
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Study of behaviour of Biomechanical System in indented

Articular Cartilage on a cellular level

Ramezanian Kalahroudi, M.

This is an electronic version of a PhD thesis awarded by the University of Westminster.

© Mr Mohammad Ramezanian Kalahroudi, 2018.

The WestminsterResearch online digital archive at the University of Westminster aims to

make the research output of the University available to a wider audience. Copyright and

Moral Rights remain with the authors and/or copyright owners.

1	
	

MPhil Report

Title
Study of behaviour of Biomechanical System in indented

Articular Cartilage on a cellular level

Submitted by

Mohammad Ramezanian Kalahroudi

Director of Studies
Dr Philip Trwoga

Second Supervisors
Dr Ian Locke, Dr Andrew Afoke

Electronic and Computer Science Research Group

September 2018

2	
	

Contents

1	INTRODUCTION	...	3	
ABSTRACT	..	3	
1.1.1	Problem	State	..	4	
1.1.2	Research	Objectives	..	4	

2	LITERATURE	REVIEW	..	5	
2.1	ARTICULAR	CARTILAGE	...	5	
2.1.1	Cell	Signalling	..	6	
2.1.2	Articular	Cartilage	Morphology	and	Cartilage	Matrix	...	7	
2.1.3	Cartilage	biphasic	composition	...	7	
2.1.4	Cartilage	structure	and	chondrocyte	distribution	..	8	

2.2	MECHANOBIOLOGY	AND	PHYSICAL	ACTIVITY	...	9	
2.2.1	Dynamic	Compressive	loading	and	cell	viability	..	9	
2.2.2	Mechanical	testing	geometries	...	10	

3.	MATERIALS	&	SOFTWARE	METHODOLOGY	..	13	
3.1	NON-FUNCTIONAL	REQUIREMENTS	...	14	
3.2	FUNCTIONAL	REQUIREMENTS	...	15	
3.3	USE	CASES	..	15	
3.4	APPARATUS	AND	LCM	DEVELOPMENT	...	20	

4.	TESTING	...	27	
5	CONCLUSION	...	29	
5.1	FUTURE	WORK	...	30	

6	APPENDIX	..	31	
6.1	APPARATUS	CODE-BASE	..	31	
6.2	CONFERENCE	ABSTRACT	..	68	

REFERENCES	...	68	

3	
	

1 Introduction

Abstract
	
The study of biomechanical systems is of great interest to researches due to diverse
applications in the medical sector. This study focuses on design and implementation
of a mechanical device, a novel dual axis construct simulator (DACS) for in vitro
studies on immortalised chondrocytes. DACS will help with experimental
measurements of mechanical properties of Articular Cartilage (AC) on a cellular level
and the relationship among cellular, pericellular and extracellular deformation in AC.
Details provided in this research mainly focuses on software and hardware
development processes and challenges involved. There will a brief introduction about
biomechanical behaviour of the cartilage and DACS impact on future studies. This
will be followed by description of LCMPilot, an experimental software and
challenges involved to develop and control DACS in an automated setup.

Acknowledgments

Firstly, I would like to express my sincere gratitude to my Supervisor Dr. Philip
Trwoga for the continuous support of my MPhil study and related research, for his
patience, motivation, and immense knowledge. His guidance helped me in all the time
of research and writing of this thesis.

My sincere thanks also go to Dr. Ian Lock and Dr. Andrew Afoke, who provided me
an opportunity to join their team, and who gave access to the laboratory and research
facilities. Without their precious support, it would not be possible to conduct this
research.

4	
	

Author’s Declaration

I declare that all the material contained in this thesis is my own work.

1.1.1 Problem State

Osteoarthritis	is	clinically	associated	with	the	functional	breakdown	of	AC.	This	
commonly	shared	with	other	form	of	arthritis.	The	synovial	joint	is	a	mechanical	
system;	during	its	operation	AC	is	exposed	to	a	wide	range	of	motion	under	load.	
AC	undergoes	cyclic	load	and	the	mechanical	forces	can	change	its	structure	and	
composition;	this	results	in	change	of	biomechanical	behaviour	of	the	cartilage.	
AC	unique	structure	help	to	reduce	peak	forces	during	normal	joint	motion.	
Studies	show	that	the	mechanical	forces	are	essential	for	maintenance	of	the	
articular	cartilage,	however	excessive	mechanical	forces	can	cause	degeneration	
of	the	tissue	(F.	Ghadially	et	al,	1983,	L.	Eichelberger	et	al,	1952,	J.	P.	Paul	et	al,	
1976,	C.	G.	Armstrong	et	al,	1979).	It	is	essential	to	identify	a	regime	optimised	to	
enhance	and	maintain	the	AC	structure.	
	
Articular	cartilage	is	comprised	of	the	only	cell	called	chondrocytes	and	
extracellular	matrix	which	consists	of	water,	collagen	fibres	and	proteoglycans.	
The	chondrocytes	synthesize	the	components	of	the	cartilage	and	maintain	its	
biomechanical	properties.	Collagen	fibres	are	responsible	for	supporting	tensile	
stress,	they	form	a	fibre	network	that	help	to	restrain	the	swelling	pressure	
caused	by	proteoglycans,	the	negatively	charged	macromolecules	in	the	
cartilage.	This	is	how	the	cartilage	is	provided	with	its	resilience	and	loading	
capacity.	Before	the	use	of	DACS	the	study	of	the	structure	of	articular	cartilage	
was	not	possible	when	mechanical	forces	were	being	applied	to	the	tissue.	DACS	
allows	the	study	of	the	structure	of	AC	in	its	natural	hydrated	state.	

1.1.2 Research Objectives

One of the objectives of this study is to understand the behaviour of tissues under
cyclic loading and shearing stress and its effect on AC development, destruction and
repair. We aim to utilise an established type I collagen gel culture system to conduct
our studies on C-20/A4 chondrocytes.

 In particular the aims of this project are: i. Development of a novel dual axis
construct simulator (DACS) for in vitro studies on immortalised chondrocytes C-
20/A4 and to verify and extend previous observations reported in literature, ii.
Demonstrate the potential effect of long-term dynamic mechanical simulation on
chondrocytes extracellular matrix synthesis and viability, iii. Development of proof-
of-principle experiments in vitro, validating novel approach to closely mimic in vivo
conditions, iiii. Delivery of novel approach in finding the required loading regime to
improve AC repair process.

5	
	

2 Literature Review
	
2.1 Articular Cartilage

Several reviews have been published on the general mechanical properties and design
features of articular cartilage (F. Guilak, 1997, Kääb, 1998, W. Herzog, 1998).
Findings confirm the impact of repetitive loading on metabolic activities in AC
(URBAN, 1994). AC is an avascular (lack of blood vessels) and aneural (no nervous)
tissue type found in the synovial joints such as knee. Since AC is avascular it has
limited ability to regenerate and to repair itself into fully functional tissue. Therefore,
mechanical stimulation of AC is essential for the maintenance of this tissue.

This specialised connective tissue acts as a junction of two bones in human knee, the
Femoral Condyle (FC) and Tibial Plateau (TP) (Rami and Simo, 2011, Wong and
Sah, 2010). This type of bone articulation permits free motion in diarthrodial joints
(Archer, 1994). During joint articulation cartilage is subjected to loading, shear,
sliding and hydrostatic pressure (Hall, 1991). These are mechanical factors that affect
cartilage metabolism (Nguyen et al., 2010). As highlighted above, this has motivated
the design of several systems to closely simulate the mechanical loading that match
the physiological loading conditions in knee joint.

However, these experiments produced contradictory results. For example, Di Federico
et al. in a study of chondrocytes seeded in agarose gel, reports that during various
experimental conditions (up to 72h loading), the chondrocyte viability was maintained
above 90%. Following this result the study then suggests that the culture conditions
and the mechanical loading regimes have no impact on cell viability or mechanical
integrity of construct. In this study culture medium had to be changed manually (Di
Federico et al., 2014).

These studies also often capture certain aspect of a knee motion in their experiments.
For example Frank et al., in development of a dual axis simulation, only isolates the
effect of dynamic or static shear in 24h experiments with statically compressed
control. Although the explants in this experiment was maintained in culture media,
little is disclosed as how this was maintained and whether cell viability was assessed.
Although this study was only conducted on identifying the shear modulus of load
bearing explants, the findings did demonstrate increase of dynamic stiffness and
synthesis of proteoglycans (Frank et al., 2000).

Hence development of a novel simulator capable of applying both axial and shear
loading is paramount to the success of the active knee joint simulation in this study.

6	
	

AC also acts as dissipater and distributor of contact stresses during joint loading
(Rami and Simo, 2011). It is compromised of the highly specialised and fibroblast-
like chondrocytes and associated Extracellular Matrix (ECM). ECM components are
produced and maintained by the chondrocytes and include water, type II collagen, and
proteoglycans, with other non-collagenous proteins and glycoproteins present in
lesser amount (Buckwalter, 1998, Buckwalter JA, 1988). The importance of collagen
fibres for the mechanical function and integrity of cartilage has been demonstrated
experimentally (R.A. Bank, 2000, Maroudas, 1976, J. Mizrahi, 1986, N. Verzijl,
2002).

2.1.1 Cell Signalling
	
Chondrocytes are responsible for maintenance of ECM through a complex interplay
of anabolic and catabolic stimuli. Their functionality is conducted by a complex
signalling network. In osteoarthritis, a disruption in the anabolic and catabolic
processes cause degeneration of the ECM and gradually followed by destruction of
the joint (Guilak, F., et al., 2004). Modelling the signalling mechanisms is a
complicated task for academic and industry researchers as they attempt to either block
pro-inflammatory pathways that leads to cartilage degeneration or stimulate pro-
growth pathways to compensate for the loss of ECM structure.

In the past, the modelling of signalling in chondrocytes was conducted in a traditional
approach by modelling the effect of few well known stimuli on proteins, cell’s
phenotype and tissue development. In literature, there are references to the effect of
stimuli such as IL la/b, Interleukin 1 alpha/beta, TNFa-Tumor Necrosis Factor alpha
and Transforming Growth Factor alpha (TGFa) on proteins like Nuclear Factor kappa
beta (NFkB) or ikb (R. Visse, et al., 2003, Goldring et al., 2007, Palmer et al., 2009,
DeLise et al., 2000, Hartmann et al., 2000, Goldring et al., 2006, Roman-Blas, et al.,
2006, Liacini et al., 2002). However deeper understanding of cell’s mechanical
structure is required to identify the therapeutic interventions.

Simple investigation of each biomechanical cascade independently although could be
helpful it is not enough (Kitano, 2002, Boccaletti et al., 2006, Aggarwal et al., 2003).
Ioannis et al., in a study on chondrocytes isolated from a single donor aimed to
construct a chondrocytes specific signalling network based on proteomic data and
existing knowledge of protein connectivity. The sample was placed in a 96 well plate
and stimulated with single treatments of 78 stimuli.

17 key phosphoprotein signals were measured using xMAP technology. The study
proposed a predictive model of chondrocytes signalling network. The findings
revealed discrepancies with generic nature of canonical pathways in previous studies
(Ioannis et al., 2011). This experiment is one of the early attempts made to construct
an integrative model of chondrocytes signalling mechanism.

7	
	

Although the results show that chondrocytes do not respond to all stimuli, however 18
cytokins are identified as having a clear effect on some of the 17 signals. This
provides better insight into functional mechanism of chondrocytes and ECM structure
integrity and how DACS could utilise the findings and evaluate data in future studies.

2.1.2 Articular Cartilage Morphology and Cartilage Matrix

There are three types of cartilage, hyaline, elastic and fibrocartilage. This
categorisation is based on morphologic criteria, collagen (Types I and II) and elastic
content. The most common type is hyaline, found as supportive tissue in the nose,
ears or knee. As AC, Hyaline Cartilage (HG) covers the articular surfaces of bones in
synovial joints and provides frictionless surface for articulation (Sophia Fox, 2009).
AC contains a gelatinous ground substance called chondroitin sulfate (CS).
Embedded within CS are collagen and elastic protein fibres. Together these
components form the AC matrix that is flexible and also resistant to compression
forces (Naumann A, 2002, Watanabe, 2015).

The integrity of AC depends on the functioning and mechanical simulation of
chondrocytes. This is the cell that synthesise extracellular matrix and maintain tissue
health. However mechanical loads do not only effect the cartilage matrix, but also
have impact on cartilage cells known as Chondrocytes (CH) (Clements et al., 2001,
Wu et al., 1999, J.Z. Wu, 2000, Jones et al., 1999). Helminen et al., has reviewed
decades of research evidences and confirms that CH also responds to mechanical
forces and is capable of cartilage remodelling (Helminen, 1987). Therefore
mechanical environment of chondrocytes are considered to be important factor for
joint health.
Chondrocyte deformation in response to mechanical loading is an important regulator
of metabolic activity (Han et al., 2007). Chondrocytes are the only cells in cartilage.
They produce and maintain the cartilage matrix.

2.1.3 Cartilage biphasic composition

This study will utilise the use of dynamic loading with indentor for in vitro
experiments. The combination of mechanical and chemical in vitro conditions will
have significant impact as it could lead to greater understanding of cartilage
functional tissue engineering. Majority of researchers confirm that AC has a biphasic
composition and that it can be described in two phases (Park et al., 2004). Fluid
phase that consists of interstitial water and mobile ions and constitutes nearly 85% of
AC total weight. This is an important determination of mechanical properties of AC
and also contributes to the time dependent properties of the tissue (Wu et al., 1999,
J.Z. Wu, 2000).

8	
	

The second phase is referred to as the solid phase or solid matrix of AC and consists
of collagen fibrils (60-80% of dry weight) and proteoglycans (20-40% of solid
weight) as mentioned above (Michael D. Buschmann, 1995, Rami and Simo, 2011,
Seifzadeh et al., 2012, Park et al., 2003). Collagen fibrils are responsible for cartilage
tensile and dynamic comprehensive stiffness (Guilak and Mow, 2000, Korhonen and
Herzog, 2008). Where proteoglycans are responsible for equilibrium properties during
compression (Rami K. Korhonen, 2003, Halonen et al., 2013).
This complex behaviour introduces advance problems in finite element simulation.
To simplify the problem researches work under various assumptions to idealise their
models.

In a literature review Freutel et al., indicates that simple models (ie: for swelling)
have been developed that consider the cartilage to be homogeneous (Freutel et al.,
2014). Park et al., also suggests that AC is homogeneous through depth (Park et al.,
2004). In a study by Mow et al., the same assumption was used to model ECM.
However it was also highlighted that modifications are required to use the same
technique to incorporate other physiological characteristics such as inhomogeneity of
the cell (Guilak and Mow, 2000).

2.1.4 Cartilage structure and chondrocyte distribution

There is also evidence about the structure of AC and that it can be divide into four
zones based on the arrangement of collagen fibril network (Rami and Simo, 2011,
Halonen et al., 2013, Bi, 2006). The zones are known as Superficial, Middle, Deep
and Calcified. This suggests that the structure of the collagen of AC is capable of
exhibiting a zone-specific deformation that is dependent on the magnitude and type of
load (Kääb, 1998, Korhonen and Herzog, 2008). In an experiment Clements et al.
reveals that the first sign of load-induced CH death was greatest in superficial zone
and then extended beyond the loaded area to other zones (Clements et al., 2001). As a
result of this depth dependency, variations of biomechanical parameters has been
observed in many experimental studies (R.M. Schinagl, 1997). In a similar study,
Herzog reported that depletion of cell volume was first observed in superficial zone
after increase of fibril stiffness (Korhonen and Herzog, 2008).
Other studies also shown similar variations of young modulus (measurement of
stiffness in elastic material), aggregate modulus (measurement of material stiffness at
equilibrium), Poisson’s ratio (change of shape) and permeability with depth (Chen,
2001a, Chen, 2001b, Jurvelin, 1997, Treppo, 2000). However, only few studies are
related to human AC (J.S. Jurvelin, 2003, Pfeiler et al., 2008, Shirazi and Shirazi-Adl,
2009, Sun et al., 2011) and to the best of our knowledge none of the studies measured
all the above parameters for the same samples under both axial and shearing stress.

9	
	

2.2 Mechanobiology and Physical Activity

2.2.1 Dynamic Compressive loading and cell viability

Now, the magnitude of load and frequency or duration of a loading pattern and its
effect on the chondrocyte is what this study is designed to systematically determine.
Several studies are conducted on the effect of cyclic load on cartilage explants
sourced from human or animal materials such as bovine. These studies try to
demonstrate whether and to what extent the frequency and magnitude of cyclic
loading modulates the biosynthesis of cartilage and to evaluate chondrocytes viability
under different loading patterns. A decline in chondrocyte numbers is associated with
osteoarthritic cartilage in the literature. The decrease in cell viability is caused by
mechanical load. This unique physiological changes to the cartilage matrix has been
reported to be similar to what was observed in early stages of osteoarthritis (Chen et
al., 2001, Lucchinetti et al., 2002, Sauerland et al., 2003).

Lucchinetti et al. experiment on mature cartilage explants confirms that one of the
mechanisms for the initiation of cartilage degeneration is mechanically induced cell
death. This observation shown the matrix damage appears to be higher in articular
cartilage surface and within the superficial tangential zone (STZ). In this experiment
the AC was subjected up to 72 hours repetitive loading and frequency regimes
(Lucchinetti et al., 2002). Finding suggests that the cell death did not appear to be
caused by apoptosis (programmed cell death or cell suicide).

This very phenomenon (apoptosis) is still in question (Aigner T, 2001, Blanco, 1998).
In a study of canine explant under cyclic load, Chen et al., reported that necrosis
occurrence was first observed and then followed by apoptosis (Chen et al., 2001).
There is also evidence in the literature that apoptosis can be triggered by the products
of dead or injured cells such as nitric oxide (Prince, 2015, Amin, 1998). Although this
was not fully confirmed in Lucchinetti et al. experiment, potential causes for cell
death was suggested to be: i. excessive mechanical loading, ii. Damage to the articular
surface caused by the rough surface of the porous platen, iii. Zone dependency of
chondrocytes (chondrocytes in STZ are more susceptible to injury).

Same results are echoed in an experiment conducted by Sauerlan et al. in a study of
mature bovine AC explants that was exposed to different loading patterns. In this
experiment the AC was subjected to frequent loading for up to 6 days with load
frequency of 5, 10 or 20s followed by unloading period lasting 10, 100 or 1000s. The
findings confirm the importance of the frequency of cyclic loading as a mechanical
factor to control metabolic activities in chondrocytes. This experiment also highlights
the impact of mechanical damage to generate an in vitro model of degenerative OA
like cartilage (Sauerland et al., 2003).

10	
	

Further research in this matter also revealed same observation in human body. The
number of chondrocytes decreases in degenerative disease of articular cartilage
known as Osteoarthritis (OA) most commonly seen in elderly people (Amin, 1998).
Similar study reveales that OA cartilage had a higher proportion of apoptotic
chondrocytes than did normal tissue (51% versus 11%; P < 0.01). This study further
shown that chondrocytes in OA cartilage demonstrated morphological changes similar
to of apoptosis and suggested that this mechanism of cell death plays an important
role in new treatment strategies (Blanco, 1998).

Both clinical and experimental researches for potential Osteoarthritis (OA) therapy
highlight the same possibility (G.E. Nugent-Derfus, 2006) to prevent AC destruction
as observed in OA or improve AC repair process (Song J, 2014).

2.2.2 Mechanical testing geometries

To test mechanical properties of articular cartilage under load we can utilise three
different measurement configurations: Confined, un-confined compression (R.M.
Schinagl, 1997, L.P. Li, 1999, Korhonen et al., 2002, Park et al., 2003, Park et al.,
2004, C.P. Neu, 2005) and indentation (Zhang et al., 1997, Korhonen et al., 2002,
Seifzadeh et al., 2012). In an unconfined compression, a tissue sample is compressed
between two smooth metallic plates to a predefined stress or strain. In this geometry
the interstitial fluid flow out of the tissue only in lateral direction. In a confined
compression a tissue is placed in a sealed chamber and compressed with a porous
filter. In this geometry, the interstitial fluid flow is observed to be axially and through
tissue surface into the filter.

As mentioned earlier, this study will use dynamic loading with indentor, similar setup
to indentation geometry to measure AC response to compression. Indentation is the
only compressive geometry that can be used in vivo or outside laboratory testing. In
this setup fluid flow is possible in both axial and lateral directions.

In a normal walking regime, AC and meniscus will experience external compressive
forces. Each knee joint contains an inner and outer meniscus (medial and lateral
meniscus). These are C-shaped rubber like pads and act as load bearing component in
knee joint (V.C. Mow, 2005). The meniscal cartilage sit on top of the TP and are in
addition to the thin layer of cartilage (also known as articular cartilage) that covers the
top of TP.

During knee movement FC articulation against TP also causes friction, a phenomenon
known as shearing. The FC and TP cartilage articulation facilitates the biomechanical
movement of joint (Buckley et al., 2010, Wong et al., 2010, Wong and Sah, 2010).
This is in addition to the perpendicular or axial force applied during knee active
motion. Shearing provides promising insight into biomechanical responses of AC to
distinct loading regime and articulation (Nguyen et al., 2010).

11	
	

Although the shearing properties of AC was observed in different studies as early as
1993 (W. Zhu, 1993), to this date studies are conducted under assumption that the
loading platens are frictionless in unconfined and confined compression. This
assumption is reasonable due to low friction coefficient of AC under dynamic load
(Park et al., 2004).

However, other studies suggest that friction coefficient can be significantly affected
by platen roughness (p < 0.001) (Nguyen et al., 2010). Nguyen et al., in a microscopic
assessment of cartilage shear suggests that roughened counter-surface could modulate
interaction with cartilage surface and provide a means to control cartilage shear and
sliding. This study examined the isolated effect of shear on cartilage and chondrocytes
metabolism by use of 8 roughened custom counter surface platens (Polished, Mildly
rough and Rough). A smooth counter surface (Polished) was recommended to be
suitable to mimic articulation tests with normal cartilage and rougher versions (Mildly
rough and rough) could be used to mechanically induce high stiffness in cartilage,
typical of what was observed during articulation of degenerative cartilage.

The degree of how this articulation effects the AC metabolism is discussed in a study
by Wong et al.. The findings indicates that TP cartilage is generally thicker than FC
and deforms and strains more axially and in shear than the FC cartilage. This is due to
the difference in mechanical stiffness; FC stiffness is 1.5 to 2 times higher than TP
cartilage (Wong and Sah, 2010). This provides better understanding of functional AC
tissue and its behaviour under physiological load.

Direct mechanical forces have been applied to cartilage explants either statically
(Kong, 2013) or dynamically (Di Federico et al., 2014, Yusoff et al., 2011, Frank et
al., 2000, Moo et al., 2014) to mechanically damage cartilage with variable frequency
in loading regimes. Many of these loading regimes were chosen to simulate more
closely the conditions cartilage might experience during normal or pathological joint
function. Findings suggest that frequency and magnitude of loads have important
effect on metabolic activity of cell. The most common mode of loading in human
lower limb joints is cyclic loading and followed by shearing. These joints are
subjected to four million load cycles per year on average (Seedhom and Wallbridge,
1985). During knee active motion, AC experiences periods of recovery or relaxation
(complete unloading) between each loading cycle and shearing.

This research aims to simulate the active motion of knee joints for further analysis of
signals generated by mechanical stress. The developed system is suitable for a novel
approach to a systematic investigation of the response of chondrocytes cell line to a
complex physiological deformation profile. In situ conditions, these mechanical
signals are then converted into biochemical events via intracellular mechanisms.
Hence such simulations may also provide insight into the repair and destruction of
cartilage (Blanco, 1998, Deschner J, 2003, G.E. Nugent-Derfus, 2006). A custom
built apparatus was developed to simulate the compressive and shear forces and
loading regimes present in the knee joint.

12	
	

A previously developed type I collagen gel will be used as the basic construct
populated with the phenotypically stable chondrocyte cell line C-20/A4 (A. Petsa,
2004). The gel is highly hydrated and may not reflect the true conditions in vivo,
however the use of in vitro systems such as immortalised cell lines over primary
alternative offers important advantages over animal studies. In vitro, models allow the
study of cellular response to loading more directly. This cell line is able to generate
type II collagen and proteoglycans, the predominant ECM components.

The use of the culture system will also enable us to study the functional aspects of
these cells with regard to their ability to modify the ECM. Gels are subjected to cyclic
loading under variable regimes. The load cycles are controlled via a multi-threaded
software and can be defined within sets of multiple sessions with resting and sleep
periods for media flow. The use of in vitro collagen matrices to mimic an in vivo
cellular environment is a quite popular approach and is broadening our understanding
of cellular processes and cell - ECM interactions (O'Connor et al., 2001).

In a compression setup the equilibrium response of AC can also be measured. This
can be significantly different from other measurement configurations. Korhenen et al.
in a study in comparison of equilibrium response of AC revealed high variance in
young’s modulus of the in situ indentation test than those obtained from the in vitro
unconfined and confined tests. The finding suggests that this discrepancy may depend
on indentor size in use (Korhonen et al., 2002). This is later echoed by Lock et al. in a
study, where the effect of indenter shape on creep curve test of a collagen gel was
monitored. The results from this study indicated that the shape of indenter plays an
important role in producing rapid displacement. This is an important finding in
development of a simulator as a mechanism to control water content of the gel matrix
during cyclic load. It could also have significance in vivo since the fluid movement
within AC matrix is important for lubrication and nutrition (Locke et al., 2010).

The findings related to the shape of indentor and its counter surface roughness is
reflected in the design of DACS where the DACS’s indentor and its roughness can be
adjusted to verify and extend previous findings in the literature.

The development of this simulator provides not only a novel system for in vitro
studies on molecular regulations of chondrocytes but also a significant testing ground
for development of targeted pharmacologic means and bio-mechanical assessments to
regulate matrix production and to potentially regenerate cartilage. This will be a
hybrid approach to combine series of important experiment configurations such as
magnitude of load, frequency of load and recovery periods between each cycle.

13	
	

This research is based on preliminary work that was undertaken in the study of
collagen gel cultures conducted by Petsa et al. at University of Westminster. Under
this study a set of type I collagen gels were investigated for prolonged culture times
under static compression and gel stiffness was measured. The test gel was seeded with
C-20/A4 chondrocytes cells (A. Petsa, 2004). In a 16 days period the resistance to
compression in test gel seeded with chondrocytes increased over time from day 8
onwards. The load application had contributed to the synthetic activity of the
chondrocytes and caused the production of modified extracellular matrix containing
type II collagen, elastin and low levels of proteoglycans following as little as 1 day in
culture. The findings also indicate that although necrotic cell death was low during
the entire period however the levels of apoptosis were increased. This maybe a result
of culture conditions, such as reduced oxygen or nutrition level (Wernike et al., 2008).
There is also increased evidence that chondrocytes apoptosis have effective role in
cartilage development, aging (Horton Jr et al., 1998) and diseases (Horton Jr et al.,
1998). This experiment further demonstrated that chondrocytes in an in-vitro culture
are capable of the remodelling and development of collagen gel matrix into a material
similar to that of the in vivo environment of human articular chondrocytes.

3. Materials & Software Methodology
	
This	section	is	dedicated	to	discussion	about	functional	and	non-functional	
requirements	of	developing	DACS	and	challenges	involved	in	implementing	the	
features	in	final	design.	This	section	is	broken	to	four	subsections	to	list	
functional	and	non-functional	requirements	of	developing	DACS	and	LCMPilot,	
followed	by	discussion	about	use	cases	that	define	the	interactions	between	
LCMPilot	and	DACS.	Finally,	this	chapter	finishes	with	discussion	about	
apparatus	development.	
	
The	main	challenge	was	to	develop	a	multi-threaded	application	that	can	run	set	
of	coordinated	tasks	automatically.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

14	
	

	
	
3.1 Non-Functional Requirements
	
This	section	will	provide	detailed	information	about	list	of	hardware	and	tools	
that	were	used	to	develop	DACS.	
	
R1	Media	Pump	
R1.1	Two	micro	range	of	peristaltic	pumps	model	100.005.012.030/4	with	4	
rollers.	This	motor	is	12v	DC	powered.	This	will	pump	the	media	fluid	into	and	
out	of	petri	dish.	
R1.2	Two	tubes	to	isolate	the	liquid	feed.	
R1.3	Two	5V	Single	Pole	DIL	Reed	Relays.	
	
R2	Materials	for	Testing	
R2.1	Wet	sponge	
R2.2	Agarose	Gel	
	
R3	DACS	(a	custom	designed	apparatus)	
R3.1	Two	hybrid	5v	stepping	motors	
R3.2	PCI230	multi-functional	analogue	and	digital	input	and	output	amplicon	
board.	
R3.3	A	strain	gauge	load	cell	LQB	630,	thin	film	load	cell	with	load	range	up	to	
50g.	
R3.4	A	Signal	Amplification	Mantacourt	SGA/D	signal	conditioner	with	gains	up	
to	30.30mV	to	amplify	the	strain	gauge	output.		
R3.5	A	switch	button	for	emergency	process	halt.	
R3.6	Petri	dish	with	5ml	working	volume	to	hold	test	samples	
R3.7	Indentor	in	different	size	and	shape.	
R3.8	A	plane	ended	indentor	with	possibility	to	mount	indentors	of	different	
cross	section.	
	
R4	LCMPilot	(the	controller	software)	
R4.1	Visual	Studio	2010	
R4.1	C#	programing	language	
R4.2	Mongo	DB	
R4.3	JavaScript	
R4.4	Microsoft	Excel	
	
	
	
	
	
	
	
	
	
	
	

15	
	

	
	
3.2 Functional Requirements
	
R5.	The	system	should	be	able	to	register	the	PCI	card	for	signalling	the	DACS	
components.	
R6.	The	system	should	be	able	to	control	both	vertical	and	horizontal	motors.	
R7.	The	system	should	be	able	to	control	the	pump	motor	to	pump	the	media	
feeds	in	and	out	of	petri	dish	where	the	testing	materials	are	placed,	while	DACS	
is	in	resting	period.	
R8.	The	system	should	provide	settings	feature	to	enable	researchers	to	run	
automated	cycles	in	one	experiment.	
R9.	The	system	should	be	able	to	perform	all	above	tasks	in	multiple	coordinated	
cycles.	This	must	be	achieved	by	use	of	a	technique	called	managed	threading.	
R10.	The	system	should	be	able	to	store	strain	data	in	CSV	format.	
R11.	The	system	should	be	able	to	send	data	to	a	remote	server	in	JSON	format.	
R12.	The	system	should	provide	an	interactive	console	based	application	to	
configure	and	run	an	automated	experiment.	
	
3.3 Use cases
	
This section defines the interaction between actors and the system, actors in this case
can be researchers or DACS.

The following tables represent the use case documentation of LCMPilot.

Use	Case	ID:	 1	
Use	Case	
Name:	

R5	

	
Actor:	 LCMPilot	

Description:	 Register	the	PCI	card	to	signal	and	receive	feedback	from	
hardware	components.	

Preconditions:	 Card	is	installed	properly	and	the	drivers	are	installed.	We	
are	using	Amplicon	C#	API	to	register	and	communicate	
with	the	PCI	card.	

Post-conditions:	 Once	card	registered,	get	the	initial/current	voltage	values	
Priority:	 1	

Frequency	of	Use:	 When	LCMPilot	console	application	loads	first.	
Normal	Course	of	

Events:	
1. Console	app	loads	
2. Looks	for	connected	PCI	boards	
3. Register	the	PCI	card	
4. Get	current	voltage	from	strain	gauge	
5. Asks	for	experiment	configuration	setup	

Exceptions:	 1. Software	Loads,	but	cannot	find	the	card.	
2. Software	Loads,	but	PCI	board	is	busy	or	non-

responsive.	

16	
	

Includes:	 R6,	R7	
Assumptions:	 The	PCI	card	is	functional	and	drivers	are	installed.	

Notes	and	Issues:	 This	board	have	52	ports	and	some	are	damaged	and	no	
longer	work.	

Use	Case	ID:	 2	
Use	Case	
Name:	

R6	

	
Actor:	 LCMPilot	

Description:	 Wind	and	wind	back	vertical	and	horizontal	motors.	These	
motors	control	the	sheering	and	indentation	features	of	
DACS.	

Preconditions:	 Register	PCI	card,	initiate	the	LCM	threads,	the	threads	are	
for	controlling	the	vertical/horizontal	motors	and	the	
media	flow.	

Post-conditions:	 Do	not	stop	the	main	thread	(that’s	the	application	thread)	
Initiate	the	LCM	motor	tasks.	

Priority:	 2	
Frequency	of	Use:	 In	each	cycle	
Normal	Course	of	

Events:	
1. Move	vertical	motor	
2. Move	horizontal	motor	
3. Wind	back	the	vertical	motor	
4. Wind	back	the	horizontal	motor	
5. Store	LCM	strain	data	in	an	array	

Exceptions:	 PCI	ports	may	dis-function,	should	change	the	port.	System	
failure,	the	halt	button	will	hard	reset	the	system.	

Includes:	 	
Assumptions:	 	

Notes	and	Issues:	 This	requires	custom	threading	described	in	the	following	
section.	

17	
	

Use	Case	ID:	 1	
Use	Case	
Name:	

R7	

	
Actor:	 LCMPilot	

Description:	 Run	the	media	flow	to	and	from	the	petri	dish	
Preconditions:	 Session	cycles	are	completed	and	system	is	in	resting	

period.	
Post-conditions:	 Media	flow	completed	and	pump	task	is	stopped	before	a	

new	session	cycle	starts.	
Priority:	 2	

Frequency	of	Use:	 During	each	cycle	
Normal	Course	of	

Events:	
1. Initiate	the	Pump	task	
2. This	task	will	run	only	if	motors	and	session	states	

are	at	rest.	
Exceptions:	 	
Includes:	 	

Assumptions:	 	
Notes	and	Issues:	 This	requires	custom	threading	technique	described	in	the	

following	section.	
Use	Case	ID:	 1	

Use	Case	
Name:	

R8	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

18	
	

	
	
	

Actor:	 Researcher	
Description:	 Researchers	can	configure	an	experiment	cycle	that	runs	

automatically	for	X	number	of	times.	
Preconditions:	 PCI	card	is	registered,	and	current	voltage	feedback	from	

strain	gauge	is	available.	Internet	connection	is	required.	
Post-conditions:	 Should	save	the	strain	gauge	data	in	CSV	format	and	send	a	

JSON	version	to	a	remote	server.	
Priority:	 3	

Frequency	of	Use:	 Once,	when	the	application	loads	first	time.	
Normal	Course	of	

Events:	
1. Ask	for	following	information	to	setup	a	cyclic	

experiment:	
a. Number	of	sessions	
b. Load	cycle	in	each	session	
c. Load	unit	in	grams	
d. Sheer	depth	
e. Resting	Period	in	hours	
f. Media	cycle	in	a	specified	minutes	interval	
g. Author	name	

2. Use	author	name	to	save	experiment	data	in	a	
remote	server	in	json	format.	

Exceptions:	 Remote	server	connection	may	timeout.		
Includes:	 	

Assumptions:	 	
Notes	and	Issues:	 In	server	connection	timeout,	a	local	copy	of	experiment	

data	will	be	saved	in	CSV	format.	

Use	Case	ID:	 1	
Use	Case	
Name:	

R9	

	
Actor:	 LCMPilot	

Description:	 Each	cycle	will	run	the	above	tasks	in	multiple	times.	
Preconditions:	 A	custom	threading	technique	is	required	to	run	the	tasks	

in	a	cyclic	order.	
Post-conditions:	 	

Priority:	 	
Frequency	of	Use:	 	
Normal	Course	of	

Events:	
Initiate	managed	multithreading	to	run	pumping	tasks	and	
motion	motors.	

Exceptions:	 	
Includes:	 	

Assumptions:	 	
Notes	and	Issues:	 Coordinating	the	work	of	multiple	threads	and	handling	

threads	that	block.	

19	
	

Use	Case	ID:	 1	
Use	Case	
Name:	

R10	

	
Actor:	 LCMPilot	

Description:	 Save	the	LCM	data	in	a	CSV	format.	
Preconditions:	 Trigger	only	when	the	session	cycle	is	completed.	

Post-conditions:	 	
Priority:	 4	

Frequency	of	Use:	 Once,	at	the	end	of	a	session	or	experiment	only.	
Normal	Course	of	

Events:	
1. Check	for	pumping	tasks	state,	must	be	completed.	
2. Check	for	the	session	state,	must	reach	the	end	of	

cycles.	
3. Save	LCM	data	in	CSV	format	locally.	

Exceptions:	 	
Includes:	 	

Assumptions:	 	
Notes	and	Issues:	 Permission	error	while	saving	the	file.	Always	save	on	

desktop	as	logged-in	user	have	access	to	desktop.	

Use	Case	ID:	 1	
Use	Case	
Name:	

R11	

	
Actor:	 LCMPilot	

Description:	 Send	the	LCM	data	to	a	remote	server	in	json	format	
Preconditions:	 Trigger	only	once	the	CSV	file	has	been	saved.	

Post-conditions:	 	
Priority:	 5	

Frequency	of	Use:	 Once,	at	the	end	of	each	session.	
Normal	Course	of	

Events:	
1. Convert	the	LCM	data	to	json	format	
2. Send	the	json	data	to	a	remote	server.	

Exceptions:	 	
Includes:	 	

Assumptions:	 	
Notes	and	Issues:	 Possible	issues	with	internet	connection,	out	of	scope	of	

LCMPilot	to	address	an	automated	troubleshooting.	

20	
	

3.4 Apparatus and LCM Development

It is well stablished that continues active motion of a knee joint should accelerate the
healing of AC (Salter, 1989, Helminen, 1987, G.E. Nugent-Derfus, 2006, Shirazi and
Shirazi-Adl, 2009). With recent advances in science and evidences in literatures, it is
well established that excessive mechanical stress is known to initiate cartilage
destruction as seen in OA. On the other hand moderate compression and load regimes
may increase number of chondrocytes. This is required for production and
maintenance of ECM components (G.E. Nugent-Derfus, 2006).

To successfully simulate active motion of a knee joint, a custom built apparatus was
developed (Figure 1). The preliminary design of this device was initiated by
supervisory team in 2010 and rebuild was initiated in 2012 when the study began to
propose a functional dual axis construct simulator capable of performing concurrent
tasks in a predefined timeframe.
This experimental device is fully controlled by a multi-threaded software designed
and implemented as a Load Cell Measurement Pilot (LCM Pilot).

	
Figure 1 – Dual axis simulator to simulate active motion of knee joint.

LCM Pilot at its first stable release is a console based desktop application that is both
automated and interactive. To initiate an experiment, LCM Pilot will collect author
name and experiment settings. To configure an experiment following information will
be collected as experiment setting from user:

• Number of sessions
• Load cycle in each session
• Load unit (in grams)
• Shear depth
• Resting period (in hours)
• Media cycle in a specified minute(s) interval

21	
	

A brief description about the setting is provided below. Copy of source code is also
available in appendix section, Apparatus code-base.

Experiment Settings

Experimental evidences suggest that the biosynthetic activity of CHs is regulated by
the mechanical environment and it is time dependent (Wu et al., 1999). It is also
reported that repetitive loading of AC at physiological levels of stress (1 MPa) is only
harmful to CH in superficial zone and dependent on characteristics of load (static or
cyclic) and duration of applied load (1-72h) (Lucchinetti et al., 2002).

To facilitate a mechanical environment for CHs under study, an experiment can be
configured to run in number of sessions. In a multi-session setup, each session is
isolated by a resting period defined in hours. The sessions also share load unit, load
cycle and shear depth. This system is ideal to run experiments that can last for month.
The term isolated sessions is used as strain data collected from each session are
automatically uploaded to a remote location for online data chart plotting (Figure 2).

Figure 2 – Online displacement against strain data analysis for a multi-session experiments on wet/dry sponge

The result of each experiment will be stored remotely and the author can inspect the
results by author name and experiment date. The system can save the data in CSV
format or upload the data onto a remote server to visualise the data. This feature can
be explored in page 43 in Appendix section. The format that the data will be available
to a third party server will be in JSON format. This can be used to demonstrate strain
changes during cyclic load in each session. This service can be extended and made
available to other universities for collaboration and remote run of experimental
studies and will also help to collect additional data for this study.

Managed Multi-threading

To make sure that each session runs smoothly with the provided setting, sequence of
events must take place in specific order. The most popular mechanism for this is to
implement concurrent software with threads. A threaded facility in a multi-threaded
computer environment allows implementation of LCM Pilot software with multiple
simultaneous points of execution, synchronising through shared memory (Birrell,
2003).

22	
	

Multi-threading comes with set of challenges, to reduce complexity one can queue all
tasks to be executed by thread pool threads. However, this study needs to address a
rather more complicated situation where multiple threads require coordinated work.
The final solution should be able to handle threads that block. This is to address the
deadlocks and race conditions.

A deadlock happens when two threads tries to lock a resource that has already been
locked by another. In this case none of the two threads can make any progress.
Microsoft recommends use of time-outs to help detect deadlocks, however this
introduces problems in an application that should run series of task without human
intervention. In this case, flags are used to check the state of resources and only will
obtain lock based on desired state of resources. At each cycle of an event such as
winding a vertical motor or winding back a vertical motor the state of vertical motor
and other horizontal motor is closely monitored.

Once lock is obtained, and enters a monitor the task gets executed and upon
completion of the task monitor sends a pulse to notify all waiting threads of a change
in the object state. This ensures a coordinated work of threads.
Another issue that must be tackled is the race conditions. A race condition can occur
when the result of an application depends on which one or more threads reaches a
section of code first. In our case this happens when the pumping task gets initiated in
a timer thread. Given that this task should only take place at the end of each cycle and
at an interval configured by the researcher, it is crucially important to only allow the
task to take place when all other resources are at resting period and ensure that the
samples under test are kept in living condition. Microsoft recommends a technique
called synchronising data for multithreading. But race conditions can also occur when
activities of multiple threads are synchronised. To overcome this, we have put the
media pump task in a timer thread, this task will only take place if the state of other
resources is at resting.

Cyclic Load

In a single load cycle, the perpendicular or axial force is applied during indentation,
while the load riches its maximum unit the shearing force is applied to meet a
predefined shear depth. Only then, in turn the axial and shear forces will be released.
During each experiment, it is important to keep the cells viability intact, therefore a
mechanism is designed and controlled by LCMPilot to provide media feed during
resting period between each session. A two-way flow media pump system is custom
built.
Two micro range of peristaltic pumps (model 100.005.012.030/4) with 4 rollers were
utilised to control the media flow in and out of petri dish (Figure 4). The 12v DC
powered motors have a flow rate of 1 ml per minute and require silicon tube for
optimum performance. One end of tube connects to the media source and the other
end is free. This isolation helps the liquid in the tube to remain sterile (M Y Jaffrin,
1971). These motors are controlled by LCMPilot via two 5V Single Pole DIL Reed
Relays (Figure	3).

23	
	

While calibrating the pump, to reach the desired flow the tube must be filled with the
required media. That means the liquid must fill the entire tube and reach the free end.
Later the free ends of the two tubes will be attached to dedicated micro pipelines that
control the media flow in the dish.

	
Figure 4 – Peristaltic pumps, dc powered with 4 rollers

The exact turn of events in each cycle is highlighted in an activity diagram (Figure 5)

Figure 5 - LCM Pilot Activity diagram, a multi-threaded approach to control a custom build apparatus to mimic

the in vivo loading regime of Articular Cartilage.

Figure	3	-	5v	Single	Pole	DIL	
Reed	Relay	

24	
	

Unfortunately use of threads introduces various problems such as all tasks will
compete for available resource (Lewis, 1995). In the LCMPilot setup all tasks must
take place in specific order. We have used a Lock, Monitor, wait, Pulse and
conventional Flag technique in Microsoft .Net Framework to ensure that execution of
tasks are kept in order. The flag is a Boolean object that evaluates the state of other
task in a Lock statement.

Lock is a primitive tool that offers mutual exclusion (also known as critical section),
specifying for a particular region of code that only one thread can execute at any time.
The monitor class implements wait and pulse methods to control the flow of events in
a threaded application (Birrell, 2003). With the help of this technique we have
managed to ensure that the media pump will only work when both axial and shearing
forces are relieved and that shearing stress is only applied when the axial loading
meets the specified load unit defined in an experiment. Moreover it also ensures that
defined resting periods (in hours) and media pumps (in minutes) take effect with a
good degree of accuracy.

To better understand how these tasks are controlled by LCMPilot, schematics of the
custom design testing apparatus are provided in Figure	6 and Figure	7. Important
components are numbered and further description will be provided accordingly.

	
Figure	7	-	Schematic	of	the	custom	designed	apparatus

Figure	6	-	second	component	of	custom	build	apparatus,	
required	for	shearing	stress

25	
	

Component 1 and 4.4

There are two Hybrid 5v stepping motors that are in charge of perpendicular and
horizontal movement. There are three types of stepping motors, variable reluctant,
permanent magnet and hybrid. The developed LCM machine utilises hybrid stepping
motors. These stepping motors are pulsed through a PCI 230 multi-functional analog
and digital input/output amplicon board. The sequence and speed of applied pulses is
directly related to motors’ shaft rotation (direction and speed).
LCMPilot uses Amplicon component and micro motion controllers to change
direction or speed.
This is achieved by sending TTL signals through analog channels in the PCI board.
Exact channel numbers are highlighted in the code-base section in appendix.

Component 2

A strain gauge load cell LQB 630 (Thin Film Load Cell) with load range up to 50g is
used to measure the applied axial force (Figure	8). LCMPilot requires
constant feedback from this component. A load cell is a transducer that is used to
create electrical signal that its magnitude is directly proportional to the force being
applied (Gupta, 2012). In another word the mass is measured by converting the
measured quantity into an electrical output and vice-versa. There are number of load
cells such as hydraulic, pneumatic and strain gauge. The strain gauge load cell is
utilised to measure the strain feedback in the apparatus.

	
	 	 Figure	8	-	Strain	Gauge	Load	Cell	

One end of this load cell is secured to a raised base and the other end is secured onto
the ACME Screw perpendicular to the petri dish. The feedback is analysed to measure
resistance response and also ensure that load unit is accurately applied.

26	
	

Signal Amplification

The output of strain gauge is relatively small. According to the manufacturer of the
strain gauge used in the apparatus the output is 1mv/V (1mV of output per volt
excitation voltage). With the 10V excitation voltage the output signal will be 10mV.
Therefore a signal amplifier is used to boost the signal level to increase measurement
resolution and improve signal to noise ratio. The strain gauge amplifier is a
Mantracourt SGA/D signal conditioner with gains up to 30.30mV. This amplifier has
a dedicated switch to set variable gain in experiments.
It is very unlikely that the gauge will output exactly zero volts when no strain is
applied. This is also referred to as initial offset voltage. There are few ways that a
system can handle this initial offset voltage. The most common techniques
recommended by manufacturers are software compensation, offset-nulling circuit,
buffered offset-nulling and shunt calibration. SGA/D offers Zero Offset switch that
can be used to compensate for the transducer zero error (the noise ratio).

Component 3

Physical safety button to halt the system in case the motor angular displacement cause
the indentor to penetrate the sample in the petri dish and go through the dish as well.
There is a software halt mechanism in place, but may malfunction at some point.
Hence the need for a physical reset button in unattended experiments.

Component 4

Secures the petri dish mounted on and also applies shear stress during each cycle.

Component 4.1

The plane ended indentor with possibility to mount indenters of different cross
sections such as round, square or rectangular shapes.

Component 4.2

The two media tubes are designed to refresh the media content in the petri dish. 2ml
of media needs to be delivered during media replacement time in each session.
Component 4.3

The petri dish, with 5 ml working volume.

27	
	

4. Testing

In this section the test strategy implementation is discussed as a proactive approach
that helped to find and fix the defects before the final build. Throughout this process
the functional behaviour of each requirement was tested using the black box software
testing method. This is a method that requires no knowledge of the internal structure
of LCMPilot and its internal structure, design and implementation.

Pump Calibration
	
Media pumps were primed for testing and timing adjustments in the software.
The tubes that are connecting the media source to petri dish were disconnected to be
prefilled with water. Distilled water was injected from one end of tube until filled the
entire tube. This was repeated for second tube, as two tubes are required to control the
media flow in and out of petri dish.

Disconnected tubes were reconnected and pump motors were energised in turn to
assess the flow rate in each tube. Average flow rate was assessed at 0.8ml per minute
which is closely similar to manufacturer specification. On average it takes 5 minutes
to deliver 4/ml media from source to petri dish and 5 minutes to take 3.65ml to draw
media out of petri dish. Petri dish overall volume is 5ml and weights 1.51g.

Soft Testing

In soft testing stage, the LCMPilot software and DACS hardware were tested against
series of experiments to evaluate software functionality and to assess the accuracy of
tasks execution. Further the tests revealed several hardware faults; as a result, two
hardware components required replacement.

In an isolated pump calibration session, in series of setup configurations to prime the
pump, the two relay motors controlling the pump were malfunctioning and a physical
tap on relays was required to energise them. In a circuit current investigation it
revealed that the two relays were drawing too much current from the PCI board (10V
from a 5V base output). Therefore the malfunctioned relays were replaced by a new
pair as mentioned above.
The second component that needed to be changed was the strain gauge with load
range up to 100g. The strain gauge was functioning during soft testing period in
experiments where a wet/dry sponge were used as the load bearing material. During
these testing sessions, overall functionality of DACS and pumping mechanism was
tested under variable loads up to 45g loading regimes. Collected results during testing
or chart plotting in figures are based on this setup.

28	
	

This is a considerable load (45g) when it comes to the culture system that was
previously discussed and will damage the gel. In first stage of hard testing, the first
few cycles fractured the several plate of agarose gels that was casted for series of
experiments. This insensitivity to load resistance was the result of strain gauge
malfunction. In an isolated calibration session the strain gauge signals were examined.
In conclusion the strain gauge had to be replaced by a new model with load range up
to 50g.

Hard Testing

A hard testing plan was organised to test the apparatus functionality in vitro. Artificial
matrix systems such as agarose gel was used as the matrix properties are similar to
those of cell (Freeman et al., 1994, Knight et al., 1998).

Several gels with different consistency were prepared for testing.
0.4 grams of agarose was mixed with 40ml distilled water used as buffer and placed
in microwave and heat (one minute interval) until agarose was dissolved and boiling.
While the mix was cold enough to handle but not set, it was poured into the petri dish
with 5 mil capacity. In about 10 minutes the agarose harden and it changed colour
from clear to slightly opaque. This has produced ~1% gel consistency. This is towards
a quite hard consistency we needed as a sample. Other gels where casted with agarose
to water ratio of 0.06g agarose/50ml water and 0.006g agarose to 60ml water.

These gels were stored in fridge until needed for duration of testing.

The first series of testing was conducted on agarose gel with different consistency
(from hard to soft) to test the strain signals. During testing the gels were damaged
considerably. As previously reported, the strain gauge had to be replaced to fix the
issue.

Further tests need to be carried out in vitro, within an incubator. DACS must be
connected to a PC and the PC must be connected to internet at all times. Long cables
are used in developing the connections to facilitate the portability required for storing
the DACS in an incubator.

29	
	

5 Conclusion

The major focus of this study so far was to design and develop the custom built
apparatus and the multi-threaded LCM Pilot software. In addition extensive literature
review was required to understand the bio-mechanical concepts of this study. This
would be followed through further with initial molecular biology and cell culture
training. Further literature review is required to better gain knowledge about internal
bio-mechanism of cartilage matrix. Also further studies are required to learn about gel
casting techniques, maintenance and its storage. Lab training will need to take place
to conduct live and hard testing.
The training will need to be provided by supervisory team to gain skills and
knowledge about various techniques required to culture and run experiments to study
chondrocytes.

There are standard series of testing and analytical techniques that can be performed to
compare and study results that will be produced in the experiments. Some of which
can be named as follow: Biomechanical creep curve testing, paravital staining used
for microscopic assessment of chondrocytes viability (Hurtig et al., 1998, Clements et
al., 2001), histological analysis, and gross morphological analysis.
As this is a multi-disciplinary study a combined knowledge of both computer and life
science are crucial. The development of the DACS and its multi-threaded application
plays important factor in this experimental study of loaded articular cartilage in
cellular level. Series of in vitro experiments would be planned to work on the effect of
fluid movement within the cartilage matrix and also the shape of the intra-articular
contact area within joints and its effect on joint health.

It is important to note that studies in existing literature as highlighted in introduction
are subject to assumptions made regarding the constitutive behaviour, geometry,
specimen type/maturity, loading regime and in vitro conditions of the conducted
experiments. Idealising problems has previously helped scientists to present
modelling techniques for more linear problems.

30	
	

5.1 Future Work
	
Future work will involve learning about gel casting, staining techniques, maintenance
and storage. Different staining techniques and microscopic assessments will be used
to assess chondrocyte viability under study.

There are number of standard statistical analysis, and several techniques would be
used to study and evaluate the experiments’ results. Results will be presented as mean
standard error of the human (SEM). Variation in cell death with zone dependency will
be examined using one-way analysis of variance (ANOVA). Results can also be
analysed using Tukey’s multiple comparison test, as well as F-test and paired or
unpaired t-test. Significance will be analysed at p < 0.05. These statistical analysis can
be performed with Matlab, Microsoft Excel or Graphpad Prism.

As part of experiments development, C-20/A4 cells will be cultured in type I collagen
gel and studied under compression with interchangeable indentor in a custom built
apparatus called DACS. The culture system will be studied under dynamic load first,
followed by dual axis loading in vitro.

Future works beyond this research could also involve 3 dimensional finite element
modelling of bio-mechanical systems and evaluation of existing techniques to propose
a hybrid approach on modelling the bio-mechanical behaviour of articular cartilage in
cellular level. This study could be extended to develop and work on type II collagen
gel culture system for the culture of immortalised and primary chondrocytes. A
comparison study could also be conducted in the use of different type of chondrocytes
cell lines such as C-28/I2, T/C-28a2 and T/C28a4 cell lines.

31	
	

6 Appendix

6.1 Apparatus Code-Base
	
	
The	main	program	file.	This	file	will	be	executed	first.	
Program.cs	
using System;
using System.ComponentModel;
using System.Data;
using System.Collections;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using LCMConsole.Entities;
using LCMConsole.Utilities;
using System.Runtime.InteropServices;
using System.Runtime.CompilerServices;
using Amplicon.AmpDIO;
using System.IO;

namespace LCMConsole
{
 public class Program
 {
 static void Main(string[] args)
 {

 int result = 0; // Result initialized to say
there is no error
 // sessions cycles
 int sessionCycles = 0;
 // session load cycles
 int sessionLoadCycles = 0;
 //session sleeping period
 int sessionSleepingPeriodHr = 0;
 // media pump cycle
 int mediaPumpCycleMin = 0;
 //required load
 double requiredLoad = 0.0;
 //sheer depth
 int sheerDepth = 0;

 //register board

32	
	

 RegisterCard registerBoardObj = new
RegisterCard();
 registerBoardObj.registerMyBoard();

 Console.WriteLine("Enter number of sessions:");
 int.TryParse(Console.ReadLine(), out
sessionCycles);
 //load cycle per session
 Console.WriteLine("Enter number of sessions Load
Cycles:");
 int.TryParse(Console.ReadLine(), out
sessionLoadCycles);
 //required load
 Console.WriteLine("Enter the required load:");
 double.TryParse(Console.ReadLine(), out
requiredLoad);
 //sheer depth
 Console.WriteLine("Enter Sheer Depth:");
 int.TryParse(Console.ReadLine(), out sheerDepth);
 //init the session resting period
 Console.WriteLine("Enter Session Resting Period
(in hours):");
 int.TryParse(Console.ReadLine(), out
sessionSleepingPeriodHr);

 //init the lcm motor
 Console.WriteLine("Initialising the LCM Motors
...");
 LCMMotor lcmMotor = new LCMMotor(sessionCycles,
sessionLoadCycles);
 lcmMotor.RequiredLoad = requiredLoad;
 lcmMotor.SheerDepth = sheerDepth;
 lcmMotor.RegisterBoardObj = registerBoardObj;
 lcmMotor.SessionSleepHr = sessionSleepingPeriodHr;

 //init the media pump cycle
 Console.WriteLine("Enter Media Pump cycle (every X
minutes):");
 int.TryParse(Console.ReadLine(), out
mediaPumpCycleMin);
 //Media pump cycle in min
 lcmMotor.PumpCycleMin = mediaPumpCycleMin;

 //get the author name
 Console.WriteLine("Enter the author name:");
 lcmMotor.AuhtorName = Console.ReadLine();

 //get the Meterdata
 lcmMotor.MeterData = registerBoardObj.MeterData;

33	
	

 //thread timer delegate to call the analogue task
 System.Threading.TimerCallback
AnalogueTimerDelegate = new
System.Threading.TimerCallback(lcmMotor.getAnalogueTask);

 System.Threading.Timer analogueTimerItem = new
System.Threading.Timer(AnalogueTimerDelegate, lcmMotor, 0,
250);

 lcmMotor.GetAnalogueReference = analogueTimerItem;

 //start LCM motor consumer
 Thread motorConsumer = new Thread(new
ThreadStart(lcmMotor.threadRun));

 long pumpFirstTriggerTime =
(long)lcmMotor.pumpIntervalMili();
 long pumpTriggerTimeInterval =
(long)lcmMotor.pumpIntervalMili();

 //thread timer delegate to call the pump task
 System.Threading.TimerCallback TimerDelegate = new
System.Threading.TimerCallback(lcmMotor.pumpTimerTask);

 // Timer calls the media pump task.
 // the timer starts running as soon as the
instance is created.
 System.Threading.Timer TimerItem = new
System.Threading.Timer(TimerDelegate, lcmMotor,
pumpFirstTriggerTime, pumpTriggerTimeInterval);

 lcmMotor.PumpTimerReference = TimerItem;

 //start the thrads and catch exceptions
 try
 {
 motorConsumer.Start();
 //Join threads with no timeout
 // Run until done.
 motorConsumer.Join();
 // threads producer and consumer have finished
at this point.
 }
 catch (ThreadStateException e)

34	
	

 {
 Console.WriteLine(e); // Display text of
exception
 result = 1; // Result says there
was an error
 }
 catch (ThreadInterruptedException e)
 {
 Console.WriteLine(e); // This exception means
that the thread
 // was interrupted during a Wait
 result = 1; // Result says there
was an error
 }
 // Even though Main returns void, this provides a
return code to
 // the parent process.
 Environment.ExitCode = result;
 }

 }
}
Control motors motions, media flow and sequence of events/tasks.
LCMMotor.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using LCMConsole.Utilities;
using LCMConsole.Entities;
using Amplicon.AmpDIO;
using System.IO;
using System.Text;
using System.Data;

namespace LCMConsole.Entities
{
 class LCMMotor
 {
 //Stepper motors related properties and methods
 private bool isVertMotorRunning = false;

 public bool IsVertMotorRunning
 {
 get { return isVertMotorRunning; }

35	
	

 set { isVertMotorRunning = value; }
 }
 private bool isHorMotorRunning = false;

 public bool IsHorMotorRunning
 {
 get { return isHorMotorRunning; }
 set { isHorMotorRunning = value; }
 }

 //In calibrated position state is true
 private bool vertMotorState = true;

 public bool VertMotorState
 {
 get { return vertMotorState; }
 set { vertMotorState = value; }
 }

 //In calibrated position state is true
 private bool horMotorState = true;

 public bool HorMotorState
 {
 get { return horMotorState; }
 set { horMotorState = value; }
 }

 private int loadCell = 0;

 public int LoadCell
 {
 get { return loadCell; }
 set { loadCell = value; }
 }

 private int loadCycles = 0;

 public int LoadCycles
 {
 get { return loadCycles; }
 set { loadCycles = value; }
 }

 private bool stepperMotorSwitched = false;

 public bool StepperMotorSwitched
 {
 get { return stepperMotorSwitched; }

36	
	

 set { stepperMotorSwitched = value; }
 }

 // Session related properties and methods
 private int sessionCycles = 0;

 public int SessionCycles
 {
 get { return sessionCycles; }
 set { sessionCycles = value; }
 }

 private bool sessionState = true;

 public bool SessionState
 {
 get { return sessionState; }
 set { sessionState = value; }
 }

 private double sessionSleepHr;

 public double SessionSleepHr
 {
 get { return sessionSleepHr; }
 set { sessionSleepHr = value; }
 }

 private TimeSpan sessionSleepMili;

 public TimeSpan SessionSleepMili
 {
 get { return sessionSleepMili; }
 set { sessionSleepMili = value; }
 }

 public LCMMotor(int sessionCycles = 0, int
sessionLoadCycle = 0)
 {
 SessionCycles = sessionCycles;
 LoadCycles = sessionLoadCycle;
 }

 //Media pump related properties and methods

 //Media pump is not running and not in use, so
following properties are set to false
 private bool isPumpRunning = false;
 private bool pumpState = false;

37	
	

 public bool PumpState
 {
 get { return pumpState; }
 set { pumpState = value; }
 }

 public bool IsPumpRunning
 {
 get { return isPumpRunning; }
 set { isPumpRunning = value; }
 }
 private double pumpCycleMin = 0;

 public double PumpCycleMin
 {
 get { return pumpCycleMin; }
 set { pumpCycleMin = value; }
 }

 private System.Threading.Timer pumpTimerReference;

 public System.Threading.Timer PumpTimerReference
 {
 get { return pumpTimerReference; }
 set { pumpTimerReference = value; }
 }

 private System.Threading.Timer getAnalogueReference;

 public System.Threading.Timer GetAnalogueReference
 {
 get { return getAnalogueReference; }
 set { getAnalogueReference = value; }
 }

 //Get current voltage, load and MeterData
 private double meterData;

 public double MeterData
 {
 get { return meterData; }
 set { meterData = value; }
 }

 private double currentLoadValue = 0.0;

 double requiredLoad;

38	
	

 public double RequiredLoad
 {
 get
 {
 //convert the load to map the calibration
 //so this means 0.64 is 100% percent
(normalised)
 return requiredLoad / 156.0;
 }
 set { requiredLoad = value; }
 }

 //sheer depth in unites
 private int sheerDepth = 0;

 public int SheerDepth
 {
 get { return sheerDepth; }
 set { sheerDepth = value; }
 }

 //current sheer depth
 private int currentSheerDepth = 0;

 public int CurrentSheerDepth
 {
 get { return currentSheerDepth; }
 set { currentSheerDepth = value; }
 }

 private RegisterCard registerBoardObj;

 internal RegisterCard RegisterBoardObj
 {
 get { return registerBoardObj; }
 set { registerBoardObj = value; }
 }

 //get/set author name
 private string auhtorName;
 public string AuhtorName
 {
 get { return auhtorName; }
 set { auhtorName = value; }
 }

 //act as producer

39	
	

 public void runVertMotor(int vcounter)
 {
 lock (this)
 {
 if (StepperMotorSwitched && PumpState)
 {
 Monitor.Wait(this);
 }

 Console.WriteLine("Vert Motor cycle @" +
vcounter);
 //change motor direction, going down
 DIO_TC.DIOsetData(0, 0, 1, 1);

 //need to get the load cell data in here
 //get the load value and apply the calibration
 currentLoadValue =
RegisterBoardObj.CurrentLoadValue;

 while (currentLoadValue < RequiredLoad)//this
is the load cell feedback
 {
 RegisterBoardObj.getAnalogueValue();
 DIO_TC.DIOsetData(0, 0, 0, 1);
 //creates the pulse, adjust the the speed
 Thread.Sleep(100);
 DIO_TC.DIOsetData(0, 0, 0, 0);
 MotorState.VertMotorPos++;
 currentLoadValue =
RegisterBoardObj.CurrentLoadValue;
 //prepare the data array to write into a
csv file
 prepDataArray();
 }

 StepperMotorSwitched = true;
 VertMotorState = false;
 IsVertMotorRunning = true;
 Monitor.PulseAll(this);

 }

 }

 //act as consumer
 public void runHorMotor(int hcounter)
 {
 lock (this)
 {

40	
	

 if (!StepperMotorSwitched && PumpState)
 {
 Monitor.Wait(this);
 }

 Console.WriteLine("Horiz Motor cycle @" +
hcounter);
 //change the motor direction, going in
 DIO_TC.DIOsetData(0, 0, 3, 1);
 CurrentSheerDepth = 0;
 while (CurrentSheerDepth < SheerDepth)
 {
 //move the motor to the required shear
depth
 //set channel A2 high - pin 14
 DIO_TC.DIOsetData(0, 0, 2, 1);
 //adjust speed and pulse
 Thread.Sleep(100);
 //set channel A2 low - pin 14
 DIO_TC.DIOsetData(0, 0, 2, 0);
 CurrentSheerDepth++;
 MotorState.HorMotorPos++;
 }

 HorMotorState = false;
 StepperMotorSwitched = false;
 IsHorMotorRunning = true;
 Monitor.PulseAll(this);
 }

 }

 public void windBackVert(int wvcounter)
 {
 lock (this)
 {
 if (!IsVertMotorRunning && PumpState)
 {
 Monitor.Wait(this);
 }

 Console.WriteLine("WindBack Vert Motor @" +
wvcounter);

 //reverse the motor direction
 DIO_TC.DIOsetData(0, 0, 1, 0);
 MotorState.VertMotorGoingUp = true;
 //preserve the original position
 int motorPos = MotorState.VertMotorPos;

41	
	

 while (MotorState.VertMotorPos > 0)
 {
 DIO_TC.DIOsetData(0, 0, 0, 1);
 //adjust speed and pulse
 Thread.Sleep(100);
 DIO_TC.DIOsetData(0, 0, 0, 0);
 MotorState.VertMotorPos--;
 }

 VertMotorState = true;
 IsVertMotorRunning = false;
 Monitor.PulseAll(this);
 }
 }

 public void windBackHor(int whcounter)
 {
 lock (this)
 {
 if (!IsHorMotorRunning && PumpState)
 {
 Monitor.Wait(this);
 }

 Console.WriteLine("WindBack Hor Motor @" +
whcounter);

 //reverse the motor direction
 DIO_TC.DIOsetData(0, 0, 3, 0);
 MotorState.HorMotorGoingOut = true;
 while (MotorState.HorMotorPos > 0)
 {
 //set channel A2 high - pin 14
 DIO_TC.DIOsetData(0, 0, 2, 1);
 //adjust speed and pulse
 Thread.Sleep(100);
 //set channel A2 low - pin 14
 DIO_TC.DIOsetData(0, 0, 2, 0);
 MotorState.HorMotorPos--;
 }

 HorMotorState = true;
 IsHorMotorRunning = false;
 Monitor.PulseAll(this);
 }
 }

 public void runSession(int counter)
 {

42	
	

 lock (this)
 {
 if (!SessionState && PumpState)
 {
 Monitor.Wait(this);
 }

 DateTime now = DateTime.Now;
 Console.WriteLine("**************Session
Started @ " + counter + " @ " + now + "****************");
 SessionState = false;
 Monitor.PulseAll(this);
 }
 }

 public void runMediaPump()
 {

 if (PumpState && !IsVertMotorRunning &&
!IsHorMotorRunning)
 {
 DateTime now = DateTime.Now;
 Console.WriteLine("**************Media pump is
started @ " + now + "****************");
 //pump is running, 1ml per 1min make sure no
other tasks are running
 IsPumpRunning = true;

 //flush the medium
 //first switch on pump A - out - pin 13
 DIO_TC.DIOsetData(0, 0, 4, 1);
 //wait one second
 Thread.Sleep(60000);
 DIO_TC.DIOsetData(0, 0, 4, 0);
 //then switch on pump B - in - pin 12
 DIO_TC.DIOsetData(0, 0, 6, 1);
 //wait for some time
 Thread.Sleep(60000);
 //switch off pump B
 DIO_TC.DIOsetData(0, 0, 6, 0);

 now = DateTime.Now;
 Console.WriteLine("**************Media pump is
stopped @ " + now + "****************");
 IsPumpRunning = false;
 PumpState = false;
 }
 }

43	
	

 public void threadRun()
 {
 for (int counter = 1; counter <= SessionCycles;
counter++)
 {
 runSession(counter);
 for (int htcounter = 1; htcounter <=
LoadCycles; htcounter++)
 {
 runVertMotor(htcounter);
 runHorMotor(htcounter);
 windBackVert(htcounter);
 windBackHor(htcounter);
 //sleeping time between each cycle
 Task.Delay(1000).Wait();
 }

 GetAnalogueReference.Dispose();

 if (counter != SessionCycles)
 {
 sessionSleepingTimer();
 }
 }
 //dispose the pump timer function
 if (!PumpState)
 {
 PumpTimerReference.Dispose();
 }

 //at the end, write to the file and also send the
file to server for charts
 FileWriter fw = new FileWriter("LCM_" +
DateTime.Now.ToString("yyyyMMddHHmm"));
 fw.WriteData(vmotorPos, dataValue,
dataValue.Length);

 //send data to server
 ClientApp ca = new ClientApp();
 ca.sendData(fw.FileName, AuhtorName);

 }

 public void sessionSleepingTimer()
 {
 if (SessionState == false)
 {

44	
	

 Console.WriteLine("************** Session in
sleeping mode, resume in " + SessionSleepHr +
"hrs****************");
 //hour to millisecond
 //SessionSleepMili =
TimeSpan.FromMilliseconds(TimeSpan.FromHours(SessionSleepHr).T
otalMilliseconds);
 SessionSleepMili =
TimeSpan.FromMilliseconds(TimeSpan.FromMinutes(SessionSleepHr)
.TotalMilliseconds);
 Task.Delay(SessionSleepMili).Wait();
 SessionState = true;
 //Monitor.Pulse(this);
 }
 }

 public double pumpIntervalMili()
 {
 return
TimeSpan.FromMinutes(PumpCycleMin).TotalMilliseconds;

 }

 public void pumpTimerTask(object stateobj)
 {
 lock (this)
 {
 if (stateobj is LCMMotor)
 {
 LCMMotor lcmobj = (LCMMotor)stateobj;
 PumpState = true;
 runMediaPump();
 }
 }

 }

 public void getAnalogueTask(object stateobj)
 {
 lock (this)
 {
 if (stateobj is LCMMotor)
 {
 LCMMotor lcmobj = (LCMMotor)stateobj;
 RegisterBoardObj.getAnalogueValue();
 }
 }
 }

45	
	

 #region FileWriter
 double[] dataValue = new double[10000];
 //use an ArrayList here
 public double[] DataValue
 {
 get { return dataValue; }
 set { dataValue = value; }
 }
 //use an ArrayList here
 int[] vmotorPos = new int[10000];

 public int[] VmotorPos
 {
 get { return vmotorPos; }
 set { vmotorPos = value; }s
 }

 int fileWriteCounter = 0;

 public int FileWriteCounter
 {
 get { return fileWriteCounter; }
 set { fileWriteCounter = value; }
 }

 private void prepDataArray()
 {
 //update the file with the voltage/load
 //write the file at the end of the cycle
 //only write to file on depression
 //write vertical position
 if (!MotorState.LoadReached)
 {
 //vmotorPos[fileWriteCounter] =
MotorState.VertMotorPos;
 vmotorPos[fileWriteCounter] =
FileWriteCounter;
 dataValue[fileWriteCounter] =
Calibration.getNewtons(RegisterBoardObj.MeterData);
 FileWriteCounter++;
 }

 }
 #endregion
 }
}
	

46	
	

	
	
	
	
	
	
	
LCMSession.cs Control session, and read/get session state

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace LCMConsole.Entities
{
 class LCMSession
 {
 private bool sessionState = true;

 public bool SessionState
 {
 get { return sessionState; }
 set { sessionState = value; }
 }
 private bool sessionIsSleeping = false;

 public bool SessionIsSleeping
 {
 get { return sessionIsSleeping; }
 set { sessionIsSleeping = value; }
 }
 private int sessionCycles = 0;

 public int SessionCycles
 {
 get { return sessionCycles; }
 set { sessionCycles = value; }
 }
 private int sessionSleepHr = 8;

 public int SessionSleepHr
 {
 get { return sessionSleepHr; }
 set { sessionSleepHr = value; }
 }
 private int sessionLoadCycle = 30;

47	
	

 public int SessionLoadCycle
 {
 get { return sessionLoadCycle; }
 set { sessionLoadCycle = value; }
 }
 private bool sessionIsRunning = false;

 public bool SessionIsRunning
 {
 get { return sessionIsRunning; }
 set { sessionIsRunning = value; }
 }

 private int sessionLoadCycleSleepSec = 0;

 public int SessionLoadCycleSleepSec
 {
 get { return sessionLoadCycleSleepSec; }
 set { sessionLoadCycleSleepSec = value; }
 }

 public LCMSession(int _sessionCycles = 0, int
_sessionLoadCycle = 0)
 {
 SessionCycles = _sessionCycles;
 SessionLoadCycle = _sessionLoadCycle;
 }

 public void runSession(int counter)
 {
 lock (this)
 {
 if (!SessionState)
 {
 Monitor.Wait(this);
 }

 Console.WriteLine("**************Session
Started @" + counter);
 SessionState = false;
 Monitor.Pulse(this);
 }
 }

 public void writeSessionData()
 {

 }

48	
	

 public void writeSessionDataThread()
 {

 }

 public void threadRun()
 {
 for (int counter = 1; counter <= SessionCycles;
counter++)
 {
 runSession(counter);
 }
 }
 }
}

Control flow of media, and task state.
LCMMedia.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace LCMConsole.Entities
{
 class LCMMedia
 {
 private bool isPumpRunning = false;
 private bool pumpState = false;

 public bool PompState
 {
 get { return pumpState; }
 set { pumpState = value; }
 }

 public bool IsPumpRunning
 {
 get { return isPumpRunning; }
 set { isPumpRunning = value; }
 }
 private int pumpCycleMin = 0;

 public int PumpCycleMin
 {
 get { return pumpCycleMin; }

49	
	

 set { pumpCycleMin = value; }
 }

 public void runPump()
 {

 }

 public void ThreadRun()
 {

 }
 }
}
Read and get State of motors at one time
MotorState.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace LCMConsole.Entities
{
 static class MotorState
 {
 static Boolean horzMotorCalibrated = false;

 public static Boolean HorzMotorCalibrated
 {
 get { return MotorState.horzMotorCalibrated; }
 set { MotorState.horzMotorCalibrated = value; }
 }
 static Boolean vertMotorCalibrated = false;

 public static Boolean VertMotorCalibrated
 {
 get { return MotorState.vertMotorCalibrated; }
 set { MotorState.vertMotorCalibrated = value; }
 }
 static Boolean hasCompletedCycle = false;

 public static Boolean HasCompletedCycle
 {
 get { return MotorState.hasCompletedCycle; }
 set { MotorState.hasCompletedCycle = value; }
 }

50	
	

 static Boolean loadReached;

 public static Boolean LoadReached
 {
 get { return MotorState.loadReached; }
 set { MotorState.loadReached = value; }
 }

 static Boolean verMotorEnabled = false;

 public static Boolean VerMotorEnabled
 {
 get { return MotorState.verMotorEnabled; }
 set { MotorState.verMotorEnabled = value; }
 }
 static Boolean horMotorEnabled = false;

 public static Boolean HorMotorEnabled
 {
 get { return MotorState.horMotorEnabled; }
 set { MotorState.horMotorEnabled = value; }
 }
 static int vertMotorPos = 0;

 public static int VertMotorPos
 {
 get { return MotorState.vertMotorPos; }
 set { MotorState.vertMotorPos = value; }
 }
 static int horMotorPos = 0;

 public static int HorMotorPos
 {
 get { return MotorState.horMotorPos; }
 set { MotorState.horMotorPos = value; }
 }
 static Boolean vertMotorStoppedonLoad = false;

 public static Boolean VertMotorStoppedonLoad
 {
 get { return MotorState.vertMotorStoppedonLoad; }
 set { MotorState.vertMotorStoppedonLoad = value; }
 }
 static Boolean vertMotorAtZero = false;

 public static Boolean VertMotorAtZero
 {
 get { return MotorState.vertMotorAtZero; }
 set { MotorState.vertMotorAtZero = value; }

51	
	

 }
 static Boolean horMotorAtZero = false;

 public static Boolean HorMotorAtZero
 {
 get { return MotorState.horMotorAtZero; }
 set { MotorState.horMotorAtZero = value; }
 }
 private static Boolean horMotorGoingOut = false;

 public static Boolean HorMotorGoingOut
 {
 get { return MotorState.horMotorGoingOut; }
 set { MotorState.horMotorGoingOut = value; }
 }
 private static Boolean horMotorGoingIn = false;

 public static Boolean HorMotorGoingIn
 {
 get { return MotorState.horMotorGoingIn; }
 set { MotorState.horMotorGoingIn = value; }
 }
 private static Boolean vertMotorGoingUp = false;

 public static Boolean VertMotorGoingUp
 {
 get { return MotorState.vertMotorGoingUp; }
 set { MotorState.vertMotorGoingUp = value; }
 }
 private static Boolean vertMotorGoingDown = false;

 public static Boolean VertMotorGoingDown
 {
 get { return MotorState.vertMotorGoingDown; }
 set { MotorState.vertMotorGoingDown = value; }
 }
 private static Boolean horzMotorShearedSample;

 public static Boolean HorzMotorShearedSample
 {
 get { return MotorState.horzMotorShearedSample; }
 set { MotorState.horzMotorShearedSample = value; }
 }

 }
}
Load calibration, converting a load cell voltage to a force.
Calibration.cs

52	
	

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Numerics;
using System.Threading.Tasks;

namespace LCMConsole.Utilities
{
 /// <summary>
 /// This class is responsible for converting
 /// the load-cell voltage to a force.
 /// Static class.
 /// </summary>
 public static class Calibration
 {
 static double newtons;
 static double conversionFactor = 0;
 public static double getNewtons(double voltage)
 {
 //reaarange
 conversionFactor = 3.3512 * voltage + 27.714;
 newtons = conversionFactor / 100;
 return newtons;
 }
 }
}
Upload experiment result to a remote location for further analysis.
ClientApp.cs

using System;
using System.ServiceModel.Web;
using System.Runtime.Serialization.Json;
using System.Net;
using System.IO;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace LCMConsole.Utilities
{
 class ClientApp
 {
 //send LCM data to server

 public void sendData(string fileName, string auhtor)
 {

53	
	

 String dir =
Environment.GetFolderPath(Environment.SpecialFolder.MyDocument
s) + "\\GelLoaderData";
 String filePath = dir + "\\" + fileName;

 List<string[]> csv = new List<string[]>();

 var lines = System.IO.File.ReadAllLines(filePath);
 foreach (string line in lines)
 csv.Add(line.Split(','));

 //specifiy the url you want to send data to
 string serverURL = "[YOUR_REMOTE_SERVER_ADDRESS]"
+ auhtor;

 //make request to url and set post properties
 HttpWebRequest request =
(HttpWebRequest)WebRequest.Create(serverURL);
 request.Method = "POST";
 request.ContentType = "application/json;
charset=utf-8";

 try
 {
 //serialize
 DataContractJsonSerializer ser = new
DataContractJsonSerializer(typeof(List<string[]>));
 MemoryStream ms = new MemoryStream();
 ser.WriteObject(ms, csv);
 string lcmData =
Encoding.UTF8.GetString(ms.ToArray());

 StreamWriter writer = new
StreamWriter(request.GetRequestStream());
 writer.Write(lcmData);
 writer.Flush();
 writer.Close();

 HttpWebResponse response =
(HttpWebResponse)request.GetResponse();
 StreamReader streamReader = new
StreamReader(response.GetResponseStream());
 Console.WriteLine("LCM data is uploaded to the
server, response: " + streamReader.ReadToEnd());
 Console.WriteLine("You can review your data
chart at: http://bio-
modeling.com/projects/lcm/?action=plotlcm&author=" + auhtor);

54	
	

 }
 catch (Exception ex)
 {
 Console.WriteLine("Unable to send data: " +
ex.Message);
 }
 }
 }
}
Save experiment result into a CSV file localy.
FileWriter.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Threading.Tasks;

namespace LCMConsole.Utilities
{
 class FileWriter
 {
 private String fileName;

 public String FileName
 {
 get { return fileName; }
 set { fileName = value; }
 }
 private FileStream file;

 public FileStream File
 {
 get { return file; }
 set { file = value; }
 }
 private StreamWriter sw;

 //constructor
 public FileWriter(string _filename)
 {
 FileName = _filename + ".csv";
 //create a directory if it doesn't exist
 String dir =
Environment.GetFolderPath(Environment.SpecialFolder.MyDocument
s) + "\\GelLoaderData";
 if (!Directory.Exists(dir))

55	
	

 {
 //Create it
 Directory.CreateDirectory(dir);

 }
 //ensure that we have uniques files
 if (!System.IO.File.Exists(dir + "/" + FileName))
 {
 using (System.IO.FileStream fs =
System.IO.File.Create(dir + "\\" + FileName))
 {
 String completePath =
System.IO.Path.Combine(dir, FileName);
 fs.Close();
 }

 }
 //the complete file path
 String filePath = dir + "\\" + FileName;
 //open the file
 File = new FileStream(filePath, FileMode.Open,
FileAccess.Write);
 sw = new StreamWriter(File);

 }

 public void WriteData(int[] motorPos, double[] force,
int numDataPoints)
 {
 for (int i = 0; i < numDataPoints; i++)
 {
 if (force[i] > 0.0)
 {
 sw.WriteLine(motorPos[i].ToString() + ","
+ force[i].ToString());
 }
 }
 closeFile();
 }

 public void closeFile()
 {
 sw.Close();
 File.Close();

 }
 }
}

56	
	

Read and write using PCI 230/260 component from Amplicon
RegisterCard.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Amplicon.AmpDIO;

namespace LCMConsole.Utilities
{
 public struct Board_Details_T
 {
 public short model;
 public short baseAddr;
 public short irq;
 public bool isPci;
 public short pciBus;
 public short pciSlot;
 public uint hwVersion;
 public string cardName;
 public string cardDesc;
 }

 class RegisterCard
 {
 private double UniScale = 4095.0 * 16; //
Full scale unipolar
 private double BiScale = 2047.0 * 16; //
Half scale bipolar
 private short G_hTCInt = -1; // Handle
for TC Interrupts
 private short G_IntChip; // Interrupt
event chip offset
 private int G_CurrentChannel = 0; // Record of
Current Channel Selected
 private int G_CurrentPCI230_Range = 3;
 private bool G_Diff = false;
 private short G_SelectedCardHandle = -1; // Handle
for the Card
 private Board_Details_T G_CardDetails; // Details of
card
 private double G_VoltageScale = 1;
 private double loadCellData;
 private double meterData;
 private double currentLoadValue = 0.0;

 public double CurrentLoadValue

57	
	

 {
 get { return currentLoadValue; }
 set { currentLoadValue = value; }
 }
 private DIO_TC.TTCCALLBACK cbProc;
 private Board_Details_T[] P_Boards = new
Board_Details_T[DIO_TC.NUMBER_CARD_SUPPORTED];
 public short hBoard;

 //getters and setters
 public double LoadCellData
 {
 get { return loadCellData; }
 set { loadCellData = value; }
 }
 public double MeterData
 {
 get { return meterData; }
 set { meterData = value; }
 }

 //--

 // GetBoardDetails
 //--

 // Function
 // Fill in Detail Structure with information about
the board
 // Parameters
 // The Handle for the Board
 // Returns
 // Detail structure for the board
 //--

 unsafe public static Board_Details_T
GetBoardDetails(short hBoard)
 {
 Board_Details_T Board;

 Board.model = DIO_TC.GetBoardModel(hBoard);
 if (Board.model < 0)
 {
 Board.baseAddr = 0;
 Board.irq = -1;
 Board.isPci = false;
 Board.pciBus = -1;
 Board.pciSlot = -1;
 Board.hwVersion = 0;

58	
	

 Board.cardName = "error";
 Board.cardDesc = "error";
 }
 else
 {
 Board.baseAddr = DIO_TC.GetBoardBase(hBoard);
 Board.irq = DIO_TC.GetBoardIRQ(hBoard);
 if (DIO_TC.GetBoardPciPosition(hBoard,
&Board.pciBus, &Board.pciSlot) == DIO_TC.OK)
 Board.isPci = true;
 else
 Board.isPci = false;
 DIO_TC.DIO_TC_hardwareVersion(hBoard,
&Board.hwVersion);
 switch (Board.model)
 {
 case DIO_TC.PC212E:
 case DIO_TC.PC214E:
 case DIO_TC.PC215E:
 case DIO_TC.PC218E:
 {
 if (Board.isPci)
 Board.cardName = "PCI" +
(Board.model);
 else
 Board.cardName = "PC" +
(Board.model) + "E";
 }
 break;

 case DIO_TC.PC36AT:
 {
 if (Board.isPci) // It's really a
PCI236!
 Board.cardName = "PCI236";
 else
 Board.cardName = "PC36AT";
 }
 break;

 case DIO_TC.PC263:
 {
 if (Board.isPci)
 Board.cardName = "PCI" +
(Board.model);
 else
 Board.cardName = "PC" +
(Board.model);
 }

59	
	

 break;

 case DIO_TC.PC24E:
 {
 // Could be a PC24E or PC25E
 Board.cardName = "PC24E/PC25E";
 }
 break;

 case DIO_TC.PC27E:
 {
 Board.cardName = "PC" +
(Board.model) + "E";
 }
 break;

 case DIO_TC.PC26AT:
 case DIO_TC.PC30AT:
 {
 Board.cardName = "PC" +
(Board.model) + "AT";
 }
 break;

 case DIO_TC.PCI224:
 case DIO_TC.PCI230:
 case DIO_TC.PCI234:
 case DIO_TC.PCI260:
 {
 Board.cardName = "PCI" +
(Board.model);
 if (Board.hwVersion > 0)
 {
 Board.cardName += "+";
 }
 }
 break;

 default:
 {
 // Unknown card type
 Board.cardName = "Type" +
(Board.model);
 }
 break;
 } // end case

 Board.cardDesc = Board.cardName + " (base=" +
(Board.baseAddr).ToString("X") + "h irq=";

60	
	

 if (Board.irq == DIO_TC.IRQ_NONE)
 Board.cardDesc = Board.cardDesc + "None";
 else
 Board.cardDesc = Board.cardDesc +
(Board.irq);

 if (Board.isPci)
 Board.cardDesc = Board.cardDesc + "
pcibus=" + (Board.pciBus) + " pcislot=" + (Board.pciSlot);

 Board.cardDesc = Board.cardDesc + ")";
 }

 return Board;
 }

 unsafe public Board_Details_T GetBoardDetails()
 {
 return GetBoardDetails(hBoard);
 }

 //--

 // ReportError
 //--

 // Function
 // Displays a Text box with the error description
 // Parameters
 // The Error code
 // Returns
 // None
 //--

 public void ReportError(short code)
 {
 string message;

 switch (code)
 {
 case DIO_TC.OK:
 message = "Error code 0: OK!";
 break;
 case DIO_TC.ERRSUPPORT:
 message = "Error code -1: Board/feature
not supported";
 break;
 case DIO_TC.ERRBASE:

61	
	

 message = "Error Code -2: Address already
registered";
 break;
 case DIO_TC.ERRIRQ:
 message = "Error Code -3: IRQ level
already registered";
 break;
 case DIO_TC.ERRHANDLE:
 message = "Error Code -4: Board/resource
not registered";
 break;
 case DIO_TC.ERRCHAN:
 message = "Error Code -5: Invalid
channel";
 break;
 case DIO_TC.ERRDATA:
 message = "Error Code -6: Invalid data";
 break;
 case DIO_TC.ERRRANGE:
 message = "Error Code -7: Out of range";
 break;
 case DIO_TC.ERRMEMORY:
 message = "Error Code -8: Insufficient
memory";
 break;
 case DIO_TC.ERRBUFFER:
 message = "Error Code -9: Buffer not
registered";
 break;
 case DIO_TC.ERRPC226:
 message = "Error Code = -10: PC226E not
found";
 break;
 default:
 message = "Error Code " + code.ToString()
+ ": Undefined code.";
 break;
 } // end switch
 Console.WriteLine(message, "DIO_TC DLL Error");
 } // end sub

 //--

 // SetBoardList
 //--

 // Function

62	
	

 // Called by the user of the module to set up the
dropdown list of
 // registerable boards before showing the form to
allow a board to be
 // picked.
 // Parameters
 // List of supported card types
 // Returns
 // Mo, moified to return one card or collection
 //--

 public void SetBoardList(params short[] cardtypes)
 {
 int upperbt;
 short no = 0;
 bool boardExist = false;
 short oldResetOnRegister;

 // Call DIO_TC_SetResetOnRegister(0) to stop DLL
resetting hardware
 // on boards found by the following loop.
 // Driver versions prior to v4.40 will reset the
hardware regardless.
 //
 // N.B. Remove these two calls for DLL versions
prior to v4.40.
 oldResetOnRegister =
DIO_TC.DIO_TC_GetResetOnRegister();
 DIO_TC.DIO_TC_SetResetOnRegister(0);

 upperbt = cardtypes.Length;

 hBoard = DIO_TC.registerBoardEx(no);
 if (hBoard >= 0)
 {
 P_Boards[0] = GetBoardDetails(hBoard);
 DIO_TC.FreeBoard(hBoard);
 // Check board type is supported.
 // N.B. some PCI cards share the same model
number as a compatible
 // ISA card, e.g. PC215E could refer to PC215E
or PCI215.
 // This is the correct card slot:
Console.WriteLine("Card types: " + cardtypes(A. Petsa) + "
Card Model: " + P_Boards[0].model);
 if (P_Boards[0].model == cardtypes(A. Petsa))
 {
 // Card type is supported by this program
 //set to true, board found!

63	
	

 boardExist = true;
 }
 }

 // Restore previous 'reset on register' setting.
 // N.B. Remove this call for DLL versions prior to
v4.40.

DIO_TC.DIO_TC_SetResetOnRegister(oldResetOnRegister);

 if (boardExist)
 {
 //register the board
 hBoard =
DIO_TC.registerBoard(P_Boards[0].model, P_Boards[0].baseAddr,
P_Boards[0].irq);

 if (hBoard < 0) // error detected
 ReportError(hBoard);

 //otherwise print the card name we are
registering
 Console.WriteLine("Registered card name: " +
P_Boards[0].cardDesc);
 }
 else
 {
 // No compatible boards available for use.
 Console.WriteLine("NO SUPPORTED CARDS
AVAILABLE! Err300");
 }

 }

 public void registerMyBoard()
 {
 //init the BOARD REGISTER CLASS - BEGINS
 hBoard = DIO_TC.ERRSUPPORT;
 short[] cardtypes = new short[]
 {
 DIO_TC.PC26AT,
 DIO_TC.PC27E,
 DIO_TC.PC30AT,
 DIO_TC.PCI230,
 DIO_TC.PCI260
 };
 SetBoardList(cardtypes);

64	
	

 G_SelectedCardHandle = hBoard; // Make a Local
Copy of the Cards Handle
 G_CardDetails = GetBoardDetails();

 if (G_SelectedCardHandle >= 0)
 {
 switch (G_CardDetails.model)
 {
 case DIO_TC.PCI230:
 case DIO_TC.PCI260:
 {
 if (G_CardDetails.hwVersion > 0)
 {
 // PCI230+ and PCI260+ have
16-bit ADC
 UniScale = 65535.0;
 BiScale = 32767.0;
 }
 // panelPCI230.Visible = true;
 // labelPCI230.Text =
G_CardDetails.cardName + " Settings";
 // radioButtonPCI230_Bi_10.Checked
= true;
 // radioButtonPCI230_SE.Checked =
true;
 G_IntChip = DIO_TC.ADC2;
 } break;
 }

 // For PC27E, put all three timer channel
outputs in the 'high' state by
 // setting them to mode 1. This is in case a
timer output is jumpered to
 // /TIM, as software triggers do not work on
the PC27E if /TIM is low.
 if (G_CardDetails.model == DIO_TC.PC27E)
 {
 DIO_TC.TCsetMode(G_SelectedCardHandle,
DIO_TC.X2, 0, DIO_TC.MODE1);
 DIO_TC.TCsetMode(G_SelectedCardHandle,
DIO_TC.X2, 1, DIO_TC.MODE1);
 DIO_TC.TCsetMode(G_SelectedCardHandle,
DIO_TC.X2, 2, DIO_TC.MODE1);
 }

 // We are triggering conversions by software

DIO_TC.AIOsetADCconvSource(G_SelectedCardHandle, 0,
DIO_TC.CNV_SW);

65	
	

 // Setup user interrupt
 StartInt();
 }
 else
 {
 // No Suitable Cards Found
 Console.WriteLine("No Suitable Cards Found -
Err301");
 }
 //some initialisation for digital I/O
 DIO_TC.DIOsetChanWidth(0, 0, 1);//set channel
width to 1 so have 24 I/O
 DIO_TC.DIOsetMode(0, 0, 0, 0);//set A0 to output

 //int the BOARD REGISTER CLASS - ENDS
 }

 private void StartInt()
 {
 cbProc = new DIO_TC.TTCCALLBACK(AIOProcessEvent);
 G_hTCInt =
DIO_TC.TCsetUserInterruptAIO(G_SelectedCardHandle, cbProc,
(IntPtr)0, G_IntChip, DIO_TC.ISR_READ_ADCS, 0, 1U <<
G_CurrentChannel);
 if (G_hTCInt >= 0)
 {
 // :-) everything seems to be OK so Enable the
Interrupts
 DIO_TC.enableInterrupts(G_SelectedCardHandle);
 }
 }

 private void AIOProcessEvent(short h, IntPtr wParam,
uint Dat)
 {
 double LocalData;

 // scale Data with whatever the Settings for the
Card have been Set to.
 LocalData = ((int)Dat * G_VoltageScale);
 LoadCellData = LocalData;

 //show current voltage and load at start
 MeterData = LocalData;
 currentLoadValue =
Calibration.getNewtons(MeterData);

66	
	

 //Console.WriteLine("Voltage: " +
String.Format("{0:0.00}", MeterData));
 //Console.WriteLine("Current Load: " +
String.Format("{0:0.00}", currentLoadValue));
 }

 public void getAnalogueValue()
 {
 //this is a copy of the timer tick method
 short Polar;
 double PolarScale;
 double VScale;
 int Sel;
 uint GainBits;
 VScale = 4; // Stop The compiler whinning
 PolarScale = UniScale;
 GainBits = DIO_TC.PCI230_ADC_ALLRANGE20;

 // Set Settings depending on what card we have
 switch (G_CardDetails.model)
 {

 case DIO_TC.PCI230:
 case DIO_TC.PCI260:
 {
 Sel = G_CurrentPCI230_Range;
 if (Sel < 4)
 {
 PolarScale = BiScale;
 Polar = DIO_TC.ALLBIPOLAR;
 }
 else
 {
 PolarScale = UniScale;
 Polar = DIO_TC.ALLUNIPOLAR;
 }

 switch (3)//use this to set scale for
load cell then can refactor
 {
 case 0: { VScale = 1.25; GainBits
= DIO_TC.PCI230_ADC_ALLRANGE2PT5; } break;
 case 1: { VScale = 2.5; GainBits =
DIO_TC.PCI230_ADC_ALLRANGE5; } break;
 case 2: { VScale = 5; GainBits =
DIO_TC.PCI230_ADC_ALLRANGE10; } break;
 case 3: { VScale = 10; GainBits =
DIO_TC.PCI230_ADC_ALLRANGE20; } break;

67	
	

 case 4: { VScale = 2.5; GainBits =
DIO_TC.PCI230_ADC_ALLRANGE2PT5; } break;
 case 5: { VScale = 5; GainBits =
DIO_TC.PCI230_ADC_ALLRANGE5; } break;
 case 6: { VScale = 10; GainBits =
DIO_TC.PCI230_ADC_ALLRANGE10; } break;
 case 7: { VScale = 20; GainBits =
DIO_TC.PCI230_ADC_ALLRANGE20; } break;
 }
 // Sets channel gains in hardware,
&HFFFF is channel mask - all 16 channels changed
 // PCI Cards can set the Gain on the
cards withoiut Jumpers. The ISA cards
 // have to phyically set the Gain with
Jumpers

DIO_TC.AIOsetHWADCchanGain(G_SelectedCardHandle, 0, 0xFFFF,
GainBits);
 } break;
 default:
 {
 VScale = 1;
 Polar = DIO_TC.ALLBIPOLAR;
 } break;
 }

 // Sets polar mode in software and hardware (if
supported)
 DIO_TC.AIOsetAllADCchanMode(G_SelectedCardHandle,
0, Polar);

 // Set VoltageScale for AIOProcessEvent
 G_VoltageScale = (VScale / PolarScale);

 // Multiplexer was set up by the interrupt set-up
 // so start the AtoD
 DIO_TC.AIOstartADCconversion(G_SelectedCardHandle,
0);
 }
 }
}

68	
	

6.2 Conference Abstract

Mohammad Ramezanian, Philip Trwoga, Ian Locke, and Andrew Afoke.

Title: Study of Behavior of Chondrocytes under chronic load that will result in the
repair or destruction of cartilage. 4/12/2014, Faculty of Science & Technology.

Abstract: Interest in the mechanical properties of collagen fibers abundant in
cartilage has been growing. Their complex mechanical properties often exhibit
nonlinear, anisotropic, viscoelastic behavior over finite strains. Human cartilage is a
non-innervated and avascular tissue. It is comprised of the highly-specialised and
fibroblast-like chondrocytes and associated extracellular matrix (ECM). ECM
Components are produced and maintained by the chondrocytes and include type 2
collagen, proteoglycans and non-collagenous proteins. In this study, multi-axis
loading simulation hardware has been developed and will be used to study the
behaviour of chondrocytes under chronic load. This will provide a better
understanding of the ability of chondrocytes to modify the ECM.

References
	

A. PETSA, H. S. C., R.A. KNIGHT, A.N. AFOKE AND I.C. LOCKE 2004.

Establishment and analysis of 3-D collagen gel cultures of C-20/A4
chondrocytes. OARSI, University of Westminster.

AIGNER T, H. M., NEUREITER D, GEBHARD PM, ZEILER G, KIRCHNER T,
MCKENNA L. 2001. Apoptotic cell death is not a widespread phenomenon in
normal aging and osteoarthritis human articular knee cartilage: a study of
proliferation, programmed cell death (apoptosis), and viability of
chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis
Rheum., 44, 1304-12.

AMIN, A. R., ABRAMSON, S.B. 1998. The role of nitric oxide in articular cartilage
breakdown in osteoarthritis. Curr. Opin. Rheumatol., 10, 263-268.

ARCHER, C. M., H ; PITSILLIDES, AA 1994. CELLULAR ASPECTS OF THE
DEVELOPMENT OF DIARTHRODIAL JOINTS AND ARTICULAR-
CARTILAGE Journal Of Anatomy, 184, 447-456.

BI, X., YANG, X., BOSTROM, M.P.G., CAMACHO, N.P. 2006. Fourier transform
infrared imaging spectroscopy investigations in the pathogenesis and repair of
cartilage. Biochimica et Biophysica Acta - Biomembranes, 1758, 934-941.

BIRRELL, A. D. 2003. An introduction to programming with C# threads. Technical
report. Microsoft Corporation.

69	
	

BLANCO, F. J., GUITIAN, R., VÁZQUEZ-MARTUL, E., DE TORO, F. J. AND
GALDO, F 1998. Osteoarthritis chondrocytes die by apoptosis: A possible
pathway for osteoarthritis pathology. Arthritis & Rheumatism, 284–289. doi:
10.1002/1529-0131(199802)41:2<284::AID-ART12>3.0.CO;2-T.

BUCKLEY, M. R., BERGOU, A. J., FOUCHARD, J., BONASSAR, L. J. &
COHEN, I. 2010. High-resolution spatial mapping of shear properties in
cartilage. Journal of Biomechanics, 43, 796-800.

BUCKWALTER JA, H. E., ROSENBERG L, ET AL. 1988. Articular Cartilage:
Composition and Structure.

Injury and Repair of the Musculoskeletal Soft Tissues., 405-425.
BUCKWALTER, J. A., MANKIN, H.J 1998. Articular cartilage: tissue design and

chondrocyte-matrix interactions. Instructional Course Lectures, 47, 477-486.
C.P. NEU, M. L. H., J.H. WALTON 2005. Heterogeneous three-dimensional strain

fields during unconfined cyclic compression in bovine articular cartilage
explants. J. Orthop. Res., 1390–1398.

CHEN, A. C., BAE, W. C., SCHINAGL, R. M., & SAH, R. L. 2001a. Depth-and
strain-dependent mechanical and electromechanical properties of full-
thickness bovine articular cartilage in confined compression. Journal of
biomechanics, 34, 1-12.

CHEN, C.-T., BURTON-WURSTER, N., BORDEN, C., HUEFFER, K., BLOOM, S.
E. & LUST, G. 2001. Chondrocyte necrosis and apoptosis in impact damaged
articular cartilage. Journal of Orthopaedic Research, 19, 703-711.

CHEN, S. S., FALCOVITZ, Y. H., SCHNEIDERMAN, R., MAROUDAS, A., &
SAH, R. L. 2001b. Depth-dependent compressive properties of normal aged
human femoral head articular cartilage: relationship to fixed charge density. .
Osteoarthritis and Cartilage, 9, 561-569.

CLEMENTS, K. M., BEE, Z. C., CROSSINGHAM, G. V., ADAMS, M. A. &
SHARIF, M. 2001. How severe must repetitive loading be to kill chondrocytes
in articular cartilage? Osteoarthritis and Cartilage, 9, 499-507.

DESCHNER J, H. C., PIESCO NP, AGARWAL S. 2003. Signal transduction by
mechanical strain in chondrocytes. . Curr Opin Clin Nutr Metab Care., 6, 289-
293.

DI FEDERICO, E., BADER, D. L. & SHELTON, J. C. 2014. Design and validation
of an in vitro loading system for the combined application of cyclic
compression and shear to 3D chondrocytes-seeded agarose constructs.
Medical Engineering & Physics, 36, 534-540.

F. GUILAK, R. L. S., L.A. SETTON 1997. Physical regulation of cartilage
metabolism. V.C. Mow, W.C. Hayes (Eds.), Basic Orthopaedic Biomechanics,
Lippincott-Raven, Philadelphia 179–207.

FRANK, E. H., JIN, M., LOENING, A. M., LEVENSTON, M. E. & GRODZINSKY,
A. J. 2000. A versatile shear and compression apparatus for mechanical
stimulation of tissue culture explants. Journal of Biomechanics, 33, 1523-
1527.

FREEMAN, P., NATARAJAN, R., KIMURA, J. & ANDRIACCHI, T. 1994.
Chondrocyte cells respond mechanically to compressive loads. Journal of
Orthopaedic Research, 12, 311-320.

FREUTEL, M., SCHMIDT, H., DÜRSELEN, L., IGNATIUS, A. & GALBUSERA,
F. 2014. Finite element modeling of soft tissues: Material models, tissue
interaction and challenges. Clinical Biomechanics, 29, 363-372.

70	
	

G.E. NUGENT-DERFUS, T. T., J.K. O'NEILL, S.B. CAHILL, S. GÖRTZ, T.
PONG, H. INOUE, N.M. ANELOSKI, W.W. WANG, K.I. VEGA, T.J.
KLEIN, N.D. HSIEH-BONASSERA, W.C. BAE, J.D. BURKE, W.D.
BUGBEE, AND R.L. SAH, 2006. Continuous passive motion applied to
whole joints stimulates chondrocyte biosynthesis of PRG4. Osteoarthritis and
Cartilage.

GUILAK, F. & MOW, V. C. 2000. The mechanical environment of the chondrocyte:
a biphasic finite element model of cell–matrix interactions in articular
cartilage. Journal of Biomechanics, 33, 1663-1673.

GUPTA, S. V. 2012. Strain Gauge Load Cells. In Mass Metrology, Springer Berlin
Heidelberg., 89-119.

HALL, A. C., J. P. G. URBAN, AND K. A. GEHL. 1991. The effects of hydrostatic
pressure on matrix synthesis in articular cartilage. Journal of orthopaedic
research 9, 1-10.

HALONEN, K. S., MONONEN, M. E., JURVELIN, J. S., TÖYRÄS, J. &
KORHONEN, R. K. 2013. Importance of depth-wise distribution of collagen
and proteoglycans in articular cartilage—A 3D finite element study of stresses
and strains in human knee joint. Journal of Biomechanics, 46, 1184-1192.

HAN, S. K., FEDERICO, S., GRILLO, A., GIAQUINTA, G. & HERZOG, W. 2007.
The Mechanical Behaviour of Chondrocytes Predicted with a Micro-structural
Model of Articular Cartilage. Biomechanics and Modeling in
Mechanobiology, 6, 139-150.

HELMINEN, H. J. J., J.; KIVIRANTA, I.; PAUKKONEN, K.; SAAMANEN, A-M.;
TAMMI, M. 1987. Joint loading effects on articular cartilage: A historical
review. In: Joint loading. Bristol, England: Wright, 1–46.

HORTON JR, W. E., FENG, L. & ADAMS, C. 1998. Chondrocyte apoptosis in
development, aging and disease. Matrix Biology, 17, 107-115.

HURTIG, M. B., NOVAK, K., MCPHERSON, R., MCFADDEN, S., MCGANN, L.
E., MULDREW, K. E. N. & SCHACHAR, N. S. 1998. Osteochondral Dowel
Transplantation for Repair of Focal Defects in the Knee: An Outcome Study
Using an Ovine Model. Veterinary Surgery, 27, 5-16.

J. MIZRAHI, A. M., Y. LANIR, I. ZIV, T.J. WEBBER 1986. The “instantaneous”
deformation of cartilage: effects of collagen fiber orientation and osmotic
stress. Biorheology, 23, 311–330.

J.S. JURVELIN, M. D. B., E.B. HUNZIKER 2003. Mechanical anisotropy of the
human knee articular cartilage in compression. Proc. Inst. Mech. Eng. H, 215–
219.

J.Z. WU, W. H. 2000. Finite element simulation of location- and time-dependent
mechanical behavior of chondrocytes in unconfined compression tests. Annals
of Biomedical Engineering, 28, 318–330.

JONES, W. R., PING TING-BEALL, H., LEE, G. M., KELLEY, S. S.,
HOCHMUTH, R. M. & GUILAK, F. 1999. Alterations in the Young’s
modulus and volumetric properties of chondrocytes isolated from normal and
osteoarthritic human cartilage. Journal of Biomechanics, 32, 119-127.

JURVELIN, J. S., BUSCHMANN, M. D., & HUNZIKER, E. B. 1997. Optical and
mechanical determination of Poisson's ratio of adult bovine humeral articular
cartilage. . Journal of biomechanics, 30, 235-241.

KÄÄB, M. J., ITO, K., CLARK, J. M. AND NÖTZLI, H. P. 1998. Deformation of
articular cartilage collagen structure under static and cyclic loading. J. Orthop.
Res., 16, 743–751.

71	
	

KNIGHT, M., GHORI, S., LEE, D. & BADER, D. 1998. Measurement of the
deformation of isolated chondrocytes in agarose subjected to cyclic
compression. Medical engineering & physics, 20, 684-688.

KONG, D., TIANSHENG ZHENG, MING ZHANG, DAODE WANG, SHIHAO
DU, XIANG LI, JIAHU FANG, AND XIAOJIAN CAO. 2013. Static
mechanical stress induces apoptosis in rat endplate chondrocytes through
MAPK and mitochondria-dependent caspase activation signaling pathways.
PloS one 7, e69403.

KORHONEN, R. K. & HERZOG, W. 2008. Depth-dependent analysis of the role of
collagen fibrils, fixed charges and fluid in the pericellular matrix of articular
cartilage on chondrocyte mechanics. Journal of Biomechanics, 41, 480-485.

KORHONEN, R. K., LAASANEN, M. S., TÖYRÄS, J., RIEPPO, J., HIRVONEN,
J., HELMINEN, H. J. & JURVELIN, J. S. 2002. Comparison of the
equilibrium response of articular cartilage in unconfined compression,
confined compression and indentation. Journal of Biomechanics, 35, 903-909.

L.P. LI, J. S., M.D. BUSCHMANN, A. SHIRAZI-ADL 1999. Nonlinear analysis of
cartilage in unconfined ramp compression using a fibril reinforced poroelastic
model. Clin. Biomech., 14, 673–682.

LEWIS, B., & BERG, D. J. 1995. hreads primer: a guide to multithreaded
programming. Prentice Hall Press.

LOCKE, I. C., WHITE, O. B., TRWOGA, P. F. & AFOKE, A. N. 2010. 484 THE
EFFECT OF INDENTOR SHAPE ON THE CREEP CURVES OF
COLLAGEN GEL. Osteoarthritis and Cartilage, 18, S217-S218.

LUCCHINETTI, E., ADAMS, C. S., HORTON JR, W. E. & TORZILLI, P. A. 2002.
Cartilage viability after repetitive loading: a preliminary report. Osteoarthritis
and Cartilage, 10, 71-81.

M Y JAFFRIN, A. A. H. S. 1971. Peristaltic Pumping. Annual Review of Fluid
Mechanics, 3, 13-37.

MAROUDAS, A. 1976. Balance between swelling pressure and collagen tension in
normal and degenerate cartilage. Nature, 260, 808–809.

MICHAEL D. BUSCHMANN, Y. A. G., ALAN J. GRODZINSKY, ERNST B.
HUNZIKER 1995. Mechanical compression modulates matrix biosynthesis in
chondrocyte/agarose culture. J Cell Sci, 108, 1497-1508.

MOO, E. K., HAN, S. K., FEDERICO, S., SIBOLE, S. C., JINHA, A., ABU
OSMAN, N. A., PINGGUAN-MURPHY, B. & HERZOG, W. 2014.
Extracellular matrix integrity affects the mechanical behaviour of in-situ
chondrocytes under compression. Journal of Biomechanics, 47, 1004-1013.

N. VERZIJL, J. D., C.B. ZAKEN, O. BRAUN-BENJAMIN, A. MAROUDAS, R.A.
BANK, ET AL., 2002. Crosslinking by advanced glycation end products
increases the stiffness of the collagen network in human articular cartilage – a
possible mechanism through which age is a risk factor for osteoarthritis.
Arthritis Rheum, 46, 114–123.

NAUMANN A, D. J., AWADALLAH A ET AL. 2002. Immunochemical and
mechanical characterization of cartilage subtypes in rabbit. J Histochem
Cytochem, 50, 1049–1058.

NGUYEN, Q. T., WONG, B. L., CHUN, J., YOON, Y. C., TALKE, F. E. & SAH, R.
L. 2010. Macroscopic assessment of cartilage shear: Effects of counter-surface
roughness, synovial fluid lubricant, and compression offset. Journal of
Biomechanics, 43, 1787-1793.

72	
	

O'CONNOR, S. M., STENGER, D. A., SHAFFER, K. M. & MA, W. 2001. Survival
and neurite outgrowth of rat cortical neurons in three-dimensional agarose and
collagen gel matrices. Neuroscience Letters, 304, 189-193.

PARK, S., HUNG, C. T. & ATESHIAN, G. A. 2004. Mechanical response of bovine
articular cartilage under dynamic unconfined compression loading at
physiological stress levels. Osteoarthritis and Cartilage, 12, 65-73.

PARK, S., KRISHNAN, R., NICOLL, S. B. & ATESHIAN, G. A. 2003. Cartilage
interstitial fluid load support in unconfined compression. Journal of
Biomechanics, 36, 1785-1796.

PFEILER, T. W., SUMANASINGHE, R. D. & LOBOA, E. G. 2008. Finite element
modeling of 3D human mesenchymal stem cell-seeded collagen matrices
exposed to tensile strain. Journal of Biomechanics, 41, 2289-2296.

PRINCE, D. E., AND JUSTIN K. GREISBERG. 2015. Nitric oxide-associated
chondrocyte apoptosis in trauma patients after high-energy lower extremity
intra-articular fractures. Journal of Orthopaedics and Traumatology 1-7.

R.A. BANK, M. S., A. MAROUDAS, J. MIZRAHI, J.M. TEKOPPELE 2000. The
increased swelling and instantaneous deformation of osteoarthritic cartilage is
highly correlated with collagen degradation. Arthritis Rheum, 43, 2202–2210.

R.M. SCHINAGL, D. G., A.C. CHEN, R.L. SAH 1997. Depth-dependent confined
compression modulus of full-thickness bovine articular cartilage. J. Orthop.
Res., 499–506.

RAMI, K. & SIMO, S. 2011. Biomechanics and Modeling of Skeletal Soft Tissues.
RAMI K. KORHONEN, M. S. L., JUHA TOYRAS, REIJO LAPPALAINEN,

HEIKKI J. HELMINEN, JUKKA S. JURVELIN 2003. Fibril reinforced
poroelastic model predicts specifically mechanical behavior of normal,
proteoglycan depleted and collagen degraded articular cartilage. J. Biomech.,
36, 1373–1379.

SALTER, R. B. 1989. The Biologic Concept of Continuous Passive Motion of
Synovial Joints: The First 18 Years of Basic Research and Its Clinical
Application. Clinical Orthopaedics and Related Research, 242, 12-25.

SAUERLAND, K., RAISS, R. X. & STEINMEYER, J. 2003. Proteoglycan
metabolism and viability of articular cartilage explants as modulated by the
frequency of intermittent loading. Osteoarthritis and Cartilage, 11, 343-350.

SEEDHOM, B. B. & WALLBRIDGE, N. C. 1985. Walking activities and wear of
prostheses. Annals of the Rheumatic Diseases, 44, 838-843.

SEIFZADEH, A., OGUAMANAM, D. C. D., TRUTIAK, N., HURTIG, M. &
PAPINI, M. 2012. Determination of nonlinear fibre-reinforced biphasic
poroviscoelastic constitutive parameters of articular cartilage using stress
relaxation indentation testing and an optimizing finite element analysis.
Computer Methods and Programs in Biomedicine, 107, 315-326.

SHIRAZI, R. & SHIRAZI-ADL, A. 2009. Computational biomechanics of articular
cartilage of human knee joint: Effect of osteochondral defects. Journal of
Biomechanics, 42, 2458-2465.

SONG J, D. F., LI X, ET AL 2014. Effect of Treadmill Exercise Timing on Repair of
Full-Thickness Defects of Articular Cartilage by Bone-Derived Mesenchymal
Stem Cells: An Experimental Investigation in Rats. Huard J, ed. PLoS ONE. ,
9, e90858. doi:10.1371.

SOPHIA FOX, A. J., BEDI, A., & RODEO, S. A. 2009. The Basic Science of
Articular Cartilage: Structure, Composition, and Function. . Sports Health, 1,
461–468.

73	
	

SUN, L., WANG, X. & KAPLAN, D. L. 2011. A 3D cartilage – Inflammatory cell
culture system for the modeling of human osteoarthritis. Biomaterials, 32,
5581-5589.

TREPPO, S., KOEPP, H., QUAN, E. C., COLE, A. A., KUETTNER, K. E., &
GRODZINSKY, A. J. 2000. Comparison of biomechanical and biochemical
properties of cartilage from human knee and ankle pairs. Journal of
Orthopaedic Research, 18, 739-748.

URBAN, J. P. G. 1994. THE CHONDROCYTE: A CELL UNDER PRESSURE.
British Journal of Rheumatology, 33, 901-908.

V.C. MOW, W. Y. G., F.H. CHEN 2005. Structure and function of articular cartilage
and meniscus. Basic Orthopaedic Biomechanics and Mechano-biology.,
Lippincott Williams & Wilkins, Philadelphia, 720.

W. HERZOG, S. D., E. SUTER, P. MAYZUS, T.R. LEONARD, C. MULLER, ET
AL. 1998. Material and functional properties of articular cartilage and
patellofemoral contact mechanics in an experimental model of osteoarthritis.
J. Biomech., 31, 1137–1145.

W. ZHU, V. C. M., T.J. KOOB, D.R. EYRE 1993. Viscoelastic shear properties of
articular cartilage and the effects of glycosidase treatment. J. Orthop. Res.,
771–781.

WATANABE, H. 2015. Chondroitin Sulfate in Cartilage. In: TANIGUCHI, N.,
ENDO, T., HART, G. W., SEEBERGER, P. H. & WONG, C.-H. (eds.)
Glycoscience: Biology and Medicine. Springer Japan.

WERNIKE, E., LI, Z., ALINI, M. & GRAD, S. 2008. Effect of reduced oxygen
tension and long-term mechanical stimulation on chondrocyte-polymer
constructs. Cell and Tissue Research, 331, 473-483.

WONG, B. L., KIM, S. H. C., ANTONACCI, J. M., MCILWRAITH, C. W. & SAH,
R. L. 2010. Cartilage shear dynamics during tibio-femoral articulation: effect
of acute joint injury and tribosupplementation on synovial fluid lubrication.
Osteoarthritis and Cartilage, 18, 464-471.

WONG, B. L. & SAH, R. L. 2010. Mechanical asymmetry during articulation of
tibial and femoral cartilages: Local and overall compressive and shear
deformation and properties. Journal of Biomechanics, 43, 1689-1695.

WU, J. Z., HERZOG, W. & EPSTEIN, M. 1999. Modelling of location- and time-
dependent deformation of chondrocytes during cartilage loading. Journal of
Biomechanics, 32, 563-572.

YUSOFF, N., ABU OSMAN, N. A. & PINGGUAN-MURPHY, B. 2011. Design and
validation of a bi-axial loading bioreactor for mechanical stimulation of
engineered cartilage. Medical Engineering & Physics, 33, 782-788.

ZHANG, M., ZHENG, Y. P. & MAK, A. F. T. 1997. Estimating the effective
Young's modulus of soft tissues from indentation tests—nonlinear finite
element analysis of effects of friction and large deformation. Medical
Engineering & Physics, 19, 512-517.

	F. N. Ghadially, Fine structure of synovial joints, London, Butterworthand COLtd,
1983.

L. Eichelberger, J. S. Miles and M.Roma, “The histochemical characterization of
articular cartilage of poliomyelitis patients,” Journal of Laboratory and Clinical
Medicine; vol 40, pp. 284-96, 1952.

74	
	

K. S. Kostenszky, E. H. Olah, “Effect of increased hctional demand on the
glucosaminoglycan (mucopolysaccharide) content of the articular cartilage,” Acta
Biologica Academiae Scientiarum Hungaricae. V0123(1), pp. 75-82, 1972.

J. P. Paul, “Force actions transmitted by joints in the human body,” Proceedings of
the Royal Society of London, Series B: Biological Sciences. Vol. 192(1107), pp. 163-
72, 1976.

C. G. Armstrong, A. S. Bahrani and D. L. Gardner, “In vitro measurement of articular
cartilage deformations in the intact human hip joint under load,” Journal of Bone &
Joint Surgery, AmericanVol.61(5),pp.744-55,1979

Guilak, F., et al., The role of biomechanics and inflammation in cartilage injury and
repair. Clinical Orthopaedics and Related Research, 2004(423): p. 17-26.

Visse, R. and H. Nagase, Matrix metalloproteinases and tissue inhibitors of
metalloproteinases - Structure, function, and biochemistry. Circulation Research,
2003. 92(8): p. 827-839.

Goldring, M.B. and S.R. Goldring, Osteoarthritis. Journal of Cellular Physiology,
2007. 213(3): p. 626-634.

Palmer, A.W., et al., Composition-function relationships during IL-1- induced
cartilage degradation and recovery. Osteoarthritis and Cartilage, 2009. 17(8): p. 1029-
1039.

DeLise, A.M., L. Fischer, and R.S. Tuan, Cellular interactions and signaling in
cartilage development. Osteoarthritis and Cartilage, 2000. 8(5): p. 309-334.

Hartmann, C. and C.J. Tabin, Dual roles of Wnt signaling during chondrogenesis in
the chicken limb. Development, 2000. 127(14): p. 3141-3159.

Goldring, M.B., K. Tsuchimochi, and K. Ijiri, The control of chondrogenesis. Journal
of Cellular Biochemistry, 2006. 97(1): p. 33- 44.

Roman-Blas, J.A. and S.A. Jimenez, NF-kappa B as a potential therapeutic target in
osteoarthritis and rheumatoid arthritis. Osteoarthritis and Cartilage, 2006. 14(9): p.
839-848.

Liacini, A., et al., Inhibition of interleukin-1-stimulated MAP kinases, activating
protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors
down-regulates matrix metalloproteinase gene expression in articular chondrocytes.
Matrix Biology, 2002. 21(3): p. 251-262.

Kitano, H., Systems biology: A brief overview. Science, 2002. 295(5560): p. 1662-4.

Boccaletti, S., et al., Complex networks: Structure and dynamics. Physics Reports-
Review Section of Physics Letters, 2006. 424(4-5): p. 175-308.

75	
	

Aggarwal, K., K.H. Lee,	Functional genomics and proteomics asa foundation for
systems biology. Brief Functional Genomic Proteomic, 2003. 2(3): p. 175-84.

Ioannis N. Melas, Aikaterini D. Chairakaki, Alexander Mitsos, Zoe Dailiana,
Christopher G. Provatidis, Leonidas G. Alexopoulos, Modeling signaling pathways in
articular cartilage, 33rd Annual International Conference of the IEEE EMBS Boston,
Massachusetts USA, August 30 - September 3, 2011

