UNIVERSITY OF WESTMINSTER

"o

Yy

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

SZTAKI desktop grid: building a scalable, secure platform for
desktop grid computing.

Attila Csaba Marosi'
Gabor Gombas?
Zoltan Balaton?
Péter Kacsuk!
Tamas Kiss ?

! MTA SZTAKI, Computer and Automation Research Institute of the
Hungarian Academy of Sciences
2 School of Informatics, University of Westminster

This is a reproduction of CoreGRID Technical Report Number TR-0100, 28
August 2007, and is reprinted here with permission.

The report is available on the CoreGRID website, at:

http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0100.pdf

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.

Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch.
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

European Research Network on Foundations, Software Infrastructures and Applications

for large scale distributed, GRID and Peer-to-Peer Technologies
A Metwork of Excellence funded by the European

SZTAKI Desktop Grid: Building a scalable,
secure platform for Desktop Grid Computing

Attila Csaba Marosi, Gabor Gombas,
Zoltan Balaton, Péter Kacsuk
{atisu, gonbasg,
bal at on, kacsuk} @zt aki . hu

MTA SZTAKI, Computer and Automation Research Institute
of the Hungarian Academy of Sciences
H-1528 Budapest, P.O.Box 63, Hungary

Tamas Kiss
ki sst @vn n. ac. uk

Centre for Parallel Computing, University of Westminster
115 New Cavendish Street, London W1W 6UW, UK

N CoreGRID Technical Report
(oreGRMB— Number TR-0100
August 28, 2007

—

Institute on Architectural Issues: Scalability,
Dependability, Adaptability

CoreGRID - Network of Excellence
URL.: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the Europeam@gssion under the Sixth Framework Programme

Project no. FP6-004265

SZTAKI Desktop Grid: Building a scalable,
secure platform for Desktop Grid Computing

Attila Csaba Marosi, Gabor Gombas,
Zoltan Balaton, Péter Kacsuk
{atisu, gonbasg,
bal at on, kacsuk} @zt aki . hu

MTA SZTAKI, Computer and Automation Research Institute
of the Hungarian Academy of Sciences
H-1528 Budapest, P.O.Box 63, Hungary

Tamas Kiss
ki sst @ur n. ac. uk

Centre for Parallel Computing, University of Westminster
115 New Cavendish Street, London W1W 6UW, UK

CoreGRID TR-0100
August 28, 2007

Abstract

The Desktop Grid model harvests unused CPU cycles of comtheomputers. In this report we present a concept
how separate Desktop Grids can be used as building blockarfmr scale grids by organizing them in a hierarchical
tree. We present a prototype implementation and show tHeobas and security considerations we discovered. We
describe methods and give solutions for enhanced secarigtisfy the requirements for real-world deployment.

1 Introduction

Contrary to traditional grid [1] systems where the maintagof the grid infrastructure provide resources wheresuser
of the infrastructure can run their applications, desktagsyprovide the applications and the users of the deskidp gr
provide the resources.

The common architecture of desktop grids typically cossigtone or more central servers and a large number
of clients. The central server provides the applicatiordstaeir input data. Clients join the desktop grid voluntaril
offering to download and run tasks of an application with acgénput data. When the task has finished, the client
uploads the results to the server where the applicatiomddss the final output from the results returned by clients.

A major advantage of desktop grids over traditional grictenys is that they are able to utilize non-dedicated
machines. Besides, the requirements for providing ressuie a desktop grid are very low compared to traditional
grid systems using a complex middleware. Thus, a huge anofuesources can be gathered that were not available
for traditional grid computing previously. Even though th&rier may be low for resource providers, deploying a

This research work is carried out under the FP6 Network oeHewce CoreGRID funded by the European Commission (Conitgl-2002-
004265).

desktop grid server is a more challenging task because eteetver creates a central point of failure and a potential
bottleneck, while replicating servers requires more ¢ffor

Users of scientific applications are usually only conceralkdut the amount of computing power they can get
and not about the details how a grid system delivers this coimg power. Unfortunately existing applications may
have to be modified in order to run on desktop grid systemshumiakes desktop grids less attractive for application
developers than traditional grid systems.

Based on the environment where the desktop grid is deplogedan distinguish between two different desktop
grid flavors.

Global Desktop Grids Global Desktop Grids (also known as Public Desktop Gridsulnlie Resource Computing)
consist of a server which is publicly accessible over therlmt, and the attached clients are offered by their owners
to help out projects they sympathize with. There are sever@jue aspects of this computing model compared to
traditional grid systems. First, clients may come and gongttane, and there is no guarantee that a client which
started a computation will indeed finish it. Furthermore, thients cannot be trusted to be free of either hardware or
software defects or malicious intent, meaning the servemesver be sure that an uploaded result is in fact correct.
Therefore, redundancy is often used by giving the same piwerk to multiple clients and comparing the results to
filter out corrupt ones.

Local Desktop Grids To fill the gap between the traditional grids and the desktdgsgSZTAKI introduced the
concept of Local Desktop Grids. Local Desktop Grids areridegl for institutional or industrial use. Especially for
businesses it is often not acceptable to send out applicatide and data to untrusted third parties (sometimes, such
as for medical applications, this is even forbidden by laW)us, in a Local Desktop Grid the project and clients are
usually shielded from the world by firewalls or other meand anly known and trusted clients are allowed to offer
their resources. This environment gives more flexibilityatipwing the clients to access local resources securely and
since the resources are not voluntarily offered the perémee may be limited but more predictable. However, new
security requirements arise in Local Desktop Grids thatirecgputhentication of clients and servers and establishin
trust between parties.

The rest of the report is organized as follows. The next sedtitroduces SZTAKI Desktop Grid. In Section 3
we describe our extension of BOINC to be able to support hibsa In section 4 we describe an enhanced BOINC
security model for hierarchy and how to further extend thelebéor industrial use. We present the current challenges,
limitations and our proposed solutions in Section 5. Thencinclusion section closes the report.

2 SZTAKI Desktop Grid

As we can see there is a huge difference between traditioidsland desktop grids. We also have to make a distinction
between the publicly used Global Desktop Grids and the Lbeasktop Grid concept. The SZTAKI Local Desktop
Grid [3] (or SZTAKI LDG) implements the latter. It is based &DINC [4][16] (which aims to provide an open
infrastructure for Public Resource Computing) and is ainweshtisfy the needs of both academical institutions and
enterprises. But what if there are several departmentg tls&ir own resources independently and there is a project
at a higher organizational level (e.g. at a campus or enserpevel)? Ideally, this project would be able to use
free resources from all departments. However, using BOINE would require individuals providing resources to
manually register to the higher level project which is a higiministrative overhead and it is against the centrally
managed nature of IT infrastructure within an enterprise.

As others before us, we faced several possibilities wheigdieg) SZTAKI LDG: to develop our own solution [5],
to use other desktop grid systems and approaches like listd.net [15], Legion [6], JXTA [18], Entropia [7]
or XtremWeb [8]. We decided to build on BOINC, because it isravpd technology, has a large user base [9],
its open source, cross-platform and has a clean design goldrimentation making it the best target for third-party
enhancements [2]. SZTAKI Desktop Grid also has a Public Bgsterid version [17] running currently with more
than 17000 registered users.

CoreGRID TR-0100 2

3 Hierarchy of Desktop Grids

One of the enhancements of the SZTAKI Local Desktop Grid ésdrchy [10]. It allows the use of desktop grid
projects as building blocks for larger grids, for exampleigions of a company or departments of a university can
form a company or faculty wide desktop grid. The hierarchilesktop grid allows a set of projects to be connected
to form a directed acyclic graph. Work is distributed amdmg édges of the directed graph. The projects are ordered

into levels based on the distance between them and the tep lev

: ‘ Child / Parent)

(.) (child/
BOINC Project D Parent
Level (n-1) Y

‘ BOINC Project Z ’ [cnid

Figure 1: Roles in the hierarchy

Level O
BOINC Project A

Level 1
BOINC Project B

Level 2
BOINC Project C

Every project has a classical parent-child relationshij whie others. A project may request work from a project
above ¢hild) or may provide work for a project belowpdren). The hierarchical interaction is always between a
parent and a child regardless of how many levels of hieraachyabove or below them. For a child every workunit
is originating from its parent regardless where it is oraiypfrom or from where was the input data for the workunit
fetched (although the data is not always from the parent.dliowed for a project to have more children and parents.
Figure 2 shows a three-level example.

The Hierarchy Client, which is a modified BOINC Core Cliestaiways running beside the child project. Thus at
the top level there is no need for any modifications, it is arsbrdinary BOINC project. Generally, a project acting as
a parent does not have to be aware of the hierarchy, it only/theechild as one powerful client. The client reports to
the parent a pre-configured number of processors, thusiatide download the desired number of workunits. There
can be limitations set on the server side to maximize thevatbnumber of workunits downloaded per client, so the
only requirement for the parent side is to set these limitficéently high.

The Hierarchy Client has two components (see Figure 2): d@eanai&le which puts retrieved workunits in the
database of the LDG and retrieves the completed results aleht side which downloads workunits from the parent
and uploads results.

Using a prototype with this functionality we were able toyad® basic hierarchical functionality without any other
modifications, but it had several drawbacks:

e the application binaries had to be deployed manually on kaeth.

e since workunits refer to an application by its name and werfdr execution, there is no guarantee that there
won't be name collisions between new and already deploygticapions when there are a large number of
applications deployed in the hierarchy.

CoreGRID TR-0100 3

Level 0
BOINC Project

T

Level 1
HierarchyClient
BOINC Project

f

Level 2
HierarchyClient
BOINC Project

Level 1
Modified CoreClient

Client side

Master side

v
BOINC Project

Figure 2: The split architecture of the Hierarchy prototyreside the Core Client the Client side is acting as a child
by requesting work and the Master side as a parent by prayisark for the project.

e work distribution is based on the local scheduling [12] noetimplemented in the BOINC Core Client which
is not ideal in a hierarchical setup as it was not designethiertask.

These limitations need to be addressed in order to provid#yaworking model. In the next section we describe
how did we extend BOINC to achieve the required functiogalit

4 Extending BOINC for Usein Hierarchy

Although the hierarchy prototype presented in the prevsmesion is very simple and was easy to implement, it had a
major drawback: applications must be installed manualgvaty child level in order to be able to process workunits
originating from the parent. Overcoming this limitatios@requires replacing of the security model of BOINC.

The most important factor in desktop grid computing is thistbetween the clients and the project providing the
application. Allowing foreign code to run on a computer ajaas a risk of either accidental or intended misbehavior.
BOINC mitigates this risk by only allowing to run code thatshaeen digitally signed by the project the client is
connected to. Clients trust the operators of the BOINC piajet to offer malicious code, and digitally signing the
application provides technical means to ensure this talation.

Of course it is not enough to only sign the application bin#rg input data must be signed as well (think of the
case when the application is some kind of interpreter andriet data can instruct it to do just about anything).
Therefore BOINC uses two separate key pairs: one is usedtotise workunits (which in this context means the
set of input files and a link to the application binary), thkestis used to sign the application code. The private key
used for workunit signing is usually present on the progecéntral server, while the private key used for application
signing is usually kept at a separate location. The diffelmandling of the private keys stems from their usage pattern
the workunit signing key is used very often while the codesig key is seldom needed therefore it can be protected
better. This technique significantly reduces the risk of poomising the application signing key even if the machine
hosting the project is compromised, but this also meansrtktlling new applications is a manual process — which
is unfortunate for a hierarchical setup.

Therefore, solving the automatic application deploymssmé presents two challenges:

e alower-level project in a hierarchical desktop grid systamst be able to automatically obtain an application’s
binary from its parent and be able to offer the applicatioits@lients without manual intervention, and

e this process must not increase the risk of injecting untédiapplications into the system.

CoreGRID TR-0100 4

These requirements mean that a lower-level project canimpiysre-sign the application it has obtained from the
parent, since that would require the private key to be addessn the machine hosting the lower-level project which
in turn would significantly increase the risk of a key compisarif the machine hosting the project is compromised.

4.1 Extendingthe Security Model to Support Hierarchy

As discussed above the security model used by BOINC is naiusde in a hierarchical setup and a new model is
needed. The model must provide enough information for threaipr of the client machinefser from now on) to
decide if a downloaded workunit should be trusted to run @ndient machine or not, independent from where in
the hierarchy the workunit is originated from. The model tpprsvide enough information for the following decision
scenarios:

1. The User wants to trust any workunits of applications installed lacan the BOINC project she is directly
connected to (i.e., th&ser trusts the project itself). This is the original trust modEBOINC.

2. TheUser wants to trust any workunits from a given project, regarsligfshow many levels of hierarchy did the
workunit travel through. This is in fact a generalizatiortloé previous requirement.

3. TheUser wants to trust a specific application regardless of wherkérhierarchy it is hosted and regardless of
what other applications does the hosting project offer.

Thet(({subject), {object)) trust relation for a workunit can be broken down to threegart
e trusting the application codé(User, App),
e trusting the set of input fileg(User, Input), and

e trusting the link between the application, its inputs areldbsired location of its outputs to prevent the applica-
tion from processing data that was meant for an other agfica (User, (App, Input, Output)). We will use
the shorthandVUDesc for the (App, Input, Output) triplet.

A workunit WU is trusted if all components are trustedUser, App) A t(User, Input) A t(User, WUDesc) —
t(User, WU).

The trust relation is realized by digital signature verifica. Therefore, each of the three classes of objdgts,
Input and WUDesc are accompanied by one or more digital signat¥gs, : X € {App, Input, WUDesc},
and it is assumed thdfser has a set of trusted identities mark&dustedID y..,.. Thus the trust relation becomes
t(User, X) <= s € Sigx : verify_sig(X, s) A subject_of (s) € TrustedID yser, Where thesubject_of (s) func-
tion provides the identity that created the signatur&Ve also allow speciallny y : X € {App, Input, WUDesc}
elements which satisfy thés : verify_sig(Anyy,s) = TRUE. Anyx € TrustedID x means that the user does not
require a valid signature for that particular component.

We decided to use the X.509 Public Key Infrastructure, sihiea widely accepted and used infrastructure that
provides all the technical elements we need. ThereforeTthetedID ;.. Set becomes a list of X.509 certificates.

We define 3 entities responsible for signing various comptmef the system. The Application Developer
(AppDev from now on) can sign application code. This kind of signatigstifies that the application binary comes
from a known source and does not contain malicious code. Filagect is the administrative body of the BOINC
project and it may also sign application code testifying ##d application is in fact part of the project. Therver
is the machine where the project is hosted, and it signs iilpatand workunit descriptors. Using the original BOINC
terms thedppDev provides the code-signing key, while tierver provides the workunit-signing key.

The TrustedID ., list of trusted certificates must be determined by the ugareghe trust is ultimately a human
relation. This may be simplified by theroject by providing a list ofServer and optionallyAppDev certificates it
trusts — this means the user can delegate the trust tBrtdyect . This realizes the first scenario described in 4.1. The
second scenario is realized if tieoject also provides the aggregated list of certificates from a#leabove it in the
hierarchy. The third scenario is realized if the user lisily ahe certificate of the appropriateppDev and specifies
that she does not care about the signaturkwpfit or WUDesc.

CoreGRID TR-0100 5

4.2 Extending the Security Model for Industrial Needs

The previous section described a model how a user can truktreceived from a hierarchical desktop grid system.
In an industrial environment however more is needed: it teenough for the user to trust the workunit, but the project
must also trust the user before it gives out possibly confideimformation. Also it is not enough just to trust the
receiving user, but the data also has to be protected frongloisclosed to untrusted parties. This is a new requirement
that is not present in public projects.

Protecting the confidentiality of the data can be easilyead. BOINC by default uses plain HTTP protocol
for communication, but it also supports the HTTPS protocbére the communication is encrypted. Thever
certificate can be used with the HTTPS protocol to ensurdltieaser in fact talks to the server she thinks is talking
to. Although BOINC uses a simple shared-secret based aighton scheme to identify users, this authentication
applies only to interactions with the scheduler. Togethi¢gh the use of HTTPS this may be adequate to prevent
unauthorized users from uploading results, but it does ratgmt unauthorized users to download application code
and input data if they are able to guess the file name used @etizer.

The protection of input data from unauthorized downloadlmamchieved by giving every user a certificate. The
Project can act as a Certificate Authority and can sign the certificatall authorized users. Then, the web server
that is used for downloading the input files can be configuoeonty allow downloading if the client authenticated
itself with a properly signed certificate.

The workunits are always signed by the server running a Bp@coject, so the projects need a way to make their
known and accepted signing certificates available for ttlents and other projects. This is solved by an extension
to the web based interface of the BOINC project allowing tergifor the certificates via the HTTP(S) protocol and
depending on the trust model described in 4.1. Althoughat$gmple extension on the server side the BOINC Core
Client needs modifications to be able to query for certifieate

4.3 Automatic Application Deployment

BOINC allows the creation of a workunit that refers to extdiservers for the input files. This means that lower-level
projects in a hierarchy do not need to install the input fitesally, they may just refer to the original location of the
files in the workunit description. However due to securitpsiderations BOINC does not allow to refer to outside of
the project for application binaries, they must alwaysdesin the project’s server. Thus, lower-level (child) petge
must deploy all applications whose workunits they offeralbc

The automatic deployment of applications presents two Ipros. The first problem arises from the need to
properly sign the binary and is solved by the introductiotthaf AppDewv role as described in the previous section.
If the users have configured théeltustedID ys., Sets to contain the appropriate certificate of theyDewv, then the
project does not need to sign the application binary, trausdtret key is not needed for application deployment.

The second problem arises from the fact that BOINC useéAhe Name, Version) tuple to identify applications
and in a complex hierarchy it is possible that at differemtle different applications are installed under the same
name. This problem can be solved by automatically renanfiagpplication when a workunit is transferred from
a parent to lower level child project. Using an Universallgigue Identifier (UUID) as the new application name
ensures that there will be no name collisions.

For the following we assume that the application consistgust a single binary. Compound applications or
applications with accompanying shared libraries are nosictered in this report.

The hierarchy client keeps track of the name mapping of tipicaiion between parent projects and child project.
Such a renaming is possible because on the sever side omptkanit-generating master application cares about the
name of the application, and in this case this master agjgites the link between the members of the hierarchy and
therefore has full control. The UUID is generated by thednielny after downloading it from the parent project, before
registering at the child project. Additionally, the follavg requirements have to be met for the application redistra
in a Hierarchical Desktop Grid:

e The registration method should be consistent with the waigiegistration method, allowing already deployed
projects to be added to a hierarchy without any modificatimhany project to leave the hierarchy anytime.

o Different versions of the same application should be alibwe run in parallel, since each parent may run
different version of the same application.

CoreGRID TR-0100 6

e Since each application instance is tied to a platform, thiegtion name should be the same for all platforms,
allowing any child to query for the different platform inatzes of the application.

¢ Instances of the same application originating from difféparents should be treated as different ones, to ensure
that results are reported to the appropriate parent.

The flow of the deployment is the following.

1. The Hierarchy Client periodically queries higher level jpats for new applications. When a new application
is available it receives thedpp, AppName, Version, Signatures) tuple identifying the application for a given
Platform.

2. The Signatures are checked against th&rustedID projec+ Set of the child project containing all accepted
AppDev and Project certificates.

3. The(AppName, Version, Signatures) triplet is checked against the list of applications alresaljistered for a
specific parent.

a. If found, the application is already available at the chitdjpect.

b. If not found, the Hierarchy Client creates a new mappifwpp Name, Version, Signatures, Parent) —
(UUID, 1.0)

4. The Hierarchy Client registers the application with BOINSIng UUID as the application name and 1.0 as
application version.

The above procedure ensure that applications can still $talied manually as in a regular BOINC project and
that will not cause inconsistency between the configurdilea of the project, the database of the project and the
Hierarchy Client. There is one significant difference thougn automatically deployed application is not signed
using the code-signing key of BOINC, instead the signateteaved by the Hierarchy Client is used. This requires
that the Core Client requesting work (and receiving apfibics) is able to retrieve the certificates (depending on the
trust scenario described in 4.1) from the given project,iarable to validate the signature of the application (and the
ones of the workunits belonging to it) using the certificates

4.4 Application Deployment and Work Distribution

This section gives an overview of the application and wostriiution in the Hierarchical Desktop Grid. In our exam-
ple scenario we use the simplest setup, which consists tfijasprojectsProject A and Project B, one application
App and oneUser. The flow of the deployment and distribution process is thiefong:

1. The application developetppDev may initially sign theApp using her secret key.

2. The certificate of thedppDev may be added, if not already done so, to the list of certifcéionging to
Project A where the application is about to be installed by the adrnatis of the project.
The list of certificates belonging to an entity (server, pobjor client) holds all the certificates of the application
developers, projects, servers and clients accepted bynthg e

3. The application is installed by the administrator manualiyis initial procedure is the same as the normal
application install process of BOINC.

4. The Project may also sign the application. This signature may eitherpgpenaded to the signature of the
AppDev or it may replace the original signature if the project doaswish to disclose the origin of the applica-
tion. This step must be performed manually since the seesebkthe Project should not be kept on the same
machine where BOINC is running.

5. Workunits are created by the master application and aredassBOINC.

CoreGRID TR-0100 7

10.

11.

Application I.

(Binary)CSignatures)
3. s ~— 7 1.

Server1 (Cert) (Key mizt of Certs

Project A " |Key. _)\ List of Certs

4

WU1- (_Input D@ Sig-l)
Result1-Al (Desc) Sig-D)

5. :
»| WU2- Cinput DY Sig-I
Result1-Al (_ Desc)Y Sig-D
[...

-

Figure 3: Application deployment and work distribution

. For each workunit the input dat&{put) and workunit descriptiondfesc) are signed by th8erver 1 (Sig — I,

Sig — D).
At this point the results are ready to be sent to any clieathgd to the project. Clients may be normal BOINC
Core Clients or Hierarchy Clients.

. The Hierarchy Client connects.Server 1 has a list of the certificates of all accepted clients. If thdificate

of the Hierarchy Client is among them, it can continue to attach to the desired projening on the server.
The project has a list of certificates too, containing théifieates of the accepted clients.

. The Hierarchy Client checks for new applications. Each application is tied to dNBDplatform (OS and

architecture combination). ThEierarchy Client will query for applications tied to each predefined platform
The application binary and the belonging signatures arenttmded.

. The signatures of the application binary are verified udnegdient’s list of certificatesUsers have a

TrustedID ysr Set defined, but théflierarchy Client delegates the trust to the child project, in this case to
Project B. It will accept any applicatioProject B is trusting.

A unique name for the application is created, andiliearchy Client stores the name mapping as described in
4.3. The unique name guarantees that there will be no nari®@as in the hierarchy, and the mapping allows
the Hierarchy Client to update/remove applications at the child proje@toject B might add its signature to
the application, certifying the path of origin for its chriéh.

At this point the application is deployed at the child projedth the unique name.Hierarchy Client will
continue querying for new applications (checking all aafali¢é platforms) and repeat this procedure (8-10) until
there are no new ones available.

The Hierarchy Client will now query for work for the applications deployed@toject B. The name mapping
is used in this process, since for the same application ardiit name is set at the child and at the parent. A

CoreGRID TR-0100 8

Server 1 Cort) (Key) (Listof Certs D Server2(__Cert) (Key) Listof Certs D

Project A (_Cert) (_Key) (List of Certs 2*1 7 | | Hierarchy Client ProlectB (Cert)(Key D) (_Listof Certs >

e i] (Cert (Key | _ ~» -
o vy T T

iApphcahon I'(Binary)(Signatures): S listof gt Applicatlon W - Local

| :'\ 3 ' (Binary)(Signatures)
wui- (nput)CSig-1) \ : e T e
Result1-A_Desc)(Sig-D) - | (B|nary X&gnatures)
Wiz, e
Rosult-ADese) Sig-0) e N
:

SI D 1

12.

13.

14.

15.

16.

17.

18.

19.

Figure 4: Application deployment and work distribution

successful query will fetch a result, which consists of onenore input files, their signatures, and a workunit
description (it is the same for each result created from aingesworkunit) and its signature.

The signatures of the input files and workunit descriptidhig ¢ I, Sig — D) are checked against the
TrustedID projec: S€t Of the child project.

From the result fetched from the parent a workunit is createthe child project by thédierarchy Client.
Server 2 may add its signature to the inputs and descriptions behanigi the newly created workunit. From
the workunit one or more result$i(U1 — Result! — AI) are created by the child project.

At this point the application€ UUID >) and a workunit belonging to it is fully deployed at the chilject,
waiting to be downloaded by a client, which may be a HierarChgnt or a Core Client. If a Hierarchy Client
connects, the procedure is the same from step 7[i§a (using her Core Client) connects the following steps
will be executed.

A User connects to the servetServer 2 and Project B has all the certificates of the accepted clients pre-
installed, meaning they can authenticate her. Afterwarddignt queries for new applications belonging to
its platform, and downloads their binary and signatures.

The signature belonging to the downloaded application iffied that it is by one of the trusted application
developers, and if there are additional signatures, theyerified that they are by one of the trusted projects.

The Client will now query for work (results) belonging to one of the apptions available at the client (the
application is chosen by the local scheduling implementatié Core Client). On success one or more results
(WU1 — Resultl — AI) consisting of input files [nput), workunit description Desc) and their signatures
(Sig — I, Sig — D) will be downloaded. The signature(s) of the descriptiod #re input files are verified to
ensure they are signed by (one of) the trusted servers.

The resultWU1 — Resultl — Al is ready to be processed by the application. Processingllipreduce one
or more output files Quiéput). The Client signs these files.

The output files and signature®¢tput, Sig — O) are uploaded t@roject B by the Client , and the result is
reported as finished.

The signatures of the uploaded files are checked if they asgenl by one of the trusted clients, using the list of
certificates ofProject B.

The Hierarchy Client notices that a result belonging to a workunit that was crelhyet is complete. It fetches
the output files fromProject B, so it is able to upload it to the parent when needed. It addsdnature to the

CoreGRID TR-0100 9

Key Application I. Server2(_ Cert) (Key) (Listof Certs D
(Binary)(Signatures)

Hierarchy Client || Project B (_Cert) (_Key) (_Listof Certs D
Cert)(_Key e]
Listof ™\ g }--{-Application II. - Local
Server1 (_Cert) (_Key) (ListofCerts > . Certs .~ (Binary)(Signatures)
Project A (_Cert) (_ Key) Listof Certs > W . UUDe ———~—F—)
I - I : . |
e : | Result1-Al 1 || (Binary Xs'gnat“res):
- ! :
iApphcanon "(Binary)(Signatures D: ! g g’_g L i RS 8
! I -may & N e N el N
: 21. r Sgonc i1e. 1wui- Cinplk) Sigl)y Ouiput
wui- Cinput)CSig-l){_Output ¥ 20.]
Resul1-A Dose Y S Sig OHG 41+

Resut-AI Deso) Sig:D): 5305
Client ll List of Certs >
SR N S 14.i-- ----- .
|
_/ User 1 <UUID>)) éi)i
tures
']
' ;
List of Certs
[App Developer |[Project || Server || Client |
L. L. |- | |
T— —

Figure 5: Application deployment and work distribution

output(s) of the result{fig — O — HC). For the parent project thEierarchy Client is the Client processing
work, but in reality it is acting as a middle-man relaying wand binaries between the two projects.

20. TheHierarchy Client contactsServer 1, Project A, and uploads the output files and their signatures belonging
to the result.

21. The Output is verified using the signature and the list of certificatebyject A.

At this point the completed result is availablefatject A for validation. Workunit validation is performed only
here at the originating project, the child projects use\aatrivalidator which is part of théfierarchy Client, and it
is accepting all incoming results. This may be adequate ionéralled environment, where only the selected clients
allowed to return results, but this does not filter out syti¢atly incorrect results at the lower levels caused fomegke
by some hardware defect.

5 FutureWork

Our enhancements improve the original security model ofNBDin many ways, and the Hierarchical Desktop Grid
allows to gather the resources of any hierarchical strecterganization with less management overhead, but there
are several limitations we are aware of. In the followingsdtions we discuss these limitations and introduce our
proposed solutions.

5.1 Sandboxing

Another aspect of security that we did not mention yet isainy the application from the rest of the computer it is
running on. The BOINC Core Client simpfgrks a new process for each application it is executing, meahatghe

CoreGRID TR-0100 10

application process has access to the same resources ag¢h€lient itself. In an industrial environment sometimes
the data on the computer (confidential information) is ndedebe shielded off from the application code run by the
client. To achieve this the Core Client may be run as a reésttioser which also restrict the processes created by it,
but in industrial environments the platform used is oftemtldiws and it is sometimes not enough to only rely on the
operating system facilities to ensure isolation from th&t of the system. In a UNIX environment the sandboxing
can be easily achieved, since there are several tools likd MEB] or chroot available. Unfortunately these tools
are not available for Windows. According to our present kisalge there is no other similar mechanism for widely
used versions of Windows (2000, 2003 or XP) either. A posssblution would be using virtualization technologies
available for all platforms like VMware [21], VirtualBox B, Bochs [19] or QEMU [20].

We propose that instead the simfidek mechanism a lightweight virtual machine with a minimaligtlx image
should be started with a virtual machine monitor like QEMUWislwould properly isolate the application from the rest
of the computer of the User. Also because the virtual machins Linux independent of the operating system on the
User’s computer this way only a version of the applicationtf® Linux platform would be required that simplifies
application development.

5.2 Redundancy

Redundancy in BOINC increases the probability that evergkwioit will have a correct result by simply sending the
same piece of work to multiple clients and comparing theltesa filter out corrupt ones.

Level O
‘ workunit '
Level 1 Level 1 Level 1
‘ workunit ’ ‘ workunit ’ 4 workunit ’
2 2 2 2 2 2 2

‘::::]IO

2
Figure 6: Growing number of redundant workunits in the hielhg demonstrated with a simple three level layout.

Figure 6. shows a three level layout with the redundancy i@&etton each level. In this case each parent on each
level creates three copies of any workunit received. By éweisd level there will be nine redundant ones. This means
that nine clients will compute the same workunit insteachefsupposed three (which was the requested redundancy
on the first level). If more levels are added to the hierartiy humber will exponentially grow. This problem can
be solved by forcing redundancy to be disabled on all butdpddvel. This way exactly the requested number of
redundant workunits will be distributed.

53 Scheduling

The Hierarchy Client currently uses the scheduling metinattié BOINC Core Client, which is intended for clients
requesting work for themselves, not for hierarchical woistribution. Currently we are adjusting the number of

CoreGRID TR-0100 11

processors reported by the client to adjust the number ofestqd workunits.

Another problem comes from the fact that BOINC assigns aldeatb each downloaded workunit to prohibit
workunit-hijacking by users. The deadline is set when thekwnit is downloaded and after it passes, the workunit is
considered invalid and resent to another client. The deadi the sum of the time of download and a delay bound
value. Since each level of hierarchy is recreating worlaufitm those it got from its parent for distribution, the
deadline of the original workunit at the top level is not pagpted. Thus the lower level projects have no information
if their workunits will be invalidated on a higher level bexsa the deadline has already passed. A solution would
be to make the workunits carry the original deadline withmhéa their descriptors as they traverse the hierarchy.
This would allow to give the lower level projects some ideavho set the delay bound value of their workunits upon
registration. ldeally this value should be updated upordihvenload of the workunit, since only then is the time of
download known, and so the deadline could be set exactly.

In a hierarchy there is the problem of requesting too manypoiféw workunits. In the first case the clients (that
may be Core or Hierarchy Clients) won't be able to upload tihefore the deadline passes, in the latter case some of
the clients are left without work.

Predicting the performance is not the subject of this refott we needed a simple way to do it. Thus, we devel-
oped an own monitoring and statistics tool, which monitbesgerformance, number of users, hosts, sent and unsent
workunits and many more. Since our main focus is on the Loeakibp Grid environment, where the performance
should be less fluctuating, this will enable us to have a goodigh guess on the number of workunits to be requested
based on the recent events. For the long term we need to gesehheduling strategies specific for the Hierarchical
Desktop Grid.

6 Conclusion

In this report we demonstrated how can stand-alone deskidpirgstallations be combined to form a large-scale
grid system. We described our extensions for the securitgehthat allows SZTAKI Desktop Grid to fulfill the
additional security requirements that follow from the hrehical setup and those required by industrial use cases.
Future work includes working on the enhancements desciibdide previous section and various other tasks like
improved certificate management and certificate revocation

SZTAKI Local Desktop Grid (LDG) represents a matured Depk@rid technology that can be used even in
industrial environments. Components of the HierarchidalGLwill be shortly made available via the SZDG web
page [17].

7 Acknowledgments

The research and development published in this report tyymapported by the Hungarian Government under grant
NKFP2-00007/2005 (Development and Meteorological Amilan of New Generation Grid Technologies in the En-
vironmental Protection and Building Energy Managemenjdethand by the European Commission under contract
number IST-2002-004265 (FP6 NoE, CoreGRID).

References

[1] lan Foster:The Grid: Blueprint For a New Computing Infrastructyf998

[2] Jakob Gregor Pedersen, Christian Ulrik Sottriy@veloping Distributed Computing Solutions CombiningdGri
Computing and Public Computiniyl.Sc. from University of Copenhagen, 2005

[3] Peter Kacsuk, Norbert Podhorszki, Tamas KiSsalable Desktop Grid Systefrechnical report TR-0006, Insti-
tute on System Architecture, CoreGRID - Network of Exceatier2005. May

[4] David P. AndersonBOINC: A System for Public-Resource Computing and Stofageroceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing, Pagel}, 2004.

[5] D.S. Myers, M.P. CummingdNecessity is the mother of invention: a simple grid compgusiystem using com-
modity tools In Journal of Parallel and Distributed Computing, Volun3% Pages 578-589., 2003. May

CoreGRID TR-0100 12

[6] A. Grimshaw, W. Wulf: The Legion vision of a worldwide virtual computarthe Communications of the ACM,
Volume 40, Pages 39-45

[7]1 Andrew A. Chien:Architecture of a commercial enterprise desktop Grid: tmré&pia systemin Grid Comput-
ing: Making the Global Infrastructure a Reality, Chapter Rages 337-350, 2003

[8] Franck Cappello, Samir Djilali, Gilles Fedak, Thomasréidt, Frederic Magniette, Vincent Neri, Oleg Lody-
gensky:Computing on large-scale distributed systems: XtremWebitecture, programming models, security,
tests and convergence with grieluture Generation Computer Systems, Volume 21/3, Paged &1, 2005

[9] David P. Anderson, Gilles Fedakihe Computational and Storage Potential of Volunteer Cdinguin Pro-
ceedings of the Sixth IEEE International Symposium on @u€omputing and the Grid, Pages 73-80., 2006

[10] Attila Csaba Marosi, Gabor Gombas, Zoltan Balat&ecure application deployment in the hierarchical local
desktop gridin Proc. of DAPSYS 2006 6th Austrian-Hungarian Workshodstributed and Parallel Systems,
2006. September

[11] Zoltan Balaton, Gabor Gombas, Peter Kacsuk, Adam KeidaAttila Csaba Marosi, Gabor Vida, Norbert
Podhorszki, Tamas KissSZTAKI Desktop Grid: a Modular and Scalable Way of Buildiregde Computing
Grids, Parallel and Distributed Processing Symposium, 2007 PIR007. IEEE International 26-30 March
2007

[12] David P. Anderson, John McLeod VIiLocal Scheduling for Volunteer Computirgyorkshop on Large-Scale,
\olatile Desktop Grids (PCGrid 2007), 2007

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. HarrisH&, R. Neugebauer, |. Pratt, A. Warfielden and the
Art of Virtualization In Proceedings of the 19th ACM SOSP, pages 164-177, OcRilfiS.

[14] RFC 2818: HTTP Over TLSht tp: //ww. i etf.org/rfc/rfc2818. t xt

[15] Distributed.net, The fastest computer on eantht p: / / ww. di st ri but ed. net/

[16] BOINC: Berkeley Open Infrastructure for Network Contipg. ht t p: / / boi nc. ber kel ey. edu/
[17] SZTAKI Desktop Gridht t p: / / ww. deskt opgri d. hu/

[18] Sun Microsystems, IXTAt t p: // www. j xt a. or g/

[19] Bochs: Think inside the bochkt t p: / / bochs. sour cef or ge. net/

[20] QEMU: Open source processor emulatdrt p: / / fabri ce. bel l ard. free. fr/ genu/

[21] VMware.ht t p: // vrwar e. cond

[22] VirtualBox. htt p: // www. vi rt ual box. or g/

CoreGRID TR-0100 13

