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Abstract

 The cortisol awakening response (CAR) is the most prominent, dynamic and 

variable part of the circadian pattern of cortisol secretion. Despite this its precise 

purpose is unknown. Aberrant patterns of the CAR are associated with impaired 

physical and mental health and reduced cognitive function, suggesting that it may 

have a pervasive role or roles. It has been suggested that the CAR primes the brain 

for the expected demands of the day but the mechanisms underlying this process 

are unknown. We examined temporal covariation of the CAR and rapid transcranial 

magnetic stimulation (rTMS)-induced long term depression (LTD)-like responses in 

the motor cortex. Plasticity was evaluated across 180 measures from 5 time points 

on 4 sessions across 9 researcher participants, mean age 25 ± 2.5 years.  Plasticity 

estimates were obtained in the afternoon after measurement of the CAR on 4 days, 

at least 3 days apart.  As both CAR magnitude and rTMS-induced responses are 

variable across days we hypothesised that days with larger than individual average 

CARs would be associated with a greater than individual average plasticity 

response. This was confirmed by mixed regression modelling where variation in the 

CAR predicted variation in rTMS-induced responses (Df: 1, 148.24; F: 10.41; 

p=0.002). As the magnitude of the CAR is regulated by the ‘master’ circadian 

CLOCK, and synaptic plasticity is known to be modulated by peripheral ‘slave’ 

CLOCK genes, we suggest that the CAR may be a mediator between the master 

and peripheral circadian systems to entrain daily levels of synaptic plasticity. 

Introduction 
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There is good evidence that sustained exposure to high levels of glucocorticoids 

evokes neuronal cell damage and impairs synaptic plasticity (Sapolsky et al., 1990; 

Joels, 2008; Suro and Vaidya, 2013).  However, it has recently become evident that 

the circadian rhythm of glucocorticoid secretion may promote internal homeostasis 

and optimal brain function (Nader et al., 2010). For example animal studies indicate 

that healthy circadian glucocorticoid oscillations boost learning-dependent synaptic 

formation and maintenance (Liston et al., 2013).  It is clear that disrupted circadian 

patterns (not just sustained high levels) of glucocorticoid secretion are associated 

with cognitive deficits (Cho et al., 2000; Gibson et al., 2010; Evans et al., 2011) as 

well as a wide range of neuropsychiatric diseases (Wulff et al., 2010; Menet and 

Rosbash, 2011; Jagannath et al., 2013).  

In healthy animals, including humans, glucocorticoid hormones have a marked 

underlying circadian pattern with characteristically low levels during sleep, peak 

levels soon after awakening, followed by a gradual decline (Edwards et al., 2001). 

This circadian pattern is regulated by the central master CLOCK: the hypothalamic 

suprachiasmatic nucleus (SCN) (Perreau-Lenz et al., 2003). Furthermore, it has 

increasingly become recognised that glucocorticoids adjust the circadian rhythm and 

function of the ubiquitous peripheral CLOCKs. Dysfunction or dysregulation in either 

circadian system alters internal homeostasis and causes pathologic changes virtually 

in all tissues, including the brain (Nader et al., 2010).  

In healthy humans, the initial burst of cortisol secretion that occurs on awakening 

(cortisol awakening response: CAR) is a distinct aspect of the circadian pattern of 

cortisol secretion (Pruessner et al., 1997; Edwards et al., 2001; Fries et al., 2009; 
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Clow et al., 2010) and exhibits notable day-to-day variability (Hellhamer et al., 2007; 

Law et al., 2013).  A study in one healthy young male revealed that daily CAR 

magnitude varied tenfold and was associated with anticipated obligations in the 

coming day (Stalder et al., 2009).  Although this was consistent with the idea that the 

CAR may prime the brain for the expected demands of the day ahead (Fries et al., 

2009), the mechanisms underlying this process have not been elucidated.  

We set out to examine the CAR in relation to levels of synaptic plasticity measured in 

motor cortex some 6-7 hours after awakening.  We chose to use a model of synaptic 

plasticity previously used to explore associations with levels of cortisol in healthy 

intact participants: rapid transcranial magnetic stimulation (rTMS)-induced long term 

depression (LTD)-like responses in the motor cortex (Sale et al., 2008; Pitcher et al., 

2012).  We used this measure as a representative indicator of effects caused by any 

factor that affects the whole brain. We hypothesised that one function of the CAR is 

to regulate the sensitivity of synaptic plasticity, known to be modulated by peripheral 

CLOCK genes (Wang et al., 2009) during the coming day and that this could be one 

mechanism whereby the CAR could influence a wide range of behaviours. We 

predicted that day-to-day variation in the CAR would correlate with day-to-day 

variation in rTMS-induced synaptic plasticity of the motor cortex. 

Material and Methods

Design and Participants
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In this study we sought to relate temporal variation within a large sample (N=180) of 

plasticity estimates to temporal variation of the magnitude of the CAR.  The design 

was entirely within-participant with estimates collected at 5 fixed time points repeated 

over 4 sessions and replicated over 9 healthy, normal BMI participant researchers 

from the Universities of Adelaide and South Australia (78% female; mean age 25 ± 

2.5 years), chosen to ensure rigorous adherence to the demanding protocol. 

Procedure

The protocol was in accordance with the Declaration of Helsinki and was approved 

by the University of Adelaide Human Ethics Committee. Participants gave written 

informed consent prior to testing and were screened for any conditions that would 

contraindicate TMS (Rossi et al., 2009). Testing sessions were never less than 3 

days apart to minimise carry over effects from the rTMS protocols (Goldsworthy et 

al., 2012; Hamada et al., 2013). On each study day, a CAR was determined upon 

awakening and plasticity estimates were assessed on the same afternoon.

Estimation of the cortisol awakening response  

Saliva samples were collected using Salivettes (Sarstedt Ltd.), immediately on 

awakening and at 15, 30, and 45 min post-awakening (samples 1-4, respectively) on 

each study day. Sampling accuracy was recorded by electronic monitoring.  

Awakening times were determined using wrist-worn Actiwatches (Actiwatch-Score, 

Cambridge UK).These are piezoelectric motion sensors that distinguish sleep and 

awakening periods by reduced and increased activity respectively. Saliva sampling 

times were verified using Medical Event Monitoring (MEMS) caps as described by 

Smyth et al. (2013). During the saliva collection period protocol instructions were to 
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take nil by mouth other than water, and to refrain from brushing teeth to avoid 

abrasion and micro-vascular leakage. Cortisol analyses were carried out using a 

standard enzyme-linked immunosorbent assay protocol (Salimetrics, USA). The limit 

of detection of the assay was 0.33nmol/L. 

Adherence to the saliva sampling protocol was excellent.  No sampling time deviated 

more than 5 minutes from the requested saliva collection times relative to verified 

awakening (Smyth et al., 2013). Four of the 144 saliva samples were below the limit 

of detection of the assay: three awakening samples, and one 30 min sample. 

Undetectable samples were treated as missing data, and all other cortisol measures 

were included in the final analysis. CAR magnitude was calculated as the mean 

cortisol increase (MnInc) from 0-45mins: sample 2+sample 3+sample 4)/3-sample 1.

Transcranial magnetic stimulation

All TMS sessions were completed in the afternoon (at 2 or 3pm) in order to minimise 

time of day influences (Sale et al., 2007).  Muscle contractions in the hand in 

response to TMS stimulation of the motor cortex were recorded as 

electromyographic (EMG) activity in the right first dorsal interosseous (FDI) using 

surface electrodes placed in a belly-tendon configuration. The EMG signal was 

amplified (x1000; CED 1902 amplifier, CED, UK), band pass filtered (20-1000 Hz) 

and digitized at a sampling rate of 2 kHz (CED 1401 interface, CED, UK). A 

Magstim-200 stimulator (Magstim Co., Whitland, UK) generated single-pulse stimuli, 

delivered through a figure-of-eight coil (90 mm diameter) placed tangentially to the 

scalp with the handle pointing backward at a 45° angle away from the midline. 

Suprathreshold pulses were delivered over the left M1 at numerous sites in order to 
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identify the optimal site for consistently evoking motor evoked potential (MEPs) in the 

relaxed right FDI and this site was marked on the scalp.  The TMS intensity that 

elicited MEPs of approximately 1mV (SI1mV) in the relaxed FDI was determined (for 

each testing session) at baseline and was used to examine changes in MEP 

amplitude after each protocol. Although we did not use individual neuronavigation to 

place the coil, it is likely that there was little change in its position from day to day 

since the baseline intensity and amplitude of the 1mV was the same on each 

occasion. Any minor change in position or angle would have been random and could 

not contribute to the effects we observed.  Two blocks of 15 single-pulse TMS trials, 

with an inter-trial interval of 7 seconds (± 10%), were delivered at baseline and one 

block of 15 single-pulse TMS trials was then delivered 0, 5, 10, 20, and 30 minutes 

after rTMS. Individual MEP data trials were excluded if EMG activity was present in 

the 100 ms immediately prior to TMS. The peak-to-peak MEP amplitude (in mV) was 

measured for each trial to give an index of the size of the muscle twitch and the 

mean amplitude at each post-rTMS time point was expressed as a ratio of the mean 

of the two baseline samples.  This provided and index of the change in the size of 

the muscle response to the same brain stimulus after rTMS relative to baseline prior 

to rTMS: the MEP ratio or neuroplasticity index.

The rTMS protocol adopted was continuous theta burst stimulation (cTBS) which 

was delivered using a figure of eight shaped Double-Cooled-Coil-System coil 

(70mm, Magstim, UK). Bursts of three pulses were delivered at 50 Hz every 200 ms 

continuously for 40 seconds (Huang et al., 2005). TBS intensity was set to 80% of 

active motor threshold (AMT); AMT was defined as the minimum intensity required to 

elicit a MEP in FDI of at least 200 µV in at least five out of 10 consecutive trials when 
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performing a low-level voluntary contraction of FDI (10% of maximal voluntary 

contraction) and was determined for each testing session. This paradigm is known to 

induce long term depression (LTD)-like effects resulting in a smaller muscle 

response (hence a reduced MEP ratio) post rTMS.

Data Analysis

 Data were analysed using mixed regression modelling (Blackwell et al., 2006) of 

variation in the 180 MEP-ratio estimates. CAR magnitude was included as the 

principal covariate, and was participant-centred since absolute differences in 

participants’ average CAR magnitude was not the focus of this study. Participant 

centring expresses exclusively within-participant variation (i.e. participants’ 

deviations from their own study means).  We modelled time-point within session (at 

0, 5, 10, 20, and 30 minutes) and session number (1-4) as fixed factors. Intercept 

effects were modelled as both fixed and random effects. Finally, further modelling 

was undertaken to check that any findings from initial modelling were not 

confounded by associations with awakening time and level of cortisol.  

Results

Table 1 presents descriptive data for the study.  As expected, following rTMS the 

average MEP ratio was less than 1 (0.9±0.29).  In other words, as expected, the 

peak-to-peak MEP amplitude (in mV) post-rTMS was less than at base, indicating 

the induction of LTD-like synaptic plasticity.  The average CAR across days showed 

a mean increase of 2.72 nmol/l cortisol in the 45 minutes after waking.

Insert Table 1 here
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Table 2 shows F-ratios and significances for the parameters in the modelled data.  

There was no significant difference between the MEP ratios measured at the 5 post-

rTMS time points (sample numbers 1-5), allowing us summarise the effect of rTMS 

as a single overall mean ratio (as shown in Table 1). Similarly there were no 

differences in the mean MEP ratios on each of the 4 days (session numbers 1-4), 

suggesting that there was no adaptation to the procedure over the period of testing.  

Insert Table 2 here

The magnitude of the CAR was significantly associated with their mean MEP ratios 

collected on the same day. Calculation of the estimate coefficient (-.013) suggests 

that for each single nmol/l above their own average CAR on any testing day, the 

predicted MEP ratio would be .013 points (approximately 1.4%) lower than average.  

Since lower MEP ratios reflect a larger response to the rTMS protocol, the finding 

suggests that larger than average CARs in the morning predict greater 

neuroplasticity measured later in the afternoon.

Figure 1 plots the relationship between morning CAR and afternoon rTMS response. 

Data are expressed relative to mean responses for both measures over the 4 days. 

The data show that if the CAR magnitude was larger than individual means, then 

there was a greater chance that the response to rTMS indicated greater 

neuroplasticity i.e. an MEP ratio lower than the expected mean.
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Further modelling examined whether CAR magnitude was confounded by the 

covariates of awakening time and / or awakening level of cortisol. The effect was 

robust to such statistical control, remaining independently significant with a similar 

effect size.    

Insert Figure 1 here

Discussion 

This study of temporal variation with multiple sampling across days shows a highly 

significant relationship between cortisol awakening response and the capacity to 

induce synaptic plasticity in the motor cortex on that same day. Specifically, on days 

when individuals’ CARs were bigger than their own individual averages there were 

greater changes in the size of the muscle response following the rTMS protocol, 

measured that afternoon, indicating greater neuroplasticity. Likewise lower than 

average CARs predicted smaller changes in the size of the muscle response after 

rTMS. 

The rTMS protocol used here (continuous theta bust, cTBS) is thought to provide a 

measure of the responsiveness of early long term depression (LTD)-like processes 

in the motor cortex (Huang et al., 2005; Huang et al., 2007). The measure varies 

considerably between individuals as it is affected by factors such as age and 

genetics (Ridding and Ziemann, 2010; Hamada et al., 2012). However, there are 

also large variations in an individual’s response measured on different days (Sale et 

al., 2007). The present results suggest for the first time that the daily magnitude of 

the CAR may be responsible for some daily variation in synaptic plasticity.
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We have studied a specific index of plasticity in the motor cortex, but evidence 

suggests this measure can serve as a representative marker of effects caused by 

any factor that affects the whole brain (e.g. secretion of glucocorticoids). For 

example administration of an NMDA antagonist in humans can be detected by 

reduced rTMS-induced plasticity in motor cortex (Wolters et al., 2003; Stefan et al., 

2002).  Similarly the human Huntington’s disease gene in mice reduces synaptic 

plasticity in many cortical regions; in humans this is reflected in reduced plasticity in 

the motor cortex (Crupi et al., 2008). This TMS paradigm also has the advantage of 

being non-invasive and appropriate for use in healthy intact volunteers.  Our 

hypothesis here is that the changes we see in motor cortex synaptic plasticity will 

reflect changes in other brain areas, all of which could be affected by the CAR.   The 

relationship between individual day to day changes in cortical plasticity to relevant 

day to day differences in behaviour have yet to be examined, so the functional 

implications of such changes in plasticity are not yet fully described.  However we 

know that plasticity interacts with learning, speeding it up or slowing it down (ref for 

this from John), which suggests some commonality.

Aberrant patterns of the CAR have been consistently linked with indices of impaired 

physical and mental health (Kudielka and Kirschbaum 2003; Fries et al., 2009). In 

particular the CAR has been associated with cognitive function, an attenuated CAR 

has been associated with lower hippocampal volume (Buchanan et al., 2004; 

Pruessner et al., 2007), amnesia (Wolf et al., 2005), deficits in verbal memory and 

processing speed (Aas et al., 2011; Evans et al., 2011), and worse executive 

function (Evans et al., 2012).  Furthermore inhibition of the CAR using the cortisol 
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synthesis inhibitor metyrapone impaired memory retrieval in healthy young 

participants (Rimmele et al., 2010).  

The CAR is the most prominent and dynamic element of the circadian pattern of 

cortisol secretion.  Despite this its precise purpose is unknown. Evidence suggests 

causal pathways linking circadian cortisol disruption to sub-optimal brain function 

and brain disorder (Wulff et al., 2010; Jagannat et al., 2013).  One putative pathway 

involves dysregulation of the circadian CLOCK system (Menet and Roshbash, 2011).  

In this scheme the SCN acts as the light-activated ‘master’ CLOCK, which 

synchronises the peripheral ‘slave’ CLOCKs through neural and humoral pathways 

(Nader et al., 2010). It has been proposed that one of these pathways may involve 

the CAR (Law et al., 2013), which is regulated by dual inputs from the SCN: via the 

hypothalamic pituitary adrenal axis as well as a direct neural pathway to the adrenal 

cortex (Clow et al., 2010).  These dual pathways mean it can fine tune sensitivity of 

the adrenal cortex to adrenocorticotrophic hormone (the secretagogue for cortisol) 

and make it ideally suited to relay messages to the periphery from the master 

CLOCK. Glucocorticoids are known to affect peripheral CLOCKs in almost all organs 

and tissues by influencing the expression of several clock-related genes, which in 

turn have been shown to modify synaptic plasticity (Wang et al., 2009).  This means 

that the circadian pattern of glucocorticoid secretion (and as indicated by this study 

the CAR in particular) can affect function in a sustained way over the day, not just by 

the influence of ambient levels e.g. direct inhibition of NMDA receptor function. 

Although peripheral clock function was not directly examined in this study circulating 

leukocytes provide an ideal tissue source for further work investigating the CAR and 

the circadian clock system in humans (see Kusangi et al, 2008). Day differences in 
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mRNA expression of Per1, Per2, Per3 mRNA, in particular, at a set time in the 

afternoon relative to morning CAR would be of particular interest. 

Conclusions

This study has demonstrated for the first time significant covariation between the 

cortisol awakening response and rTMS-induced synaptic plasticity of the motor 

cortex, measured 6-7 hours later the same day.  These findings may indicate a 

pivotal role for the CAR in priming the brain for the day ahead (Fries et al., 2009; 

Clow et al., 2010) possibly by entrainment of peripheral CLOCKs in the brain that 

can influence the sensitivity of synaptic plasticity. As well as shedding light on a 

possible role for the CAR and informing the marked state variation in this measure of 

neuroplasticity it offers a plausible mechanism by which state factors which affect the 

CAR (such as stress) can affect brain plasticity.  

Declaration of interest: The authors report no conflicts of interest. The authors 

alone are responsible for the content and writing of the paper.
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