

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

SZTAKI desktop grid: building a scalable, secure platform for
desktop grid computing.

Attila Csaba Marosi1
Gábor Gombás1

Zoltán Balaton1
Péter Kacsuk1
Tamás Kiss 2

1 MTA SZTAKI, Computer and Automation Research Institute of the
Hungarian Academy of Sciences
2 School of Informatics, University of Westminster

This is a reproduction of CoreGRID Technical Report Number TR-0100, 28
August 2007, and is reprinted here with permission.

The report is available on the CoreGRID website, at:

http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0100.pdf

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch.
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

SZTAKI Desktop Grid: Building a scalable,
secure platform for Desktop Grid Computing

Attila Csaba Marosi, Gábor Gombás,
Zoltán Balaton, Péter Kacsuk
{atisu, gombasg,

balaton, kacsuk}@sztaki.hu

MTA SZTAKI, Computer and Automation Research Institute
of the Hungarian Academy of Sciences
H-1528 Budapest, P.O.Box 63, Hungary

Tamás Kiss
kisst@wmin.ac.uk

Centre for Parallel Computing, University of Westminster
115 New Cavendish Street, London W1W 6UW, UK

CoreGRID Technical Report
Number TR-0100
August 28, 2007

Institute on Architectural Issues: Scalability,
Dependability, Adaptability

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework Programme

Project no. FP6-004265

SZTAKI Desktop Grid: Building a scalable,
secure platform for Desktop Grid Computing

Attila Csaba Marosi, Gábor Gombás,
Zoltán Balaton, Péter Kacsuk
{atisu, gombasg,

balaton, kacsuk}@sztaki.hu

MTA SZTAKI, Computer and Automation Research Institute
of the Hungarian Academy of Sciences
H-1528 Budapest, P.O.Box 63, Hungary

Tamás Kiss
kisst@wmin.ac.uk

Centre for Parallel Computing, University of Westminster
115 New Cavendish Street, London W1W 6UW, UK

CoreGRID TR-0100

August 28, 2007

Abstract

The Desktop Grid model harvests unused CPU cycles of connected computers. In this report we present a concept
how separate Desktop Grids can be used as building blocks forlarger scale grids by organizing them in a hierarchical
tree. We present a prototype implementation and show the challenges and security considerations we discovered. We
describe methods and give solutions for enhanced security to satisfy the requirements for real-world deployment.

1 Introduction

Contrary to traditional grid [1] systems where the maintainers of the grid infrastructure provide resources where users
of the infrastructure can run their applications, desktop grids provide the applications and the users of the desktop grid
provide the resources.

The common architecture of desktop grids typically consists of one or more central servers and a large number
of clients. The central server provides the applications and their input data. Clients join the desktop grid voluntarily,
offering to download and run tasks of an application with a set of input data. When the task has finished, the client
uploads the results to the server where the application assembles the final output from the results returned by clients.

A major advantage of desktop grids over traditional grid systems is that they are able to utilize non-dedicated
machines. Besides, the requirements for providing resources to a desktop grid are very low compared to traditional
grid systems using a complex middleware. Thus, a huge amountof resources can be gathered that were not available
for traditional grid computing previously. Even though thebarrier may be low for resource providers, deploying a

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

1

desktop grid server is a more challenging task because a central server creates a central point of failure and a potential
bottleneck, while replicating servers requires more efforts.

Users of scientific applications are usually only concernedabout the amount of computing power they can get
and not about the details how a grid system delivers this computing power. Unfortunately existing applications may
have to be modified in order to run on desktop grid systems which makes desktop grids less attractive for application
developers than traditional grid systems.

Based on the environment where the desktop grid is deployed we can distinguish between two different desktop
grid flavors.

Global Desktop Grids Global Desktop Grids (also known as Public Desktop Grids or Public Resource Computing)
consist of a server which is publicly accessible over the Internet, and the attached clients are offered by their owners
to help out projects they sympathize with. There are severalunique aspects of this computing model compared to
traditional grid systems. First, clients may come and go at any time, and there is no guarantee that a client which
started a computation will indeed finish it. Furthermore, the clients cannot be trusted to be free of either hardware or
software defects or malicious intent, meaning the server can never be sure that an uploaded result is in fact correct.
Therefore, redundancy is often used by giving the same pieceof work to multiple clients and comparing the results to
filter out corrupt ones.

Local Desktop Grids To fill the gap between the traditional grids and the desktop grids SZTAKI introduced the
concept of Local Desktop Grids. Local Desktop Grids are intended for institutional or industrial use. Especially for
businesses it is often not acceptable to send out application code and data to untrusted third parties (sometimes, such
as for medical applications, this is even forbidden by law).Thus, in a Local Desktop Grid the project and clients are
usually shielded from the world by firewalls or other means and only known and trusted clients are allowed to offer
their resources. This environment gives more flexibility byallowing the clients to access local resources securely and
since the resources are not voluntarily offered the performance may be limited but more predictable. However, new
security requirements arise in Local Desktop Grids that require authentication of clients and servers and establishing
trust between parties.

The rest of the report is organized as follows. The next section introduces SZTAKI Desktop Grid. In Section 3
we describe our extension of BOINC to be able to support hierarchy. In section 4 we describe an enhanced BOINC
security model for hierarchy and how to further extend the model for industrial use. We present the current challenges,
limitations and our proposed solutions in Section 5. Then the conclusion section closes the report.

2 SZTAKI Desktop Grid

As we can see there is a huge difference between traditional grids and desktop grids. We also have to make a distinction
between the publicly used Global Desktop Grids and the LocalDesktop Grid concept. The SZTAKI Local Desktop
Grid [3] (or SZTAKI LDG) implements the latter. It is based onBOINC [4][16] (which aims to provide an open
infrastructure for Public Resource Computing) and is aimedto satisfy the needs of both academical institutions and
enterprises. But what if there are several departments using their own resources independently and there is a project
at a higher organizational level (e.g. at a campus or enterprise level)? Ideally, this project would be able to use
free resources from all departments. However, using BOINC this would require individuals providing resources to
manually register to the higher level project which is a highadministrative overhead and it is against the centrally
managed nature of IT infrastructure within an enterprise.

As others before us, we faced several possibilities when designing SZTAKI LDG: to develop our own solution [5],
to use other desktop grid systems and approaches like Distributed.net [15], Legion [6], JXTA [18], Entropia [7]
or XtremWeb [8]. We decided to build on BOINC, because it is a proved technology, has a large user base [9],
its open source, cross-platform and has a clean design and implementation making it the best target for third-party
enhancements [2]. SZTAKI Desktop Grid also has a Public Desktop Grid version [17] running currently with more
than 17000 registered users.

CoreGRID TR-0100 2

3 Hierarchy of Desktop Grids

One of the enhancements of the SZTAKI Local Desktop Grid is hierarchy [10]. It allows the use of desktop grid
projects as building blocks for larger grids, for example divisions of a company or departments of a university can
form a company or faculty wide desktop grid. The hierarchical desktop grid allows a set of projects to be connected
to form a directed acyclic graph. Work is distributed among the edges of the directed graph. The projects are ordered
into levels based on the distance between them and the top level.

......

Level 0
BOINC Project A

Level 1
BOINC Project B

Level 2
BOINC Project C BOINC Project D

Parent

Child / Parent

Child
Child /
Parent

Level (n-1)

BOINC Project Z Child

Figure 1: Roles in the hierarchy

Every project has a classical parent-child relationship with the others. A project may request work from a project
above (child) or may provide work for a project below (parent). The hierarchical interaction is always between a
parent and a child regardless of how many levels of hierarchyare above or below them. For a child every workunit
is originating from its parent regardless where it is originally from or from where was the input data for the workunit
fetched (although the data is not always from the parent). Itis allowed for a project to have more children and parents.
Figure 2 shows a three-level example.

The Hierarchy Client, which is a modified BOINC Core Client, is always running beside the child project. Thus at
the top level there is no need for any modifications, it is justan ordinary BOINC project. Generally, a project acting as
a parent does not have to be aware of the hierarchy, it only sees the child as one powerful client. The client reports to
the parent a pre-configured number of processors, thus allowing to download the desired number of workunits. There
can be limitations set on the server side to maximize the allowed number of workunits downloaded per client, so the
only requirement for the parent side is to set these limits sufficiently high.

The Hierarchy Client has two components (see Figure 2): a master side which puts retrieved workunits in the
database of the LDG and retrieves the completed results, anda client side which downloads workunits from the parent
and uploads results.

Using a prototype with this functionality we were able to provide basic hierarchical functionality without any other
modifications, but it had several drawbacks:

• the application binaries had to be deployed manually on eachlevel.

• since workunits refer to an application by its name and version for execution, there is no guarantee that there
won’t be name collisions between new and already deployed applications when there are a large number of
applications deployed in the hierarchy.

CoreGRID TR-0100 3

Level 0
BOINC Project

Level 1
HierarchyClient

BOINC Project

Level 2
HierarchyClient

BOINC Project

Level 1

BOINC Project

Modified CoreClient

Master side

Client side

Figure 2: The split architecture of the Hierarchy prototype. Inside the Core Client the Client side is acting as a child
by requesting work and the Master side as a parent by providing work for the project.

• work distribution is based on the local scheduling [12] method implemented in the BOINC Core Client which
is not ideal in a hierarchical setup as it was not designed forthis task.

These limitations need to be addressed in order to provide a fully-working model. In the next section we describe
how did we extend BOINC to achieve the required functionality.

4 Extending BOINC for Use in Hierarchy

Although the hierarchy prototype presented in the previoussection is very simple and was easy to implement, it had a
major drawback: applications must be installed manually atevery child level in order to be able to process workunits
originating from the parent. Overcoming this limitation also requires replacing of the security model of BOINC.

The most important factor in desktop grid computing is the trust between the clients and the project providing the
application. Allowing foreign code to run on a computer always has a risk of either accidental or intended misbehavior.
BOINC mitigates this risk by only allowing to run code that has been digitally signed by the project the client is
connected to. Clients trust the operators of the BOINC project not to offer malicious code, and digitally signing the
application provides technical means to ensure this trust relation.

Of course it is not enough to only sign the application binary, the input data must be signed as well (think of the
case when the application is some kind of interpreter and theinput data can instruct it to do just about anything).
Therefore BOINC uses two separate key pairs: one is used to sign the workunits (which in this context means the
set of input files and a link to the application binary), the other is used to sign the application code. The private key
used for workunit signing is usually present on the project’s central server, while the private key used for application
signing is usually kept at a separate location. The different handling of the private keys stems from their usage pattern:
the workunit signing key is used very often while the code signing key is seldom needed therefore it can be protected
better. This technique significantly reduces the risk of compromising the application signing key even if the machine
hosting the project is compromised, but this also means thatinstalling new applications is a manual process – which
is unfortunate for a hierarchical setup.

Therefore, solving the automatic application deployment issue presents two challenges:

• a lower-level project in a hierarchical desktop grid systemmust be able to automatically obtain an application’s
binary from its parent and be able to offer the application toits clients without manual intervention, and

• this process must not increase the risk of injecting untrusted applications into the system.

CoreGRID TR-0100 4

These requirements mean that a lower-level project can not simply re-sign the application it has obtained from the
parent, since that would require the private key to be accessible on the machine hosting the lower-level project which
in turn would significantly increase the risk of a key compromise if the machine hosting the project is compromised.

4.1 Extending the Security Model to Support Hierarchy

As discussed above the security model used by BOINC is not adequate in a hierarchical setup and a new model is
needed. The model must provide enough information for the operator of the client machine (User from now on) to
decide if a downloaded workunit should be trusted to run on the client machine or not, independent from where in
the hierarchy the workunit is originated from. The model must provide enough information for the following decision
scenarios:

1. TheUser wants to trust any workunits of applications installed locally on the BOINC project she is directly
connected to (i.e., theUser trusts the project itself). This is the original trust modelof BOINC.

2. TheUser wants to trust any workunits from a given project, regardless of how many levels of hierarchy did the
workunit travel through. This is in fact a generalization ofthe previous requirement.

3. TheUser wants to trust a specific application regardless of where in the hierarchy it is hosted and regardless of
what other applications does the hosting project offer.

Thet(〈subject〉, 〈object〉) trust relation for a workunit can be broken down to three parts:

• trusting the application code:t(User ,App),

• trusting the set of input files:t(User , Input), and

• trusting the link between the application, its inputs and the desired location of its outputs to prevent the applica-
tion from processing data that was meant for an other application: t(User , 〈App, Input ,Output〉). We will use
the shorthandWUDesc for the〈App, Input ,Output〉 triplet.

A workunitWU is trusted if all components are trusted:t(User ,App) ∧ t(User , Input) ∧ t(User ,WUDesc) →
t(User ,WU).

The trust relation is realized by digital signature verification. Therefore, each of the three classes of objectsApp,
Input andWUDesc are accompanied by one or more digital signaturesSig

X
: X ∈ {App, Input ,WUDesc},

and it is assumed thatUser has a set of trusted identities markedTrustedIDUser . Thus the trust relation becomes
t(User , X) ⇐⇒ ∃s ∈ Sig

X
: verify_sig(X, s) ∧ subject_of (s) ∈ TrustedIDUser , where thesubject_of (s) func-

tion provides the identity that created the signatures. We also allow specialAny
X

: X ∈ {App, Input ,WUDesc}
elements which satisfy the∀s : verify_sig(Any

X
, s) = TRUE . Any

X
∈ TrustedIDX means that the user does not

require a valid signature for that particular component.
We decided to use the X.509 Public Key Infrastructure, sinceit is a widely accepted and used infrastructure that

provides all the technical elements we need. Therefore, theTrustedIDUser set becomes a list of X.509 certificates.
We define 3 entities responsible for signing various components of the system. The Application Developer

(AppDev from now on) can sign application code. This kind of signature testifies that the application binary comes
from a known source and does not contain malicious code. TheProject is the administrative body of the BOINC
project and it may also sign application code testifying that said application is in fact part of the project. TheServer

is the machine where the project is hosted, and it signs inputfiles and workunit descriptors. Using the original BOINC
terms theAppDev provides the code-signing key, while theServer provides the workunit-signing key.

TheTrustedIDUser list of trusted certificates must be determined by the user, since the trust is ultimately a human
relation. This may be simplified by theProject by providing a list ofServer and optionallyAppDev certificates it
trusts – this means the user can delegate the trust to theProject . This realizes the first scenario described in 4.1. The
second scenario is realized if theProject also provides the aggregated list of certificates from all levels above it in the
hierarchy. The third scenario is realized if the user lists only the certificate of the appropriateAppDev and specifies
that she does not care about the signature ofInput or WUDesc.

CoreGRID TR-0100 5

4.2 Extending the Security Model for Industrial Needs

The previous section described a model how a user can trust work received from a hierarchical desktop grid system.
In an industrial environment however more is needed: it is not enough for the user to trust the workunit, but the project
must also trust the user before it gives out possibly confidential information. Also it is not enough just to trust the
receiving user, but the data also has to be protected from being disclosed to untrusted parties. This is a new requirement
that is not present in public projects.

Protecting the confidentiality of the data can be easily achieved. BOINC by default uses plain HTTP protocol
for communication, but it also supports the HTTPS protocol where the communication is encrypted. TheServer

certificate can be used with the HTTPS protocol to ensure thattheUser in fact talks to the server she thinks is talking
to. Although BOINC uses a simple shared-secret based authentication scheme to identify users, this authentication
applies only to interactions with the scheduler. Together with the use of HTTPS this may be adequate to prevent
unauthorized users from uploading results, but it does not prevent unauthorized users to download application code
and input data if they are able to guess the file name used on theserver.

The protection of input data from unauthorized download canbe achieved by giving every user a certificate. The
Project can act as a Certificate Authority and can sign the certificates of all authorized users. Then, the web server
that is used for downloading the input files can be configured to only allow downloading if the client authenticated
itself with a properly signed certificate.

The workunits are always signed by the server running a specific project, so the projects need a way to make their
known and accepted signing certificates available for theirclients and other projects. This is solved by an extension
to the web based interface of the BOINC project allowing to query for the certificates via the HTTP(S) protocol and
depending on the trust model described in 4.1. Although it isa simple extension on the server side the BOINC Core
Client needs modifications to be able to query for certificates.

4.3 Automatic Application Deployment

BOINC allows the creation of a workunit that refers to external servers for the input files. This means that lower-level
projects in a hierarchy do not need to install the input files locally, they may just refer to the original location of the
files in the workunit description. However due to security considerations BOINC does not allow to refer to outside of
the project for application binaries, they must always reside on the project’s server. Thus, lower-level (child) projects
must deploy all applications whose workunits they offer locally.

The automatic deployment of applications presents two problems. The first problem arises from the need to
properly sign the binary and is solved by the introduction oftheAppDev role as described in the previous section.
If the users have configured theirTrustedIDUser sets to contain the appropriate certificate of theAppDev , then the
project does not need to sign the application binary, thus its secret key is not needed for application deployment.

The second problem arises from the fact that BOINC uses the〈AppName ,Version〉 tuple to identify applications
and in a complex hierarchy it is possible that at different levels different applications are installed under the same
name. This problem can be solved by automatically renaming the application when a workunit is transferred from
a parent to lower level child project. Using an Universally Unique Identifier (UUID) as the new application name
ensures that there will be no name collisions.

For the following we assume that the application consists ofjust a single binary. Compound applications or
applications with accompanying shared libraries are not considered in this report.

The hierarchy client keeps track of the name mapping of the application between parent projects and child project.
Such a renaming is possible because on the sever side only theworkunit-generating master application cares about the
name of the application, and in this case this master application is the link between the members of the hierarchy and
therefore has full control. The UUID is generated by the hierarchy after downloading it from the parent project, before
registering at the child project. Additionally, the following requirements have to be met for the application registration
in a Hierarchical Desktop Grid:

• The registration method should be consistent with the original registration method, allowing already deployed
projects to be added to a hierarchy without any modification and any project to leave the hierarchy anytime.

• Different versions of the same application should be allowed to run in parallel, since each parent may run
different version of the same application.

CoreGRID TR-0100 6

• Since each application instance is tied to a platform, the application name should be the same for all platforms,
allowing any child to query for the different platform instances of the application.

• Instances of the same application originating from different parents should be treated as different ones, to ensure
that results are reported to the appropriate parent.

The flow of the deployment is the following.

1. The Hierarchy Client periodically queries higher level projects for new applications. When a new application
is available it receives the〈App,AppName,Version ,Signatures〉 tuple identifying the application for a given
Platform .

2. The Signatures are checked against theTrustedIDProject set of the child project containing all accepted
AppDev andProject certificates.

3. The〈AppName,Version,Signatures〉 triplet is checked against the list of applications alreadyregistered for a
specific parent.

a. If found, the application is already available at the child project.

b. If not found, the Hierarchy Client creates a new mapping:〈AppName,Version,Signatures ,Parent〉 →
〈UUID , 1.0〉

4. The Hierarchy Client registers the application with BOINC using UUID as the application name and 1.0 as
application version.

The above procedure ensure that applications can still be installed manually as in a regular BOINC project and
that will not cause inconsistency between the configurationfiles of the project, the database of the project and the
Hierarchy Client. There is one significant difference though: an automatically deployed application is not signed
using the code-signing key of BOINC, instead the signature retrieved by the Hierarchy Client is used. This requires
that the Core Client requesting work (and receiving applications) is able to retrieve the certificates (depending on the
trust scenario described in 4.1) from the given project, andis able to validate the signature of the application (and the
ones of the workunits belonging to it) using the certificates.

4.4 Application Deployment and Work Distribution

This section gives an overview of the application and work distribution in the Hierarchical Desktop Grid. In our exam-
ple scenario we use the simplest setup, which consists of just two projectsProject A andProject B , one application
App and oneUser . The flow of the deployment and distribution process is the following:

1. The application developerAppDev may initially sign theApp using her secret key.

2. The certificate of theAppDev may be added, if not already done so, to the list of certificates belonging to
Project A where the application is about to be installed by the administrator of the project.

The list of certificates belonging to an entity (server, project, or client) holds all the certificates of the application
developers, projects, servers and clients accepted by the entity.

3. The application is installed by the administrator manually. This initial procedure is the same as the normal
application install process of BOINC.

4. The Project may also sign the application. This signature may either be appended to the signature of the
AppDev or it may replace the original signature if the project does not wish to disclose the origin of the applica-
tion. This step must be performed manually since the secret key of theProject should not be kept on the same
machine where BOINC is running.

5. Workunits are created by the master application and are passed to BOINC.

CoreGRID TR-0100 7

Cert

Key Application I.

Binary Signatures

Server 1

Project A

Cert

Cert List of Certs

Application I.

1.

WU1-

Result1-AI

Input

Desc

Sig-I

Sig-D

WU2-

Result1-AI

Input

Desc

Sig-I

Sig-D

...

3.

Signatures

5.

List of Certs

6.

Key

2.

Binary

4.

Key

Figure 3: Application deployment and work distribution

6. For each workunit the input data (Input) and workunit descriptions (Desc) are signed by theServer 1 (Sig − I ,
Sig − D).

At this point the results are ready to be sent to any client attached to the project. Clients may be normal BOINC
Core Clients or Hierarchy Clients.

7. TheHierarchy Client connects.Server 1 has a list of the certificates of all accepted clients. If the certificate
of theHierarchy Client is among them, it can continue to attach to the desired project running on the server.
The project has a list of certificates too, containing the certificates of the accepted clients.

8. The Hierarchy Client checks for new applications. Each application is tied to a BOINC platform (OS and
architecture combination). TheHierarchy Client will query for applications tied to each predefined platform.
The application binary and the belonging signatures are downloaded.

9. The signatures of the application binary are verified using the client’s list of certificates.Users have a
TrustedIDUser set defined, but theHierarchy Client delegates the trust to the child project, in this case to
Project B . It will accept any applicationProject B is trusting.

10. A unique name for the application is created, and theHierarchy Client stores the name mapping as described in
4.3. The unique name guarantees that there will be no name collisions in the hierarchy, and the mapping allows
theHierarchy Client to update/remove applications at the child project.Project B might add its signature to
the application, certifying the path of origin for its children.

At this point the application is deployed at the child project with the unique name.Hierarchy Client will
continue querying for new applications (checking all available platforms) and repeat this procedure (8-10) until
there are no new ones available.

11. TheHierarchy Client will now query for work for the applications deployed atProject B . The name mapping
is used in this process, since for the same application a different name is set at the child and at the parent. A

CoreGRID TR-0100 8

Server 1

Project A

Cert

Cert List of Certs

Application I.

WU1-
Result1-AI

Input

Desc

Sig-I

Sig-D

WU2-
Result1-AI

Input

Desc

Sig-I

Sig-D

...

Signatures

Server 2 Cert Key

Hierarchy Client Project B List of Certs

<UUID>
SignaturesBinary

Cert Key

WU1-
Result1-AI

Input

Desc

Sig-I

Sig-D

Cert Key

List of Certs

List of
Certs

Application II. - Local

SignaturesBinary

Key

WU1-
Result1-AI

8.

I, D, S-I,
S-D

Key

Binary

7.

List of Certs

9.

10.

11.

12.

Figure 4: Application deployment and work distribution

successful query will fetch a result, which consists of one or more input files, their signatures, and a workunit
description (it is the same for each result created from the same workunit) and its signature.

The signatures of the input files and workunit descriptions (Sig − I , Sig − D) are checked against the
TrustedIDProject set of the child project.

12. From the result fetched from the parent a workunit is createdat the child project by theHierarchy Client .
Server 2 may add its signature to the inputs and descriptions belonging to the newly created workunit. From
the workunit one or more results (WU1 − Result1 − AI) are created by the child project.

At this point the application (< UUID >) and a workunit belonging to it is fully deployed at the childproject,
waiting to be downloaded by a client, which may be a HierarchyClient or a Core Client. If a Hierarchy Client
connects, the procedure is the same from step 7, if aUser (using her Core Client) connects the following steps
will be executed.

13. A User connects to the server.Server 2 andProject B has all the certificates of the accepted clients pre-
installed, meaning they can authenticate her. Afterward her Client queries for new applications belonging to
its platform, and downloads their binary and signatures.

14. The signature belonging to the downloaded application is verified that it is by one of the trusted application
developers, and if there are additional signatures, they are verified that they are by one of the trusted projects.

15. TheClient will now query for work (results) belonging to one of the applications available at the client (the
application is chosen by the local scheduling implemented in the Core Client). On success one or more results
(WU1 − Result1 − AI) consisting of input files (Input), workunit description (Desc) and their signatures
(Sig − I , Sig − D) will be downloaded. The signature(s) of the description and the input files are verified to
ensure they are signed by (one of) the trusted servers.

16. The resultWU1 − Result1 − AI is ready to be processed by the application. Processing it, will produce one
or more output files (Output). TheClient signs these files.

17. The output files and signatures (Output, Sig − O) are uploaded toProject B by theClient , and the result is
reported as finished.

18. The signatures of the uploaded files are checked if they are created by one of the trusted clients, using the list of
certificates ofProject B .

19. TheHierarchy Client notices that a result belonging to a workunit that was created by it is complete. It fetches
the output files fromProject B , so it is able to upload it to the parent when needed. It adds its signature to the

CoreGRID TR-0100 9

Cert

Key
Application I.

Binary Signatures

Server 1

Project A

Cert

Cert List of Certs

Application I.

WU1-
Result1-AI

Input

Desc

Sig-I

Sig-D

WU2-
Result1-AI

Input

Desc

Sig-I

Sig-D

...

Signatures

Server 2

Client
 -
 User

Cert Key

Hierarchy Client Project B List of Certs

List of Certs

...
App Developer

...
Project

...
Server

<UUID>
SignaturesBinary

Cert Key

WU1-
Result1-AI

Input

Desc

Sig-I

Sig-D

Cert Key

Cert Key

<UUID>
SignaturesBinary

List of Certs
List of
Certs

Application II. - Local

SignaturesBinary

List of Certs

WU1-
Result1-AI

Input

Desc

Sig-I

Sig-D

Output

Sig-O

Key

WU1-
Result1-AI

Output

Sig-O

14.

17.

18.

...
Client

Output

Sig-O-HC

I, D, S-I,
S-D

Key

Binary

Output

Sig-O-HC

Output

Sig-O 15.

List of Certs

20.

21.

13.

16.

19.

Figure 5: Application deployment and work distribution

output(s) of the result (Sig − O − HC). For the parent project theHierarchy Client is theClient processing
work, but in reality it is acting as a middle-man relaying work and binaries between the two projects.

20. TheHierarchy Client contactsServer 1 , Project A, and uploads the output files and their signatures belonging
to the result.

21. TheOutput is verified using the signature and the list of certificates byProject A.

At this point the completed result is available atProject A for validation. Workunit validation is performed only
here at the originating project, the child projects use a trivial validator which is part of theHierarchy Client , and it
is accepting all incoming results. This may be adequate in a controlled environment, where only the selected clients
allowed to return results, but this does not filter out syntactically incorrect results at the lower levels caused for example
by some hardware defect.

5 Future Work

Our enhancements improve the original security model of BOINC in many ways, and the Hierarchical Desktop Grid
allows to gather the resources of any hierarchical structured organization with less management overhead, but there
are several limitations we are aware of. In the following subsections we discuss these limitations and introduce our
proposed solutions.

5.1 Sandboxing

Another aspect of security that we did not mention yet is isolating the application from the rest of the computer it is
running on. The BOINC Core Client simplyforks a new process for each application it is executing, meaningthat the

CoreGRID TR-0100 10

application process has access to the same resources as the Core Client itself. In an industrial environment sometimes
the data on the computer (confidential information) is needed to be shielded off from the application code run by the
client. To achieve this the Core Client may be run as a restricted user which also restrict the processes created by it,
but in industrial environments the platform used is often Windows and it is sometimes not enough to only rely on the
operating system facilities to ensure isolation from the rest of the system. In a UNIX environment the sandboxing
can be easily achieved, since there are several tools like XEN [13] or chroot available. Unfortunately these tools
are not available for Windows. According to our present knowledge there is no other similar mechanism for widely
used versions of Windows (2000, 2003 or XP) either. A possible solution would be using virtualization technologies
available for all platforms like VMware [21], VirtualBox [22], Bochs [19] or QEMU [20].

We propose that instead the simplefork mechanism a lightweight virtual machine with a minimalist Linux image
should be started with a virtual machine monitor like QEMU. This would properly isolate the application from the rest
of the computer of the User. Also because the virtual machineruns Linux independent of the operating system on the
User’s computer this way only a version of the application for the Linux platform would be required that simplifies
application development.

5.2 Redundancy

Redundancy in BOINC increases the probability that every workunit will have a correct result by simply sending the
same piece of work to multiple clients and comparing the results to filter out corrupt ones.

Level 0

workunit

Level 1

workunit

Level 1 Level 1

workunit workunit

2 2 2 2 2 2 2 2 2

Figure 6: Growing number of redundant workunits in the hierarchy demonstrated with a simple three level layout.

Figure 6. shows a three level layout with the redundancy of three on each level. In this case each parent on each
level creates three copies of any workunit received. By the second level there will be nine redundant ones. This means
that nine clients will compute the same workunit instead of the supposed three (which was the requested redundancy
on the first level). If more levels are added to the hierarchy this number will exponentially grow. This problem can
be solved by forcing redundancy to be disabled on all but the top level. This way exactly the requested number of
redundant workunits will be distributed.

5.3 Scheduling

The Hierarchy Client currently uses the scheduling method in the BOINC Core Client, which is intended for clients
requesting work for themselves, not for hierarchical work distribution. Currently we are adjusting the number of

CoreGRID TR-0100 11

processors reported by the client to adjust the number of requested workunits.
Another problem comes from the fact that BOINC assigns a deadline to each downloaded workunit to prohibit

workunit-hijacking by users. The deadline is set when the workunit is downloaded and after it passes, the workunit is
considered invalid and resent to another client. The deadline is the sum of the time of download and a delay bound
value. Since each level of hierarchy is recreating workunits from those it got from its parent for distribution, the
deadline of the original workunit at the top level is not propagated. Thus the lower level projects have no information
if their workunits will be invalidated on a higher level because the deadline has already passed. A solution would
be to make the workunits carry the original deadline with them via their descriptors as they traverse the hierarchy.
This would allow to give the lower level projects some idea how to set the delay bound value of their workunits upon
registration. Ideally this value should be updated upon thedownload of the workunit, since only then is the time of
download known, and so the deadline could be set exactly.

In a hierarchy there is the problem of requesting too many or too few workunits. In the first case the clients (that
may be Core or Hierarchy Clients) won’t be able to upload thembefore the deadline passes, in the latter case some of
the clients are left without work.

Predicting the performance is not the subject of this report, but we needed a simple way to do it. Thus, we devel-
oped an own monitoring and statistics tool, which monitors the performance, number of users, hosts, sent and unsent
workunits and many more. Since our main focus is on the Local Desktop Grid environment, where the performance
should be less fluctuating, this will enable us to have a good enough guess on the number of workunits to be requested
based on the recent events. For the long term we need to develop scheduling strategies specific for the Hierarchical
Desktop Grid.

6 Conclusion

In this report we demonstrated how can stand-alone desktop grid installations be combined to form a large-scale
grid system. We described our extensions for the security model that allows SZTAKI Desktop Grid to fulfill the
additional security requirements that follow from the hierarchical setup and those required by industrial use cases.
Future work includes working on the enhancements describedin the previous section and various other tasks like
improved certificate management and certificate revocation.

SZTAKI Local Desktop Grid (LDG) represents a matured Desktop Grid technology that can be used even in
industrial environments. Components of the Hierarchical LDG will be shortly made available via the SZDG web
page [17].

7 Acknowledgments

The research and development published in this report is partly supported by the Hungarian Government under grant
NKFP2-00007/2005 (Development and Meteorological Application of New Generation Grid Technologies in the En-
vironmental Protection and Building Energy Management Project) and by the European Commission under contract
number IST-2002-004265 (FP6 NoE, CoreGRID).

References

[1] Ian Foster:The Grid: Blueprint For a New Computing Infrastructure, 1998

[2] Jakob Gregor Pedersen, Christian Ulrik Sottrup:Developing Distributed Computing Solutions Combining Grid
Computing and Public Computing, M.Sc. from University of Copenhagen, 2005

[3] Peter Kacsuk, Norbert Podhorszki, Tamas Kiss:Scalable Desktop Grid System, Technical report TR-0006, Insti-
tute on System Architecture, CoreGRID - Network of Excellence, 2005. May

[4] David P. Anderson:BOINC: A System for Public-Resource Computing and Storage. In proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing, Pages 4-10., 2004.

[5] D.S. Myers, M.P. Cummings:Necessity is the mother of invention: a simple grid computing system using com-
modity tools. In Journal of Parallel and Distributed Computing, Volume 63/5, Pages 578-589., 2003. May

CoreGRID TR-0100 12

[6] A. Grimshaw, W. Wulf:The Legion vision of a worldwide virtual computerIn the Communications of the ACM,
Volume 40, Pages 39-45

[7] Andrew A. Chien:Architecture of a commercial enterprise desktop Grid: the Entropia system, In Grid Comput-
ing: Making the Global Infrastructure a Reality, Chapter 12, Pages 337-350, 2003

[8] Franck Cappello, Samir Djilali, Gilles Fedak, Thomas Herault, Frederic Magniette, Vincent Neri, Oleg Lody-
gensky:Computing on large-scale distributed systems: XtremWeb architecture, programming models, security,
tests and convergence with grid, Future Generation Computer Systems, Volume 21/3, Pages 417-437, 2005

[9] David P. Anderson, Gilles Fedak:The Computational and Storage Potential of Volunteer Computing, In Pro-
ceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid, Pages 73-80., 2006

[10] Attila Csaba Marosi, Gabor Gombas, Zoltan Balaton:Secure application deployment in the hierarchical local
desktop grid. In Proc. of DAPSYS 2006 6th Austrian-Hungarian Workshop onDistributed and Parallel Systems,
2006. September

[11] Zoltan Balaton, Gabor Gombas, Peter Kacsuk, Adam Kornafeld, Attila Csaba Marosi, Gabor Vida, Norbert
Podhorszki, Tamas Kiss:SZTAKI Desktop Grid: a Modular and Scalable Way of Building Large Computing
Grids, Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International 26-30 March
2007

[12] David P. Anderson, John McLeod VII.:Local Scheduling for Volunteer Computing, Workshop on Large-Scale,
Volatile Desktop Grids (PCGrid 2007), 2007

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho, R. Neugebauer, I. Pratt, A. Warfield:Xen and the
Art of Virtualization. In Proceedings of the 19th ACM SOSP, pages 164-177, October2003.

[14] RFC 2818: HTTP Over TLS.http://www.ietf.org/rfc/rfc2818.txt

[15] Distributed.net, The fastest computer on earth.http://www.distributed.net/

[16] BOINC: Berkeley Open Infrastructure for Network Computing.http://boinc.berkeley.edu/

[17] SZTAKI Desktop Grid.http://www.desktopgrid.hu/

[18] Sun Microsystems, JXTA.http://www.jxta.org/

[19] Bochs: Think inside the bochs.http://bochs.sourceforge.net/

[20] QEMU: Open source processor emulator.http://fabrice.bellard.free.fr/qemu/

[21] VMware.http://vmware.com/

[22] VirtualBox.http://www.virtualbox.org/

CoreGRID TR-0100 13

