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Abstract— In today’s ever evolving technology, malware is one 
of the most significant threats faced by individuals and corporate 
organizations. With the increasing sophistication of malware 
attacks, detecting malware becomes harder as many malware 
variants use different techniques, such as obfuscation, to evade 
detection. Even though advanced techniques, such as use of deep 
learning, prove to be of great success in classifying malware, the 
high computational resources needed for training and deploying 
deep learning models may not be feasible for all organizations or 
individuals. It is therefore essential to use fewer computational 
techniques to understand how malware can be analysed using 
shared code execution, which uses less computational resources. In 
this paper, we explored shared code execution as a novel approach 
for analyzing and understanding the behavior of malware. We 
dynamically analysed the shared code execution of the malicious 
payloads by looking at the dynamic link library found in 
NTDLL.dll. We demonstrated how samples make use of the 
LoadLibrary function using inline hooking techniques to 
overwrite the actual function code to create service execution and 
persistence using shared code execution. We identified functions 
that address the problem of encoding routine and domain 
obfuscation when malware uses seDebug Privilege to escalate 
privileg. Through realistic experiments, we found that executables 
such as Mod_77D4 Module, change at different instances using 
XOR encoding operations for each payload byte with a pre-
defined key. This helps sophisticated malware to create and bind 
address structures for remote control. Our proposed technique 
shows high analytical accuracy for sophisticated samples that use 
encoding and obfuscation methods to evade detection. 
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I. INTRODUCTION 

Harmful applications, generally known as malware, exist in 
different forms, such as adware, ransomware, and rootkits, each 
with its own specific methods of infiltration and objectives [1]. 
The increasing prevalence of malware attacks in today's digital 
landscape and the various methods cybercriminals employ to 
target individuals, businesses, and even governments have 
made it clear that no one is safe from the potential harm caused 
by malicious software. From phishing emails and ransomware 
attacks to sophisticated hacking techniques, cybercriminals 
constantly evolve tactics to exploit digital system 
vulnerabilities using malware [2]. The impact of malware 
attacks is multifaceted, encompassing financial losses, 
compromised personal information, and a loss of trust in online 
platforms and services. 
The financial implications of malware attacks on individuals 
and organisations, including the costs associated with repairing 
systems, recovering stolen funds or data, and potential legal 
repercussions, can be significant. The psychological impact on 
victims of malware attacks, such as feelings of violation and 
loss of trust in technology or online platforms, should not be 
underestimated. The invasion of personal or sensitive 
information can impact individuals, making them hesitant to 
engage in online activities or share personal data. This loss of 
trust in technology can have far-reaching consequences, not 
only for the victims but also for the overall digital economy. 
Various techniques are used by malware to attack a target. One 
common technique malware uses is shared code execution, 



which allows the malicious code to run alongside legitimate 
processes on the target system. This technique is particularly 
effective at evading detection, as it camouflages itself within 
the normal operations of the computer. Malware can also utilise 
techniques such as code injection [3] inserting code into 
legitimate processes, or DLL hijacking, replacing legitimate 
DLL files with malicious ones [4].
The malware binaries are often deleted from an infected device, 
but the malicious code residues are left behind on the evaluation 
target. These residues include registry, service execution, 
timestamping, processes, strings, reverse shell sessions, and 
changes made to folders and files.  Effective malware analysis 
requires technical expertise, advanced tools, and a thorough 
understanding of the threat landscape. The study [5] highlighted 
that the best way to analyse malicious files is to place them in 
a virtualised or restricted environment to observe their 
behaviour. The major limitation of manually observing 
malware functionalities is that different malware variants keep 
emerging in thousands daily, and security companies may be 
unable to achieve this. 
Even though automated tools can dynamically analyse the 
samples once loaded into the testing solutions to observe and 
determine their functionalities and interactions with the internet 
and other connected system resources. Tools such as Nepenthes 
and CWSandbox [6] examine the behaviour of a sample file and 
generate a report of all the system calls and other parameters 
involved by the malware at runtime. One of the major 
drawbacks of these solutions is that they may generate different 
reports based on the test environment, and their results are 
based on a single test execution trace. As a result, significant 
features of the sample, especially those hidden by the malware, 
might be missed during the analysis process. While there are 
website-based tools such as VirusTotal [7] for files and URL 
virus analysis, other evasive malware variants try to evade 
detection by using the sleeping technique. The sleeping 
technique is an evasive loop many variants use to evade 
automatic and dynamic analysis by speedily consuming system 
resources. Also, malicious applications often encompass 
indices to detect infected environments by checking if a mutex 
object exists [8] to enhance resource sharing and consumption 
[9]. Other sophisticated samples have functionalities to bypass 
authentication and obtain administrative access. 
Other malware evasion techniques include obfuscation, 
sandbox detection, and polymorphism [10]. Use of various 
obfuscation techniques, such as code encryption, variable 
renaming, and code splitting enable malware to hide its true 
intentions and make it harder for security researchers to detect 
and analyse its behaviour. On the other hand, the malware uses 
sandbox detection to determine whether it is running in a 
controlled sandbox or a virtualised environment. This allows 

the malware to avoid being detected and analysed by security 
researchers who often use sandboxes to analyse and understand 
the behaviour of suspicious files without looking at the code 
pattern and structure. Shared code execution analysis helps in 
understanding the techniques and tactics employed by malware 
authors, providing insights into their motivations and potential 
targets. 
By studying shared code execution, researchers can uncover 
vulnerabilities in software and operating systems that are being 
exploited by malware, which can then be patched and 
strengthened to enhance cybersecurity measures. Specifically, 
the study aims to analyse how shared code execution can 
potentially enable the malicious application to gain 
unauthorised access to sensitive data or perform unauthorised 
actions on the device. By examining the interplay between 
different processes and the function calls within the code 
execution paths, a comprehensive understanding of the 
potential risks and vulnerabilities can be obtained. This 
research is crucial in developing effective countermeasures and 
enhancing the security of Windows-based devices against such 
malicious attacks.
To summarise, this paper makes the following contributions.

• We dynamically analysed the shared code execution of the 
malicious payloads by looking at the dynamic link library found 
in NTDLL.dll. We demonstrate how samples use the 
LoadLibrary function using inline hooking techniques to 
overwrite the actual function code to create service execution 
and persistence.
• We proposed a function that addresses the problem of 
encoding routine and domain obfuscation when malware uses 
certain services such as seDebugPrivilege to escalate privileges. 
In this idea, different privilege escalation calls such as 
GetCurrentProcess, Local Unique Identifier, PToken 
Privileges, AdjustTokenPrivilges and CreateRemoteThread 
were analysed to determine how malware accesses these 
features.  For example, the samples analysed in this paper used 
multiple imports, such as kernel32 and RegCreateKeyA, for 
registry modification. 
• We explored the potential use of shared code execution to 
detect and mitigate advanced persistent threats (APTs) that 
often employ sophisticated evasion techniques. We explore 
using code similarity analysis to identify shared code among 
different malware samples by identifying common code 
patterns.
• We evaluated the encoding process on many real-world 
malware samples and demonstrated how simple loops use the 
key sign of XOR encoding to obfuscate data to make 
investigation difficult.



.

2. BACKGROUND

2.1 Share Code Execution

Sophisticated malware can wreak havoc on computer 
systems and compromise sensitive data using the concept of 
code execution [11]. One particularly insidious form of malware 
is shared code execution, where malicious code is injected into 
legitimate software. Shared code execution can create backdoors 
in a system, granting hackers persistent access and control over 
compromised devices. This can be especially concerning for 
organisations, as it opens the door for further attacks, data 
breaches, and espionage. Malware can use shared code 
execution vulnerabilities to spread throughout different 
operating system platforms such as Windows, Android or 
network [12].

These vulnerabilities occur when multiple applications or 
processes share the same code, allowing an attacker to exploit a 
weakness in one application and use it to execute malicious code 
in another, leading to significant disruption to businesses and 
critical infrastructures. For instance, WannaCry ransomware in 
2017 exploited a shared code execution vulnerability in 
Microsoft Windows, spreading rapidly across networks and 
infecting thousands of computers worldwide [13]. The attack 
caused significant disruption to businesses and critical 
infrastructure, highlighting the importance of patching and 
securing systems against known vulnerabilities.

Shared code execution of malware refers to the use of code 
that is shared among multiple malware samples. It involves 
using the same malicious code across multiple attacks. The 
technique allows cybercriminals to reuse code from previously 
successful attacks, making it easier and faster to develop new 
malware variants [14]. In this way, shared code execution has 
become an increasingly popular tactic among cybercriminals 
looking to maximise their impact and evade detection. This 
tactic is often used in targeted attacks against high-value targets. 
It can also be used in widespread attacks, such as malware 
campaigns. Furthermore, shared code execution can also create 
malware families, where multiple variants of the same malware 
share common code [15]. These families can have a long 
lifespan, with new variants developed over time and the shared 
code evolving with each iteration.

2.2 Share Code Vulnerabilities

This paper explores common forms of shared code execution 
vulnerabilities that malware exploits. Exploits such as code 
injection, dynamic link library hijacking, file inclusion and 
cross-site scripting are discussed.

CODE INJECTION

One common type of shared code execution is code injection 
[16]. Such vulnerability can occur through user input fields, such 
as login forms or search bars, where the attacker inputs code that 
is then executed by the application [17]. Code injection attacks 
can be prevented by properly validating and sanitising user 
input. The countermeasure involves ensuring that user input is 
checked for any unexpected characters or the system could 
execute the system. Using parameterised queries or prepared 
statements can also help prevent injection attacks, especially 

when dealing with sensitive passwords or financial information. 
By implementing these security measures, the system can ensure 
that user data is protected from malicious attacks.

2.3 Dynamic Link Library Hijacking

DLL hijacking occurs when a malicious actor replaces a 
legitimate dynamic-link library (DLL) with a malicious one. 
When an application loads the compromised DLL, the attacker 
gains control over the execution flow and can manipulate the 
application's behaviour. DLL hijacking attacks are particularly 
dangerous as they can go unnoticed for a long time, allowing the 
attacker to maintain persistence and carry out various malicious 
activities undetected [18]. One common method of DLL 
hijacking is the manipulation of search order hijacking. This 
attack occurs when an attacker places a malicious DLL in a 
directory that the application searches before the legitimate 
DLL. As a result, when the application attempts to load the DLL, 
it unknowingly loads the malicious version instead.

This technique is effective because it takes advantage of the 
default search order used by the operating system, making it 
difficult for users or security tools to detect the malicious DLL. 
Once the malicious DLL is loaded, the attacker can execute 
arbitrary code, escalate privileges, or perform other malicious 
actions [19]. The consequences of loading a malicious DLL can 
be severe. Once the attacker has successfully executed arbitrary 
code or escalated privileges, they can gain control over the 
system and potentially compromise sensitive data. 
Furthermore, the presence of a malicious DLL can go 
undetected for an extended period, allowing the attacker to 
maintain persistence and continue their malicious activities 
undetected. It underscores the importance of robust security 
measures and regular vulnerability assessments to identify and 
mitigate such risks

2.4 File Inclusion

Malware file inclusion, also known as remote file inclusion 
(RFI), is a common type of malware-shared code execution used 
to exploit vulnerabilities in web applications [20]. It involves an 
attacker injecting malicious code into a web application, 
allowing them to execute arbitrary files on the server remotely. 
Malware file inclusion attacks often target websites that rely on 
user input to dynamically include files, such as those using 
PHP's include() or require() functions. By exploiting insecure 
coding practices or inadequate input validation, hackers can 
trick the application into including malicious files from a remote 
server. 

For instance, a hacker may exploit a vulnerability in a 
website's file upload feature by injecting malicious code 
disguised as an image file. When the file is uploaded and 
accessed by the server, the injected code is executed, granting 
the attacker unauthorised access to sensitive data or allowing 
them to distribute malware to unsuspecting users. However, 
modern web application security measures such as input 
validation and file type checking can mitigate this vulnerability. 
Additionally, utilising server-side file handling techniques and 
sandboxed execution environments can further enhance the 
protection against remote code execution attacks by malicious 
threat agents.

Identify applicable funding agency here. If none, delete this text box.



3. RELATED WORKS

3.1 Code Similarities & Functionalities

Code similarities and shared functionalities are common in 
software development. These similarities can arise from using 
similar programming languages, frameworks, or design 
patterns. Shared functionalities refer to the features or 
capabilities that multiple pieces of code have in common. These 
similarities and shared functionalities can help developers save 
time and effort by reusing code components and leveraging 
existing solutions. One of the most fascinating aspects of 
studying malware is uncovering code similarities and shared 
functionalities among different strains. Analysis of code 
similarities and shared functionalities between different 
malware samples is essential to identify common attack patterns. 
These similarities can range from identical code snippets to 
similar evasion, propagation, or payload delivery techniques. 

Dolnak [21] proposed a stochastical-aware code similarity 
extraction method. The method uses machine learning 
algorithms and probabilistic models to analyse the similarities 
between different malware code samples. The proposed method 
captures the inherent randomness and variability in malware 
code by incorporating stochastic elements into the analysis. The 
stochastic method considers code structure, syntax, and 
functionality, providing a holistic view of the similarities 
between different malware samples. However, a detailed 
counterexample of this approach could be a scenario where two 
malware samples have completely different code structures, 
syntax, and functionalities yet still pose the same threat level. In 
such cases, relying solely on stochastic methods may lead to 
misclassification or underestimation of the potential harm these 
malware threats pose.

Malware attack patterns refer to the specific techniques and 
strategies employed by malicious actors to infiltrate systems and 
compromise their security. These patterns can vary greatly in 
complexity and severity, ranging from simple phishing emails 
to sophisticated zero-day exploits. Gazzan and Sheldon [22] 
provided an overview of attack patterns ransomware deploys to 
attack industrial control systems (ICS) and the significant 
impacts. Industrial control systems are particularly vulnerable to 
ransomware attacks due to their interconnected nature and 
reliance on computer networks for operation and monitoring. 
Schmidbauer et al. [23] put forward a technique to illustrate how 
sensitive data is extracted by malware code snippets using a 
codebook approach. The codebook approach is malware's 
technique to extract sensitive data from a target system. This 
method involves using pre-defined code snippets or templates 
designed to search for and collect specific types of information 
from the target.

Moses and Sarah [24] compared different malware evolution 
and propagation strategies based on the malware variant's 
functionality and evasion mechanism. The study analysed 
various factors, such as the malware's ability to exploit software 
vulnerabilities, social engineering techniques, and reliance on 
botnets for propagation. Additionally, the researchers examined 
how these strategies evolved and their impact on the overall 
effectiveness of the malware. For example, the study found that 
malware variants utilising advanced social engineering 

techniques were more successful in tricking users into 
downloading malicious files or clicking on infected links. These 
variants are often disguised as legitimate software updates or 
enticing offers, increasing their chances of infiltrating systems 
[25].

Additionally, the study observed a shift in propagation strategies 
from relying solely on software vulnerabilities to leveraging 
botnets for faster and more widespread infection. However, a 
detailed counterexample to this observation can be seen in the 
case of phishing attacks. Despite not relying on advanced social 
engineering techniques, phishing emails have been incredibly 
successful in tricking users into divulging sensitive information 
or visiting malicious websites. These emails often pose as 
legitimate entities like banks or online services, preying on 
users' trust and urgency to act quickly.

3.2 COMMON CODE PATTERNS

Pattern refers to the similar structures and techniques used to 
develop and distribute malicious software. Common code 
pattern often found in malware is obfuscation techniques. By 
understanding this code pattern and shared components among 
malware samples, cybersecurity professionals can identify 
common sources and potential connections among different 
malware strains. Understanding these shared components can 
help the attribution process, as certain code patterns or 
components may be associated with specific threat actors or 
groups.

Choo and Dehghantanha [26] introduce a machine learning 
classification technique using consensus clustering to map the 
APT campaigns to their procedures which often vary and 
evolve. The proposed approach involved first clustering similar 
APT campaigns together using consensus clustering. This 
approach allowed for the identification of commonalities and 
patterns among different campaigns. For example, the proposed 
machine learning technique could be applied in a cybersecurity 
context to identify and track different APT campaigns targeting 
a specific industry. Cybersecurity analysts can uncover shared 
tactics, techniques, and procedures (TTPs) attackers use by 
clustering similar campaigns together. This knowledge can 
create robust defense strategies and improve real-time incident 
response capabilities against evolving APT threats. However, a 
counterexample to this approach is if the machine learning 
technique fails to cluster similar campaigns accurately. 
Cybersecurity analysts may mistakenly identify unrelated 
campaigns as part of the same APT group, leading to incorrect 
conclusions about shared TTPs, which can result in ineffective 
defence strategies and potentially leave the targeted industry 
vulnerable to evolving APT threats.

4. METHODOLOGY

4.1 Testbed

Using the V2 Cloud emulator, we created a testbed on Netlab. 
Netlab was used as a sandbox environment to analyse the 
malware sample safely. The choice to use V2 Cloud instead of 
other emulators such as Qemu [27] is that V2 Cloud is an 
integrated Desktop-as-a-Service (DaaS) with better speed and 



simplicity. It also supports more platforms like Saas/Web than 
the Qemu emulator. Though predominant malware is designed 
for Windows, which makes many analysts focus on using Intel 
x86 architecture for analysis, V2 Cloud emulation has these 
features all embedded with faster speed [28]. The testbed on the 
Netlab contains three virtual machines, as illustrated in Fig.1. 
Malware samples were then loaded into the V2 Cloud emulator 
and then copied into the shared folder of Windows 10 C: drive 
(with the IP address ending with .130). Copying the sample to 
these two locations enable Nmap scan and easy access from 
"My Network Places" using the listen and accept socket 
function to analyse the processes, directories, registry entries, 
enumeration functions, system calls, and network interactions 
that were invoked by the malware.hap

Fig. 1. Testbed environment for testing and analysis.

The sample was then executed in Windows 10 (IP address 
ending with .129), while Kali and Windows 10 (IP address 
ending with .130) were used to monitor the sample 
characteristics. pfSense, an open-source firewall and router 
platform, provides a robust network security solution that 
creates secure network environments. Its advanced features, 
such as traffic shaping, VPN support, and intrusion detection, 
make it an invaluable tool for simulating real-world network 
scenarios and testing the effectiveness of malware detection and 
prevention mechanisms. We intentionally added the 
Metasploitable Linux server to provide a controlled 
environment and to allow us to understand the behaviour and 
impact of different malware strains.

4.2 Paths Execution and Feature Generation

In this paper, the generation of malicious feature vectors using 
binary attributes from algorithm 1 of the existing framework 
[29] was used to attribute each malicious instruction the 
emulated processor executed to the guest system kernel. This 
technique allows all the interprocess communication and 
function calls from the emulated devices to be copied to the host 
system to examine different execution paths of the malicious 
program. As summarised in Fig. 2, the binary attributes used by 
our approach consist of 0s and 1s, with x representing the 
sample feature variable and input.

Fig. 2. Paths exploration flowchart for shared code execution. The 
exploration flowchart for shared code execution is a valuable tool for 
developers to navigate the various paths and options available when 
working with shared code. For example, if the value of x = 0 
during the system runs, the system compares the value with a 1 
and determines if many explorations can be performed. This 
process continues because x has to be greater than 0 to satisfy 
the condition. Anytime a value of 0 or less than 1 is returned, 
the system assumes other processes and states that are not 
visited. This process continues until the check thrives. The 
analysis process is terminated as soon as the check succeeds, 
and the output is generated when the feature variable is 1. This 
makes it possible to trace at every point of the system execution 
of all the functions and instructions that transfer control to a 
specific address of the value in the accumulator that the 
malware could use to create a loop and socket, which is a 
network function in Windows found in WSOCK32 library as 
summarise in (see algorithm).In the flowcharet, Line 1: The 
code reads input from the user and assigns it to a variable called 
"X ". Line 2: The code calls a function called "check" and 
passes a variable called "sock" as an argument. Line 3: The 
code calls the =check" function again, this time passing a 
variable called "type" as an argument. Line 4: The code starts a 
while loop that will run indefinitely. Line 6: The code creates a 
socket using the "socket" function. The "type" argument 
specifies the type of socket to create if the argument is not "0". 



Line 7: The code creates an address structure using the 
"port_number" variable to be used in the address structure of 
the socket. Line 9: The code binds the socket to the address 
structure using the "bind" function with the help of the 
"sockaddr" argument which is a data type used to represent 
socket addresses. The "sizeof" argument is used to specify the 
size of the address structure. Line 10: The code checks if the 
socket type is a stream socket. Line 11: If the socket type is a 
stream socket, the code calls the "listen" function to listen for 
incoming connections on the socket with the "1" argument 
identifying connections that are yet to be established. Line 12: 
Code calls "accept" function to accept an incoming connection 
on the socket or reject it with the "null" argument. Line 13: the 
code closes the socket Line 14: the code ends the if statement 
and the while loop.

4.2 Connection Function

As illustrated in Fig 3, using Network Mapper (Nmap) [30] on 
Kali, Windows 10 was scanned to identify if the sample has 
established a connection and is listening to any available open 
ports on the victim's machine using the sock function. Using 
Netcat on Kali, remote and command line access were found to 
be established by the sample using port number 7777, revealing 
that the sample bypassed the Windows firewall and established 
a covert communication channel with the attacker's machine. 
This finding raised concerns about the potential for data 
exfiltration and unauthorised control of the victim's system. The 
use of port 7777 indicated a deliberate choice by the attacker to 
hide their activities within a commonly used port, making it 
harder to detect and block the malicious traffic.

Fig. 3a Nmap scan 

              

                 Fig. 3b Netcat Command Line Access

Fig. 3 Sock function connection using Nmap to establish a connection 
with a specific port on a target host. This gathered valuable 
vulnerabilities about the open ports, protocols, and services running on 
that host. 

5. Results and Discussion 

5.1 Executable Modules
Executable modules are a critical component of any 
malicious software. It is responsible for carrying out 
the malicious activities that the attacker intends. This 
module is often designed to be covert and evasive, 
making it challenging for security measures to detect 
and mitigate its impact. During the analysis, it was 
found that the malicious payload was executed by 
loading shared modules. For example, the dynamic 
link libraries (DLL) were loaded by the Windows OS 
loader directly from the local paths of the infected 
device conventions network location. This pattern of 
module loading is similar to the technique highlighted 
by Alsaheel and Pande [31]. The first time the 
malware was executed, it used an executable module 
named Mod_77D4 (See Fig. 4). This module was 
designed to exploit a specific vulnerability in the target 
system, allowing the malware to gain unauthorised 
access. Once inside, the malware quickly spread its 
roots, infecting various files and directories, making it 

Algorithm: Generation of listen and accept function



extremely difficult to detect and remove. The 
Mod_77D4 module found in NTDLL.DLL could 

Fig. 4 Executable Mod_77D4 Module
NTDLL.DLL being an essential component of Windows native 
API, the malware uses it to deliver the executables on the socket 
address of the Windows victim machine (as specified in line 9 
of the socket function). The LoadLibrary allows the malware to 
load a DLL from a specified path or UNC location. Malware 
authors frequently use this method to avoid detection and get 
around security measures. Apart from the base information, the 
malware completely hid every other detail such as the size, 
entry point, type, static links and path. This level of  
sophistication in concealing crucial information made it 
incredibly challenging to analyse and understand the inner 
workings of the malware. The creators had meticulously crafted 
the code to ensure that any attempts to dissect it would be met 
with a labyrinth of obfuscation with an intricate web of nested 
functions and constantly changing variable names. The analysis 
of the executable indicated that the malware-shared module was 
loaded in stealth mode. The malware changed the Mod_77D4 
module to three additional Mod names after every execution, 
Mod_7773, Mod_773E, and Mod_7712 (see Fig. 5: 5a, 5b, and 
5c). This tactic is to avoid detection and hinder reverse 
engineering attempts.

Fig. 5a. Shared executable Mod_7773 Module

Fig. 5b. Shared Executable Mod_773E Module

 

Fig. 5c. Shared Executable Mod_7712 Module

5.2 Data Obfuscation

Data obfuscation is another shared code technique that the 
malware uses to obfuscate the data section of the executable 
(see Fig. 6a). The malware uses the XOR encoding method to 
transform the data in such a way that it appears as random noise 
to anyone trying to inspect it. Thus, hiding data within other 
seemingly harmless sections of the executable. However, by 
carefully studying the encryption algorithms and patterns 
employed by the malware, we successfully decode the 
seemingly random noise and retrieve meaningful information, 
which is a list of emails and contents (see Fig. 6b and 6c).

       Fig. 6a. Obfuscated data Fig. 6b. Decrypted data

                       Fig. 6c. Data Information Containing Emails

.



Even though data obfuscation may initially hide data from casual 
inspection, it is not foolproof and can be overcome with sufficient 
knowledge and expertise. The results indicate that the variant is 
sophisticated and can spread through email attachments and network 
shares, creating a chain reaction of infections. 

5.3 XOR Encoding

The sample employs the XOR encoding reversible cypher 
technique to obfuscate and share its executable modules (see 
Fig. 7.). XOR encoding works by applying an XOR operation 
to each payload byte with a specific key, making it appear as 
random data. For example, malware may use XOR encoding to 
obfuscate its malicious code in network communication. Before 
sending it over the network, the malware will apply an XOR 
operation to each payload byte with a pre-defined key. This 
obfuscation technique makes it challenging to detect the true 
nature of the malicious payload, as the XOR-encoded data 
appears as random noise. To successfully decipher the payload, 
the recipient must possess the same key used for encoding. 
Without the correct key, the payload remains unintelligible, 
adding an extra layer of security for the malware. Moreover, the 
malware can bypass traditional detection methods that rely on 
pattern matching or signature-based analysis by employing 
XOR encoding during network communication. However, 
when access to the hkey is available, the XOR encoding 
technique becomes ineffective.

                       Fig. 7 XOR Encoding Function

Sub_40464B is a procedure that takes in attributes such as a 
base pointer (bp) based frame. This procedure uses the input 
parameters HKEY hkey, LPCSTR IPSubKey, LPCSTR 
1pValueName, and BYTE *1PData. The code within the 
procedure includes a declaration for the variable hkey and a 
specific line that invokes the Sub_407760 function with the 
XOR operation of 0FFFFFFFFh as its argument. Additionally, 
the line "Ds: ReCreateKey A" suggests that the malware may 
have a call to recreate a registry key to hide its activities and 
evade detection. The malware then made a call to RegCloseKey 
to close the handle. The function loops through all the 
Windows' API structures to zero out all the prologue functions 
for each associated API structure configuration.

All the XOR occurrences were searched during the analysis to 
determine where the malware cleared registers. When an interesting 
branch of the loop is located, instructions are filters to identify the 
XOR instructions, usually having a register and a constant. This 
approach is effective in identifying encoding functions used by 
malware. Existing research [32] shows that the call flow where the 
instructions originate has to be analysed to identify different loops, 
which is another indicator that the program uses XOR encoding using 

memory snapshots as evidence for malware obfuscation. The call flow 
is insufficient to identify encryption and obfuscation of malware 
activities. For instance, if the loop instructions used by a malicious 
application are jz and jnz, it means that if the zero flags are cleared, 
the malware can jump to a specific location, and the loop will continue 
without termination.

5.4 Limitations

Even though the framework demonstrated efficacy in analysing 
different executables, it may have compatibility issues when 
tested with samples from different platforms, such as Android 
and iOS. Also, some sophisticated malware variants may avoid 
common code patterns, which our framework may result in a 
false negative to identify their presence. To overcome this 
limitation in the future, we would consider incorporating AI 
models for pattern matching into the framework. 

6.0 Conclusions

This paper explores the impact of shared code execution by 
malicious applications by looking at the interprocess 
communication and function calls of the code execution paths 
of the malicious program on Windows-based devices. We 
utilised Netlab, a comprehensive testing environment, to 
conduct this analysis, and employed three distinct virtual 
machines. Additionally, we set up two separate networks to 
ensure accurate traffic shaping and capture. One of the key 
findings of this research was the identification of a specific 
function call that indicates the creation of an address structure 
using any combination of IP address and port number. This 
function call was observed in multiple instances of the 
malicious program, suggesting a common pattern in their 
behaviour. Further analysis revealed that this address structure 
was used for establishing communication with external servers, 
potentially for command and control purposes by changing the 
executable module at different instances. Based on the results, 
we conclude that shared code execution analysis can help 
identify similarities and connections between seemingly 
unrelated malware samples, leading to a more comprehensive 
understanding of the malware threat landscape. Our future 
study will focus on leveraging on Long short-term memory 
(LSTM) algorithm to implement and optimize the performance 
of shared code execution to ensure it can handle large-scale 
analysis of malware samples in a timely fashion
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