdf.

[Accessed 20 Feb 2024].

[100] W3C, "XMLHttpRequest Level 1," 06 Oct 2016. [Online]. Available:

http://www.w3.org/TR/2014/WD-XMLHttpRequest-20140130/. [Accessed 20 Feb 2024].

[101] J. Allaire, "Macromedia Flash MX—A next-generation rich client," Macromedia, San

Francisco, 2002.

References

228

[102] N. R. Dissanayake and G. Dias, "A Comparison of Delta-Communication Technologies and

Techniques," in 10th International Research Conference of KDU (KDU-IRC 2017) on

Changing Dynamics in the Global Environment: Challenges and Opportunities, Rathmalana,

Sri Lanka, 2017.

[103] I. Fette, Google, Inc., A. Melnikov and Isode Ltd., "The WebSocket Protocol," Internet

Engineering Task Force, 2011.

[104] T. J. Mccabe, "A Complexity Measure," IEEE Transactions on Software Engineering, Vols.

SE-2, no. 4, pp. 308-320, 1979.

[105] N. R. Dissanayake and K. Dias, "Balanced Abstract Web-MVC Style: An Abstract MVC

Implementation for Web-based Applications," GSTF Journal on Computing, vol. 5, no. 3, pp.

27-41, 2017.

[106] A. Ginige and S. Murugesan, "Web engineering: an introduction," IEEE MultiMedia, vol. 8,

no. 1, pp. 14-18, 2001.

[107] WebML.org, "The web modeling language," WebML.org, [Online]. Available:

http://www.webml.org. [Accessed 27 05 2018].

[108] A. Mesbah and A. v. Deursen, "A component and push-based architectural style for AJAX

applications," The Journal of Systems and Software, vol. 81, no. 12, p. 2194–2209, 2008.

[109] J. Li and C. Peng, "jQuery-based Ajax General Interactive Architecture," in Software

Engineering and Service Science (ICSESS), 2012 IEEE 3rd International Conference,

Beijing, 2012.

[110] A. Avritzer, D. Paulish, Y. Cai and K. Sethi, "Coordination implications of software

architecture in a global software development project," The Journal of Systems and Software,

vol. 83, no. 10, pp. 1881-1895, 2010.

[111] M. Ozkaya and C. Kloukinas, "Are We There Yet? Analyzing Architecture Description

Languages for Formal Analysis, Usability, and Realizability," in 2013 39th Euromicro

Conference on Software Engineering and Advanced Applications, Santander, Spain, 2013.

[112] University of California, "xADL3.0," University of California, [Online]. Available:

http://isr.uci.edu/projects/xarchuci/index.html. [Accessed 20 Feb 2024].

[113] E. M. Dashofy, A. v. d. Hoek and R. N. Taylor, "An Infrastructure for the Rapid Development

of XML-based Architecture Description Languages," in Proceedings of the 24th International

Conference on Software Engineering (ICSE2002), Orlando, Florida, 2002.

References

229

[114] ABLE, "The Acme Project," Carnegie Mellon University, 2011. [Online]. Available:

https://www.cs.cmu.edu/~acme/index.html. [Accessed 20 Feb 2024].

[115] B. Schmerl, "xAcme: CMU Acme Extensions to xArch," Carnegie Mellon University, 2001.

[116] P. h. Feiler, D. p. Gluch and J. J. Hudak, The Architecture Analysis & Design Language

(AADL): An Introduction, USA: Carnegie Mellon University, 2006.

[117] Carnegie-Mellon-University, "Architecture Analysis and Design Language (AADL),"

Carnegie Mellon University, Feb 2022. [Online]. Available: https://www.sei.cmu.edu/our-

work/projects/display.cfm?customel_datapageid_4050=191439,191439. [Accessed 20 Feb

2024].

[118] OMG, "MISSION & VISION," OMG, 2024. [Online]. Available:

https://www.omg.org/about/index.htm. [Accessed 20 Feb 2024].

[119] OMG, "Unified Modeling Language 2.5.1," OMG Unified Modeling Language, 2017.

[120] P. Hruschka and G. Starke, "Download arc42," arc42, 202. [Online]. Available:

https://arc42.org/download. [Accessed 20 Feb 202].

[121] The Open Group, "ArchiMate® 3.2 Specification," The Open Group, 03 Jan 2023. [Online].

Available: https://pubs.opengroup.org/architecture/archimate32-doc/. [Accessed 20 Feb

2024].

[122] M. Lankhorst and ArchiMate team, "ArchiMate Language Primer," TELEMATICA

INSTITUUT, 2004.

[123] L. MACHADO, O. FILHO and J. RIBEIRO, "UWE-R: an extension to a Web Engineering

methodology for Rich Internet Applications," WSEAS TRANSACTIONS on INFORMATION

SCIENCE and APPLICATIONS, vol. 6, no. 4, pp. 601-610, 2009.

[124] I. Object Management Group, "IFML: The Interaction Flow Modeling Language," Object

Management Group, Inc, 2018. [Online]. Available: http://www.ifml.org. [Accessed 20 Feb

2024].

[125] OMG, "ABOUT THE INTERACTION FLOW MODELING LANGUAGE

SPECIFICATION VERSION 1.0," OMG, 2023. [Online]. Available:

https://www.omg.org/spec/IFML. [Accessed 17 10 2023].

References

230

[126] SysML.org, "SysML Open Source Project - What is SysML? Who created SysML?,"

PivotPoint Technology Corp., 2024. [Online]. Available: https://sysml.org/. [Accessed 20 Feb

2024].

[127] OMG, "OMG Systems Modeling Language version 1.6," OMG SysML, 2018.

[128] OMG, "OMG Systems Modeling Language Version 2.0 Beta 1," OMG, 2023.

[129] J. Conallen, "Modeling Web Application Architectures with UML," Communications of the

ACM, vol. 42, no. 10, pp. 63-70, 1999.

[130] R. Hennicker and N. Koch, "Systematic Design of Web Applications with UML," in Unified

Modeling Language: Systems Analysis, Design and Development Issues, Idea Group

Publishing, 2001, pp. 1-20.

[131] R. Hennicker and N. Koch, "Modeling the User Interface of Web Applications with UML,"

in Practical UML-Based Rigorous Development Methods - Countering or Integrating the

eXtremists, Workshop of the pUML-Group held together with the «UML», 2001.

[132] V. E. S. Souza, R. d. A. Falbo and G. Guizzardi, "A UML Profile for Modeling Framework-

based Web Information Systems," in Proc. of the 12th International Workshop on Exploring

Modeling Methods in Systems Analysis and Design, 2007.

[133] P. Dolog and J. Stage, "Designing Interaction Spaces for Rich Internet Applications with

UML," in 7th International Conference Web Engineering, ICWE 2007, Como, Italy, 2007.

[134] J. Gómez and C. Cachero, "Chapter VIII," in OO-H Method: Extending UML to Model Web

Interfaces, 2003, pp. 144-173.

[135] T. Černý and E. Song, "A Profile Approach to Using UML Models for Rich Form

Generation," in International Conference on Information Science and Applications (ICISA),

2010.

[136] S. A. Mubin and A. H. Jantan, "A UML 2.0 profile web design framework for modeling

complex web application," in Proceedings of the 6th International Conference on Information

Technology and Multimedia, Putrajaya, Malaysia, 2014.

[137] uml-diagrams.org, "Node," uml-diagrams.org, 2024. [Online]. Available: https://www.uml-

diagrams.org/deployment-diagrams.html#node. [Accessed 20 Feb 2024].

[138] M. Richards, Software Architecture Patterns, O'Reilly Media, Inc., 2022.

References

231

[139] Laravel, "Controllers," Laravel, 2023. [Online]. Available:

https://laravel.com/docs/10.x/controllers. [Accessed 20 Feb 2024].

[140] M. Model, "Model View Controller History," 26 Dec 2014. [Online]. Available:

http://c2.com/cgi/wiki?ModelViewControllerHistory. [Accessed 20 Feb 2024].

[141] S. Burbeck, Applications Programming in Smalltalk-80™: How to use Model-View-

Controller (MVC), Softsmarts, Incorporated, 1987.

[142] UWE, "Tutorial - Presentation Model," UWE, 10 Aug 2016. [Online]. Available:

https://uwe.pst.ifi.lmu.de/teachingTutorialPresentation.html. [Accessed 20 Feb 2024].

[143] J. Preciado, M. Linaje, F. Sanchez and S. Comai, "Necessity of methodologie to model Rich

Internet Applications," in Proceedings of the 2005 Seventh IEEE International Symposium on

Web Evolution, 2005.

[144] W3C, "SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)," 27 Apr 2007.

[Online]. Available: https://www.w3.org/TR/soap12/. [Accessed 20 Feb 2024].

[145] L. Gupta, "REST API URI Naming Conventions and Best Practices," 04 Nov 2023. [Online].

Available: https://restfulapi.net/resource-naming/. [Accessed 20 Feb 2024].

[146] uml-diagrams.org, "UML Deployment Diagrams," uml-diagrams.org, 2024. [Online].

Available: https://www.uml-diagrams.org/deployment-diagrams.html. [Accessed 20 Feb

2024].

[147] UWE, "Tutorial - Navigation Model," UWE, 10 Aug 2016. [Online]. Available:

https://uwe.pst.ifi.lmu.de/teachingTutorialNavigation.html. [Accessed 20 Feb 2024].

[148] uml-diagrams.org, "Multi-Layered Web Architecture," uml-diagrams.org, 2024. [Online].

Available: https://www.uml-diagrams.org/multi-layered-web-architecture-uml-package-

diagram-example.html. [Accessed 20 Feb 2024].

[149] uml-diagrams.org, "Deployment Diagrams Overview," uml-diagrams.org, 2024. [Online].

Available: https://www.uml-diagrams.org/deployment-diagrams-overview.html. [Accessed

20 Feb 2024].

[150] Visual-Paradigm, "ArchiMate Notation: Part 3 – Technology Layer," Visual-Paradigm, 20

Feb 2018. [Online]. Available: https://archimate.visual-paradigm.com/archimate-notation-

part-3-technology-layers/. [Accessed 20 Feb 2024].

References

232

[151] uml-diagrams.org, "UML Artifact," uml-diagrams.org, 2024. [Online]. Available:

https://www.uml-diagrams.org/artifact.html. [Accessed 20 Feb 2024].

[152] Visual-Paradigm, "ArchiMate Notation: Part 1 – Business Layer," Visual-Paradigm, 21 Feb

2018. [Online]. Available: https://archimate.visual-paradigm.com/archimate-notation-part-1-

business-layers/. [Accessed 20 Feb 2024].

[153] uml-diagrams.org, "Component," uml-diagrams.org, 2024. [Online]. Available:

https://www.uml-diagrams.org/component.html. [Accessed 20 Feb 2024].

[154] J. Pearce, "The Entity-Control-Boundary Pattern," [Online]. Available:

https://www.cs.sjsu.edu/~pearce/modules/lectures/ooa/analysis/ecb.htm. [Accessed 20 Feb

2024].

[155] Wikipedia, "Entity-control-boundary," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Entity-control-boundary. [Accessed 20 Feb 2024].

[156] IBM, "How to display the Entity, Boundary, Control stereotypes on class diagrams," IBM, 10

Sep 2020. [Online]. Available: https://www.ibm.com/support/pages/how-display-entity-

boundary-control-stereotypes-class-diagrams. [Accessed 20 Feb 2024].

[157] uml-diagrams.org, "Namespace," uml-diagrams.org, 2024. [Online]. Available:

https://www.uml-diagrams.org/namespace.html. [Accessed 20 Feb 2024].

[158] uml-diagrams.org, "UML Package Diagrams Notation," uml-diagrams.org, 2024. [Online].

Available: https://www.uml-diagrams.org/package-diagrams.html. [Accessed 20 Feb 2024].

[159] uml-diagrams.org, "UML Classifier," uml-diagrams.org, 2024. [Online]. Available:

https://www.uml-diagrams.org/classifier.html. [Accessed 20 Feb 2024].

[160] uml-diagrams.org, "Class," uml-diagrams.org, 2024. [Online]. Available: https://www.uml-

diagrams.org/class.html. [Accessed 20 Feb 2024].

[161] uml-diagrams.org, "Information Flow Elements," uml-diagrams.org, 2014. [Online].

Available: https://www.uml-diagrams.org/information-flow-elements.html#information-

flow. [Accessed 20 Feb 2024].

[162] uml-diagrams.org, "Object Flow Edge," uml-diagrams.org, 2024. [Online]. Available:

https://www.uml-diagrams.org/activity-diagrams.html#object-flow-edge. [Accessed 20 Feb

2024].

References

233

[163] uml-diagrams.org, "UML Message," uml-diagrams.org, 2024. [Online]. Available:

https://www.uml-diagrams.org/interaction-message.html. [Accessed 20 Feb 2024].

[164] uml-diagrams.org, "Communication Path," uml-diagrams.org, 2024. [Online]. Available:

https://www.uml-diagrams.org/deployment-diagrams.html#communication-path. [Accessed

20 Feb 2024].

[165] uml-diagrams.org, "UML Component Diagrams," uml-diagrams.org, 2024. [Online].

Available: https://www.uml-diagrams.org/component-diagrams.html. [Accessed 20 Feb

2024].

[166] uml-diagrams.org, "UML Composite Structure Diagrams," uml-diagrams.org, 2024.

[Online]. Available: https://www.uml-diagrams.org/composite-structure-diagrams.html.

[Accessed 20 Feb 2024].

[167] M. González, J. Casariego, J. J. Bareiro, L. Cernuzzi and O. Pastor, "A MDA Approach for

Navigational and User Perspectives," CLEI Electronic Journal, vol. 14, no. 1, pp. 1-12, 2011.

[168] Mozilla, "Using the Fetch API," Mozilla, 18 Aug 2023. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch. [Accessed 20

Feb 2024].

[169] jQuery, "jQuery.ajax()," jQuery, [Online]. Available: https://api.jquery.com/jQuery.ajax/.

[Accessed 20 Feb 2024].

[170] Mozilla, "Express Tutorial Part 3: Using a Database (with Mongoose)," Mozilla, 20 Feb 2024.

[Online]. Available: https://developer.mozilla.org/en-US/docs/Learn/Server-

side/Express_Nodejs/mongoose#designing_the_locallibrary_models. [Accessed 20 Feb

2024].

[171] Laravel, "Eloquent: Getting Started," Laravel, [Online]. Available:

https://laravel.com/docs/10.x/eloquent. [Accessed 20 Feb 2024].

[172] Laravel, "Routing," Laravel, [Online]. Available: https://laravel.com/docs/10.x/routing.

[Accessed 20 Feb 2024].

[173] Mozilla, "Express Tutorial Part 4: Routes and controllers," Mozilla, 18 Oct 2023. [Online].

Available: https://developer.mozilla.org/en-US/docs/Learn/Server-

side/Express_Nodejs/routes. [Accessed 20 Feb 2024].

References

234

[174] Spring, "Mapping Requests," Spring, [Online]. Available: https://docs.spring.io/spring-

framework/reference/web/webmvc/mvc-controller/ann-requestmapping.html. [Accessed 20

Feb 2020].

[175] PivotPoint-Technology, "Custom Agile MBSE™ + SysML Training & Certification,"

PivotPoint Technology, 2024. [Online]. Available: https://pivotpt.com/training/mbse-sysml/.

[Accessed 20 Feb 2024].

[176] TheScrumMaster.co.uk, "The Simple Guide To Scrum - 1 Pager," TheScrumMaster.co.uk,

2021.

[177] Synopsys, "CI CD," Synopsys, 2024. [Online]. Available:

https://www.synopsys.com/glossary/what-is-cicd.html. [Accessed 20 Feb 2024].

[178] Apache, "Learning To Rank," Apache Software Foundation, 04 Nov 2020. [Online].

Available: https://solr.apache.org/guide/8_7/learning-to-rank.html. [Accessed 20 Feb 2024].

[179] uml-diagrams.org, "Web Application - UML Deployment Diagram Example," uml-

diagrams.org, 2024. [Online]. Available: https://www.uml-diagrams.org/web-application-

uml-deployment-diagram-example.html?context=depl-examples. [Accessed 20 Feb 2024].

[180] A. Ullah, H. Dagdeviren, R. C. Ariyattu, J. DesLauriers, T. Kiss and J. Bowden, "MiCADO-

Edge: Towards an Application-level Orchestrator for the Cloud-to-Edge Computing

Continuum," Journal of Grid Computing, vol. 19, no. 47, 2021.

[181] MiCADO, "Scale virtual machines and containers at runtime," MiCADO, [Online].

Available: https://micado-scale.eu/. [Accessed 20 Feb 2024].

[182] A. P. G. C. Y. F. D. W. D. I. G. T. C. M. W. W. T. K. A. a. Y. N. Bolotov, "SMARTEST -

knowledge and learning repository," University of Westminster, 2020. [Online]. Available:

https://westminsterresearch.westminster.ac.uk/item/v2x13/smartest-knowledge-and-

learning-repository. [Accessed 20 Feb 2024].

[183] Salesforce, "Heroku," Salesforce, 2024. [Online]. Available: https://www.heroku.com/.

[Accessed 20 Feb 2024].

[184] MongoDB, "MongoDB," MongoDB, 2024. [Online]. Available: https://www.mongodb.com/.

[Accessed 20 Feb 2024].

[185] B. Moore, "BorisMoore/jquery-tmpl - jQuery Templates plugin vBeta1.0.0," GitHub, 2018.

[Online]. Available: https://github.com/BorisMoore/jquery-tmpl. [Accessed 20 Feb 2024].

References

235

[186] visual-paradigm, "Harmonizing Horizons: The Seamless Integration of ArchiMate and

TOGAF ADM for Comprehensive Enterprise Architecture," visual-paradigm, 12 Oct 2023.

[Online]. Available: https://archimate.visual-paradigm.com/2023/10/12/harmonizing-

horizons-the-seamless-integration-of-archimate-and-togaf-adm-for-comprehensive-

enterprise-architecture/. [Accessed 20 Feb 2024].

[187] visual-paradigm, "Bookmarks & Resources," visual-paradigm, [Online]. Available:

https://archimate.visual-paradigm.com/category/resources/. [Accessed 20 Feb 2024].

I

Appendices

Appendix A. Example: Shopping App – Level 1+2 Architecture Diagram (large)

Figure Appendix A.1 Example: shopping app – level 1+2 architecture (large)

Appendices

I

Appendix B. Use Cases: High-level Designing with RiWAsML

Appendix B.1. Shopping System – Original Architecture Without Using Tiers (large)

Figure Appendix B.1 Use case: shopping system – original architecture (large)

Appendices

II

Appendix B.2. Shopping System – Architecture With Tiers (large)

Figure Appendix B.2 Use case: shopping system – architecture with tiers (large)

Appendices

III

Appendix B.3. Shopping System – Level 1 Applications Diagram (large)

Figure Appendix B.3 Use case: shopping system – level 1 applications diagram (large)

Appendices

IV

Appendix B.4. MiCADO-Edge [180] Architecture drawn using the RiWAsML

Figure Appendix B.4 Use case: MiCADO-Edge Architecture drawn using the RiWAsML (large)

Appendices

V

Appendix C. Use Case: Learning Management System (LMS)

Appendix C.1. Use Case: LMS – Use Case Descriptions

This appendix only provides descriptions of the non-trivial use cases to understand the core functions

of the Smartest system.

Browse and Search Use Case

Use case name:

Browse and Search

Actor:

Registered user

Associated GUI:

Browse repo (refer to section 8.3.2.3)

Description:

Registered users can browse and search for the available repositories using fiters. They can view
a selected repository from the list. Students can bookmark repositories from the list.

Preconditions:

The user should be logged in.

Post conditions:

None.

Manage Users Use Case

Use case name:

Browse and Search

Actor:

Registered user

Associated GUI:

Browse repo (refer to section 8.3.2.3)

Description:

Registered users can browse and search for the available repositories using fiters. They can view
a selected repository from the list. Students can bookmark repositories from the list.

Preconditions:

The user should be logged in.

Post conditions:

None.

Appendices

VI

Manage Support Categories Use Case

Use case name:

Browse and Search

Actor:

Registered user

Associated GUI:

Browse repo (refer to section 8.3.2.3)

Description:

Registered users can browse and search for the available repositories using fiters. They can view
a selected repository from the list. Students can bookmark repositories from the list.

Preconditions:

The user should be logged in.

Post conditions:

None.

Provide Support Use Case

Use case name:

Browse and Search

Actor:

Registered user

Associated GUI:

Browse repo (refer to section 8.3.2.3)

Description:

Registered users can browse and search for the available repositories using fiters. They can view
a selected repository from the list. Students can bookmark repositories from the list.

Preconditions:

The user should be logged in.

Post conditions:

None.

Manage Entries Use Case

Use case name:

Browse and Search

Actor:

Registered user

Appendices

VII

Associated GUI:

Browse repo (refer to section 8.3.2.3)

Description:

Registered users can browse and search for the available repositories using fiters. They can view
a selected repository from the list. Students can bookmark repositories from the list.

Preconditions:

The user should be logged in.

Post conditions:

None.

Check Progress Use Case

Use case name:

Browse and Search

Actor:

Registered user

Associated GUI:

Browse repo (refer to section 8.3.2.3)

Description:

Registered users can browse and search for the available repositories using fiters. They can view
a selected repository from the list. Students can bookmark repositories from the list.

Preconditions:

The user should be logged in.

Post conditions:

None.

-

Appendices

VIII

Appendix C.2. Use Case: LMS – Architecture (large)

Figure Appendix C.2 Use case: LMS – architecture (large)

Appendices

IX

Appendix C.3. Use Case: LMS with Web Service – Architecture (large)

Figure Appendix C.3 Use case: LMS with web service – architecture (large)

Appendices

X

Appendix C.4. Use Case: LMS – View-Navigation Diagram (large)

 Figure Appendix C.4 Use case: LMS – view-navigation diagram (large)

Appendices

XI

Appendix D. Expert Evaluation

Appendix D.1. Expert Evaluation Form

Rich Web-based Applications Modelling Language

Rich Web-based Applications Design Methodology

RiWAsML and RiWAsDM

-An Evaluation-

Section 1 – Evaluator Details

1. Name:

2. Email:

3. Bio:

Please provide a short bio indicating your expertise in the domain of rich web-based application

design and development.

4. LinkedIn (or similar professional) profile:

5. Do you give consent to publish the details provided in this section? (yes/no) (if there is
any detail you don’t want to publish, please mention):

Appendices

XII

Section 2 – Instructions

1. Use MS Word’s navigation pane to navigate between sections easily.
o View -> Show -> Navigation Pane

2. To learn the scenario of the LMS
3. Refer to Appendix 1
4. You need some knowledge of the following. However, the evaluation tries to verify

the readability and understandability of the new modelling language; therefore, I
request that you attempt the evaluation first and refer to the links below to gain the
required knowledge as needed.

o RiWAArch style - Refer to Appendix 8
o UML - https://www.uml-diagrams.org/uml-25-diagrams.html
o RiWAsML notations - Refer to Appendix 9

5. Refer to the General Notations table in Appendix 9 to understand the syntax of Label
and Communication channels.

6. If you need further assistance, please schedule an online meeting with me for a
discussion.

7. Please justify your answers by providing a statement in the given space.

Section 3 – Quality Attributes

Consider the following quality attributes to justify your evaluation.

Simplicity – In software engineering, simplicity refers to the separation of concerns, which appreciates

decomposing a system and identifying and separating the modules for greater realisation, thus,

management. A design language must separate and identify enough models and model-elements to

provide enough realisation of the target systems.

Comprehensiveness – A RiWAs design methodology is considered comprehensive when it provides

the following: models and model-elements to design all the aspects realised by the RiWAArch style,

rules and guidelines for designing RiWAs and mapping the designs into development, and design and

engineering approaches and guidelines to adopt into agile engineering environments.

Learnability – A design language is based on UML and the RiWAArch style; hence, it is easy to learn.

Readability/understandability – The models and model-elements contain enough details, making

them easy to read and understand.

Development support – how easily the designs can be mapped into the actual development?

Integrability – how to integrate the RiWAsML-based design activities into RiWAs engineering by

enabling agile model-driven development?

Appendices

XIII

Section 4 – High-level Model and Elements Evaluation

1. See the architecture diagram in Appendix 2. This architecture attempts to capture the high-
level Application elements within the system, the platforms they run, and the tiers they belong
to. Within applications, the views, controllers, models, DC-engine, and DC-bus and their
communication are identified.

2. Explain your experience and opinions by rating using the scale below and justifying.

Symbol Interpretation

5 Very high effect

4 High effect

3 Moderate effect

2 Less effect

1 Very low or no effect

3. Rate the usefulness of the architecture and its model-elements in the table below. Please
justify your answer.

Diagram and its elements Usefulness Justification

Architecture diagram

Tier element

Platform element

Application element

Views element

Components element

Connectors element

Other elements (database,

external services)

Appendices

XIV

Section 5 – Low-level Models and Elements Evaluation

5.1 View-Navigation Diagram

 The view-navigation diagram is used to capture the following.
o All the views in the system.
o Related features to implement on common views.
o Different paths for different user types to navigate to views.

 Consider the view-navigation diagram of the browser app in Appendix 3.
 Explain your experience and opinions by rating using the same scale given in Section 4 and

justifying.

Diagram and its

elements
Usefulness Justification

View-navigation diagram

View element

View package element

Viewpart element

SharedViewpart

SharedViewpartOBJ

ViewI/ViewO/ViewIO

5.2 View Diagram and Controller Diagram

 The view diagram is used to design the internal elements of the views, which help understand
the implementation of the user functionalities.

 A view has a dedicated controller, which implements the event handlers.
 Consider the view-controller diagram of the Browse Repo function in Appendix 5.
 Explain your experience and opinions by rating using the same scale given in Section 4 and

justifying.

Diagram and its

elements
Usefulness Justification

View diagram

-View element

-View package element

-Viewpart element

-ViewI/ViewO/ViewIO

Controller diagram

-ControllerClass element

View-Controller diagram
(as a single diagram)

Appendices

XV

5.3 DC-bus Diagram and EndpointsCollection Diagram

 The EndpointsCollection class helps understand the API design using the OOP practices.
 The DC-bus diagram is used to understand the APIs by structuring them into classes/groups.
 Consider the DC-bus diagram of the DCBus element of the Back-endApp application and

its RoutesRegUsers EndpointsCollection in Appendix 6.
 Note: only admin APIs are included in the endpoints diagram for demonstration.
 Explain your experience and opinions by rating using the same scale given in Section 4 and

justifying.

Diagram and its

elements
Usefulness Justification

DC-bus diagram and

EndpointsCollection

diagram

-Connector element

-Endpoints class element

5.4 AppModel Diagram and ModelClass Diagram

 An AppModel diagram is utilised to design a domain model of a particular Application
element’s model using a class diagram.

 A ModelClass diagram can be used to design a given class of an AppModel diagram.
 Consider the diagrams in Appendix 7.
 Explain your experience and opinions by rating using the same scale given in Section 4 and

justifying.

Diagram and its

elements
Usefulness Justification

AppModel diagram and
ModelClass diagram

-Component element

-Class element

Appendices

XVI

5.5 View-Process Sequence Diagram

 The view-process sequence diagram is similar to the UML sequence diagram and is used to
design the execution flow of a function.

 A view-process sequence diagram can capture the Application elements and their processing
elements, which take part in the execution.

 Consider the view-process sequence diagram for the login function in Appendix 4.
 Explain your experience and opinions by rating using the same scale given in Section 4 and

justifying.

Diagram and its

elements
Usefulness Justification

View-process sequence
diagram

-Application element

-View element

-Controller element

-Endpoints element

-ModelClass object
element

5.6 Element Names and Communication Channels

 Consider the label used for the design elements and communication channels syntax.
 Refer to the General Notations table in Appendix 9 to understand the syntax of Label and

Communication channels.
 Explain your experience and opinions by rating using the same scale given in Section 4 and

justifying.

Diagram and its

elements
Usefulness Justification

Element names (label)

Communication channels

-Standard communication

-Delta-Communication

-View-controller
communication

-Method call and return

-ModelClass object
element

Appendices

XVII

Section 6 – Evaluation of the RiWAs Design Methodology (RiWAsDM)

 Consider the core aspects of the RiWAsDM given in Appendix 10.
 Consider the quality attributes given in Section 3.
 Explain your experience and opinions about the RiWAsML-based RiWAsDM by rating and

justifying using the same scale given in Section 4.

Quality attribute Opinion Justification

Simplicity

Comprehensiveness

Learnability

Readability/understandability

Development support

Integrability

Please provide general feedback/comment on the RiWAsML/RiWAsDM, stating limitations and

things to improve/consider/add/remove.

Overall rating on the

RiWAsML/RiWAsDM

Overall feedback and justification.

……….

Appendices

XVIII

Appendix 1 – Learning Management System Use Case Diagram

NOTE: The registered users have to log in to the system to use any feature.

Appendices

XIX

Appendix 2 – LMS Architecture Diagram

Appendices

XX

Appendix 3 – View-Navigation Diagram

Appendices

XXI

Appendix 4 – View-Process Sequence Diagram

Appendices

XXII

Appendix 5 – View-Controller Diagram of Browse Repo

Appendices

XXIII

Appendix 6 – DC-bus Diagram and EndpointsCollection Diagram

 The DC-bus diagram provides the internal design of the Back-endApp element of the architecture.
 The EndpointsCollection diagram contains the partial design of the RoutesRegUsers class of the DC-bus diagram.

Appendices

XXIV

Appendix 7 – AppModel Diagram and ModelClass Diagram

Appendices

XXV

Appendices

XXVI

Appendix 8 – The RiWAArch Style

Read the paper:

https://www.researchgate.net/publication/346514514_RiWAArch_Style_An_Architectural_Style_for

_Rich_Web-Based_Applications

Appendices

XXVII

Appendix 9 – RiWAsML Reference

General Notations

Element Type Notation

Label

-NA-
<< Element : Type : Name >>

Communication

channels

Standard communication (HTTP

and other standard protocols)

Regular

Return (sequence diagram)

Delta-Communication

Regular

Return (sequence diagram)

Delta-Communication – push

(reserved)

View-Controller

Regular

Return (sequence diagram)

Method call and return

Regular

Return (sequence diagram)

Appendices

XXVIII

With numbered connectors

High-level Diagrams and their Notations

Element Type Notation

Level 1 Applications Model

Tier – horizontal

grouping of elements

based on their roles

Presentation

Application

Storage

Platform – provides the

environment for an

Application element to

run.

Device: Hardware + OS

Application-level

environment type

Application – An

element executable

within its platform,

communicating with

other Application

elements in the system to

perform functions.

WebApp

MobileApp

DektopApp

Level 2 View Process Model

Component – a logic

processing element

within an Application

element.

Controllers

ClientControllers

ServerControllers

ClientModel

ServerModel

Appendices

XXIX

Connector – a

communication

processing element

within an Application

element, enabling the

Application element to

communicate.

DCEngine

DCBus

Views – element

containing a collection of

GUIs of a client-side

Application element.

WebPages

Activities

Windows

Other high-level

elements – DB, File,

WebService, User/Actor

Network, ESB

-NA-

Notes – element to add

related text-based

details.

-NA-

Low-level Diagrams and their Notations

Element Type Notation

View Model, View-Navigation Model

View – a single GUI

implementation element

WebPage

Activity

Window

ViewPackage - a single

GUI implementation

element that wraps

supporting elements.

WebPage

Activity

Window

Appendices

XXX

ActorView – A view

implementing element

containing elements of a

particular actor.

Actor: The actor of the

Viewpart

View I/O elements –

Input/output elements of

views.

Refer to Table 6.1

Container/Section – a

virtual section of a view.

-NA-

Popup/Toggle – a widget

in a view which can be

shown/hidden or

enabled/disabled.

Blocking

NonBlocking

Show

Hidden

Enabled

Disabled

Trigger communication

channel – connect the GUI

element, which triggers an

event to the event handler of

the controller.

-NA-

Viewpart – a GUI section

for a particular actor.

ViewpartOBJ – an object

of a Viewpart.

Actor: The actor of the

Viewpart

SharedViewpart – a

Viewpart for a particular

actor, shareable with

multiple views.

Refer to table 6.1

Appendices

XXXI

SharedViewpartOBJ – a

SharedViewpart object

AppControllers Model, Controller Model, View-Controller Model

Controller – A class which

implements event handling

for a particular view.

Client

NOTE: The name should

be the same as the related

view’s name

Invoke – indicate a

controller’s method

invoking a popup/toggle.

Show/hide/enable/disable

AppModel Model

ModelClass – A class

which implements domain

logic.

ClientModel

ServerModel

DC-bus Model and EndpointsCollection Model

EndpointsCollection

– A class which

implements

communication APIs

of a server

application.

DCBus

HTTPBus

Appendices

XXXII

Appendix 10 – RiWAsDM process

The RiWAsML Architecture

RiWAs Design Approach with RiWAsDM

RiWAsDM appreciates using the top-down design approach since the RiWAs share some high-level

common characteristics and essential features, which can be realised with the RiWAArch style.

Besides, it’s not inappropriate to use the bottom-up approach when the low-level details of the

features of the RiWA are precisely identified, and the engineering team members have some

experience in RiWA engineering.

RiWAs Engineering Approach with RiWAsDM

RiWAsDM recommends using the Agile Model-Driven Development (AMDD) approach for RiWAs

engineering to benefit from both model-driven engineering and agile engineering.

Rules and Guidelines for Designing RiWAs with RiWAsML

This section first states the rules and guidelines to follow when using the introduced RiWAsML.

Most of the rules and guidelines are already discussed in related sections while introducing the

RiWAsML models and their model-elements. Those rules and guidelines are listed in this section,

with further elaborations as required for clarity and reference. The rules are given as “Rule:” to be

followed when using the RIWAsML, and the guidelines are mentioned as “Guideline:” to consider

Appendices

XXXIII

as best practice. This section aligns with step 3.2 of the RiWAsDM implementing process (refer to

Figure 1.2 in section 1.5.3).

Rules and Guidelines for General Elements of RiWAsML

This section sets the rules and guidelines for the RiWAsML label and communication channels.

Further, some overall guidelines are given in the direction of improving the simplicity and the

readability of the design.

Label

Rule: The RiWAsML model-elements should use the RiWAsML label format.

Rule: The RiWAsML model-elements should use the specified values for the element segment of

the label.

Rule: The RiWAsML model-elements should use the specified values for the type segment of the

label when the element type is exact.

Guideline: When the element is of a type the RiWAsML does not specify, a suitable custom type

could be assigned.

Guideline: RiWAsML suggests using the following cases for the values of the element, type, and

name segments of the RiWAsML model-elements’ to align with OODD practices.

 Generally, use the Pascal case for naming.

 For naming objects such as ViewpartOBJ and SharedViewpartOBJ, method names, and

attributes, use the Camel case.

Communication Channels

Guideline: RiWAsML realises the communication between the architectural elements based on the

request-response model. Thus, the bidirectional arrows used to depict the communication channels

have a specific meaning, and the requesting and requested elements are known as follows.

 Between view and controller: The view requests the controller by triggering events and passing

the data to the controller. The controller responds by doing the needful and updating the view

with information.

 Between controller and client-model: A controller calls a client-model’s method, and the method

processes the request and returns the result.

 Between controller and DC-bus: A controller sends a DC request to the DC-bus via the DC-

engine. The DC-bus does the needful, and the results are sent using the DC response to the

controller via the DC-engine.

 Between DC-bus and server-model: The DC-bus calls a server-model’s method, and the method

processes the request and returns the result.

Appendices

XXXIV

Guideline: It is possible to use unidirectional arrows when required, for example, when views and

controllers of a browser-based client send HTTP requests to the server.

Guideline: A bi-directional arrow can still be used when required to denote communication between

the methods of the same class or multiple classes. In controllers, event handlers always call the

other methods; hence, the calling and the called methods are straightforward. For communication

between methods other than the event handlers, use a black dot on the calling method to depict the

caller, similar to the event handling view elements.

General Guidelines

Guideline: RiWAsML suggest using colours for the model-elements to improve simplicity and

readability,

Rules and Guidelines for High-level Designing with RiWAsML

This section specifies the rules and guidelines for the level 1 Applications diagram, level 2 view-

process diagram, level 1+2 architecture diagram, and their elements.

Guideline: The high-level aspects can be hierarchically designed using the separated level 1

Applications diagram and level 2 view-process diagram or can be included in a single design using

the level 1+2 architecture diagram depending on the size and the complexity of the RiWA. Priority

should be given to the readability of the design.

Guideline: In RiWAs with a browser-based client, the case of the server sending views to the client

as the response to the HTTP requests is not depicted on the diagrams, considering it is a known fact.

Guideline: The tiers are not required to have the same height and width (refer to Figure 8.9).

Guideline: The Platform elements can expand across the tiers as required (refer to Figure 8.3).

Guideline: On high-level diagrams, the views and AppControllers elements always use plural form

for the type and name segments of the label. In the case of views, the element segment is also in

plural.

Rules and Guidelines for Low-level Designing with RiWAsML

This section specifies the rules and guidelines for the low-level design diagrams and their elements.

Additionally, some development-supportive rules or guidelines are given as “Rule [development]:”

Or “Guideline [development]:”.

View Diagram

Guideline: A view diagram may not contain all the GUI elements and may show only the GUI

elements required to implement functionalities.

Guideline: A view diagram does not provide the actual layout.

Appendices

XXXV

Guideline: A view can be designed with its dedicated controller as a pair on the same diagram.

Guideline [development]: Use a GUI element’s type and name label segment values to derive its

development name. For example, consider the GUI element with the label << ViewI : btn : Delete

>>; in that case, use btnDelete as the development name of it.

Guideline: Use Viewparts for the readability of the design; they may or may not be used in actual

development.

Guideline [development]: For a ViewPackage with ActorViews, the view’s actual development

name is the name of the ViewPackage. Use the names of the ActorViews as the display names of the

view for the actors of each ActorView.

Rule [development]: For Popups, use the type segment to specify the behaviour of the Popup as

“Blocking” or “NonBlocking”. For Toggles, use the type segment to specify the initial state as

Show/Hidden/Enabled/Disabled.

Guideline [development]: Do not mix the JavaScript code with the view’s HTML code for browser-

based client apps. If the controller has less code and decides to write it on the HTML file, always

write the JS code on the head’s script section without mixing it with HTML code anywhere else on

the document.

Guideline: Each view should be available on the view-navigation diagram. There cannot be any

views not included in the view-navigation diagram.

View-Navigation Diagram

Guideline [development]: The primary purpose of the view-navigation diagram is to identify the

views which can implement multiple sets of related features and denote the different routes to

navigate to them for different actors (refer to section 4.4.4.2). It is crucial to identify the multiple

features developed in each view, the actors of these features, and the various navigation paths to

these views, and then design them using the view-navigation diagram to assist in realising the

arrangement of all the views in a RiWA towards reducing the complexity of the development.

Guideline [development]: The view-navigation diagram captures all the views to be developed in

the RiWAs and the navigation between them (refer to section 4.4.4.2). There cannot be any diagram

of view not included in the view-navigation diagram. However, it is sufficient to design only the

required views using the view diagrams, and it is not necessary to design all the views available on

the view-navigation diagram.

Guideline [development]: Navigation links starting from hyperlink GUI elements are always link-

based navigation and developed as standard hyperlinks on the view. Navigation links starting from

other types of GUI elements are process-based and should be implemented in the controller of the

view, which includes the navigation starting GUI element.

Appendices

XXXVI

AppControllers Diagram and Controller Diagram

Guideline: It is not mandatory for all the views to have a dedicated controller; for example, views

with only readable content, like a help page, do not necessarily need a controller. Therefore, the

number of controllers in the AppController diagram can be less than the number of views in the

RiWA. It is effective to identify which views require a controller and denote this detail in the design.

Guideline: It is beneficial to design the controller with its related view on the same diagram.

Guideline: Decide the rich features to be developed on the view, identify all the event handlers

required on the controller to implement them, and include them on the design with notes explaining

their functionalities.

Rule: Even though the parent AppControllers element of the AppController diagram is a type of

component, the parent AppControllers element or the controller elements in it do not use UML’s

standard interfaces; instead, they should always use the RiWAsML communication channels.

Guideline [development]: Do not mix event handling code with the view’s code; write code to

register event handlers on the controller.

AppModel Diagram

Guideline: Each AppModel comprises a complete class diagram.

Rule: An AppModel diagram should use a parent model component element.

Rule: Even though the model is a type of component, it does not use UML’s standard interfaces;

instead, the model component and its classes should always use the RiWAsML communication

channels to indicate the communication with the outside.

Guideline [development]: Even if the client-model is developed using a language like JavaScript

without OOP practices, develop the ModelClasses in separate files as depicted on the design.

Guideline [development]: Some web server-side frameworks provide a concept named “model” for

database Object Relational Mapping/Model (ORM) or Object Data Model (ODM) implementations

[170] [171]. These ORM/ODM models are different from the RiWAArch style’s concept of model,

which is based on the MVC. The ORM/ODM models can be considered a part of the RiWAArch

style’s model, which assists in implementing the database-related functionalities.

DC-bus Diagram and EndpointsCollection Diagram

Guideline: Even though the RiWAsML considers the connector a type of component, using the

component symbol on the connector elements is not mandatory to maintain the visual separation

between the connectors and components.

Appendices

XXXVII

Guideline [development]: A web service API development concept like SOAP [144] or REST [145]

can be used to develop the DC-bus. Consider the relevant rules and guidelines of the selected API

development technology when designing and developing DC-bus and EndpointsCollections.

Guideline [development]: Web server-side development frameworks typically use the term

“controller” [139] for the DC-bus-related aspects and “route” [172] [173] [174] for the endpoint,

which are derived from MVC and REST. Be aware of these terms and do not substitute them with

the RiWAArch style’s controller.

Guideline [development]: Multiple EndpointsCollections can be developed on the same class/script

where necessary.

Guideline [development]: Select a consistent data wrapping technique/technology like XML or

JSON for the endpoints and denote that on the DC-bus diagram and/or EndpointsCollection diagram

using notes.

View-Process Sequence Diagram

Guideline: Wrap the swimlanes of the same Application element using an Application element.

Guideline: The Application elements and their view, controller, connectors, and models should be

aligned with the other design diagrams.

Other Related Design Concerns

Guideline: Use a suitable designing method/tool like Entity-Relationship diagrams (ER diagrams)

to design the databases.

Guideline: Other standard UML diagrams, like network architecture diagram and activity diagram,

shall be used as required. However, it is advisable to use the RiWAsML label on the UML elements

in a suitable way to align with the rest of the RiWAsML diagrams.

Appendices

XXXVIII

Appendix D.2. Expert 1 Feedback

Evaluator Details

1. Name: Agata Kulczynska

2. Email: agata.kulczy@gmail.com

3. Bio:

Agata Kulczynska graduated in 2021 with a B.Sc. in Computer Science from the University of

Westminster, London, with an award for the Best Final Project. She also received an award for being

One of the best-performing female graduates of the Computer Science and Engineering department

at the University of Westminster. Agata obtained an M.Sc. in Artificial Intelligence in 2022 from the

Queen Mary University of London.

From 2020 to 2023, Kulczynska worked part-time as an Information Technology Support officer at

Elmech Ltd, Research Associate Software Developer at the University of Westminster, and full stack

developer at Dromedaware Ltd. Since Jan 2023, she has been working as a software engineer at Clear

Channel UK.

Agata is experienced in designing and implementing rich web-based software solutions using a wide

range of technologies. She has primarily worked on developing a knowledge repository that explored

novel ways of storing information in the form of graphs and presenting it to students named Smartest,

as well as a web-based application that introduced digitalisation and automation within a medium-

sized construction company. Currently, she is working on an application that encompasses a variety

of functionalities for one of the leading out-of-house media companies in the United Kingdom.

4. LinkedIn (or similar professional) profile: https://www.linkedin.com/in/agata-kulczynska/

5. Do you give consent to publish the details provided in this section? (yes/no) (if there is any

detail you don’t want to publish, please mention): yes

Appendices

XXXIX

Element Names and communication channels

Diagram and

its elements
Usefulness Justification

Element names

(label)

5 The proposed structure of the elements’ names is clear and should

be understood by a reader who is generally familiar with the UML

specification. Separating the label into Element, Type, and Name

segments makes it easier for the reader to gain an understanding of

the individual elements while analysing a complex architectural

diagram.

Communication channels

-Standard

communication

5 A standard arrow element should be familiar and understandable

for most of the readers, making the direction of the communication

clear and ready to read.

-Delta

communication

5 As above, a standard arrow element should be familiar and

understandable for most of the readers, making the direction of the

communication clear and ready to read.

-View-

controller

communication

5
The view-controllers communication is clear and distinguishable

from both the standard and the delta communication notations.

-Method call

and return

5 As above, the method call and return is clear and makes it easy to

understand the flow of the execution. The boldness between the

view-controller and the method call and return seems to be more

distinguishable than in the case of the standard and delta

communication, making it easier to differentiate between the

different notations for the reader.

High-level Model and Elements Evaluation

Diagram

and its

elements

Usefulness Justification

Architecture

diagram

5 A very high effect score on the usefulness scale was assigned since the

presented diagram outlines a high-level architecture of the system

while providing a sufficient and relevant amount of details regarding

the constituting application’s components and their types, giving an

Appendices

XL

overall broad view of the discussed software solution and suggesting

a high comprehensiveness.

Tier

element

5 Tier elements allow the reader to gain an initial understanding of the

application’s architecture while providing the fundamental details

regarding each segment. Categorising tier elements into Presentation,

Application, and Storage seems to be an adequate technique to define

the main building blocks of the application, while the External label

allows the outline of any other crucial elements which do not fall into

one of the aforementioned categories, such as Authentication Service.

Platform

element

4 Platform elements seem to provide additional details regarding the

environment in which the application is running, as well as the primary

programming language utilised. This information is valuable and

allows to gain further understanding of the system’s design and

architecture, which has a positive overall impact on the development

support.

However, to fully appreciate the usefulness and complexity of the

discussed element, it would be beneficial to present a diagram in which

a few executable applications run within one platform and potentially

outline interactions between them.

Application

element

4 The application element seems to be a relevant building block within

which further split into views, controllers, models, and delta

communication elements can be captured effectively utilising the

proposed methodology. Outlining the type of the application enables

to understand whether it is a web-based, mobile, or desktop solution.

However, as mentioned above, it could be valuable to present a design

in which a few executable applications run and interact within one

platform. For instance, it would be interesting to see a diagram

expanded for a solution including several microservices, which could

potentially increase the overall learnability and comprehensiveness.

Views

element

5 Views elements allow to identify which depicted applications contain

views, as well as to determine the type of the represented views, which

seems to be an appropriate level of detail to include in a high-level

model of a system.

Components

element

5 Component elements appear to be valuable to outline further specifics

regarding the relevant application and include details of the

implemented models and controllers, as well as their types. Through

further examination of the different types, it can be understood that

Appendices

XLI

components encompass the logical processing segments and are

mostly focused on the models and controllers.

Connectors

element

4 Connector elements allow the reader to understand how the

applications communicate with each other via utilisation of the DC

Engines and DC Buses. They also seem to be useful to present the

utilised protocols and any potential external APIs.

With modern solutions such as message queuing services, it would be

interesting to see how some alternative communication means could

be represented on the diagram, too.

Other

elements

(database,

external

services)

5 Other elements allow to capture any additional crucial modules

which could not be represented with the basic elements. Thus, I

believe they have an overall high effect on the design of the diagram.

Low-level Models and Elements Evaluation

Diagram and

its elements
Usefulness Justification

View-navigation

diagram

4 The view-navigation diagram provides a broad and

detailed insight into the views included in the application,

their functionalities, relevant actors, as well as the

navigation paths between them.

In the future, in order to increase comprehensiveness and

learnability, it could be valuable to provide a guideline

regarding designing and selecting the most relevant views

for the View-navigation diagram, as with the more

advanced systems, it might become highly complex for the

engineers.

Nonetheless, the diagram is clear and effective in

portraying the views of the system and the navigation

between them. The variety of the elements allows to

represent crucial segments of modern web-based

applications, as well as to group them for increased

readability and simplicity. Thus, a high effect score from

the usefulness scale was assigned.

Appendices

XLII

However, as elaborated on in the second paragraph, the

usefulness could potentially be increased by providing

more guidelines regarding the most effective selection of

the views and their corresponding elements. Such solution

would potentially make it easier for the engineers to

capture the complexity of the designed system, and

increase the usefulness from 4 to 5.

View element 5 View element is clear and provides the reader with an

insight into the type and the functionality of the view.

View package element 5 View package element serves as an efficient way to define

which views are related, having a significant impact on the

simplicity aspect by introducing additional modularisation.

Viewpart element 5 Viewpart element can be assigned a very high effect score,

as it allows to define the GUI elements that are the most

crucial and outline which segments can be utilised for the

navigation purposes between the different views.

SharedViewpart 5 I believe that the SharedViewpart elements increase the

general simplicity and readability of the solution, as they

allow to omit unnecessary repetition of the individual GUI

elements.

SharedViewpartOBJ 2 The main characteristics of the SharedViewpartOBJ

elements were not always that easy to distinguish from the

SharedViewpart elements for me, as they can share the

same types and names, impacting the overall readability.

ViewI/ViewO/ViewIO 4 Defining inputs and outputs between the views can prove

as an efficient way to allow the reader to gain a further

understanding of the navigation within the system,

provided that the types and naming of all the I/O elements

is clear and well-defined.

I believe that the ViewI/ViewO/ViewIO elements are

valuable, however not as crucial for the engineers to

understand the overall design as the other elements which

were assigned score 5. Thus, relatively, a high effect from

the usefullness scale was given.

Appendices

XLIII

View Diagram and Controller Diagram

Diagram and

its elements
Usefulness Justification

View diagram 4 The View diagram provides a comprehensive

representation of the relevant view element, giving the

reader a chance to gain further understanding of the view’s

functionalities as well as the crucial GUI segments,

including the input and output elements.

For an increased learnability, it would be valuable to

provide a set of guidelines regarding the selection of the

most significant interface elements which should be

covered within the view diagram.

Nonetheless, the current design offers a broad selection of

elements which allow to capture the significant internal

elements of the view in an efficient and clear way.

Therefore, a high score of usefulness was assigned.

As pointed out in the second paragraph, learnability could

be increased by providing an additional set of guidelines

regarding the elements’ selection. In my view, elevating

learnability would then increase the overall usefulness of

the diagram to 5.

-View element 5 View element can be utilised to provide the fundamental

details regarding the view, such as its type and name,

therefore it was assigned the highest score from the

usefulness scale. It impacts the general readability and

comprehensiveness of the system.

-View package

element

5 ViewPackage element increases the readability and

simplicity, as it allows to categorise the views, and then

define which group the given view belongs to. Such

solution makes it more efficient to design a system that is

modular and scalable, as well as to understand the

relationships between the functionalities of the individual

views.

-Viewpart element 5 Viewpart element provides a seemingly efficient way to

outline the most significant parts of the GUI, their role

within the application, as well as the associated actors,

Appendices

XLIV

which is important while representing the systems in which

various users can perform different actions.

-

ViewI/ViewO/ViewIO

5 The discussed elements are valuable in representing the

different input and output actions associated with the

represented view. I believe they play a significant role in

increasing the aspect of the development support, as they

provide additional information regarding the I/O flow.

A very high effect on the usefulness scale was assigned

since the discussed elements allow to capture event

handling within the view.

Controller diagram 5 The controller diagram has a very high impact on the

usefulness scale, as it allows the reader to understand what

event handlers are required and triggered by the view. Not

only does it increase the comprehensiveness and

readability, but also the development support.

-Controller class

element

5 I believe the controller class element to be highly useful

and valuable to gain a deeper understanding of all the

actions that can be triggered from the view. It influences

the overall comprehensiveness, readability, as well as the

development support, making it easier to pinpoint what

actions should be activated by individual views’ elements.

View-Controller

diagram (as a single

diagram)

5 Taking everything into consideration, the View-Controller

diagram seems to have a significant impact on the overall

quality attributes of the designed system, especially the

comprehensiveness, readability, and development support.

It provides a relevant level of details regarding

implementation of the view, as well as its most crucial GUI

elements and the associated triggers. Additional notes

provide a supplementary, valuable insight into the view’s

functionalities.

Appendices

XLV

DC-Bus Diagram and Endpoints Collection Diagram

Diagram and

its elements
Usefulness Justification

DC-Bus

diagram and

Endpoints

collection

diagram

4 DC-Bus diagram appears to be an efficient method to better

structure the API, therefore increasing the modularity and

simplicity. The Endpoints Collection Diagram provides details

regarding a class of endpoints in an efficient way. However, the

Endpoints Collection Diagram could potentially benefit from the

inclusion of some additional details, as elaborated on in the relevant

table section. Thus, the mark 4 was assigned.

-Connector

element

5 The modularity and simplicity is greatly increased by structuring the

API into more granular classes and representing them on a

comprehensive and easy-to-understand diagram.

-Endpoints

class element

4 The endpoint class element appears to prove to be a good

representation of a class of endpoints.

However, comprehensiveness and development support could

potentially be increased by introducing a higher level of detail for

each endpoint, with some additional information regarding the

request methods (as the method name might not always state it) or

media types.

Application-Model Diagram and Model Class Diagram

Diagram and

its elements
Usefulness Justification

Application-

model diagram

and Model

class diagram

5 Both application-model and model class diagrams appear to be

valuable in outlining the system’s architecture. I believe it is of

great significance to provide the reader with a detailed

understanding of the classes building the application and their

relevant functions; thus, the highest score on the usefulness scale

was assigned.

-Component

element

5 In my view, outlining the main classes within the model has a

positive impact on an increased modularity of the designed system.

Furthermore, I believe it influences the growth in readability by

providing the user with a broad view of the included classes, along

with the connections between them.

Appendices

XLVI

-Class element 5 Class element influences readability and understandability by

providing more details into an individual class from the

application-model diagram. Outlining individual methods, their

outputs and parameters appear to be beneficial for development

support, potentially making it easier to implement the designed

classes.

View-Process Sequence Diagram

Diagram and

its elements
Usefulness Justification

View-process

sequence

diagram

5 In my view, sequence diagrams are generally highly valuable in

supporting the process of representing and explaining the

communication means between the different segments that form the

system, as well as providing further details regarding the exchanged

messages. I believe that it is of great importance to depict all the

core elements that are included within the communication process

so as to aid the readability and the development support. Therefore,

all the listed elements were assigned a score of 5 on the usefulness

scale.

-Application

element

5 Application appears to be one of the core building blocks outlined

in the diagram. Grouping individual elements into application

segments advantageously impacts both simplicity and

comprehensiveness.

-View

element

5 The view element seems to aid in representing the possible actors’

interactions with the application and efficiently depict the following

flow of the communication process.

-Controller

element

5 Controllers allow the reader to gain a deeper understanding of what

actions are triggered by individual views and how they are

communicated further to the services.

-Endpoints

element

5 EndpointsCollection elements support the development and further

understanding of the system by providing relevant details regarding

the utilised API.

-Model class

object element

5 The model class object element appears to play an important role in

understanding the flow of communication and depicting what kind

of information is expected to be returned.

Appendices

XLVII

The model class object element is readable and encompasses all the

attributes required to gain a fundamental understanding of the

represented class, such as its type, name, properties, and their types,

as well as the methods with their signatures.

Evaluation of the RiWAs Design Methodology (RiWAsDM)

Quality attribute Opinion Justification

Simplicity 5 In my view, the methodology greatly supports the

separation of concerns by decomposing the system

while adopting the top-down design approach. I

believe that the introduction of elements such as the

DC-Bus and DC-Engine further aid the modularisation

and decoupling, ensuring increased efficiency of the

further management.

Comprehensiveness 4 I believe that a high effect in comprehensiveness was

achieved through the introduction of a wide variety of

models and model-elements, allowing to efficiently

design a rich web-based application. The introduction

of the DC-Bus and the DC-Engine elements further

complements comprehensiveness by allowing to

design the aspects realised by the RIWAArch style.

The core aspects, rules, and guidelines supplied in

Appendix 10 are clear and concise.

To further aid the discussed quality attribute and

support potential users to prepare the design and then

map it into the development process, it could be useful

to see more examples of designs of rich web-based

applications, for instance, the ones that are built out of

multiple micro-services.

Learnability 4 As stated in Section 3, the presented design

methodology is based on UML and the RiWAArch

style, and therefore, it should be clear to understand for

a reader who is familiar with the general UML

specification. The rules and guidelines outlined in

Appendix 10 are concise and easy to follow.

Some additional guidelines could be provided when it

comes to building more complex diagrams, which

Appendices

XLVIII

require the inclusion of a higher level of details and

selection of the most crucial components, such as the

diagrams focused around the Views and the

Navigation.

Readability/understandability 5 In general, the models and the model-elements contain

the right amount of detail, suitable for the type of

diagram they belong to. The notation is concise and

outlined in a clear way. Owing to this, it should be easy

for the reader to gain an understanding of the design

and the functionalities of the individual elements.

Development support 5 In my view, the presented models and model-elements

include enough details to allow for an efficient

mapping into actual development.

For the potential further work focused on the more

advanced systems, it could be helpful to include more

design elements which could guide the developers in

making decisions concerning other crucial aspects of

the rich web-based applications, focused around the

cloud solutions or security components.

NOTE: Within the context, all the diagrams were clear

and included a variety of elements and a great level of

details, which supports the development very highly.

Integrability 4 The methodology introduces modularisation and

decoupling of components, which should aid an

iterative approach to implementation and support agile

model-driven development.

Overall Feedback

Overall rating on the RiWAsML/RiWAsDM 4

Overall feedback and justification.

The methodology demonstrates robust strengths in simplicity, comprehensiveness, and

readability. Its systematic approach, employing top-down design principles alongside elements

such as the DC-Bus and DC-Engine, effectively facilitates system decomposition and

Appendices

XLIX

modularisation. The inclusion of a variety of models for designing rich web-based applications,

coupled with concise rules and guidelines, further increases the general quality attributes.

Regarding learnability, its reliance on UML and the RiWAArch style ensures clarity, especially

for readers familiar with the UML specifications. However, there’s an opportunity for

improvement in providing additional guidance and further examples of more varied, complex

high-level diagrams. This augmentation would enhance understanding and practical application.

Furthermore, the methodology’s models strike a balance between detail and clarity in notation,

supporting readability and making it easier for readers to understand the functionalities of

individual elements.

The room for enhancement could potentially be found in the comprehensiveness and the

development support. By incorporating more design elements catering to critical aspects such as

cloud solutions and security components, the methodology could offer more substantial guidance,

aiding developers with clearer insights during the implementation phase. Moreover, it would be

interesting to see the introduced elements of the DC-Bus, and the DC-Engine expanded for

different types of communication, for instance, messaging queues.

Appendices

L

Appendix D.3. Expert 2 Feedback

Evaluator Details

1. Name: David Chan Fee

2. Email: chanyod1@westminster.ac.uk

3. Bio: Research Associate

David Chan Fee obtained a B.Sc. in Computer Science with First Class Honours from the

University of Westminster in 2018. During the undergraduate program, David worked as a Support

Staff member at the Sherpa Event Support & Logistics from 2016 – 2017. Then, he worked as a

student helper, research assistant, and KTP Associate at Lumina Learning at the University of

Westminster. Since 2020, David has been working as a Research Associate at the University of

Westminster.

During David’s employment, he worked as a software engineer, developing web-based systems

using various technologies and tools. Recently, he contributed to engineering an online graph-

based learning tool called “SMARTEST” as the team lead and a full stack developer.

4. LinkedIn (or similar professional) profile: https://www.linkedin.com/in/david-c-

2533b3148/

5. Do you give consent to publish the details provided in this section? (yes/no) (if there is

any detail you don’t want to publish, please mention): Yes

Element Names and communication channels

Diagram and its

elements
Usefulness Justification

Element names (label) 4.9 All elements seem to be appropriately named. Regarding

ViewPartOBJ and SharedViewPartOBJ, to me, the “OBJ”

wording seemed a bit too abstract and I thought another more

descriptive word could be used instead, like “Region” or

“section”; I may be wrong as I may not have as clear a picture

behind the use of OBJ. I also think the use of capitalization and

abbreviation of “Object” to “OBJ”, doesn’t quite fit in with the

rest of the naming style used for the other elements.

Communication channels

Appendices

LI

-Standard

communication

5
Simple, straightforward.

-Delta communication 5 Simple, straightforward. Different enough to be

distinguishable from the Standard communication notation.

Based on my own experience, I’m unsure of the meaning

behind the “delta” wording and how it relates to the nature of

the communication (which covers AJAX communication, but

also socket communication, I assume). This may be something

to consider when introducing this aspect to new developers of

a similar expertise/experience level of my own (e.g. adding in

parentheses the nature of the communication beside the “delta

communication” label; I also haven’t deducted points as this is

probably more of a difference in our personal experiences than

a general issue with the label).

-View-controller

communication

5
Simple, straightforward.

-Method call and

return

5
Makes sense, nice and simple.

High-level Model and Elements Evaluation

Diagram and its elements Usefulness Justification

Architecture diagram 5 It’s easy to understand what the diagram is describing. I

like that the components of each layer are visually

organised into tiers, describing intuitively that components

in the same tier share similar roles. I also like that the

architecture is able to be modelled to this level using just

RiWAsML notation, where it would be less clear on how

to approach this with base UML. The role, technology

used and medium for each component is succinctly

described in a predictable and easy to understand way.

Tier element 5 Visually groups platforms together, clarifying which

platforms are related and which are not. The annotations

help understand a platform’s role and where that platform

is located within the overall architecture.

Appendices

LII

Platform element 5 Gives context on the software environment/framework

and hardware platform an architecture element will be

running on.

Application element 5 Helps with understanding the type of package an

application will be delivered through.

Views element 5 Quite clear on the type of view being used, and what they

are for. It’s nice to know that there is a bi-directional

communication channel between the views and the client

controller, and also, when communication doesn’t have to

go through the client controller (in the case of the

ClientWebPages view, which I assume may represent

form submission).

Components element 5 Gives details on the type of component. It’s helpful to

know what qualifies as a “component”, differentiating

between views and connectors. Using this element also

helps to clearly and concretely capture communication of

one component to another element, which helps provide

lower-level communication details between two

platforms. It’s also helpful that components may also

contain other elements (like the connector in the controller

component).

Connectors element 5 Makes it easy to understand which part of an element (e.g.

controller, application, platform) will be mainly

responsible for communicating and interfacing with other

elements within the architecture.

Other elements (database,

external services)

5 These elements are not visually grouped with the main

body of the architecture diagram, making it easy to

understand these are external components.

Low-level Models and Elements Evaluation

View-Navigation Diagram

Diagram and its

elements
Usefulness Justification

View-navigation

diagram

5 The diagram provides an easy to understand view of how to

navigate between views. Going into more detail, it’s helpful to

Appendices

LIII

know which pages use the public menu and which use the

registered user menu, and which pages will have which menu

present on their page. The different shapes of the elements also

help to visually distinguish them apart from each other. The

overall visual organisation in the diagram which helps to group

together the pages for different menus.

View element 5 Makes clear the type of view and the view’s name.

View package element 5 Makes it clear that there are multiple entrypoints to a view, and

helps to distinguish itself from a “View” element.

Viewpart element 5 Makes it clear which view parts are for specific user groups

(e.g. which view parts are for admins, which view parts are for

teachers) and as a result, also which view parts are for all users.

SharedViewpart 5 Makes clear which view parts are shared between different

groups of users and the name and role of the view part.

SharedViewpartOBJ 5 There to just make clear which SharedViewParts are present

within which webpages, and providing just enough

information without detailing all the smaller subparts of that

SharedViewPart.

ViewI/ViewO/ViewIO 5 This group of elements make clear what is intended for input,

output and both input and output.

View Diagram and Controller Diagram

Diagram and its

elements
Usefulness Justification

View diagram 5 Annotations make it easy to understand which ViewI elements

map to which controller methods. These annotations also don’t

seem unobtrusive if you don’t know what they mean

beforehand. The text box is nice for adding overall context to

the diagram.

-View element 5 Nice as it groups all view-related parts together and describes

the type of view and its name.

-View package

element

5 Found it helpful to know that the ViewI elements are also a

part of another view, helping to indicate that they will most

likely be handled by the same controller or in a similar manner.

Appendices

LIV

-Viewpart element 5 Makes it clearer which view parts are for specific user groups

and indirectly, which view parts are for all user groups.

-

ViewI/ViewO/ViewIO

5 Helps to clarify which view parts are interactive and which are

not (and which views contain interactive and non-interactive

elements).

Controller diagram 5 Familiar format to base UML; easier to understand and parse

as a result. Annotations make it easy to understand which

ViewI maps to which controller method and if certain methods

happen in sequence.

-Controller class

element

5 Like base UML, so easier to understand. The “x : y : z”

annotation helps clarify the role, type and name of the

controller.

View-Controller

diagram (as a single

diagram)

5
It’s easy to see which parts are for the view and which parts

are for the controller.

DC-Bus Diagram and Endpoints Collection Diagram

Diagram and

its elements
Usefulness Justification

DC-Bus diagram

and Endpoints

collection

diagram

5 Nice to see an overview of how the routes map together and the

routes for each user group.

-Connector

element

5 Gives a nice hierarchical overview of how the routes map

together. Simple, but serves a purpose.

-Endpoints class

element

5 Like base UML, so generally easy to understand.

Appendices

LV

Application-Model Diagram and Model Class Diagram

Diagram and

its elements
Usefulness Justification

Application-

model diagram

and Model

class diagram

5 Have a generally clear idea of which endpoints and ServerModels

will map to which components.

-Component

element

5 Nice to see how different components map together in the overall

system. Follows base UML conventions, so could understand

those parts.

-Class element 5 Easy to understand which endpoints map to which ServerModel

methods.

View-Process Sequence Diagram

Diagram and

its elements
Usefulness Justification

View-process

sequence

diagram

5 The diagram gives a nice comprehensive overview of the login

process. The trigger communication channel from the login button

is a nice detail. The length of the lifelines also make sense.

-Application

element

5 Nicely segments different parts into groups, making it clear which

parts belong to which application. The colour coding is

appreciated. The annotation at the top also makes it clear the type

of application being described and the name of the application.

-View element 5 Easy to understand the type of view and the view’s name.

-Controller

element

5 Easy to understand the type of controller and the controller’s

name.

-Endpoints

element

5 Easy to understand which user group the endpoint collection is for

and the endpoint collection’s name.

-Model class

object element

5
Easy to understand the type of object and what it will be used for.

Appendices

LVI

Evaluation of the RiWAs Design Methodology (RiWAsDM)

Quality attribute Opinion Justification

Simplicity 5 I felt that the RiWAsDM was able to capture details

and aspects of software architecture that is not

normally captured with base UML (e.g. Tiers and

Platforms). It also did so in a generally simple and

non-obtrusive way (e.g. the connectors help avoid

visual complexity as they avoid drawing physical

connections across a diagram from one remote point

to another).

Comprehensiveness 5 Based on my experience, I can’t say what the

RiWAsDM may have missed, and so, I assume that it

covers a good range of aspects for helping build and

model RiWAs. I liked that the rules and guidelines

covered a basic set of scenarios, but also went into

more specific aspects like a view diagram only having

to contain the GUI elements necessary to describe a

functionality, or that a view doesn’t need to have a

corresponding controller, where appropriate. The

numbered connectors also help cover and treat things

like function execution order neatly, which goes to

show it is well-designed and fits in with the overall

philosophy of this design methodology easily. Just for

comprehensiveness, in Appendix 9, perhaps the

“Label” element in the table could have some

descriptive text in the “Type” column.

Learnability 4.9 New notation was relatively easy to grasp (e.g.

numbered connectors, the dotted styling for return

arrows in sequence diagrams). I have given a rating of

less than 5 as I think the arrow notations should be

more visually distinct to help make them easier to

remember, and therefore, learn. Based on my

experience, I’m not sure of clear way to achieve this,

however.

Readability/understandability 4.9 The notation became easier to understand the more

diagrams I looked at. Despite not understanding what

each bit of notation meant (e.g. the Trigger

communication channel notation), this did not

Appendices

LVII

interfere with the overall understanding of diagrams

(i.e. unknown notation was not visually distracting and

the nature of an action could be gleaned from other

details – e.g. a button usually triggers a call via an

event, despite the notation being able to provide these

details if understood). When more familiar with the

notation, the small details are definitely appreciated –

the trigger communication channel is a nice

distinction, as it helps highlight when communication

starts, as opposed to just showing communication

flow, and the numbered connectors provide a clean

way of relating two remote regions together, as it

avoids awkwardly drawing across the diagram, which

would interfere with other elements. The numbered

connectors also provide a succinct way to describe

function execution order, which looks better than

using notes, for example. Regarding the score being

less than 5, I think the rules and guidelines section of

Appendix 10 would benefit from having visual

examples positioned beside them to help communicate

and clarify the meaning of certain points. Also in

Appendix 2, when first experiencing the variety of

arrow notation (without the aid of the reference) I

found it wasn’t clear and a bit confusing why some

arrows were bold and why some also used a

combination of bold and a different arrow head type;

because of this, I feel that if visual distinctions are

being made between arrows, that a non-obtrusive

visual aid may be helpful (e.g. a key), or, the visual

distinction should be clear enough so that anyone

looking at the diagram with fresh eyes could guess it

easily (although in a project setting, perhaps team

members will have enough knowledge and context to

know what certain parts in the diagram will do and

how they will work, but this also means context is an

important part to provide alongside diagrams,

perhaps). In Appendix 3, I thought the element groups

could be spaced further apart from each other, to help

with easier initial parsing, and to also make notations

Appendices

LVIII

like the numbered connector and the arrow notation

from login button to dashboard, easier to notice.

Development support 5 Based on experience with the RiWAsDM in applying

changes to SMARTEST, these can generally be

mapped one-to-one – although I acknowledge that this

experience is limited and that the RiWAsDM should

be tested against more and different types of RiWAs

to get a more accurate gauge of its scope and

applicability.

Integrability 5 The RiWAsDM was able to be integrated with

SMARTEST on some level despite not being used for

original development. I can see the RiWAsDM being

integrated smoothly within RiWA software

development, using diagrams appropriate for each

stage of the software development life cycle (e.g.

using higher-level diagrams like an Application-

Model Diagram at early stages of development and a

View-Controller Diagram for later stages of

development).

Overall feedback

Overall rating on the RiWAsML/RiWAsDM 5

Overall feedback and justification.

The RiWAsDM provides a more detailed and succinct way to model RiWAs than basic UML –

e.g. aspects such as mapping view GUI elements to controller functions are handled elegantly with

numbered connectors. The DC-Bus/DC engine helps to capture the AJAX aspect of modern

RiWAs and distinguish it from regular HTTP communication; this also helps to endorse good

software design, especially at the stage of mapping design to development, by clearly abstracting

AJAX-based functionalities as key aspects of the overall archtecture. Although the meaning of

some notation is not immediately clear (e.g. the various arrow notations), this does not affect the

general understanding/communication of a diagram and can be supplemented by having a

reference at hand when viewing a diagram.

Appendices

LIX

Appendix D.4. Expert 3 Feedback

Evaluator Details

1. Name: Uthpala Samarakoon

2. Email: Uthpala.s@sliit.lk

3. Bio:

Uthpala Samarakoon obtained a B.Sc. (Hons) in Information Technology in 2007 from the Sri

Lanka Institute of Information Technology. She obtained a M.Sc. in Information Management in

2010 from the Sri Lanka Institute of Information Technology. Uthpala submitted a thesis on the

title Incorporating Usability Factors in the Digital Didactical Design of Tablet-based Learning in

Early Primary Education in 2024 to complete an M.Phil. at the University of Colombo, School of

Computing, Sri Lanka.

Uthpala has been working as a lecturer and a senior lecturer in the field of information technology

and software engineering since 2007 at the IT department of the Sri Lanka Institute of Information

Technology. She teaches UML-based software design and has supervised undergraduate research

projects in software engineering for over ten years.

Uthpala Samarakoon’s research interests are on E-Learning, HCI and their applications, IT

Education, and Knowledge Management.

4. LinkedIn (or similar professional) profile: https://www.linkedin.com/in/uthpala-

samarakoon-76a51439/

5. Do you give consent to publish the details provided in this section? (yes/no) (if there is

any detail you don’t want to publish, please mention): Yes

Element Names and communication channels

Diagram and

its elements
Usefulness Justification

Element names

(label)

5 The clear, UML-compliant naming structure (Element, Type,

Name) simplifies understanding individual elements within

complex diagrams.

Communication channels5

-Standard

communication

5 Simple, familiar arrow symbols ensure communication direction

which is immediately grasped by readers.

Appendices

LX

-Delta

communication

5 Arrow symbols directly convey communication direction for most

readers. So, clearly defined and easily understandable

-View-

controller

communication

5 The interaction design for view controllers offers a fresh and

innovative approach, different from the conventional

communication styles.

-Method call

and return

5 Both the method calls and returns are demonstrably clear,

facilitating an effortless understanding of the execution flow.

High-level Model and Elements Evaluation

Diagram and

its elements
Usefulness Justification

Architecture

diagram

5 Architecture diagrams are important to visualize the structure,

components, and interactions within a web application. It included

various aspects of development, maintenance, and communication.

Introducing an architectural diagram for UML is important. Hence,

web developers can get a concise overview of the system’s design.

Tier element 5 By dividing the system into separate layers (tiers), the diagram

visually represents the major functional areas and their

interactions. This makes it easier to understand the overall

architecture and how different parts work together.

Platform

element

5 Platform elements in an architectural diagram play a crucial role in

showcasing the foundation upon which the entire system operates.

This element displays the underlying technologies and software

components that support the application. Hence, it is very useful.

Application

element

5 The application element is the foundation of an architectural

diagram, representing the core business functionality. The

application element visually shows the system’s intended

functionalities, clearly communicating its purpose and value to

stakeholders. Hence, it is useful to understand how the system

interacts with users, processes data, and delivers its intended

outcomes.

Views

element

5 The "views" element in an architectural diagram carries significant

importance as it provides different perspectives on the system. It

provides for the needs of varied stakeholders and is useful to get a

Appendices

LXI

comprehensive understanding of its structure and functionality.

Each view focuses on specific aspects and simplifies understanding

for different audiences.

Components

element

5 This serves as the building blocks of the system, playing a key role

in visualizing its structure, functionality, and interactions.

Components break down the system into smaller, well-defined

units, each compressing specific functionalities and

responsibilities. This helps in understanding complex

systems, promotes better maintainability, and simplifies

development and modification processes.

Connectors

element

5 This conveys how different components interact and communicate

within the system. Connectors clearly illustrate the relationships and

dependencies between components. This is crucial for

understanding how data flows throughout the system, identifying

potential bottlenecks, and ensuring smooth communication

pathways. So I find it this is useful.

Other

elements

(database,

external

services)

5 These elements carry significant importance for understanding the

system’s data storage, retrieval, and interaction with external

entities. Databases represent the system’s persistent data storage

mechanism. Knowing the chosen database technology and external

dependencies is useful for decision-making regarding performance

optimization, cost management, and potential scalability

limitations.

Low-level Models and Elements Evaluation

View-Navigation Diagram

Diagram and its

elements
Usefulness Justification

View-navigation

diagram

5 View navigation in a web application plays a significant

role in user experience (UX) and the overall success of the

app. It helps users by guiding them to the information and

functionalities they need efficiently and without

frustration. Currently, UML does not support view

navigation diagrams. Hence this will support developers to

get a better idea about different views of the system and

relationships.

Appendices

LXII

View element 5 This newly introduced view navigation UML diagram

shows a good level of visual hierarchy and grouping of

elements. The diagram covers the main view elements and

their relationships too. Different users

(developers, business analysts, managers) have different

needs and levels of technical expertise. Views ensure

specific information is tailored to each user

group, enhancing comprehension and usability.

View package element 5 The view package element serves as a container for

grouping related views that share a common purpose. This

helps to organize the diagram and improve its

clarity, especially for complex systems with many views.

Hence, this is useful to improve the clarity of the diagram.

Viewpart element 5 The viewpart element is useful to identify a view for a

particular actor. So in development, it is easy to get an idea

about the different views of various actors.

SharedViewpart 5 This combines multiple sharable views for a particular

actor. This is useful for identifying the views that belong

to major user categories. It improves the clarity of the

diagram too.

SharedViewpartOBJ 2 The purpose of this is not very clear.

ViewI/ViewO/ViewIO 5 These elements are useful to identify the input and output

of different views and the navigation between them.

View Diagram and Controller Diagram

Diagram and its

elements
Usefulness Justification

View diagram 5 View diagrams in rich web app development are like

blueprints for its UI. They visually communicate about

layout, functionality, and data flow, ensuring clear

understanding. This increases collaboration, and guides for

a user-friendly, efficient application. Hence, introducing a

view diagram to UML is a good attempt.

-View element 5 Provide a direct idea about an element’s name and type.

This helps to understand the entire system.

Appendices

LXIII

-View package

element

5 It enables the grouping of views based on shared

characteristics, ultimately outlining which category each

view belongs to. This approach fosters the development of

modular and scalable systems, where individual views play

distinct roles within a clearer functional structure.

Understanding these relationships becomes effortless,

leading to a more intuitive and maintainable system.

-Viewpart element 5 The Viewpart element offers a clear and concise way to

map out the core GUI components, their purpose within the

app, and the user roles interacting with them. This insight

proves invaluable for representing systems with diverse

user groups and varying actions.

-

ViewI/ViewO/ViewIO

5 These elements offer a value in various input and output

actions linked to the view they represent. These elements

significantly enhance development support by providing a

clear picture of the information flow, making development

more efficient and comprehensive.

Controller diagram 5 Controller diagram is important to understand the

system. They show which events trigger specific

responses, making development and understanding much

easier.

-Controller class

element

5 Controller classes offer a deep understating about view

actions, enhancing comprehension, readability, and

development support by clarifying which actions each

view element triggers.

View-Controller

diagram (as a single

diagram)

5 A View-Controller Diagram is important in web

application development due to its ability to visually

represent the relationships and interactions between the UI

components (views), the application logic (controller), and

the underlying data (model).

Appendices

LXIV

DC-Bus Diagram and Endpoints Collection Diagram

Diagram and its

elements
Usefulness Justification

DC-Bus diagram

and Endpoints

collection

diagram

5 Introducing a DC-Bus Diagram for rich web apps could bridge

the gap between data flow and UI by visually mapping how

backend events trigger specific UI updates, improving

communication, optimizing performance, and simplifying

maintenance. This will lead to smoother, more dynamic user

experiences. Hence introducing this will be an added advantage

for rich web application development.

-Connector

element

5 Breaking the API down into smaller, well-defined classes and

visualizing them clearly can make it much easier to use and

understand.

-Endpoints class

element

5 Analysis of the "endpoint class element" indicates its potential as

a suitable model for capturing the common characteristics of a

certain class of endpoints.

Application-Model Diagram and Model Class Diagram

Diagram

and its

elements

Usefulness Justification

Application-

model

diagram and

Model class

diagram

5 Introducing an Application-Model Diagram which wrapped the class

diagram by its high-level component element for rich web apps could

improve communication between user interactions, UI updates, and

underlying data and collaboration. This streamlines development, and

leads to more effective and maintainable applications.

-

Component

element

5 This acts as a map, providing users with a comprehensive overview of

the different classes and their connections, and enhancing their

navigational abilities within the system.

-Class

element

5 This element could simplify the implementation of the designed

classes by providing developers with a clearer understanding of each

class’s functionalities and expected interactions.

Appendices

LXV

View-Process Sequence Diagram

Diagram

and its

elements

Usefulness Justification

View-

process

sequence

diagram

5 I strongly believe sequence diagrams are powerful tools for

visualizing and understanding system communication. They excel at

both clarifying interactions between different components and

digging deeper into the details of exchanged messages. This makes

them invaluable for both representing and explaining complex

system flows.

-

Application

element

5 The diagram identifies the "Application" as a fundamental

component, and further subdividing it into segments seems

beneficial for both simplifying and enriching our understanding.

-View

element

5 By using the "View element," we can clearly visualize how different

actors interact with the application, including the sequence of steps

and exchanged messages involved.

-Controller

element

5 Examining controllers find out the specific events driven by each

view and how they interact with relevant services.

-Endpoints

element

5 Endpoints act as communication gateways, offering critical

information about the APIs used within the system. This detailed

view ensures smoother implementation and a deeper understanding

of system interactions.

-Model

class object

element

5 By examining model class objects, we gain insights into the

communication sequence and the structure of the information

expected in return.

Evaluation of the RiWAs Design Methodology (RiWAsDM)

Quality attribute Opinion Justification

Simplicity 5 Be able to explain

Comprehensiveness 5 Be able to explain

Learnability 5 Be able to explain

Readability/understandability 5 Be able to explain

Appendices

LXVI

Development support 4
It is difficult to evaluate this attribute only by

looking at the given examples.

Integrability 4
It is difficult to evaluate this attribute only by

looking at the given examples.

Overall Feedback

Overall rating on the RiWAsML/RiWAsDM 4.5

This methodology excels in clarity, organization, and usability thanks to its systematic approach,

diverse models, and intuitive notation. However, it could benefit from more complex examples,

broader development support (cloud, security), and expanded communication mechanisms for

elements like the DC-Bus. While UML familiarity eases learning, additional guidance would be

helpful.

Overall, this new language is clear and can be understood easily. Newly introduced diagrams

enhance the usability and applicability of UML-based diagrams to rich web app development.

Glossary

LXVII

Glossary

A

Adoptability

[1st occurrence] .. 4

[context] ... 72

[general] ... 34

Agile Model-Driven Development (AMDD)

[1st occurrence] .. 4

[detailed] .. 28

AppController element

[definition] .. 82

Application element

[1st occurrence] .. 42

[definition] .. 79

AppModel element

[definition] .. 83

Architectural Description Language (ADL)

[detailed] .. 31

[review] .. 50

Architectural elements

[detailed] .. 31

Architectural style/software architectural style

[1st occurrence] .. 2

[detailed] .. 31

[review] .. 46

Architecture/software architecture

[1st occurrence] .. 2

[detailed] .. 30

C

Container/section elements

[definition] .. 88

D

Delta-Communication (DC)

[1st occurrence] .. 2

[definition] .. 40

[detailed] .. 39

Design approach

[1st occurrence] .. 29

[detailed] .. 32

Distributed system

[1st occurrence - detailed] 38

[definition] .. 38

DSML

[1st occurrence] .. 2

[detailed] .. 36

E

EndpointsCollection element

[definition] .. 92

Engineering approach

[1st occurrence] .. 8

[detailed] .. 27

G

GUI element

[definition] .. 87

H

High-level component

[definition] .. 82

High-level Connector element

[definition] .. 83

High-level design

[1st occurrence] .. 2

[detailed] .. 30

High-level Views element

[definition] .. 84

Glossary

LXVIII

I

Input/output elements

[definition] .. 87

Integrability

[1st occurrence] .. 6

[context] ... 74

[general] ... 34

L

Low-level design

[1st occurrence] .. 2

[detailed] .. 32

M

Meta-model

[1st occurrence] .. 2

[detailed] .. 35

Method

[1st occurrence] .. 1

[definition] .. 26

[detailed] .. 25

Methodology

[1st occurrence] .. 1

[definition] .. 27

[detailed] .. 26

Models and model-elements

[1st occurrence] .. 2

[detailed] .. 33

O

OMG’s Metamodel Hierarchy

[1st occurrence and detailed] 35

P

Platform element

[definition] .. 81

Popup/toggle elements

[definition] .. 88

R

Rich Web-based Application (RiWA)

[1st occurrence] .. 2

[definition] .. 39

[detailed] .. 37

S

Software design method/methodology

[1st occurrence] .. 2

[detailed] .. 29

Software designing/modelling

[1st occurrence] .. 2

[detailed] .. 29

T

Tier element

[definition] .. 80

U

UML extension

[1st occurrence] .. 7

[detailed] .. 36

UML profile

[1st occurrence] .. 2

[detailed] .. 36

Usability

[1st occurrence] .. 5

[context] ... 73

[general] ... 34

V

View element

[definition] .. 84

Viewpart element

[definition] .. 89

Glossary

LXIX

W

Web-based application

[1st occurrence] .. 2

[definition] .. 38

[detailed] .. 38

