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Abstract: Passenger disembarkation is an important handling process and takes place in the
confined space of the aircraft cabin. While boarding can be controlled to a certain extent, passenger
disembarkation at the end of a flight takes place in a less controllable environment. Under the current
COVID 19 boundary conditions, cabin processes must not only be efficient in terms of time but also
significantly reduce any potential risk of virus transmission to passengers. For this complex challenge,
we have developed a novel mathematical model that takes these conflicting objective functions into
account to optimize the disembarkation process. Using already enhanced seat allocations, we have
developed a genetic algorithm that can generate enhanced disembarkation sequences for groups
of passengers (e.g. families or couples). The selected use cases for seat loads of 50%, 66%, and
100% indicate a significant reduction in 40% disembarkation time when physical distances between
passenger groups are mandatory to satisfy pandemic regulations. To inform passenger groups about
the disembarkation sequences, we propose to activate the cabin lights at the seats in a dedicated way.
That means that our developed methodology could already be applied to actual flights.

Keywords: passenger disembarkation, virus transmission, COVID-19, pandemic requirements,
passenger groups in aircraft cabin, two-objective mathematical modeling

1. Introduction

The COVID-19 situation will have a lasting impact on air transportation in general and on both
ground operations at the airport (aircraft turnaround) and passenger handling in particular. The
current pandemic situation requires two major changes in the processes of the standard aircraft
turnaround: (a) during aircraft disembarkation and boarding, passengers have to comply with a
defined physical distance, and (b) in addition to the standard cleaning procedures the aircraft cabin
has to be disinfected. The cabin disinfection before the aircraft boarding should limit possible virus
transmission via surface contacts. Fig. 1 exhibits that the mandatory process changes will significantly
impact the aircraft turnaround time, given that these processes are part of the critical operational path.
Research that considers COVID-19 restrictions for passenger boarding [1] and aircraft cleaning [2]
emphasizes the need for appropriate process adjustments to mitigate the effects of the significantly
extended process times. The challenge of orderly disembarkation is still an open topic.
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Figure 1. Impact of COVID-19 regulations on aircraft turnaround operations and time.

There are several approaches for infrastructural changes to the aircraft cabin, but most of these
ideas are far away from being a flexible and standardized solution for the aviation industry. Wearing a
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mask easily reduces the transmission risk during boarding and disembarkation. From the operational
point of view, adapted boarding strategies are more likely to be implemented in actual airline and
airport operations than altered cabin layouts. Disembarkation is more difficult to be controlled by
regulations and passengers have demonstrated little discipline and high eagerness to leave the aircraft.
This is particularly noteworthy because virus transmission risk during unregulated disembarkation is
substantially higher than during a regulated aircraft boarding [3].

In our approach, we assume that passengers are traveling in groups and disembarkation could
be controlled using the available technical infrastructure. The idea behind the consideration of group
constellations is that the group members, in the sense of families or couples, were already in close
contact before boarding the aircraft and should not be subject to the regulations on maintaining
physical distances. We propose to use the seat-based lighting system in the aircraft cabin to allow
groups of passengers to get up and leave the aircraft. Besides, the passengers themselves will initially
be responsible for maintaining the minimum distance rule to other groups, with the cabin crew
monitoring this process. In a follow-up stage, this process will be supported by new technologies,
which can provide precise passenger locations and allow automated monitoring and controlling of
passenger movements via personal devices (see Fig. 2).

Figure 2. Estimation of passenger position based on localization framework in a digital connected
cabin using stationary anchors (red and green circles) and signals from mobile devices [4].

Aircraft cabins naturally have demanding conditions for wireless signals due to possible
reflections, scattering, and attenuation of the transmitted signals. In this context, the Ultra-Wide
Band (UWB) technology will allow precise real-time localization for indoor application and could
provide reliable distance measurements to comply with COVID-19 regulations [4]. UWB is already
built into personal devices for the customer market. In the context of future aircraft operations, an
efficient sensor environment will be a key element to manage passenger activities in the aircraft cabin
by providing an advanced situational awareness about individual positions and system states (e.g.
occupation of the aisle or status of overhead compartments). This information could be used to further
improve operational efficiency and will enable new product developments and passenger-oriented
services.

1.1. Review of state of the art

Comprehensive overviews are provided for passenger boarding research [5–7] and aircraft ground
operations [8]. Only a few aircraft boarding and disembarkation tests have been conducted to provide
data for the calibration of input parameters and validation of simulation results: using a mock Boeing
757 fuselage [9], time to store hand luggage items in the overhead compartments [10], small-scale
laboratory tests [11], evaluation of passenger perceptions during boarding and disembarkation [12],
operational data and passenger data from field trial measurements [13], field trials for real-time seat
allocation in connected aircraft cabin [14], and using a B737-800 mock-up (1/3 size) to explore the
factors affecting the time of luggage storage [15]. Although these field data are used for simulation
experiments, they only cover regular behavior in a pre-pandemic situation.

The particular movement behavior of pedestrians depends significantly on group constellations
(e.g. friends or families) and impacts the self-organization capabilities of crowds [16–18]. Also in the
context of passenger dynamics in the airport, it is an important fact that up to 70% of the tourists and
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30% of the business passengers are traveling in groups [19]. Thus, group constellations are important
to understand granular flow patterns during boarding and disembarkation (e.g. couples or families
are not separated). Group behavior may shorten the processes time since conflicts during the seating
process are internally solved [20] and aircraft boarding by rows should be a recommended practice
[10]. An approach of a dynamically optimized boarding indicates that the boarding process benefits
from the consideration of groups [21]. Furthermore, less complex boarding strategies (e.g. random or
block boarding) benefit more from the consideration of passenger groups (approx. 5% faster boarding),
while seat-based strategies (separation of the window, middle, and aisle seats) lead to longer boarding
times [5].

While passenger boarding research exhibits a broad range of improvements (e.g. group
boarding, sequence optimization, infrastructural changes), research in the specific field of passenger
disembarkation is quite limited and findings often arise as a side product. Two general concepts are
addressed to analyze the efficacy of block-wise (aggregated seat rows) or column-wise (e.g. all aisle
seats) strategies. Here, column-wise disembarkation was found to be more effective for narrow-body
aircraft [22]. These two structured disembarkation strategies are analyzed in small scale field trials
applying inside-out (column-wise) and back-to-front (block-wise) strategies [23], but in contrast to the
prior simulation experiment [24], no significant improvements of the disembarkation time could be
demonstrated.

Currently, the research focus is set on efficient passenger handling in the aircraft cabin during
pandemic situations. Standard boarding strategies are analyzed considering the quantity and quality
of passenger interactions and evaluated with a virus transmission model to provide a more detailed
assessment. The implementation of physical distances indicates that conventional boarding strategies
take longer and trade-offs between economic efficiency (seat load) and process duration must be
made to minimize the impact on various health risks [25]. Adjusted seat allocation strategies are
developed considering both distances to the aisle (ensure lower transmission risks caused by aisle
movements) and distance between the occupied seats [26]. Furthermore, investigation shows that
physical distances between passengers decrease the number of possible transmissions by approx.
75% for random boarding sequences, and could further decreased by more strict reduction of hand
luggage items (less time for storage, compartment space is always available) [3]. Furthermore, standard
process times could be reached if the rear aircraft door is used for boarding and disembarkation. This
investigation also points out that disembarkation consists of the highest transmission potential and
only minor benefits from distance rules and hand luggage regulations. The optimized consideration of
passenger groups in the context of a pandemic boarding scenario will significantly contribute to a faster
process (reduction of time by about 60%) and a reduced transmission risk (reduced by 85%), which
reaches the level of boarding times in pre-pandemic scenarios [1]. The results of the passenger process
evaluation considering the current COVID-19 situation were taken as input to further investigate
the impact of pandemic requirements on the aircraft turnaround [2]. Here an integrated cleaning
and disinfection procedure was developed and optimized. Under COVID-19 constraints, aircraft
turnarounds require between 10% (with additional personnel) and 20% (without additional personnel)
more ground time. Finally, in the context of aircraft handling, aircraft disembarkation has not yet been
properly addressed and is missing to complete the picture of COVID-19’s operational impacts [27].

1.2. Focus and structure of document

We provide in our contribution an approach for aircraft disembarkation considering a physical
distance between groups of passengers (e.g. families or couples). In previously conducted research,
we have already shown that the consideration of passenger groups shortens boarding time while
maintaining the distance requirements from the COVID-19 regulations. Assuming that passengers
do not get up from their seats until they are requested to do so, we develop a mathematical model to
determine an improved disembarkation sequence.
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The paper is structured as follows. After the introduction (Sec. 1), we briefly introduce a stochastic
cellular automaton approach, which is used for modeling the passenger movements in the aircraft
cabin (Sec. 2). A transmission model is implemented to evaluate the virus transmission risk during
passenger movements is proposed additionally. In Sec. 3, we motivate and introduce a problem
description to derive optimized sequences of passenger groups during disembarkation. Our approach
allows weighting disembarkation time and a transmission risk indicator in the objective function. The
results of the optimization model are presented in Sec. 4, where we use a genetic algorithm for solving
the complex problem of disembarkation by providing an optimized sequence of passenger groups.
This sequence is then implemented in the cellular automaton model to verify the results. Finally, we
conclude our research with a summary and an outlook (Sec. 5).

2. Model for passenger disembarkation

The individual movement behavior of passengers in the aircraft cabin is modeled by a cellular
automaton approach [5], which covers short (e.g. avoid collisions, group behavior) and long-range
interactions (e.g. tactical wayfinding). This cellular automaton model is based on an individual
transition matrix, which contains the transition probabilities to move to adjacent positions around the
current position of the passenger [28].

2.1. Operational constraints and rules of movement

The implemented cellular automaton model considers operational conditions of aircraft and
airlines (e.g. seat load factor, conformance to the boarding procedure) as well as the non-deterministic
nature of the underlying passenger processes (e.g. hand luggage storage) and was calibrated with
data from the field [13]. The cellular automaton for aircraft disembarkation is based on a regular grid
(Fig. 3), which consists of equal cells with a size of 0.4 x 0.4 m, whereas a cell can either be empty or
contain exactly one passenger. In the simulation, passengers can only move by one cell per time step
or are required to stop if the cell in the direction of movement is occupied. To allow comparability
with preliminary studies, the maximum passenger speed for disembarkation is set to 0.8 m/s, similar
to boarding. This speed correlates to a time step size of 0.5 s. It may be noticed, that the speed of
passengers in the aisle during disembarkation was measured to be 0.99 m/s (20% faster) [13], which
also means that the finally provided disembarkation times are conservative estimations.

front door rear door

1 3 5 7 29272523... ...seat row

seat aisle

F
E
D

C

A
B

A,B,C,D,E,F seat columns

Figure 3. Grid-based aircraft model with 29 seat rows and 6 seats per row (reference layout for
single-aisle, narrow-body configurations). To determine an improved sequence we assume that only
the front door will be used.

The aircraft disembarkation consists of a simple set of rules for the passenger movement: (a) all
passengers are seated in the aircraft according to an initial seat configuration, (b) passengers could
enter the aisle if the seats at their corresponding row are free and the aisle is not blocked by other
passengers, (c) if passengers enter the aisle, they take their hand luggage items out of the overhead
compartment (modeled by an individual time distribution) and block this aisle cell, (d) if all hand
luggage items are taken, passengers move in the direction of the assigned aircraft door by entering
empty aisle cells in front of them. Further details regarding the general model and the simulation
environment are available at [5].

The distribution of the time needed to pick up the hand luggage items tp is defined by a Weibull
distribution (1), with the shape parameter α and the scale parameter β.
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F
(
tp, α, β

)
= 1− exp

(
−

tp

β

α)
(1)

For the hand luggage storage process, the parameters are set to α = 1.7 and β = 16.0 s [13].
We implemented these settings but further assume that pick up hand luggage takes half the time of
the storage process, as many passengers simply take their items out of the overhead bin and make
arrangements outside the cabin. Since the seat load of the cabin is reduced to comply with COVID-19
regulations, the utilization of the overhead bins is also at a low level. Thus an additional consideration
of an occupancy index for the bins is not needed [29].

In each simulation step, the list of passengers to be updated is randomly shuffled to emulate a
parallel update behavior for the discrete time dynamics (random-sequential update) [28,30]. Passengers
in the aisle move forward to the next cell, if possible (free aisle cell and hand luggage were already
taken out of the overhead compartment). Passengers in the seat rows enter the aisle when adjacent
seats are free and the corresponding aisle cell is not blocked. For the COVID-19 scenarios, a cell
is assumed to be blocked if entering the aisle or moving in the aisle would infringe the separation
distance between the passenger (groups).

Depending on the seat load given, passengers or passenger groups are randomly allocated in
the aircraft. Each disembarkation scenario is simulated 125,000 times, to achieve statistically relevant
results defined by the average boarding time. The disembarkation starts when the first passenger enters
the aisle and finishes when the last passenger leaves the aircraft. In contrast to the aircraft boarding, we
assume 100% compliant behavior of passengers in following the proposed disembarkation sequence.
During boarding, late arrivals or priority rules impact the initial sequence of passengers and result
often in extended process times [31,32].

In the context of physical distance, the International Aviation Transport Association (IATA)
demands a distance of at least 1 meter [33] and the Federal Aviation Administration (FAA) a minimum
of 6 feet (2 meters) [34]. Considering the cellular automaton model with a grid structure of 0.4 x .4 m
cells, and to maintain comparability of our results with preliminary studies [1–3], the minimum
physical distance was set to 1.6 m (4 cells). At this point, we assume that passengers are informed that
a distance of 1.6 m corresponds to the distance of 2 seat rows, which offers proper visual guidance.

2.2. Transmission model

The fundamental cellular automaton developed for the stochastic passenger movements is
extended by an approach to evaluate the risk of virus transmission during the boarding process. The
transmission risk can be defined by two major input factors: distance to the index case and reduction
of contact time. A straightforward approach is to count both the individual interactions (passengers
located in adjacent cells) and the duration of these contacts in the aisle and during the seating process.
However, counting the individual contacts will only provide the first indication about potential ways
of infections [3]. Our implemented approach based on a transmission model [35] defining the spread
of the coronavirus SARS-CoV2 as a function of different public distancing measures [36]. Herein, the
probability of a person n to become infected by person m is described according to (2).

Pn = 1− exp

(
−θ ∑

m
∑

t
SRm,t inm,t tnm,t

)
(2)

defined by:

Pn the probability of the person n to receive an infectious dose. This shall not be understood
as “infection probability”, because this strongly depends on the immune response by the
affected person.

θ the calibration factor for the specific disease.
SRm,t the shedding rate, the amount of virus the person m spreads during the time step t.
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inm,t the intensity of the contact between n and m during the time step t, which corresponds to
their distance.

tnm,t the time the person n interacts with person m during the time step t.

Considering this idea, we define the shedding rate SR as a normalized bell-shaped function (3)
with z ∈ (x, y) for both longitudinal and lateral dimensions, respectively. The parameters are a (scaling
factor), b (slope of leading and falling edge), and c (offset) to determine the shape of the curve.

SRxy = ∏
z∈(x,y)

(
1 +
|z− cz|

az

2bz
)−1

(3)

In a preceding study [3], SR was calibrated on the transmission events of an actual flight [37].
Thus, we are using the corresponding parameter setting with ax = 0.6, bx = 2.5, cx = 0.25, ay = 0.65,
by = 2.7, and cy = 0. This generates a slightly smaller footprint in y-direction (lateral to moving
direction) than in x-direction (longitudinal to moving direction). Additionally, the spread in x-direction
is higher in front of the index case than behind it. Consequently, the moving direction is changed by 90
degrees with a heading to the aircraft window, when the passenger arrives his seat row.

Finally, the individual probability for virus transmission Pn is corresponds to Θ, the specific
intensity (dose) per time step (4).

Pn = Θ SRxy α (4)

In accordance with [3], Θ is set to 1
20 , which means a passenger reaches a probability of Pn = 1 after

standing 20 s in closest distance in front of an infected passenger (SRxy = 1). The parameter α ∈ {1, 2}
is 1 and changed to 2 when the passenger stores the luggage or enters the seat row. This doubled
shedding rate reflects the higher physical activities within a short distance to surrounding passengers.

3. Optimized disembarkation of passenger groups

A new analytical approach for the passenger boarding problem during the COVID-19 situation
was developed, which introduces passenger groups and appropriate seat allocation patterns [1]. We
continue this research and similarly assume that an airline decides to assign only a percentage of the
available seats to reduce the virus transmission probability in the cabin. Therefore, we use the already
defined use cases for the 50%, 66%, and 100% seat load of an Airbus A320 cabin (29 seat rows, 174
seats).

Further, group members are considered as a community (e.g. a family) and the transmission
probability is only relevant between members of different groups. An appropriate seat allocation
provides a space between groups and groups with a large number of members should be seated in the
rear of the aircraft [1]. In Fig. 4 an example is given for 50% case to show how 31 passenger groups
of different sizes are allocated in the aircraft cabin accordingly. Here, the passengers are separated
into eight single travelers (green), nine groups consist of two passengers (blue), five groups with
three members (purple), three groups of four and five passengers (pink and red), two groups of six
passengers (orange) and a group of seven passengers (yellow).

2928272625242322212019181716151413121110987654321

1 2 3 4 5 6 7 8
179 10 11 12 13 14 15 16

18 19 20 21 22
23 24 25
26 27 28
29
31

30

Figure 4. Optimized seat allocation of 31 passengers groups considering spaces around groups [1].
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Also, in our prior research, we generated the optimized boarding plans for 66 and 100 percentages
including 166 and 174 passengers respectively [1]. The number of groups is increased to generated
those scenarios. For example, in the last scenario, they considered 62 groups. As our focus is on the
disembarkation process regarding the COVID-19 situation, therefore we use these results as the inputs
of our new analytical approach. In other words, the optimized seat design plans of passengers are
selected based on Fig. 5.

1
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11 12 13 14 15 16 17 18

21 22 23 24 25

26 27 28

29 30 31
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34
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26 27 28 29 30 31 32 33 34

35 36 37 38 39
4443424140

45 46 47
48 50

51 52
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53

56

57 58
59 60

12

Case 50%: 87 passengers 

Case 66%: 116 Passengers  

Case 100%: 174 passengers 

Figure 5. Three seat allocations for 50%, 66% and 100% seat load [1], which are used as application
cases. A numerical representation is provided in the annex.

In a first and simplified approach, passenger groups were disembarked by batches of passenger
groups. Here, groups of a batch are permitted to enter the aisle, making sure that the minimum
distance between the groups is maintained at any time. After a group has received permission to
disembark, the members of the group enter the aisle, take their hand luggage and wait until the group
in front of them starts moving. Groups from the following batch could start when the last group of the
current batch passed their seat row. This procedure ensures a minimal disembarkation time. In future
operational scenarios, passenger groups may directly be informed via personal devices or active lights
at their seats to start for disembarkation. Key enabling technology for this approach will be a highly
reliable and precise determination of passenger locations.

A sensitivity analysis is conducted to show how the time for disembarkation changes. During
the analysis, we randomly select a group of passengers from the example case above (Fig. 4 and add
this group to the current disembarkation batch with a defined probability. This probability increases
from 0% (one group per batch) to 100% (all groups in one batch) in 10% steps. Furthermore, three
levels for hand luggage are considered: 100% - standard, 50% - reduced, 0% - no items. For the
reference case, the scenario with only one group per batch (no hand luggage items) is used. The



Preprint - submitted to journal - Michael Schultz, Majid Soolaki 8 of 19

average disembarkation times and the associated standard deviations are depicted in Fig. 6. The
analysis shows that disembarkation will benefit from the superior organization of groups into batches
up to a certain point. As a result, average disembarkation times decrease until a minimum is reached
at approximately 80%. In general, the standard deviations exhibit also a minimum in that region
(70% - 90%) but show both a significant increasing and decreasing behavior. The reason is that if all
passenger groups are in one batch, the disembarkation is a front to back process, where groups in the
front are leaving the aircraft first. This a somehow a much more stable process than a batch-organized
prioritization but also results in higher disembarkation times.
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Figure 6. Random group sequence for disembarkation, assuming (a) given probability that the
following group is part of the same disembarkation batch, and (b) three level of hand luggage quantity
(100% - standard, 50% - reduced, 0% - no items).

The obtained minimum times indicate a significant potential to reduce the disembarkation time
by about 40%. To provide a more improved disembarkation process, a manual assignment of groups
will be derived from the introduced seat allocation. Each batch of passenger groups is generated
starting with the last occupied seat row. The group of this row will be placed into the aisle, assuming
the individual personal space (one cell per passenger). Considering the distance of 1.6 m per group,
the nearest group to that location (downstream) is added to the current batch. This process is finished
when the first seat row is reached. Fig. 7 exhibits this batch assignment process, where 6 batches are
created for the given example. This algorithm-based batch sequence results for the three hand luggage
scenarios in reduced disembarkation times by 7%, 27%, and 35% for the zero luggage, 50%, and 100%
hand luggage items accordingly (referring to the corresponding minimum times presented at Fig. 6).

2928272625242322212019181716151413121110987654321

1 2 3 4 5 6 7 8
179 10 11 12 13 14 15 16

18 19 20 21 22
23 24 25
26 27 28
29
31

30

Batch 1
Batch 2
Batch 3
Batch 4
Batch 5
Batch 6

31
3131

31

31
31
31

2727
27

27

27

24
24
24

24
17
17

16
16

13
13

6

11
11

Figure 7. Batch-oriented disembarkation considering a minimum distance of 1.6 m between passenger
groups. The current aisle status corresponds to the first batch. The following batches are depicted
below.

These results lead to the question of how this process can be further improved. In the following
section, we develop a two-objective mathematical model, which includes an optimized disembarkation
strategy incorporating passenger groups and physical distance requirements from the current
COVID-19 situation. In the development, we are not considering hand luggage items assuming
that the average pick-up process will not influence the sequence generation.
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3.1. Mathematical Problem Description and Formulation

The concept of the shedding rates was already applied for the aircraft boarding [1] and is now
used for the disembarkation process. Here, the corresponding shedding rate depends on the position
of the infected passenger in the aisle and the positions of the passengers of other groups that will
leave their seats afterward. We calculate the transmission risk function for all passengers based on the
locations of other passengers (see Fig. 8). For example, suppose that the last group (coded yellow) is
walking in the aisle. We show the different types of shedding rates that we computed at this moment
for the passengers of this group. For example, for the first passenger of this group, we calculate
shedding rates types 4, 5, and 6 based on the locations of passengers who seat in row 20 and column D,
E, and F, respectively and similarly we consider shedding rates types 1, 2, and 3 for the third passenger
of this group based on the locations of passengers who seat in row 21 and column A, B, and C.

1    2     3     4     5    6    7     8    9     10   11  12   13  14   15   16   17   18   19   20   21  22   23  24   25   26   27   28   29 

d

3
2
1

4
5
6

2
1

5
6

4
5
6

Figure 8. Spatial dependencies of the shedding rate.

As this study focuses on the disembarkation process, we consider the shedding rates for
passengers when they are walking in the aisle. We defined the interference type two to handle
the situation. For each group, the time needed to leave the aircraft are defined by the numbers of rows
to pass (distance) and columns the members occupied (window, middle, aisle seats). For example,
group 30 (light orange, six members seated in rows 24 and 25 at Fig. 8) needs more time to leave the
aircraft than a group with the same number of members sitting in the front of the aircraft or a group
with fewer members in the same seat row(s). We consider the parameter λij (5) for disembarkation
time for a passenger who is seated in row i and column j, using a numerical representation for the seat
columns {1,...,6} for {A,...,F}.

λij =

{
i + 4− j if j ∈ {1, 2, 3}
i + j− 3 if j ∈ {4, 5, 6} (5)

Taking into account the maximum speed of passengers (0.8 m/s) and the relevant aisle length of
23.2 m (29 rows with a seat pitch of 0.8 m), a passenger who seats on row 29 and column F (j = 6) has
a disembarkation time of 29 + 6− 3 = 32s.

Three types of passenger interference are implemented in our approach. The first type is defined
based on the concept of physical distancing. We suppose a close distance between members of each
group in the aisle. As a result, if the group thirty of six members starts in the two last rows i = 28, 29,
they will block rows numbers i = 27 to i = 29 because there is a 0.8m distance between seats of each
row. According to the COVID-19 regulations and our group approach, an additional physical distance
of 1.6 m between groups is implemented (see Fig. 9, part 1).

2928272625242322212019181716151413121110987654321

31
31

31
31 31

31

31

31

30

30
30
30

30
30
30

23

23
23

23
23

19

19
19
19

13

13
1311

11

3

3

2

2

1.6 m physical distance 0.8 m seat pitch

A

C

F
E
D

B

4 seconds distance

part 1 part 2 part 3

Figure 9. Different types of interference between passengers in the aisle of aircraft.
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The second type of interference is defined regarding the concept of the shedding rate of infected
passengers for the other passengers that are seated in the cabin. If an infected passenger leaves the
seat, the several shedding rates must be counted based on the location of the other group members
who will leave the aircraft after that passenger.

Taking Fig. 9 (part 2) as an example, we show the interference generated in the two middle rows
(i = 15 and i = 16), when the first member of group thirty (coded orange) are walking in the aisle at
period h, we compute the shedding rates for the passengers from other groups that seat in the related
row (i = 15 at column D (aisle), E (middle), and F (window)). Similarly, the third member of this group
could generate different types of interactions for passengers who seat in the next row at the same time
(i = 16 at column C (aisle), B (middle), and A (window)).

As a result, if the passengers of the first group leave the aircraft earlier, the transmission risk which
is the sum of shedding rates of all passengers could be minimized. On the other hand, this strategy
leads to longer disembarkation time. Therefore, we have proposed a two-objective mathematical
model to handle these two conflicting objectives. The third type of interference is the scheduling
process. Taking Fig. 9 (part 3) as an example, if the first member of group number 31 arrives in the
nineteenth row (i = 19) in four seconds then, the passenger who seated in the row i = 19 and column F
(window) could not leave the seat at that moment. Based on these types of interference and the nature
of the disembarkation problem, we present the assumptions as follows.

• The members of each group start leaving their seats at the same time.
• There is a gap of time (e.g. three time steps) to leave the seats for members of two different

groups, which seated in a close zone. The gap increases with the number of group members.
• The length of the aisle in the cabin would be 23.2m.
• The transmission rates are calculated for all passengers.
• When a passenger leaves the seat and walks in the aisle, (s)he could not be blocked by another

passenger during the disembarkation period.

3.2. Optimization Model

The sets, parameters, decision variables, and multi-objective model are developed in this section.

Notation Definition
Sets and Indexes
i Index set of row i ∈ {1, 2, . . . , I}
k Index set of passenger group k ∈ {1, 2, . . . ,K}
j Index set of seat column j ∈ {1, 2, . . . ,J }
h Index set of time period h ∈ {1, 2, . . . ,H}
r Index set of interaction type r ∈ {1, 2, . . . ,R}

Parameters
Tk Number of group number k
SR

′

j The related shedding rate for interaction j or r because we consider six different types based on the number of columns
λij The disembarkation time (in period unit) required for a passenger who seats in a seat in

row i and column j
Yij Binary parameter, equals k if a passenger from group k is seated in a seat in row i and

column j; equals zero otherwise
Mkk′ Binary parameter, equals one if the members of groups number k and k′ could not leave

their seats at the same time (because they will block each other such as groups numbers 30 and 31),
equals zero otherwise

w1 the coefficient weight of the first objective function w1 ∈ [0, 1]
w2 the coefficient weight of the second objective function which is equals to 1− w1

Decision Variables
pkh The number of members of group k that leave their seats at time period h
xijkh Binary variable, equals one if a passenger from group k who is seated in a seat in row i and

column j leaves its seat at the time period h (activation time); equals zero otherwise
qijkh The period of time from the moment when a passenger from group k in row i and column j

leaves the cabin
niji′ The period of time at the moment when a passenger who has seated in row i and column j

reaches to the row i′

ukk′hh′ Binary variable, equals one if group k and k′ leave their seats at time period h and h′, respectively
z1 First objective function: disembarkation time
z2 Second objective function: Transmission Risk Indicator
TZ Total objective function which is calculated based on two conflicted objectives z
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The proposed new multi-objective minimization model for the problem is introduced as follows.

TZ = w1

( z1 − z1
∗

z1
∗

)
+ w2

( z2 − z2
∗

z2∗

)
(6)

Disembarkation Time: z1 = Max
i∈I ,j∈J ,k∈K,h∈H

qijkh (7)

Transmission Risk Indicator: z2 =
I
∑
i=1

J
∑
j=1

K
∑
k=1

k=Yij

H
∑
h=1

I
∑
i′=i

J
∑
j′=1

K
∑

k′=1
k′=Yi′ j′

H
∑

h′=1
h′<h−ni′ j′ i

SR
′
jukk′hh′ (8)

I
∑
i=1

J
∑
j=1

( xijkh

Tk

)
+
I
∑
i=1

J
∑
j=1

h+Tk+3

∑
h′=h

( xijk′h′

Tk′

)
≤ 1 ∀h, k, k′, Mkk′ = 1 (9)

0.4
I
∑
i=1

J
∑
j=1

K
∑
k=1

h

∑
h′=1

h′>h−λij

xijkh′ + 1.6
I
∑

i′=1

J
∑
j′=1

K
∑

k′=1

h

∑
h′=1

h′>h−λi′ j′

( xi′ j′k′h′

Tk′

)
≤ 23.2 ∀h > 1 (10)

I
∑
i=1

J
∑
j=1

xijkh = pkh ∀k, h (11)

H
∑
h=1

xijkh = 1 ∀i, j, k = Yij (12)

Tkxijkh ≤
I
∑

i′=1

J
∑
j′=1

xi′ j′kh ∀i, j, k, h (13)

pkh + pk′h′ − 1 ≤ ukk′hh′ ∀k, k′, h, h′ (14)

qijkh ≥ h + λij + 500(xijkh − 1) ∀i, j, k, h (15)

qijkh ≤ 500xijkh ∀i, j, k, h (16)

niji′ = λij − i′ + h ∀i, j, k = Yij, h, xijkh = 1 (17)

xi′ j′k′h′ ≤|h′ − niji′ | ∀i, i′, j, j′, h′, k = Yij, k′ = Yi′ j′ , k 6= k′ > 0 (18)

xijkh, ukk′hh′ ∈ {0, 1}, qijkh, niji′ , pkh, z1, z2 ≥ 0 ∀i, i′, j, k, k′, h, h′ (19)

The L− 1 metric method is used to solving the multi-objective decision problem. Therefore, we
run the model three times. In the first time, we minimize the average disembarkation time of all
passengers by equation (7) as objective function subject to constraints (9)-(18). Therefore, the first ideal
solution z∗1 could be obtained here. Similarly, we minimize the problem regarding the second objective
function which is the sum of shedding rates as transmission risk indicator by equation (8) and under
constraints (9)-(18). Therefore, we obtain the second ideal solution z∗2 and implement these two ideal
solutions in the general problem at the last step. In the other words, we minimize equation (6) as an
objective function subject to constraints (7)-(18). Here, we consider two implement weights (i.e. w1

and w2) for conflicting objectives which assess and determine by decision-makers.
Constraints (9) guarantee that at each time step, two groups that are seated in a close zone, could

not leave their seats at the same time. The physical distances between passengers in the aisle are
corresponded by constraints (10). Here, we calculate the distances between members of each group
and between two different groups as well. In each time step, we consider 0.4m between the members
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of the same group in the aisle and 1.6m as a physical distance between the last member of a group and
the first passenger of the next group in the aisle. Constraints (11) compute the number of members of
each group that leave their seats at each period. Also, constraints (12)-(13) guarantee that all members
of each group leave their seats at the same period. To calculate the decision variables for the shedding
rates of two different groups, we define constraints (14) which are implemented in the transmission
risk function. Constraints (15)-(16) represent the disembarkation time of each passenger in each group
that seated in row i and column j, and corresponding decision variable takes zero if the seat was not
occupied. The third type of interference are formulated in constraints (17)-(18). In the other words, for
each passenger, we compute the time (i.e. niji′ ) that (s)he arrives at the lower row i′ by constraints (17),
and as a result, we do not allow to passengers of that row to leave their seats at that time by constraints
(18). Finally, constraints (19) represent the requirements for decision variables.

4. Application of the model and evaluation of the results

The proposed new mathematical model as a scheduling problem is a type of NP-hard and as
a result, the optimization solvers could not find an optimal solution in a reasonable time. For the
validation of the model, we created a small size problem including six rows and columns including five
groups in sixty periods of time. Then we solved it with the optimization software GAMS, but when
we increased the size of the problem, the software could not find an optimal solution in a limitation
of 12 hours. For the real size of the problem, we consider 29 rows, 6 columns, 3 interaction types, 31
groups, and 500 periods of time (or seconds). We exemplarily implement the optimized seat allocation
as depicted in Fig. 4. To solve the problem we implement a meta-heuristic algorithm. Therefore, a
Genetic Algorithm (GA) is designed to solve the real size problem. A laptop with the specifications of
AMD Ryzen 7, 3700U, 2.30GHz CPU, 16 GB RAM, and Matlab 2020 software is used for running the
code of GA.

4.1. Solution procedure and results

We suggested using a GA to solve the disembarkation problem because it has a great application
in solving combinatorial optimization problems. Also, some researchers designed GA as a effective
solution approach for seat layout/boarding/disembarkation problem [38,39]. Here, we represent the
proposed chromosome structure as follows:

C =
[
ci,j,k

]
I×J×K

, if yi,j = k and xi,j,k,h = 1, then ci,j,k takes h, otherwise zero.

If the seat (row i, column j) was assigned to a passenger of group k, and the passenger leaves the
seat at time h, therefore the decision variable xi,j,k,h takes one, and as a result, the value of the array of
the matrix C (i.e. ci,j,k) takes h. For example, if the passengers of group thirty (k = 30) leave their seats
at time h = 150s then, we use the sub matrix below:

C29×6×30 =



0 0 0 0 0 0
0 0 0 0 0 0
... ... ... ... ... ...
0 0 0 0 0 0
0 0 0 150 150 150
0 0 0 150 150 150


As the first generation, we create the population of chromosomes under the structure of matrix C.

To calculate the fitness function value of each chromosome, we use the value of the original objective
function plus the three penalties if the constraints (9), (10), and (18) are violated. To create the next
generations of chromosomes, we implement the selection, mutation, crossover, elitism, and migration
operators.
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The roulette wheel is used as our selection operator. Regarding the roulette wheel, the
chromosomes with lower fitness function values have a higher chance of selection. We use the
crossover operator to create new children of two selected parents. First of all, the numbers of groups
are randomly divided in two sets (i.e. S1 and S2). As an example, for the groups numbers 30 and 31 if
we suppose that 30 ∈ S1 and 31 ∈ S2 and the following arrays:

CParent1 =
[
ci,j,k

]
I×J×K

CParent2 =
[
ci,j,k

]
I×J×K

CParent 1
29×6×30 =



0 0 0 0 0 0
0 0 0 0 0 0
... ... ... ... ... ...
0 0 0 0 0 0
0 0 0 150 150 150
0 0 0 150 150 150


CParent 1

29×6×31 =



0 0 0 0 0 0
0 0 0 0 0 0
... ... ... ... ... ...

100 100 100 0 0 0
100 100 0 0 0 0
100 100 0 0 0 0



CParent 2
29×6×30 =



0 0 0 0 0 0
0 0 0 0 0 0
... ... ... ... ... ...
0 0 0 0 0 0
0 0 0 80 80 80
0 0 0 80 80 80


CParent 2

29×6×31 =



0 0 0 0 0 0
0 0 0 0 0 0
... ... ... ... ... ...

180 180 180 0 0 0
180 180 0 0 0 0
180 180 0 0 0 0


Then the first child receives their genes or the arrays in Matrix C from the first parent which are related
to the first set (S1) and the other genes from the second parent. In a similar way, the second child
receives their genes of first sets (S1) from the second parents and the others from the first parent. The
result is presented here:

CChild 1
29×6×30 =



0 0 0 0 0 0
0 0 0 0 0 0
... ... ... ... ... ...
0 0 0 0 0 0
0 0 0 150 150 150
0 0 0 150 150 150


CChild 1

29×6×31 =



0 0 0 0 0 0
0 0 0 0 0 0
... ... ... ... ... ...

180 180 180 0 0 0
180 180 0 0 0 0
180 180 0 0 0 0



CChild 2
29×6×30 =



0 0 0 0 0 0
0 0 0 0 0 0
... ... ... ... ... ...
0 0 0 0 0 0
0 0 0 80 80 80
0 0 0 80 80 80


CChild 2

29×6×31 =



0 0 0 0 0 0
0 0 0 0 0 0
... ... ... ... ... ...

100 100 100 0 0 0
100 100 0 0 0 0
100 100 0 0 0 0


The diversity of solutions is maintained by the mutation operators in the designed GA. Therefore,
some genes in a selected chromosome are changed in each population/generation and then, new
chromosomes will be created for the next generation. Here, we implement three mutation operators.
In the first mutation operator, we generate a random group for a selected chromosome and then we
change the positive genes randomly which means we update the disembarkation time for that group.
In the second mutation operator, we select two random groups, and then the positive arrays of two
groups are changed which means the disembarkation times of that two groups are changed. In the
last mutation operator, if for all groups, we do not have a disembarkation time for a specific time,
we reduce that time. As a result, for the groups with disembarkation times that are larger than that
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specific time, we subtract one unit of their disembarkation times. We transfer a low percentage of a
generation to the next generation by migration operator. Finally, the high-quality chromosomes in
terms of fitness function value are transferred to the next generation by the elitism operator. In the
designed GA, we use the setting below for executing the GA code: number of initial population = 200,
generations = 400, crossover rate = 0.5, mutation rate = 0.3, migration rate = 0.05 and elitism = 0.15.

4.2. Results of the analytical model and designed GA

We consider the optimized seat layouts that are generated by Schultz and Soolaki [1] as the inputs
of the designed GA (see Fig. 5). Therefore, the Fig. 5 depicts the optimized seat layouts of thirty-one,
thirty-eight and sixty-two groups. Also, we consider ten minutes (h = 600s) as an upper bound of
disembarkation for all passengers. To calculate the second type of interference (see Fig. 9) between
passengers in the aisle, we use the equation (3) based on the distance between the infected passenger
in the aisle and the other passengers who seat at that moment.

As mentioned previously, we have developed a new two objectives mathematical modeling. The
first objective function indicates the disembarkation time of all passengers and the second objective
targets the transmission risk indicator. In the following, we provide the solutions for four exemplary
scenarios (see Fig. 10 - 13, a numerical representation is provided in the annex).

1. Scenario A1 - Minimizing disembarkation time, 50% seat load
Here we minimize the first objective function for 87 passengers. The coefficient weight of
disembarkation time equals one and the coefficient weight of the transmission risk indicator
supposes zero. The optimized disembarkation plan for this scenario is indicated in Fig. 10. The
disembarkation time for the first scenario is 139 s and the transmission risk indicator from the
second objective function is calculated in the value of 480. In Fig. 10 the proposed sequence is
shown and the locations of all passengers in the aisle are indicated in the 0.5 s time steps.

2. Scenario A2 - Minimizing transmission risk indicator, 50% seat load
In this scenario, the second objective function for 87 passengers is minimized. The coefficient
weight of disembarkation time equals zero and the coefficient weight of the transmission risk is
supposed to be one. To compare with the first scenario, although the value of transmission risk
decreases from 480 to 30, the disembarkation time increases by 50%. The reason behind this
comes from when we are disembarkation the passengers in the same rows or in the near zone,
it takes more time to leave their seats. For example, the gap time between groups number 30
(orange color in row 28 and 29) and 31 (yellow color in row 27, 28, and 29) is considered about
9 s (see Fig. 11). Also, our focus is on the disembarkation time, and therefore, we just define
one scenario (scenario A2) to compare the first two scenarios in terms of the fitness functions.
Therefore, in the third and last scenarios, we just minimize the first objective functions.

3. Scenario B - Minimizing disembarkation time, 66% seat load
The number of passengers is selected to 116 and we consider 38 different groups. In this scenario,
we minimize the disembarkation time. In other words, the coefficient of the first objective
function is supposed to be 1. Fig 12 indicates the output plan for this scenario. As we can see, the
value of disembarkation time is 188 s.

4. Scenario C - Minimizing disembarkation time, 100% seat load
In the last scenario, we suppose the cabin is fully occupied. The number of passengers is 174 and
we consider 62 different groups. As Fig. 13 indicates the optimized plan and it takes 299 s to
leave all of the passengers from the cabin.
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Case 50%

Disembarking time = 139 seconds

d

d

Figure 10. The proposed disembarkation plan for scenario A1 (87 passengers)

1    2    3  4   5   6   7  8   9  10  11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66  (each 0.5 second)

Case 50% (Scenario 2)

Disembarking time = 209 seconds

d

d

d

Figure 11. The proposed disembarkation plan for scenario A2 (87 passengers)

1    2    3  4   5   6   7  8   9  10  11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66  (each 0.5 second)

Case 66%

Disembarking time = 188 seconds

d

d

d

d

Figure 12. The proposed disembarkation plan for scenario B (116 passengers)

1    2    3  4   5   6   7  8   9  10  11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66  (each 0.5 second)

Case 100%

Disembarking time = 299 seconds

4

4

Figure 13. The proposed disembarkation plan for scenario C (174 passengers)
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4.3. Evaluation of disembarkation process

At this stage, we have to emphasize again that our current approach to find appropriate sequences
is not considering different times for the individual pick up of hand luggage items. We assume that
every passenger will immediately leave the cabin after entering the aisle. So the pickup process would
only increase the disembarkation time, but on average does not affect the order of the groups. As shown
in the exemplary presented solutions (Fig. 10-13), we assume a forward ordered-sequential update of
passenger passenger positions [40]. Thus, the update of the positions starts with the passenger closest
to the exit (front door) and the positions of the subsequently following passengers along the aisle will
be updated next during one time step. The consequences of this approach are that groups always use
the narrowest space in the cabin and the disembarkation time is calculated optimistically.

With this in mind, we implemented the optimized group sequences in the calibrated stochastic
simulation environment to verify the results of the disembarkation time. In this environment, every
group is activated to disembark when the group that is directly in front of them in the disembarkation
sequence passes their seat row. This minimizes the possible buffers between group calls as would be
necessary for later operational implementation. The group members do not enter the aisle until the
physical distance between the groups is ensured. Tab. 1 summarizes the simulation results. The result
from the forward ordered-sequential update implementation underestimates the disembarkation times
by about 30 s, which is caused by the movement interactions of the passengers in the aisle. To exhibit
the potential to improve the disembarkation time, we use reference cases for each scenario. These
reference cases consider the same amount of passengers, no groups, no hand luggage items, physical
distance, and the realistic random-sequential update behavior. Concerning the reference cases, our
optimization strategy (focusing on a fast disembarkation process) accelerated the process by about
40%.

disembarkation time (s)
sequential update behavior disembarkation

scenario seat load (%) passengers forward ordered random reference improvement (%)
A1 50 87 139 163 286 43

B 66 116 188 219 377 42
C 100 174 299 331 571 42

Table 1. Disembarkation of passenger groups considering three scenarios with a seat load of 50%, 66%,
and 100%.

5. Discussion and outlook

Along the passenger journey, the processes in the aircraft cabin require sharing a confined
environment with other passengers during boarding, flight, disembarkation. These processes have
the risk of virus transmission between passengers and require risk mitigation strategies. A physical
distance between passenger groups during disembarkation reduces the transmission risks and an
appropriate sequence for these passenger groups will contribute to a significant reduction of the
disembarkation time.

We consider passenger groups as an important factor for operational efficiency. The main idea
behind our approach is that members of a group should be allowed to be close to each other, as they
were before joining. Different groups, however, should be as far apart as necessary. We assume that the
passenger groups can be informed when they are allowed to start disembarkation. For this information
process, the cabin light environment could be used today, but in a future digital connected cabin,
passengers could be informed directly via their personal devices. Further, these devices could also be
used to ensure appropriate distances between passengers [4].

The implementation of the optimized group sequence exhibits a potential to increase the
disembarkation efficiency by a time reduction of approx. 40%. As we are aiming for an appropriate
sequence, at this stage, we do not consider hand luggage items. In future research work, we will also
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consider the distribution of hand luggage in the cabin and the associated times. In addition, Pareto
Fronts can be defined based on the different weights of objective functions. Finally, we will investigate
the potential of technological systems that can monitor, evaluate, and, if necessary, control passenger
boarding and disembarkation.

6. Appendix

In this appendix, the detailed information for the scenarios A1, B, and C are provided using a
numerical description of the seat allocation and activation times.

Scenario A1 - seat allocation (group) Scenario A1 - activation times (s) Scenario B - seat allocation (group) Scenario B - activation times (s) Scenario C - seat allocation (group) Scenario C - activation times (s)
A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F

1 2 11 11 1 0 5 4 1 1 2 7 1 149 19 79 1 1 17 17 18 18 2 1 240 0 0 30 29 225
2 7 2 18 2 3 4 6 2 47 30 137 2 3 19 19 20 20 4 2 199 92 92 123 123 275
3 4 9 9 3 33 33 32 3 5 8 9 3 170 29 117 3 5 21 21 22 22 6 3 250 153 153 167 167 284
4 6 4 64 4 10 11 11 4 0 84 84 4 7 23 23 24 24 8 4 285 144 144 108 108 234
5 3 12 12 5 0 5 5 5 13 13 12 12 5 142 142 14 14 5 9 25 25 26 26 10 5 85 40 41 0 0 241
6 10 10 6 80 80 6 14 14 15 15 6 39 40 44 40 6 11 27 27 28 28 12 6 277 212 212 192 191 267
7 8 13 13 7 29 54 53 7 16 16 17 17 7 123 124 25 24 7 13 29 29 30 30 14 7 275 141 141 168 168 226
8 14 14 5 8 1 1 25 8 19 19 18 18 8 165 166 103 102 8 15 31 31 32 32 16 8 245 113 113 124 124 185
9 1 15 15 9 5 73 73 9 20 20 21 21 21 9 0 0 56 56 55 9 33 33 45 46 34 34 9 42 46 0 30 64 64
10 16 16 10 47 47 10 22 22 22 23 23 10 129 129 130 56 55 10 45 45 45 46 46 46 10 0 0 0 30 30 30
11 19 19 19 11 74 74 74 11 24 24 24 23 11 19 19 19 54 11 35 35 35 36 36 36 11 252 252 259 252 251 251
12 18 18 18 12 93 94 94 12 26 25 25 25 12 143 95 95 94 12 37 37 37 38 38 38 12 241 241 243 241 241 241
13 17 17 13 117 117 13 26 26 26 13 143 143 143 13 39 39 39 40 40 40 13 213 213 213 202 201 201
14 20 20 20 14 48 48 48 14 27 27 27 14 66 65 65 14 41 41 41 42 42 42 14 176 176 177 157 156 156
15 21 21 21 15 65 65 65 15 29 29 29 27 15 96 96 96 65 15 43 43 43 44 44 44 15 124 124 124 114 114 114
16 22 22 22 16 95 99 99 16 29 29 28 28 16 96 96 158 157 16 47 47 47 48 48 48 16 85 85 85 54 53 53
17 24 24 24 17 74 74 74 17 30 30 30 28 28 17 0 0 0 157 156 17 47 51 51 52 52 48 17 85 31 31 0 0 52
18 23 23 24 18 107 107 74 18 30 30 18 0 0 18 51 51 51 52 52 52 18 31 31 31 0 0 0
19 23 23 25 19 106 106 34 19 32 32 31 31 31 19 117 117 79 79 79 19 49 49 49 50 50 50 19 192 192 192 202 202 202
20 25 25 25 20 34 34 34 20 32 32 32 31 31 20 117 117 117 79 79 20 49 53 53 54 54 50 20 192 65 65 168 168 202
21 26 26 26 21 82 83 83 21 21 21 53 53 53 54 54 54 21 65 65 65 168 168 168
22 26 26 27 27 27 22 81 82 54 54 54 22 34 34 34 33 33 33 22 1 1 1 40 40 40 22 55 55 55 56 56 56 22 145 145 145 124 124 124
23 27 27 23 54 54 23 34 34 34 33 33 33 23 1 1 1 40 40 40 23 55 55 57 58 56 56 23 145 145 85 93 124 124
24 29 29 29 24 26 26 26 24 24 24 57 57 57 58 58 58 24 85 85 85 93 93 93
25 29 29 29 28 28 25 26 26 26 6 6 25 36 36 36 35 35 35 25 79 79 79 103 103 103 25 57 57 59 60 58 58 25 85 85 54 41 93 93
26 28 28 28 26 6 6 6 26 36 36 36 35 35 35 26 79 79 79 103 103 103 26 59 59 59 60 60 60 26 54 54 54 41 41 41
27 31 31 31 27 74 74 74 27 37 38 38 27 48 143 143 27 59 59 61 62 60 60 27 54 54 5 0 41 41
28 31 31 30 30 30 28 74 74 95 95 95 28 37 37 37 38 38 38 28 48 48 48 143 143 143 28 61 61 61 62 62 62 28 3 3 4 0 0 0
29 31 31 30 30 30 29 74 74 95 95 95 29 37 37 37 38 38 38 29 48 48 48 143 143 143 29 61 61 61 62 62 62 29 1 1 3 0 0 0

Table 2. Numerical representation of passenger groups seated in the aircraft cabin and the
corresponding activation times for a fast disembarkation.
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