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Abstract 

 

Type 2 diabetes mellitus (T2DM) is the predominant form of diabetes, with 

prevalence increasing steadily both in developed and developing countries. 

Defects in both insulin action and insulin secretion are known to contribute to the 

development of T2DM. Reactive oxygen species (ROS) mediated cellular 

oxidative damage has been implicated in cellular dysfunction in various organs and 

disease states. Exposure to high level of glucose during hyperglycaemia has been 

co-related to ROS generation and oxidative stress in β-cells. In the initial series of 

experiments MIN6 pseudoislets were cultured under standard conditions and 

exposed to a range of iron concentrations (20 µM – 100 µM; signifying low to high 

iron exposure) at predefined glucose levels (5.5 mM and 11 mM) in a static 

incubation experiment. These series of experiments were categorised into two type 

of timelines in which experiments were carried. These timelines were at 24 and 48 

h and 48 and 72 h. Within the timeline of 24 & 48 h, insulin secretion & content, 

expression of SNAP-25, mitochondrial oxygen consumption rate (OCR), 

mitochondrial membrane potential (∆ψm), and protein carbonylation were 

estimated. In addition, antioxidant activity (cellular/non-cellular), cytotoxicity, and 

cellular ferritin were assessed using the shell of nanocarriers composed of (i) 

potato protein (PP) - potato dextrin (PD), (ii) PP - modified citrus pectin (MCP) used 

to formulate Fe and hesperetin in the presence/absence of EGCG. These 

experiments were followed by assessments of cellular iron content, lipid 

peroxidation, and cell viability at 48 & 72 h. Our results suggest that presence of 

100 µM iron exerted the most detrimental effect on MIN6 β-cell viability and this 

alteration was consistent with the data from cellular iron uptake analysis, lipid 

peroxidation, protein carbonyl, OCR, ∆ψm, SNAP-25, and insulin secretion and its 

content. All nanocarrier formulations coated antioxidant especially MCP 

demonstrated higher stability and robustness compared to dextrin control and the 

ability to resist the inhibitory effect of a potent iron inhibitor highlight its potential as 

an iron delivery vehicle. These data indicate that excessive iron and glucose 

accumulation, and consequent oxidative stress results in cellular membrane and 
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mitochondrial damage and disruption. The perturbations in mitochondria 

functionality correlate with diminishing of MIN6 β-cell insulin secretion, suggesting 

a mechanistic role for iron overload in the development and progression of type 2 

diabetes. These nanoformulations may be potentially used as a model to counter 

oxidative stress in pancreatic β-cell.  
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1. Introduction 

Type 2 diabetes mellitus (T2DM), also known as insulin-dependent diabetes mellitus 

(IDDM) is a common and global health problem with incidence that has been 

increasing rapidly. As per the International Diabetes Federation (IDF) there were more 

than 425 million people affected in 2017, with numbers increasing every year and 

projected to reach 629 million by 2045 (IDF, 2017). As per World Health Organisation 

(WHO), diabetes will be the 7th leading cause of death worldwide by 2030. Besides 

being a leading cause of mortality, TD2M is associated with severe complications 

known to be major causes of disabilities, including nephropathies, retinopathies and 

neuropathies, thus placing a severe financial burden on the resources of modern 

societies. T2DM represents a serious disease that has its prevalence in both 

developed and developing countries (Wild et al., 2004).  

 

In 2000, Indonesia ranks fourth as the prevalence country in the world with 8.4 million 

people with diabetes. This rank is after India, China, and the United States. This 

number is assumed to reach a threefold increase by 2030 (WHO, 2014).  The UK is 

reported to count more than 2.7 million people affected with T2DM, although those 

presenting the symptoms and as yet not diagnosed are not accounted for, 

representing an additional 750,000 people to this number (Diabetes.co.uk). T2DM is 

a metabolic disorder that is caused by various factors, both genetic and environmental 

conditions associated with pathogenesis of T2DM. Genetic factors, such as identical 

twins are 60-100% likely to be sufferers of T2DM (Jun et al., 1999). In addition, 

developing countries have shown that T2DM is rapidly rising presumably due to a shift 

to relatively affluent lifestyles, energy–dense low-nutrient diet and lesser physical 

activity (Wild et al., 2004).  

 

Defects in both insulin action and insulin secretion contribute to the development of 

T2DM (Weir, 1994). Insulin is a key regulator of blood glucose in the body to keep the 

glucose in a homeostasis state. Pancreatic β-cells have a crucial role to synthesise 

and secrete insulin at appropriate rates. Due to its important functions, β-cell has few 

antioxidant enzymes, such as catalase and glutathione peroxidase that are able to 

function as protection. Unfortunately, since β-cell has few and relatively weak defense 

system, it is highly sensitive to oxidative stress. The higher concentration of reactive 
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oxygen species (ROS) could raise oxidative stress, which leads to cellular toxicity 

(Jezek & Hlavata, 2005). Recent studies have shown that iron over accumulation in 

the β-cell leads to increased mitochondrial iron transport, which induces mitochondria 

to dysfunction (Ma et al., 2011). The mitochondrion is essential because it produces 

adenosine triphosphate (ATP) through electron transport chain (ETC) by utilising 

glucose metabolism in order for the numerous chemical reactions to occur, and its 

dysfunction may be a primary cause to insulin secretory dysfunction.  

 

Iron is a trace metal that has a pivotal role in the body due to its function in numerous 

physiological reactions. It is an essential mineral that is required for many functions, 

such as oxygen transport, ATP production, and deoxyribonucleic acid (DNA) 

synthesis. However, when it is present at high levels, its accumulation could lead to 

cell toxicity. As iron is crucial to life, this metal is required to be well regulated and the 

body needs to have sufficient iron levels. When the amount of free ferrous iron is 

elevated, it is believed to lead to the generation of ROS through Fenton and Haber-

Weiss chemistry (Hansen et al., 2014). Hydroxyl radical (•OH) is the most reactive 

oxygen radical that can readily react with biological molecules in its immediate vicinity, 

which explains its great destructive power (Lenzen, 2008). •OH is a major species that 

attacks cell membrane lipids, proteins, and DNA and causes tissue damage leading 

to insulin resistance and eventually β-cell failure (Jiang et al., 2004). 

 

There are 3 major types of diabetes mellitus (DM), Type 1 diabetes, Type 2 diabetes 

and gestational diabetes mellitus. T1D or known as insulin dependent diabetes 

mellitus is a result of β-cells destruction by autoimmune in the islet of Langerhans. 

This type of diabetes leads to gradual loss of insulin secretion, causing a deficiency of 

insulin. T2D is the most common type of diabetes and is characterised by 

hyperglycaemia in the context of insulin resistance and β-cells dysfunction (Unger, 

2003). Gestational diabetes manifests during pregnancy term in women with 

hyperglycaemia and insulin resistance. Insulin resistance is a pathological condition 

in which cells are not functioning properly in response to insulin. In peripheral tissue 

where insulin resistance exists, it can lead to severe consequences. Resistance of this 

hormone may cause defects in its secretion, which impairs the regulation of blood 

glucose levels.  
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Another type of diabetes called diabetes insipidus (DI) was also found and first 

introduced in 1794 by Johann Peter Frank (Frank, 1832). Diabetes insipidus (DI) is a 

rare disorder characterised by excretion of large volumes of urine that is “insipid,” or 

dilute and odourless (Kalra et al., 2016). Normally, the kidneys produce about 1 to 2 

quarts of urine a day. However, in people with DI, the kidneys can produce 3 to 20 

quarts of urine a day (NIDDK, 2015). Diabetes mellitus and DI are two different 

disorders that share similarities in its name and particular conditions that cause 

frequent urination (polyuria) and constant thirst (polydipsia) (NIDDK, 2015). Diabetes 

mellitus is a metabolic disease that results from defects in insulin secretion, insulin 

action, or both, leading to high levels of blood glucose (Alberti & Zimmet, 1998). On 

the other hand, people with DI produce normal levels of blood glucose, but their 

kidneys are unable to balance fluid in the body (NIDDK, 2015).  

 

Mitochondria have a pivotal role in regulating the secretion of insulin by managing the 

level of ATP, which responsible for providing membrane depolarisation and the 

release of insulin granule (Maechler, 2013). Lewis et al, 2002 observed that there was 

a rapid change in mitochondrial morphology upon insulin secretion stimulated by 

glucose (Lewis et al., 2002). In addition, this secretion also promoted certain changes 

in mitochondrial metabolism and calcium homeostasis. It is thus crucial to study 

mitochondria in details to observe the link between iron and diabetes mediated by 

ROS.   

 

1.1 Structure and function of endocrine pancreas 

The pancreas lies inferior to the stomach with an elongated gland about 15 cm (6 inch) 

long. It comprises of islet of Langerhans, representing 1% of the pancreas (Jain, 

2012). This organ contains two types of tissues, termed exocrine and endocrine, which 

also have distinct roles. The exocrine pancreas produces digestive enzymes that are 

secreted into the small intestine, whereas the endocrine pancreas primarily secretes 

hormones, notably insulin and glucagon (Longnecker, 2014). In addition, five cell types 

have been identified in the islets, producing various hormones with particular actions. 

Alpha () cells secrete glucagon in response to low blood glucose levels. These cells 

are located in surrounding β-cells or on the peripheral side of islet of Langerhans. The 

most abundant cells, β-cells secrete insulin, found on the centre of this islet. Delta (δ) 



 5 

cells secrete somatostatin acting as the universal inhibitor hormones of most of 

peptide hormones. PP cells produce pancreatic polypeptide and epsilon cells produce 

ghrelin (Lawlor et al., 2017).  

 

1.1.1 Insulin and glucose-stimulated insulin secretion 

Diabetes mellitus is an epidemic disease that has been rapidly progressed worldwide. 

It is crucial to understand the hormone, its role and other mechanisms related to this 

disease that can have significant implications in various chronic diseases. Insulin is a 

hormone that is synthesised and released by pancreatic β-cells and is functioned in 

regulating the metabolism of blood glucose. The structure of this hormone consists of 

two chains, notably as A and B chains and is linked by disulphide bridges. In 1921, 

this 51-amino acid-contained protein was isolated and preceded on the market by 

early 1923 (Papaspyros, 1964). Banting accompanied by his assistant Best under a 

supervision of Professor McLeod were the first to discover insulin which earned them 

the Nobel Prize in 1923 (Seale, 1946).  

 

Insulin is synthesised in β-cells of islets of Langerhans with the insulin gene located 

on chromosome 11 in humans (Schroder & Zuhlke, 1982). Several steps are involved 

in the production of insulin. The synthesis of insulin is initiated with formation of pre-

proinsulin (mw: 11,500) in the rough endoplasmic reticulum (RER). Pre-proinsulin is 

then cleaved to yield proinsulin by removal of the signal peptide to be finally transferred 

to the Golgi apparatus. This organelle contains an environment of aqueous zinc and 

calcium, creating soluble zinc-containing proinsulin hexamers (Dodson & Steiner, 

1998). Moreover, the immature secretory vesicles are assembled within this organelle 

before being docked out to be converted from this precursor resulting in insulin and its 

peptide fragment, termed connecting peptide (C-peptide) (Malaisse, 1997). When the 

granules are mature and stimulus triggers, they are secreted into the circulation, 

releasing the same molar ratio of insulin and C-peptide. 

 

In response to blood glucose as a stimulus, there are two phases involved in the 

secretion of insulin, and the secretory profile is thus biphasic (Grodsky, 2000). The 

first phase begins with a rapid phase, in which insulin secretion lasts within 5-10 min, 

while the second phase can take longer up to hours if glucose level is elevated 

persistently (Curry et al., 1968; Grodsky, 2000). β-cells are constantly exposed to 
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particular stimulatory signals within the body. Besides glucose as the main fuel 

secretagogue, several factors can cause insulin secretion, such as GIP, GLP-1, 

parasympathetic inputs, FFA, amino acids, hormones, and neural inputs (Bratanova-

Tochkova et al., 2002). 

 

 

 

In a condition of high circulating plasma glucose concentration, glucose enters the 

pancreatic β-cells via glucose transporters, termed GLUT2 in which is located on the 

plasma membrane. Subclasses of GLUTs have been established, however GLUT4 

has been considered as a key regulator of the whole-body glucose homeostasis 

Fig. 1.1.1. Glucose-stimulated insulin secretion. 
Glucose enters the pancreatic β-cells via glucose transporters, termed GLUT2 in which is 
located on the plasma membrane and undergoes glycolysis. These cells are equipped with 
KATP channels, which are crucial to affect its closure due to an elevation of ATP/ADP ratio in 
the cytoplasm. Following this closure, the membrane undergoes depolarisation and 
subsequently opening of L-type of voltage-dependent Ca2+ channels (VDCC). Increase of 
cytosolic calcium, which in turn, triggers exocytosis. SNARE complex proteins; syntaxin, 
SNAP-25, and VAMP-2/synaptobrevin-2, play a crucial role in insulin granule 
secretion. (Taken from Ren et al., 2007) 
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(Huang & Czech, 2007). GLUT4 is a major mediator of glucose disposal from 

circulation and transporting it into the skeletal muscles and adipose tissue where it can 

be suitably applied (Huang & Czech, 2007). Following insulin mediated cellular uptake, 

glucose is phosphorylated by glucokinase and undergoes glycolysis, generating the 

production of two molecules of pyruvate located in the cytoplasm. Before entering the 

matrix of mitochondria, pyruvate is equally metabolised by pyruvate dehydrogenase 

(PDH) and pyruvate carboxylase (PC) (Patterson et al., 2014). The generation of ATP 

from these processes have become an important molecule that signals insulin to be 

secreted from β-cells. These cells are equipped with KATP channels, which are crucial 

to affect its closure due to an elevation of ATP/ADP ratio in the cytoplasm. Following 

this closure, the membrane undergoes depolarisation and subsequently opening of L-

type of voltage-dependent Ca2+ channels (VDCC). Sulfonylureas (SU) and glinide are 

insulin secretagogues used in the treatment of T2D. These two drugs target and bind 

to KATP channels particularly sulfonylurea receptor 1 (SUR1), which affects the closure 

of this channel. Hibino and colleagues (2010) identified the structure of this channel 

as a tetra-octamer consisting of four SUR1 and inwardly rectifying K+ channel 6.2 

subunits (Kir6.2) (Hibino et al., 2010). Insulin is then rapidly increasing because of the 

subsequent Ca2+ influx, which causes elevation of cytosolic free Ca2+ concentration 

(Jewel et al., 2010) (Fig.1.1.1).  

 

1.1.2 Calpain 10 

Calpains are calcium-dependent intracellular nonlysosomal proteases that are 

believed to hydrolyse specific substrates involved in calcium-regulated signalling 

pathways. As a consequence of partial proteolysis, these proteins result in either 

activation or inhibition of substrate function. Calpain 10 is an atypical member of 

calpain family that has been associated with an increased risk of T2DM in humans. 

Calpain 10 is one of three other type calpain family, which has certain domains have 

been replaced or deleted (Barnes & Hodgkin, 1996). A study performed by Ma and 

colleagues in 2001 concluded that calpain 10 seems to be ubiquitous in all tissues and 

its expression level as well as subcellular distribution are influenced by calcium (Ma et 

al., 2001). Due to their wide range of substrate specificities, numerous diseases, such 

as ischemic stroke, Alzheimer’s disease, rheumatoid arthritis, and T2D have 

developed as implications of these calpain family members (Machado et al., 2015). In 
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T2D, calpain inhibition has been affecting some tissues involved in T2D such as 

adipocytes, skeletal muscle, and pancreatic islets. The highest expression of calpain 

10 mRNA is found in human heart, followed by the pancreas (Emori et al., 1986).  

 

Calpain-10 was positively identified to be localised in insulin secreting cells both in the 

cytosol and cell compartments and its expression was found to increase in response 

to glucose concentrations by Marshall and colleagues (Marshall et al., 2005). It was 

also shown that an isoform of calpain-10 acts as a Ca2+ sensor to trigger soluble N-

ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex 

rearrangement, granule fusion and insulin exocytosis. The study thus identified 

calpain-10 as central to stimulus-secretion coupling in the β-cells.  

 

1.1.3 SNARE-facilitated insulin exocytosis 

SNARE is a core complex protein that mediates exocytosis of insulin from β-cells. 

Syntaxin, SNAP23 or SNAP25, and VAMP2 (synaptobrevin) are three proteins that 

compose this SNARE complex core, which is forming a stable bundle (Fig.1.1.3). This 

complex protein consists of the three different proteins with equal 1:1:1 ratio, docked 

at the plasma membrane (Jewell et al., 2010). The SNARE bundle is made of the 

common secondary structure of proteins named alpha helices that comprises of four 

helices, with contributions from each trimeric protein, in which one alpha-helix from 

VAMP, one from syntaxin, and the remaining two from SNAP23/25. SNARE’s are 

categorised into two types depending upon the location of the component proteins. 

Vesicle (v-SNARE) SNARE comprises of VAMP2, whereas target (t-SNARE) SNARE 

consists of syntaxin and SNAP23 or SNAP25 (Jahn & Scheller, 2006). 

The SNARE core complex was discovered a decade ago, which was initially identified 

in the yeast Sec1 protein in 1990 (Rizo & Sudhof, 2002). This discovery established 

this particular protein as the regulator of SNARE mediated exocytotic function, directly 

interacting with syntaxin (Jewell et al., 2010). This protein superfamily has been found 

to be involved not only in neurotransmitter release at the synapse, but also in most 

intracellular membrane fusion reaction (Chen & Scheller, 2001). Besides being 

involved directly in membrane  
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fusion, the fundamental function of this core complex protein is engaging the 

membrane substrates (Ungar & Hughson, 2003). Intracellularly, SNARE protein 

contains multiple isoforms required in exocytotic events related to insulin-secreting β-

cells and insulin-responsive muscle and adipose cells. In pancreatic β-cells, syntaxin 

isoforms of 1A, 2, 3, and 4 are expressed, albeit only isoforms 1A and 4 are known to 

be required for the insulin exocytosis (Ohara-Imaizumi et al., 2007). The principal 

neuronal isoform, SNAP 25 has been established to be present in β-cells. Though 

SNAP23 and SNAP29 are reported as isoforms of SNAP25 (Jewell et al., 2010). 

SNAP23 is expressed in skeletal muscle and adipose tissues (Araki et al., 1997). In 

addition to these isoforms, there are seven isoforms identified belong to VAMP 

proteins. Of these, three isoforms (VAMP2, VAMP3, & VAMP8) are required for GSIS 

with VAMP2 as the predominant isoform (Nagamatsu et al., 2001).  

1.1.4 Glucagon: another glucose regulator 

It is known that glucose is a major fuel for muscles and organs use to work and stay 

healthy. Unfortunately, glucose can cause a serious problem when its balanced is out 

of proportion. Glucagon and insulin are two major hormones that responsible for the 

homeostasis of blood sugar. Glucagon was first discovered in 1922 by Murlin from the 

University of Rochester. It was found that besides the glucose lowering hormone 

insulin, the pancreas also produces another factor with the ability to raise glucose. 

This putative substance was named the glucagon and is known to act along with 

insulin in maintaining glucose homeostasis (Kimball & Murlin, 1923). This 

characteristic was presented by Sutherland and de Duve with their studies, which 

provided the evidence that glucagon is an islet hormone produced in alpha cells. Like 

insulin, glucagon is synthesised from a precursor molecule, proglucagon. Besides 

Fig.1.1.3. A general SNARE-mediated fusion reaction. (Ungar & Hughson, 2003). 
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being released from alpha cells during hypoglycaemia and starvation, glucagon was 

shown to be secreted as part of mechanisms involving both autonomic nerves, namely 

sympathetic and parasympathetic nervous system (Ahren & Taborsky, 1986). This 

was particularly evidenced in a clinical experiment where glucagon secretion was 

inhibited during a hypoglycaemic state due to ganglionic blockade (Havel et al., 1993). 

In parallel, other factors are known to impair its secretion, including insulin and 

somatostatin, respectively produced in β and δ cells.  

 

1.1.5 Incretins 

Incretins cannot be released without any response to glucose or nutrients, which is 

considerably working in a dependent manner. Two major incretin hormones have been 

observed in humans that are synthesised by endocrine cells. These two hormones are 

GLP-1 and glucose-dependent insulinotropic peptide (GIP) or also known as gastric 

inhibitory peptide. GIP was considered to be the first incretin identified and is secreted 

from K cells of the upper small intestine (Brown et al., 1970). This hormone consists 

of 42 amino acids with a direct effect on pancreatic islets to promote insulin secretion 

(Adrian et al., 1978). The second incretin releasing from L cells of the lower intestine 

and colon was termed GLP-1 (Schmidt et al., 1985).  

 

Both GIP and GLP-1 amplify similar functions on insulin by binding to their receptors, 

through the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R) (Gremlich et al., 

1995; Dillon et al., 1993). These receptors belong to the G-protein coupled receptor 

family, promoting stimulation of insulin secretion in pancreatic β-cells via activating 

adenylate cyclase, which increases the level of intracellular cyclic adenosine 

monophosphate (cAMP). In addition to this increase, protein kinase A (PKA) is 

activated (Fehmann et al., 1995) and exchange protein is activated by cAMP2 

(EPAC2)/cAMP-guanine nucleotide exchange factor (GEF) II (Holz, 2004). Although 

sharing common properties as incretins, these two hormones can exert different 

biological functions depending on the organ involved. In the bone, GIP increases bone 

formation (Tsukiyama et al., 2006), which is in contrast with GLP-1, inhibiting the 

resorption of bone (Yamada et al., 2008). Whereas in adipose tissue, GIP facilitates 

fat deposition (Carr et al., 2008) and GLP-1 has no effect at all. However, in the brain, 

both are involved in memory formation and regulation of appetite.  
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Like other proteins, GIP and GLP-1 both undergo proteolytic degradation catalysed 

particularly by the enzyme DPP-4 (dipeptidyl peptidase-4), suppressing the 

insulinotropic effects of GIP and GLP-1 (Deacon et al., 1995). Fortunately, many DPP-

4 inhibitors, also known as gliptins, have been used successfully to block this protein 

that is encoded by DPP4 gene in humans. DPP-4 inhibitors (e.g. sitagliptin and 

vildagliptin) and incretins and GLP-1 receptor agonists have been developed and 

shown to improve glycaemic control (Zander et al., 2002) and are used in T2DM 

therapy (Nathan et al., 2009).  

 

1.1.6 Tolbutamide as an insulin secretagogue 

Tolbutamide is one of the first generation of sulphonylureas class that has been 

extensively used for treatment of T2DM. The main effect of tolbutamide is similar to 

other sulfonylureas agents, which is too increase the concentration of plasma insulin. 

This drug promotes insulin secretion in a physiological manner by binding to the 

specific sulfonylureas receptors (SUR1) in the pancreatic β-cells. SUR1 is highly 

expressed in pancreatic islets and also in the brain.  Tolbutamide blocks the inflow of 

potassium (K+) associated with ATP-dependent channel, Kir6.2. The complex binding 

of SUR1-Kir6.2 results in the closure of this channel, which is subsequently 

depolarized the membrane, causing calcium (Ca2+) influx into the cells and 

subsequently triggering insulin undergoes exocytosis from insulin vesicles (Jewel et 

al., 2010).  

 

Sulfonylureas may provide glycaemic control in the short term, but this could worsen 

in a long-term period. The most common side effect is hypoglycaemia due to an 

excessive dosage. In addition, weight gain and skin rash may also occur. Although an 

association with other drugs such as metformin may help mitigate these effects, 

particularly weight gain, this drug is no longer used considering the wide spectrum of 

off target effects. However, its use in research has been extensively explored due to 

successful outcomes in cultured cells (Sola et al., 2015).  

 

1.2 Iron related oxidative stress in pancreatic β-cell 

Iron is the most important of all the trace elements, found in many essential enzymes 

and proteins. This transition metal exists in two valency states, Fe+2 (ferrous iron) and 
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Fe+3 (ferric iron) and has various essential functional roles in the body including a vital 

contribution to the redox reactions of oxidative phosphorylation by accepting and 

donating electrons (Andrews, 1999).  

 

 

 

 

 

Oxygen transport, DNA synthesis, and respiration require iron. Unfortunately, the 

same properties that make iron useful can also make it be toxic (Fig.1.2). Through the 

generation of free radicals, iron can damage essential biologic components such as 

DNA, proteins, and lipids (Fairweather-Tait, 2004). Thus, an organism must pay 

attention over the amount of iron that is consumed daily and the amount of iron that is 

excreted. 

 

1.2.1 Metabolism of iron 

Iron is an essential trace metal requisite for normal cellular functions. It functions as 

the crucial component in oxygen transport and exchange, cytochromes, and enzymes 

that transfer electrons (Andrews & Schmidt, 2007). Unfortunately, this vital component 

could be potentially harmful when its levels are exceeded. Several studies suggest 

Fig. 1.2. A Model for relationships between iron, oxidative stress, and pancreatic β-
cell in type 2 diabetes mellitus patients (T2DM).  
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that iron is a key pathogenetic factor in T2DM diabetes due to its generation of free 

radicals (Hansen et al., 2014). Thus, the amount of iron uptake and the amount of iron 

that is excreted needs to be maintained properly to avoid inappropriate responses lead 

to anaemia or iron overload (Roy & Enns, 2000). 

 

1.2.1.1 Iron absorption 

Iron plays a pivotal role in the body and is an essential mineral, which can only be 

obtained from the diet due to the inability of the body to manufacture its own supply. 

The body absorbs 1-2 mg of dietary iron in a day with apical membrane of duodenal 

enterocytes being a critical role in iron homeostasis, where first absorption of iron 

takes place (Siah et al., 2006).  

 

 

 

 

 

 

 

 

Fig. 1.2.1.1 The above image represents two major pathways of iron uptake into the cells 
(particularly pancreatic β-cell), called Tf-bound Fe uptake and non-Tf-bound Fe (NTBI) uptake. 
Physiologically, Tf-bound Fe binds to TfR1 on the cell surface, which mediates endocytosis 
where Fe is being released from Tf due to a decrease in endosomal pH. Endosomal reductase; 
STEAP3 (or potentially ascorbate) reduces Fe (III) into Fe (II) and is transported across the 
endosomal membrane by DMT1. Within the cytosol, iron is transported to LIP, used for storage 
in ferritin, or used for synthesis of heme and Fe-S clusters in the mitochondrion. Iron can exit 
the cells via FPN1. Under iron overload conditions, NTBI exists in the blood and can involve 
the contribution of DCYTB to reduce Fe (III) into Fe (II), which can be transported across the 
cells by DMT1. (Taken from Lane at al., 2015) 
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Organic or non-haem iron (90% of total daily iron intake) is the form of most dietary 

iron that is consumed in the body and prior to absorption, ferric iron must be reduced 

to ferrous iron by ferrireductase duodenal cytochrome-b (Dcyt-b). Ferrous iron is 

transported across the apical membrane by divalent metal transporter 1 (DMT1), 

which also transports other metal ions, such as zinc, copper and cobalt (Gunshin et 

al., 1997).  

 

Dietary inorganic or haem iron (10% of total daily iron intake) is transported into the 

enterocyte through the haem carrier protein 1 (HCP1) (Hansen et al., 2014). Within 

the enterocyte, iron liberated from haem by the enzyme haem oxygenase 1 (HO1) or 

transported through DMT1 enters labile iron pool (LIP), which could consist of chelates 

or chaperone proteins that bind and transport iron (Dunn et al., 2006). Prior to being 

externalised to the interstitial fluid, iron has two possible fates - it may be stored as 

within the protein ferritin, or it may be transferred across the basolateral membrane to 

reach circulation. Iron is delivered to the basolateral membrane where the exporter 

ferroportin 1 (FPN1) is located via which it exits the enterocyte. Hephaestin is a 

transmembrane copper - dependent ferroxidase that oxidises ferrous iron into the 

ferric iron state in order to bind to apotransferrin (Tf) to form di-ferric transferrin which 

acts as the primary plasma iron carrier protein (Andrews et al., 2007) (Fig.1.2.1.1). 

 

1.2.1.2 Iron distribution 

The total human body iron content is 3000-5000 mg or 45 and 55 mg/kg of body weight 

in adult women and men respectively. Ironically, total iron in men is higher than that in 

women, but women require more dietary iron due to menstruation, which results in 

loss of iron with blood (Arora & Kapoor, 2012). About 65-70% of total body iron is 

located in haem group of haemoglobin in circulating red blood cells. In addition, iron 

is also present abundantly in organs, such as liver and muscles. Besides distribution 

to other organs, iron is stored in ferritin as the major iron storage protein. Hepatocytes 

and reticuloendothelial macrophages become cells that store approximately 20-30% 

of body iron. The remaining iron is found in myoglobin, cytochromes, and iron-

containing enzymes (Papanikolaou & Pantopoulo, 2005). 
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As described above, iron is transported across multiple cell membranes to reach its 

site of utilisation. Following exit via duodenal FPN1 into plasma iron is then transported 

into various target organs (Fig.1.2.1.2). Pancreatic β-cells uptake the extracellular iron 

as the Tf-bound iron through transferrin receptor 1 (TfR1) - mediated process (Aisen, 

2004). This Tf-bound iron is internalised into the cells and the iron is released by low 

pH from the receptor-ligand complex. Following iron release, TfR1 and Tf are cycled 

back to the plasma membrane. Tf then cycles back to the plasma and TfR1 remains 

on the surface membrane ready to take up next cycle of iron (Ganz & Nemeth, 2006).  

 

It is known that iron-regulatory proteins (IRPs) 1 and 2 are key controllers of vertebrate 

iron metabolism and iron homeostasis genes (Cairo & Stefania, 2007). As iron must 

be tightly bound by specific proteins to minimise free iron levels, the responsible 

proteins must work efficiently. The expression of genes controlled by these proteins is 

involved in iron uptake, utilisation, storage, and export (Cairo & Stefania, 2007). Iron-

 

Fig. 1.2.1.2. Iron distribution in adults. 
(Andrews, 1999). 
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responsive elements (IREs) were identified as proteins that control gene expression 

in response to changes in the iron level (Aziz & Munro, 1987). IRP1 and IRP2 belong 

to aconitase superfamily, which specifically bind to conserved IREs in the UTRs of 

mRNA. Under the condition of iron deficiency, IRPs bind to IREs located in either 5’ or 

3’ UTRs of the indicated mRNAs, causing translation or degradation of mRNA 

respectively. In contrast, increased iron levels decrease IRE-binding activity, inducing 

mRNA ferritin translation to sequester iron rather than release it.  

 

IRP1 is an intriguing protein as it performs dual functions depending on its structure. 

In a state of its apoform, this protein is able to bind to IRE, controlling the expression 

of gene. Conversely, IRP1 can also assemble a [4Fe-4S] cluster and become the 

cytosolic counterpart of mitochondrial aconitase (Beinert & Kennedy, 1993). These 

functions are mainly regulated by the availability of iron within LIP (Breuer & 

Cabantchik, 2008).  Thus, IRP1 is considered as both a sensor of iron levels 

intracellularly and a regulator of cellular iron homeostasis (Hentze & Kühn, 1996).  

 

1.2.2 Hepcidin 

Hepcidin is a hepatic antimicrobial peptide that regulates iron entry into systemic 

circulation as well as various organs. This hormone is synthesised by the liver and 

comprises of 25-amino acid peptides. Prior to its discovery in involvement of iron 

metabolism, hepcidin was initially identified as a novel antimicrobial peptide (Park et 

al., 2001).  It has been established that hepcidin plays a key role in regulating iron 

homeostasis. Nicolas and his colleagues identified that iron overload was observed in 

mice due to disruption of hepcidin gene (HAMP) (Nicolas et al., 2001). In addition to 

inhibit iron absorption in enterocytes by binding to and inducing the internalisation and 

degradation of ferroportin transporter located in basolateral membrane, hepcidin also 

inhibits ferroportin expression in macrophages as recycled iron of senescent 

erythrocytes, and as well as the release of stored iron from hepatocytes (Ganz & 

Nemeth, 2012).  

 

Hepatocytes are the main place for hepcidin synthesise, but at low level it is expressed 

in other cells and tissues including macrophages, adipocytes and brain cells (Nemeth 

& Ganz, 2009). Hepcidin is regulated by iron and erythropoietic activity. The stimuli 
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that can regulate the level of hepcidin to rise include inflammatory cytokine, 

predominantly IL-6. In contrast, a wide range of stimuli that can suppress hepcidin 

synthesis such as iron deficiency anaemia, haemolytic anaemia, and hypoxia (Ganz, 

2003). Iron that is bound to transferrin and intracellular ferritin can regulate the 

synthesis or secretion of hepcidin by hepatocytes. In response to elevated iron levels, 

the synthesis of hepcidin by the liver is increased. Thus, hepcidin is the key central 

regulator of systemic iron homeostasis.  

 

1.2.3 Hereditary hemochromatosis and risk of type 2 diabetes 

 

Hereditary hemochromatosis (HH) is an autosomal recessive disorder that disrupts 

the absorption of iron, leading to iron overload associated with secondary tissue 

damage in different types of organs (Allen et al., 2008). Hemochromatosis was first 

identified in the 1800s and was considered to be an inherited disease in 1935 (Hopkins 

Medicine, 2001). This disorder is characterised by mutations in the HFE gene located 

on the chromosome 6 (Cherfane et al., 2013). HFE gene is a product of HFE protein 

that functions to modulate the uptake of transferrin-bound iron into intestinal epithelial 

cells. The mutation on this specific chromosome leads to the substitution of the 282nd 

amino acid in which cysteine becomes tyrosine called C282Y (National Institute of 

Health, 1998). This substitution affects the interaction between HFE protein and TFR1 

as an important protein involved in iron homeostasis (National Institute of Health, 

1998). The body undergoes many mutations linked to proteins responsible for iron 

homeostasis, causing hemochromatosis. However, HFE gene mutation has been 

considered to be the most common cause found in myriad cases. HH is the most 

common genetic disorder among Caucasian population in the United States as one in 

nine people carry the gene and one in three hundred people are being affected 

(Hopkins Medicine, 2001).  

 

As previously mentioned, the body - particularly in the proximal small intestine absorbs 

iron at the rate of 1-2 mg per day.  However, people with hereditary hemochromatosis 

could absorb iron at 4-5 mg per day, with accumulation to 15-40 grams of iron in the 

body (Hopkins Medicine, 2001).  In addition to the lack of an excretory system of 

excess iron, this metal tends to be stored in the most notable organs, such as the liver, 

pancreas, and heart. Excess iron in the liver causes cirrhosis, which may develop into 
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liver cancer or liver failure (Hopkins Medicine, 2001). Excess iron stored in pancreas 

and heart may lead to diabetes and cardiomyopathy, respectively (National Institute 

of Health, 1998).  In addition to HH, other genetic disorders-related iron overload has 

been identified. African iron overload, sickle cell disease, thalassemia, and X-linked 

sideroblastic anaemia are several disorders, which result in increase of iron absorption 

and increased iron deposition (Iron disorders institute, 2009).  

 

Increased intracellular iron causes multiple damages including peroxidative injury 

towards organelle membranes i.e. mitochondria, lysosomes, and microsomes. As 

discussed earlier, Excess free iron has been established to be a crucial component in 

the formation of several free radicals, which can result in cell death due to lipid 

peroxidation. Iron level has been linked to increased risk of type 2 diabetes as this 

metal is an important determinant of insulin secretion and insulin action (Abraham et 

al., 2006). Furthermore, People with hemochromatosis demonstrated decreased 

insulin secretion, which increased the risk of this metabolic disease (McClain et al., 

2006; Dymock et al., 1972).  

 

Treatments include regular blood donations and therapy venesection may reduce the 

body’s iron levels. Furthermore, early recognition of this disorder is advised to take 

place to prevent irreversible complications as mentioned previously above (NHSUK, 

2019).  

 

1.3 Cellular oxidative damage 

Oxidative stress has become a considerable interest due to several related 

pathogenesis including cancer, T2DM (Fig.1.1.1), Parkinson’s disease, Alzheimer’s 

disease, inflammation, neurogenerative disease, atherosclerosis, and many other 

diseases (Droge, 2002). The body undergoes a disturbance in the balance between 

oxidants (free radicals) and antioxidant defenses, this condition then could lead to 

potential damage, which is defined as oxidative stress (Betteridge, 2000). In addition, 

oxidative stress could be described as the accumulation of ROS/RNS, which leads to 

oxidative damage to biomolecules, including DNA, proteins, and lipids (Jezek & 

Hlavata, 2005). Ironically, the generation of ROS is not always a harmful process due 

to its function for some biological responses (Finkel, 2003; Buetler et al., 2004), such 
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as ion transport, redox-dependent transcriptional regulation, and protein 

phosphorylation.  

 

Under non-stress condition, mitochondria are considered as one of the primary 

sources of ROS (Turrens, 2003). The Oxygen is very vital to the body for survival, but 

like iron it could be a causative agent in a wide variety of diseases. Once the two 

unpaired electrons derived from molecular oxygen start spinning in opposing 

directions, it could quickly react with other pairs of electrons. 

  

This reaction would produce superoxide anion (O2–.), which could be resulted in 

hydroxyl radical (OH•) as one of the strongest and dangerous oxidants in nature. O2–. 

is then enzymatically dismutated to yield hydrogen peroxide (H2O2) by mitochondrial 

electron transport chain (ETC) (Singh et al., 2004). Hydroxyl radical can be generated 

by two different reactions as a result of different speed of reaction (Kehrer, 2000). In 

the Fenton reaction ferrous iron reacts with hydrogen peroxide to generate hydroxyl 

radical, which is a much faster set of reactions (I). In the Haber Weiss reaction iron 

generates hydroxyl radicals from hydrogen peroxide and superoxide, which leads to a 

very slow reaction (II) (McKenna, 2009). These reactions are considered to be the 

genesis of a number of diseases (Ames, 1993).  

 

(I) Fe2+ + H2O2 → Fe3+ + OH− + •OH 
 

(II) •O2− + H2O2 → •OH + OH− + O2 

 

 

O2–. can be produced both enzymatically and non-enzymatically in vivo. Enzymatically, 

O2–. is produced through NADPH oxidase specifically by Complex I, which is found in 

the presence of succinate as the substrate of Complex II (Liu et al., 2002). Complex I 

and III are linked by ubiquinone, an electron transfer agent in cell respiration. In 

addition to Complex I, ubiquinone is linked Complex II and III, thereby makes Complex 

III as a primary player in the formation of O2–. (Zorov et al., 2014) (Fig.1.3.1).  

 

As described above that ROS clearly possess the capacity to behave as destructive 

agents, the only key element to defend against this toxicity is the induction of 

antioxidant. Unfortunately, chronic oxidative stress could lead to progression of 
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pancreatic β-cell dysfunction due to the lack of protective agents (Wang & Wang, 

2017). Thus, different strategies are required to use in early intervention of metabolic 

syndrome and T2DM.  

 

1.3.1 Mitochondrial structure and function 

The mitochondrion is essential due to a myriad of pivotal functions for various cellular 

processes. This organelle is considered as a distinct organelle since it consists of two 

membranes with four compartments: the matrix, inner membrane, inter membrane 

space (IMS), and outer membrane (Fig.1.3.1).  

 

 

 

 

 

 

The outer mitochondrial membrane (OMM) is more permeable to ions and small-

uncharged metabolites as large porins channels (Bayrhuber et al., 2008). Many 

proteins are expressed in this power-house organelle, but 95% of proteins found in 

Fig. 1.3.1 Structure of a mitochondrion and the human electron transport chain on the inner 
mitochondrial membrane. (a) A representation of mitochondrion structure. (b) Schematised 
complexes I-IV of electron transport chain and ATP synthase. Protons are pumped out of the 
matrix through complex I, III, and IV due to electrons flow along the ETC. Protons then flow 
back into the matrix via ATP synthase, resulting in ATP production. (Taken from Yusoff, 2015). 
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this organelle are imported from the cytosol (Pfanner & Geissler, 2001). Mitochondrial 

electron transport chain is composed of four multiprotein complexes called complex 

1-IV. Ubiquinone site in complex III and an unknown site in complex I are identified as 

the major sites to generate ROS. However, the ubiquinone site of complex III is still 

controversial due to production of ROS at this site is usually artificially induced with 

the complex III inhibitor antimycin A (Forman and Azzi, 1997). Various ROS are 

generated in this organelle, such as superoxide anion, hydrogen peroxide, and the 

hydroxyl radical. Of these, hydrogen peroxide is the most stable and abundant ROS. 

In addition, this particular species is the by-product of superoxide scavenging by 

superoxide dismutase (SOD) enzymes. Since mitochondria are considered as the 

major generator of free radicals, this organelle is most prone to oxidative damage. 

Other ROS which also cause oxidation include nitric oxide (NO), peroxynitrite, lipid 

hydroperoxides (LOOH), nitrogen-centred radical, sulfate radical (SO4.-), and metal 

oxygen complexes.  

 

In the mitochondrion iron metabolism has three major pathways which are utilized in 

heme synthesis, iron-sulfur clusters, and storage called mitochondrial ferritin (MtFt). 

MtFt has a similar function with antioxidant due to its role as a defense against the 

interaction between ROS and free iron. Moreover, MtFt is also potentially functions as 

a regulator of local iron trafficking.  However, it remains a complex topic since it hasn’t 

been identified yet whether and when this potential function is used by cells in 

physiological conditions. Of these proteins, heme and ISCs are involved in the 

biogenesis of electron transport chain (ETC). Iron-sulfur (Fe-S) protein is essential to 

human body due to its variety of functions such as enzyme catalysis, electron carriers, 

homeostatic regulation, and sulfur activation (Stehling and Lill, 2013). Mitochondria 

assemble Fe-S proteins to regulate cellular iron homeostasis. Eukaryotic Fe-S 

proteins are located in mitochondria, cytosol, and nucleus. These proteins have 

diverse function relating to their performance in metabolism and regulation of cellular. 

Maturation of Fe-S proteins both inside and outside mitochondria is directed by the 

cytosolic iron-sulfur protein assembly (CIA) machinery. CIA can use its function 

depending on the core of mitochondrial ISC assembly system. 

 

This mitochondrion plays a pivotal role in ISC synthesis as it is then main site of ISC 

assembly. These clusters perform several processes, which contain different vital 
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functions such as electron transport, redox reactions, metabolic catalysis, etc. (Lill & 

Mühlenhoff, 2006). In eukaryotic cells, maturation of ISC proteins require some 

molecules involved, which are found in mitochondria, cytosol, and nucleus. A study 

performed by Lill et al (1999) in yeast showed defects in Fe-S enzymes cluster. 

Consequently, yielding in the iron accumulation in mitochondria with local enzymatic 

damage and reduction of mitochondrial functionality. Heme is the iron-containing 

prosthetic groups at the catalytic centre of many critical metabolic enzymes. This 

protein is synthesised by the ferrochelatase enzyme inserting ferrous iron inside 

protoporphyrin located within mitochondrial matrix (Ponka, 1997). Like ISCs, iron is 

also vital in the heme synthesis, which is imported from the cytosol. Various 

mitochondrial proteins, particularly in ETC depends on the function of ISCs and heme 

to have correct folding, which result in an efficient activity (Lin et al., 1983). In 

mitochondrial ETC, there are eight molecules of three different types of heme and 10-

11 ISCs (Tyler, 1992). As ISCs and heme play a crucial role in the assembly of a 

variety of apoproteins, it is necessary to understand their metabolism in tissues to 

expand some understanding of mitochondrial dysfunction.  

 

1.3.2 Dual functions of mitochondria: survival and death 

Since a mitochondrion is a major source of reactive oxygen species, iron is one of the 

examples of an ion that should be regulated tightly. Thus, iron transportation from 

cytosol is required to be generated tightly due to its uptake to the mitochondria. 

Although iron transporters in inner mitochondrial membrane have been identified, the 

pathways that use iron in the outer mitochondrial membrane are still not elucidated. If 

ROS production is not compensated with endogenous antioxidants, this condition will 

lead to the rise of ROS beyond normal threshold levels. This condition could result in 

further damage such as cell death (loss of function), and consequently the whole organ 

failure. Mitochondria have a notable role as the house production of energy, which 

undergo through some complex metabolisms. In addition, mitochondria also 

participate in the regulation of cell death (apoptosis), signalling, metabolic pathways 

involving lipids, amino acids, and maintenance of calcium and iron homeostasis 

(Cheng et al., 2013).  
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ETC in mitochondria plays a crucial role as one of the steps to generate ATP 

production. Heme and ISCs, the main form of iron in mitochondria are involved in 

reducing oxygen to water and generating the proton gradient across the inner 

membrane (Ly et al., 2003). Iron is one of the ions that is maintained carefully in this 

organelle in preventing oxidative damage. Some studies have found iron transporters 

in inner mitochondrial membrane; however, the pathways that use iron in the outer 

mitochondrial membrane are still not elucidated (Paradkar et al., 2009). Mitoferrin (Mtf) 

is a transmembrane protein residing in the IMM that functions as a transporter 

importing iron into mitochondria (particularly the matrix) (Shaw et al., 2006). 

Abnormal iron accumulation in mitochondria have many effects and can cause a 

decrease in mitochondrial membrane potential (∆ψm). Membrane potential is the force 

driving protons into the mitochondria (Perry et al., 2011). Complexes I and III are 

fundamental for the maintenance of this membrane potential, as Complex I substrates 

such as pyruvate and malate can maintain the health or compensate the health of 

mitochondrial membrane potential, this particular complex requires to be maintained. 

The imbalance of Complex I activity may result in depletion of glutathione and 

increased lipid peroxidation (Abeti et al., 2016). Beside changes in morphology, 

alteration of membrane integrity, activation of caspase, drop in mitochondrial 

membrane potential is one of factors contributed in apoptosis.  

The decrease or loss of mitochondrial membrane potential might be an early event in 

the apoptotic process. However, this condition could be the contrary in which this loss 

could be the consequence of the apoptotic-signalling pathway (Ly et al., 2003). 

Mitochondrial membrane potential is crucial to understand, as it is important for 

maintaining the physiological function of the respiratory chain, resulting in ATP 

production. The collapse of the mitochondrial membrane potential is initiated by the 

opening of one of mitochondrial channels such as mitochondrial permeability transition 

pore (mPTP). This opening trigger the release of apoptogenic factors such as 

cytochrome c into the cytosol, which in turn triggers other downstream events in the 

apoptotic cascade.  

Activation of mitochondrial apoptotic pathway and generation of excesses 

mitochondrial reactive oxygen species may advance further damage to the cells and 

even result in cellular damage. Oxidative stress occurs by an imbalance between 
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antioxidant defense and pro-oxidant load. Maintaining the structural and functional 

integrity of this organelle is crucial as its roles involved in energy metabolism, cellular 

redox state and regulating apoptosis. Peroxidation of lipid is also one of the results of 

the accumulation of ROS. Mitochondrial membranes and mitochondrial DNA are 

prone to undergo oxidative damage due to their close proximity to the site of ROS 

production. Moreover, other factors that cause these sites of mitochondria to be 

susceptible are high content of PUFA of mitochondrial membranes and lack of 

mitochondrial DNA histones (Kim & Kim, 2018). Under pathologic condition, 

mitochondrial fission is increased with swelling and fragmentation.  

Many techniques have been developed to analyse functional changes that occur in 

cellular compartments during apoptosis. Quantification of cells undergoing 

programmed cell death in mitochondria is crucial as this organelle represents a key 

organelle for the cell survival. Alteration of mitochondria during apoptosis has been 

widely described, such as release of cytochrome c, caspase activation, decrease of 

mitochondrial membrane potential, etc.  
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1.4 Aims & Objectives 

 

Aims: Clarify the role of excessive iron on β-cell function – insulin synthesis and 

secretion. (Chapter 3). 

Objectives: 

• Clarify the role of excessive iron on the level of β-cell iron status by 

ferritin immunoassay. 

• Clarify the role of excessive iron on β-cell insulin secretion and content 

by insulin immunoassay. 

• Identify whether the excessive iron may have an effect on β-cell viability 

by conducting cytotoxicity assays. 

• Identify whether the excessive iron may have an effect on the 

intracellular iron transporter 1 (DMT1) protein expression by 

immunoblotting. 

• Identify whether the excessive iron may have an effect on SNAP-25 

protein expression by immunoblotting. 

• Optimise diferric-Tf as a model on the iron delivery into the β-cell. 

 

Aims: Correlate excessive iron mediated ROS generation to β-cell dysfunction and 

identify whether specific organelles such as the mitochondria are more sensitive to 

ROS damage. (Chapter 4). 

Objectives: 

• Clarify the role of excessive iron related to the level of malondialdehyde 

(MDA) as a result of lipid peroxidation by thiobarbituric acid reactive 

substances (TBARS) assay. 

• Clarify the role of excessive iron on β-cell cytotoxicity through formation 

of carbonyl group on protein side chains as a form of cellular oxidative 

damage by immunoblotting. 

• Optimise the visualisation of any formation resulted by cellular oxidative 

damage using confocal microscopy. 

• Identify whether excessive iron may have an effect on mitochondrial 

membrane potential by flow cytometry. 
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• Assess the effect of excessive iron on mitochondrial oxygen 

consumption by Agilent Seahorse XF metabolic analyser. 

 

Aims: Identify the role of antioxidant-nanoformulations on small intestine function 

using caco-2 cell – model for antioxidant-nanoformulations strategy in excess iron. 

(Chapter 5). 

Objectives: 

• Identify various iron treatment formulations using potato dextrin and 

modified citrus peel dextrin with and without the presence of iron inhibitor 

(EGCG). 

• Identify the activity of antioxidants (hesperetin)-related nanoformulations 

using ferric reducing antioxidant power (FRAP) analysis. 

• Identify the activity of cellular antioxidants-related nanoformulations 

using cellular antioxidant activity (CAA) analysis. 

 

Based on the above assessments, this study will test the hypothesis that iron 

accumulation in the β-cell may lead to the generation of ROS and promote cellular 

dysfunction and defects in insulin secretory function. Thus, identifying whether specific 

organelle such as mitochondria are more sensitive to ROS damage may lead us to a 

clearer understanding on the mechanism of iron mediated oxidative stress and β-cell 

dysfunction.  
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MATERIALS & METHODS 
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2. Materials & Methods 

All chemicals were a cell culture grade and purchased from Sigma-Aldrich (Dorset, 

UK) unless otherwise stated. MIN6 cells were a kindly gift from Dr. Bo Liu (Division of 

Diabetes & Nutritional Sciences, King’s College London, UK) at passage 34 (originally 

from Dr. Miyazaki (Miyazaki et al., 1990). Ferritin ELISA kit (product code S-22) from 

ATI Atlas (Chichester, UK). TBARS Parameter kit (product code KGE013) from R&D 

Systems (Abington, UK). Pierce LDH Cytotoxicity Assay kit (product no. 88954) was 

from Thermo Scientific (Illinois, USA). The radioimmunoprecipitation assay (RIPA) 

was purchased from Thermo Scientific with a product code 10017003 (Thermo 

Scientific™ Pierce™ RIPA Buffer). Protease Inhibitor Cocktail (PIC, catalogue no. 

P8340) was from Sigma-Aldrich (Dorset, UK). 

 

Dulbecco's modified Eagle's medium (DMEM), Minimum Essential Medium (MEM), 

fetal bovine serum (FBS), and reagents were obtained from Invitrogen 

(Loughborough, UK) and Lonza (Slough, UK). Potassium Chloride (Catalogue no. 

BP366-500) was from Fisher Scientific (New Jersey, US). The 12-well cell culture 

dishes, 96-well microtiter plates, and flasks were from Nunc (Roskilde, Denmark). 

Experimental reagents were prepared using ultrapure water (resistivity of 18.2 MΩ 

cm). Pipettes, micropipettes, and Eppendorf tubes were purchased from Corning 

(Amsterdam, The Netherlands). BioRad mini trans-blot® electrophoretic transfer cell 

was obtained from Bio-Rad (Bio-Rad, UK). Rabbit anti-human NRAMP2 (with- IRE) 

igG was purchased from Alpha Diagnostic Intl Inc. (Cat.no. NRAMP22-A, San Antonio, 

USA). Goat anti-rabbit IgG H&L (HRP) (Cat. No. ab205718) and anti- β- tubulin 

antibody (Cat.no. ab6046) were purchased from Abcam biotechnology company 

(Abcam, UK). All chemicals in immunoblotting purpose were obtained from Sigma-

Aldrich (UK) and Thermo Scientific (UK).  

 

2.1 Cell culture  

2.1.1 Caco-2 cell culture 

Prior to study the effect of excess iron on the β-cells, these current studies were also 

investigating the pathways of iron entry into the body. This investigation was carried 

using Caco-2 cells as the human intestinal cells, in which iron is absorbed. Caco-2 
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cells were obtained at passage 47 and employed for experimental use at passages 

48 and 49. Stock cultures of Caco-2 cell lines were maintained in 75 cm2 tissue culture 

flasks in complete medium (Dulbecco’s Modified Eagle Medium (DMEM) - Gibco™ 

GlutaMAX™, Ph 7.4. Media was supplemented with 50 ml Foetal Bovine Serum 

(FBS), 5 ml antibiotic/antimycotic solution, 5 ml L-Glutamine) for consistency and 

control of the mammalian cell culture. The cells cultures were incubated at 37°C in an 

atmosphere of air (95%) and CO2 (5%) at constant humidity. The culture medium was 

replaced routinely every other day. Caco-2 cells were trypsinised upon reaching 70% 

confluence and were seeded onto 8 x 6-well plates at a seeding density of 30,000 

cells/cm2 at passage 48. Replicate 8 x 6-well plates were also seeded similarly at a 

seeding density of 30,000 cells/cm2 for optimisation of the initial uptake experiment. 

At day 14-15 post seeding, the Caco-2 cells differentiated, forming a fully matured 

gastrointestinal (GI) tract phenotype, and the iron uptake experiments were initiated. 

 

2.1.2 Nanocarrier iron formulation  

Nanocarrier systems encapsulating iron were formulated at a collaborator lab (UCL 

School of Pharmacy). Protein polysaccharide formulations comprised of Potato 

Dextrin (NF1) and Modified-Citrus Peel Dextrin (NF2) were prepared using 1% (w/v) 

potato protein solution and 0.1% (w/v) iron as a basis, followed by 0.1% of each 

polysaccharide to yield the novelty behind NF1 and NF2. The mixture was then 

combined through a heating process at 60°C for 15 min. The volume was altered to 

10 ml using de-ionised water and in doing so, an unfolded form of the protein was 

produced during its cooling period allowing for interaction with different components. 

Malvern Zetasizer Nano was utilised to conduct a size analysis on potato particles and 

the results concluded all nanocarriers to be <500 nm. 

 

2.1.3 Iron free feeding in caco-2 cells 

On day 13 post-seeding, DMEM was aspirated from the 8x6-well plates and washed 

with DPBS (Dulbecco’s Phosphate- Buffered Saline – pH 7) and cultured in MEM 

(Minimum Essential Medium – pH 7.4). Medium was supplemented with 5 ml 

antibiotic/antimycotic, 5 ml L- Glutamine, 1.5 ml Phenol Red solution. Plates were 

incubated for a 24-hour period. 
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2.1.4 Caco-2 iron uptake 

The pH of the MEM was adjusted to 5.8 to mimic the physiological pH in the 

duodenum, by titrating MEM with 10 mM HCl stock and 2-(N-morpholino) 

ethanesulfonic acid (MES) as required. The altered MEM was then sterile filtered using 

a 0.22 µm sterile membrane filter. Various stock solutions (FeSO4, EGCG) were 

prepared before preparing treatment media. Two novel nano-formulated forms of iron 

were provided by UCL School of Pharmacy; Novel Iron 1 and Novel Iron 2.  

 

Table 2.1.4: Composition of various iron treatment formulations, both 

alone and in the presence of potent iron inhibitor, EGCG 

Treatment Iron 

Concentration 

(μM) 

EGCG 

Concentration 

(μM) 

Control 0 0 

FeSO4             20 0 

FeSO4 + EGCG 20 100 

Potato Dextrin (NF1) 20 0 

Potato Dextrin (NF1) + EGCG) 20 100 

Modified Citrus Peel dextrin (NF2) 20 0 

Modified Citrus Peel dextrin (NF2) + 

EGCG 

20 100 

 

Treatments were prepared by aliquoting 14 ml of pH 5.8 MEM into falcon tubes, each 

with different volumes and concentrations; 20 µM of Ferrous Sulphate, 20 µM NF1 

and 20 µM NF2 – alone, and also in the presence of 100 µM EGCG. Ferrous Sulphate 

was used as a source of free elemental iron to simulate the conditions β-cells might 

be exposed to in the presence of excessive circulating serum iron. Once the 

treatments were prepared, the 6-well plates containing media were aspirated and 

washed with DPBS and the treatments were added (2 ml per well- 3 wells per 

condition) and incubated for 2 hours at 37°C in a rotatory shaker at 30 RPM. Treatment 
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was aspirated following on from incubation and cells were washed again with DPBS. 

Caco-2 cells were fed with fresh MEM with 2 ml per well and incubated for a further 

22 hours (37°C in an atmosphere of air (95%) and CO2 (5%) at constant humidity). 

 

2.1.5 Cell cryopreservation and reconstitution 

Most of the cell cultures can be stored at cryogenic temperatures (-196°C), minimizing 

deterioration of biological material over a time scale of indefinite years. Under 

cryogenic storage, many advantages can be obtained due to a liquid-nitrogen freezer 

that maintains these cells at the temperature below -130°C.  This process can be 

applied by many different types of cells, which these cells more likely do not undergo 

detectable alterations such as genetic change, providing viable results even after 

thawing. Concomitantly, cross contamination by other cell lines may be suppressed. 

After undergoing cells trypsinization, in which cells are dissociated using trypsin, 

cryoprotectant is added to the freezing medium to protect the cells of forming 

intracellular ice crystal during the process of slow freezing. Dimethylsulphoxide 

(DMSO) is considered as one of the common cryoprotectants that has been utilised 

widely. However, this preservative agent has a toxic effect on cell cultures, thereby 

suitable concentrations required to be considered before diluted with cell suspensions 

in culture medium.  

 

The appropriate concentration ranges from 5% to 15%, with 10% corresponds to this 

particular experiment. Gentle handling of cells prior to storing in nitrogen liquid needs 

to be taken into consideration, thereby reconstitute the cells also requires appropriate 

steps. Due to toxicity of cryoprotectant, removal of this agent is crucial, minimizing 

damage to cells. Firstly, the cryogenic vials contain MIN6 cells are removed from their 

storage and placed in Mr. Frosty (with regards to distance). These cells then removed 

from Mr. Frosty and placed them in incubator with an atmosphere of 95% air and 5% 

CO2 for roughly 10 min to ensure that the cells become semiliquid, and subsequently 

transferred to a 15 ml centrifuge tube into which 5 ml of fresh growth medium was 

added. The cell suspension underwent centrifugation at 5000 RPM for 5 min, then the 

pellet was resuspended in T-75 tissue culture flask containing 10 ml of fresh growth 

medium.  
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2.2 Exposure of iron and glucose on MIN6 cells 

Table 2.2: List of treatments consist of both glucose and iron on MIN6 cell 

line 

 

 

Glucose and iron exposure experiment was carried using serum-free MEM with 5.5 

mM glucose. This media was supplemented with 2 mM L-glutamine, 1% 

antibiotic/antimycotic, 0.1% BSA and 25 mM Hepes, pH 7.4. Cells were seeded at  

25 x 104 cells/cm2. The cells were iron starved with serum-free media treatment and 

incubated overnight prior to the experiment at 37°C with 5% CO2. Media was then 

discarded, and cells washed twice with DPBS. MIN6 cells were preincubated for 2 

hours in Krebs-Ringer Bicarbonate (KRB) buffer [119 mM NaCl, 4.74 mM KCl, 2.54 

mM CaCl.6H2O, 1.19 mM KH2PO4, 1.19 mM MgSO4.7H2O, 25 mM NaHCO3, 10 mM 

Hepes, pH 7.4, and 0.05% BSA] containing 1.1 mM glucose before the glucose and 

iron stimulation. MIN6 cells were washed with DPBS and placed in KRB buffer 

containing varying concentration of glucose (5.5 mM and 11 mM), concentration of 

iron (20 μM and 100 μM), combination of both glucose and iron concentration, and an 

addition of tolbutamide concentration (100 μM) as a drug to stimulate insulin secretion. 

Name  

of  

Condition 

Treatment Glucose 

Concentration 

(mM) 

Iron  

Concentration 

(μM) 

Ctrl Basal glu 1.1 0 

C1 Glu 5.5 0 

C2 Glu 11 0 

C3 Fe 0 20 

C4 Fe 0 100 

C5 Glu + Fe 5.5 20 

C6 Glu + Fe 11 100 

C7 Glu + Fe 5.5 20 

C8 Glu + Fe 11 100 
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Preincubation was carried at different time courses at 3 and 24 hours. Cells then were 

lysed with 500 μL of stock solution (50 mM NaOH, pH 7.4) and the addition of protein 

inhibitor cocktail (PIC) in the buffer. Cells could either be stored at -20°C or utilised for 

particular analysis immediately (PrestoBlue®, Ferrozine, Ferritin ELISA & BCA, insulin 

secretion, and lipid peroxidation assay). 

 

2.2.1 MIN6 cell culture 

MIN6 cell line was derived from a mouse insulinoma that has been used extensively 

in biochemical and molecular research area (Cheng et al., 2012). These cells were 

prepared and maintained previously. MIN6 cells were obtained at passage 34 in a 

complete Dulbecco’s modified Eagle’s medium (DMEM) - GlutaMax®, pH 7.4 

supplemented with 10% foetal bovine serum (FBS), 1% antibiotic/antimycotic solution 

and 25 mM HEPES. The cells were incubated in an atmosphere of 95% air and 5% 

CO2 at constant humidity. Stock cultures were grown at 37°C in 75 cm2 T-flasks, 

replacing the medium every two days. Cells were seeded in 12-well plates with density 

of 50 x 104 cells/cm2 for all experimental cultures. MIN6 cells reached confluence 

within day 3-5 post-seeding in which phenotype of small clusters of cells to be formed 

(Johnson et al., 2007). 

 

    2.2.2 Cell harvesting in MIN6 cell line 

50 mM NaOH stock was prepared from the 1 M NaOH stock and Milli-Q. The cell lysis 

buffer was prepared by adding 140 µl PIC (Protease Inhibitor Cocktail) and 14 ml of 

50 mM NaOH stock solution. The 6-well plates were then placed on an ice try where 

the media was aspirated and washed with DPBS. The MIN6 cells were harvested by 

adding 350 µl of lysis buffer to each well. Upon completion, the cells were incubated 

whilst in the ice tray, on a plate rocker (10 RPM) for 20 min. The resulting cell lysates 

were collected using a sterile cell scraper and collected into individual 0.5 ml micro-

centrifuge tubes. Using a 1 ml syringe with 25-gauge needles, each lysate sample was 

passed six times, re-suspending the lysates to reduce viscosity. The samples were 

immediately placed in the fridge (4°C) for 24 hours for further analysis. 
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2.3 Measurement of cellular cytotoxicity 

PrestoBlue® cell viability reagent was used to measure the cytotoxicity of cells. Unlike 

other experiments explained above, this particular experiment was using live cells 

growing in culture. This reagent contains a cell-permeant compound that was not 

performed fluorescent in solution though possessed blue colour. This assay was very 

simple and fast due to a rapid change of colour and a quick uptake by the cells when 

reagent was added to media. Viable cells that contain the reducing environment then 

converted PrestoBlue® reagent to an intensively red-fluorescent dye. The protocol 

was obtained and adapted directly from the kit. Absorbance was then measured at 

560-590 nm using a microplate reader (BMG LABTECH, Germany).  

2.4 Intracellular total iron quantification 

Ferrozine assay was used to quantify the release of iron. The standards were prepared 

by a serial dilution of a 500 μM iron standard using 10 mM of HCl as diluent into eight 

different concentrations of iron (0 μM, 10 μM, 20 μM, 30 μM, 40 μM, 60 μM, 80 μM, 

120 μM). The cell lysates were aliquoted to each Eppendorf tube containing 200 μl of 

sample and mixed with 200 μl of 0.1 HCl. Sodium hydroxide (200 μl) with the 

concentration of 50 mM was added to each of the standard, with separate blank of 

400 μl. The samples were added to 200 µl of freshly prepared iron-releasing reagent 

consisting of equal volumes of 1.4 M HCl and 4.5% (w/v) potassium permanganate in 

water. Each Eppendorf tube containing both samples and standards were incubated 

for 2 hours in a 60ºC water bath within a fume hood, due to chlorine gas that is yielded 

during the reaction. Pre-treatment of a mixed solution of HCl/KMnO4 is crucial due to 

its ability to release iron quantitatively from proteins including ferritin (Panter, 1994).  

 

Each Eppendorf tube was transferred to a rack and cooled to room temperature for 

five to ten minutes. After reaching the room temperature, 60 µl of the iron detection 

reagent was added into each tube, which contained 6.5 mM ferrozine, 6.5 mM 

neocuproine, 2.5 M ammonium acetate, and 1 M ascorbic acid dissolved in water. 

Since ferrozine is light sensitive, solution preparation should be carried out limiting 

exposure to light (Riemer et al., 2004). These tubes underwent incubation for 30 min 

before the absorbance was measured at 550 nm using a microplate reader. After 30 

min, colour development is observed and 280 μl from both standard and sample tubes 
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is added in duplicate into wells of a 96-well plate. The intracellular iron concentration 

was determined from the standard curve performed by BCA assay. 

 

2.5 Intracellular ferritin quantification by immunoassay 

A spectrophotometric ELISA kit assay was used to measure the total protein 

concentration of the supernatant. Manufacturer’s protocol was followed with minor 

variations. Three different calibrators (0, 20, 60, 200 ng standard/ml) were chosen to 

generate a standard curve. Standards and samples (30 μl) were pipetted onto a 96-

well plate in duplicate followed by the incubation step as described in the protocol. The 

absorbance was measured at 490 and 630 nm using a microplate reader. This 

experiment was followed by measuring the total protein content of MIN6 cells using 

Pierce BCA kit. The bovine serum albumin (BSA) was used as a stock (2 mg/ml) 

provided in the kit was used to prepare standards by serial dilutions. Samples were 

loaded in duplicate onto a 96-well plate (25 μl). Absorbance was determined at 562 

nm using above microplate reader (Section 4.3). The ferritin concentration was 

standardised against the total protein concentration.  

 

2.6 Intracellular insulin quantification by immunoassay 

Measurements of insulin are pivotal for the investigation of β-cells function. To 

determine insulin secretory response in the presence of tolbutamide, MIN6 cells need 

to be incubated in presence of KRBB for a specific duration of time after which the 

media is collected and proceeded with extracellular insulin concentration 

quantification. Unlike standards used in Ferritin ELISA, this particular experiment 

performed the calibration curve applied four highest calibrators with concentrations 

0.2, 0.5, & 1.5 ug/L respectively (Mercodia Mouse Insulin ELISA). Appropriate number 

of standards and samples (10μl) were transferred onto a 96-well plate in duplicate 

followed by the incubation step as described in the protocol. The absorbance was 

measured at 450 nm using a microplate reader.  
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2.7 Lipid peroxidation assessment 

Sample supernatants from the static incubation experiments stored at -20°C, were 

assessed for lipid peroxidation using a Thiobarbituric Acid Reactive Substances 

(TBARS) (R&D Assay Kit). The procedures were as follows. A stock solution of 167 

μM was prepared by combination of 100 μl TBARS Standard and 200 μl TBARS Acid 

Reagent. This solution was kept at room temperature for 30 min with gentle agitation 

at 30 RPM. Prior to experiment, all reagents and supernatants should be kept at room 

temperature for 30 min and water bath should be preheated to reach 80°C.  

 

After 30 min, stock solution was diluted to produce seven different concentrations of 

standards; 16.7 μM, 8.35 μM, 4.18 μM, 2.09 μM, 1.04 μM, 0.52 μM, and 0.26 μM. 

Each standard was transferred to a new labelled tube contained 150 μl its standard 

and 75 μl of TBA reagent. Transferred 105 μl of supernatant to each designated tube 

(in duplicate). This was followed by the addition of 105 μl TBARS Acid and 105 μl TBA 

Reagent. Each sample and standard were transferred back to designated tubes and 

placed in a water bath at 80°C for 1.5 hours. To determine the final reading, a 96-well 

plate was used to determine the optical density of each well and was measured using 

a microplate reader set to 532 nm. The data was then determined by subtracting pre-

reading from the final reading. 

 Fig. 2.6. Schematic diagram of sandwich ELISA (image available online 
intranet.tdmu.edu.ua).  
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2.8 Ferric reducing antioxidant power (FRAP) assay 

 

ROS and RNS are by-products of normal cellular metabolism that play a dual role as 

both deleterious and beneficial species. At low or moderate concentrations, these 

species involve in many physiological roles such as cellular responses to noxia and 

induction of mitogenic response. However, an overproduction of ROS/RNS and 

concomitantly deficiency of enzymatic and non-enzymatic antioxidants results in 

oxidative/nitrosative stress, respectively. Thus, measuring antioxidant activity via ferric 

reducing antioxidant power (FRAP) assay may contribute some beneficial information 

relate to this area. 

 

2.8.1 Methodology 

This assay applies the reduction of ferric tripyridyl triazine (Fe III TPTZ) complex to 

ferrous and at the low pH, intense blue colour is formed, in which can be measured in 

absorption at 593 nm. Prior to starting this experiment, FRAP reagents needs to be 

made by three different components, which are 300 mM of acetate buffer (pH 3.6), 10 

mM TPTZ in 40 mM HCl, and 20 mM Iron (III) Chloride Hexahydrate (FeCl3.6H2O). 

Trolox, a water-soluble analogue of vitamin E and Epigallocatechin (EGCG), an 

antioxidant isolated from green tea are antioxidants used as references in this 

experiment. Moreover, hesperetin is an antioxidant with 97% purity (ShenZhen 

Dieckmann, China) is used to further being encapsulated with 100% shell protein with 

polysaccharide made of potato protein to modified citrus pectin (NF1) or potato dextrin 

(NF2). Methanol, DMSO, and distilled water are used as diluents. 

 

As the FRAP reagents are prepared freshly, 5 ml of acetate buffer, 5 ml of TPTZ 

solution and 50 ml of the FeCl3.6H2O are added to this reagent. 100 µl of the standards 

(EGCG and Trolox) is then prepared at different concentrations for the calibration 

curve (400 – 300 – 200 – 100 – 50 µM) in Eppendorf tubes. Thereafter, 30 µl of 

nanoencapsulated samples, standards (Trolox and EGCG), pure hesperetin and blank 

control (DMSO, distilled water or methanol) are added to 900 µl of FRAP reagent, 

which is incubated for 30 min at RT. Subsequently, the samples are centrifuged at 

10,000 g for 6 min at 25ºC and followed by removing 300 µl of the supernatant to be 

placed in a 96-well plate for further analysis. Absorbance readings are taken using a 

visible UV microplate reader set at 593 nm.  
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2.9 Cytotoxicity studies with MTT assay 

This is a colorimetric assay that measures the reduction of yellow 3- (4,5- 

dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide (MTT) by mitochondrial 

succinate dehydrogenase. The MTT in yellow enters the cells and passes into the 

mitochondria where it is reduced to formazan product, which gives a dark purple 

colour. Reduction of MTT can only occur in metabolically active cells. That is the 

reason why the quantity of formazan product is proportional to the quantity of viable 

cells.  

 

2.9.1 Methodology 

Prior to the day of experiment, four different samples were assembled with 

concentrations ranges from 20-100 M. The media was aspirated from each well 

comprising in three of 96-well plates (clear-black bottom), which was replaced by the 

addition of test media on the cells. The treatment was performed in six replicate wells. 

DMEM is considered as the positive control, whereas dH2O is the negative control. 

Thereafter, each plate was incubated in an incubator (95% air, 5% CO2) for period of 

24, 48, or 72 h. As elucidated previously in section 2.1.1, 30, 000 cells/cm2 was applied 

as a seeding density with passage 45.  

 

Table 2.9.1: List of various concentrations of nanoformulations in 

presence or absence of hesperetin 

Formulation Indication Concentration 

 (μM) 

NF1 Modified citrus pectin + Hesp 20, 50, 100 

NF2 Potato dextrin + potato pectin + Hesp 20, 50, 100 

NF3 NF1 (no Hesp) 20, 50, 100 

NF4 NF2 (no Hesp) 20, 50, 100 

 

In the following day, 5 mg/ml MTT reagent was prepared freshly in sterile DPBS just 

before the end of the incubation time. These components are mixed by vortexing until 

dissolved. Prior to a 24 h incubation period, 20 µl of the MTT reagent was added into 

each well and subsequently incubated the cells for 4 h at 37ºC. The media was 
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removed carefully avoiding pipetting adherent cells and followed by inserting of 100 µl 

of DMSO in each well before mixing the reagent well. The plate is covered with foil to 

avoid light exposure and is incubated in an orbital shaker for 15 min at 75 RPM. The 

plate is further analysed, measuring the absorbance at 570 nm in a 

spectrophotometer. These steps were repeated onto remaining two plates for 48 and 

72 h incubation, respectively. 

 

2.10 Cellular antioxidant activity (CAA) assay 

The cellular antioxidant activity (CAA) assay measures antioxidant activity of a 

molecule in a cell culture. The sample treatments enter the cells, the 2′,7′-

Dichlorofluorescin diacetate treatment (DCFHDA) is added. It is a cell permeable non-

fluorescent probe, which indicates the intracellular level of ROS. DCFH-DA is then 

deacetylated by cellular esterases and form 2′,7′-Dichlorofluorescin (DCFH) which 

turns fluorescent upon oxidation. ABAP or 2,2′-azobis (2-amidinopropane) 

dihydrochloride is added to create oxidative stress in the cells. It enables DCFH to be 

oxidized in the fluorescent DCF. The ultimate goal of this experiment is to show that 

the antioxidant properties of nanoencapsulated hesperetin have a cellular impact 

when cells endure oxidative stress. The antioxidant activity of nanoencapsulated 

hesperetin prevents the oxidation of DCFH and reduces the formation of DCF, 

indicating less fluorescence to be found corresponds to the less oxidation in the 

samples. Pure hesperetin samples should have a lower value of fluorescence since it 

is an antioxidant, however due to the absence of encapsulation, their antioxidant 

properties would be decreased on exposure to the environment. 

 

     2.10.1 Methodology 

Similar to FRAP assay, this experiment applied three of 96-well plates (clear-black 

bottom) with treatment media composed of HBSS and 10% FBS. The samples are 

elucidated on Table 2. This analysis is performed using Sessa and adapted from 

Wolfe’s article. In initiating the experiment, a 200 mM stock solution of ABAP (200 

mM) is prepared in distilled water and followed by a stock solution of DCFH-DA (20 

mM) diluted in methanol, covered with aluminium foil and stored at 4°C. The growth 

medium is removed from each well and cells are washed with 100 µl of treatment 

media. 
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This treatment media is then aspirated and replaced with 200 µl of the various 

concentrations of NFs applied on the cells. Each condition is twelve times replicated. 

200 µl of treatment media is considered as a blank and control. Each microplate is 

incubated for an hour at 37°C in the cell culture incubator. During incubation time, 

each of 100 µM DFCH-DA solution and the 600 µM ABAP solution was prepared in 

treatment medium. After the incubation, media is removed, and cells were washed 

with 100 µl of treatment medium. 

 

 

 

 

 

Then the cells are treated with 200 µl of DCFH-DA solution (100 µM) and incubated 

for 30 min at 37°C. Afterwards, cells are washed and 100 µl of ABAP solution (600 

µM) is applied in each well except for blank and sample background wells where only 

contain 100 µl of treatment medium. Place the 96-well plate in a fluorescent microplate 

reader (FLUOstar OPTIMA, BGM Labtech) at 37°C with emission is measured at 528 

nm and excitation at 485 nm for an hour period.  

 

Cell 
Treatments

NF1

NF2

NF3

NF4
Control 

(DCFH.DA + 
ABAP)

Blank 
(DCFH.DA)

Sample 
background 

(NFs + 
DCFH.DA)

Fig. 2.10.1. A proposed nanoformulations and reagents required to demonstrating CAA 
assay on caco-2 cells.  
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2.11 Immunoblot analysis 

     2.11.1 Cell lysate preparation 

Many analyses can be applied prior to treatment exposure towards cells. Cell lysate 

was prepared to determine protein content, which would be used as standards amount 

of proteins using BCA assay as mentioned above. A careful act is required in handling 

these proteins, as it is their nature to be degraded. Lysis buffer is essential in avoiding 

protein degradation and enables efficient cell lysis and protein solubilisation. RIPA is 

a commercially used lysis buffer that has the ability to extract proteins from the cells, 

including plated cells and pelleted suspension cells. This buffer is supplemented with 

a known protease inhibitor called PIC to avoid protein degradation. This effective 

inhibitor is composed of 25 mM Tris-HCl (pH 7.6), 150 mM NaCl, 1% NP-40, 1% 

sodium deoxycholate, 0.1% SDS.  

 

Loading buffer is essential prior to sample loading into gel cassette. A bromophenol 

blue dye was added to the protein solution to track the progress of the protein solution 

through the gel during the electrophoretic run (Boster Biological Technology, 1993). 

Samples were diluted 1:4 dilution and heated at 95°C for 5 min. This buffer (2X) 

consists of 50 mM Tris-HCl (pH 6.8), 23% w/v sucrose, 4% w/v SDS, 0.02% 

bromophenol blue dye, and 100 mM DTT.  

 

2.11.2 Gel casting 

Two gel solutions were prepared in a process of gel making, which are resolving and 

stacking gel solutions. Resolving gel solution is prepared firstly to fill a gel cassette 

and allow the gel to polymerize for roughly 5-10 min followed by stacking gel solution. 

A comb is placed into the assembled gel sandwich as the port to load ready samples. 

This gel can then store at 2-8°C for further application. Prior to SDS-PAGE, remove 

the comb by pulling it straight up slowly and gently.  
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 Table 2.11.2: Volume of resolving and stacking gel solutions 

required to fill a gel cassette 

 

2.11.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) analysis 

Electrophoresis is a technique that has been used widely to separate the charged 

particles under the influence of electric field. The separation of proteins is based on 

the electrophoretic mobility of these proteins, which depends on their charge, molecule 

size, and structure of the proteins. Polyacrylamide gel (PAG) is a versatile supporting 

matrix due to its character, which possesses a neutral charge produces 

electroosmosis effect and little adsorption. 

Reagents Resolving gel 

(10%) 

Stacking gel  

(4%) 

30% 

acrylamide/bisacrylamide 

2.25 ml 0.375 ml 

Stacking gel buffer 

(0.5 M Tris-HCl pH 6.8) 

 0.465 ml 

Resolving gel buffer 

(1 M Tris-HCl pH 8.8) 

1.95 ml  

dH2O 3.75 ml 2.7 ml 

10% SDS 75 µl 37.5 µl 

15% w/v ammonium 

persulphate (APS) 

75 µl 37.5 µl 

TEMED 

(N,N,N’,N’, 

Tetramethylethylenediamine) 

15 µl 7.5 µl 
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The application of SDS as an anionic detergent that mainly functions to break 

hydrogen bond within and between molecules. Moreover, this detergent could also 

unfold proteins and work similar to a strong reducing agent such as dithiothreitol (DTT) 

to break up secondary and tertiary structures. DTT and another reducing agent such 

as mercaptoethanol also have a major role in disrupting disulfide linkages between 

cysteine residues. The nature of these chemicals is suitable to employ as the buffer 

for gel running purpose. SDS-PAGE buffer composition is shown below. 

10X running buffer: 

 

250 mM Tris-Base pH 8.3 

1.92 M Glycine 

1% w/v SDS 

 

The samples were then ready to be loaded into the port of gels. Electrophoresis was 

performed using the Bio-Rad mini-protean II electrophoresis system at 200 volts (V) 

for 45 min (Bio-Rad, UK).  
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2.11.4 Methodology 

 

 

 

 

 

Different total proteins (15 µg and 10 µg) were loaded in each well. Protein samples 

were separated by electrophoresis on a 10% SDS-PAGE gel prior to transferring 

samples into nitrocellulose membrane. After seventy minutes transfer in its buffer at 

4°C, nitrocellulose membranes were blocking with 3% BSA at the room temperature. 

The membranes were incubated with rabbit-anti-rat DMT1 antibodies (Alpha 

Diagnostic International, USA) (1:1000) for overnight on the rocking platform with 

faster setting in the cold room. Blots were then probed with anti--tubulin polyclonal 

antibody (Abcam, UK) at 1:500 dilution as a loading control. The membrane was then 

visualized using ECL Western Blotting detection reagent. Goat anti-rabbit secondary 

antibody conjugated to horseradish peroxidase (Abcam, UK) was used at 1:2000 and 

Fig.2.11.4. BioRad Mini Trans-Blot® electrophoretic transfer cell. Assembly includes 
cassettes for holding the gels and membranes; a cooling unit to absorb heat during transfer; 
and an electrode module that holds the cassettes. The cables attached to the lid are 
connected to a power supply (image available online www.bio-rad.com).  
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was analysed by scanning densitometry using a Tanon Image System (Tanon, 

Shanghai, China). 

  

2.12 Expression of protein carbonyl in MIN6 cells 

 
The formation of carbonyl groups on the side chains of proteins was determined using 

an OxyBlot™ Protein Oxidation Kit (S7150, Merck Millipore). Cells were lysed using 

RIPA buffer and the protein concentrations were subsequently determined by 

performing BCA assays. A weight of 15 μg of protein was selected and used for either 

direct Western blot analysis or derivatization with the OxyBlot kit by following the 

manufacturer’s instructions, except as noted herein. The protein lysates were 

derivatized using 2,4-dinitrophenylhydrazine (DNPH), yielding dinitrophenyl (DNP) 

hydrazone products, which were detected using the SuperSignal™ West Femto 

substrate (Thermo Fisher Scientific) and analysed by scanning densitometry using a 

Tanon Image System (Tanon, Shanghai, China). Furthermore, all the DNP bands in 

each lane were quantified using the ImageJ Software (version 1.52) and analysed in 

duplicate. 

 

2.13 Estimation of OCR 

 
Oxygen consumption rates were measured in accordance with the manufacturer’s 

instructions (Seahorse Bioscience). Based on the methods elucidated in Section 2.11, 

all the indications remained the same, except the concentration of oligomycin and 

FCCP. OCR measurements were made more than five times repeatedly. It was 

appealing to find that iron and glucose applied distinct concentrations of these agents. 

The saturating concentration of oligomycin in the presence of iron was 1 g/ml. On the 

other hand, cells with glucose content required 2.5 g/ml. Although these two nutrients 

employed two separate complex IV inhibitors, there was no distinct concentration of 

this uncoupler agent, suggesting that 5 gmol/L was the constant concentration of 

FCCP. Several analyses resulted from using this particular method, including the 

ability to estimate the basal respiration, ATP-linked respiration, proton leak, maximal 

respiration, reserve/spare respiratory capacity, and non-mitochondrial respiration.  
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2.14 Mitochondrial membrane potential (∆ψm) assessment 

 
After appropriate treatment with a suitable culture medium, the medium was replaced 

with a prewarmed staining solution containing a MitoTracker probe (M7512, 

Invitrogen). The desired staining concentration was 0.5 μM and the incubation was 

conducted overnight at 37ºC. The cells were then rinsed three times with DPBS and 

fixed in a solution of 4% PFA in a complete growth medium at 37ºC for 15 min. 

Thereafter, the cells were washed once in DPBS and permeabilized with 0.2% (v/v) 

Triton X-100 for 15 min under the same conditions stated earlier. The cells were 

scraped, placed in designated flow cytometry tubes, and further analysed using 

CyAn™ ADP with Summit™ software. Prior to the analysis, the cells were vortexed to 

avoid any aggregation which might give incorrect results. The cells were analysed at 

579 and 599 nm as the excitation and emission wavelengths appropriate for 

fluorescein, respectively.  

 

2.15 Imaging of live MIN6 cells influenced by ∆ψm changes 

Samples were treated using the methods described in Section 2.2.8. However, instead 

of scraping cells from the plates, they were stored at 2-8ºC and used at a particular 

point. Prior to the day of the experiment, the supernatant was discarded and replaced 

with PBS. The live cells were then imaged using a confocal microscope (Leica 

Confocal Software, Leica Microsystems Heidelberg GmbH, Germany) with a 63x/0.9 

wet objective. We subjected Texas Red to 543-nm helium/neon laser excitation and 

the emission was recorded through a band-pass 543- to 650-nm filter.  

 

2.16 Expression of SNAP-25–mediated insulin exocytosis 
 
The expression of SNAP-25 protein was quantified using the immunoblotting 

technique elucidated in Section 2.12, unless stated otherwise. The membranes were 

incubated with rabbit-anti-rat SNAP-25 antibodies (ab5666 - Abcam, UK) with a 

concentration of 1 g/ml. This protein weighs approximately 25 kDa, which allows the 

detection of its bands at this similar weight. Goat anti-rabbit secondary antibody 

conjugated to horseradish peroxidase (Abcam, UK) at a ratio of 1:2000 was used. The 

blots were then probed with goat polyclonal anti β-actin (ab8229 - Abcam, UK) at 1:500 

dilution as a loading control.  
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2.17 Cell Culture with transferrin treatments 

Cells were treated with human transferrin (Sigma Aldrich, UK) (0.005, 0.05, 0.5, 2, and 

5 g/L) for 24 h and supplemented with tolbutamide as an insulin secretagogue. 

Altogether, this protein was exposed towards the cells with other experimental agents 

such as iron and glucose that were added as demonstrated previously in Section 2.2.  

 

2.18 Statistical analysis 

 
All the experiments were performed three-time independently, with each treatment 

condition applied in triplicate. The data is presented as the mean ± SEM and the 

differences between the samples were analysed with the Student’s t-test, using the 

GraphPad Prism software (Version 7.0). The results were considered significantly 

different if P was less than 0.05.  
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3. Results 

3.1 Introduction 

Aim: To clarify the role of excessive iron on β-cell function – insulin synthesis and 

secretion. 

Objectives: 

• Clarify the role of excessive iron on the level of β-cell iron status by 

ferritin immunoassay. 

• Clarify the role of excessive iron on β-cell insulin secretion and content 

by insulin immunoassay. 

• Identify whether the excessive iron may have an effect on β-cell viability 

by conducting cytotoxicity assays. 

• Identify whether the excessive iron may have an effect on the 

intracellular iron transporter 1 (DMT1) protein expression by 

immunoblotting. 

• Identify whether the excessive iron may have an effect on SNAP-25 

protein expression by immunoblotting. 

• Optimise diferric-Tf as a model on the iron delivery into the β-cell. 

 

Failure of pancreatic β-cell has been found to be involved in the pathogenesis of T2D. 

Conventionally, it is believed to be caused by disruption of insulin action and its 

secretion, leading to relative insulin deficiency (Kahn, et al., 2014). T2D can later be 

developed only when the compensatory mechanisms such as nutrient excess, β-cell 

hypertrophy and hyperplasia, recruitment of β-cell mass, or even exocrine acinar 

tissue fail (Backe et al., 2016). Iron is crucially required for normal β-cell function. This 

micronutrient is involved in mitochondrial Fe-S clusters, which are important proteins 

that contribute to the production of ATP.  Exocytosis of insulin and its further secretion 

can take place in the presence of an increased level of ATP/ADP ratio. However, under 

the conditions that affect the levels of intracellular iron, it can potentially cause 

diseases. Since β-cell majorly lacks enzymatic antioxidants, they are particularly 

vulnerable to oxidative stress (Wang & Wang, 2017). The levels of this micronutrient 

need to be maintained tightly within the body in preventing unwanted outcomes.  
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This chapter utilises pancreatic β-cell line, MIN6 cells as a model to perform the 

particular experiments due several notable characteristics being demonstrated. MIN6 

cells form physiologically relevant clusters of islets (Fig. 3.1A-B) (pseudoislets) and 

express key proteins involved in glucose uptake such as GLUT-2 and glucose 

metabolism (glucokinase) (Skelin et al., 2010). Furthermore, this cell displays the 

structural and functional characteristics of mature β-cell - the ability for GSIS. 

Oftentimes, MIN6 cells experienced a sudden loss of glucose-induced insulin 

secretion, which is a minor disadvantage that could be supplemented with insulin 

secretagogues. These characteristics indicate that this cell line is an appropriate 

model for studying the mechanism of excessive iron accumulation mediated oxidative 

stress and β-cell dysfunction via the perturbations of insulin secretion.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1A-B MIN6 cells were grown on a tissue culture T-75 flask and photographed through 
a microscope (x10) with a passage number of 37. A: Morphology of MIN6 cells on day-3; 
B: Morphology of MIN6 cells on day-6. 

A B 

100 µm 100 µm 
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Protein-related iron uptake in pancreatic β-cell such as transferrin is worth 

examined. Moreover, proteins that are involved in homeostasis such as DMT1 and 

ferritin were also identified. As previously mentioned, iron exhibits a critical role in 

insulin secretion, insulin exocytosis machineries such as SNAP-25 as one of core 

components of SNARE complex proteins are also demonstrated. Lastly, the effect 

of excessive iron in conducting pancreatic β-cell toxicity was also identified.  

 

MIN6 cells are a pancreatic β-cell line, which has been used in this project to 

assess the effect of various compounds loaded in four different time courses (Table 

3.1). Various analyses (Fig. 3.1C) below were performed to observe the effects of 

iron and glucose on cells as an in vitro model to mimic physiological conditions in 

vivo. Moreover, apo-Tf as an iron-bound protein is also added to the cells to mimic 

human physiological conditions. The passage number of the cells is within the 

range of 11-18 and 37-40 for each of the analyses below.  
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Table 3.1 Various experimental conditions of iron and glucose with four incubation 

times on MIN6 cells 

 

 
 

 

 

 

 

 

MIN6 
pseudoislet 

culture

Ferritin protein 

(Ferritin 
ELISA)

ROS mediated 
cellular oxidative 
stress (TBARS 

ELISA)

Cell viability 
(PrestoBlue 

assay™)

Insulin secretion 
(Insulin ELISA)

Total iron content 
(Colorimetric 
FerroZine® 

assay)

Expression of 
DMT1 protein 
(Western blot) 

Fig. 3.1.C A diagram of different analyses performance using pancreatic β-cells MIN6, 
both in cell lysate and live cells.  
 

C 
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3.1.1 Examination of DMT1 as the iron transporter  

It has been known that DMT1 is involved in iron metabolism, which plays a crucial role 

in transporting ferrous iron. This protein has been found in every cell type as every cell 

requires iron to perform variety of biological processes. The expression of DMT1 was 

evaluated on MIN6 cells in 3 and 24 h incubation. Addition of two concentrations of 

iron (20 μM & 100 μM) were loaded to examine their effect on DMT1 detection. This 

experiment applied β-Tubulin as a loading control to ensure a consistent protein 

loading across the gel. Moreover, addition of this control is essential for proper 

interpretation in regard to obtaining the data. As shown in figure 3.1.1, normal and 

high iron concentrations exhibited no effect on intracellular DMT1 levels compared to 

control (P>0.05), although two concentrations of iron showed slight decrease in DMT1 

levels (3 h).  
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Fig. 3.1.1. DMT1 detection performed by western blotting in 3 h and 24 h incubation. To 
normalise the levels of protein detected, β-Tubulin was utilised. The protein was extracted and 
run through a 10% agarose gel. The results above are: (A) Different bands obtained by western 
blot, consisting of β-Tubulin (control) and DMT1 (protein interest). (B) The expression of DMT1 
protein in 3 h and 24 h incubation. Gel loading was as follows (from the left): lane 1 – ctrl (3 
h), lane 2 - normal iron (C3 – 3 h), lane 3 - high iron (C4 – 3 h), lane 6 - high iron (C4 – 24 h), 
lane 7 - normal iron (C3 – 24 h), lane 8 - ctrl (24 h). Data represent mean ± SEM. *P<0.0325. 
n=3.  
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On the other hand, both normal and high iron concentrations demonstrated higher 

levels of DMT1 with high iron twice as high than the control (52.9%) at 24 h. Moreover, 

although normal iron should noticeably demonstrate significant DMT1 levels 

compared to control, no significant difference was observed (P>0.05). This led to a 

further analysis of a range of iron concentrations and additional of experimental 

periods to acquire more information and understanding on the effect of iron on DMT1 

protein at larger scales.  

 

3.1.2 Assessment of circulating transferrin-bound protein 

As elucidated earlier, circulating iron has to bind to a particular protein, Tf, which 

represents the normal form of circulating iron. MIN6 cells were exposed to various 

concentrations (0.005, 0.05, 0.5, 2, & 5 g/L) of Tf. These concentrations of Tf were 

expected to bind to iron within the circulation. Ferrozine assay was used to assess 

intracellular total iron content related to iron-bound protein and circulating iron-bound 

Tf. Fig. 3.1.2A showed that the highest Tf concentration was obtained from 5 g/L 

compared to 0.005 g/L (32.4 ng/mg protein vs 28.4 ng/mg protein). This result was 

followed by 0.005 g/L (28.4 ng/mg protein) and 0.05 g/L (27.5 ng/mg protein) as the 

second and the third highest Tf concentrations, respectively. Surprisingly, 0.5 g/L was 

considered as the normal Tf level physiologically, exhibiting the lowest Tf 

concentration (24.1 ng/mg protein).  

 

Fig. 3.1.2B-E demonstrated a range of concentrations of Tf with the addition of two 

designated iron concentrations towards the level of total iron content. The data shows 

that normal iron exhibited insignificant decreased iron content in most of the 

designated Tf concentrations loaded. However, high iron demonstrated higher total 

iron content throughout all conditions. Figure 3.1.2E, represented the highest Tf 

concentration (5 g/L) with the addition of high iron, depicted to significantly increase 

70.9% iron content compared to normal iron control (P<0.05). Iron content levels were 

progressively decreased in concomitant with decrement of Tf concentrations. Tf 

concentration of 2 g/L showed the second highest total iron content (63.8%) followed 

by 0.5 g/L (57.1%) and 0.05 g/L (55.0%), respectively. Therefore, it is proposed that 

the addition of increased Tf into the cells elevates total iron content levels. 
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Other analyses such as ferritin and MDA levels should be observed as well to identify 

the effect of Tf towards MIN6 cells. The addition of this protein was to find out whether 

all the above analyses would demonstrate different effects towards MIN6 cells. 

Surprisingly, similar effects were observed at 48 and 72 h in quantifying total iron 

content levels in the absence of Tf. The only difference was that the level of total iron 

content increased significantly in the presence of Tf, particularly at 100 μM iron. Thus, 

it is suggested that a range of iron concentrations exposed to cells have no different 

effects compared to cells with the absence of Tf. Furthermore, the additional 

concentrations of glucose and the number of analyses is required to applied in order 

to obtain valid information that could strengthen the current data. 
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Fig. 3.1.2A. These data illustrated a range concentration of Tf loaded into MIN6 cells, 
followed by addition of iron concentrations for 24 h. The above experiments are as follows: 
(A) The effect of MIN6 cells on the exposure of distinct concentrations of Tf. The data 
represent mean ± SEM. ***P<0.0002, *P<0.039. n=3. 
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3.1.3 Estimation of total iron content 

Estimating iron content is fundamental to advance further analyses as it can provide 

the quantity of intracellular iron and whether iron accumulates in cultured cells. MIN6 
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Fig. 3.1.2B-E. These data illustrated a range concentration of Tf loaded into MIN6 
cells, followed by addition of iron concentrations for 24 h. The above experiments 
are as follows: (B) Concentration of iron content in presence of 0.05 g/L Tf with 
addition of iron concentrations. (C) 0.5 g/L Tf with addition of iron concentrations. 
(D) 2 g/L Tf with addition of iron concentrations.  (E) 5 g/L Tf with addition of iron 
concentrations. The data represent mean ± SEM. *P<0.0138 (0.5), *P<0.048, 
**P<0.0031 (5), **P<0.0036 (2). n=3. 
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cells were incubated in the presence of various range of iron (20 μM & 100 μM) 

glucose (5.5 mM & 11 mM), combinations of iron and glucose (Table 3.1), and all with 

the addition of tolbutamide in 3, 24, 48, and 72 h. As shown in figure 3.1.3, iron and 

glucose demonstrated no change on intracellular iron content compared to its control 

(3 h). However, iron concentrations alone and conditions containing combinations of 

iron and glucose exhibited a significant increase of iron content compared to control 

at 24 h incubation (P<0.05).  In addition, although glucose concentrations alone 

demonstrated higher iron content, the levels were insignificant compared to control 

(P>0.05). The highest level of iron content exhibited by a condition containing high 

iron and normal glucose resulted in a 41% increase compared to control (24 h).  

 

Furthermore, the level of iron content was significantly increased at 48 and 72 h in iron 

and glucose concentrations compared to control (P<0.05). However, normal glucose 

demonstrated insignificant higher level (P>0.05) compared to control. High iron 

exhibited a 34.4% increase of iron content compared to all conditions (48 h 

incubation). Similar to 48 h incubation, iron and glucose concentrations alone 

demonstrated significant changes with high iron exhibiting twice as much as control 

(76.2 nmol/mg protein vs 34.8 nmol/mg protein) (72 h).   
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This phenomenon suggested that excess iron and glucose might have an effect on 

iron metabolism starting at 24 h incubation onwards. 

 

3.1.4 Estimation of cellular ferritin content  

It is crucial to quantify intracellular ferritin content as this protein has been considered 

as iron storage protein, which has been found in many different human tissues. Since 
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Fig. 3.1.3. To determine the quantification of iron intracellularly, MIN6 cells were 
exposed to different concentrations of iron and glucose, and all with the addition of 
tolbutamide. These cells were incubated in 3, 24, 48 and 72 h. These effects were 
performed with ferrozine-based colorimetric assay. The data represent mean ± SEM. 
**P<0.003 (C3 – 24 h), **P<0.0077 (C4 – 24 h), **P<0.0025 (C5 – 24 h), **P<0.0026 
(C6, C7 – 24 h), **P<0.0062 (C8 – 24 h); **P<0.0059 (C2 – 48 h), *P<0.0156 (C3 – 48 
h),  *P<0.049 (C4 – 48 h), **P<0.007 (C1 – 72 h), *P<0.017 (C2 – 72 h), *P<0.0266 (C3 
– 72 h), *P<0.035 (C4 – 72 h). n=4. 
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iron overload has led to many different diseases, the amount of storage iron, which is 

correlated to this protein has to be considered. As shown in figure 3.1.4, iron and 

glucose demonstrated no effects on ferritin levels at 3 h incubation. In addition, 

conditions containing iron and glucose also exhibited no changes on ferritin levels. 

Glucose concentrations seemed to slightly increased ferritin level and iron slightly 

reduced it at 3 h. Similar effects remained observable  

at 24 h in which iron, glucose, and combinations of iron and glucose demonstrated no 

effects on iron storage.  

 

Unexpectedly, iron and glucose conditions led to significant changes in ferritin levels 

at 48 h. High iron exhibited fifteen times higher of ferritin levels than its control (270.5 

ng/mg protein vs 17.8 ng/mg protein), which was followed by normal iron with five 

times increase (173.0 ng/mg protein vs 17.8 ng/mg protein). Moreover, high glucose 

demonstrated ferritin levels almost twice as high as its control (47.7%). In contrast, 

glucose showed no effect on ferritin levels compared to control at 72 h incubation. An 

opposite effect was observed by high iron in which ferritin levels was significantly 

increased, four times higher (76.1%) than its control (P<0.05). Thus, it is suggested 

that high iron concentration exposure upon MIN6 cells resulted in high ferritin 

concentrations in both 48 h and 72 h. 
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3.1.5 Assessment of cellular viability 

Many techniques have been developed in assessing the cytotoxicity of the cells. 

However, PrestoBlue® is a new, simple, and extremely fast live assay to estimate the 

viability of the cells and their cytotoxicity. The results obtained below demonstrated 

the effects of MIN6 cells towards various concentrations of iron, glucose, and 

combinations of iron and glucose in which tolbutamide was added at 3, 24, 48 and 72 

h.   
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Fig. 3.1.4. The effect of iron, glucose, combinations of iron and glucose at a variety of 
concentrations, all with the addition of tolbutamide on MIN6 cells. This assessment was 
performed at four different time points indicating short-term (3 h), mid-term (24 & 48 h), 
and long-term (72 h) exposure.  The data represent mean ± SEM. *P<0.028 (C2 – 48 
h), *P<0.023 (C3 – 48 h), **P<0.006 (C4 – 48 h); *P<0.025 (C4 – 72 h). n=4. 
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Cell viability assessment can be used to support the analysis of MDA levels (Chapter 

4). As shown in figure 3.1.5, iron and glucose demonstrated changes on the viability 

of cells (at all given conditions). Normal and high glucose concentrations exhibited 

significantly increased cell viability, 21.6% and 19.2% higher than the control, 

respectively (3 h incubation). On the other hand, although iron concentrations 
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Fig. 3.1.5. The estimation of cell viability and cytotoxicity was performed by PrestoBlue® 
assay in four incubation times (3, 24, 48 and 72 h). MIN6 cells were exposed to various 
concentrations of iron, glucose, combinations of iron and glucose in which tolbutamide was 
added. The data represent mean ± SEM. ***P<0.0003 (C1 – 3 h), *P<0.0147 (C2 – 3 h); 
****P<0.0001 (C3 – 24 h), **P<0.0055 (C4 – 24 h); *P<0.021 (C4 – 48 h), *P<0.033 (C2 – 
72 h), *P<0.019 (C4 – 72 h). n=4. 
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demonstrated decreased percentage of cell viability, the levels were insignificant 

(P>0.05). At 24 h incubation, similar effects were observed both in iron and glucose 

concentrations in which glucose concentrations increased cell viability, but iron 

concentrations decreased it. However, glucose concentrations depicted an 

insignificant result compared to control, whereas both normal and high iron 

demonstrated significant reduction almost twice as much as the control (47% and 

46%, respectively).  

 

At 48 h incubation, glucose concentrations demonstrated slight changes in which 

normal glucose demonstrated an insignificant increase of cell viability, but high 

glucose depicted an opposite effect (P>0.05). In contrast, high iron concentration 

significantly reduced the percentage of cell viability with 35% reduction compared to 

control. Similar effects were also observed at 72 h in which high iron exhibited 46% 

reduction of cell viability, followed by high glucose with 40.5% reduction of cell viability. 

This result provided consistent data obtained in previous analyses, suggesting that 

high iron and high glucose generated impairment on cellular function, which involved 

in myriad diseases include T2DM.  

 

3.1.6 Assessment of insulin content 

Measurement of insulin is essential as β-cell function is being investigated. 

Intracellular insulin content was quantified to determine the balance between insulin 

synthesis and secretion. As shown in figure 3.1.6, iron and glucose slightly altered the 

level of intracellular insulin content in which the values were increased insignificantly 

compared to control in 1 h incubation (P>0.05). In addition, the combinations of iron 

and glucose concentrations demonstrated no changes on insulin content. 
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Fig. 3.1.6. Intracellular insulin content was performed using insulin ELISA in cultured 
cells. MIN6 cells were exposed to various concentrations of iron, glucose, and 
combinations of iron and glucose, all with the addition of tolbutamide at designated 
incubation times. The data represent mean ± SEM. *P<0.0193 (C3-12 h), *P<0.022 (C4-
12 h), *P<0.0148 (C6-12 h); *P<0.0229 (C6-24h), *P<0.011 (C8-24h). n=3 
 

Time (Hours) 

In
s

u
li
n

 c
o

n
te

n
t 

(n
g

/m
g

 p
ro

te
in

) 

* 

* 

* 

* 

* 



 65 

In contrast, only iron (53.01 μg/mg protein vs 38.13 μg/mg protein) exhibited a 

significant increase of insulin content at 12 h incubation compared to control. 

Moreover, although glucose demonstrated higher insulin content, the value was 

insignificant (P>0.05). At 24 h incubation, iron reduced insulin content insignificantly 

(20 μM Fe: 12.3%; 100 μM Fe: 10.2%), whereas glucose increased its value 

insignificantly (5.5 mM Glu: 4%). Thus, it is suggested that iron and glucose have no 

change on insulin content at 1 h. Iron started to undergo an increase at 12 h 

significantly. However, at 24 h, iron and glucose demonstrated an opposite effect in 

which iron reduced insulin content and glucose increased it.  

 

3.1.7 Assessment of insulin secretion 

The data in figure 3.1.7 showed insulin secretion levels in various conditions of iron, 

glucose, and combinations of iron and glucose at 5, 10, 30, 60, 180, & 144 minutes.  

The results below comprise of different insulin secretion levels as an effect of glucose 

against control (Fig.3.1.7A), iron against control (Fig.3.1.7B), combinations of iron and 

glucose against control (Fig.3.1.7C), and direct measurements of iron, glucose, and 

combinations of iron and glucose at 5, 10, 30, and 60 min (short term) (Fig.3.1.7D), 

which was also applied at 24 h incubation (long term) (Fig.3.1.7E).   

 

As shown in figure 3.1.7A-C, glucose concentrations (5.5 mM Glu: 10.5 μg/mg protein 

vs 9.02 μg/mg protein; 11 mM: 9.7 μg/mg protein vs 9.02 μg/mg protein) slightly 

increased insulin secretion both at 3 and 24 h (Fig. 3.1.7A). On the other hand, normal 

iron had no effect on insulin secretion (8.7 μg/mg protein vs 8.7 μg/mg protein), but 

high iron slightly increased insulin secretion (9.3 μg/mg protein vs 8.7 μg/mg protein) 

compared to control (3 h) (Fig. 3.1.7B). This was also observed at 24 h incubation. 

Furthermore, insulin secretion was slightly increased in all conditions containing iron 

and glucose combinations compared to control. However, a condition containing 

normal iron and normal glucose combinations exhibited the highest insulin secretion 

at both 3 and 24 h incubation (10.2 µg/mg protein vs 8.3 µg/mg protein; 33 µg/mg 

protein vs 17.7 µg/mg protein, respectively) (Fig. 3.1.7C). 
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Fig. 3.1.7A-C. To determine insulin secretion due to the effects of different 
concentrations of iron, glucose, and combinations of iron and glucose, all with the 
addition of tolbutamide on MIN6 cells. A range of incubation times were applied: (a,b,c) 
Insulin secretion concentrations in 3 & 24 h. The data represent mean ± SEM. n=3 
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Fig. 3.1.7D. To determine insulin secretion due to the effects of different concentrations of iron, 
glucose, and combinations of iron and glucose, all with the addition of tolbutamide on MIN6 
cells. A range of incubation times were applied: Insulin secretion concentrations acutely (5, 10, 
30, 60 min). The data represent mean ± SEM. **P<0.004 (C1-5min), *P<0.02 (C2-5min); 
**P<0.0036 (C1-10min), *P<0.037 (C2-10min), **P<0.005 (C3-10min), *P<0.026 (C6-10min), 
*P<0.01 (C8-10min); *P<0.05 (C1-30min), *P<0.033 (C2-30min), *P<0.016 (C3-30min), 
*P<0.026 (C6-30min), *P<0.01 (C8-30min); *P<0.013 (C3-60min); n=3 
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Short term incubations were taken simultaneously on MIN6 cells and depicted 

fluctuations among all conditions at several incubations. At 5 min incubation, iron and 

glucose exhibited higher insulin secretion with 33% and 26.2% compared to control, 
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Fig. 3.1.7E. To determine insulin secretion due to the effects of different concentrations of iron, 
glucose, and combinations of iron and glucose, all with the addition of tolbutamide on MIN6 
cells. A range of incubation times were applied: Insulin secretion concentrations at 24 h (5, 10, 
30, 60 min). The data represent mean ± SEM. *P<0.049 [C2-24h (5min)], *P<0.022 [C3-
24h(5min], **P<0.004 [C4-24(5min], *P<0.013 [C6-24h(5min)], **p<0.003 [C8-24h(5min)]; 
*P<0.034 [C2-24h(10min)], *P<0.022 [C3-24h(10min)], *P<0.02 (C4-24h(10min)], **P<0.005 
[C6-24h(10min)], *P<0.027 [C8-24h(10min)]; *P<0.015 [C2-24(30min)], **P<0.004 [C3-
24h(30min)], *P<0.016 [C4-24h(30min)], **P<0.005 [C6-24h(30min)], *P<0.018 [C8-
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respectively. In addition, the combinations of iron and glucose reduced insulin 

secretion insignificantly compared to control (P>0.05). However, normal iron reduced 

33.3% of insulin secretion, but high iron depicted no change compared to control (10 

min incubation). An opposite effect was observed in glucose concentrations in which 

insulin secretion (5.5 mM: 9.6% and 11 mM: 14%) was increased insignificantly 

(P>0.05). At 30 min incubation, iron and glucose increased insulin secretion 

insignificantly. In contrast, normal iron reduced 13.3% of insulin secretion, but 

increased 18.8% secretion at high iron concentration along with high glucose depicting 

the highest insulin secretion (23.1% compared to control) (60 min incubation) (Fig. 

3.1.7D).  

 

After a long-term incubation (24 h), several time courses (5, 10, 30, & 60 min) were 

applied and insulin secretion was measured. Persistent results were observed in 

which high iron and high glucose demonstrated significant reductions in levels of 

insulin secretion (63.5%, 56.1%, 74.5, 47.2% & 31.7%, 35.1%, 34.5%, 43.4%, 

respectively) across various time courses compared to control (P<0.05) (Fig. 3.1.7E). 

This consistency was also shown by conditions containing iron and glucose 

combinations. Thus, it is suggested that various fluctuations have been observed 

among these time courses, but consistency was demonstrated by long term 

incubation, showing that high iron and high glucose exhibited significant reductions of 

insulin secretion across four different short-term periods within 24 h incubation. 

 

3.1.8 Expression of SNAP-25–mediated insulin exocytosis 
 
Identifying the effect of iron and glucose on SNAP-25 is pivotal as this protein is 

involved in regulating the exocytosis of insulin. MIN6 cells were exposed to selected 

concentrations of iron and glucose for 24 and 48 h. -actin was used as the 

housekeeping gene in this particular experiment owing to its molecular weight and a 

lack of cross-effect towards the protein of interest. Figure 3.1.8 depicts the  

 

 

 

 

 



 70 

 

 
 

  

 

   

 

   

 

 

 

 

  

 

 

 

 

 

 

 

 

measurements of protein oxidation expression using OxyBlot. The high iron and 

glucose concentrations decreased the SNAP-25 expression levels at both time points, 
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Fig. 3.1.8. SNAP-25 protein expressions in pancreatic β-cell (MIN6) within two distinct 
timelines, 24 and 48 h, in the presence of iron and glucose. Protein expression was identified 

using western blotting. (A) Distinctive bands of SNAP-25 (24 and 48 h) and -actin. (B) 

Expression of SNAP-25 in 24 h determined as an area under the curve (AUC). (C) Expression 
of SNAP-25 in 48 h. Gel loading was as follows (from top left): lane 1 - ctrl, lane 2 - normal 
glucose (C1), lane 3 - high glucose (C2), lane 4 - normal iron (C3), lane 5 - high iron (C4). 
(from middle right): lane 1 - ctrl, lane 2 – C1, lane 3 – C2, lane 4 – C3, lane 5 – C4. The data 
represent mean ± SEM; n=4. **P<0.0086 (5.5 mM Glu – 24 h), *P<0.028 (11 mM Glu – 24 
h), **P<0.0082 (20 μM Fe – 24 h), *P<0.032 (100 μM Fe – 24 h), *P<0.02 (48 h), **P<0.0076 
(48 h). 
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compared to that in the control. The high iron concentration produced the lowest 

expression of this particular protein in comparison to that under all the other conditions 

both at 24 and 48 h. 

 

A significant reduction in MIN6 β-cell SNAP-25 protein expression was evident at 24 

h upon exposure to 100 µM iron (65 vs 293) and 11 mM glucose (34.7 vs 293). A 

similar expression of SNAP-25 was also noticed after 48 h of incubation, in which the 

high iron and glucose concentrations induced significant reductions compared to that 

in the control (48.4 vs 132.5 and 43.1 vs 132.5, respectively). Moreover, the normal 

iron and glucose concentrations did not significantly decrease the SNAP-25 levels 

compared to that in the control (62.6 vs 132.5 and 101.5 vs 132.5, respectively) after 

48 h of incubation. However, after 24 h of incubation, they decreased the SNAP-25 

levels significantly compared to that in the control (86.6 vs 293 and 81.1 vs 293). 

These results suggest that high iron and glucose concentrations significantly reduce 

the levels of SNAP-25 in MIN6 cells even in the short-term (24 h).  

 

3.2 Discussion 

Diabetes mellitus is a complex disease with multiple complications affecting people of 

all ages. Myriad research worldwide has explored this area to find the cure of this 

disease, and yet it remains a mystery. However, the findings of these research 

contribute valuable knowledge in understanding some mechanisms involved in 

diabetes mellitus. Iron is an intriguing nutrient that has been identified as one of the 

factors contributes to the progression of T2DM. Iron participates in many biological 

processes in the human body, include playing an essential role in the production of 

ATP and metabolic processes such as DNA repair and replication, regulation of gene 

expression (Lasocki et al., 2014). Unfortunately, many researchers have found that 

the breakdown of metal homeostasis appear to cause a plethora of diseases. Higher 

levels of intracellular iron can be involved in the regulation of cell proliferation by 

regulating transcription factors, controlling cell cycle progression and apoptosis (Evan 

& Vousden, 2001). 

 

Iron metabolism, which involves its uptake, distribution, storage, and secretion, has 

been well established. Understanding these particular mechanisms are important as 
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they contribute to iron homeostasis. Since disposal of excess iron is usually a slow 

process in humans, this metal has to be tightly regulated, particularly iron uptake from 

the intestine. DMT1 is an integral membrane-bound transport protein composed of 12 

predicted transmembrane domains and several N-linked glycosylation sites (Fleming, 

1997). DMT1 (also called Nramp2) has a crucial role both in intestinal iron absorption 

and iron transport across the membrane-acidified endosomes (Canonne-Hergaux et 

al., 2001). The function of this protein is to transport several, not all divalent metal, 

which located on the apical membrane of enterocyte and endosome associated 

membrane. 

 

Results depicted in figure 3.1.1 proposed that high iron (100 μM) increased the 

expression of DMT1. This can be seen in 24 h incubation, in which DMT1 expression 

was twice increased with high iron concentrations compared to the control. However, 

DMT1 was downregulated demonstrated by high iron, though its decrease was 

insignificant (P>0.05) (at 3 h). This data is in conformity with the data elucidated by 

Koch and his colleagues in 2003. Their paper emphasized that high amounts of DMT1 

were found in islet cells of the pancreas (Koch et al., 2003). They suggested that this 

protein might render a genetic disease so-called hereditary hemochromatosis, leading 

to the development of diabetes mellitus (Sheth & Brittenham, 2000). In addition, 

Hansen and colleagues showed in their studies that iron mediated oxidative stress can 

increase expression of DMT1 (Hansen et al., 2011), which was speculated in 

contributing subsequent damage to the cell type (Ramos, 1992). This is supported by 

our data which demonstrate that high iron exhibited almost twice (46%) as high 

cytotoxicity values in 24 h incubation (Fig. 3.1.6).  

 

As previously described, ferric iron is traditionally bound to apotransferrin forming a 

diferric-Tf, with the purpose of distributing iron into the cells. Figure 3.1.2 demonstrated 

that though the addition of this protein bound to iron resulted in significant outcomes 

of total iron content intracellularly (P<0.05), the same effects remained with its 

absence. Once iron is distributed into the cells, it can be transported into mitochondria 

or stored in an iron-storage protein, ferritin. Ferritin is considered a major store of 

intracellular iron, with storage being a key component of iron metabolism. This protein 

is a fundamental in controlling the amount of iron available to the body. It has the ability 

to store and release iron in a controlled fashion, which helps to prevent iron disorders 
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like iron overload, anaemia, and other iron-related diseases. The results illustrated in 

figure 3.1.4, show ferritin levels increased in an iron-dependent manner, when 

incubated at 48 h (fifteen times higher) and 72 h (four times higher) with excess iron. 

This data corresponds to total iron content (Fig. 3.1.3) performed by colorimetric 

Ferrozine assay exhibited by the treatment condition containing high iron 

concentrations. Serum ferritin is crucial to analyse as this protein is an indicator of 

tissue iron status.  

 

Ford & Cogswell (1999) elucidated that an increase of these 24-peptide subunits has 

been positively correlated with the risk of developing T2DM (Ford & Cogswell, 1999). 

In addition, this study is also confirmed by Aregbesola and colleagues, who suggested 

that ferritin levels above normal was related to an increased risk of diabetes mellitus 

(Aregbesola et al., 2013). The potential reason for the increased ferritin in the β-cell is 

that ferritin exhibits antioxidant properties as it acts as a molecule against iron toxicity 

by neutralising unused free iron (Juckett et al., 1995). Moreover, β-cell is particularly 

sensitive to oxygen radicals due to lack of intracellular antioxidants. This high amount 

of ferritin can explain why iron is preferentially retained in the β-cell. Relationships 

between serum ferritin levels with diabetes mellitus are likely to be conflicted. 

However, iron can be released from ferritin, converting Fe3+ into Fe2+ by the action of 

a reducing agent, in which its release is accelerated in comparison with decreased 

antioxidant concentration (Hallowell, 1993). Under this condition, elevated levels of 

free iron is released from ferritin, implying that this protein may act as an undesirable 

molecule.  

 

Interestingly, this phenomenon has also been observed in pre-diabetes, where there 

is in concomitant low transferrin saturation as an iron-bound protein systematically 

(Cheung et al., 2013). The link between increased serum ferritin levels with the risk of 

diabetes mellitus has come to the attention of many researchers, though its 

mechanism remains to be fully understood. It is suggested that however that the link 

between these two is via oxidative stress initiated by iron as a catalyst for ROS, such 

as hydroxyl radical. This oxidative stress mediates the apoptosis of pancreatic islets, 

decreasing their capacity to secrete necessary insulin (Cooksey et al., 2004).  
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Iron has been considered to be involved in insulin secretory mechanism. High iron can 

generate free radical production and formation of ROS. Figure 3.1.8 showed that 

excess iron progressively decreased secretion of insulin after a long-term incubation 

(24 h). This condition could be caused by impairment of insulin secretion and insulin 

resistance because of an elevated and continuous exposure of intracellular ROS 

(Kasuga, 2006). Similar effects are also observed with the data obtained for insulin 

content (Fig. 3.1.7). T2DM is a complex disease that is rendered by numerous factors, 

both inside and outside of the body. Impairment of insulin secretion and its resistance 

can lead to hyperglycaemia, which is a determined characteristic of T2DM. A study 

performed by Shaaban and colleagues (2006) concluded that excess iron negatively 

impacted insulin action in healthy people. Furthermore, a considerable body of 

evidence indicates that excess iron increases risk for insulin resistance in diabetes 

mellitus, as well as other diseases such as cardiovascular diseases both in 

nondiabetic and diabetic individuals (Shaaban et al., 2006).  

 

The ultimate effect of chronic impairment of insulin secretion due to excess iron and 

glucose is oxidative stress in the mitochondria, and finally apoptosis. Multiple studies 

encompassing various proteins have been designed to identify the factors involved in 

this complex condition. It has been found that SNARE core complexes, which are 

proteins involved in insulin exocytosis, are likely to be sensitive towards oxidative 

stress. It has been stated that SNAP-25 is the most sensitive protein towards oxidative 

stress amongst two membrane-anchored SNAREs (Giniatullin et al., 2006). In 

addition, Giniatullin et al. have illustrated that H2O2 exhibits the strongest inhibitory 

effect on SNAP-25 compared to that of either syntaxin or synaptobrevin (Giniatullin et 

al., 2006); they concluded that SNAP-25 was the most sensitive to modification by 

ROS. Regrettably, the reason for its vulnerability towards oxidative stress is not yet 

fully understood. Some possibilities include its distinctive structure, which is unable to 

anchor into a membrane due to the absence of a transmembrane segment (Jahn & 

Scheller, 2006).  

 

Despite this drawback, SNAP-25 has another way of attaching to the membrane via 

lipid modifications such as palmitoylation (Jahn & Scheller, 2006). Figure 4.3.5 shows 

that SNAP-25 expression diminishes in MIN6 cells in the presence of high iron and 

glucose concentrations for 24 and 48 h, compared to that in the control. A significant 
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shift is obvious even at 24 h. These data are in accordance with earlier data collected 

in this study, which indicate that high iron and glucose concentrations significantly 

decrease insulin secretion (24 h) (P<0.05) (Fig. 3.1.7d). A study performed by 

Nagamatsu et al. showed that the syntaxin 1 and SNAP-25 levels in GK rat islets 

decreased by approximately 60% compared to those in the control. The decrease 

altered the process of insulin secretion; this was further proven by a restoration in 

insulin secretion following the overexpression of syntaxin 1A and SNAP-25 by 

approximately 135% and 200%, respectively (Nagamatsu et al., 1999). The alteration 

of this protein may cause insulin secretion perturbations associated with the regulation 

of Ca2+ dynamics and membrane potential in the -cells.  

 

When -cells sense the presence of glucose, the cytosolic levels of Ca2+ increase 

owing to molecular processes. This increase stimulates and activates the SNARE 

machinery, which mediates insulin granule fusion with the plasma membrane. The first 

phase of insulin release depends on the local influx of Ca2+ originating from the ER, 

whereas the sustained long-lasting second phase involves more complex intracellular 

signalling such as ATP levels, phosphoinositides, and the release of Ca2+ from 

intracellular stores (Barker & Berggren, 2013; Lees et al., 2017). Exocytosis of insulin 

is regulated by the cytosolic ATP levels and is followed by Ca2+-dependent steps. The 

role of ATP in insulin exocytosis is to phosphorylate phosphatidylinositol groups 

through phosphatidylinositol kinases located within the plasma membranes (Keating, 

2008). Compared with other types of cells in the body, pancreatic -cells experience 

difficulty in switching to anaerobic respiration; such high oxygen-dependence requires 

the availability of glucose. In other cell types, however, respiration is under the control 

of the cell itself. Therefore, mitochondria have to function effectively to mediate the 

exocytosis of insulin secreted in response to a rise in blood glucose levels.  

 

The study of SNAP-25 is crucial because it has been shown to modulate several 

processes, including the activity of potassium voltage gated channels (MacDonald et 

al., 2002). Similar to other proteins involved in the core complex of SNARE, SNAP-25 

also contains amino and carboxy terminals that bind to different proteins; this is a 

prerequisite for the formation of four-helix bundles. Its amino and carboxy terminals 

bind to syntaxin 1 and VAMP2, respectively. This moves secretory granules such that 
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they are in close contact with the plasma membrane, leading to membrane 

fusion. Evidence has shown that enhancing the level of exocytosis proteins can 

improve the longevity of cells and reduce the occurrence of diseases such as cancer, 

diabetes mellitus, and neurodegenerative disorders. 

 

As mentioned previously, iron has a dual role - it is essential notably in both cellular 

metabolism and aerobic respiration. However, the involvement of this metal leads to 

formation of free radicals that can cause cellular cytotoxicity and oxidative damage on 

the cellular components. The effect of excess iron and glucose on the viability of the 

cells was confirmed by PrestoBlue® (Fig. 3.1.6). in line with the previous results, 

toxicity caused by excess iron exhibited significant reduction of cell viability 

percentage compared to control both at 48 and 72 h (P<0.05). This toxicity 

characterises an initial stage of defective insulin gene expression. If β-cell was 

exposed to these concentrations for a prolonged period and happened repeatedly, it 

may undergo exhaustion, promoting the inhibition of insulin secretion. 

 

When cells undergo this condition, cells can be fully recovered since it has no defects 

in insulin synthesis. This condition may be different once cells are damaged by toxicity, 

which may cause irreversible damage to the component of cells, interfering with insulin 

content and insulin secretion. This ultimately encounters impairment of secretion and 

action of insulin and other metabolic processes. Furthermore, due to tight involvement 

of iron in mitochondria, it is prone for iron to contribute in the formation of free radicals. 

 

This damage alters the function of mitochondria by being a catalyst of ROS production, 

which is considered to have a deleterious effect on cell structures, consequently 

leading to ageing and various disease states. Since pancreatic β-cells are particularly 

susceptible to ROS due to less intracellular antioxidants content, numerous diseases 

could occur, particularly the deadly and epidemic disease – diabetes mellitus. Thus, 

further experiments are required to investigate the mechanism of mitochondrial 

dysfunction in high iron conditions.  

 

 

 

 



 77 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    CHAPTER 4 
RESULTS 

 
 
 
 
 

 
 



 78 

4.1 Introduction 
 
Aims: To correlate excessive iron mediated ROS generation to β-cell dysfunction and 

to identify whether specific organelles such as the mitochondria are more sensitive to 

ROS damage. 

Objectives: 

• Clarify the role of excessive iron related to the level of malondialdehyde 

(MDA) as a result of lipid peroxidation by thiobarbituric acid reactive 

substances (TBARS) assay. 

• Clarify the role of excessive iron on β-cell cytotoxicity through formation 

of carbonyl group on protein side chains as a form of cellular oxidative 

damage by immunoblotting. 

• Optimise the visualisation of any formation resulted by cellular oxidative 

damage using confocal microscopy. 

• Identify whether excessive iron may have an effect on mitochondrial 

membrane potential by flow cytometry. 

• Assess the effect of excessive iron on mitochondrial oxygen 

consumption by Agilent Seahorse XF metabolic analyser. 

 

Mitochondria have been discovered to be linked to myriad metabolic diseases such as 

cardiovascular diseases and diabetes mellitus. These cellular powerhouses are 

crucial because they manufacture ATP and other metabolites used by cells. They have 

been studied together with a variety of proteins that originate from these distinct 

organelles (5% of DNA codes) and others that are imported from the cytosol (Pfanner 

& Geissler, 2001). ATP is produced from oxidizable substrates such as glucose, amino 

acids, and fatty acids, which undergo several transformations that generate electrons. 

These electrons are transported via a series of reactions called the ETC, which 

eventually reduces oxygen to water. This transfer of electrons from one protein to other 

releases protons from the matrix into the intermembrane space, producing a 

protonmotive force (Δp). This force can regulate the movement of protons downhill 

across the inner mitochondrial membrane (Divakaruni et al., 2014). 

 

The generation of ATP is less efficient in the absence of oxygen, which is hence pivotal 

in cell respiration. Oxygen is required for ATP generation in the ETC, producing an 
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eighteen-fold higher yield than that in anaerobic respiration. Respiration is measured 

to assess the relationship between ATP synthesis and the oxygen consumption rate 

during oxidative phosphorylation - a crucial part of energy metabolism (Divakaruni et 

al., 2014). The rate of oxygen uptake in cells is related to the functioning of 

mitochondria and has been implicated in the progression of disease (Fink & Cookson, 

2005; Wu et al., 2007). The ability to predict certain pathways indicating the diseased 

state of a cell can provide significant insight for preventing multiple diseases. 

 

In this study, several factors that control the rate of oxygen consumption were 

measured. Each of these factors is valuable in interpreting the possible state of 

mitochondria. These factors include basal respiration, ATP-linked respiration, proton 

leak, maximal respiration, reserve/spare respiratory capacity, and non-mitochondrial 

respiration. In addition to identifying the oxidative reactions driven by ROS, non-

enzymatic reactions of proteins were also observed. The results led to the 

identification of MDA as a result of lipid peroxidation.  

 

 

 
 
 

Fig. 4.1. Mito stress test profile of Seahorse XF cell, depicting the key parameters of 
mitochondrial function. (Rose et al., 2014). 
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4.1.1 Factors in OCR characterisation 

 
4.1.1.1 Basal respiration  

 
Basal respiration can be defined as an endogenous process that drives the synthesis 

of ATP and it can be derived by deducting non-mitochondrial respiration (Rose et al., 

2014). It can be estimated by adding oligomycin to inhibit ATP synthase (see Fig. 4.1).  

 

4.1.1.2 ATP-linked respiration 

 
ATP-linked respiration is controlled by three different processes: ATP utilisation, ATP 

synthesis, and substrate supply and oxidation. The rate of ATP-linked respiration 

depends on the demand for cellular ATP. The energy produced increases 

proportionally based on the motility of the cells as well as the activity of some 

processes in which energy is required. These processes include biosynthesis of 

macromolecules, proteasome activity, and membrane repolarization (Divakaruni et al., 

2014). Furthermore, an alteration in ATP-linked respiration is also associated with an 

alteration in the consumption of membrane potential, which reflects changes in ATP 

synthesis. ATP synthase is an enzyme that mediates the transfer of protons from the 

IMM back into the matrix to power the synthesis of the energy carrier molecule, ATP. 

A perturbation of this enzyme may result in a less effective ATP synthesis rate. ATP-

linked respiration can be improved by the supply and oxidation of respiratory 

substrates such as fats, carbohydrates, and proteins. Therefore, maintaining and 

supplying enough substrates can stabilise ATP generation and contribute to the 

healthy development of cells. 

 

4.1.1.3 Proton leak–linked respiration 

 
Proton leak activity can be detected in mitochondria as well as intact cells and is 

considered as the major contributor to the standard metabolic rate (Rolfe & Brand, 

1997). An increase in proton leak–associated respiration can reflect either 

mitochondrial damage (Dranka et al., 2011) or the normal physiological response 

(Divakaruni & Brand, 2011). The migration of the so-called proton leak into the matrix 

consumes mitochondrial membrane potential without producing ATP. This results in 

mechanisms of incomplete coupling of substrate oxygen consumption with the 

generation of ATP. In addition, the electron slippage within the IMM could also lead to 
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such incomplete coupling because no protons are transferred across the IMM into the 

IMS, leading to an increase in oxygen consumption at high protonmotive forces 

(Kadenbach, 2003).  

 
4.1.1.4 Maximal respiration 

 
It is very crucial to estimate the maximal respiration via substrate oxidation as this 

could reveal how pharmacologic compounds or genetic modifications can affect 

cellular metabolism. Uncoupling agents such as FCCP, DNP, and Bam 15 cause 

protons to move across the inner membrane, resulting in maximal activity of the ETC 

(Nicholls, 2008). These agents are also known as ‘uncouplers’ because the activity of 

the respiratory chain is uncoupled from ATP synthesis. 

 
4.1.1.5 Reserve capacity/spare respiratory capacity 
 

The function of reserve capacity is to help cells respond appropriately towards an 

increase in ATP demand and maintain the cell activity in periods of stress. It is the 

difference between the basal and maximal respiration. The measurement of this metric 

depends on multiple parameters and is very useful in modelling particular systems that 

exhibit oxidative stress (Dranka et al., 2011; Dranka et al., 2010) or ion homeostasis 

(Choi et al., 2009). However, it is less likely to be useful in identifying the molecular 

mechanisms of action (Divakaruni et al., 2014). Hence, the capacity of reserve 

bioenergetics is a context-dependent parameter associated with the health or steady 

state of mitochondrial functions.  

 

4.1.1.6 Non-mitochondrial respiration 

 
Non-mitochondrial respiration can be estimated by adding electron transport inhibitors 

such as rotenone (complex I inhibitor) and antimycin A (complex III inhibitor). This 

parameter denotes processes of oxygen consumption outside mitochondria or those 

that are non-mitochondrial (Chacko et al., 2014). For instance, non-mitochondrial OCR 

in leukocytes can include that of NADPH oxidases, cyclooxygenases, and 

lipoxygenases that are associated with enzyme-related inflammation (Chacko et al., 

2014). For certain types of cells, including leukocytes and monocytes, the function of 

this measurement is to provide a significant overall rate (Kramer et al., 2014). 
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Generally, the rate of this parameter is assumed to be constant in most cells; it is very 

low but not insignificant (Divakaruni et al., 2014).  

 

4.1.2 Protein oxidation as a major target of oxidative stress 
 
Mounting evidence suggests that multiple human pathologies are associated with the 

oxidation of proteins. As mentioned previously, each cell exhibits a different level of 

defence and certain cells generate more intracellular antioxidants than others. It is well 

established that oxygen is crucial to our body and is involved in numerous biochemical 

processes. Unfortunately, a wide range of radicals are inevitably formed as part of 

normal aerobic metabolism. Two radicals that are widely produced in the presence of 

oxygen are peroxyl radicals and peroxides. These products, particularly protein 

peroxides, then continue to oxidize other proteins and targets. More free radicals and 

chain reactions are induced, leading to the production of mainly aldehyde and ketone 

groups (referred to as carbonyl derivatives), which are widely regarded as protein 

damage markers (Dalle-Donne. et al., 2004). These forms of protein oxidation include 

nitrotyrosination, carbonylation, and methionine and sulfhydryl oxidation (Stadtman et 

al., 2003; Stadtman, 1990). Furthermore, our bodies are also constantly being 

exposed to endogenous and exogenous oxidants, increasing stress to cells that are 

susceptible due to a lack of antioxidants.  

 

Despite many other targets for oxidation, such as lipids, carbohydrates, and nucleic 

acids, proteins exhibit a wide range of factors that cause their extensive damage. Due 

to their critical abundance and high rate constants for reactions, they surpass all other 

biological molecules and become the major targets for oxidation. In addition, several 

factors such as the formation of chain reactions and the relative location of the target 

to oxidants can also be associated with further damage. Modification of oxidised 

proteins can produce some physical and chemical property alterations, including 

protein unfolding, aggregation, backbone fragmentation, and subunit dissociation 

(Davies, et al., 1997). In addition to direct oxidative modification of proteins by ROS, 

well-established secondary products are also formed via lipid peroxidation (MDA and 

4-HNE) and are sugar-bound via glycation.  
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ROS can modify both amino acid side chains and protein backbones. All amino acids 

can be modified but cysteine and methionine are particularly sensitive to oxidative 

modifications (Cabreiro et al., 2006). These two amino acids can even be oxidised into 

their reduced forms, which are disulfides and sulfoxides, respectively, under mild 

conditions (Cabreiro et al., 2006). Protein side chains, including prolines, arginines, 

lysines, and threonine, are also vulnerable to these oxidative modifications (Dalle-

Donne et al., 2003; Liebler, 2007). As mentioned earlier, there are multiple low-

molecular-weight free-radical scavengers (ascorbic acids, tocopherols, carotenoids, 

polyphenols, flavonoids, etc.). SOD (an antioxidant enzyme) readily converts 

superoxide anions into hydrogen peroxide (Levine et al., 1999). CAT and GPx can 

eliminate H2O2 by converting it into the most reactive ROS species, •OH. However, 

when the level of oxidative stress in the body is high, the expression of these enzyme 

antioxidants increases; if the level of OS persistently increases, then their levels 

decrease. The reduction of these antioxidants could occur either directly through 

oxidative damage or OS-induced inhibition of gene expression, resulting in a decrease 

in their activity or concentration.  

 

4.1.2.1 Mechanisms of protein removal  
 
It has been well established that there are major enzymes responsible for protein 

degradation in mammalian cells, including cytosolic calpains, lysosomes, and 

proteasomes. However, only lysosomes and proteasomes have been demonstrated 

to be involved in this process. Lysosomes are membrane-bound organelles found in 

cells, and their function is to digest various molecules through autophagy (Takenouchi 

et al., 2015). The specific enzyme found in this organelle is known as acid hydrolase, 

which comprises hydrolytic enzymes that play a role in recycling proteins intracellularly 

(Braulke & Bonifacino, 2009). This enzyme has been so named because it requires 

an acidic environment to function efficiently. In addition, lysosomes are equipped with 

membrane-bound proton pumps which can maintain their pH levels between 4.5 and 

5.5 (Dunlop et al., 2009).  

 

In addition to lysosomes, proteasomes are also representative proteolytic machinery 

involved in protein degradation in the ubiquitin–proteasome system (UPS) (Wang & 

Robbins, 2014). Proteasomes exist in several isoforms and exhibit a multi-catalytic 
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effect, with each isoform possessing a 20S subunit also known as a catalytic core 

(Wang & Robbins, 2014). A proteasome in a 26S form comprises two 19S regulatory 

particles and a 20S core particle (which consists of two outer alpha and two inner β- 

rings). Out of the seven subunits of the β ring, only three β‐subunits can carry the 

active sites or exhibit proteolytic activity (B1, B2, and B5 subunits) (Wang & Robbins, 

2014). Before the target protein is recognised and degraded by a proteasome, it must 

be ubiquitinated by a protein called ubiquitin in a process called ubiquitination. 

Ubiquitin is a 76-amino-acid protein that can be considered as a marker for a particular 

damaged protein within cells (Guerra & Callis, 2012). Ubiquitination is catalysed 

sequentially by three enzymes: Ub activating enzyme (E1), Ub conjugating enzyme 

(E2), and Ub protein ligase (E3) (Wang & Robbins, 2014). Each enzyme plays a 

different role in integrating active ubiquitin into a target protein, which is eventually 

recognised by the proteasome. The protein is degraded into its individual amino acids, 

which could be used for other purposes within the cells. These two processes of 

autophagy and UPS by lysosomes and proteasomes, respectively, are necessary to 

maintain the quality of proteins and other molecules in cells (Willis & Patterson, 2013).  

 

4.2 Results 
 

4.2.1 Expression of protein carbonyl in MIN6 cells 

Proteins are vital to our body as they are involved in most intracellular reactions. Their 

post-translational modifications may include peroxidation, which needs a proper 

review. Figure 4.2.1A depicts several unstained wells that contain negative controls of 

the designated iron and glucose and compares their iron and glucose concentrations. 

The function of a negative control is to show whether proteins have undergone 

oxidative modifications (Stankowski et al., 2011). Surprisingly, negative controls 

appeared in the bands of the 48-h incubation sample, which may have been due to 

the spilling over of excess protein solution into the neighbouring well.  

 

The results of the 48-h sample (Fig. 4.2.1C) show that high iron content increases 

protein modifications by 78%, indicating a higher AUC than that of the control 

(P<0.05). It has been shown that excess iron is associated with ROS-mediated 
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oxidative stress (Ito et al., 2017). A similar effect was also demonstrated by a high 

glucose concentration, owing to which the AUC value increased by 76.5% compared 
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Fig. 4.2.1. The estimation of carbonyl groups on the side chains of proteins was performed 
using OxyBlot™ Protein Oxidation kits in both 24- and 48-h periods. The protein was extracted 
and subjected to the western immunoblot technique using 10% agarose gel. The results shown 
above are: Different bands of protein expression in western blot after (A) 24- and (B) 48-h 
incubations. (C) Expression of protein oxidation in 24- and 48-h incubation times, demonstrated 
by the area under the curve (AUC). Gel loading was as follows (from top left): lane 1 - ctrl, lane 
2 - negative ctrl of ctrl, lane 3 – normal glucose (C1), lane 4 - high glucose (C2), lane 5 - normal 
iron (C3), lane 6 - high iron (C4), lane 7 – neg ctrl of C1, lane 8 – neg ctrl of C2, lane 9 – neg 
ctrl of C3, lane 10 – neg ctrl of C4. (From bottom left): lane 1 - ctrl, lane 2 – C1, lane 3 - neg 
ctrl of C1, lane 4 – C2, lane 5 - neg ctrl of C2, lane 6 – C3, lane 7 - neg ctrl of C3, lane 8 – C4. 
The data represent mean ± SEM; n=3. *P<0.015 (11 mM Glu), ***P<0.0002 (11 mM Glu, 100 
μM Fe), ****P<0.0001.  
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to that of the control. Although protein oxidation increased under normal iron and 

glucose conditions, compared to that under control conditions, the results were 

insignificant (P>0.05). Unexpectedly, opposite effects were observed after 24 h of 

incubation, which demonstrated that protein oxidation significantly decreased under 

both high iron (89.1% reduction) and glucose (84% reduction) concentrations 

compared to that of the control (P<0.05). In addition, both normal iron and glucose 

conditions resulted in a slight increase compared to that in the control (P>0.05). 

 

These results suggest that high iron and glucose concentrations initially decrease 

protein oxidation (short-term) but then induce an increase in the long-term. This might 

be due to a direct rescue addressed by the pancreatic β-cell defence system via the 

activation of endogenous antioxidants, in which cells are protected more efficiently in 

the short-term. However, under a continuous stress condition, protein modifications 

are compromised.   

 
4.2.2 Estimation of OCR 

 
Figure 4.3.2 displays the oxygen consumption rate profiles of pancreatic -cells (MIN6 

cell line), i.e. the control and with various concentrations of both iron and glucose. As 

shown below, glucose and iron induced significant changes in the OCR during a short-

term exposure (24 h). Samples with glucose concentrations displayed higher OCRs 

than those with iron and the control (Figs. 4.2.2A&B), which was confirmed by every 

factor contributing to the state of mitochondrial health (Figs. 4.2.2C-H). As depicted in 

Fig. 4.2.2C, the basal respiration levels varied with the glucose concentration. The 

normal glucose concentration slightly decreased basal respiration (39.8 

pmol/O2/protein vs 43.6 pmol/O2/protein) whereas high glucose concentrations (11 

mM – 51.6 pmol/O2/protein & 25 mM – 64.5 pmol/O2/protein) increased it, with only 25 

mM glucose exhibiting a significance (P<0.05). Unexpectedly, both normal and high 

iron concentrations significantly reduced basal respiration compared to that in the 

control (75.8% & 78.9% reductions, respectively) (P<0.05).   
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Fig. 4.2.2A-B. Oxygen consumption profiles of pancreatic -cells (MIN6) within a 24-h period 

in the presence of iron and glucose. Cells were plated at 50 x 104 cells/well in XF24 plates. The 
Seahorse experimental method was used along with the addition of several distinct agents 
involved in the electron transport chain in mitochondria, including oligomycin, FCCP, antimycin 
A, and rotenone. (A) OCR in the presence of iron. (B) OCR in the presence of glucose. The 
data represent mean ± SEM; n=5.  
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Fig. 4.2.2C-H. Oxygen consumption profiles of pancreatic -cells (MIN6) within a 24-h period in the 

presence of iron and glucose. Cells were plated at 50 x 104 cells/well in XF24 plates. The Seahorse 
experimental method was used along with the addition of several distinct agents involved in the 
electron transport chain in mitochondria, including oligomycin, FCCP, antimycin A, and rotenone. 
(C) Basal respiration. (D) Proton leak–linked respiration. (E) ATP-linked respiration. (F) Maximal 
respiration. (G) Non-mitochondrial respiration. (H) Reserve/spare capacity. The data represent mean 

± SEM; n=5. ****P<0.0001 (20 & 100 μM Fe – C), *P<0.046 (25 mM Glu – C), ***P<0.0003 (20 & 
100 μM Fe – D), *P<0.05 – E). ****P<0.0001 (20 & 100 μM Fe – E), **P<0.007 (20 μM Fe – E), 

**P<0.009 (100 μM Fe -E). 
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Persistent effects were observed in the presence of normal and high iron 

concentrations and were reflected in all the remaining factors associated with the 

OCR. Normal and high iron concentrations significantly reduced the proton leak–linked 

respiration, maximal respiration, non-mitochondrial respiration, and reserve capacity 

(P<0.05). However, the decrease in ATP-linked respiration was insignificant, although 

the values were noticeably higher than that of the control. On the contrary, 11- and 

25-mM glucose yielded higher values of all these factors compared to the other 

conditions. In addition, the normal glucose concentration induced several fluctuations 

across these factors (increase/decrease) compared to those of the control. However, 

all the glucose concentrations slightly increased non-mitochondrial respiration 

compared to that in the control. These results suggest that glucose alters the OCR, 

elevating the levels of all the parameters involved, whereas iron decreases it, which 

might be due to the degradation of the mitochondrial proteins involved in transporting 

iron from the cells into the mitochondria.  

 

4.2.3 Measurement of ∆ψm 
  

Lipid peroxidation estimation is one of the techniques used to determine the apoptosis 

level intracellularly. Assessing the involvement of ∆ψm may contribute further 

knowledge to understand the apoptotic pathway. Figure 4.2.3 displays the effects of 

various concentrations of iron and glucose on MIN6 cells under four different 

incubation times (1, 2, 5, and 6 days). The control represents the undyed condition. 

Moreover, normal iron and glucose represent controls for comparing high iron and 

glucose, respectively. The median intensity was the only measurement taken as it 

shows the brightness or level of protein expression, which represents the intensity of 

the dye protein that was inserted. First day indicates the exposure of cells in the short-

term, second day is in the intermediate-term, and 5 & 6 days was considered as long-

term exposures.  

 

The results demonstrate that high-iron exposure for intermediate and long terms might 

be responsible for the occurrences of mitochondrial permeability transition (MPT). 

Each condition produced consistent trends in every timeline, except on the first day, 

in which the normal iron sample unexpectedly showed the highest protein intensity 

(950). Subsequently, it was interesting to observe that the high iron concentration 



 90 

induced changes in ∆ψm even on the first day (41.7% reductions), which potentially 

caused mitochondrial alterations. However, this change was not as significant as that 

exhibited after other experimental incubation times. From the second day, the high 

iron concentration decreased the median intensity significantly, which indicated 

significant reductions in ∆ψm. It decreased ∆ψm by 49.6% compared to the normal 

iron concentration starting on the second day, followed by 32.7% and 43.5% 

reductions on the fifth and sixth days, respectively. Similar effects were demonstrated 

by the high glucose concentration, compared to the normal iron concentration, which 

induced lower ∆ψm levels under all the experimental conditions; however, the values 

were insignificant (P>0.05).  

 

Therefore, iron and glucose alter the ∆ψm levels in the short-term, although the 

changes are insignificant. After intermediate exposure, the high glucose concentration 

did not significantly affect the ∆ψm levels compared to the normal glucose 

concentration but iron started decreasing them significantly. Iron concentrations 

continued to diminish the level of ∆ψm on the day 6 whereas glucose did not induce 

significant changes. 
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Fig. 4.2.3. Changes in mitochondrial membrane potential determined by flow cytometry in 
four different periods (1, 2, 5, and 6 days) using a fluorescent dye called Texas Red 
(excitation ideally suited to the 561- or 594-nm laser lines). MIN6 cells were exposed to both 
iron and glucose at various concentrations. (A) Flow cytometry analysis of mitochondrial 
membrane potential level by application of median intensity (charts). (B) Flow cytometry 
analysis of mitochondrial membrane potential level by application of median intensity 
(graphs). The data represent mean ± SEM; n=3. *P<0.016 (Day 1), ***P<0.0003 (Day 2), 
*P<0.03 (Day 2), **P<0.0055 (Day 5), ****P<0.0001 (Day 5), *P<0.039 (Day 6 - 100 μM Fe), 
*P<0.038 (Day 6 – 5.5 mM Glu + 100 μM Fe). 

(D) (C) 

(B) (A) 
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4.2.4 Imaging of live MIN6 cells influenced by ∆ψm changes 

 

 

 
 

 

Figure 4.2.4 depicts various morphologies of cells exposed to a range of iron and 

glucose concentrations. These altered morphologies resulted from changes in ∆ψm of 

the MIN6 cells in the presence of iron and glucose. Figures 4.2.4A&B display cultured 

cells treated with normal glucose and iron concentrations, respectively, whereas Figs. 

4.2.4C&D display those treated with high glucose and iron concentrations.  

Fig. 4.2.4. Different morphologies of MIN6 cells treated with MitoTracker Red dye, which is 
concentrated inside the matrix (one of the compartments of a mitochondrion). This assessment 
was conducted in a 24-h period using confocal microscopy captured by Leica Confocal 
software. Morphology of cultured MIN6 cells exposed to (A) normal glucose concentration (5.5 
mM), (B) high glucose concentration (11 mM), (C) normal iron concentration (20 μM), and (D) 
high iron concentration (100 μM).  
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As shown, normal glucose and iron concentrations induce a similar round morphology 

with several irregular shapes of cells. In addition, the cells also have a similar size, 

although those shown in Fig. 4.2.4B (normal iron) are slightly bigger. 

The size of the cells started to change drastically when the cells were treated with the 

high glucose concentration. Although a majority of the cells remained similar in size to 

those exposed to the normal glucose concentration, several cells had undergone an 

alteration, showing larger sizes with elongated shapes. A similar effect was observed 

in the cells exposed to the high iron concentration. Furthermore, the number of cells 

with elongated shapes and larger sizes were higher than that under normal iron 

conditions. These sequential events suggested that MIN6 cells started to undergo 

morphology changes, including changes in size and shape, in the presence of the 

normal iron concentration; these changes developed even further in the cells exposed 

to high glucose and iron concentrations. These alterations were confirmed by the 

results of flow cytometry, which indicated alterations in the cells exposed to high 

glucose and iron concentrations in the short-term (24 h) (Fig. 4.2.3A).   

 

4.2.5 Estimation of lipid peroxidation marker 

It is known that metal-induced generation of ROS results in an attack of several 

intracellular compartments, one of these is PUFA residues of phospholipids (Siems et 

al., 1995). This quantification may provide a valuable knowldege on the level of cell 

death. As shown in figure 4.2.5, iron and glucose demonstrated no effects on MDA 

levels both at 3 and 24 h incubation. Although slight changes were observed at 

glucose concentrations alone and conditions containing iron and glucose, MDA levels 

were increased insignificantly compared to control (P>0.05) (24 h). In contrast, MDA 

levels were significantly increased in iron and glucose at both 48 and 72 h incubation 

(P<0.05). Iron and glucose concentrations exhibited more than 50% higher MDA levels 

compared to its control with high iron demonstrating the highest MDA level, 62.7% 

higher than its control (323.9 nmol/mg protein vs 120.8 nmol/mg protein).  
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The effect remained at 72 h incubation in which iron and glucose exhibited significantly 

increased levels of MDA compared to control (P<0.05). Consistent with the result at 

48 h, high iron remained the highest MDA level with 51% compared to control (129 

nmol/mg protein vs 63.65 nmol/mg protein) followed by high glucose with 48% (122.65 

nmol/mg protein vs 63.65 nmol/mg protein). Therefore, the current data proposed that 

in both 48 and 72 h, MIN6 cells demonstrated higher MDA levels, though its levels 
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Fig. 4.2.5. The estimation of lipid peroxidation marker performed by TBARS assay in four 
incubation periods (3, 24, 48 and 72 h). Excessive iron and glucose increased the 
concentration of MDA compared to the control both the 48 and 72 h time points. The data 
represent mean ± SEM; *P<0.046 (C1 – 48 h), *P<0.048 (C2 – 48 h), *P<0.0415 (C4 – 48 
h); **P<0.002 (C1 – 72 h), **P<0.009 (C2 – 72 h), ***P<0.0005 (C4 – 72 h). n=4. 
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declined drastically at 72 h. It showed that at 48 h incubation, the cells started to 

undergo stress that may lead to ROS mediated cellular lipid peroxidative effects. 

 
4.3 Discussion 
 
Mitochondria are cellular organelles that are involved in numerous processes within 

the body and they play an important role in iron metabolism and the production of ATP. 

It is well acknowledged that mitochondria are linked to numerous diseases, including 

neurodegenerative (Parkinson’s disease, Alzheimer’s) and metabolic diseases 

(diabetes mellitus). Innumerable studies have been conducted to characterise this 

extremely dynamic organelle, including its structure and functions, and the results 

indicate that its distortion can contribute to the pathogenesis of a range of chronic 

diseases. Several methods have been developed to identify the physiological state of 

this organelle, such as the Seahorse test and Clarke-type electrode technique. The 

Seahorse test has many benefits and is considered to provide a higher sensitivity (6 x 

107 vs 105) than that of the Clarke-type electrode technique. Moreover, various 

processes that control the OCR can also be elucidated, providing valuable insights 

into normal cellular function.  

 

As previously stated, ROS can damage cell membrane lipids, proteins, and DNA. 

However, proteins have become one of the most susceptible targets of hydroxyl 

radicals due to their frequent involvement in cellular reaction catalysis (Stankoswki et 

al., 2011) as well as their abundance (Davies, 2016). The oxidation of proteins can be 

promoted by ROS via the side chains of susceptible amino acids, including lysine, 

proline, threonine, and arginine. These reactions yield ketones and aldehydes that 

subsequently react with DNPH protein products, producing the primary protein 

carbonyl. Long-term high iron (78%) and high glucose (76.5%) exposure of cells 

significantly increases the extent (P<0.05) of protein oxidation (Fig. 4.2.1) compared 

to that in the control. The opposite occurs in a short-term condition: high iron and 

glucose concentrations significantly reduce the levels of protein oxidation (89.1% and 

84%, respectively) compared to that in the control. This might be due to a direct rescue 

addressed by the pancreatic β-cell defence system via the activation of endogenous 

antioxidants, in which cells are protected more efficiently in the short-term. The 
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consequent effects enable several alterations on proteins and hence in their 

conformation, activity, and function.  

 

The identification of these alterations is important because the perturbations caused 

by protein carbonylation can alter mitochondrial functionality with respect to, for 

example, energy metabolism or pH regulation. Such protein oxidation can be 

counteracted by cellular defence mechanisms, i.e. lysosomal and proteasomal 

pathways. Furthermore, similar to glutathione peroxidases that can catabolise H2O2 

into water, a variety of enzymes can reverse the effects of protein carbonylation, 

including aldehyde dehydrogenases, aldo-keto reductase, and alkenal/one 

oxireductase, by diminishing the reactivity of lipid aldehydes (Frohnert & Bernlohr, 

2013). Unfortunately, some materials are poorly degraded and easily accumulated 

within cells. Moreover, some types of tissues and their defence systems exhibit limited 

standards towards repairing and maintaining the state of the cells. Pancreatic -cells 

are more prone to the resulting perturbations owing to a lack of natural antioxidants. 

Hence, the identification of oxidative stress due to the role of protein carbonylation 

may provide valuable insight into preventing carbonyl stress–associated diseases 

such as diabetes mellitus.  

 

Owing to alterations in intracellular proteins (responsible for structures and functions) 

as a consequence of oxidative stress, their parent organelles are compromised. As 

shown in Fig. 4.2.2, the elevation of glucose concentrations (11 and 25 mM) leads to 

higher basal respiration, proton leak, ATP-linked respiration, reserve capacity, and 

maximal respiration, which have been shown to cause higher OCR levels. This 

observation is in accordance with the study performed by Hutton and Malaisse, 

showing that OCR levels increase in response to an increase in glucose 

concentrations (Hutton & Malaisse, 1980). Several agents, including oligomycin, 

FCCP, and a combination of antimycin A and rotenone, have been used to elucidate 

the function of mitochondria. Oligomycin inhibits ATP synthase by blocking proton 

channels, thus decreasing the OCR levels necessary for oxidative phosphorylation of 

ADP to ATP. Conversely, FCCP uncouples the activity of the respiratory chain from 

ATP synthesis and hence raises the maximal value of the OCR. Lastly, the injection 

of antimycin A with rotenone targets the ETC, producing a minimal OCR value 
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(Divakaruni et al., 2014). Each of these agents is used to estimate various parameters 

affecting the indicators of oxidative phosphorylation.  

 

Contrary to the concentrating effects of glucose, it is intriguing that iron reduces the 

OCR both within and outside mitochondria. Both normal and high levels of iron have 

this effect, whereas the effect of glucose is concentration dependent. Conversely, 

normal and high iron concentrations induce similar rates of oxygen consumption, 

which are extremely low compared to that in the control and with different 

concentrations of glucose (Fig. 4.2.2). This observation suggests that iron may not 

have a short-term effect on the mitochondrial OXPHOS state, which agrees with the 

results obtained by Cejvanovic in mice biopsies (Cejvanovic, 2016). Furthermore, 

consistent results demonstrate that all the parameters involved in controlling the OCR 

show the lowest levels in the presence of both normal and high iron concentrations. 

The mechanism of the iron-induced effects on OXPHOS has not been fully elucidated. 

However, they might be due to the degradation of mitochondrial proteins involved in 

iron transport from the cytoplasm into the mitochondria. 

 

As shown in Fig. 4.2.2D, high glucose concentrations induce higher proton leaks 

compared to the control, suggesting that this parameter can either reflect the normal 

physiological response (Divakaruni & Brand, 2011) or damage of mitochondria 

(Dranka et al., 2011). As previously mentioned, all other bioenergetic parameters that 

were altered are likely associated with oxidative stress, eventually yielding to organelle 

dysfunction under long-term conditions. A normal glucose concentration does not 

induce a significantly higher non-mitochondrial-associated OCR compared to that in 

the control. Chacko et al. identified that in the presence of stressors such as ROS, 

non-mitochondrial respiration typically increases (Chacko et al., 2014).  

 

Another disrupted factor that is associated with the state of mitochondrial health is 

∆ψm. Mitochondrial damage can initiate apoptosis. Disruption of the mitochondrial 

membrane potential is considered the major sign of dysfunction of this organelle. A 

loss in ∆ψm has been observed in cases of impaired mitochondrial ETC, which 

decreases ATP production (Kim & Kim, 2018). A decrease in ∆ψm makes the 

membrane permeable, triggering the mitochondrial apoptotic pathway. 
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Cytochrome c is then released into the cytosol via the activation of pro-apoptotic 

caspases in the mitochondria, which is caused by the opening of the MPTP. This 

condition may be triggered by many factors, but excess iron is the underlying reason 

for this damage. 

 

This finding is consistent with the results shown in Fig. 4.2.3, which depicts 

significant reductions in ∆ψm in the presence of excess iron in MIN6 cells. Starting 

from the second day of incubation, the ∆ψm level drastically decreased upon exposure 

to a high iron concentration (49.6% reduction), compared to that in the control. This 

effect persisted through the 5th (32.7%) and 6th days (43.5%). In addition, although the 

∆ψm level was lower than that under normal iron conditions on the first day, the result 

was insignificant (P>0.05), which was in accordance with the results of the OCR (Fig. 

4.2.2). These observations suggest that mitochondria may have the capacity to 

withstand high iron concentrations under short-term conditions. However, short-term 

exposures to high iron concentrations (as early as the second day) can cause 

pathological changes in the ∆ψm. Furthermore, high iron concentrations induce a very 

low ∆ψm, which suggests the occurrence of continuous apoptosis and/or a possible 

increase in the membrane permeability (sixth day incubation). Although the effects of 

short-term exposure to high iron concentrations on the ∆ψm are insignificant, this does 

not necessarily mean that no alteration occurs.  

 

Unlike iron, glucose concentrations induced consistent effects under both short- and 

long-term exposures. However, these effects were significantly higher (P<0.05, 

median intensity: ~1400 vs 900) on the fifth and sixth days compared to those under 

previous conditions. These data correspond to the OCR results, which show that high 

glucose concentrations induce higher levels of proton leak. A high mitochondrial 

membrane potential is likely to increase proton leakage, which ultimately leads to 

higher production of ROS. These results are also supported by the data obtained using 

confocal microscopy (Fig. 4.2.4). Pancreatic -cells undergo morphological transitions 

in response to high iron and glucose concentrations. Picard et al. concluded that the 

transitions of this organelle were due to cellular stresses induced by MPT and ROS 

(Picard et al., 2013).  
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At low concentrations, ROS provides beneficial effects in many metabolic processes. 

Unfortunately, these powerful agents can be important mediators of damage to cell 

structures, nucleic acids, lipids, and proteins, associated with some physical changes 

biochemically (Valko et al., 2006). Lipid peroxidation is one biological process resulting 

from the attack by metal-induced generation of ROS as lipids are extremely sensitive 

to oxidation (Siems et al., 1995). MDA is the primary aldehyde product of peroxidation 

that is mutagenic in bacterial and mammalian cells and is carcinogenic in rats (Valko 

et al., 2007). 

 

In the present study, the effect of excess iron-generated ROS, lead to increased MDA 

(measured by TBARS) contributing to apoptosis initiation. Figure 4.2.5 showed that 

excess iron demonstrated higher MDA levels, which started at 48 h incubation likely 

as a result of ROS mediated cellular lipid peroxidative effects. Moreover, another 

major aldehyde product of this cell structure is 4-hydroxy-2-nonenal (HNE), 

characterised as a major toxic product and yet considered as weakly mutagenic. This 

weak feature grants MDA as a marker of lipid peroxidation, which is highly evidenced 

in patients with T2DM. It can be seen that there is an extremely increased level of 

MDA in a presence of excess iron, which suggests that there is an increased 

production of free radicals. These free radicals promote lipid peroxidation, resulting in 

the chain reaction and damage to various molecules, eventually leading to cell 

damage (Gutteridge, 1995).  

 

Since pancreatic β-cells are particularly susceptible to ROS, owing to less intracellular 

antioxidant content, numerous diseases of these cells could occur, particularly the 

deadly and epidemic disease called diabetes mellitus. A number of treatments have 

been developed for such conditions, including iron chelation and phlebotomy; some 

medicines, such as SGLT2, in addition to other drugs are still under research and 

clinical trials. Moreover, nanoformulations containing a variety of antioxidants have 

been studied because they exhibit characteristics that can be potentially therapeutic 

and can hence decrease the prevalence of metabolic diseases.   
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5.1 Introduction 
 

Aim: To identify the role of antioxidant-nanoformulations on small intestine function 

using caco-2 cell – model for antioxidant-nanoformulations strategy in excess iron. 

Objectives:  

• Identify various iron treatment formulations using potato dextrin and modified 

citrus peel dextrin (prepared at UCL as one of the collaborators) with and 

without the presence of iron inhibitor (EGCG). 

• Identify the activity of antioxidants (hesperetin)-related nanoformulations using 

ferric reducing antioxidant power (FRAP) analysis. 

• Identify the activity of cellular antioxidants-related nanoformulations using 

cellular antioxidant activity (CAA) analysis. 

 

As previously mentioned, iron has been implicated in various metabolic and 

neurodegenerative diseases owing to its role in generating oxidative stress. Hence, it 

is necessary to devise a strategy for efficient iron absorption in the small intestine in a 

controlled fashion so that it can be used for multiple purposes within the cells. 

Nanoformulations/nanoencapsulations have gained the attention of many researchers 

and have been developed to promote the complexity of iron metabolism and 

homeostasis. Nanoencapsulation can be defined as the coating of a particular 

substance within another material at the nanoscale (Khan et al., 2019). The substance 

that was coated in this project was an antioxidant. Antioxidants are molecules that 

possess therapeutic properties which help protect the structure and function of cells 

from oxidative damages. An antioxidant is a powerful substance, but its properties can 

be weakened when it is exposed to a specific cell’s environment. Hence, the 

encapsulation method might be a suitable tool for preserving antioxidant properties. 

 

A novel strategy that has been developed to this end is solid lipid nanoparticles 

(SLNs). It has been used widely owing to several benefits, including its suitability for 

the environment within the human body. Biocompatibility and biodegradability are two 

known properties of these substances which make them safe; their composition is 

similar to that of lipids or antioxidants. SLNs contain iron/antioxidant coated inside a 

lipid shell. The shell is made up of a potato protein combined with a polysaccharide 

such as modified citrus pectin (First formulation) or potato dextrin (Second formulation) 
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with the size range of <500 nm (Fig. 5.1). Each of these shells demonstrates the 

requisite properties for delivering a particular substance to the target efficiently and 

effectively.  

 

 

 

 

 

 

Fig. 5.1. Representative transmission electron microscopy (TEM) image of loaded protein 

polysaccharide formulations at 135,000x magnification (Philips Biotwin CM120, Philips Co, The 

Netherlands). All formulations were observed to be <500 nanometre size range. 
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Prior to testing the activity of antioxidants coated by nanoformulations made of these 

two types of polysaccharides, another model was developed in order to compare 

commercial FeSO4 (typical prescribed form of iron supplements) to iron coated with 

nanoformulations. Moreover, EGCG was added as an iron inhibitor to identify the 

efficacy and efficiency of the two types of nanoformulations that demonstrated higher 

absorbance of iron in the intestinal Caco-2 cell line.  

Several analyses were performed to identify the antioxidant toxicity-coated 

nanoformulations. The activity of the antioxidant and its cytotoxicity in Caco-2 cells 

were measured. Caco-2 cells were applied to mimic the intestinal environment in 

which iron and other substances are absorbed before entering circulation. Trolox or 6-

hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid is an analogue of vitamin E that 

was selected as a reference owing to its ability to provide maximum antioxidant 

activity. The level of antioxidant activity was observed by the measurement of CAA 

and FRAP assay. This strategy was expected to decrease the level of oxidative stress 

within the cells. Thus, cytotoxicity was also measured by MTT to confirm whether 

nanoformulations coated antioxidants exhibited any toxicity.  
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5.1.1 Quantification using FRAP assay 

Figure 5.1.1 represents the antioxidant activity of three different nanoformulations, 

measured as per the Trolox equivalency. Two distinct NFs were prepared with the 

antioxidant, hesperetin. The first NF (Dextrin) was composed of potato protein with 

potato dextrin and hesperetin, whereas the second NF (Citrus) comprised potato 

protein with modified citrus pectin and hesperetin. This experiment was performed 

using an antioxidant activity assay called FRAP assay.  

 

 
 

 

 

 

 

 

As shown in Fig. 5.1.1, the antioxidant activity is proportional to the concentration of 

added hesperetin, NF1, and NF2. However, NF1 showed 81.2% and 62.3% lower 

antioxidant activity levels at 50 and 100 μM, respectively. 
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Fig. 5.1.1. Antioxidant activity of nanoformulations composed of hesperetin, determined 
using FRAP assay. The data represent mean ± SD. Hesp: hesperetin, PP: potato 
protein. *P<0.0283, **P<0.0015. n=2 
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NF2 also exhibited lower antioxidant levels at 50 and 400 μM, compared to those of 

hesperetin alone (31.3% & 6.1%, respectively). Nevertheless, NF1 and NF2 showed 

higher antioxidant activity levels in comparison to hesperetin alone. At 400 μM, the 

antioxidant levels of NF1 and NF2 were six-fold and three-fold higher than that of 

hesperetin, respectively. This trend was observed at all concentrations of the 

formulations, except 50 μM. Moreover, NF1 exhibited a higher antioxidant activity than 

that of the two other formulations. Therefore, nanoformulations composed of dextrin 

with hesperetin are likely to be more efficient than those made of modified citrus pectin 

with hesperetin. 

 

5.1.2 Cytotoxicity studies with MTT assay 

The MTT assay has been extensively applied to assess the cytotoxicity of substances 

towards cell metabolic activity, which manifests as a colour change. This assay was 

used to observe the effects of the non-encapsulated antioxidant and 

nanoencapsulated-antioxidant on Caco-2 cells after 24- and 48-h incubations. Two 

types of NFs were prepared using dextrin and modified citrus pectin (PP+PD & 

PP+MCP) with and without hesperetin. The two nanoformulations without hesperetin 

were considered as the control and reference for 100% cell viability. As shown in Fig. 

5.1.2, the shells composed of the two modified potato proteins exhibited no toxicity 

towards the cells. Application of MCP without hesperetin resulted in the highest cell 

viability at all concentrations. 

 

Unexpectedly, the use of both NF1 and NF2 containing hesperetin led to a lower cell 

viability than that observed under blank conditions at all concentrations. In addition, 

non-encapsulated hesperetin generated higher cytotoxic effects than hesperetin 

encapsulated in the two nanoformulations (P<0.05). Similar results were also 

observed after 48 h of incubation. 
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Fig. 5.1.2. Cytotoxicity of pure non-encapsulated hesperetin and nanoformulations of 
hesperetin towards Caco-2 cells, determined using MTT assay. A). Twenty-four- and B). 
Forty-eight-hour incubation periods. The data represent mean ± SD. *P<0.023 (NF2 
blank vs NF2), *P<0.022 (NF1 blank vs NF1), *P<0.014 (NF2 blank vs Hesp), *P<0.011 
(NF1 vs Hesp); *P<0.026 (NF2 blank vs NF2), **P<0.09 (NF2 blank vs Hesp); *P<0.05 (NF2 
blank vs NF2), *P<0.022 (NF1 blank vs Hesp); *P<0.045 (NF2 blank vs NF2), *P<0.025 
(NF2 vs Hesp), *P<0.012 (NF1 vs Hesp); *P<0.04 (NF2 blank vs NF2), *P<0.01 (NF2 vs 
Hesp), *P<0.03 (NF1 vs Hesp); *P<0.035 (NF2 blank vs NF2), **P<0.047 (NF1 blank vs 
NF1), *P<0.044 (NF2 vs Hesp), *P<0.040 (NF1 blank vs Hesp), *P<0.033 (NF1 vs Hesp). 
n=2. 
 
 



 107 

This suggests that encapsulation shells composed of potato dextrin and modified 

citrus pectin do not exhibit cytotoxicity towards these cells. In contrast, hesperetin is 

toxic and can be useful in cancer treatments. 

 

5.1.3 Quantification using CAA assay 

Unlike the FRAP assay, the CAA assay measures the activity of an antioxidant within 

the cells. The formulations and concentrations optimised in the FRAP assay were also 

used for the CAA assay of the Caco-2 cell culture. As shown in Fig. 5.1.3, both the 

nanoformulations without hesperetin exhibited a significant increase in cellular 

antioxidant activity compared to those with hesperetin. However, NF1 exhibited a 

higher cellular antioxidant activity than NF2 both with and without hesperetin. 

Unexpectedly, non-encapsulated hesperetin exhibited higher cellular antioxidant 

activity compared to NF2 with/without hesperetin (at 20 μM). Moreover, similar results 

were observed at 50 μM (382 vs 190.5); non-encapsulated hesperetin increased 

cellular antioxidant activity compared to NF2 without hesperetin and decreased it 

significantly compared to NF2 with hesperetin (169 vs 238) at 100 μM.  

 

Ironically, the antioxidant activity of NF1 under blank conditions progressively 

decreased as the concentration increased, whereas that of NF2 fluctuated. NF2 

increased the CAA value at 50 μM but decreased it at 100 μM (501 vs 169, 

respectively). On the other hand, NF2 without hesperetin (blank) decreased the 

activity at 50 μM and increased it at 100 μM (190.5 vs 320.6, respectively). Similar to 

NF1, uncoated hesperetin progressively decreased the CAA unit as its concentration 

increased. 
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In summary, dextrin-coated hesperetin and its blank demonstrated the highest CAA at 

all concentrations but the value decreased as the concentration increased, which was 

similar to the results for non-encapsulated hesperetin. In contrast, the citrus 

formulation and its blank showed lower CAA at all concentrations but the values 

fluctuated, eventually leading to a decrease in the CAA at 100 μM. 
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Fig. 5.1.3. Cellular antioxidant activity under different treatment conditions with various 

concentrations (20 μM - 50 μM - 100 μM). Data represent mean  SEM. *P<0.028 (NF2 blank 

vs NF2), *P<0.014 (NF1 blank vs NF1), *P<0.012 (NF1 blank vs Hesp), **P<0.0012 (NF2 blank vs 
Hesp), **P<0.0018 (NF2 vs Hesp); **P<0.0016 (NF2 blank vs NF2), **P<0.0063 (NF1 blank vs 
NF1), **P<0.0016 (NF1 blank vs Hesp), **P<0.0075 (NF1 vs Hesp), **P<0.0033 (NF2 blank vs 
Hesp), **P<0.0091 (NF2 vs Hesp); **P<0.002 (NF2 blank vs NF2), *P<0.011 (NF2 blank vs Hesp), 
*P<0.013 (NF2 vs Hesp), **P<0.0039 (NF1 blank vs Hesp), **P<0.0046 (NF1 vs Hesp). n=2. 
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5.1.4 Iron uptake in Caco-2 cells 

Various stock formulations of FeSO4 and novel nano-carrier formulations containing 

potato protein–derived polysaccharides (Citrus peel pectin and potato dextrin) were 

prepared and their ferritin concentrations were compared. Minimum Essential Medium 

(MEM) was used as a control owing to its iron-free nature, with a ferritin concentration 

of 7.6 ng/mg. Ferritin was used as an indirect marker of iron absorption owing to its 

robust properties in comparison with total iron. FeSO4 induces a ferritin concentration 

of 68.0 ng/mg. Two nano-carrier iron formulations, Dextrin (NF1) and Citrus (NF2), 

were tested against FeSO4, to determine whether they were more efficacious and 

better tolerated. NF1 presented a ferritin concentration of 121.9 ng/mg, whilst NF2 had 

a relatively lower concentration of 96.2 ng/mg. 

 
Figure 5.1.4A shows that NF1 is more effective than FeSO4, with a 79.3% increase in 

iron absorption. NF2, however, is slightly less effective than FeSO4, inducing a 41.5% 

increase. The difference in efficacy between NF1 and NF2 is 21%. FeSO4, in 

comparison to NF1, shows a 41.5% greater efficacy. 

 

FeSO4, NF1, and NF2 were also tested in the presence of EGCG, an inhibitor of iron 

absorption. Once EGCG was added to each formulation, the ferritin concentration 

decreased significantly, except in the case of NF2, which was not inhibited 

significantly. FeSO4 treatment in isolation resulted in a high ferritin concentration; 

however, co-treatment with EGCG produced a significant decrease (by 84%) in ferritin 

concentration (9.07 ng/mg) owing to EGCG’s inhibitory effects. NF1 induced the 

highest iron concentration; however, EGCG co-treatment led to inhibition and 

therefore the positive effects detected in isolation were lost. 
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Fig. 5.1.4. Total ferritin concentrations (ng/mg total protein) observed for the most 
commonly prescribed oral supplement for iron deficiency in the UK (FeSO4) and two 
nano-carrier iron formulations (Dextrin and Citrus). These treatments were tested using 
the Caco-2 cell line incubated with 20 μM of iron for each treatment. A). In the absence 
of 100 uM EGCG. B) In the presence of 100 uM EGCG. Data were generated through 
ELISA and expressed as mean ± SEM. A) *P< 0.01, **P< 0.003, *** P<0.001; B) 
**P<0.007, ***P<0.0002, significantly different, as shown. (n=2). 
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NF1 with EGCG displayed a significant decrease in iron uptake (9.56 ng/mg), similar 

to FeSO4 with EGCG, with a percentage difference of 5.26%. EGCG inhibits iron 

uptake from NF1 by a staggering 87% (Fig. 5.1.4B). The ferritin concentration after 

NF2 treatment was not as significant as that after NF1 treatment. However, the 

statistics suggest that co-treatment with EGCG inhibited uptake from NF2 by only 

10%, with a ferritin concentration of 86.6 ng/mg, which was not much higher than that 

during co-treatment of EGCG with FeSO4 and NF1; hence, NF2 was more potent. This 

led to the notion that if NF2 is further developed into a dietary supplement, the 

consumption of polyphenols such as tea/coffee would not affect the iron concentration 

to a great extent, unlike in the case of the NF1 formulation. 

 
5.2 Discussion 
 
Overproduction of free radicals causes oxidative stress and may eventually lead to 

chronic diseases such as cancer, cardiovascular diseases, chronic inflammation, and 

diabetes mellitus. Public awareness about diabetes mellitus is increasing as this 

chronic disease, which causes immense complications, has become progressively 

prevalent both in developed and developing countries. T2DM is the most common 

form of diabetes and is marked by abnormal carbohydrate, lipid, and protein 

metabolism associated with impaired insulin secretion and insulin resistance. Iron is 

the most abundant trace metal that has been linked to human pathophysiology 

involving the formation of free radicals, ultimately leading to oxidative damage.  

 

Since many chronic diseases are caused by oxidative stress associated with an 

increase in the formation of ROS, scientists have been developing some strategies to 

overcome such conditions, with iron gaining attention as of one of the metals that has 

been constantly researched in cross-studies between nutrition and medicine. 

Nanoparticles composed of various materials that are primarily characterised as 

biodegradable have been widely developed. Biodegradable materials are non-toxic, 

biotolerable, biocompatible, biodegradable, and water-soluble. In preparing these sub-

nano particles, natural polysaccharides have been extensively utilised, and their use 

has significantly increased (Zhang et al., 2011; Yang et al., 2008; Aumelas et al., 

2007); Leonard et al., 2003).  
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Polysaccharides are one of the main structural elements of polymeric carbohydrates 

formed via glycosidic bonds; they can be obtained from various sources. 

Polysaccharides can be composed of complex chemicals with varying molecular 

weight, which exhibit diversity in structure and properties. Modified polysaccharides 

can form self-assembled nanoparticles comprising a hydrophilic outer layer and a 

hydrophobic core. Hydrophobic drugs and other materials that possess a low ability to 

be absorbed can be administered using a variety of delivery methods. Dextran is a 

modified polysaccharide that can form amphiphilic polymers, making it suitable for 

encapsulating and releasing a particular drug in a hydrophobic domain. Citrus pectin 

is also a potential antioxidant which is characterised as an anti-inflammatory or anti-

cancer material that blocks galectin-3 activity; galectin-3 has been found to be 

overexpressed in most types of cancer cells (Nangia-Maker et al., 2002). Moreover, 

recent research also indicates that citrus pectin chelates heavy metals, which are 

linked to various diseases (Eliaz et al., 2006).  

 

Antioxidants possess therapeutic properties with some potency to counter diseases; 

therefore, combinations of antioxidant formulations and delivery systems have been 

tested in this regard. Hesperetin is an antioxidant that has been reported to exhibit 

antitumor ability in vitro and in vivo by inducing apoptosis of cancer cells, without 

toxicity (Wu et al., 2016). It has also been demonstrated to inhibit significant 

proliferation and induce apoptosis in hepatocellular carcinoma cells. This study is a 

cross-examination evaluating the use of two types of polysaccharides as 

encapsulating agents. Potato dextrin and MCP were used to encapsulate iron and a 

particular antioxidant; these formulations induced higher values of cell viability (Fig. 

5.1.2). This experiment was followed by an investigation into the activity of the 

antioxidant both in its encapsulated and free states. The potato dextrin–encapsulated 

antioxidant displayed an elevated intracellular (5.1.3) and non-intracellular (Fig. 5.1.1) 

antioxidant activity in comparison to MCP.  

 

Higher absorption of the coated agents and stability of the shells composed of dextrin 

and citrus pectin are two of the many prerequisites of suitable components in 

developing nanoformulations. In this study, FeSO4 and EGCG were used as the iron 

source and inhibitor, respectively, and they were coated with these two 

polysaccharides. It has been known that  
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iron absorption can be impaired by dietary ingredients such as dairy products, eggs, 

and caffeinated beverages. Since the interest in dietary polyphenols has increased 

(tea is the most consumed beverage in the world after water), the effects of ultra-pure 

EGCG (100 μM) on a human intestinal cell line (Caco-2) were studied. This 

investigation was conducted to elucidate whether the regular consumption of this 

polyphenolic compound, which is a potent inhibitor, causes any impairment in the 

absorption of dietary iron. 

 

The consumption of iron supplements could lead to a high iron content in our body. 

Since a high concentration of circulating iron might cause β-cell dysfunction, an 

experiment was designed using the Caco-2 cell line to investigate the combined 

effects of novel formulations and compare them with those of iron preparations 

currently in the market. Intracellular ferritin protein formation was considered an 

indirect marker for measuring iron absorption in the Caco-2 cells, owing to the robust 

properties of ferritin. The results show that amongst the various treatments, the 

hydrophilic molecule, FeSO4, induces lower iron absorption levels in comparison to 

proteinated sources of iron, such as Potato Dextrin and MCPD (Fig. 5.1.4A). Dextrin 

induces the highest iron absorption, followed by citrus, at 96.2 ng/mg ferritin 

concentration. 

 

When all the three iron sources were tested in the presence of EGCG (Fig. 5.1.4), 

there was a distinct decline in ferritin concentration, with FeSO4 and Dextrin both 

exhibiting similar effects upon EGCG contact. Citrus, however, was not significantly 

affected by EGCG, thereby illustrating its potential to bypass the effects of inhibitors 

(Fig. 5.1.4B). The NF1 formulation (Dextrin) may have been less stable and could 

have possibly degraded over time, thus causing the shell to break open upon EGCG 

contact, releasing its constituents. Secondly, EGCG’s interaction with Dextrin may 

have yielded an insoluble complex with iron (due to surface interaction), which was 

too large to enter the cell, thus leading to its excretion rather than generating the 

inhibitory effects of the receptor. 

 

The formulations (Table 2.1.4) were tested with the purpose of increasing iron 

absorption through the small intestine, particularly in the duodenum. These strategies 

may also be applied under conditions of iron overload in studies to treat excess iron–
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related diseases, including T2DM. They may be used to facilitate the delivery of a 

particular antioxidant to target pancreatic β-cells. In addition, the selection of 

nanoformulations needs to be based on the aforementioned requirements in order to 

successfully deliver an agent of interest into a specific target. The findings of this study 

suggest that citrus pectin is a suitable shell component for nanoformulations owing to 

its higher stability in the presence of EGCG. Therefore, pectin nanoformulations 

containing a particular antioxidant may exhibit a potent therapeutic effect. Such an 

approach could decrease the prevalence of chronic diseases and their parent 

nutritional disorders both in developed and developing countries.  
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6.1. General Discussion 
 

The incidence of type 2 diabetes is steadily increased over the years all around the 

world, affecting many lives that are at risk of death (Roglic, 2016). Many strategies 

have developed with a hope that this disease might come to an end. However, it has 

been projecting to rise even more than it is expected (Roglic, 2016). This thesis 

comprises of four major objectives: to clarify the role of excessive iron on β-cell 

function - insulin synthesis and secretion; to correlate excessive iron mediated ROS 

generation to β-cell dysfunction; to identify whether specific organelles such as 

mitochondria are more sensitive to ROS damage; to identify the role of antioxidant-

nanoformulations as a strategy to counter ROS damage on pancreatic β-cell.  

    

Identifying the effect of excessive iron on the synthesis and secretion of insulin on β-

cell was being observed. Excessive iron and glucose contributed to the decrease of 

insulin secretion and increased its content chronically. In addition, SNAP-25 as one of 

the important components of the SNARE complex was shown to decrease as well. 

SNARE complex is a core complex protein that mediates granule fusion and insulin 

exocytosis from β-cell (Thurmond, 2007). This finding was supported by increasingly 

high toxicity of pancreatic β-cell. Several other proteins related to iron and β-cell 

function were also performed. Excessive iron accumulation affected the increase of 

iron storage protein, known as ferritin. This was also confirmed by an increase of 

intracellular iron content. This accumulation was also observed on one of the important 

iron transporters; DMT-1, which was increasingly expressive in pancreatic β-cell, MIN6 

cells.  

Perturbations caused by oxidative stress have been linked to chronic diseases. T2D 

has become one of metabolic diseases, which might result from the imbalance 

between the accumulation of ROS and biological systems that detoxify these reactive 

products (Pizzino et al., 2017). It has been established that iron is an essential nutrient 

involved in myriad biological processes, starting from normal function of cells to the 

energy production (Paul et a., 2017). However, as important as it is, iron contributes 

to several diseases due to its involvement in reactive products such as hydroxyl 

radicals. Particularly within pancreatic β-cell, oxidative damage is prone to occur due 
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to its lack of ability to possess enzymatic antioxidants that can effectively detoxify 

excessive concentrations of intracellular oxidative stress.  

ROS have been established to be found in several locations intracellularly. 

Mitochondria are considered as the major source of these species within most 

mammalian cells and are formed as part of natural by-product of the mitochondrial 

metabolism (Zorov et al., 2014). Membrane potential is the force driving protons into 

the mitochondria (Perry et al., 2011). The current data suggested that excessive iron 

accumulation demonstrated decreased levels of mitochondrial membrane potential. 

The decrease or loss of mitochondrial membrane potential might be an early event in 

the apoptotic process (Ly et al., 2003). This outcome was supported by an extremely 

decreased mitochondrial OCR (Chapter 4), which was also observed on factors 

contributed to OCR include basal respiration, proton leak-linked respiration, ATP-

linked respiration, maximal respiration, reserve capacity, and non-mitochondrial. Two 

reasons might be the cause of the decrease of this effect: the cells might be removed 

during the washing, or an interference between the positive charge of iron and protons 

within the matrix across the IMM into IMS.  

Excessive iron accumulation mediated ROS generation might correlate to dysfunction 

of β-cell. As previously mentioned, iron contributes to the generation of the most 

dangerous free radical, which can attack essential components of the cells. Proteins, 

lipids, and nucleus are elements within the cells that are susceptible to this particular 

damage and can proceed to irreversible damages. It has been found that the 

secondary product of lipid peroxidation; MDA levels, were increased in the presence 

of high iron (Chapter 3). This data was supported by a result on β-cell cytotoxicity 

through increased formation of carbonyl groups on protein side chains as a form of 

cellular damage (Chapter 4).  

Due to multiple damages which can be reversible or irreversible, myriad strategies and 

ideas have been developed. In this current thesis, antioxidant nanoformulation was 

optimised and observed using potato Dextrin and Modified Citrus Pectin. The 

experiment was performed on caco-2 cells to identify how effective the antioxidant 

coated by nanoformulations versus uncoated antioxidants. The current data showed 

that MCP was more stable and might be more effective in coating antioxidant 

nanoformulations (Chapter 5). This outcome might be amplified as a model to counter 
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oxidative stress due to excessive iron accumulation in pancreatic β-cell using 

pancreatic β-cell line, MIN6 cells.  

6.2 Conclusions 
    
The following findings are novel observations that have been observed to conclude 

this thesis: 

 

• Excessive iron is involved in the higher expression of DMT1 on 

pancreatic β-cell line, MIN6 cells. 

• Excessive iron has increased ferritin and intracellular iron content 

on MIN6 cells. 

• Excessive iron contributes to the decrease of insulin secretion 

and increased insulin content chronically (24 h incubation). 

• Excessive iron contributes to the decreased expression of one of 

insulin exocytosis machinery, called SNAP-25. 

• Excessive iron may have increased β-cell viability. 

• Excessive iron is associated with the increase of MDA levels as 

the result of lipid peroxidation. 

• Excessive iron associates to the β-cell cytotoxicity through 

increased expression of carbonyl group formations on protein 

side chains as a form of cellular oxidative damage. 

• Excessive iron contributes to the decrease of mitochondrial 

membrane potential levels. 

• Excessive iron and glucose displayed opposite effects on OCR 

levels, which contribute to the decrease of OCR and vice versa, 

respectively.  

• MCP is an effective and stable component of nanoformulations, 

which coated Hesperetin as an antioxidant to counter oxidative 

stress.  

 

To summarise, the data presented in this thesis indicate that excessive iron and 

glucose accumulation, and consequent oxidative stress results in cellular membrane 

and mitochondrial damage and disruption. The perturbations in mitochondria 
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functionality correlate with diminishing of MIN6 β-cell insulin secretion, suggesting a 

mechanistic role for iron overload in the development and progression of type 2 

diabetes. All nanocarrier formulations demonstrated high iron entrapment efficiency 

compared to FeSO4 control and the ability to resist the inhibitory effect of a potent iron 

inhibitor highlight its potential as an iron delivery vehicle. These nanoformulations may 

be potentially used as a model to counter oxidative stress in pancreatic β-cell. 

 

6.3 Future directions 
 

Many strategies have emerged with practical applications in diseases caused by the 

overproduction of free radicals. One of the approaches that has been progressively 

explored is antioxidant therapeutics. β-cells are highly vulnerable to ROS owing to 

their low levels of antioxidant enzymes. They can be fortified with novel antioxidant 

formulations prepared using nanoformulation techniques that encapsulate potent 

antioxidants (e.g. hesperetin) in novel proteins, polysaccharides, and polymers. Such 

formulations need to be assessed to determine their stability and activity. Antioxidant 

activity can be evaluated with and without encapsulation, using the Ferric Reducing 

Antioxidant Power (FRAP) assay. The Cellular Antioxidant Activity (CAA) assay can 

also be used to compare the activity of free and encapsulated antioxidants within the 

cells. These findings can potentially contribute to antioxidant therapeutics for 

metabolic disorders.  

 

As previously mentioned, proteins are considered to be the most vulnerable targets 

for oxidative stress; hence, protein identification must be applied in the future in 

addition to analysing the protein expression levels. This can be carried out using 

advanced mass spectrometry. Recognizing proteins corresponding to a particular type 

of cells might be one of the best strategies to achieve a discovery and devise 

treatments. In addition to analysing protein carbonylation in pancreatic -cells, the 

proteins involved in mediating the secretion of insulin, a hormone that regulates blood 

glucose levels, need to be identified, e.g. proteins in the SNARE core complex and 

those that mediate insulin exocytosis. Two proteins that make up the SNARE core 

complex are syntaxin and synaptobrevin; studying them might provide wider insights 

to determine insulin mechanisms.  
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It has been established that low or moderate concentrations of ROS play many 

physiological roles. Investigating their major sources may contribute beneficial 

information. Studies have indicated that mitochondria are the sites where these 

species are produced, leading to cellular oxidative damage. It is noteworthy to 

understand the function of these organelles by isolating them from cells. This can be 

performed using an established technique called the mitochondria isolation assay. 

Further investigation on some specific enzymes related to excessive iron and glucose 

in the insulin secretory system can extend our knowledge on how extracellular iron is 

accumulated in these sites. Researchers have already identified one such protein, 

named calpain-10, using the traditional method of western blotting.  

 

The parameters that need to be modified for further investigations on the OCR include 

the concentrations used for the nanoencapsulated drugs as well as various 

experimental timelines. Measurements of the oxygen consumption over several time 

courses using the Seahorse test can confirm the function of this organelle. Studying 

organelles (such as mitochondria) associated with multiple diseases linked to 

oxidative stress and the proteins involved in metabolism would contribute to reducing 

the occurrences of the diabetes mellitus disease. Moreover, the mechanisms of 

alterations and regulation of different intracellular processes that lead to other events 

would be important potential therapeutic targets to diminish the complexity of particular 

diseases. Furthermore, quantifying any consequences resulting from cellular oxidative 

damage, using confocal microscopy, can enhance our understanding by providing 

additional evidence.  

The optimisation of nanoformulations in this study has provided useful results; 

nevertheless, additional experiments should be considered to ratify them. If MCPD’s 

ability to bypass the effects of EGCG can be demonstrated, further work can be carried 

out to identify other forms of inhibitors that this formulation could potentially be 

resistant to. Moreover, this study could proceed in a human study level as our 

laboratory team has been working on several human studies related to curcumin. 

Thus, these collective data combine with antioxidant nanoformulations on human 

study might be used as a strategy to combat oxidative stress associated myriad 

diseases.  
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Appendix (i) – Graphs of flow cytometry result 

 

 
 

 
 

 
 

 

Fig. i. The overlay of all experimental conditions in estimating the changes of mitochondrial 
membrane potential performed by flow cytometry in four different periods (1, 2, 5, & 6 days) 
using fluorescent dye called Texas Red, (excitation ideally suited to the 561 or 594 nm laser 
lines). MIN6 cells were exposed by both iron and glucose present with various range of 
concentrations. Flow cytometry analysis of mitochondrial membrane potential level in 
application of median intensity (graphs), 6-well plates; n=3. 
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The above graph is an overlay looks of all different experimental conditions using a 

flow cytometry. The aim of this measurement is to estimate the levels of mitochondrial 

membrane potential on MIN6 cells that were exposed to variety concentrations of iron 

and glucose within four different incubation times.  

 

Appendix (ii) – Graphs of oxygen consumption rate results 

 
Below graphs are two different experiments on OCR analyses. OCR data on chapter 

4 was a cumulative result from these graphs. Iron and glucose exposures on MIN6 

cells displayed opposite results on OCR, which was the reason for the experiments to 

be performed separately.   
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Fig. ii. Oxygen consumption profiles of pancreatic -cells (MIN6) within a 24-h period in the 

presence of iron and glucose. Cells were plated at 50 x 104 cells/well in XF24 plates. The 
Seahorse experimental method was used along with the addition of several distinct agents 
involved in the electron transport chain in mitochondria, including oligomycin, FCCP, antimycin 
A, and rotenone. (A) OCR in the presence of glucose. (B) OCR in the presence of iron; n=5. 
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Appendix (iii) – Calculation of protein carbonyl  

 
Prior to the loading of protein (cell lysate) on western blot, the amount of proteins (15 

& 10 μg) needs to be calculated obtained from BCA assay. 

 

 

Raw Data 
(562)           

 1 2 3 4 5 6 7 8 9 10 11 12 

A 0.245 0.266 0.521 0.469 0.296 0.259 1.047 0.407 0.634 0.987 0.388 0.695 

B 0.358 0.759 1.083 0.796 2.199 0.573 0.357 0.283 0.238 0.232 0.309 1.545 

C 0.24 0.29 0.315 0.287 0.304 0.318 1.396 0.432 0.552 0.52 0.96 1.46 

D 0.635 1.352 2.393 2.217 1.583 1.499 2.205 2.058 2.605 2.263 0.044 0.048 

E 2.039 1.233 1.949 1.94 2.176 2.232 2.168 2.167 2.33 1.105 0.047 0.047 

F 0.583 0.573 0.634 0.613 0.596 0.56 0.643 0.515 0.924 0.637 0.047 0.046 

G 0.409 0.409 0.478 0.474 0.458 0.438 0.626 0.627 0.77 0.742 0.046 0.055 

H 0.048 0.046 0.047 0.046 0.045 0.044 0.044 0.044 0.045 0.056 0.066 0.046 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. iiiA. A raw data of total protein using BCA assay. Absorbance was then measured at 562 
nm using a microplate reader (BMG LABTECH, Germany). 
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Oxi        

24 h        

    y=0.001x + 0.0589 15 10 

Ctrl 0.583 0.578 0.5775 518.6 12.965 28.9 19.3 

 0.573       

C2 0.634 0.6235 0.623 564.1 14.1025 26.6 17.7 

 0.613       

C3 0.596 0.578 0.5775 518.6 12.965 28.9 19.3 

 0.56       

C5 0.643 0.579 0.5785 519.6 12.99 28.9 19.2 

 0.515       

C6 0.924 0.7805 0.78 721.1 18.0275 20.8 13.9 

 0.637       

48 h        

Ctrl 0.409 0.409 0.4085 349.6 8.74 42.9 28.6 

 0.409       

C2 0.478 0.476 0.4755 416.6 10.415 36.0 24.0 

 0.474       

C3 0.458 0.448 0.4475 388.6 9.715 38.6 25.7 

 0.438       

C5 0.626 0.6265 0.626 567.1 14.1775 26.5 17.6 

 0.627       

C6 0.77 0.756 0.7555 696.6 17.415 21.5 14.4 

 0.742       

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. iiiB. Data on the amount of proteins loaded in each well for the purpose of SDS-
PAGE analysis. 
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Appendix (iv) – Bands of protein carbonyl results 

 
After proteins were estimated using BCA assay, the particular amount of proteins was 

ready to be loaded on the wells of SDS-PAGE chamber. The expression was 

estimated using a series of experiments, leading to the expression of bands, which 

could identify the level of protein expressions using image J application, version 1.52.  

 

 
From left to right 
Ctrl   165631.533 
5.5 mM Glu  156690.395 
11 mM Glu  55316.820 
20 μM Fe  156674.838  
100 μM Fe   8399.801 
 
  

 

 
From left to right 
Ctrl   12757.806 
Ctrl   17409.492 
5.5 mM Glu  23028.049 
11 mM Glu   48772.361 
20 μM Fe  13059.179 
100 μM Fe  48784.432 

 
 

Fig. iv. The estimation of carbonyl groups on the side chains of proteins was performed using 
OxyBlot™ Protein Oxidation kits in both 24- and 48-h periods. The protein was extracted and 
subjected to the western immunoblot technique using 10% agarose gel. The results shown 
above are: Different bands of protein expression in western blot after (A) 24- and (B) 48-h 
incubations. (C) Expression of protein oxidation in 24- and 48-h incubation times, demonstrated 
by the area under the curve (AUC). Gel loading was as follows (from top left): lane 1 - ctrl, lane 
2 - negative ctrl of ctrl, lane 3 – normal glucose (C1), lane 4 - high glucose (C2), lane 5 - normal 
iron (C3), lane 6 - high iron (C4), lane 7 – neg ctrl of C1, lane 8 – neg ctrl of C2, lane 9 – neg 
ctrl of C3, lane 10 – neg ctrl of C4. (From bottom left): lane 1 - ctrl, lane 2 – C1, lane 3 - neg 
ctrl of C1, lane 4 – C2, lane 5 - neg ctrl of C2, lane 6 – C3, lane 7 - neg ctrl of C3, lane 8 – C4. 
The data represent mean ± SEM; n=3.  

   
 

24-h incubation – 
Mw: 45 kDa 

48-h incubation – 
Mw: 45 kDa 
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Appendix (v) – Data of cytotoxicity assessment 

 
Below data were an example of how viability of cells was obtained and calculated. 

Firstly, raw data was obtained from a spectrophotometry, producing absorbance. The 

absorbance was calculated to find the level of MIN6 cytotoxicity due to exposure of 

iron and glucose within particular time incubations.  

 

 

1. Raw 
Data (570 
1)     

1. Raw Data (570 
1)     

 1 2 3 4   1 2 3 4   

A 
0.31

1 
0.29

7 
0.29

4 
0.33

5  A 0.238 0.29 
0.28

5 0.326   

B 0.3 
0.34

9 
0.29

5 
0.27

9  B 0.297 0.277 
0.30

8 0.322   

C 
0.29

5 
0.28

7 
0.27

1 
0.28

8  C 0.22 0.24 0.35 0.301   

             

 

2. Raw 
Data (600 
2)     

2. Raw Data (600 
2)     

 1 2 3 4   1 2 3 4   

A 
0.38

8 
0.37

9 
0.35

9 
0.39

9  A 0.278 0.346 0.34 0.384   

B 
0.36

9 
0.41

1 
0.37

9 
0.36

2  B 0.339 0.33 0.37 0.383   

C 
0.37

7 0.37 
0.34

9 
0.36

8  C 0.281 0.312 
0.42

1 0.374    

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

 

 

  

Fig. vA. A raw data of cytotoxicity assay using PrestoBlue® cell viability reagent. 
Absorbance was then measured at 560-590 nm using a microplate reader (BMG 
LABTECH, Germany). 
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570  600  O2*A1 O1*A2 R1*N2 
R2*N
1 G-H I-J 

K/L*10
0% 

 C1 
0.31

1  

0.38
8  

36454.
18 

31267.
37 

65540.
02 

5128
.2 

5186.8
08 

60411.
82 85.86 

  

0.29
7  

0.37
9  

34813.
15 

30542.
09 

65540.
02 

5128
.2 

4271.0
58 

60411.
82 70.70 

 C2 
0.29

4  

0.35
9  

34461.
5 

28930.
37 

65540.
02 

5128
.2 

5531.1
3 

60411.
82 91.56 

  

0.33
5  

0.39
9  

39267.
36 

32153.
81 

65540.
02 

5128
.2 

7113.5
46 

60411.
82 117.75 

 C3 0.3  

0.36
9  

35164.
8 

29736.
23 

65540.
02 

5128
.2 

5428.5
66 

60411.
82 89.86 

  

0.34
9  

0.41
1  

40908.
38 

33120.
85 

65540.
02 

5128
.2 

7787.5
38 

60411.
82 128.91 

 C4 
0.29

5  

0.37
9  

34578.
72 

30542.
09 

65540.
02 

5128
.2 

4036.6
26 

60411.
82 66.82 

  

0.27
9  

0.36
2  

32703.
26 

29172.
13 

65540.
02 

5128
.2 

3531.1
32 

60411.
82 58.45 

 C5 
0.29

5  

0.37
7  

34578.
72 

30380.
92 

65540.
02 

5128
.2 

4197.7
98 

60411.
82 69.49 

  

0.28
7  0.37  

33640.
99 

29816.
82 

65540.
02 

5128
.2 

3824.1
72 

60411.
82 63.30 

 C6 
0.27

1  

0.34
9  

31765.
54 

28124.
51 

65540.
02 

5128
.2 

3641.0
22 

60411.
82 60.27 

  

0.28
8  

0.36
8  

33758.
21 

29655.
65 

65540.
02 

5128
.2 

4102.5
6 

60411.
82 67.91 

 C7 
0.23

8  

0.27
8  

27897.
41 

22402.
91 

65540.
02 

5128
.2 5494.5 

60411.
82 90.95 

  0.29  

0.34
6  

33992.
64 

27882.
76 

65540.
02 

5128
.2 

6109.8
84 

60411.
82 101.14 

 C8 
0.28

5  0.34  

33406.
56 

27399.
24 

65540.
02 

5128
.2 

6007.3
2 

60411.
82 99.44 

  

0.32
6  

0.38
4  

38212.
42 

30945.
02 

65540.
02 

5128
.2 

7267.3
92 

60411.
82 120.30 

 C9 
0.29

7  

0.33
9  

34813.
15 

27318.
65 

65540.
02 

5128
.2 

7494.4
98 

60411.
82 124.06 

  

0.27
7  0.33  

32468.
83 

26593.
38 

65540.
02 

5128
.2 

5875.4
52 

60411.
82 97.26 

 C10 
0.30

8  0.37  

36102.
53 

29816.
82 

65540.
02 

5128
.2 

6285.7
08 

60411.
82 104.05 

  

0.32
2  

0.38
3  

37743.
55 

30864.
44 

65540.
02 

5128
.2 

6879.1
14 

60411.
82 113.87 

 
 
 Fig. vB. Data on the calculations of cytotoxicity levels on MIN6 cells exposed to 

different levels of iron and glucose.  
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