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Abstract— In today’ sever evolving technology, malwareisone
of the most significant threats faced by individuals and corporate
organizations. With the increasing sophistication of malware
attacks, detecting malware becomes harder as many malware
variants use different techniques, such as obfuscation, to evade
detection. Even though advanced techniques, such as use of deep
learning, prove to be of great success in classifying malware, the
high computational resources needed for training and deploying
deep learning models may not be feasible for all organizations or
individuals. It is therefore essential to use fewer computational
techniques to understand how malware can be analysed using
shared code execution, which usesless computational resour ces. In
thispaper, we explored shared code execution asa novel approach
for analyzing and understanding the behavior of malware. We
dynamically analysed the shared code execution of the malicious
payloads by looking at the dynamic link library found in
NTDLL.dIl. We demonstrated how samples make use of the
LoadLibrary function using inline hooking techniques to
overwrite the actual function codeto create service execution and
persistence using shared code execution. We identified functions
that address the problem of encoding routine and domain
obfuscation when malware uses seDebug Privilege to escalate
privileg. Through realistic experiments, we found that executables
such as Mod_77D4 Module, change at different instances using
XOR encoding operations for each payload byte with a pre-
defined key. This helps sophisticated malwar e to create and bind
address structures for remote control. Our proposed technique
shows high analytical accuracy for sophisticated samples that use
encoding and obfuscation methods to evade detection.
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I. INTRODUCTION

Harmful applications, generaly known as malware, exist in
different forms, such as adware, ransomware, and rootkits, each
with its own specific methods of infiltration and objectives [1].
Theincreasing prevalence of malware attacks in today's digital
landscape and the various methods cybercriminals employ to
target individuals, businesses, and even governments have
made it clear that no oneis safe from the potential harm caused
by malicious software. From phishing emails and ransomware
attacks to sophisticated hacking techniques, cybercriminals
constantly evolve tactics to exploit digita system
vulnerabilities using maware [2]. The impact of maware
attacks is multifaceted, encompassing financial losses,
compromised personal information, and aloss of trust in online
platforms and services.

The financia implications of malware attacks on individuals
and organisations, including the costs associated with repairing
systems, recovering stolen funds or data, and potential lega
repercussions, can be significant. The psychological impact on
victims of maware attacks, such as feelings of violation and
loss of trust in technology or online platforms, should not be
underestimated. The invasion of personal or sensitive
information can impact individuals, making them hesitant to
engage in online activities or share personal data. This loss of
trust in technology can have far-reaching consequences, not
only for the victims but also for the overall digital economy.
Various techniques are used by malware to attack atarget. One
common technique malware uses is shared code execution,



which allows the malicious code to run aongside legitimate
processes on the target system. This technique is particularly
effective at evading detection, as it camouflages itself within
the normal operations of the computer. Malware can also utilise
techniques such as code injection [3] inserting code into
legitimate processes, or DLL hijacking, replacing legitimate
DLL fileswith malicious ones [4].

The malware binaries are often deleted from an infected device,
but the malicious code residues are left behind on the evaluation
target. These residues include registry, service execution,
timestamping, processes, strings, reverse shell sessions, and
changes made to folders and files. Effective malware analysis
requires technical expertise, advanced tools, and a thorough
understanding of the threat landscape. The study [5] highlighted
that the best way to analyse malicious files is to place them in
a virtualised or restricted environment to observe their
behaviour. The major limitation of manually observing
malware functionalities is that different malware variants keep
emerging in thousands daily, and security companies may be
unable to achieve this.

Even though automated tools can dynamically analyse the
samples once loaded into the testing solutions to observe and
determine their functionalities and interactions with the internet
and other connected system resources. Tools such as Nepenthes
and CWSandbox [ 6] examine the behaviour of asamplefileand
generate a report of all the system calls and other parameters
involved by the maware at runtime. One of the maor
drawbacks of these solutionsisthat they may generate different
reports based on the test environment, and their results are
based on a single test execution trace. As a result, significant
features of the sample, especially those hidden by the malware,
might be missed during the analysis process. While there are
website-based tools such as VirusTotal [7] for files and URL
virus analysis, other evasive malware variants try to evade
detection by using the sleeping technique. The sleeping
technique is an evasive loop many variants use to evade
automatic and dynamic analysis by speedily consuming system
resources. Also, malicious applications often encompass
indices to detect infected environments by checking if a mutex
object exists [8] to enhance resource sharing and consumption
[9]. Other sophisticated samples have functionalities to bypass
authentication and obtain administrative access.

Other maware evasion techniques include obfuscation,
sandbox detection, and polymorphism [10]. Use of various
obfuscation techniques, such as code encryption, variable
renaming, and code splitting enable malware to hide its true
intentions and make it harder for security researchers to detect
and analyse its behaviour. On the other hand, the malware uses
sandbox detection to determine whether it is running in a
controlled sandbox or a virtualised environment. This allows

the malware to avoid being detected and analysed by security
researchers who often use sandboxes to analyse and understand
the behaviour of suspicious files without looking at the code
pattern and structure. Shared code execution analysis helps in
understanding the techniques and tactics employed by maware
authors, providing insights into their motivations and potential
targets.

By studying shared code execution, researchers can uncover
vulnerabilities in software and operating systems that are being
exploited by maware, which can then be patched and
strengthened to enhance cybersecurity measures. Specifically,
the study aims to analyse how shared code execution can
potentially enable the malicious application to gain
unauthorised access to sensitive data or perform unauthorised
actions on the device. By examining the interplay between
different processes and the function calls within the code
execution paths, a comprehensive understanding of the
potential risks and vulnerabilities can be obtained. This
researchis crucial in developing effective countermeasures and
enhancing the security of Windows-based devices against such
malicious attacks.

To summarise, this paper makes the following contributions.

*  We dynamically analysed the shared code execution of the
malicious payloads by looking at thedynamic link library found
in NTDLL.dIl. We demonstrate how samples use the
LoadLibrary function using inline hooking techniques to
overwrite the actual function code to create service execution
and persistence.

e We proposed a function that addresses the problem of
encoding routine and domain obfuscation when malware uses
certain services such as seDebugPrivilegeto escal ate privil eges.
In this idea, different privilege escalation calls such as
GetCurrentProcess, Local Unique Identifier, PToken
Privileges, AdjustTokenPrivilges and CreateRemoteThread
were analysed to determine how malware accesses these
features. For example, the samples analysed in this paper used
multiple imports, such as kernel32 and RegCreateKeyA, for
registry modification.

*  We explored the potential use of shared code execution to
detect and mitigate advanced persistent threats (APTS) that
often employ sophisticated evasion techniques. We explore
using code similarity analysis to identify shared code among
different malware samples by identifying common code
patterns.

e We evauated the encoding process on many rea-world
malware samples and demonstrated how simple loops use the
key sign of XOR encoding to obfuscate data to make
investigation difficult.



2. BACKGROUND

2.1 Share Code Execution

Sophisticated maware can wresk havoc on computer
systems and compromise sensitive data using the concept of
code execution [11]. One particularly insidious form of malware
is shared code execution, where malicious code is injected into
legitimate software. Shared code execution can create backdoors
in a system, granting hackers persistent access and control over
compromised devices. This can be especially concerning for
organisations, as it opens the door for further attacks, data
breaches, and espionage. Malware can use shared code
execution vulnerabilities to spread throughout different
operating system platforms such as Windows, Android or
network [12].

These vulnerabilities occur when multiple applications or
processes share the same code, allowing an attacker to exploit a
weaknessin one application and useit to execute malicious code
in another, leading to significant disruption to businesses and
critical infrastructures. For instance, WannaCry ransomware in
2017 exploited a shared code execution vulnerability in
Microsoft Windows, spreading rapidly across networks and
infecting thousands of computers worldwide [13]. The attack
caused significant disruption to businesses and critical
infrastructure, highlighting the importance of patching and
securing systems against known vulnerabilities.

Shared code execution of malware refers to the use of code
that is shared among multiple malware samples. It involves
using the same malicious code across multiple attacks. The
technique alows cybercriminals to reuse code from previously
successful attacks, making it easier and faster to develop new
malware variants [14]. In this way, shared code execution has
become an increasingly popular tactic among cybercriminals
looking to maximise their impact and evade detection. This
tactic is often used in targeted attacks against high-value targets.
It can also be used in widespread attacks, such as maware
campaigns. Furthermore, shared code execution can aso create
malware families, where multiple variants of the same malware
share common code [15]. These families can have a long
lifespan, with new variants developed over time and the shared
code evolving with each iteration.

2.2 Share Code Vulnerabilities

This paper explores common forms of shared code execution
vulnerabilities that malware exploits. Exploits such as code
injection, dynamic link library hijacking, file inclusion and
cross-site scripting are discussed.

CODE INJECTION

One common type of shared code execution is codeinjection
[16]. Such vulnerahility can occur through user input fiel ds, such
asloginformsor search bars, where the attacker inputs code that
is then executed by the application [17]. Code injection attacks
can be prevented by properly validating and sanitisng user
input. The countermeasure involves ensuring that user input is
checked for any unexpected characters or the system could
execute the system. Using parameterised queries or prepared
statements can aso help prevent injection attacks, especialy
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when dealing with sensitive passwords or financial information.
By implementing these security measures, the system can ensure
that user datais protected from malicious attacks.

2.3 Dynamic Link Library Hijacking

DLL hijacking occurs when a malicious actor replaces a
legitimate dynamic-link library (DLL) with a malicious one.
When an application loads the compromised DLL, the attacker
gains control over the execution flow and can manipulate the
application's behaviour. DLL hijacking attacks are particularly
dangerous asthey can go unnoticed for along time, allowing the
attacker to maintain persistence and carry out various malicious
activities undetected [18]. One common method of DLL
hijacking is the manipulation of search order hijacking. This
attack occurs when an attacker places a malicious DLL in a
directory that the application searches before the legitimate
DLL. Asaresult, when the application attemptsto load the DLL,
it unknowingly loads the malicious version instead.

This technique is effective because it takes advantage of the
default search order used by the operating system, making it
difficult for users or security toolsto detect the malicious DLL.
Once the malicious DLL is loaded, the attacker can execute
arbitrary code, escalate privileges, or perform other malicious
actions[19]. The consequences of loadingamaliciousDLL can
be severe. Once the attacker has successfully executed arbitrary
code or escalated privileges, they can gain control over the
system and potentially compromise sensitive data
Furthermore, the presence of a malicious DLL can go
undetected for an extended period, allowing the attacker to
maintain persistence and continue their malicious activities
undetected. It underscores the importance of robust security
measures and regular vulnerability assessments to identify and
mitigate such risks

2.4 Filelnclusion

Malware file inclusion, also known as remote file inclusion
(RFI), isacommon type of malware-shared code execution used
to exploit vulnerabilities in web applications [20]. It involves an
attacker injecting malicious code into a web application,
allowing them to execute arbitrary files on the server remotely.
Malware file inclusion attacks often target websites that rely on
user input to dynamically include files, such as those using
PHP's include() or require() functions. By exploiting insecure
coding practices or inadequate input validation, hackers can
trick the application into including maliciousfilesfrom aremote
server.

For instance, a hacker may exploit a vulnerability in a
website's file upload feature by injecting malicious code
disguised as an image file. When the file is uploaded and
accessed by the server, the injected code is executed, granting
the attacker unauthorised access to sensitive data or allowing
them to distribute malware to unsuspecting users. However,
modern web application security measures such as input
validation and file type checking can mitigate this vul nerability.
Additionally, utilising server-side file handling techniques and
sandboxed execution environments can further enhance the
protection against remote code execution attacks by malicious
threat agents.



3. RELATED WORKS

3.1 Code Smilarities & Functionalities

Code similarities and shared functionalities are common in
software development. These similarities can arise from using
similar programming languages, frameworks, or design
patterns. Shared functionaities refer to the features or
capabilities that multiple pieces of code have in common. These
similarities and shared functionalities can help developers save
time and effort by reusing code components and leveraging
existing solutions. One of the most fascinating aspects of
studying maware is uncovering code similarities and shared
functionalities among different strains. Anaysis of code
similarities and shared functionalities between different
malware samplesisessential to identify common attack patterns.
These similarities can range from identical code snippets to
similar evasion, propagation, or payload delivery techniques.

Dolnak [21] proposed a stochastical-aware code similarity
extraction method. The method uses machine learning
algorithms and probabilistic models to anayse the similarities
between different malware code samples. The proposed method
captures the inherent randomness and variability in malware
code by incorporating stochastic elementsinto the analysis. The
stochastic method considers code structure, syntax, and
functionality, providing a holistic view of the similarities
between different malware samples. However, a detailed
counterexample of this approach could be a scenario where two
malware samples have completely different code structures,
syntax, and functionalities yet till pose the samethreat level. In
such cases, relying solely on stochastic methods may lead to
misclassification or underestimation of the potential harm these
malware threats pose.

Malware attack patterns refer to the specific techniques and
strategies employed by malicious actorsto infiltrate systemsand
compromise their security. These patterns can vary greatly in
complexity and severity, ranging from simple phishing emails
to sophisticated zero-day exploits. Gazzan and Sheldon [22]
provided an overview of attack patterns ransomware deploys to
attack industrial control systems (ICS) and the significant
impacts. Industrial control systemsare particularly vulnerableto
ransomware attacks due to their interconnected nature and
reliance on computer networks for operation and monitoring.
Schmidbauer et al. [23] put forward atechniqueto illustrate how
sengitive data is extracted by maware code snippets using a
codebook approach. The codebook approach is maware's
technique to extract sensitive data from a target system. This
method involves using pre-defined code snippets or templates
designed to search for and collect specific types of information
from the target.

Moses and Sarah [24] compared different malware evolution
and propagation strategies based on the maware variant's
functionality and evasion mechanism. The study analysed
various factors, such as the malware's ahility to exploit software
vulnerabilities, socia engineering techniques, and reliance on
botnets for propagation. Additionally, the researchers examined
how these strategies evolved and their impact on the overal
effectiveness of the malware. For example, the study found that
maware variants utilisng advanced social engineering

techniqgues were more successful in tricking users into
downloading maliciousfilesor clicking on infected links. These
variants are often disguised as legitimate software updates or
enticing offers, increasing their chances of infiltrating systems
[25].

Additionally, the study observed ashift in propagation strategies
from relying solely on software vulnerabilities to leveraging
botnets for faster and more widespread infection. However, a
detailed counterexample to this observation can be seen in the
case of phishing attacks. Despite not relying on advanced social
engineering techniques, phishing emails have been incredibly
successful in tricking usersinto divulging sensitive information
or visiting malicious websites. These emails often pose as
legitimate entities like banks or online services, preying on
users trust and urgency to act quickly.

3.2 COMMON CODE PATTERNS

Pattern refers to the similar structures and techniques used to
develop and distribute malicious software. Common code
pattern often found in malware is obfuscation techniques. By
understanding this code pattern and shared components among
malware samples, cybersecurity professionals can identify
common sources and potential connections among different
malware strains. Understanding these shared components can
help the attribution process, as certain code patterns or
components may be associated with specific threat actors or
groups.

Choo and Dehghantanha [26] introduce a machine learning
classification technique using consensus clustering to map the
APT campaigns to their procedures which often vary and
evolve. The proposed approach involved first clustering similar
APT campaigns together using consensus clustering. This
approach allowed for the identification of commonalities and
patterns among different campaigns. For example, the proposed
machine learning technique could be applied in a cybersecurity
context to identify and track different APT campaignstargeting
a specific industry. Cybersecurity analysts can uncover shared
tactics, techniques, and procedures (TTPs) attackers use by
clustering similar campaigns together. This knowledge can
create robust defense strategies and improve real-time incident
response capabilities against evolving APT threats. However, a
counterexample to this approach is if the machine learning
technique fails to cluster similar campaigns accurately.
Cybersecurity analysts may mistakenly identify unrelated
campaigns as part of the same APT group, leading to incorrect
conclusions about shared TTPs, which can result in ineffective
defence strategies and potentially leave the targeted industry
vulnerable to evolving APT threats.

4. METHODOLOGY

4.1 Testbed

Using the V2 Cloud emulator, we created a testbed on Netlab.
Netlab was used as a sandbox environment to analyse the
malware sample safely. The choice to use V2 Cloud instead of
other emulators such as Qemu [27] is that V2 Cloud is an
integrated Desktop-as-a-Service (DaaS) with better speed and



simplicity. It also supports more platforms like Saas/Web than
the Qemu emulator. Though predominant malware is designed
for Windows, which makes many analysts focus on using Intel
x86 architecture for analysis, V2 Cloud emulation has these
features all embedded with faster speed [28]. The testbed on the
Netlab contains three virtual machines, as illustrated in Fig.1.
Malware samples were then loaded into the V2 Cloud emulator
and then copied into the shared folder of Windows 10 C: drive
(with the I P address ending with .130). Copying the sample to
these two locations enable Nmap scan and easy access from
"My Network Places' using the listen and accept socket
function to analyse the processes, directories, registry entries,
enumeration functions, system calls, and network interactions
that were invoked by the malware.hap

Internal Network
192.16[.0/24

pfSense |

Fig. 1. Testbed environment for testing and analysis.

The sample was then executed in Windows 10 (IP address
ending with .129), while Kali and Windows 10 (IP address
ending with .130) were used to monitor the sample
characteristics. pfSense, an open-source firewall and router
platform, provides a robust network security solution that
creates secure network environments. Its advanced features,
such as traffic shaping, VPN support, and intrusion detection,
make it an invaluable tool for simulating real-world network
scenarios and testing the effectiveness of malware detection and
prevention mechanisms. We intentionally added the
Metasploitable Linux server to provide a controlled
environment and to allow us to understand the behaviour and
impact of different malware strains.

Com>

‘ Initialise variable (x) ‘

Print absolute
values of (x)

4.2 Paths Execution and Featur e Generation

In this paper, the generation of malicious feature vectors using
binary attributes from algorithm 1 of the existing framework
[29] was used to attribute each malicious instruction the
emulated processor executed to the guest system kernel. This
technique alows al the interprocess communication and
function callsfrom the emulated devicesto be copied to the host
system to examine different execution paths of the malicious
program. As summarised in Fig. 2, the binary attributes used by
our approach consist of Os and 1s, with x representing the
sample feature variable and input.

Fig. 2. Paths exploration flowchart for shared code execution. The
exploration flowchart for shared code execution is a valuable tool for
developers to navigate the various paths and options available when
working with shared code. For example, if the value of x = 0
during the system runs, the system compares the value with a1
and determines if many explorations can be performed. This
process continues because x has to be greater than 0 to satisfy
the condition. Anytime a value of O or less than 1 is returned,
the system assumes other processes and states that are not
visited. This process continues until the check thrives. The
analysis process is terminated as soon as the check succeeds,
and the output is generated when the feature variable is 1. This
makesit possibleto trace at every point of the system execution
of al the functions and instructions that transfer control to a
specific address of the value in the accumulator that the
malware could use to create a loop and socket, which is a
network function in Windows found in WSOCK32 library as
summarise in (see algorithm).In the flowcharet, Line 1: The
code reads input from the user and assignsit to avariable called
"X ". Line 2: The code cdls a function called "check" and
passes a variable called "sock" as an argument. Line 3: The
code calls the =check" function again, this time passing a
variable called "type" as an argument. Line 4: The code startsa
while loop that will run indefinitely. Line 6: The code creates a
socket using the "socket" function. The "type" argument
specifies the type of socket to create if the argument isnot "0".



Line 7: The code creates an address structure using the
"port_number" variable to be used in the address structure of
the socket. Line 9: The code binds the socket to the address
structure using the "bind" function with the help of the
"sockaddr" argument which is a data type used to represent
socket addresses. The "sizeof" argument is used to specify the
size of the address structure. Line 10: The code checks if the
socket type is a stream socket. Line 11: If the socket typeis a
stream socket, the code calls the "listen” function to listen for
incoming connections on the socket with the "1" argument
identifying connections that are yet to be established. Line 12:
Code calls "accept" function to accept an incoming connection
on the socket or reject it with the "null" argument. Line 13: the
code closes the socket Line 14: the code ends the if statement
and the while loop.

Algorithm: Generation of listen and accept function

0.

1 x=read_input ();
2 check (sock);

3 check (ype);
While (1) {

5

 sock=socket (type, 0);

7 addr=(port_number);

8.

9 bind (sock, (sockaddr*) &addr, (addr)sizeof);
10 if (type==stream_sock) {

11 listen (sock, 1);

12 accept (sock, null);

13 close(sock);

14}}

4.2 Connection Function

Asillustrated in Fig 3, using Network Mapper (Nmap) [30] on
Kali, Windows 10 was scanned to identify if the sample has
established a connection and is listening to any available open
ports on the victim's machine using the sock function. Using
Netcat on Kali, remote and command line access were found to
be established by the sample using port number 7777, revealing
that the sample bypassed the Windows firewall and established
a covert communication channel with the attacker's machine.
This finding raised concerns about the potential for data
exfiltration and unauthorised control of thevictim'ssystem. The
use of port 7777 indicated a deliberate choice by the attacker to
hide their activities within a commonly used port, making it
harder to detect and block the malicious traffic.

File Actions Edit View Help

) at 2823-81-14 16:29 ES

Fig. 3a Nmap scan

Fig. 3b Netcat Command Line Access

Fig. 3 Sock function connection using Nmap to establish a connection
with a specific port on a target host. This gathered valuable
vulnerabilities about the open ports, protocols, and services running on
that host.

5. Resaultsand Discussion

5.1 Executable Modules
Executable modules are a critical component of any
malicious software. It is responsible for carrying out
the malicious activities that the attacker intends. This
module is often designed to be covert and evasive,
making it challenging for security measures to detect
and mitigate its impact. During the analysis, it was
found that the malicious payload was executed by
loading shared modules. For example, the dynamic
link libraries (DLL) were loaded by the Windows OS
loader directly from the local paths of the infected
device conventions network location. This pattern of
module loading is similar to the technique highlighted
by Alsahed and Pande [31]. The first time the
malware was executed, it used an executable module
named Mod_77D4 (See Fig. 4). This module was
designed to exploit aspecific vulnerability in thetarget
system, allowing the malware to gain unauthorised
access. Once inside, the malware quickly spread its
roots, infecting various files and directories, making it
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extremely difficult to detect and remove. The
Mod_77D4 module found in NTDLL.DLL could
Fig. 4 Executable Mod_77D4 Module

NTDLL.DLL being an essential component of Windows native
API, themalware usesit to deliver the executabl es on the socket
address of the Windows victim machine (as specified in line 9
of the socket function). The LoadLibrary allowsthe malwareto
load a DLL from a specified path or UNC location. Maware
authors frequently use this method to avoid detection and get
around security measures. Apart from the base information, the
malware completely hid every other detail such as the size,
entry point, type, static links and path. This level of
sophistication in concealing crucial information made it
incredibly challenging to analyse and understand the inner
workings of the malware. The creators had meticulously crafted
the code to ensure that any attempts to dissect it would be met
with alabyrinth of obfuscation with an intricate web of nested
functions and constantly changing variable names. Theanalysis
of the executableindicated that the malware-shared module was
loaded in stealth mode. The malware changed the Mod_77D4
module to three additional Mod names after every execution,
Mod_ 7773, Mod_773E, and Mod_7712 (see Fig. 5: 5a, 5b, and
5¢). This tactic is to avoid detection and hinder reverse

engineering attempts.
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Fig. 5a. Shared executable Mod_7773 Module
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Fig. 5¢c. Shared Executable Mod_7712 Module

5.2 Data Obfuscation

Data obfuscation is another shared code technique that the
malware uses to obfuscate the data section of the executable
(see Fig. 6a). The malware uses the XOR encoding method to
transform the datain such away that it appears as random noise
to anyone trying to inspect it. Thus, hiding data within other
seemingly harmless sections of the executable. However, by
carefully studying the encryption algorithms and patterns
employed by the malware, we successfully decode the
seemingly random noise and retrieve meaningful information,
which isalist of emails and contents (see Fig. 6b and 6c).

Nress |A5011
o iy l
[T 1] DA HELO%s ) ML Faow: ¢ (MDD

WO W WO e (L]

e A it e giF it il
O I 0 OIS SAR A S50 ¢ y !

L T T
OO0 0 "t 0SS S SARSp 1S SA 5
oo V;WWHWH"C'MM" e e uq kgl &almmnlrrmlHvlnnmturrlnl lirston) by
O, 104 NGO 20500 SDSER2g0050- 0002 0000 Pt R R St emurrentConteo S Seroes Sortwre

e T e Sitgs\ e
A1 MDA A | i, Wl I e e a4
p MELED, 6 T

s o |00
o om0 g bk ol b whlte o
QRS {111 (LT T :5 ]5 palch zy Tonnl Lools mlmm Al60 homor puelte
T
e | 0000 LG VLI W ol
s s |00 el o o el s 1 o psor o
S0 e )00 e son quetlons plaus try ol oeleon to oy honetom the
41 OO OO 3 o o 5 o Lt o
00 e
s oo | 1000656 por G111y 1, ot
0 e |00 ] el e o e g e el con. et
00 PAAMARRORAM RO RRRORRRRRMRAORRROORMROOOOOY 000 s g plctores— ymntec Matee fSocoe Sohos Troatle
e i |
mmmmmmmmmmmmﬂﬂwwmmeLMMMW
i (0 08ttt e s e el ail g
a0 gt 1508 G oo s i oot n
0 OO WA, 0 e, ) S
B A A

Flg 6a. Obfuscated data Fig. 6b. Decrypted data

Address |ASEIT dump

Q040F 000 [he o’@ e ing@ ,
00BOFOAG ==\ QUIT . DATA HELD %s > HAIL FROMW: <
0046F 650/ REPT T0:¢  %d SO%E™ - L e
O04AFOCH M wis) k0 X, EON ) HPN200GRhongkong.con kuansuan@21icn.con al§9@ue
0040F100 izon.net bird@difac.com iak@hongkeng.com youme@hongkong.con tom
0040F149 waihang.com.hk udb@verizon.net sis@hongkong.com tabbe@difac.com
0046F180 bush@uerizon.net muka@ub-japan.co.jp tokyo@ub-japan.co.jp cebit
0040F1C0| sia@showerks.com kittylee@iei.com.tw azdollarcars@azdealertrade
0B40F200! .com racanp@ate.net
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Even though data obfuscation may initially hide data from casual
inspection, it is not foolproof and can be overcome with sufficient
knowledge and expertise. The results indicate that the variant is
sophisticated and can spread through email attachments and network
shares, creating a chain reaction of infections.

5.3 XOR Encoding

The sample employs the XOR encoding reversible cypher
technique to obfuscate and share its executable modules (see
Fig. 7.). XOR encoding works by applying an XOR operation
to each payload byte with a specific key, making it appear as
random data. For example, malware may use XOR encoding to
obfuscate its malicious code in network communication. Before
sending it over the network, the malware will apply an XOR
operation to each payload byte with a pre-defined key. This
obfuscation technique makes it challenging to detect the true
nature of the malicious payload, as the XOR-encoded data
appears as random noise. To successfully decipher the payload,
the recipient must possess the same key used for encoding.
Without the correct key, the payload remains unintelligible,
adding an extralayer of security for the malware. Moreover, the
malware can bypass traditional detection methods that rely on
pattern matching or signature-based analysis by employing
XOR encoding during network communication. However,
when access to the hkey is available, the XOR encoding
technique becomes ineffective.

Attributes: bp-based frame;

Int_cdec] sub 484648 (HKEY hkey, LPCSTR 1PSubKey, LPCSTR 1pValuelame, BYTE *1PD
sub 404648 proc near;

hkey= duord ptr 8,

Ds:Relreatekeyd

Fig. 7 XOR Encoding Function

Sub_40464B is a procedure that takes in attributes such as a
base pointer (bp) based frame. This procedure uses the input
parameters HKEY hkey, LPCSTR [PSubKey, LPCSTR
1pValueName, and BYTE *1PData. The code within the
procedure includes a declaration for the variable hkey and a
specific line that invokes the Sub 407760 function with the
XOR operation of OFFFFFFFFh as its argument. Additionally,
the line "Ds: ReCreateKey A" suggests that the malware may
have a call to recreate a registry key to hide its activities and
evade detection. The malware then made acall to RegCloseK ey
to close the handle. The function loops through all the
Windows' API structures to zero out all the prologue functions
for each associated API structure configuration.

All the XOR occurrences were searched during the analysis to
determine where the malware cleared registers. When an interesting
branch of the loop is located, instructions are filters to identify the
XOR instructions, usually having a register and a constant. This
approach is effective in identifying encoding functions used by
malware. Existing research [32] shows that the call flow where the
instructions originate has to be analysed to identify different loops,
which is another indicator that the program uses XOR encoding using

memory snapshots as evidence for malware obfuscation. The call flow
is insufficient to identify encryption and obfuscation of maware
activities. For instance, if the loop instructions used by a malicious
application are jz and jnz, it means that if the zero flags are cleared,
the malware can jump to a specific location, and the loop will continue
without termination.

5.4 Limitations

Even though the framework demonstrated efficacy in analysing
different executables, it may have compatibility issues when
tested with samples from different platforms, such as Android
and i0S. Also, some sophisticated malware variants may avoid
common code patterns, which our framework may result in a
false negative to identify their presence. To overcome this
limitation in the future, we would consider incorporating Al
models for pattern matching into the framework.

6.0 Conclusions

This paper explores the impact of shared code execution by
malicious applications by looking at the interprocess
communication and function calls of the code execution paths
of the malicious program on Windows-based devices. We
utilised Netlab, a comprehensive testing environment, to
conduct this analysis, and employed three distinct virtual
machines. Additionally, we set up two separate networks to
ensure accurate traffic shaping and capture. One of the key
findings of this research was the identification of a specific
function call that indicates the creation of an address structure
using any combination of IP address and port number. This
function call was observed in multiple instances of the
malicious program, suggesting a common pattern in their
behaviour. Further analysis revealed that this address structure
was used for establishing communication with external servers,
potentially for command and control purposes by changing the
executable module at different instances. Based on the results,
we conclude that shared code execution analysis can help
identify similarities and connections between seemingly
unrelated malware samples, leading to a more comprehensive
understanding of the malware threat landscape. Our future
study will focus on leveraging on Long short-term memory
(LSTM) algorithm to implement and optimize the performance
of shared code execution to ensure it can handle large-scale
analysis of malware samplesin atimely fashion
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