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Abstract 

The role of the microenvironment in the development and progression of chronic 

lymphocytic leukaemia (CLL) is currently of major interest. Pathogen- and 

damage-associated molecular patterns (PAMPs and DAMPs, respectively) 

represent exogenous and endogenous microenvironmental factors acting via a 

range of receptors, including Toll-like receptors (TLR). CD180/RP105 is a 

membrane-associated orphan receptor that belongs to the TLR family, is expressed 

by professional antigen-presenting cells, and drives normal B-cell activation and 

proliferation. 

We have previously shown that approximately 60% of CLL samples expressed 

surface CD180  but only half responded to ligation with anti-CD180 monoclonal 

antibody (mAb) resulting in activation, cycling, and reduced basal apoptosis and 

were termed responders (R). In contrast, CD180+CLL samples that failed to respond 

to anti-CD180 mAb, despite expressing a high density of CD180 receptors, were 

termed non-responders (NR). We further demonstrated that in R-CLL cells, CD180 

ligation significantly induced phosphorylation of ZAP70/Syk, ERK, p38MAPK, and 

AKT. In contrast, CD180-mediated signalling in NR CLL cells did not progress 

downstream from ZAP70/Syk phosphorylation indicating a block in activation of 

downstream protein kinases, and possible anergy.  

To further clarify the CD180-mediated signalling pathways in CLL, here we studied 

signal transduction downstream from ZAP70/Syk by delineating CLL samples into R 

and NR through their proximal ability to activate AKT. We have studied major 

signalling protein kinases associated with the BCR signalling pathway: PI3K, Btk, 

ERK, p38MAPK and AKT.  

Segregation of CLL samples responding to CD180 ligation by signalling via pAKT, 

rather than by CD86 upregulation, revealed that CD180 ligation on CLL cells can 

activate two alternative signalling pathways: pro-survival that operates via PI3K-

Btk-AKT protein kinases, or mostly pro-apoptotic, that operates via p38MAPK but 

not through Btk. This may have implications for CLL therapy where Btk inhibitors 

are being used. 
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Here we demonstrate that albeit ligation of sIgM alone also activates pro-survival 

PI3K-Btk-AKT pathway pre-engagement of CD180 redirected BCR-mediated 

signalling towards the potentially pro-apoptotic p38MAPK pathway that opens 

new horizons for immunotherapy. 

Since the tissue microenvironment plays a crucial role in generation and survival 

of the CLL clones, studies pertaining to CD180 expression in the lymphoid tissues 

were undertaken. Our pilot data suggests that in normal tonsils CD180 is 

expressed by the mantle zone (MZ) B cells and not the germinal centre (GC) B cells. 

However in CLL lymph nodes complete obliteration of the normal tissue 

architecture and a weak expression of CD180 has been detected, whilst expression 

of CD180 on bone marrow CLL cells was heterogeneous. Since CLL cells migrate to 

and from the solid tissues into the peripheral circulation in any CLL clone, there is 

always an intra-clonal kinetic heterogeneity through   a suggested continuum 

between the 'proliferative' or CXCR4dimCD5bright, and 'resting' 

CXCR4 brightCD5dim fractions. Here we report that the 'resting' compartment was 

enriched for CD180+ cells compared to the 'proliferating' subset. In contrast, 

sIgM+ cells were more frequent in the proliferating fraction. Since the “resting” 

subset of CLL cells is also considered as the one “returning” to the solid tissues 

supported by the increased expression of CXCR4, our data might suggest possible 

attraction of the CD180+ cells towards the putative ligand in the lymphoid tissues. 

It is becoming apparent that intraclonal diversity plays an important role in the 

clinical outcome of patients with CLL. Subsets of the CLL clone that respond more 

robustly to external stimuli may well gain a growth and survival advantage and 

possibly promote clonal evolution. Identification of these CLL subpopulations was 

therefore of prime importance, as these cells may be preferred targets for future 

therapeutics. We have established that CD180 expression on CLL cells helps 

identifying different subsets and delineating their physiological status. Our 

findings on modulation of signalling pathways through CD180 and sIgM and the 

temporal effects of their ligation is consistent with multiple ligands in the, in vivo, 

microenvironment playing an important role in the survival of CLL cells. Since TLR 

can shuttle between inhibition and promotion of leukemic growth they may play a 
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key role in immune evasion impacting on clinically relevant tumour-host 

microenvironment interactions. The identification of distinct CD180-mediated 

signalling pathways that promote tumour cell proliferation and survival will allow 

specific targeting of key players in the pathways with immunotherapy and 

chemotherapy.  
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Immunobiology of CLL 

1.1 Chronic Lymphocytic Leukaemia and its occurrence 

Chronic Lymphocytic Leukaemia (CLL) is the most common leukaemia in the 

western world and forms approximately 30% of all adult leukaemias. According to 

the statistics by the Leukaemia and Lymphoma society, an estimated 105,119 

people are living with (or in remission from) CLL in 2011 in the USA alone 

(http://www.lls.org). Based on the rates of diagnosis from 2007-2009, 1 in 202 

men and women will be diagnosed with CLL during their lifetime 

(http://seer.cancer.gov/statfacts/html/clyl.html). CLL is more common in people 

of Russian and European descent, and rare in people from China, Japan, or 

Southeast Asian countries. Some recent studies have however, shown increasing 

occurrence of CLL in Taiwan (Wu et al.,2010). The reason(s) for this geographic 

difference is not known (www.cancer.net).  

The incidence of CLL increases significantly among people aged 50 years and older. 

The median age at diagnosis is 72 years. The median survival period is 

approximately 5 years. About 10% of CLL patients are reported to be younger than 

55 years (http://www.lls.org). The disease can be aggressive with patients dying 

relatively soon after diagnosis, or indolent with patients surviving for many years. 

Older patients may die from other causes, or they may succumb to the 

consequences of the disease or its many complications (Young et al., 2006). There 

is also evidence of CLL patients being prone to development of secondary 

malignancies (Tsimberidou et al., 2009). Approximately 29% of deaths are 

unrelated to CLL, mainly other cancers (12%), haemolytic anaemia (10%) and 

cardiovascular complications (16%) (Catovsky et al., 1989). Another common 

complication affecting CLL patients is called Richter’s transformation or Richter’s 

syndrome and affects 5% patients at some point during the course of the disease. 

Richter’s syndrome (RS) is characterized by the development of high-grade non-

Hodgkins lymphoma (NHL) in a patient with (CLL). The large cells of RS may arise 

through transformation of the original CLL clone or represent a new neoplasm. RS 
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may be triggered by viral infections, such as Epstein-Barr virus (EBV). Trisomy 12 

and chromosome 11 abnormalities, as well as multiple genetic defects, have been 

described in patients with RS. These abnormalities may cause CLL cells to 

proliferate and, by facilitating the acquisition of new genetic abnormalities, to 

transform into RS cells (Tsimberidou et al., 2006) 

The number of Male (M) patients diagnosed with CLL is almost twice that of 

Female (F) with an M: F ratio of 1·8: 1. The M: F ratio is lower, 1·5:1, in patients 

aged 70 or over. Women are more likely to have early-stage disease and, 

regardless of stage and age, they have a better prognosis than men, but the 

mechanism(s) responsible for the improved survival in women is unknown. 

(Catovsky et al.,1989; Greer et al., 2009). In the Medical Research Council (MRC), 

UK CLL clinical trial 1 in a cohort of 660 patients, results reported were: better 

prognosis CLL (or stage A CLL - detailed further) was the most common, among 

women of all ages, in contrast to men for whom increased chances of survival with 

the disease only predominated in the older age group. The majority of deaths in 

patients presenting with the bad prognosis (Stage C and Stage B-detailed later) 

were CLL-related. Women always fared better than men and this was independent 

of stage and age. This and other features documented in the trial suggest a major 

biological difference between the sexes which has not been widely recognized 

(Catovsky et al.,2008). The cause of CLL is unknown. There is no definitive link to 

radiation, cancer-causing chemicals, or viruses. Familial CLL cases have been 

detected, but the pattern of inheritance is yet completely unknown (Greer et al., 

2009). A CLL patient with at least one affected relative is considered “familial”. It is 

estimated in some population that 5-10% of the cases may be associated with the 

familial form of CLL. One in every 10 patients with CLL has either a family history 

of CLL or another lymphoproliferative disorder and there is a 30-fold increase in 

the risk of CLL in first-degree relatives of patients (Greer et al., 2009). The pattern 

of immunoglobulin gene usage and the frequency of somatic mutation are similar 

in familial CLL (Sakai et al., 2000). Importantly monoclonal CD5+B lymphocytes 

with an immunophenotype very close to that observed in CLL have been found in 

otherwise healthy adults. Similar phenomenon has been identified in family 

members of patients.  Studies involving CLL cases from multiplex families have 
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generally shown familial CLL to have an earlier age at diagnosis compared to 

sporadic CLL. However, larger population-based studies have not found 

differences in age at diagnosis between sporadic and familial cases (Goldin et 

al.,2010). The genetic aetiology of CLL is unknown and early work on familial CLL 

has not yet uncovered any obvious gene or group of genes that can be clearly 

related to the pathophysiology of CLL (Goldin et al.,2010). In a small patient cohort 

based study, increased serum BAFF (B-cell activating factor of the TNF family) 

level was shown to be associated with familial CLL (Stefano et al.,2009).  

CLL cells express mostly CD19+ B-lineage phenotype hence the disease is also 

commonly called B-cell Chronic Lymphocytic leukaemia (CLL) with a very small 

proportion of CLL cases belonging to T lineage. T-cell CLL is also called ‘T-cell 

Prolymphocytic Leukaemia’ and consists of mature T-lymphocytes with 

immunophenotype of CD2+, CD3+, CD7+ and CD4+/CD8-ve (Hoyer et al.,1995). 

Small lymphocytic leukaemia (SLL) is a form of B-cell lymphoma structurally 

related to CLL but with a slightly different prognostic aspect. SLL is also be 

referred to ‘CLL in the nodal regions’ (Pangalis et al.,1999). In a broader 

perspective, CLL is a heterogeneous disease with a variable clinical course.  The 

treatment varies according to the stage of the disease, age of the patient and the 

other secondary clinical conditions arising due to the immune dysregulation.  

1.2 CLL diagnosis and staging 

The World Health Organization classification of hematopoietic neoplasias 

describes CLL as leukaemic, lymphocytic lymphoma, being only distinguishable 

from SLL by its leukaemic appearance. The guidelines for the diagnosis and 

treatment of CLL were revised by the International Workshop on CLL in 2008 

(IWCLL). Criteria for CLL are as follows: the presence in the peripheral blood of 5 x 

109/L monoclonal B lymphocytes for  at least 3 months. The clonality of the 

circulating B lymphocytes needs to be confirmed by flow cytometry. Typical 

immunophenotype of CLL lymphocyte is CD5+, CD23+, CD43+/-, CD10-, CD19+. Dim 

expression of CD20 and surface immunoglobulin is highly characteristic of CLL and 

this can be useful in distinguishing from mantle cell lymphoma, especially in those 

rare cases that lack expression of CD23. Bone marrow examination is not required 
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for diagnosis and a CT scan not required for staging, but flow cytometry is crucial 

for correct diagnosis (Hallek et al.,2008). In most patients in the earlier stages, 

there are no distinct symptoms and the diagnosis is more or less ‘by chance’ 

sometimes following a routine blood test resulting in abnormally high white blood 

cell count. Depending on various clinical characteristics, the CLL diagnosis is 

further categorized according to either of the staging criteria (discussed further). 

However, as leukemia cells replace the bone marrow, the number of red blood 

cells, normal white blood cells, and platelets in the blood decreases. That is why 

several seemingly unrelated symptoms and signs occur in lymphocytic leukemia 

(Hallek et al.,2008):  

Painless lumps in the neck, armpit, or groin 

 Fatigue and shortness of breath due to anemia 

 Fever and repeated infections 

 Pain in bones, ribs, or abdomen 

 Easy bruising and bleeding due to low numbers of platelets 

 Loss of appetite 

Depending on various clinical characteristics, the CLL diagnosis is further 

categorized according to either of the following staging criteria: 

Rai staging system categorizes CLL as a ‘low-risk’ disease for patients who have 

lymphocytosis (increase in the proportion of lymphocytes) with leukemic cells 

(cells with leukemic phenotype) in blood and/or bone marrow (lymphoid cells 

approximately 30%; earlier considered Rai stage 0). Those with lymphocytosis, 

enlarged lymph nodes, splenomegaly (enlargement of spleen) and/or 

hepatomegaly (enlargement of the liver) (lymph nodes being palpable or not) are 

defined as ‘intermediate-risk’ disease (formerly considered Rai stage I or stage II). 

‘High-risk’ disease includes patients with disease-related anaemia (as defined by a 

haemoglobin [Hb] level approx.110 g/L [11 g/dL]; formerly stage III) or 
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thrombocytopenia (as defined by a platelet count approx. 100x109/L; formerly 

stage IV) (Rai et al.,1975; Hallek et .al. 2008)   

 Binet staging CLL is classified as: Stage A - Hb 100 g/L (10 g/dL) or less and 

platelets 100x109/L or more and any two of the organomegalies (splenomegaly or 

hepatomegaly). Stage B - Hb 100 g/L (10 g/dL) or less and platelets 100x109/L or 

more plus organomegaly greater than that defined for stage A (i.e. three or more 

areas of nodal or organ enlargement). Stage C -All patients who have Hb less than 

100 g/L (10 g/dL)and/or a platelet count less than 100 109/L, irrespective of 

organomegaly. The organomegaly described by this system includes:  

 Head and neck, including the Waldeyer ring (this counts as one area, even if 

more than one group of nodes is enlarged) 

  Axillae (involvement of both axillae counts as one area) 

  Groins, including superficial femorals (involvement of both groins counts 

as one area);  

 Palpable spleen;  

 Palpable liver (clinically enlarged) (Binet et al.,1981; Hallek et al.,2008). 

The staging system used in practice is usually subjective to the clinician. The latest 

CLL staging system consists of a combination of the both the systems above 

depending on the symptoms of the patient (www.cancer.org).  However, the 

heterogeneous nature of the disease entails further fine tuning of the staging 

systems.  

1.3 CLL Prognosis  

While both the Rai and Binet staging systems continue to provide the most useful 

tools for assessing prognosis in CLL, however both often cannot identify subsets of 

patients that may, or may not, benefit from therapy as well as the disease 

progression patient survival or resistance to chemotherapy.  Therefore majority of 

CLL research is focussed on identifying biological markers of the disease that 

dictate the course/fate of the disease in a patient. Currently the mutation status of 
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IGVH genes of CLL cells has been officially implemented as a prognostic criterion in 

developed countries whilst the validity of other markers is in the process of further 

evaluation (Bazargan et al.,2012). It must be stressed that although quite 

important, these criteria are not necessarily applicable for each individual case and 

sometimes the use of a combination of prognostic markers may be recommended. 

These markers of prognosis help in assessment and further study or 

aggressiveness and progression of the disease. Some of the most widely clinically 

accepted prognostic markers are detailed below.  

 

Lymphocyte doubling time (LDT) 

LDT is defined as the period of time needed for lymphocytes to double in number 

the amount found at diagnosis. The prognostic value of LDT is expressed in months 

and obtained by linear regression (Molica et al.,1987). The LDT of more than 12 

months (>12 months) usually manifests as a less aggressive disease and a better 

life expectancy and a median survival time of higher than 5 years. The opposite is 

true for LDT less than 12 months (<12 months) where the median survival time is 

approximately 36 months. The study of LDT as prognostic marker is independent 

of age, sex, lymphocyte count, anaemia, and thrombocytopenia. Initially it was 

thought that CLL is an accumulative disease arising due to failure of the cell 

apoptosis. A study based on the oral administration of heavy water (2H2O) to CLL 

patients demonstrated that CLL cells have an in vivo birth rate/proliferation rate of 

0.1% to >1% of the total leukemic clone per day (Messmer .et al., 2005). Therefore 

the study of LDT is validated as a 'proliferation' marker.   It is concluded that since 

LDT appears to predict the progression of the disease, it is useful in the clinical 

management of CLL. However, it is also a retrospective marker and needs 

monitoring of he patient blood count for a few months before making any clinical 

predictions (Damle et al.,2010; García-Muñoz et al.,2012).  

Immunoglobulin Variable Heavy chain (IGVH) gene mutational status 

In normal B cell development, B cells that are stimulated by antigen enter 

lymphoid follicles in the secondary lymphoid organs. A germinal centre (GC) is 
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formed, and under the influence of T cells and in the presence of antigen presented 

by follicular dendritic cells, affinity maturation takes place. The process is based on 

the generation of random somatic mutations in the variable region of the 

immunoglobulin gene, resulting in random changes of the antibody’s affinity for 

the antigen. Only B cells with a high antigen binding affinity survive and 

differentiate further. Although there is some evidence that somatic hypermutation 

is not restricted to the GC reaction, it is generally accepted that B cells with 

mutated IGVH genes are post-GC, antigen-experienced cells (Klein et al.,2001; 

Chiorazzi et al., 2003; Jumaa et al., 2005).  

Study of somatic hypermutations in the Immunoglobulin Variable Heavy chain 

(IGVH) genes for CLL cells showed that approximately 50% of the patients 

displayed mutations of their IGVH genes. CLL cases carrying IGVH genes with less 

than 98% homology to the closest germline gene ( considered "mutated, M") 

generally follow a more indolent course than those with 98% or more homology ( 

considered "unmutated, U").The patients with the U genotypes exhibit aggressive 

proliferation of lymphocytes and a poorer clinical prognosis (Damle et al., 1999, 

Hamblin et al.,1999). Certain immunoglobulin genes (eg, IgHV1-69, IgKV1-33/1D-

33, IgLV3-21) are preferentially used in U rearrangements, whereas others (eg, 

IgHV4-34, IgKV2-30, IGLV2-8) are more frequent in M rearrangements. This 

feature is "CLL-biased," because it does not appear in the normal B-cell IGVH 

repertoire.  

Also, when the VH and VL gene expressions were compared between the normal 

CD5+ B cells and CLL cells, it was observed that the VH gene usage was discordant 

between the two cell types. The CLL cells showed higher reactivity toward a 

possible antigen experience via VH genes.  The discordance between the biased use 

of certain V genes in the H and L chains of CLL cells in relation to normal B cell 

repertoires implies that reactivity with the antigens that determined selection of 

these B cells depends more on the structure of the VH (Fais et al.,1998; Chiorazzi et 

al., 2003)  
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Figure 1. 1 Putative models to explain the derivation of a CLL cell from different cell 

types and/or distinct differentiation pathways 
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Model A suggests derivation of the mutated CLL cell from a B cell stimulated by a T cell–

dependent antigen that drives the cell through a classical GC reaction. In this model, the U 

CLL cell derives from an MZ B cell driven by a T cell–independent process that does not 

elicit T cell help or somatic mutations. Model B suggests derivation of both the M and U 

CLL cells from the IgM+IgDlow subset of MZ B cells that are triggered independent of T cells 

and either do not or do develop somatic mutations. B cells that develop somatic mutations 

do so via a T cell–independent alternative V gene differentiation pathway. The available 

data do not exclude a hybrid model in which CLL cells derive from cells and differentiation 

pathways of both models (adapted from Chiorazzi N et al., 2003). 

CLL cases with remarkable similarity of the BCR (V regions of the H and L chains) 

have been identified (Tobin et al.,2003; Ghiotto et al.,2004). Various groups have 

reported subsets of CLL cases carrying closely homologous or "stereotyped" 

complementarity-determining region 3 (CDR3) sequences among both M and U 

cases. Stereotyped BCRs are strikingly similar BCRs, often arising from the use of 

common H and L chain V region gene segments that share CDR3 structural features 

(length, amino acid composition, and unique amino acid residues at recombination 

junctions)(Bühler et al., 2010). Stamatopoulos et al., (2007) studied 

927 Ig sequences from a number of different centers in the Mediterranean and 

found that over 20% of patients carried a stereotypical BCR belonging to one of 48 

stereotyped subsets (simply named ‘subset #1′ to ‘subset #48). This analysis was 

performed using adapted criteria so that unlike previous studies, sequences did 

not necessarily have to use the same IGHV gene, the essential criteria being >60% 

HCDR3 amino acid similarity .This study also revealed intriguing connections 

between certain subsets and clinical outcome. Another similar study describes five 

sets of patients, mostly with U or minimally mutated IGVH genes, with strikingly 

similar B cell antigen receptors (BCRs) arising from the use of common H and L 

chain V region gene segments that share CDR3 structural features such as length, 

amino acid composition, and unique amino acid residues at recombination 

junctions. The data imply that either a significant fraction of CLL cells was selected 

by a limited set of antigenic epitopes at some point in their development and/or 

that they derive from a distinct B cell subpopulation with limited Ig V region 

diversity.. The remarkable B cell receptor (BCR) similarity in unrelated and 

geographically distant cases implies the recognition of individual, discrete antigens 

or classes of structurally similar epitopes, likely selecting the leukemic clones 
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(Ghia et al., 2005; Stamatopoulos et al., 2005). For example, some molecular 

evidence exists for EBV and CMV persistence in a subset of patients with CLL 

expressing the particular BCR stereotype of IGHV4-34  (Kostareli et al.,2009). 

Additionally, it has also been documented that CLL cells, with U IGVH genes, also 

have polyreactive receptors able to bind to autoantigens and multiple microbial 

antigens (Broker et al., 1988; Sthoeger et al., 1989; Diaw et al., 1997; Dighiero et 

al.,1999). Some studies have suggested the role of antigens like molecular motifs 

on oxidized LDL and apoptotic cells as targets of antibodies produced by CLL cells 

(Dahle et al.,2008). Indicated by anepidemiological report  was an  increased risk 

for CLL among individuals with a history of pneumococcal pneumonia (Landgren 

et al.,2007). Additionally, some evidence exists for the connection between 

infections like cellulitis and herpes zoster (caused by Staphylococcus aureus and 

varicella zoster virus respectively) and the increased occurence of CLL (Anderson 

et al.,2009).  Most recently, a study with a subset of M-CLL, expressing stereotypic 

BCRs highly specific for β-(1,6)-glucan, which is a major antigenic determinant of 

yeasts and filamentous fungi, has been published. This study showed the specificty 

of the the particular BCR stereotype to the antigen β-(1,6)-glucan. Also CLL cells 

expressing these stereotypic receptors proliferated in response to β-(1,6)-glucan 

(Hoogeboom et al.,2013).  

 All or most of these antigens are recognised and/or are ligands for Pattern 

recognition receptors (PRRs) of the innate immunity like Toll-like receptors (TLR), 

NOD-like receptors (NLRs) and scavenger receptors, which are expressed by CLL 

cells (Damle et al.,2002)(discussed later).  

Expression of ZAP70  

Even though the study of mutational status of the BCR is a powerful prognostic 

marker, IGVH sequencing is difficult to perform in a routine diagnostic laboratory 

and is expensive. Thus this assay is currently unavailable to most of the CLL 

patients. This reason dictates the need for a surrogate prognostic marker which is 

cheaper and easier to assess in a routine diagnostic setting.  
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The protein tyrosine kinase ZAP70 is normally expressed along with the T-cell 

receptor in T-cells and also in Natural Killer (NK) cells. ZAP70 also shows 

characteristic expression in CLL cells. Studies have shown that expression of 

ZAP70 is associated with increased/enhanced B-cell receptor downstream 

signalling in chronic lymphocytic leukemia (Kong et al., 1995; Chen et al.,2002). In 

addition to the BCR, ZAP70 also facilitates downstream signalling from the 

receptors expressed by CLL cells like CD38 and CXCR4 (Richardson et al., 2006). 

ZAP70 appears to be involved in CLL cell trafficking as well through the receptor 

CXCR4 and its ligand SDF1 (CXCL12), which govern CLL cell migrations to and 

from the lymphoid tissues, also the primary sites of CLL cell birth and proliferation 

(Burger et al.,1999; 2007). Another study shows that increased expression of 

ZAP70 is associated with TLR-9 ligation response in IgM+ve B cells which causes 

these cells to acquire CLL like phenotype, further indicating the role of this protein 

in CLL evolution (Bekeredjian-Ding et al., 2008). Further, ZAP70 gene was found to 

be more highly expressed in U CLL than in M CLL and its expression could 

distinguish these 2 subsets with high statistical significance (Rosenwald et 

al.,2001). Another similar study expanded this analysis by profiling gene 

expressions in purified CLL samples from 107 patients and showed 

that ZAP70 expression is a preferential discriminator of M and U CLL. Further 

shown in this study was that ZAP70 expression identifies patients with a more 

aggressive clinical course and, therefore, has the potential to be a clinically useful 

molecular marker of prognosis in CLL (Weistner et al.,2003; Rassenti et al.,2004). 

CLL cells are considered to be positive for ZAP-70 when at least 20% of the CD 19+ 

cell population express this antigen in flow cytometry profiles (Luz et al., 2006; Del 

Principe et al., 2006). 

However, contradicting the earlier data was a protein expression analysis for 

ZAP70 which showed 23% discordance when compared according to the M and U 

CLL cases. In this study, 23% of the patients with M CLL were positive for 

expression of ZAP70 as against the U CLL cases which lacked this expression. 

Further monitoring and co-relating with the clinical factors, (with an arbitrary 

threshold of 20% or higher cells expressing ZAP-70 considered positive for this 

factor) the expression of ZAP-70 showed a better co-relation to the median 
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survival times than the IGVH mutational status.  Also, increased expression of 

ZAP70 by CLL cells proved a stronger predictor of the need for treatment than the 

presence of an unmutated IGVH gene. Since flow cytometry can be used reliably to 

assess blood samples for ZAP70, it is more amenable for application in clinical 

laboratories than nucleic acid–sequence analyses of the rearranged IGVH gene. 

Moreover, because the expression of ZAP-70 appears to be constant over time, in 

spite of the minor shortcomings, it is still a reliable prognostic marker which can 

be used at the time of disease diagnosis to predict the treatment options and 

disease progression in CLL (Rassenti et al.,2004). 

Expression of CD38 

CD38 is a BCR co-receptor, constitutively expressed by mature B-lymphocytes and 

plasma cells. It plays a dynamic role in the B-cell compartment by drastically 

modifying the functional properties of B-cells whereas it blocks B cell 

lymphopoiesis in the bone marrow and rescues germinal centre B cells from 

apoptosis (Zupo et al.,1994; Burger et al.,2007; Damle et al.,2010). An explanation 

for this apparently contradictory behaviour is likely to be found through 

investigation of the role of the micro-environment in providing soluble or cell-

bound ligand(s) for CD38. CD31/platelet-endothelial cell adhesion molecule 1 

(PECAM-1) is thus far the only reported cell surface–bound ligand for CD38 and it 

has been shown that CD31/CD38 interactions control an active signalling pathway 

in circulating and residential lymphocytes (Deaglio et al.,2000). In vitro analysis 

showed that ligation of CD38 on B-lymphocytes with monoclonal antibody 

increased cellular proliferation and induces intracellular Ca2+ fluxes leading to 

increase in anti-apoptopic protein Bcl-2 (Deaglio et al.,2003).  

In CLL cells as well, CD38 expression can augment BCR signalling (Lund et 

al.,1996) and regulate both IgM and IgD induced apoptosis (Zupo et al., 2000). 

Further, it has been shown that CD38 induces proliferation of CLL cells and 

increases their survival (Deaglio et al., 2010) as been shown that CD38 induces 

proliferation of CLL cells and increases their survival (Deaglio et al., 2010). The 

increased proliferation may be the result of interaction between CD38 and CD31, 

which upregulates CD100  (a survival receptor from the semaphorin family) 
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involved in sustaining CLL growth and survival (Elhabazi et al., 2003; Kumanogoh 

et al., 2003). CD38 expression is noted to be higher within the bone marrow and 

the lymph nodes, where CLL cells are to proliferate in special zones called 

proliferation centres (Jaksic et al.,2004; Soma et al.,2006). Moreover, within each 

CLL clone, cells expressing CD38 are enriched in Ki-67, suggesting that CD38+ cells 

are a cycling subset (Damle et al.,2007). The micro-environment in CLL has been 

suggested to play a primary role in the pathogenesis of CLL, rescuing the cells from 

apoptosis and CD38 has been shown to be an important mediator of this 

interaction (Deaglio et al.,2006; Chiorazzi et al., 2005, 2011) . In support of this 

concept, it was demonstrated that CD38 expression delineates populations of CLL 

cells that are activated and express proliferation markers (Damle et al., 2007). A 

study showed that approximately 1% of the CLL clone proliferates everyday and 

depending on the clonal kinetics, the cells express differentially receptors -CXCR4 

and CD5. The fraction expressing lower levels of surface CXCR4 was enriched in 

CD38+ cells comprising largely of the cell population that have recently exited a 

solid tissue, after undergoing proliferation (Messmer et al.,2005; Deaglio et 

al.,2010; Vaisitti et al.,2010; Calissano et al.,2011; Thomson et al.,2013).   

Presence of a distinct CD38+ cell population within the leukemic clone, with a 

numerical cut off definition at 30% or more as positive, correlates with IGVH gene 

mutational status and identifies CLL patients with a poorer prognosis or aggressive 

form of the disease (Silvia et al., 2006). In fact, it has been well documented that 

patients expressing CD38 on more than 20% on their malignant cells have a 

disadvantage in survival compared to patients with percentage of CD38+cells 

(Damle et al., 1999; Ke et al., 2002)  

However, as mentioned above, expression of CD38 varies between the cells in the 

lymphatic tissues and bone marrow compared to that in the peripheral blood 

(Patten et al.,2008). Also, it has been reported that cell surface expression of CD38  

is not constant during the course of disease (Chang and Cleveland, 2002). 

Furthermore, in as many as 1 in 4 patients, there may be a significant variability of 

CD38 expression during the course of the disease (Hamblin et al.,2002), although 

there are CLL cases where CLL cells  never express CD38 over the course of time 
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(Ghia et al.,2003). Thus, whilst it would be convenient if CD38 positivity were a 

reliable surrogate marker for IGVH mutational status (a technically much more 

demanding laboratory test), in many cases the two variables are discordant and 

both retain independent prognostic significance (Hamblin et al.,2002; Thomson .et 

al.,2013).  

Serum Markers 

β2-microglobulin : The level of soluble β2-microglobulin has been observed to 

correlate with the stage of disease in CLL patients. High serum levels of β2-

microglobulin were found in CLL patients with a rapidly progressing disease 

(Giovanni et al.,1988). In addition, serum β2-microglobulin levels correlated with 

the treatment free survival time (TFS). TFS is the time measured in months 

between two courses of treatment (Molica et al.,2009). 

Serum CD23 (sCD23): Serum CD23 antigen (low affinity receptor for IgE) is a 

membrane glycoprotein which is cleaved into soluble fragments having pleiotropic 

effect.  Previous studies showed that CD23 protein and gene expression are 

abnormally regulated in CLL (Fournier et al.,,1992). The level of CD23 in the serum 

of CLL patients can vary between 3 to 500 fold more as compared to control 

subjects or other lymphoid malignancies  and correlates with the tumour 

burden/stage of the disease (Sarfati et al.,,1996).  

Serum Lactate Dehydrogenase (LDH): Lactate Dehydrogenase (LDH) is an 

isozyme which exists in many different cell systems and subsequent to tissue or 

cell damage, serum LDH levels may be elevated. The level of the LDH in the blood 

also correlates with anaerobic metabolism and increased glycolysis in the 

cytoplasm of malignant cells accompanied by a high turnover rate. A relationship 

between various neoplasias and increased LDH levels has thus been reported by 

many groups (Lundh et al.,1967; Ferrara et al.,1996). In CLL, high level of this 

isozyme is commonly observed and correlates with the stage of the disease (Shen 

et al.,2007). The haematology unit at UCH, where we obtained CLL samples from, 

LDH is routinely assayed as a prognostic marker for CLL.  
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Even though comparatively convenient to assay, the shortcomings of the use of 

these serum markers, is that the tumour load cannot be accurately predicted in 

early stages of CLL given the low expression of these markers. Hence  the use of 

serum markers for prognosis of the course of the disease is controversial (Molica 

et al.,1999).  

Chromosomal aberrations 

Recurrent losses or gains of chromosomal material as well as mutations of key 

tumour suppressors (ATM and TP53) have been identified in CLL  (Zenz et 

al.,2010.). These aberrations are believed to be important “drivers” of the disease 

as well as its clinical characteristics. Fluorescence in situ hybridization (FISH) 

analysis demonstrated that chromosomal abnormalities can be found in up to 80% 

of CLL cases. The most frequent aberrations are deletions of chromosomes 13q 

(55% of cases), 11q (12%), 17p (8%) and trisomy of chromosome 12 (15%). 

Genetic studies on the affected loci have allowed the identification of specific genes 

that may play a relevant role in the pathogenesis of CLL (e.g. microRNA genes on 

chromosome 13, ATM (Ataxia Telangiectasia Mutated) gene on chromosome 11 

and TP53 on chromosome 17). Deletions/mutations of the TP53 (tumour 

suppressor gene encoding for the protein p53 on chromosome 17) gene have been 

shown to be associated with resistance to treatment and were considered as 

independent markers for poor survival (Juliusson et al.,1990).  

13q14 deletion: this is the most common type of genetic aberration and can be 

either homozygous or heterozygous. This abnormality also occurs in other 

lymphomas, apart from CLL. Patients with this deletion have better prognosis than 

the other chromosomal deletions in CLL. The median survival time for patients 

with this genotype is approximately 133 months (Dohner et al.,2000).  

Trisomy 12: 10-20% of CLL patients manifest trisomy at chromosome 12. More 

often this genotype is associated with CLL of the 'atypical' cellular morphology 

(Matutes et al.,1998). In addition, it is associated with an early disease progression 

and shorter 'treatment free' survival as compared to the 13q14 deletion (Dohner et 

al.,2000). The median survival time for patients with trisomy 12 is better than 
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those with 17p deletion and lesser than the patients with 13q14 deletion (Zenz et 

al.,2011).  

11q23 deletion: About one fifth of patients with treatment indications will 

exhibit 11q deletions. Patients with 11q deletion have a more rapid progression of 

disease, shorter survival and extensive lymphadenopathy (Dohner et al.,1997). The 

minimal consensus region in bands 11q22.3–q23.1 harbours the ATM gene in 

almost all cases. But only a subset show biallelic inactivation of ATM by 

simultaneous mutations. Mutations of the ATM gene have been shown to occur in 

12% of all patients with CLL, and in 30% of patients with 11q deletion and are 

associated with poorer outcome (Austen .et al.,2005). The role of other genes in 

11q22.–q23.1 remains unresolved . There is a very strong association between the 

presence of the deletion 11q and an U IGHV mutation status. The biological basis 

for this association is currently unclear (Zenz .et al.,2011).  

17p13 deletion and mutation of the key tumour suppressor gene TP53:  the 

deletion of 17p13 occurs in 3-5% of cases with CLL. It is more common in patients 

with refractory or relapsed CLL post-treatment and rarely detected at diagnosis 

(Zenz et al.,2010). This chromosomal deletion covers most of the short arm of 

chromosome 17 which also contains the TP53 locus. Very few cases with 17p 

deletion will show functional p53 tumour suppressor pathway (Zenz et al.,2010). 

Mutation of TP53 is not entirely dependent on the 17p deletion. Though the genetic 

complexity for TP53 mutation is not yet completely defined, recent study 

demonstrated that poorer prognosis was observed in patients with p53 mutation 

in absence of 17p chromosomal deletion (Zenz et al.,2008).  

1.4 CLL cells and apoptosis 

CLL is commonly considered as a paradigm for a malignancy of failed apoptosis, as 

CLL cells circulating in the blood are largely non-proliferating and arrested in the 

G0/G1 phase of the cell cycle. Cell division occurs mainly in the ‘proliferation 

centres’ in tissue microenvironments, accounting for the increase in the tumour 

load in some patients (Burger et. al., 2002; Hallek et. al., 2010; Chiorazzi et. al., 
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2011). However, lack of apoptosis is still considered a major component of the 

dysregulation of normal B-cell homeostasis in all subsets of this malignancy. 

Apoptosis is an important physiological process that helps to regulate the normal 

levels of all cells. Apotosis can be defined as a form of cell death, also known as 

'programmed cell death', in which a ‘suicide’ program is activated within a cell, 

leading to fragmentation of the DNA, shrinkage of the cytoplasm, membrane 

changes and cell death without lysis or damage to neighboring cells. When the 

cellular DNA is damaged or the cell is under stress due to any number of stimuli, 

cell division and differentiation are balanced by apoptosis, through a number of 

intra cellular biochemical reactions manifesting distinct morphological features, 

including a decrease in cell volume, chromatin condensation and the formation of 

membrane-bound apoptotic bodies (Alberts et. al., 2002). Alteration in 

susceptibility to apoptosis is an important feature of many human cancers.  

The intracellular machinery responsible for apoptosis depends on a family of 

proteases called ‘caspases’ (cysteine proteases with aspartate specificity). 

Caspases are synthesized in the cell as inactive precursors, or procaspases, and 

usually activated by cleavage at aspartic acids by other caspases.  Activation of the 

caspases results further in an amplifying proteolytic signalling cascade. The end 

result of this cascade being irreversible breakdown of the nuclear lamina, cleavage 

of the cellular DNA and ultimately cellular apoptosis (Alberts et. al., 2002; 

Lamkanfi et. al., 2007).  

The caspases cascade can be activated by two main pathways of apoptosis. The 

‘intrinsic’ cell death pathway- which is activated by a very wide range of stimuli, 

including radiation, cytotoxic drugs, cellular stress and growth factor withdrawal.  

This cascade involves the release of proteins, including cytochrome c, from the 

mitochondrial intermembrane space. Cytoplasmic cytochrome c combines with an 

adaptor molecule-  Apaf-1 (Apoptotic protease activating factor 1) and an inactive 

‘initiator’ caspase, procaspase 9, within a multiprotein complex called the 

apoptosome. This leads to the activation of caspase 9 which then triggers a cascade 

of reactions including the cleavage of the caspase from its substrate PARP 

(poly(ADP-ribose) polymerase), resulting in the morphological and biochemical 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/a4754/def-item/a4920/
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changes leading to apoptosis i.e. intracellular signalling mediated by the ‘effector’ 

caspase i.e. caspase 3 (Cory et. al., 2003; Green et. al., 2004; Packham et. al., 2005). 

The second cell-death pathway called the ‘extrinsic’ cell-death pathway, mainly 

functions independently of mitochondria. This pathway involves engagement of 

particular ‘death’ receptors that belong to the tumor necrosis factor receptor (TNF-

R) family and, through the formation of the death-inducing-signalling-complex 

(DISC) (Ashkenazi et. al., 1998), leads to a cascade of activation of caspases, 

including caspase-8 and caspase-3, which in turn induce apoptosis  (Danial et. al., 

2004).  

Successful treatment of CLL aims at effectively targeting the malignant clone to 

induce apoptosis with minimal adverse effects. Chlorambucil and prednisolone 

which are commonly used chemotherapeutic agents for CLL, induce cytotoxic 

activity through the activation of the 'effector' caspases caspase-3 and caspase-7 

(King et. al., 2001). The immunotherapeutic agent Rituximab (monoclonal 

antibody to CD20) which has demonstrated high effectiveness in treatment of CLL, 

has shown to induce apoptosis involving the activation of caspase 9, caspase 3 and 

PARP cleavage via modulation of Mcl-1 (Byrd et. al., 2002).  

  Bcl-2 family proteins play a key role in controlling mitochondrial function 

associated with the ‘intrinsic’ cell-death pathway, either by preventing or 

promoting the release of cytochrome c. Some members of this family, like Bcl-

2 itself or Bcl-XL, inhibit apoptosis at least partly by blocking the release 

of cytochrome c from mitochondria (anti-apoptopic). Other members of the Bcl-2 

family, contrastingly, promote procaspase activation and cell death (pro-

apoptopic). Out of these pro-apoptopic molecules, e.g. Bad, function by binding to 

and inactivating the death-inhibiting members of the family, whereas others, 

like Bax and Bak, stimulate the release of cytochrome c from mitochondria. If the 

genes encoding Bax and Bak are both inactivated, cells are remarkably resistant to 

most apoptosis-inducing stimuli, indicating the crucial importance of these 

proteins in apoptosis induction. The relative expression (or activity) of various 

anti-apoptotic and pro-apoptotic Bcl-2 family proteins is a critical determinant of 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/a4754/def-item/a4839/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/a4754/def-item/a5049/
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apoptosis sensitivity  in cells (Cory et. al., 2003; Kirkin et. al., 2004; Packham et. al., 

2005). 

Many studies have consistently validated that Bcl-2 is over expressed in CLL cells 

(Moore et. al., 2007; Letai 2011). The exact genetic alteration responsible for this 

over expression has not yet been clearly established.  The expression of Bcl-2 and 

Bax and, perhaps more significantly, the relative expression of these functional 

antagonists, is an important variable in CLL. CLL cells have increased Bcl-2/Bax 

ratios (favouring cell survival) compared to normal controls (Pepper et. al., 1997; 

Saxena et. al., 2004). Individual variation in the expression of Bcl-2/Bax correlates 

with apoptosis and clinical outcome including resistance to therapy. For example, 

decreased Bcl-2/Bax ratios are associated with increased sensitivity to cytotoxic 

drugs in vitro and improved responses to chemotherapy in patients (Thomas et. al., 

1996; Pepper et. al., 1997; Moore et. al., 2007).  

Other protein of the Bcl-2 family which contributes to apoptosis control  and over-

expressed in CLL cells, includes the anti-apoptopic molecule Mcl-1 (myeloid cell 

leukemia sequence 1). During apoptosis reaction, Mcl-1 forms a very efficient 

substrate for caspases (Clohessy et. al., 2009). Caspase cleavage of Mcl-1 

simultaneously inactivates the survival function of this protein and converts Mcl-1 

into a cell death-promoting molecule, activating a positive feedback loop that 

results in increased caspase activation (Michels et. al., 2005). Therefore, Mcl-1 acts 

as a molecular switch during apoptosis, converted from a molecular bodyguard to 

assassin, by proteolytic cleavage (Packham et. al., 2005). In CLL, Mcl-1 expression 

has in vitro and in vivo significance and its expression co-relates with the 

expression of other bad prognostic markers of the disease. Additionally, Mcl-1 is 

also a key controller of CLL drug resistance and is an important regulator of 

disease progression and outcome in CLL (Saxena et. al., 2004; Pepper 2008).  

Further regulating the apoptosis pathways are Bcl-2 family members e.g. Puma 

and Noxa which induce apoptosis by binding to and neutralizing the ability of 

antiapoptotic proteins, including Bcl-2 and Bcl-XL (Jeffers et. al., 2003) . The 

important apoptosis regulator protein, p53 up-regulates transcription of these 

proteins in response to cellular stress/DNA damage and involves the activation of 
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caspase 9 signalling cascade (Jin et. al., 2001; Harris et. al., 2005; Vazquez et. al., 

2008). p53 is a transcription factor that induces senescence, cell cycle arrest (at G1 

and/or G2 phase) or apoptosis in response to DNA damage, oncogene activation, 

hypoxia, cellular stress and the loss of normal cell contacts thus preventing 

aberrant cell growth (Giaccia et. al., 1998; Lohrum et. al., 1999). Tumour supressor 

gene encoding the protein p53 or Tp53 is dysfunctional or mutated in cancers and 

regulated by the oncogene MDM2 (Mouse double minute 2). MDM2 is a negative 

regulator of p53 and binds to it with high affinity thus negatively modulating its 

transcriptional activity and stability. Overexpression of MDM2, found in many 

human cancers including CLL, effectively impairs p53 function and therefore 

through uncontrolled cell division and failure to apoptosis induction leads to 

tumourogenesis (Haupt et. al., 1997; Burns et. al., 1999; Vassilev et. al., 2004). 

Studies have identified alternative non-transcriptional mechanism of p53 by 

binding to anti-apoptotic Bcl-2 family proteins at the mitochondrial surface, 

resulting in Bax activation and apoptosis (Mihara et. al., 2003). This direct 

interaction of p53 with mitochondrial antiapoptotic proteins including Bcl-2 is the 

major route for apoptosis induction in CLL cells. p53's transcriptional targets in 

CLL cells include proteins that impede this non transcriptional pathway (Grever 

etal 2007). Treatment-induced p53 activity is predominantly found in the 

mitochondrial fraction of CLL cell extracts and is associated with the antiapoptotic 

protein Bcl-2. Therefore, strategies that block up-regulation of p53-mediated 

transcription may be of value in enhancing apoptosis induction of CLL cells by p53-

elevating drugs (Steele et. al., 2008).  

  Additionally, to the defective intra cellular apoptopic pathways, the extrinsic 

cellular microenvironment plays an important role in CLL cell survival as 

evidenced by the spontaneous in vitro cell death (Burger et. al., 2002; Chiorazzi et. 

al., 2005).  A number of factors, including co-incubation with cytokines, can rescue 

CLL cells from cell death, and the role of these mechanisms is important in the 

understanding of the behaviour of the disease in vivo. Some of these cytokines (e.g. 

IL-1, IL-6, IL-8, and interferon-γ) are known to be produced by CLL cells, and 

presumably can act in an autocrine fashion (Aguilar-Santelises et. al., 1999). T-cells 
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in the CLL patients also produce supporting cytokines e.g. TNFα, IL4 and IL10 

which aid their survival (Jewell et. al., 1994; Mainou-Fowler et. al., 2001) 

In addition to being responsive to cytokine-mediated signals, CLL cells are also 

responsive to cell-mediated signals which help them evade apoptosis. CLL cells 

express a range of adhesion molecules that determine the tissue distribution of the 

cells and regulate the ability to recirculate through different immunological 

compartments. As cells migrate through tissues, they interact with other cell types. 

Some examples of such interactions are those with bone marrow stromal cells, 

direct cellular interaction with CD4-positive T cells  (Tretter et. al., 1998), follicular 

dendritic cells and other cells of the lymph nodes( Herishanu et. al., 2011; Burger 

et. al., 2013). The intra-cellular modulation triggered by the stimulation of the BCR 

is another major feature of the CLL cells. Overexpression of the various anti-

apoptopic protein kinases activated through the BCR ligation is a characteristic of 

the CLL cells (Stevenson et. al., 2011) (discussed further in detail). 

Therefore, in brief, these data suggests it is likely that the accumulation of the 

malignant clone in CLL is at least partly dependent on the dysregulation of 

apoptosis pathways leading to prolonged cell survival. This, however, is not an 

intrinsic function of CLL cells and depends upon continued stimulation by 

cytokines and cell interactions. Strategies to disrupt autocrine and paracrine 

survival pathways may lead to improved clinical management of the disease.  

 

1.5 Treatment  

The necessity of therapy in CLL is dictated by the stage of the disease and 

prognosis. For example expression of ZAP-70 and U IGVH genes indicate poor 

prognosis and these patients  require treatment almost immediately at diagnosis. 

On the other hand in case of patients with a good prognosis e.g. M IGVH and low 

ZAP-70 expression, the 'wait and watch' regime is followed by close monitoring of 

the clinical symptoms.  
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Chemotherapy: Chlorambucil and cyclophosphamide are the common alkylating 

agents used for CLL treatment. These agents induce cell death through p53 

independent pathway (Begleiter et al., 1996).  Combinations of chlorambucil and 

prednisone were considered the benchmark for CLL therapy (Keating et al., 1998). 

Chlorambucil used alone or with prednisone produced initial response rates 

between 60% and 90%, and a complete remission in 60% of patients. Its efficiency 

depends on the dose administered and response criteria (Rai et al., 2000; Robak et 

al., 2000). Chlorambucil usually reduces the WBC count, decreases 

lymphadenopathy and splenomegaly, but rarely returns the bone marrow to 

normal. Randomized, controlled trials begun in the early 1990s demonstrated 

superior response rates, progression-free survival, and quality of life for patients 

treated with fludarabine-based therapy rather than chlorambucil or other 

alkylating-agent regimens (Shanafelt et al.,2012). Fludarabine is a purine analogue 

[monophosphate (Fludara), 2-chlorodeoxyadenosine (2-CDA)], and potent 

inhibitor of DNA repair (Dillman et al., 1989; Keating et al., 1998) and gives higher 

remission rates particularly in patients resistant to the alkylating agents. 

Fludarabine combination therapies, in particular the combination of fludarabine 

and cyclophosphamide (FC), seem to have the potential to yield higher response 

rates than fludarabine alone (O'Brien, 1998). However, all patients eventually 

relapse and the overall prognosis of advanced CLL (Binet stage C, Rai stage III–IV) 

has remained poor, with a median survival of 2–3 years (Byrd et al., 1998). This 

warrants the necessity of new improved therapies. The use of multiple courses of 

purine analogue therapy in patients can cause bone marrow suppression leading 

to anaemia, neutropenia, thrombocytopenia, which ultimately, has limited the use 

of this type of therapy in CLL (Robak et al., 2000; Rai et al., 2000). In addition, 

conventional therapy with purine analogues also leads to drug resistance and the 

disease remains incurable. 

Immunotherapy: is mainly the targeting of receptors on CLL cells via antibody 

dependent cellular cytotoxicity (ADCC), causing direct apoptosis of CD20+ B cells 

and/or clearance of the formed immune complexes (Shaw et al., 2003). The first 

monoclonal antibody (mAb) which was approved for the clinical treatment of CLL 

was Rituximab, directed to the CD20 phosphoprotein. However, clinical trials have 
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observed a low responsiveness in CLL patients to Rituximab treatment, possibly as 

a result of the low density of CD20 on CLL cells. Further studies on the dose-

dependent response of Rituximab showed that tripling the ‘once a week dose 

schedule’ enhanced the response up to 40% (O'Brien et al., 2001). Another study 

has documented that the patients receiving Fludarabine in addition to Rituximab 

had a significantly better progression-free survival and overall survival (Byrd et 

al.,2005).  

Haematopoietic Stem Cell transplantation: Considering the side effects of the 

use of drugs and the response to treatment in patients, other forms of treatment 

also need to be opted for.  Sutton et al., (2011) reported the results of a 

randomized clinical trial exploring the role of autologous stem cell transplantation 

(ASCT) in patients with chronic lymphocytic leukemia (CLL), showing that ASCT 

may increase the response rate and prolong the time to progression but it does not 

result in a longer survival, in comparison with chemotherapy treatment (Sutton et 

al.,2011). Allogenic stem cell transplantation has been studied in clinical trials for 

patients with poor-risk CLL and showed long term minimum residual disease 

(MRD) free survival in 50% of the patient cohort, independent of the genomic 

profiles (Dreger et al.,2010).  

Novel therapies: Therapies to circumvent the complication arising from those 

listed above, are in the process of clinical trials. One such therapy is the use of 

autologous CD19 redirected T cells expression a genetically modified chimeric 

antigen receptor (CART19). A recent study has shown that the use of these 

CART19 cells is highly potent in targeting CD19 (and other targets) through 

transduction of chimeric antigen receptor linked to potent signalling domains. 

Unlike antibody-mediated therapy, these modified T cells have the potential to 

replicate in vivo, and long-term persistence could lead to sustained tumor control 

(Porter et al.,2011).  

Further potential immunotherapeutic targets include proliferating cells such as 

CD38+ B cells as well as BCR-mediated and ZAP-70-mediated signal transducers. 

Targeting the various kinases in the BCR pathways has also received a lot of 

importance and few clinical trials have efficiently shown success in the drugs used 
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for such targeted therapy.
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B-cell receptor (BCR) and its role in pathogenesis of CLL 
 

 

Figure 1. 2: B cell receptor (BCR) complex and the major signalling pathways  

The BCR complex is comprised of the antigen receptors IgM and IgD, associated with two 

polypeptides, Igα and Igß, also known as CD79a and CD79b respectively. Surface 

immunoglobulins are transmembrane molecules, (with the intra-cytoplasmic part only a 

few amino acids long), thus using CD79a and CD79b molecules for signalling through 

(immunoreceptor tyrosine-based activation motifs) ITAMs. (adapted from Choi and Kipps 

2012).  
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 As shown in the Figure 1.2, the BCR complex consists of the surface 

immunoglubulins (IgM or IgD), the associated with polypeptides CD79a and CD79b 

and the intra-cytoplasmic ITAMs within their cytoplasmic tail that initiates signal 

transduction following BCR aggregation (Flaswinkel and Reth, 1994). All mature 

naïve splenic B cells are positive for surface IgM (sIgM) and surface IgD (sIgD), 

while immature B cells express sIgM combined with variable surface expression of 

lgD. This differential expression suggests that sIgM and slgD are quantitatively 

transmitting different signals (Norvell et al., 1996; Packham et al.,2010).  

Initially the src-family protein tyrosine kinases, mainly Lyn and Syk (protein 

tyrosine kinases) PTKs are in proximity with the BCR through the phosphorylated 

ITAMs of resting BCR (Clark et al., 1992; Pleiman et al., 1994). Upon BCR 

stimulation with an antigen followed by receptor aggregation, these kinases along 

with the ITAMs partition into glycosphingolipid-rich microdomains of the plasma 

membrane or 'lipid rafts'(Guo et al.,2001; Cheng et al., 2001). The formation of the 

lipid rafts and receptor aggregation followed by phophorylation of the kinases Syk 

and Lyn, leads to recruitment of downstream PTKs. This activity results in a 

progressive amplification of ITAM phosphorylation and promotes the subsequent 

recruitment and activation of additional effector molecules (Johnson et al., 1995). 

The important effector enzymes include (phosphatidyl 3-kinase) PI3K and 

(phospholipase Cy2) PLCy2. The second messenger (phosphatidylinositol-3,4,5- 

triphosphate) PIP3 is generated by PI3K which then recruits other BCR molecules 

as well as to activate the kinase AKT furthering the signal to activation of 

transcription factor (nuclear factor ĸB) NFĸB. The activation of this factor largely 

transmits a survival/proliferation signal for the cell (Brazil et al.,2001). In parallel 

is the PLC-γ2 activation which leads to the intracellular release of calcium (Ca2+) 

through (inisitol phosphate 3) IP3 and activation of (protein kinase C) PKC through 

(diacylglycerol) DAG, considered to be crucial for the activation of (mitogen-

activated protein kinases) MAPKs. These MAPKs include extracellular signal 

regulated kinase (ERK), c-JUN NH2-terminal kinase (JNK) and p38 MAPK. In 

addition to these two direct pathways, there are a number of other complex 
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signalling pathways activated after antigenic stimulation of the BCR. The final fate 

of the B-cell i.e. survival, proliferation, migration, apoptosis and/or anergy is 

dictated by the result of PTK modulations of the downstream regulators including 

transcription factors. (Dal porto et al.,2004; Kurosaki et al.,2011; Choi and Kipps 

2012; Woyach et al.,2013). 

1.6 Signalling through the B-Cell Receptor in CLL 

There is strong evidence that signalling via the BCR plays a major role in the 

development of CLL and determines the variable clinical behaviour. Chronic active 

BCR signalling due to point mutations in CD79b has recently been identified as a 

key pathogenic mechanism resulting in constitutive NF-κB activation and cell 

survival/proliferation (Davies et al.,  2010). In contrast, CLL cells also have been 

shown to manifest gene expression characteristics of resting B cells and cells from 

the M-CLL subtype have been described as anergic and unresponsive to BCR 

activation (Guarini et al.,  2008). The BCR of many CLL cells share characteristics 

with natural antibody-producing B cells that recognize microbial antigens and self-

antigens, leading to the hypothesis that antigen selection plays a role in the 

ontogeny of CLL (Ghia et al.,  2008). A number of studies have elucidated the role of 

antigenic stimulation in the pathogenesis of CLL. As mentioned earlier, stereotypes 

of BCR observed in CLL cells, the evidence of bacterial and viral infections affecting 

CLL patients (before or after diagnosis) as well as the phenotypic characteristics of 

the CLL cells defining them to be memory cells, all add to the evidence that 

antigenic stimulation dictates the pathogenecity of the disease (Hulkkonen et al.,  

2002; Chiorazziet al.,  2005; Efremov et al.,  2007; Stamatopoulos et al.,  2010; 

Stevenson et al.,  2011; Scupoli et al.,  2012). Further validating the significance of 

the BCR pathways in CLL are the numerous kinase inhibitors that have shown 

success in inducing apoptosis of the CLL cells both in vitro and in vivo through 

clinical trials.  

The major protein kinases, which play an important role in BCR mediated 

signalling and extensively studied as treatment targets in CLL are discussed below. 



44 

 

BTK- (Bruton’s Tyrosine Kinase) BTK is a non-receptor tyrosine kinase and 

member of the Tec family of kinases (Schaeffer et al., 2002). It is an intermediate 

signalling molecule in the B-cell receptor signalling pathway that mediates the 

survival and expansion of both normal and malignant B cells through various 

signalling mechanisms. The importance of BTK in the B-cell receptor signalling 

pathway has been established by direct evidence in humans and in mouse models 

(Buggy et al.,  2012). In humans, mutations in the kinase domain of BTK result in a 

primary immunodeficiency known as X-linked agammaglobulinemia (XLA), a 

disease that occurs only in young boys because the gene coding for the BTK protein 

is located on the X chromosome (Vihinen et al.,  2000). There is experimental 

evidence that BTK plays a critical role in the function and survival of B cells. Mice 

with a mutation in this gene have severe immune defects that mostly affect the B-

cell compartment. BTK is activated upon BCR cross-linking by a two-step 

mechanism involving PI3K and the Src family PTK Lyn (Mohamed et al.,  1999). 

Further to activation of BTK in normal B cells, striking enhancement of 

extracellular calcium influx is also observed which is in turn responsible for 

activating other downstream kinases (Fluckiger et al.,  1998). Evidence exists for 

BTK linking the BCR stimulation to the transcription factor NfĸB activation (Bajpai 

et al.,  2000). BTK is also required for BCR-mediated activation of ERK and c-JNK-

1(Jiang et al.,  1998) which beling to the family of MAPKs. Most importantly, with 

regards to CLL cell survival, the anti-apoptopic molecule AKT, is also dependant on 

BTK for its activation and survival effect (Craxton et al.,  1999). Owing to its role in 

activation of survival kinases,  within the last several years, BTK has become the 

focus of targeted therapies designed to disrupt the activity of the B-cell receptor 

signal transduction pathway in various B-cell malignancies. Ibrutinib, a small 

molecule that interferes with BTK activity, has been shown to disrupt B-cell 

survival in vitro and has demonstrated efficacy in phase I and II clinical trials, with 

particularly encouraging responses and duration of response reported in patients 

with CLL and mantle cell lymphoma (Burger et al., 2013). Ibrutinib, is in phase III 

clinical trials in patients with CLL after showing dramatic therapeutic activity in 

the phase I and phase II clinical trials (Burger et al.,  2013).  
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PI3K - The (phosphatidylinositide 3-kinases) PI3K-induced pathway plays a 

pivotal role in CLL cell survival and growth. PI3Ks generate phosphoinositide 

lipids in response to extracellular stimuli, regulating survival, proliferation, 

differentiation and migration (Manning & Cantley, 2007). Out of the three classes 

of PI3K isoforms, PI3K class I are heterodimers that consist of a catalytic subunit 

which are the 110 kDa (p110α, p110β and p110δ) proteins and a regulatory 

subunit which is the p85. The p110δ along with p85 subunit is highly expressed in 

cells of hematopoietic origin, being predominantly detected in leukocytes (Chantry 

et al.,  1997). Genetic and pharmacologic approaches that specifically inactivate the 

p110δ isoform have demonstrated its important role in B-cell signalling. Antigenic 

binding to the BCR sets in motion the signalling events in which the regulatory 

subunit p85 provides a binding site for the protein Ras, an event indispensible for 

further signal transduction (Domin et al.,  1997; Ringhausen et al.,  2006). PI3K is 

involved in several signal transduction pathways in B cells such as those initiated 

through CD40 signalling, BCR signalling, Toll-like receptor signalling and signalling 

through a variety of cytokines (Aagard et al.,   1996; Andjelic et al.,  2000). It has 

been shown that PI3K activates the serine/threonine kinase AKT/protein kinase B 

(PKB). AKT binds to the products of PI3K, PI 3,4-P2, and PI 3,4,5-P3 and becomes 

itself activated by phosphorylation. In addition to AKT activation, another 

important effect of PI3K signalling is activation of PKC isoforms (Toker et al.,  

1994). PKC is a family of iso-enzymes classified by their dependence on cofactors 

and may be regulated by several independent mechanisms. Both AKT and PKC play 

a role in cell cycle regulation, proliferation and cell survival (Kandell et al.,  1999; 

Miyamoto et al.,  2002).  

It has been shown that PI3K is constitutively active in CLL. Additionally, a 

sustained activation of PI3K/NFĸB pathway is critical for the survival of CLL B cells 

(Cuni et al.,   2004). Also, blocking of activation of PI3K leads to apoptosis of the 

CLL cells, independent of AKT phosphorylation, implicating its important role in 

the CLL cell survival (Ringhausen et al.,  2002).  

Inhibitors to PI3K have shown some success at killing CLL cells. Wortmannin a 

broad range PI3K inhibitor targets CLL cells but has many negative side effects due 
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to phosphorylation inhibition of essential PI3K isoforms (Wymann et al.,  1996). 

On the other hand, specific inhibitor to the isoform PI3K-δ, which is expressed 

exclusively by haematopoetic cells, CAL-101, has recently shown success as a 

therapy in numerous clinical trials  (Hoellenriegel et al.,  2011;  Castillo et al.,  

2012).  

AKT- The serine/threonine kinase AKT, also known as protein kinase B (PKB), is a 

central node in cell signalling downstream of growth factors, cytokines, and other 

cellular stimuli especially implicated in its anti-apoptopic role in malignant cells. 

As mentioned above AKT is a key mediator of the BCR induced signalling pathway 

through PI3K. CLL clones consistently contain activated AKT which plays a pivotal 

role in maintaining cell survival. Sustained activation of AKT is required to drive 

cell-cycle progression of CLL B cells stimulated with CpG oligonucleotides (Longo 

et al.,  2007). The PI3K/AKT pathway controls the expression and function of many 

proteins that are essential for cell survival. These include members of the Bcl-2 

family of proteins, such as proapoptotic Bcl-2 antagonist of cell death BAD or 

antiapoptotic Mcl-1, which can be inhibited or up-regulated by AKT, respectively 

(Datta et al.,  1997; Liu et al.,  2001). In addition, AKT can increase the expression 

of NF-κB target genes, such as Bcl-xL and A1, by activating the (IκB kinase) IKK to 

induce the degradation of IκB (Suzuki et al.,  2009). AKT can also prevent apoptosis 

by directly phosphorylating and inactivating caspase-9 or by inducing the 

expression of distal negative regulators of apoptosis, such as the X-linked inhibitor 

of apoptosis protein (XIAP)(Cardone et al.,  1998; Dan et al.,  2004). In addition to 

being activated by phosphorylation through the PI3K dependent pathway, AKT can 

also be activated in CLL cells through another PI3K-independent pathway 

mediated through the protein kinase Cβ (PKCβ) (Barragan et al.,  2006). Specific 

inhibition of AKT induces extensive apoptosis of CLL cells, which is associated with 

both a rapid loss of Mcl-1 through proteasomal degradation and increased 

expression of the tumour suppression gene p53. Various AKT inhibitors (e.g. MK-

2206) are currently undergoing clinical trials for CLL and have a high therapeutic 

effect even for various other malignancies.  
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MAPK- Cells recognize and respond to extracellular stimuli by engaging specific 

intracellular programs, such as the signalling cascade that leads to activation of the 

(mitogen-activated protein kinases) MAPKs. All eukaryotic cells possess multiple 

MAPK pathways, which coordinately regulate diverse cellular activities running 

the gamut from gene expression, mitosis, and metabolism to motility, survival and 

apoptosis, and differentiation. To date, five distinct groups of MAPKs have been 

characterized in mammals: extracellular signal-regulated kinases (ERKs) 1 and 2 

(ERK), c-Jun amino-terminal kinases (JNKs) 1, 2, and 3, p38 isoforms α, β, γ, andδ , 

ERKs 3 and 4, and ERK5 (Chen et al.,  2011). Although each MAPK has unique 

characteristics, a number of features are shared by the MAPK pathways studied to 

date. ERK are distributed throughout quiescent cells, but upon stimulation, a 

significant population of ERK accumulates in the nucleus. ERK signalling has been 

implicated as a key regulator of cell proliferation, and for this reason, inhibitors of 

the ERK pathway are entering clinical trials as potential anticancer agents (Kohno 

et al.,  2003). BCR-proximal Lyn and Syk kinases induce PLCγ2 phosphorylation 

and Ras activation. Ras binds to and activates Raf kinase that subsequently 

activates MEK1 and MEK2 that lay immediately upstream of ERK (Muzio et al.,  

2008). Additionally ERK is constitutively phosphorylated in more than half of CLL 

cases. CLL cases presenting this signature may be taken as a human model of 

anergic B cells aberrantly expanded (Gauld et al.,  2006; Muzio et al.,  2008). 

Further in the MAPK pathways is the p38MAP kinase which has been found to be 

important in many cellular apoptosis systems. A dependence of p38MAPK activity 

in B-cell–mediated apoptosis has, for example, been demonstrated in B-cell 

receptor (BCR)–mediated apoptosis in the B104 B-cell line (Graves et al.,  1998). 

These data suggests that the p38 MAPK pathway plays a complex role in different 

apoptosis pathways in B cells. Rituximab (anti-CD20 antibody used as a 

immunotherapeutic agent for CLL) activates a CD20-mediated signalling pathway 

that results in apoptosis of the CLL cells. This action has been found to be 

dependent on p38MAPK activation (Pederson et al.,  2002). In vitro, CLL cells are 

usually hyporesponsive to proliferative signals that activate normal B-lymphocytes 

(Fluckiger et al.,  1994). However, CLL cells can be induced to proliferate by certain 

stimuli, such as triggering of the CD40 receptor or stimulation with CpG-
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oligodeoxynucleotides (CpG ODN) (Decker et al.,  2000;2002). The latter mimic 

CpG motifs present in unmethylated bacterial DNA, which are recognized by (Toll-

like receptor 9) TLR9. This interaction activates several downstream signalling 

pathways, including NF-ĸB, phosphatidylinositol 3-kinase (PI3K)/AKT and the 

MAPKs. p38MAPK is also a key mediator in glucocorticoid-induced apoptosis in all 

lymphoid cells (Miller et al.,  2005).  The role of p38MAPK in CLL cell survival and 

apoptosis is paradoxical, whereby, in Mda-7 and IL-24, inducers of apoptosis in 

diverse cancer cells, promote the survival of CLL B-cells through p38MAPK 

activation (Sainz-Perez et al.,  2006), which is in contrast to the apoptosis inducing 

mechanism mentioned before.  

Additionally, constitutive activation of the p38MAPK is also observed in majority of 

CLL cases and is critical for matrix metalloproteinase-9 (MMP-9) 

production, which plays a critical role in tumor-angiogenesis and tumor homing 

(Molica et al.,  2003). Elevated serum levels of MMP-9 which thus correspond to 

the activation of p38MAPK, might predict an early disease progression in CLL and 

survival of CLL cells on bone marrow stromal cells (Ringshausen et al.,  2004).  

 

Thus, the studies on the BCR signalling pathways and the protein kinases therin 

have brought an important contribution to the understanding the patho-

physiology of CLL and contribution to the identification of effective therapies. 

Further discussed in the results section are my own studies elucidating the role 

and activation of these enzymes in response to CD180 and BCR ligation in CLL cells 

and normal B-cells.  

Role of Micro-environment in CLL 
 

When CLL cells are removed from their natural micro-environment they 

spontaneously undergo apoptosis in vitro, suggesting that certain external stimuli 

support growth and survival of CLL cells in vivo, and that these are essential for the 

expansion of the leukemic cells(Ghia et al., 2005),. The in vitro culturing of CLL 
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cells with nurse-like cells, stromal cells and endothelial cells rescue them from 

apoptosis (Ghia et al., 2008). There is increasing interest in the role of pro-survival 

signals provided by micro-environment in CLL. It has been observed that the host 

micro-environment and the resulting interplay between the genetic background 

and environmental influences play a crucial role in disease progression, as well as 

in resistance to treatment and resistance to apoptosis. Examples of interaction 

between CLL cells and lymph nodes (LN) micro-environment are shown in the 

Figure 1.3 below. 
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Figure 1. 3 Model for cross-talk between CLL cells and the lymph node micro-

environment 

Molecules involved in cross-talk between CLL cells and accessory cells in the lymphoid 
tissue micro-environments are shown in the figure. Contact between CLL cells and nurse 
like cells (NLCs) is established and maintained by chemokine receptors and adhesion 
molecules. NLCs express the chemokines CXCL12 and CXCL13. NLCs attract CLL cells via 
the G protein–coupled chemokine receptors CXCR4 and CXCR5, which are expressed at 
high levels on CLL cells. NLCs also express the tumour necrosis factor family members 
BAFF and APRIL, providing survival signals to CLL cells via corresponding receptors 
(BCMA, TACI, BAFF-R). CD38 expression allows CLL cells to interact with CD31, the ligand 
for CD38, expressed by stromal and nurse like cells. Ligation of CD38 activates ZAP-70 and 
downstream survival pathways. Self and/or environmental antigens (Ags) are considered 
a key factor in stimulation and expansion of the CLL clone. Stimulation of the B-cell 
antigen receptor (BCR) complex (BCR and CD79a,b) induces downstream signalling by 
recruitment and activation of Syk and ZAP-70. BCR stimulation and co-culture with NLC 
also induces CLL cells to secrete high levels of the chemokines CCL3 and CCL4, which are 
potent T cell–attracting chemokines. Through this mechanism, CLL cells can actively 
recruit T cells for cognate T-cell interactions with CLL cells. CD154+ T cells are 
preferentially found in CLL pseudofollicles and can interact with CLL cells via CD40. 
Cytokines secreted by T cells or CLL cells, such as IL-4 or tumour necrosis factor α, are 
considered important regulators of CLL cell survival. Collectively, this cross-talk between 
CLL cells and accessory cells results in activation of survival and drug resistance pathways, 
such as those provided by Bcl-2 and Mcl-1  (Burger et al.,2009) 
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Stromal cells, that are found in the tissues admixed with small leukaemic 

lymphocytes (Burger et al.,2006) together with a number of other accessory cells, 

show the capacity to sustain prolonged viability of the leukaemic clone when this is 

placed in vitro for culture (Ghia et al.,2005). Similarly, adherent nurse-like cells, 

though not present in lymphoid tissue but obtained from PB of patients with CLL, 

are also able to protect leukaemic cells from spontaneous apoptosis (Burger et 

al.,2005). The same occurs when activated autologous T cells are co-cultured with 

CLL cells; though this action can be somehow replaced by the presence of T-cell 

derived cytokines (i.e. IL-4) and the exposure to T-cell-related molecules (i.e. 

sCD40L) (Ranheim et al.,1993). Besides rescuing leukemic cells from apoptosis, 

CD40 stimulation can also induce their proliferation and activation as witnessed by 

the up-regulation of several molecules on the cell surface (e.g. CD80, CD95), as well 

as the induction of chemokine production (e.g. CCL-22/MDC, CCL-17/TARC) and 

apoptosis regulators like Survivin (Granziero et al.,2001). Experimental findings 

suggest a scenario where CLL cells infiltrating lymphoid tissues interact with 

activated T cells that influence leukaemic B cell proliferation and provide a short-

term anti-apoptotic support, whilst stromal cells (and other accessory cells, e.g. 

nurse-like cells) provide a long-term support that favours the extended survival 

and relentless accumulation of leukaemic cells (Ghia et al.,2005). These and other 

pieces of experimental evidence indicate that different cellular micro-

environmental components deliver fundamental and specific signals for the 

maintenance and expansion of leukaemic B cells at different time points in the 

natural history of CLL. At the same time, CLL cells are active players in shaping the 

micro-environment according to their needs, seen by the production of selected 

chemokines (i.e. CCL22/MDC and CCL-17/TARC) which recruit activated T 

lymphocytes that will ensure provision of  survival signals (e.g. IL-4 and CD40 

ligation). 

 Historically, CLL has been viewed as an accumulative disease of cells with a defect 

in apoptosis. Consistent with this view, the majority of peripheral blood CLL cells 

are arrested in G0/G1 and show a gene expression profile of resting cells. 

However, recent studies using in vivo deuterated water labelling of CLL cells 

indicate a more important role of tumour proliferation in the progression of CLL 
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than was previously unappreciated (Messmer et al.,2005). LN has been identified a 

site of CLL cell activation and tumour proliferation by comparing the gene 

expression of CLL cells located to different anatomic compartments. Less 

pronounced changes were observed in the BM, suggesting distinct effects of the LN 

and BM micro-environment on the activation of signalling pathways and CLL 

tumour biology (Burger et al.,2006). Also, observed in the same study was that the 

expression of the anti-apoptopic transcription factor NF-kB was more pronounced 

in the LNs, through activation of the BCR signalling pathways, than in the PB cells 

in CLL (Herishanu et al.,2011). Immunohistochemistry for the cell-cycle marker 

Ki67 suggests that CLL proliferation occurs in the BM and secondary lymphoid 

organs, in spots or clusters of cells referred to as ‘proliferation centres’ (PCs). This 

characteristic of PCs in CLL also reinforces the concept of a sustained/persistent 

immune stimulation in CLL. Additionally, the CD38 has been shown to highly 

expressed by the cells in the PCs along with a higher expression of IgM indicating 

the role of these two receptors in proliferation of CLL cells (Soma et al.,2006; 

Deaglio et al.,2010). The signals and interaction of the cells in these PCs govern 

tumour proliferation and cellular migration, but have not been fully elucidated 

because most in vitro systems are not able to support similar environmental 

dynamics completely (Herishanu et al.,2010).  

Chemokine receptors play an important role in coordinating the trafficking and 

organization of haematopoietic and non-haematopoietic cells within various tissue 

compartments and are constitutively expressed in distinct tissue micro-

environments. CLL cells express high levels of the chemokine receptor CXCR4. Co-

culture of CLL cells with marrow stromal cells that secrete CXCL12 induces the 

neoplastic B cells to migrate to and then underneath the stromal cells in a CXCR4-

dependent fashion (Burger et al.,1999).  Similar to marrow stroma, nurse-like cells 

attract CLL cells via CXCR4 and protect CLL cells from spontaneous or drug-

induced apoptosis in a contact-dependent fashion (Burger et al.,2009). These 

observations support a model proposing that expression of CXCR4 by CLL cells 

allows for their recirculation between the blood and the marrow or lymphoid 

tissues, where they receive protective survival signals. Because CXCL12 not only 

attracts CLL cells to supportive micro-environments but also directly stimulates 
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CLL cell survival (Burger et al.,2000), the CXCR4-CXCL12 axis constitutes an 

important therapeutic target in CLL (Domanska et al.,2012; Burger et 

al.,2012). Also, it was observed by that stromal cell-mediated protection from 

spontaneous or Fludarabine-induced apoptosis of CLL cells was partially blocked 

by the use of CXCR4 antagonists suggesting a potential role of CXCR4 antagonists 

in combination with a B-cell targeted therapy in the treatment of CLL (Burger et 

al.,2005; 2010; 2012). Figure 1.4 demonstrates the role of the CXCR4 receptor and 

its interaction with CXCL12 in naïve and Pre-B and Pro-B cell developments 

particularly in the hypoxic environment which is common to all malignancies.  

However, a number of technical restrictions limit further understanding the role of 

micro-environmental influences in CLL. For instance, in vitro studies typically 

analyze PB-derived tumour cells because BM and LN biopsies are often not 

available. In most of the patients with early stage CLL, the tissue biopsies are not 

performed because of the invasiveness of the procedure. Plus, mimicking the 

micro-environment in vitro requires further understanding of the micro-

environment in vivo. The majority of studies are based on the peripheral blood 

cells which is in fact a “snapshot” of the real interactions in the solid tissues. Thus, 

the contribution of the host micro-environment to the proliferation and survival of 

CLL cells in vivo remains insufficiently defined. 
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Figure 1. 4  Model for the CXCR4 chemokine receptor in homing and migration of 

haematopoietic progenitors, B-lymphocyte development, and progenitor 

recruitment to sites of ischemic tissue damage in various haematopoietic 

malignancies  

(adapted from Burger et al.,2006).  
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Toll-like receptors (TLR) as micro environmental sensors 

in CLL 

1.7 Toll-like receptors expressed by normal B cells  

Receptors for pathogen- and damage-associated molecular patterns (PAMPs and 

DAMPs) representing exogenous and endogenous micro-environmental factors 

respectively alongside BCR, are candidates for driving CLL cells. These pattern 

recognition receptors include Toll-like receptors (TLR) and there is increasing 

evidence for a role of both membrane-associated and endosomal TLRs in CLL. The 

10 identified human TLRs and their respective ligands are shown in Figure 1.5. 

TLRs belong to the Interleukin-1 Receptor/Toll-Like Receptor superfamily and 

represent type 1 integral membrane glycoproteins, with molecular weights 

ranging 90-115kD. The presence of an extracellular domain containing leucine rich 

repeats (LRR) and a cytoplasmic toll/IL-1 receptor (TIR) domain, similar to that of 

IL-1, is characteristic of the TLR family   (Shizuo et al.,2003). TLRs recognize 

molecules that are broadly shared by pathogens but distinguishable from host 

molecules (PAMPs), whilst certain TLRs, most commonly TLR2 and TLR4, also 

recognize DAMPs, which are endogenous ligands such as Heat-shock proteins 

(Hsp), High mobility group box protein (HMGB1) or viral endogenous 

glycoproteins (Gp96) (Park .et al.,2004; Asea.et al.,2001). CD14 has been identified 

as a cell surface adaptor molecule which assists the TLR signalling.   

TLRs, apart from LRRs share conserved characteristic cysteine residues (Kumar et 

al.,2009). The last discovered TLR10 is an orphan receptor (unknown ligand); 

however, sequence analysis as well as chimeric receptor experiments suggested 

that human TLR10 and TLR1 share common mechanisms of innate immune 

sensing but not signalling (Guan et al.,2010). The TLR expression pattern is quite 

specific and unique for each cell type and species; in normal human B-cells TLR1, 

TLR2, TLR6, TLR7, TLR8, TLR9 and TLR10 are prevalently expressed. 
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Another receptor that belongs to the TLR superfamily, - CD180/RP105 was first 

identified in splenic murine B cells. Miyake et al., (1995) named this antigen as 

Radio Protective 105 (RP105) as it protected B cells from radiation-dependent 

apoptosis.  This is the main focus of my study, and it will be discussed further.  
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Figure 1. 5 Overview of TLRs-TLR ligands and their signalling complexes in normal 

and malignant human B cells 

TLR2 associates with TLR6 or TLR1 to form receptors that recognize diacylated and 

triacylated lipopeptides, respectively. TLR3 recognizes virally derived dsRNA. TLR4 

recognizes LPS from Gram-negative bacteria, and several putative endogenous ligands. 

TLR5 recognizes bacterial flagellin. TLR7 and TLR8 recognize ssRNA from viruses, 

imidazoquinolines, and nucleoside analogs. TLR9 recognizes CpG DNA from bacteria and 

viruses, immunoglobulin-DNA complexes, and HMGB1. Unlike TLR1, 2, 5, 6, 7/8, and 9, 

which are expressed by normal and malignant human B cells, TLR3 and TLR4 are 

expressed solely by malignant B cells and are shown hatched. A total of 4 signalling 

adaptors are involved in TLR signalling: MyD88, TRIF, TRAM, and TIRAP. TLR signalling 

pathways result in the production of IL-6, IL-10, and type I IFN (Chiron et al.,2008). 
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1.8 TLR-mediated signalling 

The activation of TLR signalling pathways originates from the cytoplasmic TIR 

domains. In the signalling pathway downstream of the TIR domain, a TIR domain-

containing adaptor, MyD88, plays a crucial role in downstream signalling. TLR 

signalling pathways, besides a MyD88-dependent pathway (Figure 1.6.a.) that is 

common to all TLRs, include a MyD88-independent pathway that is specific to the 

TLR3- and TLR4 (FIgure 1.6.b.) (Akira et al.,2001; Takeda et al.,2003).  

It has been suggested that the B cell stimulation and activation in response to LPS 

is brought about by the cooperative functioning of TLR-4 and RP105/CD180, the 

two molecules that share structural homology (Divanovic et al.,2005).  

The two different mechanisms of activation of the signalling pathways, through 

TLR4, are elucidated in Figures 1.6.a and 1.6.b. 
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Figure 1. 6 a MyD88 dependent mechanism of TLR-4/MD-2 signalling 

The TLR-4/MD-2 forms a complex with soluble CD14. This complex binds to LPS and 
recruits the myeloid differentiation protein (MyD88) molecule, TIRAP (TIR-containing 
adaptor protein), TRIF (TIR-containing adaptor protein inducing interferon ß) and TOLLIP 
(Toll-interacting protein).This leads to the attachment of IRAK4 to the receptor-protein 
complex. This binding of IRAK4 promotes the transphosphorylation of IRAK1. The 
phosphorylation results in the attachment of IRAK1 to TNF receptor-associated factor-6 
(TRAF6). The IRAK1- TRAF6 complex is functional and signals the activation of various 
molecules which eventually lead to the release of NF-κB. This NF- κB enters the nucleus 
and initiates transcription. The IRAK1-TRAF6 also cause the activation of ERK, JNK, and 
p38 MAPKs kinases. The binding of LPS to the TLR-4/MD-2 also activates PI3 kinase. 
These molecules bring about phosphorylation which activates various second messengers 
which in turn activate AKT. This AKT is important for NF- κB activity in the nucleus. The 
NF- κB along with ERK, JNK, p38 and AKT inhibit the apoptotic signal in the B cells 
(Medzhitov et al.,2001; Takeda et al.,2003; Singh et al.,2003).  
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Figure 1.6.b MyD88 independent mechanism of TLR-4/MD-2 signalling 

The TLR4 also functions in the absence of MyD88. The TRIF-related adaptor molecule 
(TRAM) binds to the cytoplasmic domain of TLR4. A molecule called TRIF then binds to 
this TLR4-TRAM complex formed. TRIF further activates IFN regulatory factor 3 (IRF3) 
and NF- κB through a series of activation steps. The TLR4-TRAM-TRIF complex binds to 
the TRAF6 and RIP1 which activate NF- κB and translocate it into the nucleus. In a parallel 
pathway, the TRAF family member-associated NF-κB activator (TANK) and IκB kinase 
(IKK) bind to the complex which phosphorylates IRF3. This activated IRF3 translocates 
into the nucleus.  In the nucleus, NF-κB and IRF3 promote the activity of IFNß. This 
ultimately inhibits apoptosis of the B cells (Medzhitov et al.,2001; Takeda et al.,2003). 
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1.9 Toll-like receptors in CLL 

We are only at the beginning of a large-scale investigation of possible roles of TLRs 

as environmental sensors in CLL and information is scarce. Some reports indicated 

that CLL cells display the same pattern of TLR expression as normal B-cells, yet 

with overexpression of TLR9. Furthermore, TLR7 and TLR9 appear to be 

functional and liable to respond to ligands, respectively imidazoquinolines  and 

CpG-ODN, thus potentially opening new therapeutic approaches (Grandjennete et 

al.,,2007). 

TLR expression repertoire of freshly isolated CLL cells appeared to be similar to 

the pattern described in B-cells from tonsils and in memory B-cells and is 

unrelated to disease stage, mutational status of IGHV genes, expression of CD38 or 

ZAP70 (Bernasconi et al.,, 2003; Bourke et al.,, 2003).  

Since a number of stimuli from the micro-environment play a role in the survival 

and proliferation of CLL cells, the idea that TLR ligands play a similar role in CLL is 

intriguing. TLR9 ligands have been previously shown to induce an  immunogenic 

phenotype in CLL cells as defined by the expression of costimulatory molecules 

and specific cytokines (Spaner et al., 2007). Muzio et al.,(2008) demonstrated that 

TLR ligands for TLR1/2, TLR6/2 and NOD2 are capable of inducing activation of 

CLL cells determined as an increase in CD25 and/or CD86 expression. 

TLR7 ligands were shown to enhance CLL cell sensitivity to chemotherapy and 

immunotherapy (Shi et al.,, 2007; Spaner & Masellis, 2007), and to sensitize them 

to in vitro apoptosis (Spaner et al.,2006; Grandjenette et al., 2007). On the other 

hand, a heterogeneous response was observed when CLL cells were exposed to 

TLR9 ligands (CpG-ODN) and analysed for apoptosis and/or cell proliferation. In 

some cases an apoptotic effect was observed while in others an initial triggering of 

proliferation was detected (Decker et al.,2000,2002; Castro et al.,, 2006; Longo et 

al.,2007) suggesting that TLR9 ligation may exert both a “pro-tumour” and/or 

“anti-tumour effect”.   

 A model has been proposed, in which the co stimulation of three different signals 

derived from BCR, CD40 and TLR is required to induce full activation, proliferation 
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and differentiation of naive B-cells (Ruprecht et al.,2006). It was shown that a 

specific culture system using CpGs, together with sequential steps for T-cell-

independent activation of naive human B cells, can induce plasma-cell 

differentiation (Huggins et al.,2007) 

CLL is often associated with an increased frequency and severity of infections. It 

was suggested that common infections may play a role in CLL aetiology which 

could be due to underlying immune disturbance in CLL patients, and/or to a direct 

effect of microbial antigens on the leukaemic clone. Given all this, one could 

hypothesize that inflammation or autoimmunity mediated by distinct TLRs may 

also play a role in regulating the development, progression and/or accumulation of 

CLL. Indeed, in mouse models of CLL the lack of the inhibitory receptor TIR8, 

which allows TLR-mediated stimulation, triggers leukaemia progression in vivo 

(Bertilaccio et al.,2011). Since TLRs can improve immune response but may also be 

involved in modulating tumour cell proliferation or apoptosis, the possibility that 

TLR activity may shuttle between defence from and promotion of leukaemic 

growth has to be taken into account. All the data available also supports the 

hypothesis that in addition to endogenous micro environmental factors, foreign 

microbial components may have a role in sustaining the malignant clone also in 

vivo. However, it is yet unclear whether TLRs contribute and to what extent to 

early or late phases of the natural history of CLL.  

CD180/RP105 in B-cells and CLL cells 
 

CD180/RP105, has been reported to contribute significantly to specific 

phenotypical and functional characteristics of B cells and CLL cells (Porakishvili et 

al.,2005; 2011). The molecule CD180 was originally identified on human B cells by 

a monoclonal antibody (mAb) designated Bgp95 (Valentine et al., 1988). 

Subsequently, CD180 was found on naive B cells but not on germinal center (GC) B 

cells (Otipoby et al., 2002). As I mentioned above, anti-RP105 cross-linking 

promoted murine B-cell proliferation as well as resistance against radiation- and 

dexamethasone-induced apoptosis (Miyake et al., 1995). Kobe and Deisenhofer, 
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(1994) suggested the involvement of RP105 in protein-protein interactions, such 

as cell adhesion or receptor-ligand binding and piqued interests in its function in B 

cells.  

1.10 CD180/RP105 structure and function 

CD180 is the human analogue of the murine surface receptor RP105 sharing 74% 

sequence homology. It is included in the TLR family since it shares structural 

similarity with the TLRs. It is homologous to TLR4 but lacks the intracellular TIR-

like domain (Miyake et al.,1995; Divanovic et al.,2007). CD180 is a type I 

transmembrane protein of 661 amino acids (105 kDa) comprising of 22 tandemly 

repeated extracellular leucine-rich repeats (LRR) and a short cytoplasmic domain 

of 6 to 11 amino acids. Conserved cysteine residues are also present which are 

essential for signal transduction through RP105/CD180 (Figure 1.7) (Miyake et al., 

1995; Muira et al.,1998; Divanovic et al., 2007). Fluorescence in situ hybridization 

(FISH) on the sequence revealed the location of murine and human RP105 gene to 

be chromosome 5q12 (Madzhitov et al.,2001).   
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Figure 1. 7 structure of CD180 on cell surface.  

CD180 is a 105-kDa type1 membrane protein of the TLR family. The extra-cellular motif 

contains 22 LRRs and conserved cysteine residues. It is physically associated with MD-1. 

The intra-cellular tail is very short with only 6 amino acids and absence of adaptor 

signalling molecule.  
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CD180 is an orphan receptor (unknown natural ligand), expressed on various cells 

of the immune system including macrophages, peripheral blood monocytes and 

dendritic cells, naive and mature B cells and marginal zone/mantle zone B cells but 

not on germinal center (GC) B cells (Otipoby et al.,2002; Divanovic et.al,2005; 

Nagai et al.,2012). CD180 is physically associated with molecule MD-1 which is 

indispensable for its cell-surface expression (Figure 1.7) and analogous to 

TLR4/MD2 complex. MD-1 plays an important role in cell surface expression of 

CD180 such that without MD-1, the majority of human CD180 is held in cytoplasm 

without being expressed on the surface (Miura et al.,1998). It was shown that MD-

1 down-regulation with the antisense oligodeoxynucleotides led to impairment in 

LPS-induced CD80/CD86 up-regulation on bone marrow-derived dendritic cells 

indicating also its importance in the function of the CD180/MD-1 complex 

(Gorczynski et al., 2000). Murine B-cell responses to LPS binding and activation in 

absence of MD-1 were impaired (Miura et al.,1998; Ogata et al.,2000). Murine B 

cells require the signal through CD180/MD-1 and also through TLR4/MD-2 for 

CD86 (B7.2) upregulation, proliferation, and antibody production (Nagai et 

al.,2012).  

In antigen presenting cells, LPS binds directly to MD-2 to form a LPS/MD-2 

complex which then associates with TLR4 to initiate signalling. However, the co-

expression of CD180/MD-1 inhibits LPS-TLR-MD-2 complex formation thus 

providing a direct evidence of CD180/MD-1 physiological negative regulator of 

TLR4 responses (Divanovic et al.,2007).  

On the other hand, in murine splenic marginal zone (MZ) B cells, Lipid A moeity of 

LPS (TLR4 ligand) plus CD180 stimulation induces massive proliferation and 

expression of Bcl-xL and c-Myc which in turn contribute to TLR4-mediated anti-

apoptotic responses in MZ B cells.   

Importantly from the point of CLL studies it has been shown that B cell 

lymphoblasts stimulated with anti-CD180 mAb underwent apoptosis after cross-

linking of surface IgM. In B cell lymphoblasts activated through IgM, co-ligation of 

Fc gamma receptor IIB (FcγIIB) aborted the downstream signalling.  Contrastingly, 

in CD180-stimulated blasts, co-ligation of FcγIIB with sIgM augmented, rather than 
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aborted, signalling. This response was specific to CD180 blasts and not comparable 

to those activated through anti-CD40 (Yamashita et al.,1996). Anti-CD180 mAb 

induced strong polyclonal activation, proliferation and Ig production (mainly IgG1 

and IgG3) in mature/marginal/transitional B cells (Chaplin et al.,2011). More 

recently, it has been shown that CD180/MD-1 complex is indispensable for 

TLR4/MD-2-dependent proliferation and IgM-secreting plasma cell differentiation 

of MZ B cells (Nagai et al.,2012).  

1.11 CD180-mediated signalling in normal B cells 

As previously discussed, a number of studies demonstrated that CD180 has a role 

in B-cell survival, activation (assessed by up-regulating CD86), proliferation 

and/or differentiation.  However, the mechanisms or pathways through which the 

receptor signals are not yet sufficiently understood.  

Since CD180 does not have a functional cytoplasmic signalling domain, it cannot 

independently propagate an intracellular signal. It has to therefore recruit or 

converge with other receptor pathways. As mentioned in section 2.1 (Figures 1.6.a, 

b) all TLRs have an intracellular TIR domain and an adaptor molecule Myd88 

which activates the various downstream PTKs. The functioning of CD180 is, 

however, is not regulated by MyD88 but by CD19. This is consistent with the fact 

that CD19 deficient human B cells show diminished proliferation following CD180 

ligation. In mice the binding of LPS to the CD180/MD-1 complex results in the 

phosphorylation of CD19. This leads to the translocation of CD19 into the lipid 

rafts where the Src kinase Lyn is located. The translocated CD19 in turn activates 

the signalling molecules Lyn and Vav. CD19 forms a bridge between the interaction 

of Lyn and Vav. Lyn and Vav interaction is considered crucial for JNK activation. 

Importantly, in view of this study, PI3K and NF-κB activation by CD180 binding 

was shown to be independent of CD19 (Figure 1.8 ). (Yazawa et al., 2003). 

The LPS binding to RP105/MD-1 also phosphorylates PI3-kinase which recruits 

Btk (Bruton tyrosine kinase) to the cell membrane which causes the Ca2+ 

mobilization to the extracellular region. The Ca2+ mobilization is important for the 

phosphorylation and translocation of NK-κB to the nucleus although  Btk can be 
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activated by Lyn. Moreover, CD19 is not required for the CD180 induced Ca2+ 

mobilization. The proteins JNK, NK-κB, p38MAPK and ERK together induce a signal 

to prevent apoptosis, thus explaining partly the role of CD180 in cell survival 

(Yazawa et al.,2003; Hebeis et al.,2005; Divanovic et al.,2007). Another CD180 

mediated pathway study demonstrated that in addition to Lyn, protein kinase C β 

I/II (PKCβI/II), and Erk2-specific mitogen-activated protein (MAP) kinase (MEK) 

are essential and probably functionally connected elements of the CD180 mediated 

signalling cascade in B cells (Chan et al.,1998).  
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Figure 1. 8 Signalling pathway for CD180/RP105  

RP105/CD180 on binding to its ligand, induces Lyn activation and CD19 phosphorylation, 
which leads to augmentation of Lyn activity and mediates interaction of Lyn with Vav, 
leading to activation. (adapted from Yazawa et al., 2003). 
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Various studies have focused on the expression of CD180 on B cells in different 

diseases. The expression of CD180 on B cells of systemic lupus erythematous (SLE) 

patients was lesser than its expression on B cells of rheumatoid arthritis patients 

There was no significant difference in the expression of CD180 on the B cells of 

rheumatoid arthritis and normal healthy patients (Koarada et al.,2001). There was 

a significant loss of CD180 expression on B cells in dermatomyositis, whereas 

polymyositis patients have similar levels of CD180 to those of the normal subjects 

(Kikuchi et al.,2001). More recently, Miguet.et al., (2012) showed that circulating 

cells from marginal zone lymphoma (MZL) exhibited strong surface expression of 

CD180, significantly higher than that by normal B-cells. This study identified 

CD180 as the first positive immunological marker for MZL, able to distinguish MZL 

from other B cell malignancies (Miguet et al.,2012).  

1.12 Expression patterns and function of CD180 on CLL cells 

Our group at the University of Westminster and UCL was the first to demonstrate 

that CD180 was heterogeneously expressed on approximately 2/3 of CLL samples 

(Porakishvili et al., 2005).   

Significantly higher expression of CD180 was observed on M-CLL cells. In contrast, 

the expression of sIgM was significantly higher on U-CLL cells. The research group 

further demonstrated that  approximately half of CD180+ samples responded to 

ligation with anti-CD180 mAb by activation (upregulation of CD86), cycling 

(upregulation of Ki-67), and reduced basal apoptosis (assessed by changes in 

mitochondrial membrane potential) (Porakishvili et al.,2011). These CLL clones 

were termed responders (R). In contrast, CD180+CLL samples that failed to 

respond to anti-CD180 mAb by activation and cycling were termed non-

responders (NR). CD180 ligation delivered a comparable, or superior, to CD40 and 

IL-4 activation, survival, and cell cycling signal for both normal B cells and CLL 

cells. We further showed that the defect in activation of the unresponsive 

CD180+ CLL clones following ligation of CD180 is downstream of a ZAP70/Syk-

dependent signalling pathway (Porakishvili et al.,2011). 
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Aims and hypothesis 
 

The working hypothesis of the study undertaken was that since CD180 plays an 

important role in interaction of CLL cells with their micro-environment it may 

contribute to activation and expansion of leukaemic clones, in vivo, in lymph nodes 

and bone marrow within “proliferation centers” (PCs). CD180 ligation with 

putative endogenous or exogenous ligand would therefore contribute to the pro-

survival intracellular signalling in CLL cells. To this end CD180 could act as co-

stimulatory molecule together with CD40/CD40L and cytokines to provide signals 

for CLL cell expansion and survival.  

Since CLL cells receive the major pro-survival stimuli from BCR, interaction 

between CD180 and BCR-mediated signalling pathways were studied with an aim 

to investigate the regulatory effects of CD180-signalling on BCR. 

The major aims of this study were: 

1. To assess the activation of intracellular protein kinases in CLL cells 

following CD180 ligation; 

2. To establish the modulatory effect of CD180 engagement on the survival of 

CLL cells; 

3. To establish putative interactions between the CD180 mediated and the 

BCR induced signalling pathways in CLL; 

4. To study the expression of CD180 in control and CLL lymphoid tissues. 
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Chapter 2 Materials and methods 
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2.1 Patients 

Eighty-five CLL patients, aged between 39-90 years, were included in the study. 

Patients were mainly Binet stages A and Rai Stages – Low Risk. The stages and 

white blood cell counts of patients are shown in Table 2.1. Forty two patients were 

M-CLL and thirty-six were identified as U-CLL. The genotype of the remaining 

seven patients was unknown. The most common chromosomal aberration 

detected was 13q deletion (n=14) and 17p deletion (n=14). Three patients were 

detected with trisomy 12 chromosomal aberration. No chormosomal abberations 

were detected for the remaining fifty four patients.  Patients were considered to be 

untreated if they had received no treatment during the 6 months prior to the study. 

Fourty eight patients during the course of the study underwent treatment with a 

variety of therapeutic agents including chlorambucil (n=7), fludarabine (n=6), 

alemtuzumab (n=33) and rituximab (n=2).  

The control B cells were age matched and collected from prior frozen samples at 

the laboratories in Feinstein Institute for Medical Research, USA (courtsey of Dr. 

Nicholas Chiorazzi).  

The sample collection from and immunohistochemical staining (for the lymph 

nodes, bone marrow and tonsils) was performed at the laboratory of Dr. Teresa 

Marafioti at UCL department of Pathology. This work was undertaken as a 

collaborative project and under complete guidance of Mrs. Jennifer Paterson.  

Ethical approval was obtained (both for the blood and solid tissue samples) 

according to the ethical committee at University College London Hospital (UCLH) 

NHS trust and informed consent from the patients themselves who were under the 

care of Dr. Amit Nathwani. Additionally, the University of Westminster ethical 

committee approval was obtained according to the MTA (Material Transfer 

Agreement) with UCL. In the USA, Institutional Review Board of the North Shore–

Long Island Jewish Health System and the Feinstein Institute for Medical Research 

ethically approved the studies undertaken.  
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Table 2.1 CLL stages of the patient cases studied and the co-responding WBC 

counts 

Rai Stage and Binet Stage Number of Patients WBC count x109/L 

Range 

Rai- Low Risk 

Binet stage A 

33 

8 

4.21-100.6 

Rai- Intermediate Risk 21 6.6 – 196.0 

Rai- High Risk 12 7.1 – 200.0 

 

2.2. Isolation of peripheral blood mononuclear cells (PBMCs) in 

the density gradient 

Ten millilitres of whole blood was taken from CLL patients into heparinised test-

tubes by specially qualified staff. Hanks’ buffered salt solution (HBSS) and 

Histopaque 1077 (Sigma, U.K.) density medium were allowed to equilibrate to 

room temperature before the experiment. After dilution of the samples in equal 

volume of HBSS, 6-8 ml of sample was carefully layered onto 3 ml density medium. 

By centrifugation (5810 R centrifuge Eppendorf, U.K.) at 400g (30 min, room 

temperature), the samples were separated and (peripheral blood mononuclear 

cells) PBMCs were collected by aspiration of the interphase. The cells were washed 

in 10 ml of HBSS, by centrifuging for 15min, 400g at 4°C. After discarding the 

supernatant the cells were washed again with 5 ml Roswell Park Memorial 

Institute 1640 (RPMI) (Gibco, U.K.) supplemented with 10% Foetal bovine serum 

(FBS) (Sigma, U.K.) by centrifuging for 10min, 400g, 4°C. The supernatant was 

discarded, the cells were re-suspended in 1ml of RPMI-1640 (supplemented with 
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10%FBS), counted in a  haemocytometer and the concentration of  cells adjusted to 

the required for each experiment. 

2.3 Isolation of B-CLL cells by positive selection  

After counting, the cells were centrifuged at 400g for 5 min at 4°C, resuspended in 

5mL iMAC buffer (Miltenyi Biotec, USA) composed of phosphate buffered solution 

(PBS) supplemented with 0.5% bovine serum albumin (BSA) and 2μM EDTA 

(Sigma, USA) and washed by centrifugation for 10 min, 4°C at 450g. 80μL of iMAC 

buffer and 20μL of CD19 multisort microbeads (Miltenyi Biotec, USA) were added 

for every 107 cells and incubated at 4°C for 15 min. Following incubation, 10mL of 

iMAC buffer was added to the mixture and the cells were centrifuged at 450g for 7 

min, 4°C. Excess fluid was removed and 0.5mL of iMAC buffer was added to enable 

the re-suspension of the cells by gentle tapping of the tube. The iMAC column 

(Miltenyi Biotec, USA) was washed with 0.5mL of iMAC buffer and the cell 

suspension was carefully pushed through followed by three washes using each 

time 0.5mL of MAC buffer. Cells were centrifuged at 450g for 5 min at 8°C, re-

suspended in 1mL of RPMI-1640 and counted with haemocytometer. The purity of 

the B-CLL cells, ascertained by staining with PE-Cy5-conjugated mouse anti-human 

CD19 mAb (BD biosciences, USA) and analysed by flow cytometry with BD 

FACSVerseTM  using BD FACSuite™ software (Becton Dickinson Immunocytometry 

Systems, USA ). This was found to be 95% or greater for each selection. 

2.4 Phenotyping of CLL cells (peripheral blood and tissues) and 

normal B-cells 

Into each well of a 96 well round bottomed microplate (Nunc, Fisher Scientific, 

U.K.) 200µl of PBMC suspension was distributed at a concentration 1x106/ml. Plate 

was centrifuged at 400g for 5min at 4°C to concentrate the cells and supernatant 

discarded. Into each well, 20µl of 2mg/ml human immunoglobulins (Ig) (Sigma 

Aldrich, U.K.) was added in order to block any non-specific binding via Fc-

receptors. The microplate was incubated on ice for 20min and cells washed with 

200 µl HBSS by pipetting and centrifuging for 5 minutes at 400g (repeated twice). 

20µl of 20µl/ml IgG1 isotype control (BD Pharmingen, U.K.) was added in the first 
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well followed with 20µl of primary (unconjugated) mouse antibodies in the next 7 

wells to the following receptors: anti-CD180 (BD Pharmingen, U.K.), anti-IgM (BD 

Pharmingen, U.K.), anti-CD79b (Fitzgerald, U.S.A.), anti-CD38 (Fitzgerald, U.S.A.), 

anti-CD86 (Clone Bu63, a gift from Prof. B. Chain, UCL, U.K.), anti-IgD (Sigma, U.K.) 

and anti-CD40 (a gift from Prof. E. Clarke, University of Washington, Seattle, U.S.A.) 

for a final concentration of 20µl/ml. The plate was  incubated on ice and in dark for 

30min followed by washing the cells twice with HBSS (same as above). As the 

secondary antibody, 20µl of FITC-conjugated rabbit anti-mouse Ig (Dako, U.K.), 

was optimally diluted 1:15 in Phosphate Buffered Saline solution (PBS) (Sigma, 

U.K.) and was added into each well. The plate was incubated in the dark on ice for 

30min, centrifuged at 400g and cells were washed twice as before. To block any 

free rabbit anti-mouse F(ab’) sites, the cells were further incubated with 20µl of 

mouse serum (Dako, UK) for 30 minutes, (1:15 diluted in PBS), centrifuged, 

supernatant discarded, and stained with 15µl of PE-Cy5-conjugated mouse anti 

human CD19 mAb (BD Pharmingen, U.K.). 

Cells in each well were fixed with 200µl of 2% Paraformaldehyde (PFA)(Sigma, 

U.K.) in PBS and stored (not more than 4 days) at 4°C until analysis by flow 

cytometry using Cyan (Beckman Coulter, UK) flow cytometer and Summit software 

v4.3. Alternatively, if the flow cytometry analysis was performed instantaneously, 

200µl of HBSS was added in PBS into each well prior to the analysis. The results 

were expressed as percentages of positive cells as well as Relative binding sites 

RBS/cell as previously described (Guyre et al., 1989; Porakishvili et al., 2005). This 

is a method of evaluation of the level of the expression of a cell surface molecule, 

reflecting its density on the cell membrane. Briefly, the number of secondary 

antibody-binding sites (RBS) per cell versus isotype control was determined by 

comparison with the mean fluorescence intensities to a standard curve generated 

with fluorescent microspheres (Sphereotech, USA or Dako cytomation, UK) 

containing beads with five different levels of fluorochrome molecules per bead as 

described earlier (Porakishvili et al.,2005). In some cases the Relative Mean 

Fluorescence Intensity (RMFI) was used as a measure of positivity (RMFI= MFI of 

sample/MFI of Isotype control).  
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2.5 Assessment of the expression of CD86 and Ki-67 

200µl of cell suspension at a concentration 1x106 cells/ml in RPMI+10%FBS were 

distributed into a 96-well flat-bottom microplate (Nunc, Fisher Scientific, U.K.). 

Under sterile conditions 8µl of anti-CD180 monoclonal antibody (mAb), sodium 

azide free stimulatory (clone G28.8, a gift from Professor Edward Clark, University 

of Washington, Seattle, U.S.A.) was added to wells to stimulate CLL cells, whilst the 

control wells were left without additives, followed by 72h incubation in 5% CO2 at 

37°C.  Upon incubation the cells were then transferred to 96 well round-bottom 

microplate (Nunc, Fisher Scientific, U.K.) while slowly acclimatizing them to room 

temperature and  washed twice in HBSS at 400g, 5min, 4°C, and the supernatant 

discarded. The cells were stained with 10µl of PE-Cy5 conjugated anti-CD19 mAb 

(BD Pharmingen, U.K.) and 10µl of PE conjugated anti-CD86 mAb (eBiosciences, 

U.K. ) and incubated on ice in the dark for 30min. The cells were washed twice in 

HBSS by centrifuging at 400g, 5min, 4°C.  

In separate experiments following 72h long incubation and washing cells were 

permeabilized and fixed using Cytofix/Cytoperm reagent (BD Biosciences,U.S.A.). 

8μL of FITC conjugated IgGI isotype control or 8μL of FITC conjugated anti-Ki-67 

mAb (BD Pharmingen, U.S.A.) were added to the designated wells and the plate 

incubated for 30 min on ice in the dark. Delayed washing for intracellular staining 

was carried out by adding 200μL of PBS wash buffer and leaving the plate on ice 

for 15 min prior to centrifugation.    

Finally the cells were re-suspended in 200µl of 2% paraformaldehyde (PFA) and 

stored in the dark at 4°C until Flow Cytometry analysis was performed. The 

percentages of CD86+ or Ki-67+ cells were calculated, by gating on CD19+ cells.   

2.6. Detection of intracellular phosphorylated protein kinases:  

2.6.1 by flow cytometery  

200µl of isolated PBMCs from each patient at a concentration of 1x106 cells/ml in 

RPMI+10%FBS were added to 4x4 wells of a 96 well flat bottom microplate. Under 

sterile conditions 8µl of sodium azide free stimulatory anti-CD180 mAb (clone 
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G28.8, a gift from Professor Edward Clark, University of Washington, Seattle, 

U.S.A.) was added to 2x4 wells with the cells.  The plate was incubated at 37°C, 5% 

CO2 for 30 min (short-term cultures) or for 24h (long-term cultures). In some 

experiments, the cells were incubated with anti-CD180 mAb for 15 min followed 

by the addition of anti-IgM antibodies (goat F(ab’)2 anti-human IgM; Southern 

Biotech, U.S.A) and incubated for another 15 minutes or 24h. Following incubation 

cells were washed twice in 200µl HBSS, centrifuging at 400g, 5min, 4°C, discarding 

the supernatant and vortexing the plate. The cells were then transferred to 96 well 

round-bottom microplate. 10µl of Cy5-conjugated CD19 mAb were added to each 

well and incubated in the dark, on ice for 30minutes followed by two washing 

steps performed using 200µl HBSS. For fixation, 70µl of solution A of the Fix/Perm 

Kit (Caltag  Laboratories, U.S.A.) were added to each well and incubated in the dark 

at room temperature for 15min. The cells were washed once with HBSS as before. 

70µl of permeabilisation solution B of the Fix/Perm kit was applied and incubated 

in the dark at room temperature for 15min. The cells were centrifuged at 400g, 

5min, 4°C, the supernatant discarded, and the plate vortexed. The following 

antibodies were applied: 10µl of Alexa Fluor 647 conjugated anti-ZAP70/Syk (p) 

(Cell Signalling, U.S.A.), FITC conjugated anti-ERK(p) (BD Pharmingen, U.K.), FITC 

conjugated anti-p38MAPK(p) (Cell Signalling, U.S.A.), FITC conjugated anti-AKT(p) 

(Cell Signalling, U.S.A.), Phospho-Btk (Tyr223)PE  conjugated (Cell signalling, 

U.S.A) and incubated in the dark, on ice for 30min. After incubation the cells were 

washed as above. Finally the cells were fixed with 200µl 2% PFA and stored in the 

dark at 4°C for analysis by Flow cytometry, for no longer than 24h.  

2.6.2  by Immunoblotting 

Upon stimulation of CLL cells as described in 2.6.1 but at a higher concentration of 

107 cells/ml, cultures were centrifuged in 1.5ml tubes (450g, 5min) and the 

supernatant discarded. Cell pellet was then washed with 1ml of HBSS as above and 

re-suspended in approximately 80 µl of whole cell lysis solution including 1µl of 

PMSF (phenylmethanesulfonylfluoride, Sigma, U.K.) diluted in Dimethyl sulfoxide 

(DMSO, Sigma, U.K.) and 1 µl Protease Inhibitor cocktail (PI) (Sigma, U.K.). The cells 

were centrifuged for 10 min at 17000g. Carefully supernatant was pipetted taking 
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care that the DNA pellet does not contaminate the protein sample. The protein 

solutions were then transferred to separate 1.5ml centrifuge tubes and stored at -

80°C until further procedures. 

20µl of the protein samples extracted from CLL cells as above, were added to a 

10µl of Loading dye mix containing 7.5 µl loading dye, (Invitrogen,U.K.) and 2.5 µl 

1M Dithiothreitol (DTT) (Sigma, U.K.). For assaying molecular weights of the 

proteins, we used the High-Range Rainbow Molecular Weight Markers HMW 

(RPN756) (Invitrogen, U.K.) with the loading dye and 10µl water as above. The 

samples were heated at 70°C for 10 mins in heat blocks and were ready to be 

loaded on the pre-casted 1% gel (4-12% tris glycine gels EC6035BOX) (Invitrogen, 

U.K.). The samples were loaded and the gel was run at 125V, 40mA, 10 w for 1 

hour in the tank filled with MOPS running buffer (Invitrogen, U.K. filled). 500 µl of 

anti-oxidant (Invitrogen, U.K.) was also added to the buffer. 

For protein transfer 200 ml of transfer buffer was used per gel cassette (400ml 

methanol, 150ml distilled water and 200 µl anti-oxidant). A 3mm filter paper 

(Whatman, GE Healthcare, U.K.) soaked in the transfer buffer was placed on the 

isolated gel followed by a piece of wetted HYBOND (Amersham, U.K.) membrane. 

The gel was placed in the ‘Invitrogen wet transfer system’,  the cassette was 

covered with the transfer buffer and the tank attached to the power pack to allow 

the transfer of protein for 1 hour at 25V, 125mA, 15W. 

After the transfer, the HYBOND membrane was removed and stained with Ponceau 

S (Sigma, U.K.) for 30 seconds, followed by washing the membrane with wash 

buffer and  blocking with FCS and Polyvinylpyrrolidone (Sigma, U.K.) diluted 1:10 

in 10X TBS for 40 mins. The following primary unconjugated antibodies were then 

added to blocking buffer at the optimal concentrations along with 0.1% Sodium 

Azide and incubated overnight:  The next day, the blot was washed with the 

washing buffer and incubated with the secondary horse-radish peroxidase (HRP) 

conjugated  antibodies to pAKT, pp38MAPK, pErk, Mcl-1, pP13K, Bcl-2, Bcl-xL (all 

from Cell Signalling, USA) for 2 hours and washed. The visualization of the protein 

bands was performed with Enhanced 



79 

 

chemiluminescence reagent(ECL)(Amersham Biosciences, U.K.) and the Fuji XRay 

film. 

2.7.  Assesment of apoptosis by the changes in mitochondrial 

membrane potential 

CLL cells were stimulated as described in 2.6.1 and incubated for 24h. Upon 

stimulation the cells were washed as described above and treated with 10μL of PE-

Cy5 conjugated anti-CD19 mAb for 30min on ice in the dark. Following two washes 

with PBS-AB buffer, the cells were re-suspended in 200μL of HBSS and 0.2μM of 

DiOC6 was added to each well. The optimum concentration of DiOC6 was 

previously determined in our laboratory (data not shown). DiOC6 [(3) - (3,3'-

dihexyloxacarbocyanine iodide] is a fluorescent dye that discriminates between 

bright fluorescent viable and dim fluorescent apoptotic cells upon exposure to blue 

light which excites DiOC6 to fluoresce green (Terasaki, 1989; Koning et al., 1993). 

The plate was incubated for 20 min at 37°C and 5% C02 and cells analysed by flow 

cytometry immediately. The level of viability was assessed by the percentages of 

DiOC6bright cells gated on the CD19+ cell population. 
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(A)                                                                    (B)  

Figure 2. 1 representative flow cytometric profile of 72 h cell cultures: without 

CD180 antibody (a) and after incubation with anti-CD180 mab (b)  

 PBMC from normal controls and B-CLL patients were cultured in the absence and 
presence of 10μg/mL anti-CD180 mAb. Cells were stained with PE-Cy5 conjugated mouse 
anti-human CD19 mAb and 0.4μM of DiOC6. Flow cytometric analysis was performed 
immediately, DiOC6bright cells were identified as viable cells (Porakishvili et al., 2011) 
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2.8 Immunohistochemical staining of bone marrow aspirates and 

lymph node biopsies 

The affinity isolated rabbit anti-CD180 antibody (Sigma, UK) was chosen for use in 

this study due to its reported specificity for CD180 and suitability for use with 

formalin-fixed paraffin-embedded (FFPE) tissues. 2µm-thick sections of reactive 

tonsil were used for antibody optimization on the Bond-III automated staining 

platform (Leica Biosystems, UK). Sections underwent automated dewaxing and 

endogenous peroxidase was blocked using 3-4% (v/v) hydrogen peroxide.  The 

antibody was tested with a range of heat induced epitope retrieval methods using 

citrate-based (pH 6.0) and EDTA-based (pH 9.0) epitope retrieval conditions. 

Dilution curves for anti-CD180 Ab were carried out with 15 minute incubation at 

ambient temperature, and signal visualized using Bond Polymer Refine Detection 

kit (DS9800) and haematoxylin counterstain. The slides were reviewed and 

optimal conditions chosen based upon the criterion of background-free selective 

cellular labeling and taken forward for use on cases of CLL. 

2.9 CD180 expression in subsets of CLL cells categorized 

according to the surface expression of CD5 and CXCR4 

CLL clones can be divided into distinct fractions on the basis of inverse surface 

expression of CXCR4 and CD5 also defining intra-clonal kinetic differences 

(Callisano .et al.,2011) (Figure 2.2). In order to assess CD180 expression on 

'proliferative'(CXCR4dimCD5bright) and 'resting' (CXCR4brightCD5dim) fractions of CLL 

cells,  2 × 105 isolated PBMCs were re-suspended in FACS buffer (PBS + 10% fetal 

bovine serum + 1% sodium azide) and incubated with murine anti–human 

monoclonal antibodies (mAbs) to: CD5~FITC, CXCR4~PerCP, CD19~APC and 

CD180~PE or IgG1~PE isotype control (all from BD Biosciences, USA) at 4°C for 

thirty minutes. Cells were washed and analysed with BD FACSverseTM flow 

cytometer (Becton Dickinson Immunocytometry systems, USA) using FlowJo v7.2.4 

version software. 



82 

 

 

 

                       

 

 

 

Figure 2. 2 contour plot of CD19+ve CLL cells plotted on the basis of CXCR4 and CD5 

 The CD180 expression in the 'proliferative'(CXCR4dimCD5bright) (1) and 'resting' 
(CXCR4brightCD5dim) (2) fractions was determined. The expression of CD180 was expressed 
was percentage of positive cells in each subset, compared to the isotype control  
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2.10  Statistical Analysis 

The following statistical methods were applied where required: 

 Wilcoxon's non-parametric paired test using SPSS (software package used 

for statistical analysis)(provided by the University of Westminster, IT 

systems, UK)  

 Mann-Whitney non-parametric U-test using MINITAB software (provided 

by the University of Westminster, IT systems, UK); 

 Pearson's correlation coefficient using SPSS software; 

 Student t-test (MS excel); 

 Paired t-test 

P-values <0.05 were considered significant in each case. 
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Chapter 3 CLL cells response to CD180 

ligation 
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Results 
  

Previous studies by our group have shown that CD180 is heterogeneously 

expressed by CLL cells in a clonal fashion (Porakishvili et al., 2005). The level of the 

expression of this surface molecule was measured by the number of relative 

binding sites per cell (RBS/cell). The results, demonstrated that most normal 

(control) CD19+ B cells expressed a high density of surface CD180 (5548 ± 2271 

RBS/cell), although a small population of CD180- negative cells 

[mean±S.D. (range)] 2.6±1.5% (0.8–7.3%) were evident (Koarada et al.,2001). 

Based on the data with normal B cells, in CLL cells, the negative CD180 clones were 

therefore defined by the level of CD180 RBS/cell on this small CD180- population 

(316 ± 88 RBS/cell, range 201-470 RBS/cell). The limit for the negative population 

was determined as the mean ± 2SD, as described previously (Porakishvili et al., 

2005). Also demonstrated by our group previously is that though the expression of 

CD180 in CLL clones is heterogeneous, this expression is significantly higher in 

cases with M IGVH genes compared to the U IGVH CLL cases (Porakishvili et al., 

2005). In addition also shown earlier was that CD180 ligation delivers a 

comparable or superior to CD40 and IL-4 activation, survival, and cell cycling 

signal for both normal B cells and CLL cells.  

In the studies outlined below, the intra-cellular effects of CD180 ligation with mAb, 

in CLL and normal B-cells, have been outlined.  
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3.1a CD180 ligation leads to the activation of CLL cells in the 

‘Responder’ group of patients as compared to the ‘Non-

Responder’ group 

Further to the studies with the surface expression of CD180, also previously 

published by our research group was that half of the CD180+ clones respond via 

activation and cycling and termed Responders: R while the other half which fail to 

respond were termed Non-Responders: NR CLL (Porakishvili et al.,2005). In my 

small study of 13 CD180+ CLL clones, 6 responded to CD180 ligation by activation 

(R CLL) measured by upregulation of CD86, while the other 7 CD180+ CLL clones 

failed to respond (NR CLL)(Figure 3.1.a) thus confirming the previous studies. The 

reason for only studying 13 patients was because this study was undertaken to 

confirm the same previous previous study  also a part of the publication 

(Porakishvili et.al.,2011) 

We also studied the expression of MD-1 in the CD180+ R CLL and NR CLL cells, 

since it an important molecule required for the cell surface expression of CD180 

(Miura et al., 1998; Nagai et al., 2002). The lack of responsiveness by NR CLL cells 

was also not related to the level of the expression of MD-1 as shown for normal 

human B cells. We observed there was no statistical difference in the expression of 

MD-1 by R CLL (RFI: 1.86 ± 0.09) and by NR CLL (RFI: 2.75 ± 1.21, p= 0.15) clones 

(Porakishvili et al.,2011).  
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Figure 3. 1  a) Expression of CD86(B7.2) after anti-CD180mAb stimulation for 72 

hours in CD180+ R CLL and NR CLL 

 PBMCs from 6 R CLL and 7 NR CLL were stimulated with 10μg/ml of anti-CD180 mAb for 
72h and stained with PE-Cy5-conjugated anti-CD19 mAb and PE-conjugated anti-CD86 
mAb. The cells were analyzed by flow cytometry. Data were analysed using the Mann–
Whitney U-test, and represent mean ± standard deviation. P values were calculated using 
student t-test. 
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3.2a Ligation of CD180 on normal B cells, and R and NR CLL cells 

leads to upstream signalling events, with no or low effector 

enzyme phosphorylation in NR CLL cells 

In order to localize the defect in activation of the NR CLL cells, it was important to 

identify the signalling pathways activated through CD180 ligation in CLL cells. Our 

working hypothesis for this study was that in the NR CLL cells, there could a block 

in the pathways which are active in the R CLL cells. To this effect, we measured 

phosphorylation of various intracellular signalling molecules- ZAP70/Syk, ERK, 

p38MAPK and AKT, in normal B cells, R and NR CLL. These intra-cellular molecules 

form an intrinsic part of the BCR mediated signalling pathways and we wanted to 

compare the activation of these with CD180  stimulated pathways, 

Normal B cells demonstrated a significant increase in the percentages of cells with 

these phosphorylated signalling kinases (Figure 3.2.a).  Similarly ligation of CD180 

on R CLL cells resulted in the phosphorylation of all protein kinases tested as 

measured by the increase in the percentages of positive cells (Figure 3.2.b) 

although the responses were more heterogeneous. The degree of phosphorylation 

of R CLL cells following CD180 ligation was comparable to that measured in 

normal B cells with exception of pERK which was lower (p=0.028). We detected 

significantly higher levels of constitutive expression of pZAP70/Syk in CLL cells 

compared to normal controls (55.5±25.8% vs 29.4±7.6%, p=0.0057), which 

resulted in higher phosphorylation of ZAP70/Syk in CLL cells following CD180 

engagement (p=0.00001, Figures 3.2.a and 3.2.b).  

Results were totally different for NR CLL cells (Figure 3.2.c). Although there was 

increase in phosphorylation of the ZAP70/Syk in NR CLL cells following CD180 

ligation (p=0.049), and to the lesser extent, of ERK (not significant), almost no 

responses were detected for phosphorylated p38MAPK, and, particularly pAKT 

(p=0.008 as compared to R CLL).  Western blotting analysis confirmed the high 

phosphorylation of AKT in R CLL cells and the lack of pAKT in NR CLL cells 

following CD180 ligation (Figure 3.2.d).  
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We therefore concluded that the protein kinases ZAP70/Syk, ERK, p38MAPK and 

AKT were involved in signalling through CD180 ligation in normal B cells and R 

CLL cells. Also, in case of the NR CLL cells, the cellular activation was blocked 

downstream to ZAP70/Syk since this kinase was activated in response to CD180 

ligation in this category of cells.   

 

Figure 3. 2 a,b and c: Intracellular signalling following stimulation with anti-CD180 mAb. 

 Phosphorylation of protein kinases ZAP70/Syk, ERK, p38MAPK and AKT in (a) 
Control normal B cells, (b) Responder CLL cells and (c) Non-responder CLL cells. 
(d) A representative western blot showing the level of pAKT in R and NR CLL cells. 
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(a-c) Purified normal B cells, R and NR CLL cells were stimulated with 10 µg/ml of 
anti-CD180 mAb for 20 minutes, fixed, permeabilised and treated with antibodies 
to phosphorylated protein kinases- pZAP70/Syk, pERK, pp38MAPK and pAKT. The 
results are shown as percentages of positive cells in unstimulated and stimulated 
cultures. p values were calculated using paired t-test. (d) Cells from R and NR CLL 
patients were incubated unstimulated (US) or with 10 µg/ml of anti-CD180 mAb 
(anti-CD180) as above and analysed by Western blotting as described in materials 
and methods. The phospho-AKT antibody detected a major band of 56kDa after 
stimulation with anti-CD180 in cells from Responder but not Non Responder CLL 
cells.  
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3.3a Responder CLL clones can be subdivided into Early 

Responders (ER) and Late Responders (LR) by their activation of 

AKT protein kinase 

As mentioned above, CD180 ligation response in CLL cells divided them into R CLL 

or NR CLL  and that treatment of R CLL cells with anti-CD180 mAb for 30 min led 

to the increase in phosphorylation, specifically of AKT. In contrast, NR CLL cells 

failed to respond to the CD180 ligation by the activation of AKT (Porakishvili et 

al.,2011). However, since the increase in the percentages of pAKT+ R CLL clones 

following CD180 ligation was highly heterogeneous, we investigated this 

variability in more detail.  

We therefore studied the pAKT positive cells at different time points after CD180 

ligation in culture. It appeared that some of the CLL samples previously 

categorised as NR CLL demonstrated substantial increase in phosphorylation of 

AKT when the time of exposure to anti-CD180 mAb was increased to 24h as 

analysed by flow cytometry and immunoblotting. No appreciable induction of AKT 

activation has been detected after 6h or 18h in culture. This allowed us to re-

categorise R-CLL samples into Early AKT Responders (ER-AKT) and Late AKT 

Responders (LR-AKT) based on a significant increase in the percentages of pAKT+ 

cells above the basal level (Figure 3.3.a). Upregulation of the levels of pAKT in both 

ER-AKT and LR-AKT was confirmed by immunoblotting (Figure 3.3.b). The 

magnitude of the pAKT response in the two subgroups did not differ significantly. 

Interestingly 5 out of 19 ER-AKT samples also showed durable AKT 

phosphorylation within 30min-24h time-scale. CLL samples that failed to 

phosphorylate AKT protein kinase following stimulation with anti-CD180 mAb 

irrespective of the incubation period were categorised as NR-CLL (Figure 3.3.a and 

3.3.b). Lack of the increase in pAKT was not caused by an aberrant deficiency of the 

non-phosphorylated enzyme since total AKT levels were comparable in ER-AKT, 

LR-AKT and NR-CLL cells (Figure 3.3.b). 

To assess if the difference in the density of CD180 could play a role in the pace of 

the AKT phosphorylation, we determined the levels of CD180 expression in the 

two subgroups. ER-AKT (n=11) and LR-AKT (n=12) did not differ significantly in 
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the expression of CD180 (RBS/cell: 2342±1725 vs 1425±1127, p=0.15; % of 

positive cells: 60.1±27.0 vs 66.2±25.5%, p=0.45; respectively). However, 

interestingly, ER-AKT cells, compared to LR-AKT cells, expressed significantly 

higher levels of sIgM (RBS/cell: 3254±2327 vs 865±845, p=0.02; % of positive 

cells: 67.2±18.4 vs 35.1±29.3% p=0.003, respectively) and CD79b (RBS/cell: 

1859±1538 vs 384±396, p=0.019; % of positive cells: 48.8±28.3 vs 27.7±22.1%, 

p=0.017, respectively). 
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Figure 3. 3  a,b: Phosphorylation of AKT protein kinase in Early AKT Responder (ER-AKT), 

Late AKT Responders (LR-AKT) and Non-Responder (NR-CLL) cells following stimulation 

with anti-CD180 mAb for 30 min or 24h.  

(a) CLL cells were incubated with anti-CD180 mAb for 30 min or 24h or left unstimulated 

in medium (M), washed, stained with anti-CD19 mAb, fixed, permeabilised and stained 

with anti-pAKT(Ser473) mAb as described in the Materials and Methods. The results were 

analysed by flow cytometry and expressed as percentages of positive cells. P values were 

calculated using the paired t-test. (b) Representative immunoblots are shown indicating 

the levels of total AKT and pAKT in ER-AKT, LR-AKT and NR CLL samples following 

stimulation with anti-CD180 mAb (CD180) as described in the Materials and Methods. 

Unstimulated CLL cultures in medium (Medium) were used as controls. The bands 

represent total AKT and phospho-AKT visualised by anti-AKT or anti-pAKT(Ser473) Abs; 

Bcl-2 was used as a loading control. 
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3.4a CD180 ligation on CLL cells leads to either activation of AKT 

or p38MAPK protein kinases 

Since some NR-CLL were re-categorised as AKT-Responders following prolonged 

stimulation with anti-CD180 mAb we re-grouped CLL samples based on their 

ability to increase phosphorylation of AKT. We further examined if ER-AKT, LR-

AKT and NR CLL samples responded differently to CD180 ligation by activation of 

other protein kinases involved in CD180-mediated signalling as mentioned above- 

ZAP70/Syk, p38MAPK and pERK (Porakishvili et al.,2011). Unexpectedly, 

stimulation of ER-AKT CLL clones with anti-CD180 mAb lead to a significant 

downregulation of the basal levels of phosphorylated p38MAPK (Figure 3.4.c). In 

contrast, short-term stimulation (30 minutes) of a substantial number of AKT-non-

responsive CLL samples led to a significant upregulation of phospho-p38MAPK 

(Figure 3.4.c) confirmed by immunoblotting (Figure 3.4.c). We did not detect any 

appreciable differences in phosphorylation of ERK between the defined subgroups 

(data not shown). These data are consistent with a hypothesis that elevation of 

activated AKT or p38MAPK represents two possible alternative pathways 

downstream from Syk following CD180 ligation. However, out of the pooled 34 ER-

AKT and LR-AKT samples 5 also responded to CD180 ligation by elevated levels of 

both – pAKT and pp38MAPK as did all tested control B cells (Figures 3.4.b and 

3.4.c).   

We have therefore identified four major patterns of CD180-mediated signalling in 

CLL cells: ER-AKT, LR-AKT, ER-p38MAPK , a minor subset of double 

AKT/p38MAPK signallers and NR. The differences between the subgroups appear 

downstream from ZAP70/Syk via different signalling routes (AKT or p38MAPK), or 

no signalling (NR), as phophorylation of ZAP70/Syk was observed in all cells 

(Figure 3.4.a). Importantly, in control B cells, CD180 ligation resulted in 

simultaneous activation of all protein kinases tested, including ERK (Figure 3.4.a, 

3.4.b and 3.2.a) so the detected dichotomy (AKT vs p38MAPK) appears to be a 

feature of CLL cells. 
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No significant differences were detected in the expression of CD180 (density or 

percentages of positive cell) between AKT-signallers and p38MAPK-signallers. 

However, ER-p38MAPK cells appeared to be “better equipped” with surface 

receptors and expressed significantly higher ex vivo levels of sIgM, IgD, CD79b and 

CD38 expressed as RBS/cell and percentages of positive cells, compared with the 

pooled AKT-signalling cells (ER-AKT and LR-AKT). Of note, AKT-signallers were 

largely negative for CD38 expression   (Table 3.4).  However all double AKT/MAPK 

signallers expressed low levels of CD180 as compared with pooled AKT-signallers 

and p38MAPK-signallers (426±212 RBS/cells, p=0.014 and p=0.015 respectively; 

42.4±22.4%, p=0.043 and p=0.016 respectively) and were negative for  CD79b 

expression (125±122 RBS/cell, p= 0.006, p=0.045 respectively, and 12.6±10.0%, 

p=0.14 and p=0.002 respectively). 
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Figure 3. 4 .a,b,c,d: Anti-CD180 mediated phosphorylation of AKT and p38MAPK in control B cells 

and in different categories of CLL cells 

ER-AKT, LR-AKT, ER-p38MAPK. (a,b and c) Control B cells and CLL cells were incubated 
with anti-CD180 mAb for 30 minutes (ER) or 24h (LR) or left unstimulated in medium (M), 
washed, stained with anti-CD19 mAb, fixed, permeabilised and stained with anti-
pZap70/Syk anti-pAKT(Ser473) and anti-phospho-p38MAPK(Thr180/Tyr182) mAbs as 
described in the Materials and Methods. The results were analysed by flow cytometry and 
expressed as percentages of positive cells. P values were calculated using the paired t-test. 
(d) Representative immunoblots showing the levels of phospho-p38MAPK without 
(Medium) and after stimulation with anti-CD180 mAb (CD180) in ER-AKT and ER-
p38MAPK CLL cells visualized by anti-phospho-p38MAPK(Thr180/Tyr182)  mAb as 
described in the Material and Methods. Bcl2 was used as a loading control. 



97 

 

 

Table 3.4. Phenotypic characteristics of CLL cells that signal via AKT or 
p38MAPK protein kinases following stimulation with anti-CD180 mAb:  

CLL cells were blocked with human immunoglobulins, treated with unconjugated 
mAbs to CD180, IgM, IgD, CD79b and CD38, washed, stained with rabbit-anti-
mouse FITC-conjugated Ab, blocked with mouse serum and stained with PE-Cy5-
conjugated anti-CD19 mAb as described in the Material and Methods. The results 
were analysed by flow cytometry and expressed as antibody Relative binding sites 
per cell (RBS/cell) and percentages of positive cells. P values were calculated using 
the Mann-Whitney non-parametric U-test.  

 

 Pooled ER-AKT and LR-

AKT, n=20 

ER-p38MAPK,             n=10   

Receptor  RBS/cell % RBS/cell % PRBS/cell P% 

CD180  1954 ± 

1721 

62.3±26.7 1752 ± 1223 68.5±18.4 0.372 0.236 

sIgM  1663 ± 

1601 

50.2±29.4 11300±6800 61.8±26.8 0.044 0.107 

sIgD  2186 ± 

1358 

47.9±25.8 6775 ± 3537 69.0±24.6 0.048 0.049 

CD79b  976 ± 914 37.9±22.5 5168 ± 3383 61.6±26.2 0.047 0.046 

CD38  544 ± 470 21.8±24.0 1742 ± 1533 39.9±18.2 0.048 0.049 
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3.5a CD180-induced AKT-mediated signalling in CLL cells involves 

Btk and PI3-K  

Since AKT (Zhuang et al.,2010) and associated PI3-K (de Frias et al.,2009; Barragan 

et al.,2006; Nedellec et al.,2005) mediated pathways have been shown to be 

important in survival of CLL cells, we next determined whether these pathways 

were involved in the survival of CLL cells mediated by CD180 as shown previously 

by our group (Porakishvili et al.,2005 and 2011). 

Our data demonstrate that in those CLL cells that responded to CD180 ligation 

with phosphorylation of AKT, the levels of pPI3-K, measured by immunoblotting 

were also upregulated. This was seen in AKT-responder CLL cells but not in ER-

p38MAPK CLL cells (Figure 3.5.a), despite a substantial level of non-

phosphorylated enzyme in the latter group as defined by total PI3-K (Figure 3.5.a). 

It has been recently reported that BCR-mediated survival of CLL cells operates via 

early activation of Bruton agammaglobulinemia tyrosine kinase (Btk) (Woodland 

et al.,2008; Packham et al.,2010). We therefore tested whether CD180-mediated 

signalling in AKT-responder CLL cells also involves Btk. As expected, in ER-PI3-

K/AKT-responder CLL cells, CD180 ligation induced significant upregulation of 

pBtk. In contrast, the levels of pBtk were significantly decreased in the ER-

p38MAPK category of cells (Figure 3.5.b).  

Taken together our data indicate that ligation of CD180 on CD180+ CLL cells, 

either leads to the activation of a signalling pathway Btk/PI3-K/AKT, or a signal is 

diverted through p38MAPK. The consequences of the differential signalling were 

therefore studied next.  
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Figure 3. 5 a,b: Anti-CD180 mediated phosphorylation of PI3-K, Btk in ER-AKT and 

ER-p38MAPK CLL cells.  

(a) Representative immunoblots show the levels of total PI3-K, phospho-PI3-K and Mcl-1 
in ER-AKT and ER-p38MAPK CLL cells following stimulation with anti-CD180 mAb 
(CD180) as described in the Materials and Methods. Unstimulated CLL cultures in medium 
(Medium) were used as controls. The bands represent total PI3-K and phospho-PI3-K 
visualized by anti-PI3-K(p85) or anti-pPI3-K(tyr458)/p55(tyr199) mAbs respectively or 
anti-Mcl-1 mAb. Bcl2 was used as loading control. (b) Percentages of pBtk+ cells in ER-
AKT and ER-p38MAPK categories of CLL cells following stimulation with anti-CD180 mAb 
measured by flow cytometry. CLL cells were incubated with anti-CD180 mAb for 30 
minutes or left unstimulated in medium, washed, stained with anti-CD19 mAb, fixed, 
permeabilised and stained with anti-pBtk mAb as described in the Materials and Methods. 
P values were calculated using the paired t-test.  
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3.6a CD180-induced Btk/PI3-K/AKT signalling  pathway leads to 

pro-survival while p38MAPK pathway leads to pro-apoptosis in 

CLL cells 

Having established that the CD180 mediated signalling in CLL cells leads to a 

dichotomy in signalling, either through pAKT ot p38MAPK activation, we next 

examined the effect of this dichotomy on survival of CLL cells. The important anti-

apoptopic protein kinase Mcl-1, belonging to the Bcl2 anti-apoptopic family, has 

been shown play a role as a downstream target of the PI3-K-AKT pathways via IgM 

engagement in CLL (Gandhi et al.,2008). Therefore we hypothesized that this 

kinase is active in the CD180 mediated AKT signalling. Most certainly our data 

demonstrated that there was an appreciable increase in the levels of Mcl-1 

following CD180 ligation in ER-AKT cells (Figure 3.6.a), but not in ER-p38MAPK 

CLL cells.  Further, changes in the mitochondrial membrane potential, measured as 

level of apoptosis, (Petit et al.,1995; Porakishvili et al., 2011) showed there was an 

increase in the percentages of DiOC6dim apoptotic cells in ER-p38MAPK cells 

(Figure 3.6.b).  

Thus, to sum up, in our hands CD180-ligation induced significant suppression of 

basal (spontaneous) apoptosis after 24hr in culture in both control B cells and 

Btk/PI3-K/AKT-responder CLL cells (pooled ER-AKT and LR-AKT cells). In 

contrast, the percentage of apoptopic cells was increased in the ER-p38MAPK 

responder cells.  

Thus, our data suggest that CD180-mediated intracellular signalling in CD180+ CLL 

cells can engage two major pathways: pro-survival that operates via Btk/PI3-

K/AKT protein kinases, or pro-apoptotic that operates via p38MAPK. Importantly, 

simultaneous activation of both pathways observed in normal B cells only resulted 

in their survival (Gauld et al.,2002), but not apoptosis, hence endorsing this result 

as a CLL specific characteristic.  



101 

 

 

Figure 3. 6.a, b: (a)Representative immunoblots show the levels of Mcl-1 in ER-AKT 

and ER-p38MAPK CLL cells following stimulation with anti-CD180 mAb (CD180) (b) 

The percentages of DiOC6dim apoptotic cells in control B cells, pooled ER-AKT and LR-

AKT, and ER-p38MAPK CLL cells following CD180 stimulation 

(a) as described in the Materials and Methods, cells were stimulated with CD180 mAb and  
unstimulated CLL cultures in medium (Medium) were used as controls. The bands 
represent total Mcl-1 as visualized by anti-Mcl-1 mAb.(b)percentages of ER-AKT and LR-
AKT cells following stimulation with anti-CD180 mAb as described in the Material and 
Methods. Control B cells and CLL cells were stimulated with anti-CD180 mAb for 24h, 
washed, stained with anti-CD19 mAb, loaded with DiOC6 for 20 min and analysed by flow 
cytometry.  P values were calculated using the paired t-test. 
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Discussion 

3.1.b CD180 ligation activates the ‘Responder’ group of CLL cells 

while the ‘Non-responder’ group remains unresponsive 

Our research group has previously shown that normal human CD19+B cells 

express CD180, and its ligation resulted in a strong upregulation of the lymphocyte 

activation marker CD86. However only 2/3 of CLL clones constitutively expressed 

CD180 and approximately half of the CD180+ clones respond to ligation 

(Porakishvili et al., 2005, 2011). In my study, this observation was confirmed 

(Porakishvili et al., 2011). Out of 13 CLL cell samples 6 CD180+ clones responded 

by upregulation of CD86 upon CD180 ligation in culture. These clones were termed 

Responders: R, while the other unresponsive CD180+ CLL clones were termed 

Non-responders: NR (Fig. 3.1). Increased CD180-mediated survival of murine B 

cells was associated with extensive proliferation (Chaplin et al., 2011). In another 

model system, CD180 engagement protected murine B lymphocytes from radiation 

and dexamethasone-induced apoptosis (Miyake et al., 1994, 1995). Together with 

this data, our findings suggest that engagement of CD180 by various 

environmental signals leads to the activation of R CLL clones. Also, the surface 

density of CD180 and the outcome of its ligation were consistently reproducible 

over 48 months (Porakishvili et al., 2005, 2011), indicating that the function of 

CD180 was a constitutive characteristic of leukaemic clones. Additionally, it is 

important to note that in this study we assay the expression of CD86 after 72 hours 

in culture. Hence there is a possibility that many other factors that are produced in 

the cell culture over this period e.g. various number of  cytokines could support the 

cellular activation and expression of CD86. Studies to this end aimed at assaying 

micro-environmental influences in the culture, playing a role in CD180 ligation 

response would be need to be undertaken in the future.  
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3.2b Phosphorylation  of intracellular signalling enzymes post 

CD180 ligation 

Unlike most TLRs CD180 lacks the TIR intracellular signalling domain and has only 

11 intracellular amino acids (Miyake et al., 1995; Miura et al., 1996; Fugier-Vivier 

et al., 1997; Roshak et al., 1999). Therefore CD180 may either recruit an 

unidentified B-cell specific protein for upstream signalling (Yazawa et al., 2003) or 

cooperate/converge with other signalling pathways. As an initial step towards 

identifying the signalling pathway(s) utilized by CD180 in CLL and the possible 

defect in NR CLL clones, we determined the phosphorylation of several important 

enzymes involved in signalling. 

Normal B cells responded to CD180 ligation by a robust increase in the 

phosphorylation of all protein kinases studied (Figure 3.2.a). Importantly R CLL 

cells exhibited comparable levels of kinase phosphorylation (Figure 3.2.b), 

particularly that of ZAP70 and AKT. RP105-mediated signalling in murine B cells 

uses the Src-family protein tyrosine kinase Lyn, protein kinase CbI/II (PKCbI/II), 

and Erk2-specific MAP kinase (MEK) (Miura et al., 1998). Furthermore, murine 

RP105 engagement in B cells may exploit two divergent signalling pathways (a) via 

Lyn, CD19 and Vav downstream to JNK, and (b) via Lyn, PI3-K and Btk downstream 

to NF-ĸB (Yazawa et al.,, 2003). To our knowledge, this is the first report showing 

recruitment of phosphorylated AKT following CD180 ligation in human CLL cells 

and B cells (Figures 3.2.a, 3.2.b and 3.2.d).  

In contrast, in NR CLL cells, we found a block of phosphorylation downstream from 

ZAP70/Syk protein kinases, particularly that of AKT in response to CD180 ligation 

(Figure 3.2.c, p=0.003 compared to R CLL and Figure 3.2.d). This lack of AKT 

activation may be a reason for apparent global unresponsiveness of this subset of 

CLL cases.  

Therefore, our data can be also considered in a wider context, possibly indicating 

anergy of NR CLL clones. In CLL cells with unresponsiveness to BCR engagement, 

the inability to activate AKT was associated with high constitutive phosphorylation 

of ERK (Muzio et al., 2008). Lack of AKT phosphorylation coupled with constitutive 
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activation of the p38MAPK signalling pathway is found in murine B cells rendered 

anergic by BCR-signalling (Merrell et al.,, 2006). In our hands there were high 

levels of constitutive pZAP70/Syk and p38MAPK in both R and NR CLL clones, but 

only in NR CLL cells was this associated with a lack of AKT phosphorylation. These 

data are indicative of a possible cross-talk between BCR and CD180 signalling 

pathways.  

Our data therefore indicate a significant defect in distal signalling events in NR CLL 

cells whilst proximal phosphorylation of ZAP70/Syk appears to be functional.  

3.3.b CD180 ligation response in CLL is better validated by the 

AKT phosphorylation and can be either an early (30 minutes) or 

late (24hours) event 

Activation of AKT has been reported to be essential for the general growth and 

survival of B lymphocytes (Woodland et al.,2008) as well as survival of CLL cells 

following BCR ligation (Packham et al.,2010; Downward et al.,2004). It also 

appears to be paramount for TLR-mediated cell expansion and survival. Ligation of 

RP105/CD180 on naïve control B cells lead to the survival from apoptosis 

operating through phosphorylation of AKT (Yamazak et al.,2010) whilst 

stimulation of proliferation of CLL cells through the engagement of TLR9 by CpG-

ODNs was also transmitted through AKT and ERK (Longo et al.,2007)  

As discussed above, activation of AKT was a central event in CD180-mediated 

signalling and differentiated the NR CLL from R CLL. However, the levels of pAKT 

varied through individual clones even in R CLL group. Here with more data at hand 

(studying CD180 ligation responses at different time points)  we re-categorized the 

responsiveness of CLL clones to CD180 ligation based on their ability to 

phosphorylate AKT, rather than expression of CD86 as before (as discussed in 

3.1.b; Porakishvili et al.,2005,2011).We analyzed the level of phosphorylation of 

protein kinases following long term stimulation (24h), in addition to the short-

term (30 min) stimulation with soluble anti-CD180. This extension in receptor 

stimulation time was considered since it has been shown before that prolonged 

phosphorylation of AKT might be required for pro-survival signalling in CLL cells 



105 

 

stimulated with soluble anti-IgM (Petlickovski et al.,2005; Packham et al.,2010) 

and for proliferation after the treatment with CpG-ODN (Longo et al.,2007).  

Here we demonstrate that out of 55 CLL samples tested CD180 ligation with mAb 

lead to the speedy phosphorylation of AKT above the basal levels in 19 CLL 

samples, whilst in further 15 samples appreciable increase in pAKT was detected 

after 24h in culture by flow cytometry (Figure 3.3.a) and Immunoblotting (Figure 

3.3.b). We therefore defined these CLL cells as Early AKT responders (ER-AKT) and 

Late AKT Responders (LR-AKT). It must be noted that five out of 19 ER-AKT 

samples also showed durable AKT phosphorylation within 30min-24h time-scale. 

The remaining 24 CLL samples did not respond to the CD180 ligation by exceeding 

the basal levels of pAKT in the time-scale of 30min-24h (Non-responders, NR, 

Figure 3.3.a and 3.3.b). 

We further studied whether differences in the speed of AKT phosphorylation in 

response to CD180 ligation were dependant on the level of the expression of 

CD180 receptor assessed by the percentages of positive cells as well as antibody 

relative binding sites/cell (RBS/cell) indicative of the density of the receptor 

expression (Porakishvili et al.,2005; 2011). Interestingly, ER-AKT and LR-AKT did 

not differ in the levels of the expression of CD180. However ER-AKT cells, 

compared to LR-AKT cells, expressed significantly higher levels of sIgM and CD79b. 

This, in our opinion, indicated a possible cross-talk between BCR and CD180 

signalling pathways (Porakishvili et al.,2011; Efremov et al.,2007; Packham et 

al.,2010). 

Further co-relation with the available clinical data showed that the CLL clones 

from patients with progressive disease and poorer prognosis (U IgVH) responded 

to CD180 ligation by robustly activating AKT immediately at 30 minutes 

(categorized as ER-AKT CLL clones). On the other hand the CLL cells from patients 

with an indolent disease stage and better prognosis required a minimum of 24 

hours stimulation through CD180 to activate AKT significantly (categorized as LR-

AKT). These observations are synchronous with the study by Longo et al.,(2006) 

showing that the amplitude and duration of AKT activation, in response to TLR 

ligation, could determine the cell proliferative capacity and corresponded with the 
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clinical status. They observed the cells from cases with bad prognosis were highly 

proliferative and responsive to TLR stimulation only upto one hour in culture, by 

robust AKT phosphorylation (similar to our findings with CD180 ligation in ER-

AKT) (Longo et al.,2006). In this study we did not investigate the rate of cell 

proliferation in the two subsets- ER-AKT and LR-AKT post CD180 ligation but our 

group has shown earlier that the cells responsive to CD180 ligation show increased 

capacity for proliferation evidenced by upregulation of cell cycle marker Ki67 

(Porakishvili et al.,2005; 2011). However in the future, assay of (possible) 

differential rate of proliferation mediated through CD180, in the ER-AKT and LR-

AKT subsets, could be of prognostic value.   
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3.4b CD180 ligation on CLL cells leads to the alternative activation 

of AKT or p38MAPK signalling pathways 

As the ER-AKT cells and LR-AKT cells expressed differential level of sIgM and 

CD79b, in our opinion, this indicated a possible cross-talk between BCR and CD180 

signalling pathways and prompted us to further re-assess the levels of activation of 

other key protein kinases associated with the IgM signalling pathways such as ERK 

and p38MAPK (Porakishvili et al.,2011; Efremov et al.,2007; Packham et al.,2010). 

We did not find significant differences in the patterns of phosphorylation of ERK 

between ER-AKT, LR-AKT or NR-AKT categories of cells.  

However, the most intriguing data was obtained for p38MAPK. We detected a 

significant drop (p=0.021) in phospho-p38MAPK basal levels in ER-AKT category 

of CLL cells following CD180 ligation, assessed by flow cytometry and confirmed 

by Immunoblotting (Figure 3.4.b and c). Some decrease in the signal intensity of 

p38MAPK upon stimulation of BCR has been reported before (Petlickovski et 

al.,2005), but never linked with the AKT activation. In contrast, thirteen CLL 

samples formerly defined as NR-AKT, responded to the ligation of CD180 by a 

strong phosphorylation of p38MAPK after 30 min (Figure 3.5.c, p=0.004), 

confirmed by Immunoblotting (Figure 3.5.d), but not 24h in culture (Figure 3.5.c). 

The remaining 11 CLL samples were unresponsive by activation of either AKT or 

p38MAPK during the time points used (Figure 3.5.b and c).The phosphorylation of 

upstream ZAP70/Syk was significantly observed in all subsets irrespective of the 

downstream enzyme activity (Figure 3.5.a). 

Thus we have indentified two alternative signalling pathways following CD180 

ligation, downstream of ZAP70/Syk, operating via AKT or p38MAPK. This 

exclusivity of pro-AKT and pro-p38MAPK pathways appears to be a feature of CLL 

cells and does not apply to control B cells where CD180 ligation induced 

simultaneous activation of AKT and p38MAPK (Figure 3.5.a,b and c; Porakishvili et 

al.,2011). Interestingly, out of pooled ER-AKT and LR-AKT 34 samples 5 responded 

to CD180 ligation in a manner similar to that of normal control B cells: by 

activation of both – AKT and p38MAPK. This minor subset of CLL cells (those 
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which respond to CD180 ligation by uoregulation of both p38MAPK and AKT) 

remains enigmatic since it is characterised by extremely low levels of expression of 

CD180 – opposite to normal B cells, where expression of CD180 significantly 

exceeds that of CLL cells (Porakishvili et al.,2005).  

Therefore, based on our current data, CLL cells in relation to CD180 can be further 

re-categorised into three major categories: AKT-Responders, p38MAPK-

Responders and Non-responders, and a minor subset of double AKT/p38MAPK 

Responders. 

The role of p38MAPK-mediated signalling in CLL remains unclear. Activation of 

p38MAPK has been previously associated with proliferation of various cells in 

response to CpG-ODN (Peng et al.,2005; Efremov et al.,2007). In CLL, activation of 

p38MAPK was reported to be involved in the regulation of cell survival and 

apoptosis (Yi et al.,2003; Piatelli et al.,2004).  

It was therefore important to further study how differential signal transduction in 

response to CD180 translates into the regulation of survival and apoptosis of CLL 

cells.      

3.5b CD180-mediated AKT-signalling pathway in CLL cells 

involves activation of PI3-K and Btk protein kinases and is pro-

survival, whilst p38MAPK activation favors apoptosis 

AKT protein kinase is one of the most important targets of the products of 

phosphatidylinositol-3-kinase (PI3-K) δ isoform which is upstream to AKT 

(Efremov et al.,2007; Manning et al.,2007) . PI3-K is expressed exclusively by 

hematopoietic cells and plays a key role in BCR signalling (Okkenhaug  et al.,2007). 

Constitutive expression of PI3-K is elevated almost three-fold in CLL cells 

compared to normal B cells (Herman et al., 2010). PI3-K pathway appears to be 

critical for the survival of CLL cells activated through BCR as shown previously by 

various groups including us (Bernal et al.,2001; Barragan et al.,2002;Ringshausen 

et al.,2002; Cuni et al.,2004; Nedellec et al., 2005) 
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Inhibition of PI3-K completely abrogated expression of Mcl-1 following BCR 

ligation (Petlickovski et al.,2005) indicating that PI3-K/AKT activation is 

paramount for the BCR-mediated resistance to apoptosis. Importantly, 

engagement of RP105 on murine B cells was shown previously to lead to the 

activation of PI3-K (Chan et al.,1998), followed by the recruitment of AKT (Hebeis 

et al.,2005).  

More recently it has been demonstrated that activation of Bruton’s tyrosine kinase 

(Btk), a signalling element of the BCR pathway (Pone et al.,2012) is important for 

the survival of CLL cells. Specific Btk inhibitor PCI-32765 suppressed CLL cell 

proliferation, migration and survival in vitro and in vivo mouse models (Burger et 

al.,2010; Ponader et al.,2012). Activation of Btk is initiated through its recruitment 

to the plasma membrane facilitated by interaction with phosphatidylinositol-3,4,5-

trisphosphate (PIP3), a product of PI3-K activity (Salim et al.,1996; Thien et 

al.,2001). 

Since Btk-PI3-K-AKT represents an important signalling pro-survival circuit we 

next studied activation of PI3-K and Btk following CD180 ligation on CLL cells in 

various categories of CLL cells (Figure 3.5.a,b). As expected, the levels of pPI3-K 

were elevated in ER-AKT, but not in ER-p38MAPK cells (Figure 3.5.a) as assessed 

by immunoblotting. This was not due to the PI3-K deficiency since ER-p38MAPK 

category of CLL cells contained appreciable levels of total PI3-K (Figure 3.5.a). 

Likewise, treatment with anti-CD180 mAbs led to a significant upregulation of 

pBtk in pooled ER-AKT and LR-AKT cells (p=0.0016), but not in ER-p38MAPK 

(Figure 3.5.b). 

It has been suggested previously that Btk can be activated in cells with functionally 

deficient PI3-K through another mode of Btk recruitment (Fukuda et al., 1996). 

However, in case of ER-p38MAPK category we see the lack of the recruitment of all 

three pro-survival PKs: Btk, PI3-K and AKT. 

Therefore our data demonstrates that signal transduction in approximately half of 

CLL samples following CD180 ligation operates via Btk-PI3-K-AKT protein kinase 

circuit, whist a fourth of the samples activate p38MAPK instead. 
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To ascertain whether activation of these PKs has an effect on CLL cell survival we 

simultaneously measured the levels of Mcl-1 in all categories of cells since Mcl-1 

induction has been linked to activation of the PI3-K/AKT protein kinases (Longo et 

al.,2008). Inhibition of AKT activation resulted in apoptosis preceded by a decline 

in Mcl-1 (Zhuang et al.,2001). Indeed, in our hands  CD180-mediated induction of 

Mcl-1 was seen only in ER-AKT CLL cells (Figure 3.6.a).   

It has been shown previously that pharmacological inhibition of PI3-K activity 

prevented induction of Mcl-1, and the deficiency of the latter promoted apoptosis 

(Petlickovski et al.,2005). Indeed, measurement of the levels of apoptosis in 

various categories of CLL cells in 24h long cell cultures revealed that in ER-

p38MAPK cells ligation of CD180 led to a significant induction of apoptosis 

(p=0.041). In contrast both control B cells and pooled AKT-responder CLL cells 

demonstrated significant drop in the percentages of apoptotic cells (p=0.017 and 

p=0.011 resepctively) as shown in Figure 3.6.b.  

Importance of the speed in AKT phosphorylation (Early vs Late AKT Responders) 

for pro-survival effect of CD180-ligation is unclear. It has been shown that 

magnitude and duration of CpG-ODN-induced AKT signalling response affects the 

proliferation capacity of CLL clones (Longo et al.,2007). However we could not find 

significant differences in the magnitude of AKT activation (Figure 3.3.a and 3.3.b) 

between ER-AKT and LR-AKT CLL cells.  Nor have we detected differences in the 

basal levels of pAKT between these categories of cells (Figure 3.3.a). 

Our data strongly suggests that CD180 ligation has pleiotropic effect on apoptosis 

of CLL cells. In approximately half of CLL samples CD180 engagement activates 

pro-survival signalling nodule Btk-PI3-K-AKT accompanied by a suppression of 

p38MAPK signalling. In a fourth of CLL samples pro-survival PKs are not recruited, 

and instead recruitment of p38MAPK leads to the induction of apoptosis. 

There are few reports on the role of p38MAPK-mediated signalling in CLL cells. 

Recruitment of p38MAPK appeared to have little effect on CpG-ODN induced CLL 

cell proliferation (Longo et al.,2007) and was linked with the tolerant status of CLL 

cells (Ntoufa et al.,2012).  Activation of Syk and Lyn, but not Btk alone was shown 
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to be essential for the phosphorylation of p38MAPKinase (Malavasi et al.,2011). 

Since in our hands ZAP70/Syk but not Btk activation (Figure 3.4.a,b,c) was 

associated with downstream engagement of p38MAPK, Lyn as well as PKC and Vav 

(Piatelli et al.,2004) appear as candidates for an upstream PKs involved in this 

pathway. These studies are currently underway. 

It is also important to follow up a significant difference in CD38 expression 

detected by us between AKT and p38MAPK responders (Table 1), indicating that 

the latter population represents an expanding subset of CLL cells, since CD38 was 

shown to drive CLL cell proliferation and chemotaxis (Dal Porto et al.,2004). 

Although in this study ZAP70 and ERK were pinpointed as major players 

downstream to CD38, our data indicates possible involvement of p38MAPK.  

It is unclear whether in the remaining one forth of “genuine” NR CLL cells 

downstream from ZAP70/Syk signal is blocked or there is another pathway, 

operated via different PKs from those studied (Figure 3.2.a and 3.4.a) (Porakishvili 

et al.,2011).  

The current view is that CLL cells sense microenvironment via BCR, assisted by 

TLRs and cytokines receptors. It was important therefore to assess sIgM-mediated 

signalling in the categories of CLL cells defined through their responses to 

CD180(studies outlines in the next chapter). 
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Chapter 4 CD180 and IgM interactions 
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Introduction 
 

Studies with CD180 have shown that ligation on B cells with specific mAbs leads to 

activation and proliferation of murine B cells (Yamashita et al., 1996, Miyake et al., 

1998). However, no specific  intracellular pathway has been identified as CD180 

lacks the toll/interleukin receptor (TIR) domain, which is mandatory for signalling. 

Activated RP105 in mice has been reported to signal through pathways similar to 

the BCR complex (Yazawa et al., 2003). In the previous chapter we have shown 

that this is indeed the case as the protein kinases Zap70/Syk, Btk, PI3K, p38MAPK, 

AKT and Mcl-1 which play a role in signalling through the BCR, were also activated 

when CD180 was stimulated with mAb. Our group has previously expression of 

CD180 and sIgM is differential in CLL cells (Porakishvili et al.,2005). We further 

hypothesized that the expression of these two receptors on the surface of CLL cells 

was possibly a determining factor in the course/fate of the CLL cell due to 

antigenic stimulation. Also, the dichotomy established in the signalling pathways, 

with the ligation of CD180, further fabricated the idea of comparing the effects of 

CD180 ligation and sIgM ligation on the CLL cells. Considering that AKT activation 

was a more rational marker for assaying the CD180 response, we grouped the 

previously studied R and NR CLL clones (based on effect of CD86 upregulation by 

CD180 ligation) into ER-AKT, LR-AKT, ER-p38MAPK and Non-responders and a 

minor subset of double responders. In this chapter, further assayed are the effects 

of sIgM stimulation in these subsets of cells.  
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 Results 
 

4.1a ER-AKT and LR-AKT CLL cells, but not ER-p38MAPK or NR 

CLL cells activate pro-survival signalling pathway through the 

engagement of sIgM 

Since AKT plays central role in pro-survival signalling in CLL cells through the 

engagement of the BCR (Packham et al.,2010; Wickremasinghe et al.,2011) and the 

anti-apoptotic effect of CD180 in our hands also appears to be operating via AKT, it 

was important to compare signalling patterns of sIgM and CD180 in the major 

categories of CLL cells defined by us above. 

Our data (Figure 4.1.a, b and c) demonstrated striking similarities between CD180 

and sIgM-mediated signalling pathways in the ER-AKT category of cells regarding 

activation of Btk, PI3-K and AKT. Anti-IgM Ab induced significant phosphorylation 

of these protein kinases in ER-AKT CLL clones, but not in LR-AKT clones. A 

possible explanation could be lower density of sIgM and CD79b on LR-AKT cells 

compared to the ER-AKT cells, (discussed in chapter 3) indicating the importance 

of a certain threshold of the BCR density for initiation of signalling. 

Similar to CD180 ligation, there was a significant downregulation of the basal 

levels of phospho-p38MAPK in ER-AKT cells. Ligation of sIgM on ER-AKT cells also 

led to upregulation of NF-κB (Figure 4.1.b), and increased protection from 

apoptosis (Figure 4.1.d). The pro-survival effect of sIgM ligation was only 

detectable in control B cells and ER-AKT cells, but not in LR-AKT or ER- p38MAPK 

cells. As in case of CD180, we could not find activation of the enzymes studied 

following sIgM ligation in NR-CLL group.  

However, in contrast to the CD180 mediated signalling we did not detect 

appreciable activation of p38MAPK through the ligation of sIgM in any of the CLL 

categories tested (Figure 4.1.a and 4.1.b), including ER-p38MAPK group. Instead, in 

ER-p38MAPK cells we observed a drop in the basal levels of both pBtk and pAKT 

(Figures 4.1.a and c) and lack of protection from apoptosis (Figure 4.1.d). This 
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indicates that the pro-survival effect of sIgM-mediated signalling was blocked in 

this category of cells, but through a pathway different from that through p38MAPK. 

Thus, our data suggest that both CD180 and sIgM ligation on CLL cells results in 

activation of a pro-survival signalling pathway operating via AKT. However, 

whereas anti-CD180 mAb can activate a pro-apoptotic pathway mediated via 

p38MAPK, ligation of sIgM alone does not lead to the activation of this protein 

kinase.  
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Figure 4. 1 a,b: Anti-IgM mediated phosphorylation of AKT, PI3-K, NF-ĸB and 

p38MAPK in different categories of CLL cells described above.  
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Figure 4.1.c,d: Anti-IgM mediated phosphorylation of Btk and survival of control B 

cells and different categories of CLL cells 

 (a and c) Control B cells and CLL cells were incubated with anti-IgM Ab for 30 minutes 

(ER) or 24h (LR) or left unstimulated in medium, washed, stained with anti-CD19 mAb, 

fixed, permeabilised and stained with anti-pAKT(Ser473), anti-phospho-

p38MAPK(Thr180/Tyr182) and anti-pBtk mAbs as described in the Materials and 

Methods. The results were analysed by flow cytometry and expressed as percentages of 

positive cells. P values were calculated using the paired t-test. (b) Representative 

immunoblots showing the levels of pAKT, pPI3-K and NF-ĸB in ER-AKT, LR-AKT and ER-

p38MAPK CLL cells following stimulation with anti-IgM Ab as described in the Materials 

and Methods. Unstimulated CLL cultures in (Medium) were used as controls. The bands 

were visualized respectively by anti-pAKT(ser473), anti-pPI3-K(tyr458)/p55(tyr199) or 

anti- NF-ĸBp65(D14E12) mAbs. Bcl2 was used as a loading control. (d) Percentages of 

DiOC6
dim cells in control B cells, ER-AKT and ER-p38MAPK CLL cells following stimulation 

with anti-IgM Ab as described in the Material and Methods. Control B cells and CLL cells 

were stimulated with anti-IgM Ab for 24h, washed, stained with anti-CD19 mAb, loaded 
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with DiOC6 for 20 min and analysed by flow cytometry. P values were calculated using 

Mann-Whitney U-test. 

 

4.2.a Pre-treatment of CLL cells with anti-CD180 mAb re-wires 

sIgM-mediated intracellular signalling from PI3-K/AKT to 

p38MAPK pathway   

Our data indicates that CD180 and IgM operate through similar signalling 

pathways, particularly that of Btk/PI3-K/AKT, leading to the increased survival of 

CLL cells. We next tested whether pre-engagement of CD180 would affect 

signalling through sIgM (the BCR). This was important to determine since, 

Yamashita et al.,1996, demonstrated that Ab-mediated cross-linking of RP105 on 

mouse B cells led to sensitization to apoptosis in response to BCR ligation.  

In 11 of the 16 CLL samples tested, pre-treatment with anti-CD180 mAb, followed 

by the stimulatory anti-IgM Ab, lead to a significant decrease in the levels of 

phosphorylation of AKT (Figure 4.2, a and b) and PI3-K (Figure 4.2.b) compared 

with anti-IgM alone. Simultaneously, we observed a decline in the percentages of 

pBtk+ cells from 41.9 ± 18.7% down to 34.7 ± 19.1% (n= 9, p=0,029). The levels of 

the anti-apoptotic proteins Mcl-1 and BclXL were also appreciably decreased 

(Figure 4.2.b) indicating a significant reduction of pro-survival signalling. 

Interestingly a drop in the levels of pERK was also detected, in half of these CLL 

samples (Figure 4.2.c). However, the most important observation was that 

reduction in Btk/AKT/PI3-K signalling in these 11 samples was accompanied by a 

significant upregulation of phosphorylated p38MAPK (Figure 4.2.a). In contrast, 

pre-treatment of the remaining 5 out of 16 CLL samples with anti-CD180 mAb 

followed by engagement of sIgM, led to a significant increase in the levels of pAKT 

and pPI3-K, but no changes were detected in the levels of activated p38MAPK or 

anti-apoptotic proteins (Figures 4.2.d and 4.2.e).   

  



119 

 

 

 

 

Figure 4. 2.a,b,c. Activation of intracellular protein kinases and anti-apoptotic 

proteins following sequential ligation of CD180 and sIgM. 
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Figure 4.2.d,e:. Activation of intracellular protein kinases and anti-apoptotic 

proteins following sequential ligation of CD180 and sIgM.  

(a, c and d) CLL cells were treated with anti-CD180 mAb for 15 minutes and with anti-IgM 

Ab for another 15 minutes as described in the Material and Methods. The cells were 

stained with anti-CD19 mAb, fixed, permeabilised and stained with anti-pAKT(Ser473), 

anti-phospho-p38MAPK(Thr180/Tyr182) and anti-pERK(44/42) mAbs as described in 

the Materials and Methods. The results were analysed by flow cytometry and expressed as 

percentages of positive cells. P values were calculated using the paired t-test. (b and e) 

Representative immunoblots of pAKT, pPI3-K, pp38MAPK, Mcl-1 and BclXL, following 

sequential ligation of CD180 followed by IgM. Bcl-2 was used as a loading control. The 

bands were assessed and visualised as described by the Materials and Methods. 
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Interestingly, the two groups of CLL clones (with and without modulation of sIgM-

mediated signalling) differed in the levels of AKT phosphorylated in response to 

the ligation of sIgM alone: it was twice as high in the first group compared with the 

minor group that showed no changes – 60.3±18.4% vs 30.3±6.9%, p=0.0003. 

Also notable was that the first group was characterised by the higher levels of 

expression of CD38: 1105±676 vs 374±192 RBS/cell, p=0.024; 42.3 ± 20.9% vs 

19.5±12.3%, p=0.045 (n=11 and n=5 respectively).  

In contrast to CD40 and IL4 mediated activation (measured by the expression of 

CD86) and cycling (assessed through Ki-67) of CLL cells demonstrated previously 

by our group (Porakishvili et al.,2011) there was no additive effect between CD180 

and sIgM mediated CLL cell activation or cycling (studied later and personal 

communication with Miss Nadeeka Rajakurna, continuing PhD student in our 

research group at University of Westminster) which is consistent with 

convergence of CD180 and sIgM signalling pathways. Furthermore it indicates that 

re-wiring of the sIgM-induced AKT-mediated signalling pathways by CD180 does 

not affect cell activation and cycling, but only their survival and apoptosis. 

We therefore conclude that in those CLL cells where ligation of sIgM led to a 

substantial activation of the pro-survival Btk/PI3-K/AKT pathway, pre-

engagement of CD180 redirected BCR-mediated signalling towards the potentially 

pro-apoptotic p38MAPK pathway.  

4.3a CD180 negative CLL clones demonstrate impaired responses 

to sIgM stimulation 

Since CD180 engagement had such a profound effect on rewiring of the sIgM-

mediated pro-survival signalling pathway, we next wanted to determine if in the 

absence of CD180, sIgM-signalling would be intact. Surprisingly, ligation of sIgM on 

CD180neg CLL cells did not result in an appreciable activation above basal level of 

all protein kinases tested, apart from Btk where a substantial increase has been 

detected  (Figure 4.3a). Furthermore, activation of CD180neg CLL cells measured 

by the level of expression of CD86 (in 24h - 72h cultures) was also decreased when 
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compared to R-CLL clones (Figure 4.3b, p value between CD180+ and CD180neg 

CLL cells = 0.013).  

Interestingly, CD180neg CLL cells (n=17) were characterised by a significantly 

lower expression of CD38, as compared to CD180+ CLL cells (n=33): 828 ± 762 vs 

387 ± 365 RBS/cell, p=0.026; and 33.0 ± 23.4 vs 18.2 ± 16.5%, p=0.045.  

Taken together with our group's previous observation that activation and cycling 

of CD180 negative CLL cells in response to anti-CD40 mAb or the addition of rIL-4  

was low (Porakishvili et al.,2011), our data are consistent with the hypothesis that 

CD180 negative CLL cells respond poorly to microenvironmental signals.  
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Figure 4. 3 a,b sIgM-induced signalling, activation of CD180-IgM+ CLL cells.  

(a) Ten CD180neg CLL clones were treated with anti-IgM Ab for 30 minutes and the levels 

of activated protein kinases assessed as described in Materials and methods (b) Ten 

CD180+IgM+ and ten CD180-IgM+ CLL clones were treated with anti-IgM mAb for 48-72h 

as described in the Material and Methods, washed and counterstained with anti-CD19 and 

anti-CD86 mAbs using unstimulated cultures (Medium) as controls. The results were 

analysed by flow cytometry and expressed as percentages of CD86+ cells. p values were 

calculated using the Mann-Whitney non-parametrical U-test.     

 

 

a 

b 
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 Discussion 

4.1.b Pro-survival Btk-PI3K-AKT pathway, but not pro-apoptotic 

p38MAPK signalling pathway, is activated via CD180 and sIgM in 

ER-AKT cells 

It has been shown for B cells that PI3K-signalling is more important for 

transducing BCR-signalling, than TLR-signalling (Pone et al.,2012). However, our 

data strongly suggests that ER-AKT CLL cells activate pro-survival Btk-PI3K-AKT 

pathway following the ligation of either receptor – CD180 (Figure 3.6.a,b) or sIgM 

(Figure 4.1.a,b,c,d). In our hands there was a striking resemblance between PK 

activation profiles in this category of cells: substantial activation of Btk, AKT and 

PI3K following sIgM ligation (Figure 4.1a, b and c) leading to significant survival of 

CLL cells from apoptosis (p=0.036), comparable with that of control B cells 

(p=0.047, Figure 4.1.d). This was accompanied by a substantial increase in the 

levels of NF-κB (Figure 4.1.b), which is often activated downstream to Btk and AKT  

and PI3K (Ringshausen et al.,2002; Herman et al.,2010). However, differently from 

CD180, we were unable to detect activation of PKs in the LR-AKT category of cells 

following stimulation via sIgM (Figure 4.1a and 4.1 b). This could be explained by a 

low expression of sIgM and CD79b on ER-AKT category of cells discussed above. It 

appears that the level of expression, in particular, the density of sIgM and CD79b 

reflected in antibody RBS/cell (Porakishvili et al.,2005; 2011) on these cells is 

below threshold for BCR engagement. 

Importantly, like in case of CD180, we have observed significant reduction in the 

basal levels of activated p38MAPK in ER-AKT cells following engagement of sIgM 

(Figure 4.1a, p=0.004).  

However, unlike CD180, we failed to detect any activation of p38MAPK in ER-

p38MAPK responder cells. It was predictable, since in this category of CLL cells we 

also established significant drop of pBtk+ cells below the basal levels following 

stimulation of sIgM (Figure 4.1c), and it has been previously shown that BCR 

signalling completely failed in Btk-deficient B cells, assessed by the absence of 

proliferation and the lack of NF-κB activation produced by BCR engagement (Khan 
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et al.,1995; Petro et al.,2000), in line with our observations (Figure 4.1b). Others 

also failed to detect p38MAPK activation in CLL cells following BCR ligation 

(Efremov et al.,2007). What it means though is that incapability to activate Btk 

abrogates both “arms” of BCR signalling (via AKT and p38MAPK), but leaves 

CD180-mediated p38MAPK activation intact (Figure 3.5.b). In other words, our 

data indicates, that differently from BCR, CD180 can signal downstream to 

p38MAPK bypassing Btk. This may have implications for CLL therapy where Btk 

inhibitors are being used since CLL cells might receive Btk-independent stimuli 

from microenvironment via CD180. 

Interestingly, out of the double-responder AKT/p38MAPK subset of cells only 

one/seven was characterized by activation of both PKs following ligation of sIgM, 

whilst the rest only demonstrated phosphorylation of AKT. In contrast, our pilot 

experiments suggest that some CD180 NR-CLL cells are responding to sIgM 

ligation by activation of Btk (data not shown). Overall, we found that activation of 

p38MAPK following sIgM engagement is a rare event, compared to the ligation of 

CD180, a view shared by Efremov et al (2007).  

This means that although there is a substantial overlap in CD180 and sIgM 

intracellular signalling pathways, they could be quite different. However in one 

third of tested CLL samples – ER-AKT, CD180 and sIgM signal transduction 

converged towards pro-survival Btk-PI3K-AKT pathway. This prompted us to 

study how signal transduction would proceed if we “clash” the pathways through 

sequential ligation of CD180 and BCR, moreover that the likelihood of CLL cells 

receiving both microenvironmental stimuli in vivo should be quite high.  

4.2b Pre-treatment of CLL cells with anti-CD180 antibodies re-

wires the sIgM signalling pathway from pro-survival to pro-

apoptotic 

Interactions between CD180/RP105 and BCR signalling pathways in CLL have not 

been reported before. In a paper published in 1996, Yamashita et al., reported that 

treatment with anti-RP105 mAb of murine B cells sensitized them towards anti-

IgM induced apoptosis. To our knowledge, there were no other reports on the 
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subject, involving human or mouse B cells or CLL cells. Likewise there is little data 

on interaction between CD180/RP105-mediated and other signalling pathways in 

B cells.  RP105 was reported to enhance CpG DNA-induced proliferation and 

survival by naïve B cells through upregulation of the expression of TLR9 (Yamazaki 

et al.,2010), as well as TLR4-dependent survival, proliferation and plasma cell 

generation of mantle zone B cells (Nagai et al.,2012). 

Our pilot histochemical analysis identified substantial expression of CD180 on CLL 

cells in the bone marrow aspirates and on CLL cells and normal B cells in lymph 

node biopsies (discussed in chapter 5). Hence it was intriguing to explore using 

stimulatory antibodies the “fate” of CD180+sIgM+ CLL cells when they receive both 

stimuli mimicking in vivo  interactions with microenvironmental putative CLL 

ligand and sIgM (auto)antigen. 

Our data proves that 15 minute long pre-treatment of CLL cells with anti-CD180 

mAbs substantially diminished pro-survival Btk-PI3K-AKT signalling pathway 

mediated by subsequent ligation of sIgM and re-directed it towards pro-apoptotic 

p38MAPK pathway in two thirds of CLL samples tested (Figure 4.2a,b,c). Not only 

levels of activated pBtk, pAKT and pPI3K dropped significantly (Figures 

4.2.a,b,c,d,e), but this was accompanied by a decrease in the anti-apoptotic 

proteins Mcl-1 and BclXL (Figure 4.2.b,e). In CLL, McL-1 is associated with 

chemoresistance, resistance to apoptosis and poor prognosis (Pepper et al.,2008; 

Scupoli et al.,2012). Our data strongly suggests that the mechanism of the 

suppression of pro-survival signals during sequential ligation of CD180 and sIgM 

involves favoring of pro-apoptotic p38MAPK pathway. It is interesting that in half 

of the samples were re-wiring towards apoptosis was observed, we found a 

parallel significant decrease in the levels of activated Erk. Since Erk was reported 

as a key element of CLL cell expansion in vivo driven by CD38 (Malavasi et al.,2011) 

pre-ligation of CD180 might also lead to decreased potency of CLL expansion in 

vivo. This rewiring of sIgM-induced anti-apoptotic signals towards pro-apoptotic 

by the ligation of CD180 confirms earlier observations (Yamashita et al.,1996) and 

could have important implications in future strategies for therapy of CLL.  
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In a one third of CLL samples where sIgM ligation alone resulted in  a poor 

activation of AKT-PI3K pathway, pre-engagement of CD180 lead to the opposite 

effect: potentiation of the pro-survival signal.  Intriguingly, all of these CLL samples 

belonged to the category of AKT/p38MAPK double responders (also discussed in 

chapter 3). We have previously demonstrated that, in contrast to CD40 and IL4 

mediated cell activation and cycling, there was no additive effect between CD180 

and sIgM ligation in the expression of CD86 or Ki-67 (Porakishvili et al.,2011). This 

might indicate that increased survival of this category of CLL cells induced by co-

ligation of CD180 and sIgM is not accompanied by their proliferation/expansion. 

Indeed we found that all these CLL samples were CD38 negative. 

We therefore conclude that in those CLL cells where ligation of sIgM led to a 

substantial activation of the pro-survival Btk-Pi3K-AKT pathway, pre-engagement 

of CD180 redirected BCR-mediated signalling towards the potentially pro-

apoptotic p38MAPK pathway. However additive pro-survival effect follows co-

ligation of CD180 and sIgM in case when either receptor alone provides sub-

optimal stimuli. Although the second scenario seems to be rare, it emphasises once 

more the importance of individual tailor-made immunotherapeutical approaches 

to the treatment of CLL.  

In the light of these findings it was interesting to establish signalling pattern of 

CD180negIgM+ CLL. We found that in the absence of CD180 sIgM-induced CLL cell 

signalling is impaired (Figure 4.3.a,b). Only Btk has been significantly activated in 

this category of CLL cells with no appreciable increase in the levels of pZAP70/Syk, 

pERK, pAKT or pp38MAPK (Figure 6), and cell activation was also diminished 

(Figure 4.3b). We have previously shown that CD180neg cells were also poorly 

responding to the ligation of CD40 and addition of recombinant IL-4 (Porakishvili 

et al.,2011). Thus it appears that CD180 represents an essential component of CLL 

signalling machinery through its interaction with and modulation of sIgM-

mediated responses.   

It is intriguing that sequential transduction of two pro-survival signals via CD180 

and sIgM results in its abrogation. Likewise we have also shown previously that 

pre-treatment of CLL cells with anti-sIgM leads to the abrogation of CD180-
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mediated PI3-K/AKT signalling (Vispute et al.,2011). We hypothesize that 

interaction between CD180 is due to the convergence of certain key signalling 

pathways (Figure 4.4). Whereas pro-survival pathway appears to be operating 

through Btk-PI3K-AKT circuit, the upstream to p38MAPK elements of pro-

apoptotic pathway have yet to be identified. 

Our data strongly suggests that in a substantial number of CLL samples by pre-

engaging CD180 we could prevent further pro-survival signalling mediated via 

sIgM and, instead, induce CLL cell apoptosis, which opens doors to new strategies 

for the treatment of CLL. 
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Figure 4. 4: Hypothetical model for interactions between CD180 and sIgM pathways 
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Chapter 5  Expression of CD180 in 

lymphoid tissues 
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Introduction 
 

CLL is a lymphoproliferative disease, with heterogeneous manifestations and 

variable prognosis. Patients with CLL  often have lymphadenopathy and 

splenomegaly. CLL is characterized by highly variable distribution of tumour mass 

between peripheral blood, bone marrow and lymphoid organs which is important 

for staging, classification and prognosis. There is an increasing evidence of the role 

of lymphoid tissue microenvironment providing pro-survival stimuli for the 

leukaemic cells and hence contributing to the pathogenesis of the diseases (Burger 

et al.,2009). CLL cells when cultured in vitro undergo apoptosis indicating that the 

in vivo microenvironment supports their growth/proliferation and survival. Bone 

marrow stromal cells when added to CLL cell cultures in vitro, aid the survival of 

the malignant cells (Deaglio et al.,2010). Recently it has been shown that the 

majority of the clonal evolution of the CLL cells, and proliferation, occurs in 

specialized structures in the tissues (bone marrow 'BM' and/or lymph nodes 'LN') 

referred to as 'pseudofollicles' or 'proliferation centres'. These structures were 

found in approximately 90% of CLL cases. They consist of loosely arranged larger 

cells that often contain prominent nucleoli, in contrast to true B-cell follicles, which 

may be found entrapped within the small lymphocytic infiltrates in sections of 

lymphoid organs in CLL (Schmid et al.,1994). Assessment of the cell-cycle marker 

Ki-67 suggests that CLL proliferation occurs in these proliferation centres in BM or 

LN (Burger et al.,2009). Better understanding complex interactions between CLL 

cells and tissue microenvironment, would add to the knowledge of CLL 

epidemiology and novel therapeutic approaches.  

Our previous studies have shown CD180 to be expressed by 2/3rd of the CLL 

samples and a majority of control B cells. However, these studies account for the 

trafficking cells in the peripheral blood. It was essential to assess expression of 

CD180 on CLL cells in lymphoid tissues implicating their possible interaction with 

microenvironment through a putative endogenous ligand. In this pilot study, we 

attempted to determine CD180 expression on CLL cells in BM and LN, comparing it 
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with normal reactive tonsils. In three cases we were able to assess concordance of 

this CD180 expression in lymphoid tissue with the peripheral blood.  

Results 

5.1 CD180 expression in lymphoid tissues is heterogeneous 

We studied the normal reactive tonsil tissue and LN and BM samples from CLL 

patients using histochemical staining with a specific CD180 antibody as described 

in Materials and methods. In brief, 2µm-thick paraffin embedded tissue sections 

(Tonsils, LN or BM) were used for staining with anti-CD180 mAb,  blocked using 3-

4% (v/v) hydrogen peroxide and counterstained with haematoxylin. The slides 

were reviewed with light microscopy and optimal conditions chosen based upon 

the criterion of background-free selective cellular labelling and images obtained.  

The normal control reactive tonsil sample showed strong expression of CD180 

(brown) by the cells in the mantle zone region of the secondary follicles (indicated 

with an arrow)(Figures 5.1 and 5.2). In contrast, the germinal centre (GC) cells 

showed extremely weak CD180 expression except of a few morphologically 

evident macrophages (indicated with arrows Figures 5.1 and 5.2).  

In case of the 2 CLL LN samples studies, we observed very weak positive surface 

staining of CD180 (Images 5.3 and 5.4). The CLL cells were conspicuous by their 

monomorphic aggregates (as indicated in the darker stained sections).  

In case of the bone marrow samples studied from 6 CLL cases, we saw a variable 

expression of CD180. Images 5.6,5.7,5.8,5.9 and 5.10 show areas in BM with CLL 

cell infiltrates (possibly 'proliferation centres'; indicated with arrows) with cells 

showing variable surface expression of CD180. Images 5.9 and 5.10 show relatively 

weaker CD180 expression compared to the CLL cases in images 5.5,5.6,5.7 and 5.8  

We thus, with this pilot study, show that though strongly expressed by marginal 

zone cells in normal tonsil, CD180 expression pattern in the CLL tissues (BM and 

LN) is heterogeneous. Further studies with larger number of samples are 

necessary to validate our preliminary findings.  



133 

 

 

 

 

Figure 5. 1, 2: Histochemical staining for the expression of CD180 in normal reactive 

tonsil sample 

(1) Normal reactive tonsil 10x magnification (2) 40x magnification of marked secondary 
follicle; 2µm thick paraffin embedded sections of the tissues from normal or CLL cases 
were stained with haematoxylin and anti-CD180 mAb, fixed and analysed with light 
microscopy as described in Materials and Methods. Arrows indicate the positive 
expression of CD180 observed (brown). 
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Figure 5. 3 , 4: Immunohistochemical staining for CD180 expression in CLL lymph 

nodes 

Weak expression of CD180 is observed in the areas referred to as the 'proliferation 

centres'. Arrows indicate weak surface expression of CD180. 2µm thick paraffin 

embedded sections of the tissues from CLL cases were stained with haematoxylin 

and anti-CD180 mAb, fixed and analysed with light microscopy as described in 

5.4 

5.3 



135 

 

Materials and Methods. Arrows indicate the positive expression of CD180 

observed (brown). 
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Figure 5. 5, 5. 6, 5. 7, 5. 8, 5. 9, 5. 10 : Histochemical staining of the expression of CD180 

in CLL bone marrow samples 

Figure 5.5 - 5.8 show distinct strong expression of CD180 as indicated. 5.9 and 5.10 show 

weak or even negative expression of CD180 in the CLL bone marrow samples. 2µm thick 

paraffin embedded sections of the tissues from CLL cases were stained with haematoxylin 

and anti-CD180 mAb, fixed and analysed with light microscopy as described in Materials 

and Methods. Arrows indicate the positive expression of CD180 observed (brown). 
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5.2 The level of the expression of CD180 is higher in Peripheral 

Blood (PB) than Bone Marrow (BM) of CLL patients 

In three CLL cases we were able to analyse possible concordance of the CLL 

expression in the peripheral blood and in bone marrow.  PBMCs were isolated 

from tissues (BM aspirates and PB) and suspended in medium as described in 

Materials and methods. The cells were stained using fluorochrome tagged 

antibodies to CD180 and CD19. Cells were analysed with flow cytometery by gating 

on CD19+ cells and calculating the relative MFI of CD180 expression with that of 

the isotype control.   We observed that in all three cases studied, the surface 

expression of CD180 was significantly higher in the PB than in the BM (p=0.03) 

(Figure 5.11).  
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Figure 5. 11 CD180 expression pattern in peripheral blood and bone marrow cells 

from 3 CLL cases  

CLL cells from peripheral blood and bone marrow aspirates from 3 patients were isolated 

and stained with fluorochrome conjugated anti-CD180 mAb as described in Materials and 

methods. The expression was assayed with flow cytometry and expressed as relative-MFI 

compared to the isotype controls. P values were obtained using paired t-test.  
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 Discussion 
 

It has been established that the neoplastic transformation of the CLL clone occurs 

in the  lymphoid tissues (Burger et al.,2005).  However, the histology of lymph 

nodes or bone marrow in CLL is heterogeneous and the relationship between 

different histological patterns and clinical outcome of the disease has been 

insufficiently studied. The main reason is the shortcoming in the availability of 

tissue samples for analysis owing to the fact that tissue biopsy, being highly 

invasive, is not a standard procedure for diagnosis. 

We studied the expressions of CD180 in various lymphoid tissues for better 

understanding of its role. Our pilot data, firstly confirms the observations by many 

others  that CD180 is expressed by the MZB cells and much less likely by the GC 

cells. Also, the expression of CD180 on MZB cells was 3 times higher than that seen 

with the B cells in the peripheral blood(Miyake et al.,1995; Chaplin et al.,2011; 

Nagai et al.,2012). Since all the other studies have demonstrated these in murine 

splenic B cells, to the best of our knowledge this was the first report showing the 

expression of CD180 in human tonsillar MZB cells. The MZB cells are largely 

consisting of B cells with a pre-activated phenotype and express somatically 

mutated IGVH genes indicating possibly previous antigenic experience (Cerruti et 

al.,2013). The somatic hypermutations could be acquired in germinal centres 

before migration of the cells to the marginal zone and the occurrence of clonal 

expansion (Tierens et al.,1999). We have shown previously that CD180 is 

expressed preferentially by the M IGVH CLL cells too (Porakishvili et al.,2005). 

Hence, presumably, CD180 is expressed on the cell surface after the migration of 

cells from germinal centres to the marginal zone. Another study with mice splenic 

MZB cells has indicated anti-CD180 mAb stimulation showed robust increase in 

marginal zone B cell proliferation, and CD86 upregulation, along with antibody 

secretions in the same subset (Chaplin et al.,2011). Our data indicates CD180 

expression in the tonsil MZ is indicative of an antigenic experience for the cells. 

Therefore, to sum up, our hypothetical model suggests - the naive B cells in the GC 

undergo antigenic stimulation, mature into memory or a pre-activated B cell 
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subset, migrate to MZ where upon the CD180 gets expressed on the surface. Here, 

engagement of CD180 through the unknown ligand(s) drives the cells into 

proliferation, activation (CD86 upregulation) and antibody secretion, further to 

which the receptor is probably internalized before entering the peripheral blood. 

Our data fits in with these previous observations that B cells lose CD180 upon 

activation (Kikuchi et al.,2008). 

Further we ventured into assessing the expressions of CD180 in CLL solid tissues. 

The data observed was different from that seen with the normal reactive tonsil 

since the lymphoid tissues in CLL show complete obliteration of the normal tissue 

architecture (Dick et al.,2006). No distinct follicles and extra-follicular regions are 

observed in the CLL lymph nodes due to massive infiltrations with the neoplastic 

malignant cell (Schmid et al.,1994). In these tissues, as defined by many, are 

present specialized regions called proliferations centres (PCs) wherein the major 

transformation, developement and survival of the neoplastic clone takes place 

(Schmid et al.,1994; Soma et al.,2006; Ciccone et al.,2011). Our data demonstrated 

that CD180 was very weakly expressed in both the LN samples studied, which 

were mainly indicative of areas with the PCs. The PC cells generally express 

phenotypic markers of activated/proliferating cells evidenced by higher levels of 

molecule Ki67, CD38, higher expression of ZAP70 and IgM, in most cases with U 

IGVH (Schmid et al.,1994; Soma et al.,2006; Gine et al.,2010).  We have discussed 

above that CD180 expression is downregulated in activated cells, preferential in M 

IGVH and differential with sIgM. Therefore, the observation of diminished levels of 

CD180 in the PC cells was be-fitting. However, to account for the extremely low 

positivity observed in two samples, we reason that since CD180 is also expressed 

by dendritic cells, it is possible that the weakly stained regions observed were  

dendritic cells. This is based on the knowledge that proliferation centres and 

surrounding tissues also contain a delicate follicular dendritic cell network 

(Schmid et al.,1994)  

In case of our studies with the BM from 6 CLL cases, 4 cases showed strong 

expression of CD180 (Figures 5.5, 5.6,5.7,5.8) whilst and 2 cases were extremely 

weak or even negative for CD180 on BM lymphocytes (Figures 5.9 and 5.10) 
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indicating, possibly, that similar to our observation with the PB where we have 

shown that in about 1/3 of CLL cases CLL cells are negative for CD180 expression 

in peripheral blood.  

Thus, CLL BM can be either CD180+ve or CD180-ve, i.e. the expression of CD180 in 

the BM of CLL patients is heterogeneous.  

It is known that BM architecture varies with two different infiltration patterns 

commonly observed in CLL - diffused and interstitial. Some studies have stated 

that the diffused patterns are indicative of a poor disease prognosis and lower 

median survival time, whilst the interstitial infiltration is associated with a better 

prognosis (Carbone et al.,1978; Rozman et al.,1981; Pangalis et al.,1984). However 

we were unable to establish correlation between the BM architecture and the 

pattern of expression of CD180.  

We are yet uncertain of the physiological role of this heterogeneity and further 

studies comparing the simultaneous expressions in PB and BM of the same CLL 

cases is crucial to be undertaken in the future. 

 In three CLL cases, we studied with FACS analysis, the comparative expressions  of 

CD180+ in PB and corresponding BM cells. Interestingly in all three cases, PB 

CD19+ cells expressed significantly higher levels of surface CD180 compared to BM 

CD19+ cells (Figure 5.11). That the trafficking cells expressed higher levels of 

CD180 is intriguing and might suggest the involvement of CD180/ligand 

interaction with the expansion and/or homing of CLL cells in vivo.  This suggestion, 

to certain extent is supported by our data on the expression of CD180 on 

proliferating and homing subsets of CLL cells presented in the next chapter.  
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Introduction 
Traditionally CLL has been considered to result from the accumulation of relatively 

immature, and possibly incompetent B lymphocytes arising due to defect in the 

apoptosis, rather than being a proliferating cell malignancy (Dameshek et al.,1967; 

Chiorazzi et al.,2003). However, further studies revealed that although the 

majority of circulating CLL cells are not proliferating, a small proliferative 

compartment does exist (Chiorazzi et al.,2005). CLL cells arise from the bone 

marrow and infiltrate lymphoid organs such as lymph nodes and the spleen 

considered to be sites of leukemic cell proliferation as very few actively dividing 

cells are observed in the blood (Ghia et al.,2000; Dighiero et al.,1991). Clinically in 

some patients, the disease remains indolent without necessitating therapy, in 

others, it progresses with unknown causes into a more aggressive disease. The 

progressive disease is often associated with genomic changes, and is suggestive of 

clonal evolution (Shanafelt et al.,2009).  

Studies of the CLL clonal kinetics in lymphoid organs and in peripheral blood have 

been intriguing, but the most informative studies have been carried out relatively 

recently. Messmer et al.,(2005) used deuterium (a nonradioactive isotope 

detectable by mass spectrometry) that was administered in the form of deuterated 

“heavy” water (2H2O) to CLL patients. The idea was to examine in vivo, newly 

synthesized DNA of dividing cells by labelling with the nonradioactive isotope. The 

data obtained demonstrated that CLL cells proliferate at definable and, in some 

cases, substantial rates (about 0.1% to greater than 1.0% of the clone per day). In 

most instances, patients whose clonal birth rates exceeded 0.35% per day had 

symptoms or signs of active or progressive CLL. Thus, these studies highlighted the 

dynamic nature of CLL clones and defined sizeable rates of birth and death that 

were previously unappreciated. Further studies by Calissano et al.,(2009; 2011), 

aimed at better understanding the phenotype of these cells, in correlation to the 

cell cycle or kinetics, within each CLL clone. Using the same "heavy" water 

approach as before, they observed phenotypic intra-clonal heterogeneity related to 

the expressions of CD38, CXCR4 and CD5. Delineating the CLL clones on the basis 

of reciprocal densities of chemokine receptor 4 (CXCR4) and CD5 revealed that the 
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CXCR4dimCD5bright (proliferative) fraction contained more 2H-labeled DNA and 

hence divided cells than the CXCR4brightCD5dim (resting) fraction. This enrichment 

was confirmed by the higher expression of cell cycle–associated molecule Ki-67 in 

the same fractions, and gene expression profiling (Calissano et al.,2011). 

In the previous chapter we have outlined our pilot studies on the expression of 

CD180 on CLL cells in lymphoid tissues. In our hands CD180+CLL cells were found 

in the marginal zones of the lymph nodes, but not in the germinal centres that 

suggests some association between CLL cells kinetics and the expression of CD180. 

We therefore used the approached developed by Calissano et al to assess 

expression of CD180 on “proliferative” and “resting” CLL cell subsets. Since we 

have previously shown that CD180 and IgM are differentially expressed by CLL 

cells in peripheral blood (Porakishvili et al., 2005), and our recent data implies 

strong interaction between CD180 and sIgM signalling pathways, we have studied 

the expression of both receptors on these CLL populations.    
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Results 

6.1. Differential expression of CD180 and sIgM by the 

'proliferating' (CXCR4dimCD5bright) and the 'resting'  

(CXCR4brightCD5dim)  CLL fractions 

 CLL cells from 16 cases were isolated and stained with compatible fluorochrome-

labeled  mAbs against CD180 or sIgM, CD19, CXCR4 and CD5 and data analysed by 

flow cytometry (as defined in the Materials and methods). Percentages of  CD180+ 

or sIgM+ CLL cells on CXCR4dimCD5bright or CXCR4brightCD5dim subsets were 

determined by gating on CD19+ cells in comparison with the corresponding 

isotype controls.  

Our data indicates that significantly more CXCR4brightCD5dim cells expressed CD180 

compared to the CXCR4dimCD5bright counterparts  (Figure 6.1.A). In contrast, the 

latter cell subset was enriched by sIgM+ cells (Figure 6.1.B). This would suggest 

that CD180 is preferably expressed by the “resting” population of CLL cells whilst 

the sIgM+ cells mostly belong to the “proliferating” category. This observation is 

concordant with our previous report indicating an often alternative expression of 

the two receptors on CLL cells (Porakishvili et al., 2005).  
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Figure 6. 1 .A, B: CD180 and sIgM expressions on CXCR4brightCD5dim 'resting' and 

CXCR4dimCD5bright 'proliferative' CLL subsets 

 PBMCs from 16 CLL cases were incubated with fluorochrome-labeled mAbs reactive with 

CD19, CD5, CXCR4 and CD180 or sIgM. Cells were first gated for CD19 and then gated for 

corresponding CXCR4brightCD5dim and CXCR4dimCD5bright fractions which accounted for ∼ 

5% of total cell populations in each case. CD180 or sIgM expression was assayed in these 

fractions as defined in Materials and methods. Statistical significance of the data analysed 

was assayed by student t-test and p-value <0.05 was considered significant. The bars 

indicate standard deviation.  
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 Discussion 
The phenotypes ascertaining the differential clonal kinetics of CLL cells were 

determined by Calassino et al., (2009 and 2011). CD5 is associated with B cell 

activation whereas CXCR4, is an important chemokine receptor, involved in 

maintaining B-cell contact with stromal elements of solid lymphoid tissues and 

migration of the cells to the solid tissues (Burger et al.,2001). It was established 

that the pattern of expression of these two markers correlated with the 

proliferative capacity of CLL cells. A hypothetical lifecycle for individual CLL cells 

was conjured, representing a continuum between the CXCR4dimCD5bright, 

CXCR4intCD5int and CXCR4 brightCD5dim fractions (Figure 6.2). At one extreme is the 

proliferative fraction (CXCR4dimCD5bright), highly enriched in young, vital cells that 

recently left a solid lymphoid tissue where activation and proliferation occurred. 

At the other end is the resting compartment, containing older, less robust cells that 

may have been circulating in the periphery longer and are attempting through high 

CXCR4 levels to migrate into a solid tissue niche to avoid death 

(CXCR4 brightCD5dim ). In this model, the intermediate fraction, which is the bulk of 

the clone, links the extremes and is the fraction from which most of our current 

knowledge on circulating CLL cells is derived (Calissano et al.,2011). 
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Figure 6. 2 Hypothetical model of the lifecycle of a CLL B cell.  

Part 1: CLL cells rest on the stroma supported by CXCR4-CXCL12 interactions. When 

stimulated, cells are activated and divide, upregulating CD5, internalizing CXCR4 and 

detaching from stroma. The process could be ligand-induced (for example, BCR or toll-like 

[TLR] or other pathways) or spontaneous. Low CXCR4 levels increase the chances of 

recently divided CLL cells (CXCR4dimCD5bright phenotype) exiting solid tissue and reaching 

peripheral blood. Part 2: Recently born/divided CLL cells reach peripheral blood as 

members of the CXCR4dimCD5bright fraction. Over time, possibly because of a lack of trophic 

input from the solid tissue microenvironment, cells begin to reexpress CXCR4 to trek back 

to nutrient-rich niches. This leads to expression of a CXCR4intCD5int and then 

CXCR4brightCD5dim membrane phenotype. The model considers the three fractions to be 

linked as a continuum. Part 3: CXCR4brightCD5dim CLL cells have the greatest chance of 

detecting and following a CXCL12/SDF1 gradient, thereby reentering lymphoid solid 

tissue and receiving prosurvival stimuli. Those that do not reenter die by exhaustion 

(Calissano et al.,2011).  



150 

 

 

In our studies we observed that the cells from the 'resting' compartment 

characterized by the phenotype CXCR4brightCD5dim were enriched for CD180+ cells 

compared to the  'proliferating' CXCR4dimCD5bright subset. In contrast  sIgM+ cells 

were more frequent in the  proliferating fraction (Figures 6.1 A and B). This 

supports our previous data demonstrating that CLL cells differentially express 

these two receptors (Porakishvili et al.,2005).   

It has been shown earlier that BCR stimulation leads to downregulation of CXCR4 

expression (Quiroga et al.,2010). According to Callisano et al., (2011) this subset of 

the CLL cells represent actively proliferative and expanding compartment of the 

clone. Cell proliferation is often preceded by activation, and it has been 

demonstrated previously that CD180 expression is considerably downregulated on 

activated B cells (Kikuchi et al.,2001).  

As for the “resting” CLL clonal fraction, enriched for CD180+ cells, it is considered 

to represent “ageing” antigen experienced cells. We have tested CD180 expression 

on CD19+CD27+ and CD19+CD27neg CLL cells (unpublished data not shown) but 

it has been inconclusive. To this end we are uncertain whether CD180 is 

predominantly expressed by antigen experienced cells. 

Since the “resting” subset of CLL cells is also considered as the one “returning” to 

the solid tissues supported by the increased expression of CRCX4, our data might 

suggest possible involvement of CD180 through its interaction with putative 

endogenous ligand in the homing of the CLL cells as a part of a circulation of the 

clone in vivo. This is further supported by our data presented in Chapter 5 which 

indicates preferable expression of CD180 on the marginal zone (MZ) CLL cells and 

normal B cells.  

Bone marrow stromal cells also attract CLL cells via the chemokine receptor 

CXCR4 that leads to infiltration of BM by the CLL cells and provides strong survival 

signals (Burger et al.,2001; Barretina et al.,2003).  
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As MZ B cells can be actively recruited back into circulation, we can speculate that  

ligation of CD180 on CLL cells could possibly transform them from the 'resting' 

state to the 'proliferative' state. The proliferative fraction of a CLL clone is of major 

interest for several reasons. First, the 'proliferative compartment' may contain 

cells that developed new structural DNA abnormalities which lead to a more 

aggressive disease (Damle et al.,2007). Furthermore, the most recently born 

fraction may be a progeny of putative leukaemic stem cells. Finally, targeting these 

cells with therapy will therefore abort clonal evolution (Calissano et al.,2011; 

Chiorazzi et al.,2005). Hypothesizing that the CD180 ligation drives the cells into 

cycling or proliferation which corresponds to increasing the expression of CD5 and 

downregulating the expression of CXCR4 and CD180 (Figure 6.2), could therefore 

prevent the cells from re-entering solid tissue. This process would in turn thwart 

the cells from receiving survival signals via CXCR4 and keep them in circulation 

easier to target with therapy. 

Most of the therapeutic options available at the moment are focussed on 

eliminating the entire neoplastic clone, which show a number of unfavourable 

repercussions (Lukenbill et al.,2013; Stephens et al.,2013). Delineating the CLL 

clone according to the proliferative and resting compartments and then targeting 

individual compartments with a specific phenotype, rather than eliminating the 

entire clone which might also contain healthy cells, is a putative approach to 

therapy currently in consideration by many groups (Chiorazzi et al.,2011). CD180 

could therefore serve as a potential marker for the resting fraction of CLL cells and 

ligating these cells through mAbs to CD180 could drive them into cycling and 

proliferation, hence providing putative target for therapy and disrupting the 

migration of the cells towards their pro- survival niches in the solid lymphoid 

tissues.  
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Chapter 7 Conclusions 
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Part I 

The role of the microenvironment in the development and progression of chronic 

lymphocytic leukaemia (CLL) is currently of major interest. Pathogen- and 

damage-associated molecular patterns (PAMPs and DAMPs, respectively) 

represent exogenous and endogenous microenvironmental factors acting via a 

range of receptors, including Toll-like receptors (TLR). CD180/RP105 is a 

membrane-associated orphan receptor that belongs to the TLR family, is expressed 

by professional antigen-presenting cells, and drives normal B-cell activation and 

proliferation. 

We have previously shown that approximately 60% of CLL samples expressed 

surface CD180 (Porakishvili et al., 2005), but only half of these samples responded 

to ligation with anti-CD180 monoclonal antibody (mAb) resulting in activation, 

cycling, and reduced basal apoptosis. This was comparable or superior to that 

induced by anti-CD40 mAb or IL-4 (Porakishvili et al., 2011). These CLL samples 

upregulated CD86 and Ki-67 upon stimulation with anti-CD180 mAb and were 

termed responders (R). In contrast, CD180+CLL samples that failed to respond to 

anti-CD180 mAb, despite expressing a high density of CD180 receptors, were 

termed non-responders (NR).  

We further demonstrated that in R-CLL cells, treatment with anti-CD180 mAb 

significantly induced phosphorylation of ZAP70/Syk, Erk, p38MAPK, and AKT in a 

Ca2+ independent manner, compared to untreated cells. In contrast, CD180-

mediated signalling in NR CLL cells did not progress downstream from ZAP70/Syk 

phosphorylation indicating a block in activation of downstream protein kinases, 

and possible anergy (Porakishvili et al., 2011).  

However, we have noted that although the levels of phosphorylated AKT, ERK, and 

p38MAPK were significantly increased in R-CLL (in contrast to NR-CLL samples), 

there was substantial heterogeneity within both anti-CD180 R and NR subsets of 

CLL. To further clarify the CD180-mediated signalling pathways in CLL, we studied 

signal transduction downstream from ZAP70/Syk by delineating CLL samples into 
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R and NR through their proximal ability to activate AKT rather than the distal 

event of CD86 upregulation, which could be dependent on other factors such as T-

cell interactions and/or cytokines. We have studied major signalling protein 

kinases associated with the BCR signalling pathway: PI3K, Btk, ERK, p38MAPK and 

AKT.  

Out of 55 CLL samples tested, ligation of  CD180 with mAb lead to the speedy 

phosphorylation of AKT above the basal levels in 19 CLL samples, whilst in a 

further 15 samples an appreciable increase in pAKT was only detected after 24h in 

culture. We therefore defined these CLL cells as Early AKT responders (ER-AKT) 

and Late AKT Responders (LR-AKT). 

Segregation of CLL samples responding to CD180 ligation by signalling via pAKT, 

rather than by CD86 upregulation, revealed that some of those CLL samples that 

fail to signal along the ZAP70/Syk-AKT pathway early after CD180-stimulation, 

switch to the ZAP70/Syk-p38MAPK pathway. “Real” NR-CLL samples did not 

follow either of these pathways. In approximately half of CLL samples, CD180 

signalled primarily through the AKT pathway (categorised as AKT-Responders, 

AKT-R), whilst in approximately 25% of CLL samples, ligation of CD180 led to the 

alternative phosphorylation of p38MAPK (categorised as p38MAPK-Responders, 

p38MAPK-R). The remaining 25% of CLL cells failed to respond to CD180 ligation 

through either of the pathways (non-responders, NR). 

This dichotomy of the signalling pathways has profound effect on the survival of 

CLL cells. CD180 ligation of the AKT-R, but not on p38MAPK-R CLL cells led to 

appreciable upregulation of the levels of pPI3K and Mcl-1 and significant activation 

of Btk. In contrast, the levels of pBtk were significantly decreased in the p38MAPK-

R signaller CLL cells. It was crucial to establish whether survival of PI3K/Btk/AKT-

R and p38MAPK-R CLL cells also differed. In our hands CD180-ligation induced 

significant suppression of basal (spontaneous) apoptosis (measure by the 

percentages of DiOC6dim cells) after 24hr in culture in both control B cells and 

PI3K/Btk/AKT signaller CLL cells. In contrast, there was an increase in the 

percentages of DiOC6dim apoptotic cells in the p38MAPK signallers 
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Our data indicate that CD180 ligation on CLL cells can activate two alternative 

signalling pathways: pro-survival that operates via PI3K-Btk-AKT protein kinases, 

or mostly pro-apoptotic, that operates via p38MAPK, but not through Btk. This 

may have implications for CLL therapy where Btk inhibitors are being used. 

Since AKT plays a central role in pro-survival signalling in CLL cells through the 

engagement of the BCR, and the anti-apoptotic effect of CD180 in our hands also 

appears to be operating via AKT, it was important to compare the signalling 

patterns of sIgM with those mediated by CD180 in the major categories of CLL cells 

as defined above. Our data suggest that both CD180 and sIgM ligation on CLL cells 

results in activation of a pro-survival signalling pathway operating via PI3K-Btk-

AKT. However, whereas anti-CD180 mAb can activate a pro-apoptotic pathway 

mediated via p38MAPK, ligation of sIgM alone does not lead to the activation of 

this protein kinase.  
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Figure 7. 1: Hypothetical model of the interaction between CD180 and BCR-sgnalling 

pathways based on our data. 
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Since our data indicate that CD180 and IgM operate through similar signalling 

pathways, particularly via PI3K/Btk/AKT, leading to increased survival of CLL 

cells, we next tested whether pre-engagement of CD180 would affect signalling 

through sIgM (the BCR). Here we demonstrate that in those CLL cells where 

ligation of sIgM led to a substantial activation of the pro-survival PI3K/Btk/AKT 

pathway, pre-engagement of CD180 redirected BCR-mediated signalling towards 

the potentially pro-apoptotic p38MAPK pathway (Figure 7.1). However, an 

additive pro-survival effect follows co-ligation of CD180 and sIgM in case when 

either receptor alone provides sub-optimal stimuli. Although the second scenario 

seems to be rare, it emphasises once more the importance of individual tailor-

made immunotherapeutical approaches to the treatment of CLL.  
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Part II 

 

Since the tissue microenvironment plays a crucial role in generation and survival 

of the CLL clones, studies pertaining to CD180 expression in the lymphoid tissues 

were undertaken. Our pilot data suggests that in normal tonsils CD180 is 

expressed by the mantle zone (MZ) B cells and not the germinal centre (GC) B cells. 

This, to the best of our knowledge is the first report on the expression of CD180 in 

human lymphoid tissues. The MZB cells are largely consisting of B cells with a pre-

activated phenotype and express somatically mutated IGVH genes indicating 

possibly previous antigenic experience. This is in line with our previous 

observations that CD180 is predominantly expressed by M-CLL. The somatic 

hypermutations could be acquired in germinal centres before migration of the cells 

to the marginal zone and the occurrence of clonal expansion. Hence, presumably, 

CD180 is expressed on the cell surface after the migration of cells from germinal 

centres to the marginal zone, and CD180 expression in the tonsil MZB is indicative 

of an antigenic experience for the cells. Therefore, to sum up, the naive B cells in 

the GC undergo antigenic stimulation, mature into memory or a pre-activated B 

cell subset, migrate to MZ where upon the CD180 gets expressed on the surface. 

Here, engagement of CD180 through the unknown ligand(s) drives the cells into 

proliferation, activation (CD86 upregulation) and antibody secretion. 

Differently from normal lymphoid tissues, LN biopsies in CLL showed complete 

obliteration of the normal tissue architecture and a weak expression of CD180. In 

line with our previous observations that individual CLL samples in peripheral 

blood differ in the level of expression of CD180 and one third of individual samples 

were negative for CD180 expression, we demonstrate here heterogeneous 

expression of this receptor on BM CLL cells. These are the pilot studies, we were 

the first to report expression  of CD180 in lymphoid tissues in CLL, and further 

studies comparing the simultaneous expressions in PB and BM of the same CLL 

cases is crucial to be undertaken in the future.  
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CLL cells migrate to and from the solid tissues into the peripheral circulation and it 

is in the solid tissues that they receive the crucial survival benefit. Therefore in any 

CLL clone, there is always an intra-clonal kinetic heterogeneity which can be 

determined by the differential phenotypes. These have been suggested as a 

continuum between the 'proliferative' or CXCR4dimCD5bright,   and 'resting' 

CXCR4 brightCD5dim fractions. Here we report that the  'resting' compartment was 

enriched for CD180+ cells compared to the 'proliferating' subset. In contrast,  

sIgM+ cells were more frequent in the  proliferating fraction. This supports our 

previous data demonstrating that CLL cells differentially, and sometimes 

alternatively, express these two receptors. Since the “resting” subset of CLL cells is 

also considered as the one “returning” to the solid tissues supported by the 

increased expression of CXCR4, our data might suggest possible attraction of the 

CD180+ cells towards the ligand possibly in the lymphoid tissues as CXCR4 

gravitates towards the SDF-1 ligand expressed by stromal cells.  
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Figure 7. 2: Hypothetical model for the expression and migration of CD180+ CLL cells 

in the lymphoid tissues and in peripheral blood 

 As indicated, the 'proliferative' compartment of cells expresses higher level of CD5, CD38 
and IgM.  These receptors are internalized are the cells circulate through the peripheral 
blood. At the same time, the receptors CXCR4 and CD180 are increasingly expressed. At 
this stage the cells have reached a 'quiescence' stage and have two options- undergo 
apoptosis by further circulation or migrate back to the solid tissues. The CXCR4 expression 
on the cells attracts these cells towards the CXCL12 (ligand for CXCR4) in the solid tissue. 
From our previous study, we showed CD180 expressed by the marginal zone B cells, also 
indicated in this model. However, the physiological function of CD180 in these MZB cells is 
yet unclear. Once the cells receive the necessary activation and survival stimuli, the robust 
and newly divided 'young' cells exit the tissue back to the periphery.  
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As MZ B cells can be actively recruited back into circulation, we can speculate that 

ligation of CD180 on CLL cells could possibly transform them from the 'resting' 

state to the 'proliferative' state and thus contribute to the turnover of CLL cells in 

vivo, the hypothetical model presented in Figure 7.2 

It is becoming apparent that intraclonal diversity plays an important role in the 

clinical outcome of patients with CLL. Subsets of the CLL clone that respond more 

robustly to external stimuli may well gain a growth and survival advantage and 

possibly promote clonal evolution. Identification of these CLL subpopulations was 

therefore of prime importance, as these cells may be preferred targets for future 

therapeutics. Through our work we have established that CD180 expression on 

CLL cells helps identifying different subsets and delineating their physiological 

status. Our findings on modulation of signalling pathways through CD180 and sIgM 

and the temporal effects of their ligation is consistent with multiple ligands in the, 

in vivo, microenvironment playing an important role in the survival of CLL cells. 

Since TLR can shuttle between inhibition and promotion of leukemic growth they 

may play a key role in immune evasion impacting on clinically relevant tumour-

host microenvironment interactions. The identification of distinct CD180-mediated 

signalling pathways that promote tumour cell proliferation and survival will allow 

specific targeting of key players in the pathways with immunotherapy and 

chemotherapy.  

        

 



162 

 

Summary 
 

The results of my study thus helped establish the following:  

 There is a dichotomy in the CD180 mediated signalling pathways in CLL 

cells - ZAP70/SYk-BTK-PI3K-AKT-Mcl-1 or ZAP70/Syk-p38MAPK. 

 This dichotomy in CD180-mediated signalling has antithetical effects - AKT 

mediated pathway leads to survival of the cells while p38MAPK mediated 

pathway leads to apoptosis.  

 Based on the differential pathways activated following CD180 ligation, we 

identified 4 major subgroups of CLL clones - AKT responders, p38MAPK 

responders, Non-Responders and a very minor subset of double responders 

i.e. AKT and p38MAPK both activated.  

 Activation of CD180-mediated signalling can re-wire the BCR pro-survival 

pathway operating via AKT – to p38MAPK-mediated pro-apoptotic 

signalling; 

 The expression of CD180 in lymphoid tissues is heterogeneous with 

predominant expression on mantle zone B cells. There are CD180+ and 

CD180neg CLL clones, both in peripheral blood and in bone marrow. 

 CD180 is preferentially expressed on the CXCR4 brightCD5dim  

'resting/homing' CLL clonal compartment, rather than on 'proliferating' 

CXCR4dimCD5bright subset. 
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