In silico and in vitro approaches to develop Dimethylarginine dimethylaminohydrolase-1 inhibitors

C.L. Smith, M. Zloh* and S. Rossiter*

Department of Life Sciences, University of Westminster, London

*Department of Pharmacy, University of Hertfordshire, Hatfield

Introduction

Dimethylarginine dimethylaminohydrolases (DDAH) metabolise the endogenous nitric oxide synthase (NOS) inhibitor dimethylarginine (ADMA) and monomethylarginine. In sepsis excessive nitric oxide partially contributes to acute circulatory failure; pharmacological DDAH inhibition has been proposed to increase circulating methylarginine concentrations and reduce NO levels. The N²,N²-disubstituted arginine substitute, SR257, inhibits DDAH1, with an IC₅₀ 22 µM, without directly inhibiting NOS.¹,²

Methods

Chemical synthesis: Acyclic and cyclic N²,N²-, N⁰,N⁰-, and N⁰ substituted arginines were made as previously described using Katritzky's synthesis preparing trisubstituted guanidines from di-benzobziazol-1-y1)methanimine.³

In silico prediction: Molecular docking was employed to explore interactions of the N², N²-disubstituted arginines (table 1) with human DDAH1 (PDB 2JAJ, hDDAH1 bound to SR257) using Glide (Schrödinger)⁴ and Autodock 4. The published SR257 ligand was used to define the binding site with both software tools.

In vitro DDAH1 assay: Recombinant human DDAH1 activity was measured using colorometric citrulline assay⁶ containing ADMA (100 µM), and phosphate-buffered saline (pH 7.4), with symmetric dimethylarginine (100 µM), not a substrate for DDAH1, as blank. Experiments were carried out in duplicate, and repeated on at least 3 separate occasions.

Results

In vitro DDAH1 assay: N⁰,N⁰-disubstituted arginine analogues (100 µM) reduced the activity of human recombinant DDAH1 activity to less than 25% of control in the presence of 100 µM ADMA substrate. The morpholinyl and pyrrolidinyl substituents reduced hDDAH1 activity to less than 10% of control.

Discussion

Both Autodock4 and Glide docking predicted higher binding energies for morpholinyl, pyrrolidinyl and piperidinyl than the known SR257 compound. The morpholinyl compound has been described to be a weak inhibitor of hDDAH1. In vitro assays confirmed these N⁰,N⁰-disubstituted arginines reduced DDAH1 activity. There was variation between Glide and Autodock in the docking predictions for methoxymethyl methyl and N-methylpiperazinyl.

In silico prediction of DDAH1 ligand interactions may assist in the future design and development of novel N⁰,N⁰-disubstituted arginines.

References

Acknowledgements

The authors would like to acknowledge the help of Mohamed Hussain and Abdiquani Ibrahim Osman for their technical support.