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Abstract— Reconfigurable Multiplier Blocks (ReMB) offer 
significant area, delay and possibly power reduction in time-
multiplexed implementation of multiple constant 
multiplications.  This paper and its companion paper (subtitled 
Part II- Algorithm) together present a systematic synthesis 
method for Single Input Single Output (SISO) and Single 
Input Multiple Output (SIMO) ReMB designs. This paper 
presents the necessary foundation and terminology needed for 
developing a systematic synthesis technique. The companion 
paper illustrates the synthesis method through examples.  The 
method proposed achieves reduced logic-depth and area over 
standard multipliers / multiplier blocks.   

I. INTRODUCTION 
Primitive Operator Filters [1] and multiplier blocks [2] 

are especially beneficial for the fully parallel implementation 
of digital filters and filter banks.  They reduce the 
complexity of the implementation effectively, by exploiting 
the redundancy of the multiple constant multiplications.  
Multiplications by coefficients are realized by successive 
shift and add operations.  The intermediate values that are 
formed during the generation of one coefficient are re-used 
for other coefficients, and thus reducing the computational 
redundancy.  This topic has been studied extensively in the 
literature, and many algorithms were developed to design 
multiplier blocks or - in other words - multiple constant 
multiplications for different applications.  These algorithms 
can be grouped into two, depending on their approach to the 
problem: 

• Sub-expression sharing method; that works on the 
Signed Digit (SD) representations of a group of 
coefficients [3]-[7], 

• Numerical (graphical) approach; where a group of 
coefficient products are generated using common 
intermediate products [1],[2],[8]-[11]. 

The savings that can be achieved in implementing fully 
parallel digital filters as a result of these techniques are 
impressive both in terms of area, complexity and power 
reduction [1]-[11].   

In recent years, the application of the multiplier blocks to 
time-multiplexed digital filter designs was studied in [12]-
[14].  The coefficient store and the general-purpose 
multiplier in Fig. 1(a) were replaced by a reconfigurable 
multiplier block (b), which can generate the required 
coefficient products with its different configurations.  For the 
example in Fig. 1(b) the ReMB is a Single Input Single 
Output (SISO) block.  A Single Input Multiple Output 
(SIMO) ReMB can replace the entire fixed multipliers in a 
bank of filters as shown in Fig 1(c). 

It has been shown that the redundancy can be reduced 
and the resulting specialized multiplier design can be much 
more efficient in terms of area and computational complexity 
compared to the general-purpose multiplier with its 
associated coefficient store [12]-[14].  Guidelines for 
efficient realization were presented in [12], and an efficient, 
automated design algorithm based on the graphical approach 
was developed and reported in [13].  This algorithm was 
suitable for SIMO systems such as filter banks. 

 

Figure 1 (a) Time-multiplexed Tappled Delay Line (TDL) (direct-form) 
FIR filter, (b) Conceptual  SISO ReMB that would replace the coefficient 
store and the general purpose multiplier. (c) A SIMO ReMB system can 

replace the dashed box in a  transpose direct form filter bank. 
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Efficient use of the resources on FPGA structures was 
studied in [15].  In this study, Turner reported significant 
savings in the area and delay of some DSP blocks by using 
the Reduced Coefficient Multiplier (RCM) that uses the 
configurable resources of a Field Programmable Gate Array 
(FPGA).  His design method [16], which is based on 
common sub-expression sharing, combines the SD-encoded 
coefficients on to the Look-Up Tables (LUT) that exist in 
FPGAs and can be used for SISO and Multiple Input Single 
Output (MISO) blocks.  

In this paper, we will present the fundamentals required 
and developed in [13] for a systematic synthesis of SISO and 
SIMO ReMB.  Section 2 will focus on the basic structure 
topology.  Section 3 will give the details of the developed 
foundation for SIMO and low logic-depth, with conclusions 
in Section 4. 

II. BASIC STRUCTURE TOPOLOGY 
All the examples in the paper are based on the simplest 

basic structure topology as shown in Fig. 2(a).  In general, all 
ReMB designs are presented as directed-acyclic graphs 
where each line represents a connection.  The (•) represents 
an adder or a subtractor or an adder/subtractor. One of its 
inputs is connected to a multiplexer.  This basic structure can 
be configured to operate either on the (A, B) or (A, C) inputs 
by the help of the select line of the adder resulting in two 
configuration stages.  Some of the possible variants of this 
topology are (A+B, A+C), (A+B, A-C), (A-B, A-C).  These 
sets of operations are particularly important since they can be 
efficiently implemented in the Virtex FPGA, with no extra 
hardware cost for multiplexers [16].   

Although the algorithm is structured to employ variants 
of this basic structure, the idea of how to design ReMB for a 
given coefficient set is applicable to any basic structure (See 
[12], [13] for other forms of basic structures and much 
detailed information on ReMB).   

Fig. 2(b) shows two interconnected basic structure.  The 
output produced by the first basic structure is fed to the input 
of the second one.  The total number of outputs that can be 
produced by this structure is four.  When three of the basic 
structures are interconnected as shown in Fig. 2(c) and (d) 
the number of coefficients that can be produced at the output 
(rightmost node) is eight.   

(a)  (b) 

                      (c)                              (d) 

Figure 2 (a) Topology of the simplest basic structure, (b) An example for 
a cascade of two basic structures. Three basic structures interconnected in 

the (c) chain form, (d) tree form.  

III. FOUNDATION FOR SYNTHESIS 

A. Efficient Handling of Multiple Outputs  
The multiplier block algorithm RAG-n presented in [2], 

built the coefficients in a given set one by one in an order 
generally defined by their costs (minimum number of 
interconnected adders to generate the coefficient) or 
magnitudes.  The coefficients having the same costs still 
needed to be built in order, by making use of all the 
previously generated numbers (both the fundamentals and 
the coefficients) in the multiplier block.  The multiple-output 
requirement of the multiplier block to be used in the 
transposed direct form filters (the multiplier block in Fig. 
1(b) without the multiplexer) was realized by connecting the 
generated partial products or coefficients to the 
corresponding filter taps. 

The efficient realization of multiple outputs in a ReMB 
design has to be different than multiplier blocks.  Let us 
consider a typical time-multiplexed filter bank application as 
shown in Fig. 1(c), with output nodes y1, y2, … yk.  Typically 
each output node of the ReMB has the same set size, i.e. the 
number of coefficients per output node is the same, which 
we shall assume to be M.  The upper bound of the output set 
size of a ReMB design grows exponentially as the number of 
cascaded basic structures increases [13].  We further assume 
that an output node y1 is built using several interconnected 
basic structures shown in Fig. 2(a) and have M different 
outputs.  Any other output node, say y2, built with the same 
type of basic structure cascaded to y1 would typically have 
the capacity of 2M outputs.  Since y1 and y2 both have the 
same output set size, the basic structure of y2 becomes under-
utilized.   

One way to make sure that the output nodes are treated 
independently is to start designing from the output nodes and 
build the whole design step by step back to the input, as each 
output node would be a different starting point without any 
dependence on one another. 

B. Basic Structure Depth 
To avoid under-utilization, all output nodes in the design 

should have a similar number of interconnected basic 
structures when traced back to the input.  The number of 
coefficients per output node would put a restriction on both 
the minimum number of basic structures required and the 
minimum depth of the ReMB design.  For example, it was 
shown in previous section that, by using the simplest basic 
structure, a maximum of eight different numbers can be 
generated at depth 2.  In the same way, the maximum 
number of outputs that can be achieved at a depth of three 
basic structures is 128 for a possible ReMB design shown in 
Fig. 3.  The basic structures in the diagram are placed in 
layers to indicate the “basic-structure-depth” of that node.   

The maximum number of outputs from a node is in2  
where i is the basic-structure-depth and in  can be formulated 
recursively for ReMB designs comprising the simplest basic 
structure as follows: 

A 
B 
C 
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Figure 3 A ReMB design with a basic-structure-depth of three, which can 
produce 128 different coefficients at the output of layer 3. 

 12 1 += −ii nn  (1) 

It should be noted that, for a different basic structure, the 
maximum number of outputs per node would be different.   

On the other hand, the individual coefficient costs put a 
separate restriction to the number of basic-structures 
interconnected for building a particular output node.  For 
example a cost-3 coefficient needs at least three basic 
structures to be generated.  They can either be in a chain 
form (Fig. 2c) or in a tree form (Fig. 2d).  However it is 
shown that, the tree form interconnection of n 
adders/subtractors cannot produce all cost-n numbers in a 
multiplier block [10].  Therefore, a basic-structure-depth of n 
would ensure that a cost-n coefficient can be generated.   

The basic-structure-depth is important when deciding the 
layer of an output node.  To explain this, consider a node 
with the fundamental set {39, 45, 41, 47, 61, 11, 27, 57, 
119}.  All of the fundamentals are cost-2, i.e. each of them 
requires a cascade of two adders to be generated.  However, 
since there are nine different numbers, the basic-structure-
depth of the node would be at least three if the basic 
structures shown in Fig. 2(a) were to be employed, since the 
maximum number of outputs at depth-2 is eight.  Here, the 
basic-structure-depth is dictated by the output set size.  In a 
different example, the coefficient set {473, 181, 49} has 
three different numbers.  The coefficient ‘49’ is a cost-2 
number whereas 473 and 181 are both cost-3.  Again, 
assuming the simplest basic-structure is used, the output set 
size only requires a minimum of two interconnected basic 
structures.  This time, the basic-structure-depth is dictated 
not by the output set size but by the cost of the coefficients, 
which is three.  However, it should be kept in mind that, 
some cost-3 coefficients can be generated at depth-2.  
Choosing depth-3 guarantees to cover all the different 
topologies that generate cost-3 coefficients. 

The basic-structure-depth can not always suggest the 
accurate layer of the output node by checking the coefficient 
set.  For example, the set {9, 15} includes two cost-1 
numbers.  The coefficient ‘9’ can be realized as (8+1), 
whereas ‘15’ is generated as (16-1).  For an FPGA 

implementation with a restricted set of basic structures as 
explained in Section 2, (8+1) and (16-1) cannot be combined 
on a basic structure.  Therefore, the set {9, 15} needs to be 
designed in layer two. 

As a summary, the lower bound to the basic-structure-
depth of an output node is the maximum of two values.  The 
first one is the minimum depth that can generate the required 
output set size.  This value depends on the type of the basic 
structure employed in the design.  The second one is the 
maximum of the adder-costs of the coefficients.   

C. Graphs 
The realization of any coefficient from a set of 

fundamentals can be represented on a graph as shown in Fig. 
4.  For a coefficient x, the ‘graph’ consists of a set of 
numbers {a, b, c, d} satisfying the equation: 

 x= ac ± bd (2) 

where c and d are in the form of ±2r, r being a natural 
number for integer x. 

 
Figure 4 An example graph 

Equation (2) results in more than one graph for a coefficient 
x when {a, b, c, d} change in a pre-defined interval.  
Collecting all such graphs of a coefficient in a table, graph-
tables are formed.  Graph-tables can be employed in 
generating efficient ReMB designs.   

D. Node-definition 
A node-definition is a combination of graphs using a 

particular basic structure to produce a given coefficient set.  
Fig. 5 shows a node-definition for the coefficient set {K, L, 
M} on a basic structure.  A, B1 and B2 are the inputs of the 
basic structure.  c, d1, and d2 are the edge values.  [t0 t1 t2] are 
the different configuration states of the resulting ReMB 
design.  [aK, aL, aM], [b1K, X, b1M] and [X, b2L, X] are the 
fundamental vectors holding the inputs of the basic structure 
for different configurations.  The ‘X’ (don’t care) in [b1K, X, 
b1M] means the multiplexer does not use B1 for configuration 
t1 but rather uses b2L from B2 to produce the coefficient L.  
At configuration t0, this node generates K as K= aK×c + 
b1K×d1.  

c
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aM]aL[ aK

t2 ]t1[  t0

X]b2L[X

b1M]X[b1K

aM]aL[ aK

t2 ]t1[  t0

M]L[K
t2 ]t1[ t0
M]L[K
t2 ]t1[ t0

A

B1

B2  
Figure 5 A generalized node-definition includes all the details about the 
node; edge values, and the fundamentals required to build the coefficient 

set for a given basic structure. 
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The graphs of the coefficients should be combined in 
such a way that, the basic-structure-depth of the resulting 
fundamental sets at A, B1 and B2, should be kept less than 
the basic-structure-depth of the coefficient set, otherwise the 
design would not converge back to the graph input.  This 
implies that two parameters have to be decreased while 
choosing the graphs; the number of different fundamentals 
(fundamental set size) at an input, and the cost of the 
fundamentals.  Assuming the basic-structure-depth of the 
coefficient set is three, the fundamentals at the input sets 
should be at most cost-2, and the fundamental set sizes can 
be at most eight (i.e. the maximum number of outputs 
allowed at that particular depth, see (1)).   

The node-definitions satisfying the two requirements 
mentioned above could be found by processing the 
combinations of graphs that exist in the graph-tables.  This 
method is explained further in the companion paper [17]. 

E. Algorithm Approach 
Fig. 6 shows a typical symbolic SIMO ReMB example 

that can be generated by the algorithm.  There are three 
output nodes, y1, y2, and y3.  As observed from the figure, all 
output nodes have a basic-structure-depth of three.   

 

Figure 6 A symbolic diagram for SIMO ReMB  

The layers partition the design into smaller units that can 
systematically be handled by the algorithm.  Each layer has 
output nodes and fundamental sets that feed the basic 
structures.  For an intermediate layer, the fundamental sets 
are the output nodes generated in the preceding layers.  For 
layer 1, the fundamental set is always the input signal, which 
is represented as ‘1’.  Starting from the last layer of the 
design, the algorithm recursively calls itself for each layer 
until it reaches the input signal.  At each call, a number of 
coefficient sets or output nodes are processed by the 
algorithm to create node-definitions that generate the 
required coefficient sets.  The fundamental sets that are 
required by these node-definitions are then designed by 
recursive calls of the algorithm.   

IV. CONCLUSION 
As a new design technique, ReMB needs new concepts to 

be developed for its efficient application.  This paper 
presented new concepts to synthesize SISO and SIMO 
ReMB circuits.  They form the foundation for the algorithm 
that is presented in the companion paper entitled as “Part II: 
Algorithm” [17].   

The proposed technique divides the whole ReMB design 
into layers depending on the basic-structure-depth and deals 
with each layer recursively, starting from the output towards 
the input.   
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