

University of Westminster Eprints
http://eprints.wmin.ac.uk

An intelligent tutoring system for program semantics.

Steve Barker
Department of Computer Science, King’s College, London

Paul Douglas
Cavendish School of Computer Science, University of Westminster

Copyright © [2005] IEEE. Reprinted from International Symposium on Information
Technology: Coding and Computing (ITCC 2005), 04-06 Apr 2005, Las Vegas, USA.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

An Intelligent Tutoring System for Program Semantics

Steve Barker
King’s College, London, UK

steve@dcs.kcl.ac.uk

Paul Douglas
University of Westminster, London, UK

P.Douglas@wmin.ac.uk

Abstract

In this paper, we describe an item of e-learning
software that is intended to help students tak-
ing university computer science courses to un-
derstand the fundamentals of logic programming
and deductive database semantics. The software
is implemented in PROLOG and empowers stu-
dents to explore their understanding of the seman-
tics of logic programs and deductive databases.
The software is also able to intelligently diagnose
student misconceptions and includes a number of
example programs/databases that permit students
to test their understanding. We describe the de-
velopment and evaluation of the software, and we
present details of the analysis of the results of
our investigation into the effectiveness of our e-
learning tool. The results of our field study of the
e-learning tool suggests that it of value in help-
ing students to understand program and database
semantics.

Keywords
E-Learning, Educational Software, Program Se-
mantics.

1 Introduction

In this paper, we describe an e-learning tool
that we have developed and used to help us
to teach the declarative semantics of logic pro-
grams and deductive databases to undergraduate

and postgraduate computer science students. The
software empowers students to test hypotheses
about a variety of logic semantics with respect
to programs/databases that students select them-
selves to test their understanding of semantical
issues. The software is able to diagnose a stu-
dent’s errors in understanding, it can explain er-
rors of understanding, and it can suggest required
corrections. Our e-learning tool is accessible via
the Web and includes a front-end that users report
to be motivating and useful to use for exploring
aspect of program and database semantics.

Although a number of tools have been pro-
posed in the literature on educational computing
for helping students to learn aspects of logic (e.g.,
Tarski’s World [4]), to the best of our knowl-
edge, ours is the first piece of courseware that sup-
ports students in their learning about the declar-
ative semantics of logic programs and deductive
databases.

The rest of the paper is organized in the follow-
ing way. Section 2 provides a brief introduction to
declarative semantics of logic programs and de-
ductive databases. In Section 3, some features of
the software are described. In Section 4, the main
results produced from the evaluation of the soft-
ware are described and discussed. In Section 5,
some conclusions are drawn, and suggestions are
made for further work.

1

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

2 Semantics

In this section, we provide some background
on program and database semantics to make the
paper self-contained. For further details of pro-
gram and database semantics we refer the reader
to, e.g., [3].

The simplest form of program/database that we
consider is definite programs/databases.

Definition 2.1 A definite clause is a clause of the
form:

A ← B1, . . . , Bn.

In the definite clause A ← B1, . . . , Bn, A is
called the head of the clause, and is an atomic
formula; B1, . . . , Bn comprises a conjunction of
(positive) atomic formulae, and is called the body
of the clause. If the body of A ← B1, . . . , Bn is
empty then A ← is an assertion or a fact; other-
wise A ← B1, . . . , Bn is a deductive rule. In the
case of a fact, A ←, the ← is often dropped.

Definition 2.2 A definite database is a finite set
of definite clauses.

Remark 2.1 Our tool is based on the assumption
that programs/databases are function-free.

The semantics of a definite program/database is
defined in terms of a least Herbrand model.

Definition 2.3 The least Herbrand model M(D)
of a Datalog database D is the set of atoms in
HB(D) that are true in all Herbrand models of
D (i.e., the set of atoms that are true in the inter-
section of all Herbrand models of D).1

Our e-learning tool enables the semantics of
various normal programs/databases to be inves-
tigated.

1D axiomatizes M(D).

Definition 2.4 A normal clause is a formula of
the form:

C ← A1, A2, . . . , Am,
not B1, not B2, . . . , not Bn.

Each not Bj literal in the previous definition
(j ∈ {1, .., n}) is a negative literal. In the case of
a negative literal, the relevant type of negation is
negation as failure [2].

Definition 2.5 A normal database is a finite set
of normal clauses.

The semantics of normal programs that can
be checked by our e-learning tool are the stable
model and well-founded semantics.

Given the ground instance of a normal clause
program/database G, Ground(G), and a Her-
brand interpretation I , the Gelfond-Lifschitz
transformation [2] of G over I , GL(G, I), is
formed by:

1. deleting from Ground(G) each clause with a
negative condition in the body, not A, where
A is in I (i.e., A is true in I).

2. deleting each negative condition not A from
the remaining clauses of Ground(G) if A is
not in I (i.e., A is false in I).

Definition 2.6 (Stable Model Semantics)
GL(G, I) transforms a normal program/database
G into a definite program/database D with a
least H-model, MD. I is a stable model of G iff
I = MD.

There are various representations of the well
founded semantics. We consider the definition
due to Przymusinska and Przymusinski [8]. This
approach is based upon a 3-valued generalisation
of the Gelfond-Lifschitz method for computing 2-
valued stable models.

The Przymusinski-Przymusinska approach
makes use of the notion of a partial interpreta-
tion, I = 〈{T}, {F}〉, where T is the set of atoms

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

that are true in I , and F is the set of atoms that
are false in I . All atoms in HB(G) − (T ∪ F)
have an undefined truth value (where − is the set
difference operator).

The partial interpretation I is used with the
following three-step procedure for transform-
ing the ground instance of a normal clause
program/database G, Ground(G), into a non-
negative program/database ∆G:

• for any atom A ∈ I , if A is true in I and
B ← not A ∈ Ground(G) then remove
this clause from Ground(G) to give the pro-
gram/database G1.

• replace, in all of the clauses in G1, any not A
condition with u (where u denotes the un-
known truth value) if A is an atom with an
undefined truth value in I . This generates
the program/database G2.

• for any atom A ∈ I , if A is false in I and
B ← not A ∈ G2 then remove the not A
condition from all such clauses in G2 to give
the program/database ∆G.

As ∆G is non-negative it follows that ∆G has
a least 3-valued model, L (say). If I = L then I is
a 3-valued stable model of G. Moreover, we have
the following result.

Theorem 2.1 If I is a 3-valued stable model of
the program/database G that is generated by the
Przymusinski-Przymusinska transformation then
I is the smallest (i.e., most sceptical) 3-valued
stable model of G, and also the well-founded
model of G [8].

3 The E-Learning Tool: Develop-
ment and Features

Our e-learning tool is written in PROLOG [1].
PROLOG has been widely used for implement-
ing items of educational software (see, for ex-
ample, [9] and [7]) and is appropriate for devel-
oping applications, like ours, which require that

some form of “intelligence” be captured. The
fact that the programs/databases that the software
processes can be directly translated into PRO-
LOG’s rule-based language was another reason
for choosing the latter for the implementation of
the e-learning tool.

The first stage in developing our software in-
volved us using a phenomenographic method [6]
for information gathering on students’ under-
standing of concepts of logic programs, deduc-
tive databases and semantics. By conducting ‘di-
alogue’ sessions with students we identified the
way students seek to understand the semantics of
programs and databases. From our review of the
notes taken at the dialogue sessions, we were able
to develop a prototype system for facilitating stu-
dent understanding of semantical issues.

Our design of the e-learning tool has been influ-
enced by Gagne’s work [5]. Gagne’s event-based
model of instruction helped us to decide what an
individual learner ought to be offered and the or-
der in which information ought to be presented to
them. Following Gagne’s suggestions, when stu-
dents use the e-learning tool they are reminded
what the learning task to be performed is, and
what it is they are supposed to be able to do once
the learning task has been completed. Promi-
nence is given to the distinctive features that need
to be learned, different levels of learning guidance
are supported for different types of learners, in-
formative feedback is given, and learning takes
place in a student-centered, interactive way, but
with support available to students as and when
they need it.

The input to our e-learning tool is a propo-
sitional program/database D together with the
model of the program/database that the student
hypothesises as holding. The user selects a se-
mantics to evaluate with respect to D. In the re-
mainder of this section we describe some exam-
ples showing how the system might be used.

Example 3.1 Consider the program/database:
G1 = {p ← not q,r; r←}

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

and the interpretation:
I = {p, r}

which is tested with respect to the stable model
semantics.

The Gelfond-Lifschitz transformation of G1

over I produces the definite program, D1={p ←
r; r←}, which has the least H-model {p,r}. As
{p,r} is the least H-model of D1 it follows that
{p,r} is a stable model of G1. The program out-
puts this result together with the intermediate re-
sults showing how it was obtained. �

Example 3.2 Consider the program/database:
G = {c ← not d; a ← not b; b ← not a}

and the interpretation:
I = 〈{c}, {d}〉.

which is tested with respect to the well founded
semantics.

The transformation of G into its non-negative
form with respect to I gives: G3 = {c ←; a ←
u; b ← u}. As the least model of G3 coincides
with I , I is the well-founded model of G.2 �

4 Evaluation of the E-learning Tool

We have performed a formative evaluation and
a summative evaluation of our e-learning tool.

In brief, the aim of the formative evaluation of
the e-learning tool was to provide information that
would enable us to develop the software to a point
at which it could be summatively evaluated. The
summative evaluation was intended to help us to
decide whether the e-learning tool was of value
in helping students to understand the details of
program/database semantic satisfaction; how the
e-learning tool compared in this respect to texts
on program/database semantic satisfaction; and
the extent to which each means of instruction was
perceived by students to be motivating to use (or
otherwise), and of value in helping them to learn
about the declarative semantics of logic programs.

2To preserve the law of identity as a theorem, u ← u
is true in Lukesiewicz’s 3-valued logic, and Kleene’s weak
interpretation of ←.

Although our study was primarily concerned
with comparing the e-learning tool with existing
work on declarative semantics, it should be noted
that we do not envisage that the two modes of in-
struction should be used in a mutually exclusive
way. The comparison of the e-learning tool with
texts on the semantics of programs/databases in
our evaluation was chosen merely to attempt to
decide whether there was any evidence to sug-
gest that the former might have some “educational
value” when compared to the latter.

For the formative evaluation, comments on the
e-learning tool were sought from: two members
of the teaching staff at the University of Westmin-
ster (the “expert reviewers”); a volunteer student
from the university’s MSc course in Database
Systems (the one-to-one study); and a group of
six volunteer students from the same course (the
small-group testing). The volunteer students were
randomly allocated to either the one-to-one or
small-group testing (but not both). These students
were learning about declarative semantics of logic
programs at the time at which the formative eval-
uation of the e-learning tool was being conducted.

In response to the feedback received from the
users of the software, a number of changes were
made to the e-learning tool over time. For exam-
ple, the explanations were changed to make them
less technical and less formal that their original
form, and a variety of modifications were made
to the front-end to enhance its appeal. The power
to investigate any program/database and any se-
mantics was reported to be an attraction of the e-
learning tool, and a major advantage it had over
the texts that we used to support the delivery of
material. The students commented that they par-
ticularly liked the fact that they could control the
pace and delivery of learning material and could
investigate issues of their own choosing.

The software was summatively evaluated with
21 students at the University of Westminster who
were taking courses in logic programming and de-
ductive databases in the Second Semester of the
2003/04 academic year.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

A 5-point Likert scale, with 24 statements, was
used to collect data about the perceptions the stu-
dents had of the e-learning tool as a method for
facilitating understanding of declarative seman-
tics of logic programs and deductive databases,
and its attractiveness as a learning instrument. To
analyse the data produced from the Likert scale,
we chose to use a t-test; the idea was to com-
pare the matched pairs of scores produced by each
respondent for the e-learning tool relative to the
course notes that were provided on semantics and
the books that students had read on the semantics
of programs/databases. Henceforth, we use T to
denote the textual sources that were used for com-
parison with our e-learning tool.

To analyze the information produced from the
Likert scale, t-statistics were computed to com-
pare the mean scores for the perceptions students
had of the e-learning tool and T , overall and for
three specific measures: perceived helpfulness as
a teaching aid, motivational appeal, and the value
of the explanation and diagnostic modules.

The results produced from the Likert scale were
very clear. In the overall measure of the two
methods, the average difference in the ratings of
the software and T was 15.92 in favour of the e-
learning tool, and only two students reported that
T was “better” than the e-learning tool. The t-
statistic for the comparison of average differences
was 6.85. This is statistically significant at the 2%
level.

Not surprisingly, given the overall results, the
e-learning tool was also perceived to be “better”
than T in all three of the sub-categories of Likert
scale items.

In terms of helping students to under-
stand declarative semantics of logic pro-
grams/deductive databases, the average differ-
ence in scores between the e-learning tool and
T was 2.02, in favour of the e-learning tool, and
all but three of the students reported that the
e-learning tool had been of more value than T
for helping them to learn about logical semantics.
In the t-test comparison of the average difference

in the ratings of the e-learning tool and T , the
t-statistic was 3.59. This value is significant at
the 2% level.

Our software was also perceived to have more
motivational appeal than T . The average differ-
ence in the rating of the e-learning tool and T
in this case was 10.27 and every student reported
that the e-learning tool had been more motivating
to use than T . The t-value of 7.39 for the com-
parison of average differences in ratings between
the e-learning tool and T is significant at the 1%
level.

The explanations provided by the e-learning
tool were unanimously perceived by the students
to be of more value than those in T for helping
them to understand the declarative semantics of
logic programs/deductive databases. The average
difference in scores on the value of the exercises,
explanations was 4.57 in favour of the e-learning
tool. The t-statistic for the average difference was
8.87 which is (again) significant at the 1% level.
The diagnostic components were reported to be
helpful in correcting misunderstanding and a pos-
itive feature that was not shared by T .

5 Conclusions and Further Work

Our software shows that a suitable e-learning
tool can be developed to help computer science
students to learn about the declarative semantics
of logic programs and deductive databases. The
e-learning tool enables students to construct their
own learning environments and is able to interpret
and explain a student’s mistakes as well as being
able to confirm it when his/her understanding is
correct. As such, the e-learning tool provides stu-
dents with “intelligent” tutorial support for learn-
ing about the declarative semantics of logic pro-
grams and deductive databases. The tool is based
on sound principles of learning, it is able to deal
with any syntactically correct program/database
as input, and it can be extended to accommodate
any number of examples or exercises without re-
quiring changes to the core set of rules on which

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

the e-learning tool is based.

Using the e-learning tool enables students to:
choose to investigate various declarative seman-
tics by using inputs of their own choice; make
hypotheses about programs/databases satisfying
declarative semantics; test these hypotheses; and
explore the consequences of program/database
semantics satisfaction by changing the inputs. As
such, the e-learning tool empowers students to
take control of their own learning, they can learn
at their own preferred pace, they can investi-
gate their own misunderstandings and reinforce
their own understanding of the declarative seman-
tics of logic programs and deductive databases.
The fact that the software encourages students to
“learn by hypothesizing” is particularly impor-
tant because this is the approach students natu-
rally adopt to learn about declarative semantics
of logic programs. Using textbooks does not en-
able this type of learning to be supported, and
can only offer students a limited number of ex-
amples of logical semantics property satisfaction;
textbooks cannot provide interactive feedback to
students investigating semantics and semantics of
their own choosing. Unlike their human tutors,
the e-learning tool has the additional attraction of
providing students with tutorial support in their
learning of logical semantics properties whenever
they require it (via the Internet).

The results produced by our summative assess-
ment of the e-learning tool indicate that it was
perceived by our students to be superior to T in
a number of respects. However, more work will
be required on the issue of student perceptions of
the e-learning tool and T before any definite con-
clusions may be drawn about their relative value.
Our experience of conducting this study has also
revealed that some students appear to favour e-
learning tools over traditional sources of learning
simply because of the novelty of the former. An
investigation of the implications of this attitude
is a matter for future study. Moreover, while the
Likert scale test revealed that the e-learning tool
was perceived to be helpful to students learning

about declarative semantics of logic programs,
further research is required to try to establish why
exactly this is the case (e.g., to what extent are stu-
dent perceptions influenced by the novelty value
of e-learning tools?).

A number of extensions to the e-learning tool
are possible. For example, it could be extended to
permit syntactic properties to be evaluated (e.g.,
stratification or local stratification), it may be ex-
tended to incorporate other semantics (e.g., an-
swer sets) for other classes of programs/databases
(e.g., disjunctive databases), and the tool may be
extended to permit first order programs/databases
to be checked for the semantical properties that
they satisfy.

References

[1] I. Bratko. PROLOG Programming for Artificial
Intelligence. Addison-Wesley, 1986.

[2] K. L. Clark. Negation As Failure, pages 293–322.
Plenum Press, 1972.

[3] S. K. Das. Deductive Databases and Logic Pro-
gramming. Addison-Wesley, 1992.

[4] S. U. C. for the Study of Language and In-
formation. Tarski’s World. http://www.-
csli.stanford.edu/hp/.

[5] R. M. Gagne. The Conditions of Learning. Holt,
Reinhart and Winston, 1970.

[6] F. Marton and P. Ramsden. What does it take to
improve learning? Kogan Page, 1988.

[7] J. Nichol, J. Briggs, and J. Dean. Prolog, Children
and Students. Kogan-Page, 1988.

[8] H. Przymusinska and T. C. Przymusinski. Weakly
perfect model semantics for logic programs. In
Proceedings of the 5th International Conference
and Symposium on Logic Programming, pages
270–279, Seattle, USA, 1988.

[9] M. Yazdani. New Horizons in Educational Com-
puting. Ellis Horwood, 1983.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

