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Abstract   

This thesis is concerned with the measurement of spatial imaging performance and the 

modelling of spatial image quality in digital capturing systems. Spatial imaging performance 

and image quality relate to the objective and subjective reproduction of luminance contrast 

signals by the system, respectively; they are critical to overall perceived image quality.  

The Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) describe the 

signal (contrast) transfer and noise characteristics of a system, respectively, with respect to 

spatial frequency. They are both, strictly speaking, only applicable to linear systems since 

they are founded upon linear system theory. Many contemporary capture systems use 

adaptive image signal processing, such as denoising and sharpening, to optimise output 

image quality. These non-linear processes change their behaviour according to 

characteristics of the input signal (i.e. the scene being captured). This behaviour renders 

system performance “scene-dependent” and difficult to measure accurately. The MTF and 

NPS are traditionally measured from test charts containing suitable predefined signals (e.g. 

edges, sinusoidal exposures, noise or uniform luminance patches). These signals trigger 

adaptive processes at uncharacteristic levels since they are unrepresentative of natural scene 

content. Thus, for systems using adaptive processes, the resultant MTFs and NPSs are not 

representative of performance “in the field” (i.e. capturing real scenes).  

Spatial image quality metrics for capturing systems aim to predict the relationship between 

MTF and NPS measurements and subjective ratings of image quality. They cascade both 

measures with contrast sensitivity functions that describe human visual sensitivity with 

respect to spatial frequency. The most recent metrics designed for adaptive systems use 

MTFs measured using the dead leaves test chart that is more representative of natural scene 

content than the abovementioned test charts. This marks a step toward modelling image 

quality with respect to real scene signals. 
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This thesis presents novel scene-and-process-dependent MTFs (SPD-MTF) and NPSs (SPD-

NPS). They are measured from imaged pictorial scene (or dead leaves target) signals to 

account for system scene-dependency. Further, a number of spatial image quality metrics 

are revised to account for capture system and visual scene-dependency. Their MTF and NPS 

parameters were substituted for SPD-MTFs and SPD-NPSs. Likewise, their standard visual 

functions were substituted for contextual detection (cCSF) or discrimination (cVPF) 

functions. In addition, two novel spatial image quality metrics are presented (the log Noise 

Equivalent Quanta (NEQ) and Visual log NEQ) that implement SPD-MTFs and SPD-NPSs.  

The metrics, SPD-MTFs and SPD-NPSs were validated by analysing measurements from 

simulated image capture pipelines that applied either linear or adaptive image signal 

processing. The SPD-NPS measures displayed little evidence of measurement error, and the 

metrics performed most accurately when they used SPD-NPSs measured from images of 

scenes. The benefit of deriving SPD-MTFs from images of scenes was traded-off, however, 

against measurement bias. Most metrics performed most accurately with SPD-MTFs derived 

from dead leaves signals. Implementing the cCSF or cVPF did not increase metric accuracy.  

The log NEQ and Visual log NEQ metrics proposed in this thesis were highly competitive, 

outperforming metrics of the same genre. They were also more consistent than the IEEE 

P1858 Camera Phone Image Quality (CPIQ) metric when their input parameters were 

modified. The advantages and limitations of all performance measures and metrics were 

discussed, as well as their practical implementation and relevant applications.   
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Chapter 1  Introduction 

Evaluating the objective performance of capturing systems and their subjective image 

quality is necessary to their design, optimisation and comparison. Digital capturing systems 

record information about an input scene (or subject) as digital image files. Their optics form 

a continuous, but distorted image of the scene, from which information is extracted by the 

sensor and electronics discretely. Image signal processing (ISP) is often then applied before 

the digital image is encoded into a suitable storage format. To view this encoded image, it 

must be presented by an output system such as a display or printer. Each component in the 

resultant imaging chain contributes to the characteristics of the output image (Figure 1.1).  

 

Figure 1.1 A typical imaging chain; adapted from [1, p. 345]. ISP refers to image signal processing.   

Quantifying the relationship between the input scene and output image is a common, general 

aim when evaluating imaging system image quality. However, the input scene information 

is usually unavailable for capture systems, meaning output image quality must be quantified 

without reference to it.   

Subjective (or perceived) image quality refers to the visual impression of goodness that an 

image conveys [1, p. 345]. It is broken down into a number of perceptual attributes (or 

dimensions) that are defined in Chapter 2. In this thesis, the term image quality refers 

specifically to the subjective (visual) image quality unless stated otherwise. 

Objective image quality refers to physical measurements of imaging system performance, 

images or image attributes. These measurements provide a practical (and conceptual) means 

to assess and predict the effect of changes to the system [2, p. 1]. Certain measurements can 

be used to characterise systems, components, or processes with respect to a particular 

attribute, expressing their input-to-output characteristics as mathematical functions, or single 

figure variables. These measurements describe the physical properties of the 
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system/component/process that drive its objective performance, and subjective quality, with 

respect to the attribute in question.  

The most useful performance measures correlate with overall perceived image quality or 

attribute strength. These relationships are well described in the prior art and have resulted in 

a number of standardised measurement methods discussed in Section 2.3. However, 

individual performance measures do not predict subjective image quality or attribute strength 

particularly well because the human visual system (HVS) is unaccounted for. 

This thesis focuses on spatial image quality. This relates to the distribution of luminance 

contrast signals across the image, which are core to the perception of form, shape and detail, 

as shown in Figure 1.2(a). Spatial image quality is associated with the attributes of 

resolution, sharpness and noisiness that are primary drivers for the overall subjective image 

quality of contemporary capture systems [3]. The reproduction of chrominance signals 

(Figure 1.2(b)) also contributes significantly to overall subjective image quality but is not 

discussed in this thesis.  

 

Figure 1.2 Luminance (a) and chrominance (b) components of the Flower Garden image (c) [4] in 

the 8-bit digital YCbCr colour space. 

A variety of psychophysical paradigms yield quantitative data from qualitative judgements 

of human observers with respect to subjective image quality, or its attributes [5]. Statistical 

analysis of this data, based on laws of psychophysics, allows it to produce various numerical 

psychometric scales [5]. It is desirable that such scales are expressed in intervals of just-

noticeable differences (JND) for meaningful description of quality levels. However, 

psychophysical experiments are generally slow, expensive, and difficult to carry out 
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accurately. They also do not provide easily a causal breakdown of the contributions of 

different components and processes to the subjective image quality of capture systems.  

Image quality metrics (IQM) are often used in conjunction with psychophysical experiments 

when developing capturing systems. The most suitable metrics originate from imaging and 

vision science. They map system performance measurements to single figure variables that 

aim to correlate with psychophysical ratings of image quality (Figure 1.3). Most IQMs 

implement HVS modelling and account for multiple attributes. Thus, they correlate with 

subjective image quality more accurately than individual performance measures.  

 

Figure 1.3 Diagram summarising the function of capture system image quality metrics (IQM). 

Spatial capture system IQMs generally implement Modulation Transfer Function (MTF) and 

Noise Power Spectrum (NPS) performance measures which characterise system signal 

transfer (relating to resolution and sharpness) and noise, respectively. The MTF and NPS are 

defined in Sections 2.3.2 and 2.3.3, respectively. They are founded upon linear system theory 

[6, pp. 233–269], and are, strictly speaking, only applicable to linear, spatially invariant and 

homogenous systems that comply with Equations A1 to A4. Such systems deliver consistent 

performance regardless of the input signal (Figure 1.4(a)). Spatial capture system IQMs 

cascade visual contrast sensitivity functions (CSF) with these performance measures as 

weighting functions. This accounts for whether the measurements are perceptually relevant.  

 

Figure 1.4 Characteristics of system performance measurements, 𝐹(𝑠), derived from a range of 

pictorial scene (or test chart) input signals (𝑠): a) describes a linear system, b) describes a system 

applying non-linear image signal processing (ISP). 𝐹;(𝑠) is the mean of 𝐹(𝑠<) to 𝐹(𝑠=). 
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The implementation of advanced ISP algorithms has improved capture system image quality 

significantly. Denoising and sharpening are two algorithms frequently applied. The simplest, 

linear denoising filters remove undesirable noise but also detail and edge sharpness that are 

critical to image quality. Conversely, simple linear sharpening algorithms enhance detail and 

sharpness but amplify noise. These denoising and sharpening algorithms cancel each other 

out to some extent when applied together, and image quality is not fully optimised.  

It is more common for contemporary capture systems to apply adaptive (or content-aware) 

denoising and sharpening algorithms. These reduce blurring of the image when denoising, 

and amplification of noise when sharpening, by filtering image signals selectively; this is 

described further in Section 2.2.1. These non-linear algorithms optimise image quality more 

effectively than simple, linear filters and cancel each other to a lesser extent. However, their 

behaviour is both “local-content-dependent” and “scene-dependent” (i.e. it varies according 

to the input signal). Such behaviour is demonstrated in Figures 2.3 and 2.4 and discussed in 

Section 2.2.1. It follows that the spatial imaging performance of any system applying these 

algorithms is also scene-dependent, Figure 1.4(b) [2, p. 198], [7]. It should also be noted that 

the HVS is a highly adaptive system, and visuo-cognitive processes carried out during image 

quality judgement are expected to be scene-dependent as discussed in Section 2.5.  

Spatial capture system IQMs do not account for system scene-dependency [8]. Prior art 

demonstrates they predict image quality relatively accurately for linear systems, but less 

accurately for scene-dependent, non-linear systems and/or processes. Their accuracy is 

limited in the latter case because they are based on performance measurements derived with 

respect to synthetic signals, not scenes (discussed further in Section 1.1). Likewise, they use 

CSFs that describe visual sensitivity to unmasked, synthetic signals, not real scenes, as 

outlined in Section 1.2.   

Figure 1.5 provides an example of such inaccuracies when a leading capture system IQM 

was applied to images of scenes with varying levels of non-linear compression [9, p. 169], 

[10], [11]. The metric correlated well with the quality of individual scene images. But the 

correlations for each scene were separated by gains and offsets, resulting in poor overall 

correlation. These gains and offsets are expected to be due to the scene-dependency of the 

compression algorithm and human spatial visual sensitivity being unaccounted for. 
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Figure 1.5 Subjective image quality averaged over observer vs the Square Root Integral with Noise 

(SQRIn) [12] metric at varying levels of non-linear Joint Photographic Experts Group (JPEG) 

compression. The JPEG quality factor of each image varies from value 100 to where subjective 

quality drops below 10% acceptability. Adapted from [13]; original data from [10].  

This thesis hypothesises, more generally, that the following factors affect the accuracy of 

spatial capture system IQMs: 

1) Signal transfer and noise are characterised inaccurately for scene-dependent, non-

linear capture systems by their MTF and NPS parameters (discussed in Section 1.1). 

2) Scene-dependent aspects of lower-level spatial vision, including visual masking, are 

unaccounted for by their CSF parameters (as described in Section 1.2).  

3) Cognitive factors of quality judgement are unaccounted for by their CSF parameters.  

This thesis revises various capture system IQMs and develops two further, novel IQMs, to 

investigate whether factors 1) and 2) are significant and can be resolved. Factor 3) has been 

investigated by the author [14]; it is discussed in Section 2.5. The new IQMs were validated 

by analysing measurements from simulated camera pipelines. These simulated camera 

operations in a systematic manner with respect to controlled camera and ISP algorithm 

variables. Comparable pipelines are used in the industry when developing capture systems.  

1.1 Imaging Performance Measures and System Non-

Linearity 

The MTF and NPS are measured from capture systems using test charts (or test targets). 

These charts provide a predefined, synthetic, input signal for comparison with the output 

signal of the capture system. Figure 1.6 shows signals from traditional test charts containing 
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sine-waves, edges, noise and uniform luminance patches. According to Figure 1.4(a), each 

test chart should deliver identical measurements for linear systems. However, measurements 

are derived by different methods for each chart, with different levels of measurement error. 

Thus, measurements derived using each chart are not identical in practice.  

 

Figure 1.6 Examples of the types of input signals from test charts traditionally used in Modulation 

Transfer Function (MTF) ((a) to (c)), and Noise Power Spectrum (NPS) measurements (d). 

More importantly, for scene-dependent systems that apply non-linear ISP, deriving the MTF 

and NPS using each of the above test charts delivers different results [2, p. 10], [9, p. 169], 

[11]. This contradicts Fourier theory [15], and is demonstrated for the MTF by the blue and 

grey curves in Figure 1.7 that correspond to a slanted edge signal and sinusoidal signal, 

respectively. Moreover, since each chart is unrepresentative of real scene signals, these 

measurements describe the average real-world performance of scene-dependent systems 

inaccurately (i.e. general performance when capturing real scenes). 

This problem has been noted by prior art. Performance measures [16]–[21] and IQMs [22] 

have since been developed for scene-dependent capturing systems that use the dead leaves 

chart (shown in Figure 2.10(b)); MTFs measured using the dead leaves chart are shown in 

orange in Figure 1.7. This chart replicates certain statistical properties of the “average” 

natural scene (as described in Section 2.3.2), making it more representative than the signals 

in Figure 1.6.   

Deriving measurements with respect to images of real scenes, however, is expected to 

characterise scene-dependent systems more appropriately than measurements from any test 

chart, provided they are precise and unbiased. This is because such measurements would 

account for the effect of real scene signals on non-linear ISP algorithms, thus describing 

performance in real-world image capture scenarios. 
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Figure 1.7 MTF measurements obtained from a simulated capture system after linear and non-

linear processing, from the following test targets: i) ImatestTM ISO 12233 [23] Slanted Edge Spatial 

Frequency Response (E-SFR) test chart [24] using sfrmat3 [25] (blue curves). ii) ImatestTM ISO 

12233 sinusoidal Siemens Star test chart [26] using Image EngineeringTM analysis software [27] 

(grey curves). iii) ImatestTM Spilled Coins (dead leaves) test chart using Burns’ [28], [29] 

implementation of the direct dead leaves MTF [19] (orange curves). Both simulation pipelines are 

described in Section 4.2. The following processes were simulated first: lens blur, Poisson noise at 

a signal-to-noise ratio of 5, mosaicing and demosaicing [30]. The linear pipeline then applied 

Gaussian blurring (denoising), and an unsharp mask (sharpening). The non-linear pipeline applied 

Block Matching and 3D Filtering [31] (denoising) and the Guided Image Filter [32] (sharpening).  

Considering Figure 1.4(b), the following measurements are obtained from a non-linear, 

scene-dependent system if a large number, 𝑛, of precise, unbiased performance 

measurements, 𝐹(𝑠<) to 𝐹(𝑠=), are derived with respect to a set of scene images that are 

representative of commonly captured scenes, 𝑠< to 𝑠=: 

1) 𝐹(𝑠<) in Figure 1.4(b) characterises the performance of the system with respect to a 

specific input scene image, 𝑠<, accounting for system scene-dependency. 
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2) 𝐹;(𝑠) in Figure 1.4(b) characterises the average real-world performance of the system 

with respect to a large number of images of scenes, accounting for system scene-

dependency.  

3) The standard deviation of 𝐹(𝑠<) to 𝐹(𝑠=) in Figure 1.4(b) describes the level of 

scene-dependent variation in the system’s performance (i.e. its scene-dependency).  

This thesis develops scene-and-process-dependent NPS (SPD-NPS) and MTF (SPD-MTF) 

measures that characterise system noise and signal transfer, respectively, according to 1) to 

3). They are validated by analysing measurements from simulated camera pipelines. Further, 

they are implemented in a number of IQMs to investigate whether accounting for imaging 

system scene-dependency improves metric accuracy. 

1.2 Human Visual System (HVS) Modelling and Non-

Linearity 

A wide range of visual models are used in IQMs to describe the function of the HVS. These 

are reviewed in Section 2.5. Capture system IQMs implement CSFs that describe visual 

sensitivity to luminance contrast. The CSFs used traditionally in these IQMs have a band-

pass shape. They model the reciprocal of the contrast threshold required to detect a sine-

wave signal of given spatial frequency on a plain background.  

For many years, it has been debated whether these CSFs describe the contrast transduction 

characteristics of the HVS accurately [33] which are non-linear and locally adaptive. It has 

also been discussed whether it is appropriate to cascade them with system performance 

measures founded upon linear system theory [10], [34]. What is clear, is that when observers 

evaluate the quality of an image, the HVS detects and discriminates complex scene signals 

and artefacts that are, in general, masked by other content [8]. And that this is a different 

visuo-perceptive process to the detection of unmasked, narrow-band sine-wave signals.  

Recent prior art has developed contextual contrast detection (cCSF) [35] and discrimination 

functions (cVPF) derived from images of natural scenes to account for HVS non-linearity 

[8]. Their shape is scene-dependent because they account for the effect of luminance contrast 

masking on visual sensitivity. They are generally low-pass under most viewing conditions, 

decaying in high frequencies due to the optical limitations of the eye. These functions were 
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validated against psychophysical measurements of detection and discrimination of complex 

scene signals. They are expected to describe the visual processes of image quality evaluation 

more suitably than the CSFs used traditionally in capture system IQMs [8]. Their 

implementation in IQMs is investigated in this thesis, with the aim of addressing the 

hypothesised limitations of current visual models. Previous IQMs have not used them. 

1.3 Aims and Overview 

The overarching aim of the project is to investigate whether spatial capture system 

performance can be measured by replacing traditional test charts with images of natural 

scenes, in order to account for the effects of non-linear, content-aware camera processes. 

Further, to examine whether such performance measures and contextual human visual 

models (recently presented in the literature) are more suitable input parameters to spatial 

image quality metrics. 

The objectives of this project are defined below: 

1) To review and categorise spatial IQMs from a capture system development 

perspective. 

2) To examine whether replacing traditional test charts with images of natural scenes 

produces more accurate measurements of signal transfer (MTF) and noise (NPS) of 

capture systems that incorporate non-linear content-aware ISP. 

3) To use revised MTF and NPS measures from 2) and contextual visual models to 

revise existing IQMs, and to develop novel IQMs that relate to spatial image quality. 

4) To validate the IQMs from 3) using images from simulated linear and non-linear 

camera pipelines. 

The overview of this thesis is below: 

Chapter 2 introduces image quality and fidelity, sources of scene-dependency, spatial image 

quality attributes, imaging system performance measures, and spatial visual models.  

Chapter 3 critically reviews different IQM genres and proposes frameworks for novel and 

revised IQMs, suitable for camera evaluations.  
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Chapter 4 proposes and validates three novel NPS measures that characterise noise in 

capturing systems while accounting for capturing system scene-dependency (SPD-NPS 

measures).  

Chapter 5 proposes and validates three novel MTF measures that characterise signal 

(contrast) transfer while accounting for capturing system scene-dependency (SPD-MTF 

measures). 

Chapter 6 evaluates a number of variants of the IQMs defined in Chapter 3. These variants 

use different combinations of the SPD-NPS and SPD-MTF measures, and contextual visual 

models such as the cCSF and the cVPF.   

Chapter 7 presents discussions on the IQM frameworks, SPD-NPS measures, SPD-MTF 

measures, and the novel and revised IQMs, as well as their implementation and application. 

Chapter 8 states the conclusions of the thesis and recommends further work. 

1.4 Original Contributions to Knowledge 

Research from this thesis demonstrated the following original contributions to knowledge: 

• Three novel Scene-and-Process-Dependent Noise Power Spectrum (SPD-NPS) 

measures for characterisation of camera noise, derived either using the dead leaves 

chart or images of natural scenes. 

• Three novel Scene-and-Process-Dependent Modulation Transfer Function (SPD-

MTF) measures that characterise camera signal transfer, using either the dead leaves 

chart, or images of natural scenes. 

• Successful revision and verification of classical spatial IQMs by substituting existing 

MTF and NPS parameters with the newly introduced SPD-NPS and SPD-MTF 

measures, to account for system scene-dependency.  

• Development of novel spatial IQMs designed for scene-dependent capture systems 

(log Noise Equivalent Quanta (log NEQ) and Visual log NEQ). These elegant and 

simple IQMs are proven to compete with state-of-the-art but more complicated 

IQMs. 

• Novel measures for quantification of scene-dependency in camera system signal 

transfer and noise measurements.   
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Chapter 2 Image Quality and System 

Performance 

Background theory on image quality and imaging system performance and their 

multidimensional nature is introduced. Image quality, fidelity and naturalness are 

defined. Causes for scene-dependent variations in imaging system performance and 

perceived image quality are discussed. The image quality attributes and their 

corresponding system performance measures are reviewed, as well as signal-to-

noise-based measures. Human visual system (HVS) models used by relevant image 

quality metrics (IQM) are presented.  

2.1 Defining Image Quality and Fidelity 

Image quality evaluation should be considered as a scene-dependent, multivariate process 

[4] with a number of objective and subjective factors [36]. It is difficult to specify uniquely 

[33], [37]–[39], and no definition has been accepted as universal.  

Engeldrum [5, p. 1] defines image quality as: the integrated set of perceptions of the overall 

degree of excellence of an image. He describes image quality perception as the multivariate 

combination of perceptual attributes, referred to as the “nesses”. They include brightness, 

lightness, sharpness, fineness of detail, textureness, graininess or noisiness, contrastness, 

colourfulness, hueness, chromaness, naturalness and usefulness [5], [40]–[42]. They form 

the basis of our language when describing an image’s overall quality and its attributes. 

Schade [43] was one of the earliest to measure imaging system quality in the modern way. 

He defines image quality as: a subjective judgement made by a mental comparison of an 

external image with image impressions stored and remembered more or less distinctly by 

the observer, who allows for a loss of detail in areas too small to be resolved by the eye. 

This definition can be extended to describe the output image quality of an imaging system 

as a function of the input image signal, the imaging system’s performance, the observer’s 

visual performance, and their preferences regarding the image’s attributes and aesthetics. 

Figure 2.1 gives a simplified breakdown of these factors, where the image signal flows 
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approximately from left to right. Imaging system performance can be separated from the 

other factors, but visual performance and quality consciousness are interlinked [44], [45]. 

 

Figure 2.1 Objective and subjective factors that affect perceived image quality. 

Keelan [46, p. 9] also considers the practicalities of imaging systems development, defining 

image quality as: an impression of merit or excellence, as perceived by an observer neither 

associated with the act of photography, nor closely involved with the subject matter depicted. 

Inexperienced observers often prefer different weightings of the strength of image quality 

attributes, compared to more experienced observers [47]–[49]. The former group is 

preferable, according to Keelan. They are more representative of the general mean of the 

population (i.e. the potential customer base). Nevertheless, they may overlook subtle 

artefacts that are noted by experts in rigorous product reviews on websites such as 

DxOMarkTM [50]. 

Yendrikhovskij [51] defines image quality as: the degree of apparent suitability of the 

reproduced image to satisfy the corresponding task. He elaborates, expressing quality as the 

multivariate combination of an image’s usefulness, fidelity and naturalness, where their 

optimal balance differs with the intended application of the image. Usefulness describes an 

image’s fitness for purpose or the capability of an imaging system to reproduce input scene 

content in a visibly acceptable way [52]. Fidelity is defined as the visual equivalence between 

two images [34], or more specifically as the perceptibility of differences or distortions 

between a test and reference image [33], [36], [53]. The reference image is assumed to be 

ideal, meaning any distortions in the test image reduce fidelity by default [36], regardless of 

their effect on its perceived quality. However, it is the acceptability of these differences that 

is relevant, when assessing the relative levels of quality of two images. This requires the 

quality consciousness (or goodness criteria) of the observer to be accounted for (Figure 2.2). 
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Figure 2.2 Image fidelity and quality evaluation processes with respect to imaging chain distortions 

[1, p. 351]. Adapted from Ford [9, p. 8], and further from [54, p. 34]. 

Naturalness is defined as [55]: the degree of apparent match between the reproduced image 

and the internal references, e.g. memory prototypes. These internal references form part of 

the quality consciousness of the observer and are comparable to the internal references 

consulted during image quality evaluation [13]. However, they are not identical to the latter. 

For example, slight over-enhancement of sharpness or contrast can increase quality but 

decrease naturalness [14]. 

2.2 Scene-Dependency 

Scene-dependency refers to any variation in the performance of an imaging system, the 

perceived quality of its images, or the perceived strength of its attributes, which is dependent 

on input scene content. It has been investigated widely [4], [56]–[60] and adds 

unpredictability to image quality datasets. Scene-dependency with respect to overall 

perceived image quality increases when test images are of higher quality [57].  

It results from scene-dependent variations in:  

1) objective imaging system performance; 

2) visual attention patterns and HVS performance;  

3) observer preference regarding quality attributes and aesthetics [60].  

Sections 2.2.1 to 2.2.3 review 1) to 3) above, respectively.  
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2.2.1 Imaging System Performance 

System performance scene-dependency has long been measured, and compensated for, in 

both analog and digital capturing systems. Certain sources of scene-dependency apply to 

both types of systems and can be reduced by ensuring that images are captured in focus, with 

a wide depth of field, at similar camera-to-subject distances, under consistent illumination 

and without extremes of contrast [60]. While analog (film) capture systems are generally 

stationary and isotropic [6, p. 210], their tone reproduction is often non-linear (refer to 

Appendix A). The latter can be compensated for, however, and system performance 

measures based on linear system theory have been applied successfully to such systems, 

especially after non-linear tone reproduction [61], [62] and micro-chemical effects [61] were 

taken into account.  

Digital systems, however, employ discrete sensor arrays consisting of finite sampling 

apertures, causing non-stationary and non-isotropic behaviour [63] (defined in Appendix A). 

Consequently, the response of the system varies with respect to input signal phase and angle 

[63], [64]. Modulation Transfer Functions (MTF) measured from different test charts vary 

with respect to changes in the orientation of the chart, as well as translation [2, p. 197]. The 

greatest cause of scene-dependency in digital imaging system performance, however, results 

from implementing non-linear content-aware Image Signal Processing (ISP) such as 

demosaicing, denoising, sharpening and compression, which are summarised below. These 

algorithms cause the objective level of image attributes and artefacts to be dependent on 

local image content [4], [60], [65], thus rendering system performance scene-dependent. 

This scene-dependency is compounded when multiple algorithms are applied.  

Demosaicing interpolates between the pixels of the sparse single-channel images created by 

Colour Filter Array (CFA) elements, to produce full-colour images according to an RGB 

additive colour model. Linear demosaicing averages over neighbouring pixels in the spatial 

[30] or frequency [66] domain. Non-linear content-aware demosaicing is generally a minor 

cause of system scene-dependency. Non-linear spatial domain methods [67]–[70] are edge-

aware. They omit or weight neighbouring pixel content before averaging, depending on local 

luminance gradients, to attempt to preserve edges and mitigate noise and colour artefacts. 

Other non-linear methods operate in the wavelet [71] or frequency [72] domain.  
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The role of denoising is to discriminate between image pixel values that are supposed to be 

there (i.e. scene content) and spurious image information (noise) [73]. This task is highly 

challenging, and no denoising algorithm is ideal. Artefacts associated with imperfect 

denoising include loss of image detail, texture and edge contrast. Linear denoising involves 

applying mean or Gaussian filters either by convolution or multiplication in the frequency 

domain. Alternatively, non-linear median filters can be applied. All of these filters ‘average 

out’ the noise which, incidentally, reduces the intensity of image details and edges.  

Non-linear content-aware denoising filters are less detrimental to quality than the above 

methods but are a significant cause of system scene-dependency. Image structure impedes, 

in general, the local removal of noise by these filters, as shown in Figure 2.3. Their signal 

transfer is also dependent on local image structure (Figure 2.4). For many spatial domain 

content-aware denoising filters, this is caused by applying thresholding before averaging to 

reduce denoising in the presence of local luminance gradients [74], [75]. This thresholding 

results in unmasked noise (which is most visible) being filtered heavily while image edges 

are preserved. But texture and detail are often mistaken as noise and removed.  

Further, Block Matching and 3D Filtering (BM3D) [31] and Non-Local Means [76] filters 

operate on a patch-wise level [73]. These content-aware algorithms compare the structure 

contained within a given small window (e.g. 8-by-8 pixels) with the structure in other 

windows across the image. Content from the “matching” windows is then averaged with the 

original window to remove noise. Sumner et al. [73] observe that it is impossible to predict 

the effect of such algorithms on a small-scale image feature in a real-world capture scenario 

since the actions of the algorithm depend entirely on the surrounding image features which 

may vary considerably. Other content-aware filters operate in the Discrete Cosine Transform 

(DCT) [77] or wavelet [78] domains or employ machine learning [79]–[83]; each of the 

mentioned content-aware denoising filters results in comparable artefacts concerning 

texture/detail loss.  
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Figure 2.3 Scene-and-process-dependent noise images obtained using ten replicate captures 

following the method of Section 4.1. All output images and replicates were generated using a 

simulated image capture pipeline after Poisson noise was added at a linear signal-to-noise ratio 

(SNR) of 10 and non-linear content-aware denoising [31] and sharpening [84] were applied. Noise 

images (d), (e) and (f) correspond to the following input information: (a) a uniform-tone patch, (b) 

the ‘Students’ image [7], and (c) the ‘Architecture’ image [7], respectively (Appendix C). The 

contrast of each noise image was increased to emphasise scene-dependency. 

Sharpening enhances edges, detail and high-frequency contrast but also amplifies noise and 

other artefacts. Linear sharpening methods include applying high-pass filters or spatial 

domain unsharp masks (USM) [85]. Non-linear content-aware sharpening causes scene-

dependency in imaging system performance because the performed local contrast 

adjustments are dependent on local image structure (as demonstrated in Figure 2.4). The 

unintended local amplification of noise (and other artefacts) is also dependent on local image 

structure since the objective level of noise/artefact amplification relates directly to the level 

of contrast amplification. For example, non-linear content-aware USMs [86]–[90] lower 

their amplification of contrast in regions of low local luminance gradient, to attempt to 

mitigate the perceived amplification of noise, while still enhancing the structural signals 

most relevant to perceived image quality. Other non-linear content-aware sharpening 

algorithms operate in various domains [32], [84], [91], [92], providing detail enhancement, 

edge sharpening and even optional denoising [84], [91]; some employ guidance images [32] 

or multi-scale contrast manipulations [92].  
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Figure 2.4 Demonstration of local-content-dependency in terms of signal transfer, caused by 

content-aware denoising and sharpening. Normalised pixel values, 𝑦, are plotted vs horizontal, 𝑥, 

and vertical pixel coordinates, 𝑧, for: (a) a two-dimensional (2D) input signal consisting of a low-

contrast high-frequency signal (0 < 𝑥 ≤ 15), high contrast edge (15 < 𝑥 ≤ 18), and uniform 

tone signal (18 < 𝑥 ≤ 30). (b) shows (a) after adding Gaussian noise. (c) shows (b) after 

denoising with the Fast Bilateral Filter (FBF) [93]. (d) shows (c) after sharpening with the 

Weighted Least Squares (WLS) [92] filter. 

Tone mapping converts captured image data to a suitable, output-referred state for viewing 

on the output device [1, p. 241]. Global, one-dimensional operations (e.g. gamma correction) 

are suitable if the dynamic range of the subject does not significantly exceed the usable 

dynamic range of the capture system [94] (which is typically between five and nine exposure 

stops [1, p. 241]). For subjects with wider dynamic range, implementing local tone mapping 

algorithms results in improved shadow and highlight detail. These adaptive algorithms map 

one input pixel value to a number of potential output values, depending on the values of 

other pixels in the region [94], [95]. Very high dynamic range subjects require high-

dynamic-range (HDR) processing, described below, to avoid clipping their shadows and 

highlights. Multiple, bracketed exposures are captured. A high bit-depth HDR image is 

constructed (typically 32-bits per channel). The subject’s radiance value is estimated at each 



 18 

 

pixel location using information from all exposures after it has been weighted according to 

its reliability [1, p. 242]. The resultant image’s bit-depth is reduced to 8 or 16 bits per 

channel, for output, using image-rendering algorithms that can either be global or local [96] 

(like the tone-mapping algorithms described above). Content-aware intensity adjustments 

from local image-rendering and tone-mapping algorithms can affect system signal transfer 

and noise significantly, in a local-content-dependent and scene-dependent manner. 

Compression is applied to reduce the file size of an image by lowering the average bit rate 

(i.e. the bit allocation per pixel). Image compression can be objectively and perceptually 

lossless. However, lossy Joint Photographic Experts Group (JPEG) [97], [98] and JPEG 

2000 [99] algorithms are applied frequently by image capture systems. Both algorithms are 

highly non-linear but not content-aware. The perceptual significance of their artefacts is 

scene-dependent [60], [65]. Significant variation was also found between the MTF of JPEG 

compression when it was derived from edges and sinusoidal signals [9]–[11], [15]. IQMs 

that employed MTFs derived from these signals also failed to describe the perceived quality 

of JPEG compressed images accurately [9]–[11] (Figure 1.5) since they did not account for 

the algorithm’s scene-dependency. This suggests that the scene-dependent characteristics of 

compression algorithms, and other spatial ISP algorithms such as denoising and sharpening, 

are relevant to perceived image quality and should be accounted for by spatial IQMs.  

2.2.2 Human Visual System  

Image quality attributes and artefacts are less noticeable in the presence of certain image 

content due to the effects of visual masking (defined in Section 2.5) and saliency [60], [65], 

[100], [101]. Thus, for spatially varying images of scenes, uniformly distributed artefacts are 

more apparent in certain regions, over others. Likewise, if images of different scenes are 

generated that contain the same objective level of artefacts, the perceived level of these 

artefacts often varies between the scenes, as demonstrated by Figure 2.5. The same is also 

true of their overall perceived image quality. Keelan [46, Ch. 10] describes such variations 

as scene susceptibility. Saliency relates to the probability of observers fixating their visual 

attention on a given image location in a free-viewing (or image quality evaluation) scenario.  
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Figure 2.5 Demonstration of human visual scene-dependency: (a) non-busy portrait [102], (b) busy 

landscape image [102]. (c) and (d) show the same images with Gaussian noise added at identical 

levels. Visual masking suppresses noisiness and perceived quality loss due to noise in (d).  

The factors that affect visual masking are the viewing conditions, the frequency content of 

the attributes/artefacts in question, and the frequency content of local masking signals or 

noise. Attributes/artefacts are also more noticeable if they are located in salient image 

regions which attract visual attention. This includes positions near to the foreground, 

prominent subjects, text, distinct edges, luminance/colour contrasts, or objects that deliver 

the meaning of the image. Visual attention patterns can be affected by the viewing task and 

the level of experience of the observer [45] and can be predicted by certain algorithms, as 

shown in Figure 2.6. 
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Figure 2.6 Visual saliency maps predicted by the Graph-Based Visual Saliency algorithm [103]. 

Adapted from [41, p. 43]. 

2.2.3 Observer Preference  

The aesthetic preferences of observers and their tolerance toward image quality attributes 

and artefacts are dependent on scene content [104], [105] and can vary with experience [47]–

[49] and the viewing task [45]. They are also affected by mood and state of awareness [106], 

as well as ethnicity and cultural factors [107]. For example, observers prefer skin textures to 

be “softly focused” compared to other image textures and signal content such as edges. 

Consequently, close-up portraits are often preferred to be less objectively sharp than other 

types of images, such as landscapes [104], [105]. Further, the subjective quality of the former 

decreases when objective quality (sharpness) increases past a threshold level [105]. The 

aesthetic preferences of observers are affected by the distribution of objects in images [108] 

and their interrelatedness [109]. For example, related objects are preferred to be positioned 

closer together than unrelated objects [109].  
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2.3 Image Quality Attributes 

The visual attributes of spatial image quality are defined (contrast/tone, resolution, sharpness 

and noise). Resolution, contrast and noise are also discussed as physical attributes of imaging 

systems and images. The objective system performance measures that are used to describe 

each of these attributes are also defined in this section.  

The final attribute, colour, is defined objectively (and subjectively) by the reproduction (and 

perception) of image brightness/lightness, chroma/colourfulness/saturation and hue [1, p. 

346]. Brightness and lightness also relate to spatial attributes of contrast/tone and are defined 

in Section 2.3.1. The other colour attributes are not defined, however, because this project is 

concerned with spatial IQMs and system performance measures only. The IQMs and 

performance measures developed in this thesis are validated using colour images. However, 

the ISP algorithms used by the simulation pipelines affect spatial image quality attributes, in 

particular, producing mainly spatial artefacts. 

The quality attributes form logical components of the observer image quality judgement 

process [57]. They are fundamental to image quality analysis [13], [38], [52], and the 

language used to describe relevant perceptions. Their presence can be preferential or 

detrimental (artefactual) to the overall perceived image quality [46, p. 7], [56, p. 1], [110, p. 

1] or preferential up to a point and detrimental thereafter [14]. Attributes that are perceived 

to be of the highest magnitude have a disproportionate influence on the overall perceived 

image quality [110], [111]; they suppress attributes of lower perceived magnitude [56, p. 4] 

and become identifiable features of an image (e.g. a “sharp” image). This is particularly the 

case for low-quality images [112] for which isoquality contours are particularly steep edged 

[111].  

Of interest to this thesis are the MTF (Section 2.3.2), Noise Power Spectrum (NPS, Section 

2.3.3) and Noise Equivalent Quanta (NEQ, Section 2.4) measures of imaging system signal 

transfer (relating to resolution and sharpness), noise, and signal-to-noise performance, 

respectively. These measures are based upon linear system theory (defined in Appendix A) 

and are transformed into the spatial frequency domain. This allows measurements for each 

imaging chain component to be cascaded at different spatial frequencies, thus expressing the 

performance of the entire imaging chain. Moreover, if these measurements are projected at 

the plane of the observer’s eye, they can be weighted with the human visual contrast 
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sensitivity function (CSF) to emphasise the most visually important information [41, p. 6]. 

This makes them particularly useful input parameters for IQMs, as discussed in Chapter 3.  

2.3.1 Contrast and Tone 

Subjective contrast is defined as perceived luminance variation [35]. Likewise, colour 

contrast refers to perceived chrominance variation. Objective differences in luminance (and 

chrominance) signals across the surface of a two-dimensional (2D) still image produce visual 

sensations of contrast (and colour contrast), as shown in Figure 2.7. Spatially varying 

luminance contrast is the principal carrier of image information [33], with respect to 

perceptions of image structure [113]. Scene structure is fundamental to visual understanding 

[114]–[116], making luminance contrast core to perceived image quality and fidelity, as well 

as four out of the five quality attributes: resolution, tone, sharpness and noise. This is 

exemplified by Figure 1.2(a) which is visibly sharp, contains tonal information, and is far 

more recognisable and detailed than Figure 1.2(b). Chromatic contrast signals are accounted 

for by many specialist capture system colour metrics and IQMs. However, they are 

overlooked by a large number of spatial IQMs, including those developed in this thesis. 

Consequently, this section focuses mainly on luminance contrast.  

 

Figure 2.7 Sinusoidal modulations in terms of: a) luminance, and b) red-green chrominance 

signals; adapted from [117].  

Subjective perception of luminance contrast in broadband images is a non-linear process 

[118] that compares local variations in luminance with the surrounding luminance. 

Adaptations of human vision to luminance and chrominance are also affected by local signal 
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intensities and the viewing conditions [119], [120]. They can lead to simultaneous contrast 

phenomena [1, p. 96], [38] that biases both contrast and colour perception [1, p. 96].  

Weber contrast, 𝐶?@A@B, is the simplest contrast measure (Equation 2.1). ∆𝐿 is the difference 

between the luminance of a single small stimulus and the uniform background luminance, 𝐿 

[1, p. 338], [118]. Contrast perception is shown to relate to relative changes in luminance, 

not absolute changes [121, Ch. 8.3]. The perceptual relevance of Weber contrast decreases, 

however, when stimuli increase in size or number across the visual field [118], making it a 

poor measure of pictorial image contrast. 

𝐶?@A@B =
∆𝐿
𝐿  (2.1) 

Michelson contrast, 𝐶EFGH@IJK=, describes suitably the contrast (or modulation) of predictable 

periodic functions such as sine-waves where the distribution of higher and lower luminances 

are of equal proportional area (Equation 2.2) [6, p. 212], [118]. 𝐿ELM and 𝐿EF= are the 

maximum and minimum stimulus luminances, respectively. It is an unsuitable measure for 

pictorial scene contrast because all other signal intensities are unaccounted for [113], [122]. 

𝐶EFGH@IJK= =
𝐿ELM − 𝐿EF=
𝐿ELM + 𝐿EF=

 (2.2) 

Root mean square (RMS) contrast, 𝐶OEP, accounts for all signal intensities (Equation 2.3). 

It is thus a more appropriate measure of pictorial image contrast and is employed widely in 

visual and image quality research for its simplicity. For an image of dimensions 𝑀	 × 	𝑁, 𝐿FT 

is the luminance of the 𝑖VHand 𝑗VH pixel normalised to 0 < 𝐿 < 1. 𝐿; is the mean luminance. 

The RMS contrast spectrum, or simply the contrast spectrum, refers to the RMS contrast of 

isolated image spatial frequency bands versus their spatial frequency. It is used in the 

computation of various visual models defined in Section 2.5. 

𝐶OEP = X
1

𝑀𝑁 − 1YY(𝐿FT − 𝐿;)Z
[

T\<

E

F\<

 (2.3) 

RMS contrast has two limitations as a perceptual contrast measure for pictorial images. It 

applies equal weighting to all spatial distributions of image contrasts [113]. Also, the spatial 

frequency of image contrasts is unaccounted for [118], which affects their perceived contrast 
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magnitude [123], [124]. Local Band-Limited (LBL) contrast addresses these limitations by 

accounting for HVS quasi-local processing and is computed as follows [118], [123]. Images 

are filtered to yield several single-octave spatial frequency bands. The LBL contrast, 

𝐶]^](𝑥, 𝑦), for each band, a(x,y), at pixel coordinate (𝑥, 𝑦), is given by Equation 2.4 [118], 

[123]. l(x,y), is a local luminance mean image containing the energy of the image at all 

frequencies below the band in question. Despite the intricacies of contrast perception in 

pictorial scenes, Triantaphillidou et al. [125] found the mean of the RMS contrast correlated 

well with the mean of the integral of the LBL contrast, across a large number of natural scene 

images, at relevant spatial frequencies. 

𝐶]^](𝑥, 𝑦) =
𝑎(𝑥, 𝑦)
𝑙(𝑥, 𝑦) ,						𝑤ℎ𝑒𝑟𝑒			𝑙

(𝑥, 𝑦) > 0	 (2.4) 

Tone reproduction is the most critical component of image quality and fidelity and influences 

perceived sharpness, visual resolution and colour significantly [1, p. 377]. It is defined 

objectively as the relationship between the intensities and intensity differences of a given 

scene and any reproductions of that scene [38]. Subjectively, tone reproduction refers to the 

observer’s impression of these characteristics and relates to perceptions of scene contrast, 

lightness or brightness [1, p. 377]. Brightness is defined as the degree to which a signal 

appears to display more (or less) light [1, p. 78]. Lightness is a relative form of brightness, 

where the brightness of a given signal is judged relative to the brightness of a white signal 

[1, p. 78]. Increasing global luminance contrast [126], [127] or the contrast ratio [128] can 

increase perceived sharpness. It can also raise perceived quality provided that the signal-to-

noise ratio (SNR) does not decrease and clipping or display non-linearity does not occur 

[126]. 

Imaging system tone reproduction is characterised by tone transfer functions concerning 

input-to-output intensity. ISO 14524 [129] defines the Opto-Electronic Conversion Function 

(OECF) that is the tone transfer function for digital image capture systems. Input luminances 

are plotted against output pixel values, as measured from a TE264 or equivalent chart [130] 

(Figure 2.12). Plotting measurements of the reverse process characterises the Electro-Optical 

Conversion Function (EOCF) of a display. The tone reproduction of a capture-display 

imaging chain is obtained by cascading the OECF, EOCF, and the tone transfer functions of 

relevant ISP algorithms.  
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Gamma is a simple measure of global contrast reproduction. It is calculated as the gradient 

of the relative intensity transfer function of the system (or component) when this function is 

expressed in a log-log space, or as the exponent of the same transfer function expressed in a 

linear-linear space [1, p. 378]. Tonal distortion can be prevented by correcting for the gamma 

of individual components or the imaging chain. The gamma of an imaging chain is given by 

the product of the gamma of its components. It is set commonly to between 1 and 1.5 for 

normal and dark viewing conditions, respectively, to achieve optimal subjective tone 

reproduction [1, p. 379] where lightness is perceived as linear [9]. 

Gain Offset Gamma (GOG) models [131] describe system tone transfer functions. For 

example, the display EOCF of the popular standardised RGB (sRGB) [132] colour space can 

be approximated by Equation 2.5 where the normalised output luminance and digital input 

count are 𝑉JOh^ and 𝑉JOh^i , respectively, gamma, 𝛾, is 2.2, gain, 𝛼, is 1, offset, 𝛽, is 0. The 

white point of the reference display is D65 with CIE xy chromaticity values of 0.3127 and 

0.3290, respectively [132, p. 9] and luminance level of 80 cd/m2. 

𝑉JOh^ = 𝛼(𝑉JOh^i + 	𝛽)m (2.5)  

2.3.2 Sharpness and Resolution 

Sharpness is a subjective attribute that relates to the visual definition of image edges and 

texture [1, p. 347]. Objective sharpness is defined as the capability of a system to reproduce 

object boundaries and edges acutely [16]. This depends on its ability to reproduce contrast, 

especially at higher spatial frequencies [1, p. 443]. The sharpness of a given image is affected 

more by the amplitude of its edges/structure than the number of edges or density of the 

structure [133]. Consequently, low depth of field images can still be perceived as sharp. Blur 

is the inverse of sharpness. 

Image sharpness influences overall impressions of image quality significantly [2, p. 2], [16], 

[56, Sec. 4.3], [111], [134], [135]. Sharpness and quality correlate well without the presence 

of image noise [136], but this relationship can break down under certain conditions [52]. The 

perception of image quality with respect to changes in sharpness is also generally more 

scene-dependent [60], [137] than the perception of sharpness itself [138], [139]. Image 

sharpening generally improves perceived image quality, but over-sharpening reduces quality 

and naturalness [14], [138] in a scene-dependent fashion [60]. Moderate increases in global 
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contrast and even noise can increase sharpness under some conditions [140]. Evidence of 

sharpening and over-sharpening are indicated by ISO 12233 [23] slanted edge MTFs 

reaching above 1 and 1.4, respectively [141].  

Resolution is an objective attribute relating to the capability of a system to reproduce fine 

detail [142]. Visual resolution is a subjective attribute concerning the perceived rendering of 

detail. Resolution is the most significant factor affecting sharpness [140]. The most critical 

spatial frequencies regarding sharpness perception occur approximately two octaves above 

the peak of the standard CSF [14], [139] (refer to Section 2.5 for further information). Thus, 

reproduction of higher perceivable frequencies (or microcontrast) are important [1, p. 443], 

[138], [143]. Other research stresses the influence of signals at all visible frequencies [14], 

[138], [143] or lower frequency structural signals [144] to sharpness.  

Early resolution measures are given in line pairs/mm and measured from test charts 

consisting of equally spaced sharp-edged bars of increasing frequency, such as the USAF 

1951 Resolution Test Chart [145]. The spatial limit of resolution is defined by the distance 

between the centre of two edges when the peak of the Airy disk from one edge coincides 

with the first minimum of the Airy disk of the other [146]. The reciprocal of this distance is 

the resolving power [1, p. 35]. Both measures correlate with sharpness to a limited extent, 

as demonstrated by Figure 2.8 [147]; they are not employed in current IQMs. 

 

Figure 2.8 Heynacher & Kober’s [147] resolving power versus sharpness example: (a) has higher 

resolving power, (b) has higher contrast at mid-high frequencies and is perceived to be sharper than 

(a) at most viewing distances. 
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More comprehensive and perceptually relevant measures characterise the transfer of signal 

modulation (contrast) by systems, with respect to all relevant spatial frequencies. When a 

system satisfies the requirements of linear system theory, given by Equations A1 to A4, 

Dainty and Shaw [6, pp. 192–207] state that its signal transfer is defined fully by its Point 

Spread Function (PSF). Thus, the PSF and the related Line Spread Function (LSF) and Edge 

Spread Function (ESF) are fundamental to spatial image quality modelling [52]. They are 

derived by Equations 2.6 to 2.18. 

To derive the PSF, the relationship between the input, 𝑓(𝑥, 𝑦), and output, 𝑔(𝑥, 𝑦), of an 

imaging system, 𝑆{	}, is specified first [6, p. 205]: 

𝑔(𝑥, 𝑦) = 𝑆{𝑓(𝑥, 𝑦)} (2.6) 

The Dirac delta function, 𝛿(𝑢) [6, p. 192], describes a theoretical point intensity source of 

infinitesimal width and unit area. Equation 2.7 [6, p. 192] describes its sifting property. 

t 𝛿(𝑢)	𝑓(𝑎 − 𝑢)	𝑑𝑢
v

wv
= t 𝛿(𝑎 − 𝑢)	𝑓(𝑢)	𝑑𝑢 = 𝑓(𝑎)

v

wv
 (2.7) 

where   𝛿(𝑢) = 0						𝑓𝑜𝑟					𝑢 ≠ 0; 						and		 ∫ 𝛿(𝑢)	𝑑𝑢 = 1v
wv 			  

Considering Equation 2.7, the input, 𝑓(𝑥, 𝑦), and output, 𝑔(𝑥, 𝑦), of Equation 2.6 can be 

expressed as a linear combination of weighted and displaced Dirac functions [6, p. 206].  

𝑓(𝑥, 𝑦) = t t 𝑓(𝑥<, 𝑦<)	𝛿(𝑥 − 𝑥<)	𝛿(𝑦 − 𝑦<)	𝑑𝑥<	𝑑𝑦<
v

wv

v

wv
	

(2.8) 

𝑔(𝑥, 𝑦) = 𝑆 ~t t 𝑓(𝑥<, 𝑦<)	𝛿(𝑥 − 𝑥<)	𝛿(𝑦 − 𝑦<)	𝑑𝑥<	𝑑𝑦<
v

wv

v

wv
� (2.9) 

Provided that the system is linear and homogeneous (i.e. Equation A3 is satisfied) the output, 

𝑔(𝑥, 𝑦), can be re-expressed with the operator, 𝑆	{	}, inside the integral [6, p. 206]. Thus, the 

system is described as acting on the Dirac functions, 𝑆	{𝛿(𝑥 − 𝑥<)	𝛿(𝑦 − 𝑦<)}, and the input, 

𝑓(𝑥<, 𝑦<), is applied as a weighting function.  

𝑔(𝑥, 𝑦) = t t 𝑓(𝑥<, 𝑦<)	𝑆{𝛿(𝑥 − 𝑥<)	𝛿(𝑦 − 𝑦<)}	𝑑𝑥<	𝑑𝑦<
v

wv

v

wv
 (2.10) 
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The response of the system at coordinates (𝑥, 𝑦) to the Dirac function at coordinates (𝑥<, 𝑦<) 

is the PSF, ℎ(𝑥, 𝑦;	𝑥<, 𝑦<) [6, p. 207]: 

ℎ(𝑥, 𝑦;	𝑥<, 𝑦<) = 𝑆{𝛿(𝑥 − 𝑥<)	𝛿(𝑦 − 𝑦<)}  (2.11) 

Substituting the PSF, ℎ(𝑥, 𝑦;	𝑥<, 𝑦<), in place of 𝑆{𝛿(𝑥 − 𝑥<)𝛿(𝑦 − 𝑦<)} in Equation 2.10, 

expresses the system fully by the PSF at a given spatial location [6, p. 207]: 

𝑔(𝑥, 𝑦) = t t 𝑓(𝑥<, 𝑦<)	ℎ(𝑥, 𝑦;	𝑥<, 𝑦<)	𝑑𝑥<	𝑑𝑦<
v

wv

v

wv
 (2.12) 

Provided that the system is stationary (i.e. Equation A4 is satisfied) the output can be 

expressed as [6, p. 207]: 

𝑔(𝑥, 𝑦) = t t 𝑓(𝑥<, 𝑦<)	ℎ(𝑥 − 𝑥<, 𝑦 − 𝑦<)	𝑑𝑥<𝑑𝑦<
v

wv

v

wv
 (2.13) 

									= t t 𝑓(𝑥 − 𝑥<, 𝑦 − 𝑦<)	ℎ(𝑥<, 𝑦<)	𝑑𝑥<𝑑𝑦<									
v

wv

v

wv
 

Equation 2.13 is the imaging equation. It states that the output image can be reproduced by 

summation of the scaled PSFs across the surface of the image. This is equivalent to 

convolving the input signal, 𝑓(𝑥, 𝑦), with the PSF, ℎ(𝑥, 𝑦), [1, p. 127], [6, p. 207]: 

𝑔(𝑥, 𝑦) = 	𝑓(𝑥, 𝑦)	⨂	ℎ(𝑥, 𝑦)  (2.14) 

The LSF is defined by Dainty and Shaw [6, p. 209] as the response of the system to an ideal, 

infinitesimally thin line input, represented by a single delta function, 𝛿(𝑥<), on the 𝑦< axis. 

Considering the convolutional relationship in Equation 2.14, the LSF, 𝑙(𝑥), is given below: 

𝑙(𝑥) = 	∫ ∫ 𝛿(𝑥 − 𝑥<)	ℎ(𝑥<, 𝑦<)	𝑑𝑥<𝑑𝑦<									
v
wv

v
wv   (2.15) 

The sifting property of the delta function allows this to be rewritten below [6, p. 209]. Thus, 

integrating the PSF with respect to one variable yields the LSF. 

𝑙(𝑥) = 	∫ ℎ(𝑥, 𝑦<)	𝑑𝑦<									
v
wv   (2.16) 
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The ESF, 𝑒(𝑥), is defined using the imaging equation, as the response of the system to an 

ideal edge signal, 𝑓(𝑥), of infinitely high gradient [6, p. 210]. Note that integrating the LSF 

with respect to 𝑥< yields the ESF.  

𝑒(𝑥) = 	∫ ∫ 𝑓(𝑥 − 𝑥<)	ℎ(𝑥<, 𝑦<)	𝑑𝑥<	𝑑𝑦< = 		∫ 𝑙(𝑥<)	𝑑𝑥<,									
v
wM 							v

wv
v
wv   (2.17) 

where				𝑓(𝑥) = 0			𝑓𝑜𝑟			𝑥 < 0,				and				𝑓(𝑥) = 1		𝑓𝑜𝑟			𝑥 ≥ 0																																	 

Thus, differentiating the ESF yields the LSF [6, p. 211]. This relationship is useful since 

practical measurement of the ESF is more straightforward and less error-prone than the PSF 

or LSF. This is because producing a physical target with an infinitely small point or thin line 

is impossible.  

𝑙(𝑥) = 	 �
�M
(𝑒(𝑥))  (2.18) 

The MTF is the standard objective measure for imaging system resolution and sharpness. It 

characterises the transfer of modulation (contrast) signals by an imaging system, or its 

components, with respect to spatial frequency. The MTF provides useful information for the 

prediction of perceived imaging system resolution, contrast, and sharpness. It is 

implemented in most spatial capture system IQMs. The popular MTF50 objective sharpness 

metric and the MTF10 metric for the limit of resolution are given by the lowest frequencies 

where 50% and 10% modulation transfer occur, respectively; MTF10 relates to the Rayleigh 

Criterion [146]. Both these objective system performance metrics have limitations since they 

do not account for the reproduction of all relevant frequencies; neither accounts for the HVS.   

Dainty and Shaw [6, pp. 211–213] define the MTF and the related Optical Transfer Function 

(OTF) with respect to a theoretical sinusoidal input signal, 𝑓(𝑥), where 𝑢 is spatial frequency 

and 𝜀 is phase. The amplitude, 𝑏, and mean (DC) level, 𝑎, of the sinusoid are given by the 

numerator and denominator of Equation 2.2, respectively.  

𝑓(𝑥) = 	𝑎 + 𝑏	cos	(2𝜋𝑢𝑥 + 	𝜀)  (2.19) 

The output of the imaging system, 𝑔(𝑥), with respect to the sinusoid is given by substituting 

the full description of 𝑓(𝑥) into the imaging equation, given by Equation 2.13 [6, p. 212]. 

𝑔(𝑥) = ∫ ∫ (𝑎 + 𝑏	cos	(2𝜋𝑢(𝑥 − 𝑥<) + 	𝜀)	)	ℎ(𝑥<, 𝑦<)	𝑑𝑥<	𝑑𝑦<									
v
wv

v
wv   (2.20) 
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Integrating with respect to the 𝑦< dimension expresses the output, 𝑔(𝑥), in terms of the LSF 

of the system, 𝑙(𝑥<) [6, p. 212]. 

𝑔(𝑥) = ∫ 𝑙(𝑥<)(𝑎 + 𝑏	cos	(2𝜋𝑢(𝑥 − 𝑥<) + 	𝜀)	)	𝑑𝑥<									
v
wv   (2.21) 

If the LSF is normalised to unit area and Equation 2.21 is expanded according to the 

trigonometric identity cos(𝐴 − 𝐵), 𝑔(𝑥) may be re-expressed as [6, p. 212]: 

𝑔(𝑥) = 𝑎 + 𝑏	cos	(2𝜋𝑢𝑥 + 	𝜀)	∫ 𝑙(𝑥<) cos(2𝜋𝑢𝑥<) 𝑑𝑥< 	+
v
wv

								𝑏	sin	(2𝜋𝑢𝑥 + 	𝜀)	∫ 𝑙(𝑥<) sin(2𝜋𝑢𝑥<) 𝑑𝑥<					
v
wv 			  

(2.22) 

This can be expressed in terms of the real, 𝐶(𝑢), and imaginary parts, −𝑆(𝑢), of the OTF 

(Equation 2.23) [6, p. 212]. The OTF, denoted by 𝑂𝑇𝐹(𝑢), is thus given by the Fourier 

transform of the LSF, 𝑙(𝑥<), and is defined by Equation 2.24 [6, p. 212]. 

𝑔(𝑥) = 𝑎 + 𝑏 cos(2𝜋𝑢𝑥 + 	𝜀) 𝐶(𝑢) + 	𝑏 sin(2𝜋𝑢𝑥 + 𝜀) 	𝑆(𝑢),			  (2.23) 

where 

𝑂𝑇𝐹(𝑢) = 𝐶(𝑢) − 𝑖	𝑆(𝑢) = 	t 𝑙(𝑥<)𝑒wZ�F�M�	𝑑𝑥<
v

wv
 (2.24) 

If the modulus and phase of the 𝑂𝑇𝐹(𝑢) are defined as 𝑀𝑇𝐹(𝑢) and 𝜙(𝑢), respectively, 

then Equation 2.23 can be reduced, as follows [6, p. 212]: 

𝑔(𝑥) = 𝑎 + 	𝑀𝑇𝐹(𝑢)	𝑏 cos�2𝜋𝑢𝑥 + 	𝜀 + 𝜙(𝑢)�	  (2.25) 

Comparing Equations 2.25 and 2.19 shows that for a linear and stationary system (as defined 

in Appendix A) the output, 𝑔(𝑥), is a sinusoid of the same frequency as the input. The output 

modulation is defined by 𝑀𝑇𝐹(𝑢) A
L
 [6, p. 213].  

Thus, the MTF can either be defined by:  

1) Equation 2.26 as the ratio of the output, 𝑀(𝑢)K�V��V, to the input modulation, 

𝑀(𝑢)F=��V, of sinusoidal input signals, where modulation is calculated using 

Equation 2.2 [6, p. 213]; 
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2) the modulus of the Fourier transform of the LSF, 𝑙(𝑥<), as defined by Equation 2.27 

[1, p. 133], [6, p. 213].   

𝑀𝑇𝐹(𝑢) =
𝑀(𝑢)K�V��V
𝑀(𝑢)F=��V

 (2.26) 

𝑀𝑇𝐹(𝑢) = � t 𝑙(𝑥<)𝑒wZ�F�M�	𝑑𝑥<

v

wv

� (2.27) 

Cascading the MTFs of 𝑛 components according to Equation 2.28 yields the MTF of a full 

imaging chain, 𝑀𝑇𝐹(𝑢)GHLF=, [1, p. 133].  

𝑀𝑇𝐹(𝑢)GHLF= = 𝑀𝑇𝐹(𝑢)F 	×	𝑀𝑇𝐹(𝑢)F�< ×	𝑀𝑇𝐹(𝑢)F�Z …	× 	𝑀𝑇𝐹(𝑢)=	 (2.28) 

The PSF, LSF, ESF, OTF and MTF relate to one another mathematically as described below. 

 

Figure 2.9 Relationships between the various spread functions and transfer functions that describe 

system signal transfer. 𝑢 and 𝑣 are spatial frequencies with respect to the 𝑥 and 𝑦 dimensions of 

the Point Spread Function (PSF), respectively. 𝜔 is spatial frequency with respect to the 𝑥 

dimension of the Line Spread Function (LSF) or Edge Spread Function (ESF). Adapted from [1, 

p. 133]. 

There are three traditional methods of deriving the MTF. Each employs a different input 

signal. Firstly, the ESF is measured from an appropriate “ideal” edge signal and 

differentiated to yield the LSF (Equation 2.18) [148]–[150]. The MTF is then derived using 

Equation 2.27. The ESF is traditionally measured from a trace of pixels perpendicular to an 

imaged edge that is aligned with the pixel grid [2, p. 20]. The ISO 12233 Spatial Frequency 

Response (SFR) method [23], [141] is more popular, however. It uses a slanted edge 

(typically 5°,	as shown in Figure 2.10(a)) which enables supersampling, greatly reducing 

aliasing. The frequency content of the test chart is not corrected for, but it is assumed to be 



 32 

 

constant and equal to 1 at the spatial frequencies of interest. Thus, the measure is often 

referred to as SFR, not MTF. It describes sharpness well in non-linear systems [146] and is 

implemented in the Edge Sharpness Metric of the IEEE P1858 Camera Phone Image Quality 

(CPIQ) standard [22, p. 18]. It is sensitive to noise since relevant signals are locally 

concentrated around each edge [17]. Edge signals are generally sharpened more and 

denoised less than natural scene signals by non-linear ISP, as discussed in Section 2.2.1. 

 

Figure 2.10 Test charts used to derive measurements of capture system signal transfer: (a) 

ImatestTM ISO 12233 [23] Slanted Edge Spatial Frequency Response (E-SFR) test chart [24]. (b) 

Image EngineeringTM TE265 Dead Leaves test chart [151]. (c) ImatestTM Siemens Star test chart 

[26]. (d) ImatestTM Log Frequency-Contrast test chart [152]. 

Alternatively, the MTF is measured from sinusoidal input signals using Equation 2.26, by 

comparing output to input modulation, 𝑀(𝑢), where both are given by Equation 2.2. 

Measurements can be derived from several sine-wave patches of single frequency [150], 

[153]–[155] (e.g. Figure 1.6(a)), the ISO 12233 Siemens Star Chart [141], [142] (Figure 

2.10(c)) or single sinusoids of varying frequency [2, p. 27], [141], [152] (Figure 2.10(d)). 

MTFs measured from sinusoidal signals describe system limiting resolution well since they 

respond less to sharpening [146].  
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Finally, following Equation 2.38, the MTF can be derived by comparing output and input 

one-dimensional (1D) luminance power spectra, 𝑃𝑆(𝑢), of a white noise signal [150] in 

Equation 2.29, where 𝑃𝑆(𝑢) is given by the rotational average of 𝑃𝑆(𝑢, 𝑣) in Equation 2.30.  

𝑃𝑆(𝑢)K�V��V = 𝑀𝑇𝐹(𝑢)Z. 𝑃𝑆(𝑢)F=��V (2.29) 

The 2D luminance power spectrum or power spectral density (PSD),	𝑃𝑆(𝑢, 𝑣), for discrete 

systems is given below [29]. 𝐼(𝑥, 𝑦) is a luminance image of dimensions 𝑀 ×𝑁.	𝑢 and 𝑣 are 

spatial frequencies with respect to 𝑥 and 𝑦. In this thesis the term power spectrum refers to 

the spectrum of the signal. The term NPS refers specifically to the power spectrum of noise, 

defined in Equation 2.36.    

𝑃𝑆(𝑢, 𝑣) =   Y Y 𝐼(𝑥, 𝑦)𝑒wZ�F(�M�¡¢)
[/Z

¢\[Z�<

E/Z

M\EZ�<

 

Z

 (2.30) 

For linear systems, the MTF is a unique property of the system, in theory, and deriving it 

using any of the above measurement methods from edges, sinusoidal signals or noise should 

fully specify the system. Thus, for an idealised, noiseless, linear and stationary system, 

measurements delivered by each of these methods should converge, as described by 𝐹(𝑠) in 

Figure 1.4(a). 

However, in practice, digital imaging systems are non-stationary, and the MTF varies 

depending on whether the target signal is in or out of phase with the sampling array [156]. 

MTFs measured by each of the above methods also produce different levels of measurement 

error (i.e. variation error and bias) [2, p. 198], [41, p. 22], [157], [158].  

These errors result from:  

1) inaccurate specification of the input (test chart) signal; 

2) inaccurate measurement of the output signal from the system; 

3) influence of imaging system noise; 

4) “measurement noise” resulting from processing of input (1) and output (2) signals 

when computing the MTF (e.g. discrete Fourier transform (DFT) computation).  
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Consequently, although linear digital systems can be said to have a unique MTF, it cannot 

be obtained in practice with a single measurement. Averaging over several measurements 

can result in some convergence toward it by mitigating the effect of measurement noise 

[157]. Nevertheless, strictly speaking, each of the above methods delivers a slightly different 

MTF in practice for such systems, none of which are capable of fully specifying the system.  

More importantly, when measurements are derived from systems implementing non-linear 

content-aware denoising, sharpening and tone-mapping ISP, as well as lossy compression, 

the differences between MTFs obtained from each of the above methods are compounded 

significantly [146], [159] (as demonstrated in Figure 1.7, and illustrated by 𝐹(𝑠) in Figure 

1.4(b)). This is because these ISP algorithms react differently to input edges, sinusoids and 

random noise signals (see Section 2.2.1 for further information). This causes local-content-

dependent variations in system signal transfer (and noise) that render the MTF (and NPS) of 

the system to be target-dependent (i.e. dependent upon the signal content of the input test 

chart). Note that in this thesis, target-dependency is referred to by the related, broader term 

of scene-dependency. Linearising the signal using look-up tables (LUT) before computing 

the MTF reduces errors resulting specifically from non-linear system tone reproduction [23, 

p. 6], [160] but does not account for the mentioned local spatial scene-dependency. 

Moreover, since edges, sinusoids and noise signals have limited relation to the average 

pictorial scene signal, their interaction with non-linear ISP algorithms means that the 

abovementioned measurements consistently under-estimate or over-estimate the average 

real-world signal transfer of the system (i.e. they are biased); 𝐹;(𝑠) in Figure 1.4(b) defines 

the average real-world signal transfer of such systems. The mentioned measurement methods 

using edges, sinusoids and noise signals also do not characterise perceived texture loss 

effectively [17]. The latter is a primary driver of overall perceived quality in today’s non-

linear capture systems [3]. These limitations motivate the following suggestion: if the MTF 

aims to describe the real-world signal transfer performance of a system that implements 

non-linear content-aware processing, then it should be derived either from a test chart that 

represents the signal properties of pictorial scenes, or better yet, from images of scenes. This 

suggestion only applies, however, if deriving the MTF in such a way does not result in 

significantly higher levels of measurement error than current MTF measurement methods. 

It is now common for the dead leaves test chart [16], [17] (shown in Figure 2.10(b)) to be 

employed when characterising non-linear capture system signal transfer. This test chart 
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relates more closely to natural scene signals than edges, sinusoidal signals and noise. It 

simulates natural scene textures using a stochastic model. Circles of random density are 

overlaid, reproducing occlusion phenomena and varying contrast levels. It also replicates the 

average power spectrum of natural scenes, among other natural scene statistics (NSS) [17]. 

Other useful properties are its shift, scale and rotational invariance. This test chart is 

employed when measuring the MTF with the intention of triggering non-linear image 

processing at ‘natural’ levels (i.e. the same level as when the system processes an “average 

pictorial scene”). The resultant MTFs are more indicative of the average real-world 

performance of non-linear systems than measures derived from edges, sinusoidal signals and 

noise. They also characterise more effectively the texture loss in such systems. There are 

three dead leaves MTF implementations, summarised below.  

The original dead leaves measurement implementation [17] employs Equation 2.29 to 

calculate the MTF. Since system noise is unaccounted for, 𝑃𝑆(𝑢)K�V��V increases 

erroneously as the power of the noise increases, biasing the MTF.  

The direct dead leaves measurement implementation [19] is defined in Equation 2.31. It 

attempts to remove the mentioned bias by subtracting the NPS of the system, 𝑁𝑃𝑆¤�V��V(𝑢), 

from the output power spectrum, 𝑃𝑆K�V��V(𝑢). 𝑃𝑆¥=��V(𝑢) is the input power spectrum, 𝑢 is 

spatial frequency, and the rotational average of 𝑃𝑆(𝑢, 𝑣) in Equation 2.30 yields 𝑃𝑆(𝑢). The 

NPS is measured using a uniform-tone patch with limitations discussed in Section 2.3.3. 

Error in the NPS is carried into the MTF. This dead leaves measurement implementation is 

employed by the texture blur metric of the IEEE P1858 CPIQ standard [22, p. 53].  

𝑀𝑇𝐹(𝑢) = ¦
𝑃𝑆¤�V��V(𝑢) − 𝑁𝑃𝑆¤�V��V(𝑢)

𝑃𝑆¥=��V(𝑢)
 (2.31) 

The recently standardised intrinsic dead leaves measurement implementation [20] compares 

signal transfer with respect to the cross-spectrum of dead leaves signals, which contains both 

amplitude and phase information. This measurement implementation is capable of 

distinguishing between real image structures and certain image processing artefacts and 

delivers consistent measurements for systems that generate significant noise. It characterises 

the performance of the lens and imager only and is virtually unaffected by reversible (linear) 

processing such as contrast stretching or sharpening, provided that clipping or information 

loss does not occur [161]. The intrinsic implementation is less relevant than the direct 
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implementation to the aims of this thesis. This is because reversible image processing affects 

the image quality and perceived sharpness of many capture systems (including non-linear 

systems that implement a combination of linear and non-linear ISP algorithms). Thus, any 

image quality metric that aims to account for system scene-dependency should account for 

the effect of both reversible and non-linear image processing on system signal transfer. The 

intrinsic implementation is not employed by the IEEE P1858 CPIQ standard [22].  

The various dead leaves implementations provide convenient approximations of the average 

real-world signal transfer characteristics of systems implementing non-linear content-aware 

processing. No prior art has investigated, however, whether the dead leaves test chart triggers 

non-linear content-aware processing at the same levels as the “average natural scene” and 

thus derives the average real-world MTF of such systems accurately and appropriately. This 

assumption may not be achieved in practice since the mathematically-generated dead leaves 

chart has limited relation to the diverse and complex spatial signals in real pictorial scenes. 

Further, no MTF measured from a single printed test chart can account fully for scene-

dependent variations in the signal transfer of non-linear systems. This would require MTFs 

to be measured with respect to signals from images of real scenes, as suggested, to trigger 

non-linear content-aware processing appropriately. Branca et al. [7] were the first to achieve 

this by revising the dead leaves method. Their methodology is defined, evaluated critically, 

and extended by the scene-and-process-dependent MTF (SPD-MTF) framework that is 

proposed in Chapter 5 of this thesis.   

2.3.3 Noise 

Noise is defined, objectively, as random or non-random spurious image information [1, p. 

346], [60]. It is perceived as a particular type of texture [16] and produces sensations of the 

corresponding subjective attribute of noisiness, which is detrimental to image quality 

generally [1, p. 433], [46, p. 220]. 

Scene susceptibility to noisiness relates to the amount of scene texture [58], among other 

factors, as indicated by Figure 2.5. The perceived impact of physical noise on image quality 

is also scene-dependent, where higher quality images are most affected [111], [112], [137]. 

Adding limited levels of noise to images of scenes can increase their perceived sharpness 

under some conditions [162], [163]. This is either because observers confuse noise with 
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memory representations of real scene textures [163], or they associate the spurious high 

frequencies with fine detail only present in images from sharper, higher-quality systems [33].  

Noise exists in the output of all imaging system components and processes. Sources of 

physical noise at all stages of the image capture, processing and display chain are described 

below in the approximate order that they appear. Visual noise is also experienced by the 

observer, dependent upon the image presented and viewing conditions. Visual noise models 

are presented in Section 2.5. 

For an ideal detector, the output noise is limited to noise in the input signal. For real 

detectors, noise is added to the input signal that already contains noise. Noise in the input 

signal is referred to as Poisson exposure noise, photon noise, or shot noise. It is caused by 

discrete local variations in flux in the radiant intensity image due to the quantum nature of 

light [2, p. 48] (Figure 2.11(a)). The number of photons arriving at the active area of each 

pixel on the sensor is random and is modelled by the Poisson distribution. The SNR of 

Poisson noise relates to the number of exposure quanta, 𝑞 [1, p. 442], [6, p. 153], [164, p. 

278]; thus, even noise in a hypothetical ideal linear system is scene-dependent. When 𝑞 is 

high the SNR increases, and Poisson noise is less perceptible. At low light levels, however, 

it is common for Poisson noise to dominate over most sources of noise added by the system. 

The exception is read noise, which can range from 3 electrons to 8 electrons at low and high 

sensor temperatures, respectively, significantly affecting quality at low light levels [165] 

(Figure 2.11(b)).  

𝑆𝑁𝑅 =
𝑞
©𝑞

= ©𝑞 (2.32) 

Photoelectric noise and electronic noise are introduced when the radiant intensity image is 

converted to an electrical signal and processed by capture system components, respectively. 

Jenkin [166, pp. 433, 442] describes the following sources of this noise. Fixed pattern noise 

(FPN) is consistent between frames and is caused by imperfections in the CFA elements, 

including dark/dead pixels that are insensitive to light, hot pixels that saturate too quickly, 

or dust. Dark signal non-uniformity (DSNU), or dark current noise, is introduced when the 

number of thermally-generated electrons varies from pixel to pixel (Figure 2.11(d)). It relates 

to the exposure duration and temperature of the sensor. It exists in the output signal 

irrespective of whether there is any input signal and can be mitigated by cooling. 

Photoresponse non-uniformity (PRNU) results from minor differences in pixel sensitivity 
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due to variations in their pixel well size/area or the properties of the substrate (Figure 

2.11(c)). Quantisation noise is introduced when the continuous electrical signal is binned 

into discrete pixel values. Amplification noise consists of white noise and flicker noise. Both 

are dependent on the sampling rate. Further, reset noise results from slight variations in the 

charge stored in each photoelement after they have been reset to the reference voltage after 

each exposure. Onboard capture system ISP and further imaging chain components and 

processes alter the characteristics of noise from all the above sources and can add further 

noise to the displayed image [19]. The ISP algorithms with the greatest effect upon noise 

include demosaicing, denoising, sharpening, tone-mapping and compression. 

 

Figure 2.11 Simulations by Farrell & Wandell [167] of: (a) temporal photon noise, and (b) read 

noise, as well as fixed-pattern noise caused by (c) photoresponse non-uniformity (PRNU) and (d) 

dark signal non-uniformity (DSNU) in image capture systems. 

The various objective measures of image noise will now be defined and discussed. The 

standard deviation, or RMS noise, is the most common image noise measure but accounts 

for the amplitude of spurious image information only [41, p. 28]. A uniform neutral grey 

patch is first captured under uniform illumination from an appropriate target such as Figure 

2.12. The RMS noise is then calculated using Equation 2.3 where 𝐿FT is the 



 39 

 

luminance/reflectance of each pixel in the region (𝑀 × 𝑁) and 𝐿; is the sample mean. 

Imaging system noise is characterised at different exposures by plotting RMS noise 

measurements from patches of various luminances vs the patch luminance. 

 

Figure 2.12 Image EngineeringTM TE264 test chart [130] for noise measurements according to ISO 

15739 [168]. The chart contains 20 uniform-tone patches.  

The RMS noise measure describes stochastic noise adequately, which has a grainy 

appearance comparable to Figure 2.12(a). However, the combined effect of the various 

sources of capture system noise and non-linear content-aware ISP algorithms such as 

denoising or sharpening often results in noise that is visibly textured [41, p. 32]. Such noise 

can relate to characteristics of the input signal as indicated by Figure 2.3. Figure 2.13 shows 

that the RMS noise measure is incapable of accounting for such spatial variations.  

 

 

Figure 2.13 Noise with identical mean signal and standard deviation (i.e. the same level of root 

mean square (RMS) noise) but varying correlation [41, p. 32]: (a) low two-dimensional (2D) 

covariance, (b) high 2D covariance, (c) low vertical covariance and high horizontal covariance.  

Measures that account for both the spatial characteristics and amplitude of noise are the 

Autocovariance Function (ACF), Autocorrelation Function, and the NPS (or Weiner 
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spectrum). The ACF describes the spatial relationship (covariance) between the intensity of 

each pixel in terms of their separation [41, p. 31]. Noise with a grainy appearance has lower 

covariance than noise with a patterned structure, as demonstrated by Figure 2.13. Burns [41, 

p. 31] defines the ACF for digital systems below. 𝑑FT is the luminance/reflectance of each 

pixel in the region (𝑀 × 𝑁) of a captured uniform patch. 𝑚� is the sample mean.  

𝐴ª,I =
1

(𝑀𝑁 − 1) YY(𝑑F,T − 𝑚�)(𝑑F�ª,T�I − 𝑚�)
[wI

T\<

Ewª

F\<

 (2.33) 

Dividing the ACF, 𝐴ª,I, by the variance, 𝜎Z, yields the autocorrelation function of the 

system, 𝐶′ª,I, that is equal to 1 at the origin [41, p. 31].  

𝐶′ª,I =
𝐴ª,I
𝜎Z 	 

(2.34) 

When the requirements of linear system theory are satisfied (Appendix A), Dainty and Shaw 

[6, p. 222] state that convolving the original (input) autocorrelation function, 𝐶ª,I, twice with 

the PSF, ℎ(𝑥, 𝑦), yields the measured (output) autocorrelation function, 𝐶′ª,I.  

𝐶′ª,I = 	𝐶ª,I ⊛ ℎ(−𝑥,−𝑦)⊛ ℎ(𝑥, 𝑦) (2.35) 

The NPS is the standard measure of imaging system noise [2, p. 2], [158]. It defines the 

power of noise with respect to spatial frequency. It holds its foundation in linear system and 

communications theory [6, Sec. 6.3] and thus requires Equations A1 to A4 to be satisfied. It 

is implemented as a noise parameter by many multivariate IQMs for capturing systems [12], 

[169] that cascade it with MTF and CSF measures. Welch [41, p. 34], [170] defines the NPS 

of a digital system below. 〈… 〉^ is the average over 𝐵 blocks, 𝐼(𝑥, 𝑦) is the luminance at 

pixel coordinates (𝑥, 𝑦) in the region (𝑀 × 𝑁) of a captured uniform patch. 𝑢 and	𝑣 are 

spatial frequencies. ∆𝑥 and ∆𝑦 are sampling intervals with respect to 𝑥 and 𝑦.  

𝑁𝑃𝑆(𝑢, 𝑣) =
1

𝑁𝑀∆𝑥∆𝑦	
〈° Y 	 Y 𝐼(𝑥, 𝑦)	𝑒wZ�F(�M�¡¢)

[/Z

¢\[ Z�<⁄

E/Z

M\E Z�<⁄

°

Z

〉^ (2.36) 

The NPSs, 𝑁𝑃𝑆(𝑢, 𝑣), of two components or processes denoted by the subscripts 𝐴 and 𝐵 

are combined additively: 
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𝑁𝑃𝑆²�^(𝑢, 𝑣) = 𝑁𝑃𝑆²(𝑢, 𝑣) + 𝑁𝑃𝑆^(𝑢, 𝑣)	 (2.37) 

The NPS and autocorrelation function are Fourier transform pairs according to the Weiner-

Khintchin theorem [6, p. 222]. Thus, their relationship as image noise measures is 

comparable to the relationship between the MTF and PSF measures of signal transfer [6, p. 

222]. If the Fourier transform of both sides of Equation 2.35 is taken, the measured (output) 

NPS, 𝑁𝑃𝑆′(𝑢, 𝑣), is shown to be equal to the original (input) NPS, 𝑁𝑃𝑆(𝑢, 𝑣), multiplied 

by the squared modulus of the OTF, 𝑂𝑇𝐹(𝑢, 𝑣) [6, p. 223], or the square of the MTF, 

𝑀(𝑢, 𝑣). This relationship also applies to signal power spectra and is fundamental to MTF 

measurements from white noise and the dead leaves test chart, defined in Equations 2.29 and 

2.31, respectively.  

𝑁𝑃𝑆i(𝑢, 𝑣) = 	𝑁𝑃𝑆(𝑢, 𝑣)|𝑂𝑇𝐹(𝑢, 𝑣)|Z = 𝑁𝑃𝑆(𝑢, 𝑣)𝑀(𝑢, 𝑣)Z (2.38) 

Each of the mentioned noise measures is derived generally using noise images,	𝐼(𝑥, 𝑦), from 

imaged uniform-tone patches, where 𝑔(𝑥, 𝑦) is the intensity of the captured patch, Equation 

2.39. Obtaining noise images in this way is convenient, since the expected value of the 

captured patch, 𝑔̅(𝑥, 𝑦), is approximately constant at all coordinates, provided that the patch 

is illuminated uniformly and lens shading correction is applied (or the patch is captured in 

sensor areas where lens shading is minimal).  

𝐼(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) − 𝑔̅(𝑥, 𝑦) (2.39) 

Many IQMs employ noise measurements derived in this way. These metrics attempt to 

describe the perceived performance level of the system either with respect to a particular 

input scene or the “average pictorial scene” (i.e. concerning the average real-world 

performance of the system). For such metrics (and the measurements they are derived from) 

to be appropriate, it must be assumed that the noise in the captured patch represents the 

characteristics of noise introduced either to the scene in question, or the “average scene”. 

This assumption is justified for linear systems, for which, even considering the slight scene-

dependency in Poisson noise and other system noise, there is (within reason) an NPS that 

fully specifies the system. However, the assumption fails for systems implementing non-

linear content-aware denoising and sharpening. For these systems, the structure and 

magnitude of noise is scene-dependent (and target-dependent) due to interactions between 

input scene (and test chart) content and the ISP algorithms (refer to Section 2.2.1 for more 
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information). Since uniform patches provide ideal input conditions for non-linear content-

aware denoising algorithms, they are significantly less noisy than real scenes when captured 

by such systems, as indicated by Figure 2.3(d). Noise measures derived from uniform patch 

signals, therefore, underestimate the average real-world noise of such systems, as well as 

noise in a given captured scene. These inaccuracies are carried into IQM measurements and 

are compounded if non-linear content-aware sharpening is also applied (Section 2.2.1). 

Consequently, as with the MTF, it is suggested that more suitable NPS measurements should 

either be derived directly from images of pictorial scenes, or from test charts that replicate 

the signal properties of scenes, provided this does not significantly increase measurement 

error. In this thesis, the scene-and-process-dependent NPS (SPD-NPS) framework, proposed 

in Chapter 4, is used to deliver such measurements. The various SPD-NPS measures 

proposed in this thesis are either measured from images of pictorial scenes, or dead leaves 

signals that model the “average scene spectrum”. Thus, they account more appropriately 

than the uniform patch NPS for the effect of non-linear content-aware ISP algorithms.  

2.4 Signal-to-Noise Measures 

The relative intensity of image signals versus noise affects the capability of the HVS to 

detect, discriminate and understand the content of a given image. Thus, objective and 

subjective image quality has been described as a signal-to-noise-based problem for decades. 

In 1948, Shannon [171] founded the field of information theory. This defined the general 

signal-to-noise relationship demonstrated in numerous applications of communication as the 

Channel Capacity, 𝐶, given by Equation 2.40 [171, p. 47]. When applied to imaging systems, 

𝑆 and 𝑁 are the signal and noise energy and 𝑊 is the channel bandwidth, corresponding to 

sharpness [172].  

𝐶	 = 𝑊	 logZ ·
𝑆
𝑁
+ 1¸	 (2.40) 

Schade [43] applied Shannon’s approach to imaging systems development, resulting in 

Equation 2.41 [173, p. 631] that expresses the photographic Information Capacity, 𝑐, where 

𝑆(𝑢M, 𝑢¢) and 𝑁(𝑢M, 𝑢¢) are 2D signal and noise power spectra, respectively, which can be 

computed using Equations 3.5 and 3.6, respectively for analog systems; 𝑢M and 𝑢¢ are spatial 

frequency. This equation is at the foundation of Töpfer and Jacobson’s Perceived 
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Information Capacity (PIC) [169] image quality metric that is defined in Equation 3.3. 

𝑐	 =
1
2	t t logZ ¹

𝑆(𝑢M, 𝑢¢)
𝑁(𝑢M, 𝑢¢)

+ 1º	𝑑𝑢M	𝑑𝑢¢

v

»

v

»

 (2.41) 

Higgins [136] expresses imaging system information capacity,	𝑐, in a simpler form, below, 

which is core to the Effective Pictorial Information Capacity (EPIC) metric that is defined 

in Section 3.1.1. The number of independent levels capable of being reproduced at each pixel 

and the number of pixels in the image are represented by 𝑚 and 𝑛, respectively.  

𝑐 = 𝑛	 logZ 𝑚 (2.42) 

Simple, global SNR measures also correlate to some extent with perceived noise intensity 

and image quality. The SNR can be expressed as the reciprocal of the coefficient of variation, 

as shown in Equation 2.43, where 𝜇JF½ is the expected value or mean of the signal and 𝜎A½ is 

the standard deviation of the noise or background. However, the signal transfer 

characteristics of the system and the structure of the noise are unaccounted for and often 

vary with spatial frequency.  

𝑆𝑁𝑅	 =
𝜇JF½
𝜎A½

 (2.43) 

The Detective Quantum Efficiency (DQE) is a more comprehensive signal-to-noise-based 

performance measure for capture systems. It is essentially a measure of “useful” quantum 

efficiency and describes how effectively the system reproduces information from a stream 

of quanta (photons), relative to an ideal photon-counting detector [6, p. 28]. The DQE is 

defined below. 𝑆𝑁𝑅K�V(𝑢) is the SNR of the system, 𝑆𝑁𝑅F=(𝑢) is the input SNR (i.e. the 

SNR of an ideal detector [6, p. 153]) and 𝑢 is spatial frequency. The DQE accounts for the 

MTF, NPS and tone transfer characteristics of a given system [174], thus providing all 

necessary information to describe its spatial image quality [175]. Systems with high DQE 

image small low-contrast objects effectively.  

𝐷𝑄𝐸(𝑢) =
𝑆𝑁𝑅K�VZ (𝑢)
𝑆𝑁𝑅F=Z (𝑢)

 (2.44) 
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For an ideal detector, the lower limit of noise is the quantum fluctuations [6, p. 152]. 

Equation 2.32 shows the SNR of Poisson noise is equal to the square root of the number of 

exposure quanta. Thus, 𝑆𝑁𝑅F=Z (𝑢) is equal to the number of quanta, 𝑞² [6, p. 153]. 

𝑆𝑁𝑅F=Z (𝑢) = 𝑞² (2.45) 

Although the DQE is normalised conveniently to unity, Keelan [176] states that the NEQ is 

a more appropriate performance indicator for capture systems. The NEQ relates to the DQE, 

below [177]. 𝑞² is the number of exposure quanta. 

𝐷𝑄𝐸(𝑢) =
𝑁𝐸𝑄(𝑢)
𝑞²

 (2.46) 

Thus, the NEQ is effectively the output SNR squared, with respect to spatial frequency, 𝑢.  

𝑁𝐸𝑄(𝑢) = 𝐷𝑄𝐸(𝑢). 𝑆𝑁𝑅F=Z (𝑢) = 𝑆𝑁𝑅K�VZ (𝑢) (2.47) 

Burns [177] defines the 1D NEQ below. MTF(u) is the MTF, NPS(u) the NPS and 𝑞² the 

number of quanta per unit area. 𝐺� is the mean level transfer gain, 𝑑𝑞² 𝑑𝑜⁄ , where 𝑜 is the 

output signal. 

𝑁𝐸𝑄(𝑢) =
𝑞²Z𝐺�Z𝑀𝑇𝐹Z(𝑢)

𝑁𝑃𝑆(𝑢) 	 (2.48) 

If the MTF and NPS of a given system are input referenced and computed in a linear space, 

𝐺� can be assumed to be 1. Thus Keelan [176], [178] defines the 2D NEQ below, where 𝜇 

is the mean linear signal. The 1D NEQ can be computed either by substituting the 1D MTF 

and NPS into this equation or as the rotational average of 𝑁𝐸𝑄(𝑢, 𝑣). 

𝑁𝐸𝑄(𝑢, 𝑣) =
𝑀𝑇𝐹Z(𝑢, 𝑣)
𝑁𝑃𝑆(𝑢, 𝑣) 𝜇²Z⁄ 	 (2.49) 

The NEQ describes the physical number of quanta counted by the system, 𝑞′², after 

accounting for noise, considering an ideal detector is capable of counting 𝑞² quanta at the 

same exposure level [6, p. 156]. Therefore, it provides a more relevant comparison of 

systems at different exposure levels than the DQE [176]. The following investigations have 
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employed the NEQ in capture system sensor [176]–[178] and image quality modelling [178] 

successfully.  

The NEQ has also long been used in signal detection theory, including in theoretical models 

of the ideal observer [179], [180] in simple idealised scenarios where the signal is known 

exactly (SKE) and the background is known exactly (BKE). One such model, the 

detectability index, 𝑑′, is defined below for a signal with mean-normalised frequency 

spectrum, 𝑆(𝑢𝑥, 𝑢¢), in terms of the two-dimensional (2D) NEQ of the system, 𝑁𝐸𝑄�𝑢M, 𝑢¢� 

[178], [181]. It has proven valuable in the design and optimisation of medical imaging 

equipment [181]. Models for more complex theoretical observers have been developed upon 

it. These models either account for correlated noise or are applicable in situations where 

target and background spectra are not known exactly [181]. 

𝑑′Z = t𝑁𝐸𝑄�𝑢M, 𝑢¢�	𝑆Z�𝑢M, 𝑢¢�	𝑑𝑢M𝑢¢ (2.50) 

The NEQ, DQE, and photographic information capacity all are founded upon linear system 

theory. Consequently, when the requirements of Appendix A are not fulfilled, inaccuracies 

in the traditional MTF and NPS measures (discussed in Sections 2.3.2 and 2.3.3, 

respectively) are carried into each of these signal-to-noise measures.  

2.5 Visual Models 

The visual models employed by IQMs can be classified broadly as top-down or bottom-up 

approaches. Top-down approaches are hypothetical and can be characterised as black-boxes 

or as the combination of a set of black-box sub-processes. They often attempt to describe 

higher-level processes concerning image quality judgement as well as low-level vision. They 

are implemented in the Computational IQM (CP-IQM) genre that is of less interest to this 

project for reasons given in Section 3.1.4, where this genre of IQMs is also defined. The 

same section discusses critically the top-down visual models employed by the most relevant 

CP-IQM approaches to this thesis. 

Bottom-up approaches are employed by all other IQM genres reviewed in this thesis. They 

model low-level visual processes in a logical and mechanistic step-by-step format with direct 

relation to psychophysical measurements and the neurophysiology of the HVS. The most 

commonly employed bottom-up spatial HVS model is the CSF, defined later in this section. 
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It is employed as a weighting function by most spatial IQMs for capturing systems to account 

for the perceptual significance of MTF and NPS system performance measurements.  

A number of multivariate IQMs for capturing systems also employ bottom-up modelling of 

visual noise. Noteworthy examples [12], [169] implement Barten’s [182] visual noise model, 

defined below. The IQM from the IEEE P1858 CPIQ standard [22, p. 72] implements a 

perceptually calibrated visual noise attribute metric for image quality loss due to noise. It is 

defined in Section 3.1.2 and also applies the CSF.  

Visual noise is dependent on the viewing distance and the luminance and size of the 

presented image [182]. Barten’s [182] model for the total power of internal noise in the eye, 

𝑁𝑃𝑆ÂFJ�LI(𝑢), vs spatial frequency in cycles/degree, 𝑢, is given below. 𝜙ÃH and 𝜙[@� are 

the visual photon noise and neural noise, given by Equations 2.52 and 2.53, respectively.  

𝑁𝑃𝑆ÂFJ�LI(𝑢) = 𝜙ÃH + 𝜙[@�(𝑢)	 (2.51) 

Visual photon noise, 𝜙ÃH , is modelled as follows [182] where 𝐿 is luminance, 𝑑 is the pupil 

diameter of the eye in mm given by Equation 2.57. 𝜂 is the quantum efficiency of the eye, 

recorded as 21% by Ford [9, p. 28] in a comparable study. 𝜌 is the photon conversion factor 

of the eye, recorded as 1.285 x 106 photons/(s Troland degree2) for Illuminant A under 

photopic viewing conditions [183, p. 61]. 𝑇 is the integration time of the eye given by Töpfer 

and Jacobson [169] as 0.1s for a stationary signal under such conditions.  

𝜙ÃH =
1

𝜂𝜌 𝜋4 𝑑
Z𝐿𝑇

	 (2.52) 

Neural noise, 𝜙[@�	, is modelled below [182] where 𝑀𝑇𝐹]LV(𝑢) is the MTF of the lateral 

inhibition process [183, p. 33], u is spatial frequency, and 𝑢» is the threshold at which lateral 

inhibition ceases.	𝜙» is the intensity of neural noise. Töpfer and Jacobson [169] state 𝑢» is 

11 cycles/degree and 𝜙» is 1.5 x 10-7 degrees2 for a typical integration time of 0.1s.  

𝜙[@�(𝑢) =
𝜙»

𝑀𝑇𝐹]LV(𝑢)
=

𝜙»
1 − 𝑒w�È �ÉÈ⁄ 	 (2.53) 

The CSF describes the sensitivity of the HVS to luminance (or chrominance) contrast in 

terms of spatial frequency. It varies with respect to the signal’s luminance, spatial frequency 

[183, Ch. 3], orientation [184], [185], phase coherency [184], and the intensity of masking 
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noise [183, Ch. 6]. From an imaging systems development perspective, the most important 

relationship is between luminance contrast and spatial frequency, with consideration of noise 

and other masking signals.  

Contrast sensitivity is measured conventionally with respect to simple, narrow-band stimuli, 

such as sine-waves, edges or noise patches. Traditionally, the CSF describes the detection of 

these stimuli in isolation. Such measurements are obtained by varying the contrast of the 

stimulus until a threshold of one just-noticeable difference (JND) is reached between the 

(test) stimulus and an identical luminance patch of zero contrast (the reference stimulus).  

To quantify one JND between the stimuli, observers are shown the test and reference 

stimulus on a calibrated display under strict viewing conditions. The observers are asked to 

indicate which the test stimulus is. Their votes are divided 50/50 between the test and 

reference stimulus when differences between the stimuli are imperceptible. For the 

difference between the stimuli to be exactly one JND, the observers identify the test stimulus 

correctly 50% of the time (i.e. their votes are split 75/25 in favour of the test stimulus).  

Contrast signals above and below the threshold of one JND are termed suprathreshold and 

sub-threshold, respectively. The traditional CSF, or contrast detection CSF, is given by the 

reciprocal of this threshold vs spatial frequency (Figure 2.14, broken line). It peaks at around 

1-4 cycles/degree for photopic vision.  

 

Figure 2.14 Barten’s detection (broken line) [186] and discrimination (solid line) [183, p. 143] 

contrast sensitivity functions (CSF) [187].  

There are a number of models used to predict the CSF. The simplest and most popular are 

black-box models for contrast detection that account for spatial frequency only. For example, 
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Johnson and Fairchild’s luminance and chrominance CSFs [188] (defined by Equations 2.54 

and 2.55, respectively) are used by the IEEE P1858 CPIQ standard [22, p. 72]. The 

luminance CSF employs Movshon’s three-parameter exponential model [189], with 

different constants given in Table 2.1. 𝑢 is spatial frequency in cycles/degree. 

𝐶𝑆𝐹I�ÊF=L=G@(𝑢) =
𝑎<	 × 	𝑢G� 	× 	𝑒wA�×�

𝐾  (2.54) 

𝐶𝑆𝐹GHBKÊF=L=G@(𝑢) =
𝑎<	 × 	𝑒wA�×�

Ì� +	𝑎Z 	× 	𝑒wAÈ×�
ÌÈ − 𝑆

𝐾  (2.55) 

 

 

Table 2.1 Input parameters for Johnson and Fairchild’s luminance and chrominance CSFs [188] 

as implemented in the IEEE P1858 Camera Phone Image Quality (CPIQ) standard [22, p. 72].  

Barten’s contrast detection model [186] is given below. It accounts for the display’s angular 

size in degrees, 𝑤, its luminance, 𝐿, and the stimulus’ spatial frequency in cycles/degree, 𝑢. 

𝐶𝑆𝐹 LBV@=(𝑢) =
<

EÍ(�)
= 𝑎𝑢. 𝑒(wA�).©<	�	G.@(ÎÏ), (2.56) 

where 

𝑎 =
540(1 + 0.7 𝐿⁄ 	)w».Z

1 + 12
𝑤(1 + 𝑢 3⁄ )Z

	,																	𝑏 = 0.3(1 + 100/𝐿)».<Ñ		,						and						𝑐 = 0.06 

Barten’s mechanistic detection model [183, p. 39] is defined by Equation 2.57 and expands 

upon the simpler model above. It employs relevant physiological and physical variables, thus 

bridging the gap between contrast detection/discrimination and the underlying 

neurophysiology. 𝑀K�V(𝑢) is the optical MTF of the eye, 𝑘 the SNR, 𝑇 the integration time 

of the eye. 𝑋K and 𝑌K are horizontal and vertical angular stimulus sizes, respectively, and 

𝑋ÊLM  is the maximum integration area, all given in degrees. 𝑁ÊLM is the maximum number 
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of integration cycles, 𝜂 the quantum efficiency of the eye, 𝐸 the retinal illuminance in 

Troland and 𝑝 is the photon conversion factor. Φ» is the spectral density of neural noise, 𝑢 

is spatial frequency in cycles/degree, 𝑢» is the frequency where lateral inhibition ceases. 𝐿 

is the average luminance of the stimulus, 𝜎 the standard deviation of the LSF of the eye and 

𝑑 is the diameter of the pupil in mm. The constants 𝜎» and 𝐶LA are approximately 0.5 and 

0.08 arc min/mm, respectively.  

𝐶𝑆𝐹 LBV@=(𝑢) =
1

𝑀V(𝑢)
=

𝑀K�V(𝑢)

𝑘X2𝑇 ¹
1

𝑋K𝑌K
+ 1
𝑋ÊLMZ

+ 𝑢Z
𝑁ÊLMZ

ºØ 1
ηpE +

Φ»

1 − ewÛ
Ü
ÜÉ
Ý
ÈÞ

 

(2.57) 

where 

𝑀K�V(𝑢) = 𝑒wZ�ÈßÈ�È,						𝜎 = ©𝜎»Z + (𝐶LA𝑑)Z	,							𝑑 = 5 − 3	 tanh ·0.4	 log ·
𝐿𝑋K𝑌K
40Z ¸¸ 

Contrast discrimination describes sensitivity to variations in suprathreshold signal contrast. 

Discrimination sensitivity is generally lower and flatter than detection sensitivity (Figure 

2.14) due to the effects of visual masking [183, Ch. 7]. For isolated narrow-band stimuli, 

this is attributed to contrast constancy [190] where neural processing “evens out” 

suprathreshold contrast perception with respect to spatial frequency [113]. This provides a 

useful de-blurring effect that compensates for the physical limitations of the HVS. Peli [123] 

argues, however, that contrast constancy is less applicable to contrast discrimination in 

complex broadband images because neural processes are activated simultaneously by 

overlapping contrast signals of varying frequency and orientation.  

Barten’s contrast discrimination model [183, p. 143], 𝐶𝑆𝐹áFJGBFÊ(𝑢), is based upon 

measurements of dipper functions. 𝑘 is the Crozier factor [191], [192] that is approximately 

equal to 3.0. It describes the minimum signal-to-noise level for signal detection [187]. 𝑚V(𝑢) 

is the modulation threshold required for contrast detection, given by Equation 2.56 or 2.57. 

𝑚»(𝑢)	is the modulation of the reference signal, 𝑢 is spatial frequency in cycles/degree. 

𝐶𝑆𝐹áFJGBFÊ(𝑢) =

⎣
⎢
⎢
⎢
⎡

X
𝑚V
Z(𝑢) + 0.04𝑘GBKåF@BZ 𝑚»

Z(𝑢)

1 + 0.004𝑘GBKåF@B
	𝑚»(𝑢)
𝑚V(𝑢)

+ 𝑚»
Z(𝑢) − 𝑚»(𝑢)

⎦
⎥
⎥
⎥
⎤
w<

 (2.58) 
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Triantaphillidou et al. [187] have extended Barten’s models to describe the detection and 

discrimination of RMS contrast in single-octave spatial frequency bands from images of 

pictorial scenes. Each band was extracted in the spatial frequency domain using Peli’s log 

cosine filters [118]. The Isolated CSF (iCSF) [35] and Isolated Visual Perception Function 

(iVPF) [187] model the detection and discrimination of contrast in each band in isolation, 

respectively. The iCSF is described appropriately at each band’s spatial frequency by either 

of Barten’s detection models [183, p. 36], [186] (i.e. Equations 2.56 or 2.57). Likewise, 

Barten’s discrimination model [183, p. 143] (Equation 2.58) expresses the iVPF [187] when 

𝑚» is the pedestal contrast (i.e. the RMS contrast of the band) and 𝑚V is given by Equation 

2.56 or 2.57. 

The Contextual CSF (cCSF) [35] and Contextual Visual Perception Function (cVPF) [8] 

model detection and discrimination, respectively, of the RMS contrast of a band when all 

other bands are at full contrast. Both functions are shown in Figure 2.15.  

 

Figure 2.15 Isolated contrast detection (iCSF) [35] and contextual contrast detection (cCSF) [35] 

and discrimination (cVPF) functions [8] for the ‘Buildings’ (a) and ‘Bench’ (b) images shown in 

Appendix C. Adapted from [14]. 
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To account for visual masking, the cCSF [35] (given by 𝑐𝐶𝑆𝐹(𝑢) in Equation 2.59) models 

as noise the contrast signals in “flanking bands” adjacent to the band in question [8], using 

the Linear Amplification Model (LAM) [193]. 𝐾 is a scene-dependent constant, 𝑐J(𝑢) is the 

RMS contrast spectrum of the image (defined in Section 2.3.1), 𝑐F(𝑢) is the contrast 

threshold for isolated detection of each band (i.e. the reciprocal of the iCSF) and 𝑢 is spatial 

frequency in cycles/degree. 

𝑐𝐶𝑆𝐹(𝑢) = [𝐾𝑐J(𝑢)Z + 𝑐F(𝑢)Z]w».Ñ	 (2.59) 

Substituting the cCSF (Equation 2.59) into Barten’s discrimination model [183, p. 143] 

(Equation 2.58) yields the cVPF that is defined by Equation 2.60 [125]. 𝑐G(𝑢) is the contrast 

threshold required to achieve contextual detection for each band, i.e. the reciprocal of the 

cCSF, 𝑐J(𝑢) is the RMS contrast spectrum, 𝑘GBKåF@B is the Crozier factor of approximately 

3.0, 𝑢 is spatial frequency in cycles/degree.  

𝑐𝑉𝑃𝐹(𝑢) =

⎣
⎢
⎢
⎢
⎡

X
𝑐GZ(𝑢) + 0.04𝑘GBKåF@BZ 𝑐JZ(𝑢)

1 + 0.004𝑘GBKåF@B
𝑐J(𝑢)
𝑐G(𝑢)

+ 𝑐JZ(𝑢) − 𝑐J(𝑢)

⎦
⎥
⎥
⎥
⎤
w<

 (2.60) 

There is ongoing debate regarding whether image quality is a function of suprathreshold 

vision [36], [194] or threshold vision [185], or a combination of both [8], [36], [41, p. 43], 

[183, p. 4]. Most IQMs based upon linear system theory either cascade system performance 

measures with threshold CSFs or weight image differences with them [12], [169], [186], 

[195]–[199]. This has been shown to account for the perceptual relevance of these 

measurements under the viewing conditions [14]. However, it assumes a direct relationship 

exists between threshold vision and image quality/fidelity perception. Although there lacks 

a better alternative, Rogowitz et al. [200] have criticised the implementation of threshold 

CSFs in IQMs, suggesting that image quality judgement involves the subjective scaling and 

comparison of suprathreshold image content related to quality attributes and artefacts. 

Likewise, Haun and Peli [113] stress the importance of contrast thresholds when evaluating 

image quality and have measured the perceived contrast magnitude of spatial frequency 

bands from pictorial scene images [123], [124]. Their measurements display a similar band-

pass profile to traditional CSFs and peak at similar frequencies [123], [124], but they have 

not been modelled and are subject to inter-observer inconsistency.  
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During image quality/fidelity evaluation, attributes and artefacts are detected and 

discriminated within the context of other suprathreshold image signals. Consequently, visual 

masking models are employed alongside detection/discrimination CSFs in many metrics that 

aim to describe fidelity [34] (these metrics are defined in Section 3.1.3); it is expected that 

such modelling would also benefit spatial capture system IQMs. The cCSF and cVPF 

account for visual masking with respect to complex suprathreshold signals and are expected 

to be more relevant functions for image quality modelling than both traditional CSFs, the 

iCSF and the iVPF. The cCSF and cVPF are both scene-dependent with respect to the 

contrast spectrum of the image and, therefore, may account for scene-dependent gain and 

offset in correlations between IQM scores and observer image quality ratings (as shown in 

Figure 1.5). Further, the shape of the cCSF and cVPF are often similar to one another (Figure 

2.15). This suggests that contextual contrast detection and discrimination processes may 

collapse into a single scene-dependent function for contextual human vision, which, if true, 

would be advantageous for the development of adaptive, scene-dependent IQMs.   

Since image quality evaluation involves comparison with internal memory representations 

[13], [55], it is unlikely that all relevant visuo-cognitive activity is accounted for by 

traditional CSFs, cCSFs, cVPFs, or any other bottom-up models of lower-level vision [14]. 

However, the cCSF/cVPF are expected to provide an appropriate half-way point after lower-

level visual processing, upon which a hypothetical ideal mechanistic IQM could expand.  

The author has developed optimal contrast weighting (OCW) [14] functions that describe 

relationships between CSFs/cCSFs/cVPFs and optimised spatial image quality, to 

investigate separately the higher-level cognitive processes of image quality judgement. 

Contrast optimisation was carried out by weighting nine single-octave contrast bands, 

ranging from 0.125 to 32 cycles/degree. This research found the cCSF and cVPF were more 

appropriate base functions for OCWs [14] than traditional CSFs that had been tested 

previously [138], [139]. Further, OCWs formed from high-pass filtered cCSFs and cVPFs 

outperformed AdobeTM Photoshop’s sharpening filters [14]. Although image quality 

optimisation and image quality modelling are not identical, the successful application of 

cCSFs/cVPFs in OCWs suggests they should also improve IQMs. Further research carried 

out in laboratories at the University of Westminster [201] has demonstrated that band 

adjustments are capable of compensating for image quality losses due to visual impairment.  
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2.6 Summary 

The reproduction of spatial luminance contrast signals influences subjective image quality 

significantly, particularly the attributes of resolution, sharpness, noise and contrast. Spatial 

imaging performance characterisation is fundamental to capture system design and quality 

modelling. The MTF, NPS and NEQ are used to characterise system signal transfer, noise 

and signal-to-noise performance, respectively. They are summarised in Table 2.2 and are 

founded on linear system theory. Current implementations of these measures are derived 

using test charts. They often characterise scene-dependent systems applying non-linear ISP 

algorithms inaccurately. This affects the accuracy of relevant spatial IQMs. This thesis 

develops novel scene-and-process-dependent system performance measures and IQMs to 

address these limitations.  

 

Table 2.2 Summary of the most relevant performance measures concerning spatial image quality.  

The CSF is a threshold function for human spatial visual sensitivity. Nevertheless, IQMs 

cascade it with the MTF and NPS as if it were a transfer function for all visuo-cognitive 

processes of spatial image quality judgement. Contextual visual models [8], [35] are 

expected to be more suitable for image quality modelling. Unlike traditional CSFs, they 

account for relevant scene-dependent effects of visual masking. This thesis investigates their 

use in IQMs.  
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Chapter 3  Image Quality Metrics 

The plethora of image quality metrics (IQM), and their contrasting characteristics, 

reflects the recent expansion of image quality analysis applications. This thesis is 

concerned with two-dimensional (2D) spatial IQMs for still images. Relevant genres 

are reviewed critically from a capture systems development perspective. The Signal 

Transfer Visual IQM (STV-IQM) and Multivariate Formalism IQM (MF-IQM) 

genres are concluded most appropriate.  

 

A novel framework is proposed for measuring spatial image quality while accounting 

for imaging system and human visual scene-dependency. This involves revising 

STV-IQMs and MF-IQMs to address the limitations of their current input parameters 

(discussed in Chapters 1 and 2). Frameworks for two further, novel IQMs are 

presented, based upon a similarly revised Noise Equivalent Quanta (NEQ) measure.  

3.1 Image Quality Metrics (IQM) Review 

Wang [202] states that objective image quality assessment represents a converging point of 

many research disciplines, including imaging systems development, signal and image 

processing, information theory, computer vision, visual psychophysics, machine learning 

and neural physiology. The diverseness of these approaches has evolved a broad spectrum 

of IQMs, developed for different applications.  

This review evaluates a large number of IQMs that describe spatial image quality. They are 

classified by genres defined by the author that relate to their characteristics, input parameters, 

and intended applications. Each genre is analysed critically from the perspective of spatial 

image quality evaluation of 2D still image capture systems. The genres are summarised 

below and in Table 3.1. Most other IQM reviews evaluate metrics from a particular genre 

only, with respect to their intended application only [38], [52], [203]–[224].  

The STV-IQMs, MF-IQMs and Image Fidelity Metrics (IF-IQM) are reviewed in Sections 

3.1.1, 3.1.2 and 3.1.3, respectively. They employ system performance measures and human 

visual system (HVS) models from imaging and vision science, respectively. The most 
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relevant STV-IQMs to this thesis are multivariate (i.e. they account for multiple attributes, 

unlike univariate metrics that account for one attribute only). They are based upon 

fundamental relationships between imaging system signal-to-noise performance and 

perceived image quality; these relationships are discussed in Section 2.4. MF-IQMs apply 

the Minkowski combination to account for the perceived effect of several attributes/artefacts. 

IF-IQMs describe image fidelity specifically, either as the probability of the detection of 

differences between two images, or the perceived magnitude of these differences. Metrics 

from the more recent Computational IQM (CP-IQM) genre are reviewed in Section 3.1.4. 

They are generally black-boxes that analyse image content, features, or natural scene 

statistics (NSS); most apply top-down visual modelling. Further terminology that is used to 

classify IQMs in this thesis is defined below. 

 

Table 3.1 Summary of image quality metric (IQM) genres; JND refers to just-noticeable difference. 

Full-Reference and Reduced-Reference IQMs compare information from a test and 

reference image (Figure 3.1). Full-Reference IQMs consider all information from these 

images; Reduced-Reference IQMs examine certain features only. Both aim to correlate with 

Differential Mean Opinion Scores (DMOS), or quality difference ratings in terms of just-

noticeable difference (JND), where observers responded to the question “which image is 

preferable and to what extent?”  

IF-IQMs are Full-Reference by default. Threshold IF-IQMs aim to correlate with the 

probability of detection of image differences, where observers responded to the question 

“can you see any differences between the images?” Suprathreshold IF-IQMs aim to correlate 
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with perceived image fidelity ratings in JND units, where observers responded to the 

question “what is the perceptual level of magnitude of differences between the images?”  

 

Figure 3.1 Generalisation of Full-Reference and Reduced-Reference image quality metric (IQM) 

characteristics. 

No-Reference IQMs do not require data from a reference image (Figure 3.2). They aim to 

correlate with Mean Opinion Scores (MOS), or quality ratings in terms of JND, where 

observers responded to the question “how do you rate the level of goodness of the image?” 

 

Figure 3.2 Generalisation of No-Reference (NR) image quality metric (IQM) characteristics. 

The mentioned psychophysical JND ratings in terms of image quality, fidelity and sharpness 

relate to the probability of seeing a difference between two images [1, p. 355]; Section 2.5 

defines 1 JND with respect to variation of the contrast of a stimulus. Psychometric scales 

relating to perceived image quality/fidelity/sharpness can be derived by various 

psychophysical paradigms [1, p. 356]: the paired comparison method, method of limits, 

method of adjustments, or the method of constant stimuli. The test image is a generally a 

distorted (or more distorted) version of the reference image. These psychophysical 

measurements are most relevant when they are output on ratio or interval scales. Ratio scales 

are the most advanced and have an origin equal to zero. Interval scales are floating scales.  

Equal differences in ratio/interval scale values are representative of equal perceptual 

differences in image quality or attribute strength.  



 57 

 

MOS and DMOS refer to ratings of image quality and quality difference, respectively, that 

are not expressed in JNDs. They are assigned to images from the image quality assessment 

databases [225]–[241] used to validate and benchmark CP-IQMs. These images can contain 

varying levels of white, Gaussian, masked, quantisation, or spatially varying noise, or 

artefacts associated with non-content-aware denoising, Gaussian blur, Joint Photographic 

Experts Group (JPEG) and JPEG 2000 compression and transmission errors. The most 

popular databases were derived by 5-point psychophysical categorical scaling tests, 

converted linearly to the range 1 to 100 [242]. 

Varying levels of calibration are applied by default by each IQM to optimise correlation with 

their corresponding image quality rating dataset (as illustrated in Figure 3.3). Certain 

univariate STV-IQMs such as the Acutance (Equation 3.1) apply minimum or no use of 

calibration constants. This is because they describe fundamental relationships between 

image quality, system performance measures and/or bottom-up HVS models. IF-IQMs and 

multivariate STV-IQMs require low levels of calibration typically, for the following reasons. 

Multivariate STV-IQMs are based upon simple, well-established signal-to-noise 

relationships between physical parameters and image quality. IF-IQMs apply extensive 

bottom-up visual modelling and fidelity perception is more straightforward to model than 

quality perception. MF-IQMs require greater levels of calibration and some curve fitting 

since they are more complex and account for several attributes and artefacts. CP-IQMs 

involve the highest levels of calibration. Most examples apply curve fitting extensively.   

 

Figure 3.3 Approximate relative levels of calibration employed by image quality metrics (IQM) 

from different genres and the Noise Equivalent Quanta (NEQ) system performance measure.  
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3.1.1 Signal Transfer Visual IQMs (STV-IQM) 

STV-IQMs have long been employed in the development and quality modelling of analogue 

and digital capturing systems. They have been reviewed comprehensively [38], [52], [213], 

[243]. Most univariate STV-IQMs [22, p. 54], [104], [196], [198], [199], [244]–[247] 

account for resolution and sharpness attributes. They cascade the Modulation Transfer 

Function (MTF) of system components (Equation 2.28) to model the imaging chain signal 

transfer. The contrast sensitivity function (CSF) is also cascaded to account for spatial HVS 

sensitivity. This cascade is integrated to yield a single figure sharpness (or quality) score.  

The Acutance measure of the IEEE P1858 Camera Phone Image Quality (CPIQ) Standard 

[22, p. 54] (Equation 3.1) is a recent univariate STV-IQM. 𝐶𝑆𝐹(𝑢) is contrast sensitivity 

with respect to retinal spatial frequency in cycles/degree, 𝑢. The cut-off frequency is 𝑢ÊLM. 

𝑀𝑇𝐹J¢JV@Ê(𝑢) and 𝑀𝑇𝐹�FJ�IL¢(𝑢) are MTFs of the device and the display, respectively.  

𝑄ë =
∫ 𝑀𝑇𝐹J¢JV@Ê(𝑢).𝑀𝑇𝐹�FJ�IL¢(𝑢). 𝐶𝑆𝐹(𝑢)	𝑑𝑢
�ìíî
»

∫ 𝐶𝑆𝐹(𝑢)	𝑑𝑢v
»

 (3.1) 

The display MTF is modelled by a sinc function that describes the frequency response of an 

ideal pixel [22, p. 16]. The constant 𝑘�FJ� is 0.0243 for a high-quality display of 100 pixels 

per inch (ppi) resolution.  

𝑀𝑇𝐹�FJ�IL¢(𝑢) = ï
sin�𝜋𝑘�FJ�𝑢�
𝜋𝑘�FJ�𝑢

ï (3.2) 

Multivariate STV-IQMs express image quality as the integral of a visually-weighted signal-

to-noise calculation, building upon the founding work of Shannon [171], Schade [43], 

Bartleson [111], Nelson [248] and Higgins [136].  

Barten’s [12] Square Root Integral with Noise (SQRIn) [8], [33] is the most widely applied 

multivariate STV-IQM. It was validated successfully with respect to analogue capture 

system images [249] varying in contrast, luminance, resolution, addressability, viewing 

distance and field size [52], [250]. It has since been reformulated by Töpfer and Jacobson 

[169]. Under certain conditions, however, its JND scaling and correlation with perceived 

graininess were found to be of limited accuracy [169]. It was found to model the perceived 

quality of non-linear JPEG6b compressed images with limited success [9], [10], [251].  
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Töpfer and Jacobson’s [169] Perceived Information Capacity (PIC) expands upon Shannon’s  

Channel Capacity [171] and the related Information Capacity measure [173, p. 631] (defined 

by Equations 2.40 and 2.41, respectively) and accounts for bottom-up HVS modelling. Its 

calculation is comparable to the SQRIn, with improved correlation with perceived graininess 

under low-contrast conditions and improved JND scaling [169].  

Equations 3.3 and 3.4 define the PIC [169] and Töpfer and Jacobson’s [169] reformulation 

of the SQRIn [12], respectively, for analog capture systems. In this thesis, all further 

references to the SQRIn refer to this reformulation unless otherwise stated. 𝑆(𝑢) and 𝑁(𝑢) 

are the signal power spectrum and Noise Power Spectrum (NPS) of the displayed print, 

respectively (given by Equations 3.5 and 3.6). 𝑁𝑃𝑆¡FJ�LI(𝑢) is the neural NPS [12]. 𝐶𝑆𝐹(𝑢) 

is Barten’s CSF [186] vs retinal spatial frequency, 𝑢, in cycles/degree. The maximum 

perceivable frequency is 𝑢ÊLM. 𝑘< and 𝑘Z are calibration constants.  

𝑃𝐼𝐶 = 𝑘<¦t 𝑙𝑛 ¹1 +
𝑆(𝑢)𝐶𝑆𝐹Z(𝑢)

𝑁(𝑢)𝐶𝑆𝐹Z(𝑢) + 𝑁𝑃𝑆¡FJ�LI(𝑢)
º
𝑑𝑢
𝑢

v

»
+ 𝑘Z	 (3.3) 

𝑆𝑄𝑅𝐼= =
𝑘<
ln 2 t ð

𝑆(𝑢)𝐶𝑆𝐹Z(𝑢)
𝑁(𝑢)𝐶𝑆𝐹Z(𝑢) + 𝑁𝑃𝑆¡FJ�LI(𝑢)

ñ
».ZÑ 𝑑𝑢

𝑢 + 𝑘Z

�ìíî

»

 (3.4) 

The signal spectrum of the displayed print from an analog system, 𝑆(𝑢), is expressed below 

[169]. 𝑀𝑇𝐹òFIÊ(𝑢), 𝑀𝑇𝐹I@=J(𝑢) and 𝑀𝑇𝐹�L�@B(𝑢) are the MTFs of the photographic 

negative, enlarger lens, and paper, respectively. 𝑚 is magnification and 𝑢 is retinal spatial 

frequency in cycles/degree. 𝑆¤(𝑢) is the scene power spectrum modelled by Barten [12].  

𝑆(𝑢) = 𝑆¤(𝑢).𝑀𝑇𝐹òFIÊZ (𝑚. 𝑢).𝑀𝑇𝐹I@=JZ (𝑚. 𝑢).𝑀𝑇𝐹�L�@BZ (𝑢) (3.5) 

The corresponding NPS of the displayed print,	𝑁(𝑢), is given below [169]. 𝑁𝑃𝑆�L�@B(𝑢) 

and 𝑁𝑃𝑆òFIÊ(𝑢) are the NPSs of the photographic paper and film, respectively. 

𝑀𝑇𝐹�L�@B(𝑢) and 𝑀𝑇𝐹I@=J(𝑢) are the MTFs of the photographic paper and enlarger lens, 

respectively. 𝛾�L�@B is the gamma of the paper, 𝑚 is magnification, and 𝑢 is retinal spatial 

frequency in cycles/degree. 𝑎== converts the density of the film to the printing density.  

𝑁(𝑢) = 𝑁𝑃𝑆òFIÊ(𝑚. 𝑢). 𝛾�L�@BZ .𝑚Z. 𝑎==Z .𝑀𝑇𝐹I@=JZ (𝑚. 𝑢).𝑀𝑇𝐹�L�@BZ (𝑢) + 𝑁𝑃𝑆�L�@B(𝑢) (3.6) 
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The Effective Pictorial Information Capacity (EPIC) metric was developed by Jenkin et al. 

[195], [252]. It is based upon Shannon’s [171] information capacity, like the Perceived 

Information Capacity [169]. It is computed as 𝑐 in Equation 2.41 [136] as follows. The 

effective pixel size, 𝑛, is given by the width of the Line Spread Function (LSF) at 

approximately 50% of its peak value. This LSF is calculated [195] as the modulus of the 

inverse discrete Fourier transform (DFT) of the cascade of the imaging chain’s MTF and the 

optical MTF of the eye (defined in Equation 2.57). The number of effective distinguishable 

signal levels, 𝑚, is modelled by the method of Altman and Zweig [253] according to the 

standard deviation of the noise of the system. Initial validations were carried out with respect 

to JPEG [195], [252] and JPEG 2000 [252] compressed images of scenes. Further validations 

with respect to images of scenes that varied in sharpness and noisiness found the EPIC 

correlated well with mean image quality ratings over several scenes, but not with ratings for 

individual scenes containing unusual structural content [254].  

Multivariate STV-IQMs, in particular, are well suited for capture system design and quality 

modelling. They describe relationships between spatial image quality and real fundamental 

physical quantities related to imaging system performance, the HVSs’ physiology and the 

viewing conditions. Their output scores are delivered by logical step-by-step calculations 

[185], [206] that establish causal justification for their relationship with perceived image 

quality. Their use of bottom-up spatial HVS models (defined in Section 2.5) makes them 

more accurate and appropriate than assumptions based only on signal transfer, noise, or 

signal-to-noise measurements (defined in Sections 2.3.2, 2.3.3 and 2.4, respectively).  

STV-IQMs are more straightforward to implement and less computationally intensive than 

MF-IQMs and IF-IQMs. They are modular and easily revised [185]. Their input parameters 

can be altered independently [206] enabling convenient simulation of imaging chain and 

viewing condition variations. This is beneficial when optimising the trade-offs between cost 

and quality. STV-IQMs do not require information from the output image. Thus, future 

systems can be analysed speculatively without the need for functional prototypes, providing 

the MTF and NPS of their components are known. The SQRIn and PIC are of primary 

interest to this project since they implement the MTF and NPS directly. 

Inaccuracies in MTF and NPS measurements from systems using non-linear content-aware 

processing are carried into the output scores of STV-IQMs (these inaccuracies are discussed 

in Sections 2.3.2 and 2.3.3, respectively).  
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The CSFs employed by STV-IQMs lack models for visual masking that are implemented in 

many IF-IQMs [34], [185], [255]. The CSF is also treated as an HVS transfer function, but 

it does not describe HVS processing of suprathreshold signals of all magnitudes [194] 

(assumptions regarding HVS linearity only apply close to threshold limits [183, p. 154], 

[256]). High-level cognitive processes associated with observer quality consciousness are 

also unaccounted for. They are discussed in Section 2.5. 

The above are expected to cause the poor overall correlations between STV-IQMs and the 

subjective image quality of non-linear systems/processes [9], [10], [251] (e.g. Figure 1.5).  

3.1.2 Multivariate Formalism IQMs (MF-IQM) 

Keelan’s [46] MF-IQM implements the Minkowski combination [257] that has been used 

traditionally as a visual perceptive model [258], [259], including in metrics for the combined 

perception of sharpness and graininess [111] and coding artefacts [260], [261]. Overall 

perceived image quality loss, 𝑄𝐿Ê, is modelled by combining calibrated univariate metrics 

for quality loss, 𝑄𝐿F, due to several attributes/artefacts, 𝑖 (Equation 3.7). 𝑛ÊLM is the power 

parameter (Equation 3.8) [46, p. 161]. Attributes (or artefacts) that are predicted to be of 

highest perceived magnitude dominate the overall quality loss score; this is in agreement 

with human perception [110], [111].  

𝑄𝐿Ê = ·Y (𝑄𝐿F)=ìíî

F
¸
Û <
=ìíî

Ý
 (3.7) 

The power parameter, 𝑛ÊLM, adjusts the level of dominance of the most significant attribute 

[46, p. 162]. If 𝑛ÊLM = 2, Equation 3.7 becomes a root mean square (RMS) sum representing 

the Euclidean distance. 𝑄𝐿ÊLM is the maximum quality loss for the system under the viewing 

conditions. The constants 𝑐< and 𝑐Z are 2 and 16.9, respectively [3]. 

𝑛ÊLM = 1 + 𝑐<	. tanh ·
𝑄𝐿ÊLM
𝑐Z

¸ (3.8) 

The IEEE P1858 CPIQ Standard [22] defines several attribute metrics that are calibrated for 

the purpose. Each attribute metric expresses quality loss in JNDs with respect to one of the 

following: texture loss/blur, visual noise, edge Spatial Frequency Response (SFR), local 

geometric distortion, lateral chromatic displacement, chroma level and colour uniformity. 
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Figure 3.4 summarises the function of the MF-IQM for the two attribute metrics of greatest 

interest to this project, texture loss and visual noise. This MF-IQM is referred to from here 

on in this thesis as the CPIQ metric. 

 

Figure 3.4 Diagram describing processing by the IEEE P1858 Camera Phone Image Quality 

(CPIQ) Standard’s [22] implementation of Keelan’s multivariate formalism IQM (MF-IQM) [46]. 

Input parameters are shown for the texture blur and visual noise attribute metrics only. 

Subjective quality loss, 𝑄𝐿ë@MV�B@_]KJJ, predicted by the texture loss/blur attribute metric is 

defined below [22, p. 56]. 𝑄ë is the system Acutance (Equation 3.1) computed using the 

direct dead leaves MTF (Equation 2.31). 

𝑄𝐿ë@MV�B@_]KJJ = 3.83	𝑄ô + 52.9	𝑄ôZ + 9.97	𝑄ôö, (3.9) 

where 

𝑄ô = 0																																										for							𝑄ë > 0.961															 

𝑄ô = 0.961 − 𝑄ë.																						for							𝑄ë ≤ 0.961														 

Subjective quality loss, 𝑄𝐿ÂFJ�LI_[KFJ@, according to the visual noise attribute metric [22, p. 

46] is given below. Ω is a visual noise objective metric for the system (defined in Equation 

3.11) [22, p. 69]. The constants 𝑎, 𝑏, and c are 0.319, 0.138 and 0.0049, respectively.  

𝑄𝐿ÂFJ�LI_[KFJ@ =
Ω − a
𝑏

−
𝑐	 × ln Û1 + 𝑏 × Ω − a𝑐 Ý

𝑏Z
														for										𝛺 > 0.319			 

(3.10)  

𝑄𝐿ÂFJ�LI_[KFJ@ = 0																																																																for								𝛺 ≤ 0.319		 
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The visual noise objective metric [22, p. 69] revises the metric of the same name from ISO 

15739 [168]. It is computed using noise images from captured uniform-tone patches. These 

images are first linearised by an inverse standardised RGB (sRGB) tone transfer function 

[132]. Three colour space conversions are then applied: linear sRGB to CIE XYZ (D65), 

CIE XYZ (D65) to CIE XYZ (Illuminant E), and CIE XYZ (Illuminant E) to AC1C2. The 

resultant image is passed through a 2D Fast Fourier Transform (FFT) and filtered by the 

following functions: Johnson and Fairchild’s [188] luminance and chrominance CSFs 

(defined in Equations 2.54 and 2.55, respectively), the modelled display MTF [22, p. 16] 

(defined by Equation 3.2), and a frequency domain high pass filter. The filtered image is 

transformed back to the spatial domain by applying the inverse 2D FFT. Three further colour 

space conversions are applied: AC1C2 to CIE XYZ (Illuminant E), CIE XYZ (Illuminant E) 

to CIE XYZ (D65), and CIE XYZ (D65) to CIELAB [262]. Finally, the total visual noise, 

Ω, is given below [22, p. 44]. 𝜎]Z, 𝜎LZ and 𝜎AZ are the variances of the L*, a*, and b* 

components of the processed noise image, respectively, and 𝜎]LZ  is its L*a* covariance. 

Ω = log<»(1 + 23	𝜎]Z + 4.24	𝜎LZ − 5.47	𝜎AZ + 4.77	𝜎]LZ )		 (3.11) 

The recently standardised [22] and validated [3] CPIQ metric and its underlying MF-IQM 

[46] have proven to be accurate and versatile models for capture system image quality [178], 

[263]. The Minkowski combination at their core and their various attribute metrics are highly 

modular. Predictions of quality loss by each attribute metric, and the overall quality loss, are 

justified by logical step-by-step calculations using standard imaging system performance 

measures and bottom-up visual models. The Minkowski combination requires attribute 

metrics to be independent [46, Sec. 11.4], [194]. This is not always the case for the image 

quality attributes [162], [163], but this has not proved a problem in validation studies [3]. 

The CPIQ metric is more computationally sophisticated and demanding than STV-IQMs or 

CP-IQMs. For example, its visual noise attribute metric involves six colour space 

transformations and three stages of Fourier filtration. The CPIQ metric also requires more 

extensive calibration than STV-IQMs or IF-IQMs (including some curve fitting) to ensure 

its attribute metrics are perceptually “balanced”. Thus, its relation to the underlying physics 

of the imaging and visual system is less direct than these IQMs. The input parameters of 

each attribute metric can be altered independently. However, care should be taken not to 

disturb this calibration. The CPIQ metric’s texture loss and visual noise attribute metrics 

were found to be primary drivers of overall perceived image quality [3]. But both these 
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attributes can be accounted for, in theory, by the simpler, multivariate STV-IQMs. The visual 

noise attribute metric uses noise images obtained from imaged uniform patches that have 

been shown to describe system noise inaccurately in Figure 2.3. The employed Johnson and 

Fairchild luminance CSF [188] is conveniently uncomplicated but does not account for 

visual masking, the viewing conditions, the luminance of the stimulus, or the field size.  

3.1.3 Image Fidelity IQMs (IF-IQM) 

IF-IQMs model the perceptibility (fidelity) of image differences (defined in Section 2.1). 

They are often erroneously described as expressing perceived image quality difference (i.e. 

the acceptability of any perceived differences). Threshold IF-IQMs model the probability of 

observers discriminating differences between an ideal (reference) and distorted (test) image 

[264]. Suprathreshold IF-IQMs model the perceived magnitude of suprathreshold 

differences between these images [265]–[267]. Both sub-genres are Full-Reference and have 

been reviewed extensively [218]–[223]. 

Threshold IF-IQMs have mainly been employed to assess and optimise compression 

algorithms [255], [264], [268]–[274], displays and imaging systems [185], [264]. The test 

and reference images pass through several processing stages, generalised by Figure 3.5. 

These stages can account for display performance, amplitude non-linearity, divisive 

normalisation, opponent-space colour vision, contrast sensitivity and visual masking. 

Probability modelling is then applied to the differences computed between the images at 

each pixel. This yields distortion maps that express the probability of discrimination of these 

differences, which can be pooled to single figures [264]. 

 

Figure 3.5 Generalisation of processing by threshold image fidelity metrics (IF-IQM), adapted 

from [264]. 
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Suprathreshold fidelity metrics [36], [265]–[267], [275], [276] account for spatial vision by 

filtering opponent colour space images with threshold CSFs [188] or suprathreshold contrast 

discrimination models [277] (Figure 3.6). The popular Spatial Extension to CIELAB (S-

CIELAB) [265]–[267] and comparable CSF/CIEDE2000 [36], [275] metrics then apply 

perceptual colour difference models from CIELAB [262] (∆𝐸LA∗ ) and CIEDE2000 [278] 

(∆𝐸»»∗ ), respectively. S-CIELAB has since been revised [276] to account for chromatic 

adaptation and local contrast detection [279]. 

 

Figure 3.6 Generalisation of processing by suprathreshold image fidelity metrics (IF-IQM). 

The modular, cascade-based IF-IQMs relate to the underlying physics of imaging systems 

and human vision and provide logical step-by-step pathways to the fidelity score. They 

generally use more comprehensive bottom-up HVS modelling than STV-IQMs and MF-

IQMs. These models include mechanistic 2D CSFs for luminance and chrominance 

detection or discrimination that can account for visual masking [264] or selectivity by 

orientation [34], [52]. IF-IQMs are unsuitable for capture system image quality modelling, 

however, for the following reasons. They do not account for capture system performance 

measures. Reference images do not exist in image capture scenarios. Perceived quality and 

fidelity do not always correlate [36] (as discussed in Section 2.1). They are more 

computationally intensive and complex than both STV-IQMs and CP-IQMs since they 

perform pixel-by-pixel comparisons between two images after several stages of processing. 

Suprathreshold IF-IQMs apply threshold CSFs as HVS transfer functions, which has 
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limitations as stated in Section 3.1.1 [194]. Threshold IF-IQMs apply the CSF correctly as a 

threshold visual model but often clip the probability of detection of suprathreshold image 

differences to value 1 [34], [185]. Thus, they are best suited for optimising perceptually 

lossless algorithms [36] or assessing barely perceptible image differences [276]. There is no 

universally accepted method for pooling their 2D distortion maps into single figure 

measurements. 

3.1.4 Computational IQMs (CP-IQM) 

CP-IQMs have increased rapidly in number since 2004 along with the amount of image 

quality assessment applications. The following are notable examples of the many reviews 

available [203]–[212], [214]–[217], [224]. CP-IQMs can be characterised broadly as black-

box models that establish statistical relationships between subjective MOS/DMOS datasets 

and objective image content, features, or NSS. Most examples apply top-down, hypothetical 

visual models. These models often aim to account for more complex, scene-dependent visual 

processes associated with image quality judgement.  

Full-Reference and Reduced-Reference CP-IQMs aim to correlate with DMOS ratings. They 

include structural, mathematical, information theoretical, machine learning, visual attention, 

and hybrid approaches. No-Reference CP-IQMs are categorised as machine learning and 

information theoretical approaches and aim to correlate with MOS ratings. Each approach is 

summarised below.  

The structural approach has been the most generally accepted Full-Reference paradigm [280] 

since the Structural Similarity (SSIM) Index and corresponding Mean Structural Similarity 

(MSSIM) [114] metric were introduced in 2004; both are based on the less stable Universal 

Quality Index (UQI) [281]. They assume structural distortions in the test image are the 

primary driver of perceived spatial image quality loss [114]. Structural distortions are 

defined, hypothetically [114], by reduced levels of local correlation with the reference image 

[282] after local variance (contrast) and luminance differences have been accounted for. 

Each stage of SSIM processing is summarised by Figure 3.7 and defined in Appendix B.  
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Figure 3.7 Diagram of processing by the Structural Similarity (SSIM) Index [114]. 

The SSIM has been extended to implement multi-scale [283], [284], wavelet domain [285] 

or Single Value Decomposition (SVD) [286], [287] processing or further classification of 

image structure [288], [289]. The limitations of structural approaches are as follows, Sheikh 

[126] states that there is no generally recognised way of defining perceived image structure 

or structural distortions. Haun and Peli [33] also describe the top-down HVS models 

employed as abstract and reduced, although some examples emulate visual masking.  

The simplicity and tractability [290] of earlier mathematical approaches such as the peak 

signal-to-noise ratio (PSNR) and Mean Square Error (MSE) has ensured they are the most 

commonly applied CP-IQMs to date [291]. They employ no HVS modelling, however, and 

thus lack perceptual relevance [292] and consistency [126]. For example, they are sensitive 

to intensity scaling, rotation, translation, and zooming beyond perceptual levels [280]. They 

also describe low-magnitude distortions spread over large areas as more detrimental to 

quality than higher-magnitude distortions that are more locally concentrated; this does not 

agree with known perceptual behaviour. Other CP-IQM approaches extend mathematical 

approaches directly [100], [281], [293]–[296], such as many visual attention approaches. 

Visual attention approaches apply saliency maps from eye-tracking experiments to weight 

distortion maps from other CP-IQMs, such as the MSE [100], PSNR [101], SSIM [101], 

[297] and the Visual Information Fidelity (VIF) [101]. Improvements in the accuracy of 

these IQMs were recorded after applying these weightings [100], [101], [297], particularly 

when gaze duration was accounted for [100]. Other research found minimal improvements 

[298], noting inaccuracies when perceptually relevant artefacts were in non-salient locations 

such as the sky and background [101], [298]. Weighting with algorithmically-generated 
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saliency maps (e.g. Figure 2.6) is less accurate or computationally efficient than with eye-

tracking data [101]. Adaptive strategies are recommended to account for these limitations 

[101].  

Reduced-Reference approaches [280], [299], [300] are relatively uncommon and compare 

extracted features such as edge maps or transform coefficients [280]. They are generally 

more computationally efficient than Full-Reference approaches, at the expense of accuracy.  

Hybrid approaches are uncommon. Most examples merge bottom-up low-level HVS models 

with hypothetical models for higher-level processing [194], [208], [228], [232], [301]. 

Alternatively, they adapt existing Full-Reference or Reduced-Reference CP-IQMs to 

account for low-level vision [296].  

Information theoretical approaches hold foundations in information theory [171] like the PIC 

[169] and EPIC [195] STV-IQMs. Their visual modelling, however, is top-down, abstract, 

and reduced [33]. The CSF and luminance masking models are not implemented, although 

the orientational selectivity of the HVS and divisive normalisation are accounted for. The 

Full-Reference Information Fidelity Criterion (IFC) [302] employs a wavelet-based 

orientation channel decomposition. The popular VIF [126] is a renowned No-Reference 

metric that builds upon the IFC.  

Machine learning approaches treat image quality modelling as a supervised regression 

problem with respect to data from the test (and reference) image(s) and MOS (or DMOS) 

ratings [210], [303], [304]. Firstly, image feature(s) are extracted to narrow down the input 

data. These are usually distortion specific such as blurring, noise, texture, ringing, or 

blocking [305], [306]. The characteristics and optimal field of application of the metric are 

determined by which feature(s) are selected. The IQM is then trained to optimise (minimise) 

the difference between its estimated and desired outputs. Convolutional Neural Networks 

(CNN) are often used to solve this regression task [307]–[316]. Certain CNN-based 

examples require no distortion-specific training [314]–[316]. They can operate in the spatial 

domain [316] or adapt to different domains using supervised [315] or unsupervised 

approaches [314]. 

The CP-IQMs are accurate, computationally efficient and suitable for real-time image 

quality assessment applications. They fill the growing industry demand for user-friendly 

IQMs with minimal input parameters; unlike the other IQM genres, they do not demand prior 
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knowledge of system performance measures or psychophysical variables [317]. The fact that 

they are computed from information from the system’s output image means they can often 

account for system performance scene-dependency and human visual scene-dependency.  

However, CP-IQMs are less suitable for image capture systems development [206] for the 

following reasons. They lack modularity and do not employ standard imaging system 

performance measures. Their top-down, non-mechanistic visual models are mostly 

hypothetical, with limited reference to psychophysical measurements, the visual 

neurophysiology, or the viewing conditions (see Section 2.5 for further information). This 

unconstrained approach to image quality modelling has accelerated the evolution of CP-

IQMs but also encourages short cuts when modelling complex physical and visuo-cognitive 

processes. These short cuts are particularly evident in the No-Reference IQMs that use CNNs 

to optimise correlation with subjective image quality datasets, with less regard for causation. 

The CP-IQMs have not been validated with respect to relevant capture system artefacts 

caused by non-linear content-aware demosaicing, denoising, sharpening, tone-mapping 

and/or compression, after accounting for lens blur, photon and sensor noise and Bayer 

sampling. Thus, if a benchmarking study finds that CP-IQMs correlate higher with 

MOS/DMOS than STV-IQMs or MF-IQMs, one cannot infer they are superior metrics for 

capture systems. 

Full-Reference and Reduced-Reference CP-IQMs cannot account for visually enhancing 

distortions (e.g. sharpening) since the reference image is assumed to be ideal; reference 

images are also unavailable in capture system image quality assessment scenarios. No-

Reference CP-IQMs are more suitable but are generally least mechanistic, modular, or 

accurate, with least relation to the physics of imaging systems or the HVS. 

3.2 Proposed Image Quality Metric (IQM) Frameworks 

The review concluded that MF-IQMs (Section 3.1.2) and multivariate STV-IQMs (Section 

3.1.1) are the metric genres most applicable to spatial capture system image quality 

modelling. The SQRIn [12] and PIC [169] were identified as STV-IQMs that were directly 

suited to this project. Likewise, the CPIQ metric [22] was a suitable MF-IQM.  

Frameworks to revise these three IQMs are presented in this section. Frameworks for two 

further IQMs are also defined (the log Noise Equivalent Quanta (log NEQ) and Visual log 
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NEQ), based upon a new scene-and-process-dependent NEQ (SPD-NEQ) measure. Each 

framework uses input parameters that aim to account for system signal transfer and noise 

scene-dependency, and spatial HVS scene-dependency. The rationale for using these 

parameters is given below.  

Section 2.3.3 demonstrated that standard uniform patch NPS measurements are of limited 

relevance to capture systems using non-linear content-aware image signal processing (ISP). 

Three novel scene-and-process-dependent NPS (SPD-NPS) measures are presented in 

Chapter 4. They are calculated from scene-and-process-dependent noise images shown in 

Figure 2.3, in order to account for these limitations. These noise images are computed from 

repeated captures of images of any input scene, or an appropriate test chart, referred to from 

here on as replicates. Consequently, they account for the scene-dependent characteristics of 

temporally varying noise, caused by the application of non-linear ISP.  

Section 2.3.2 discusses the limitations of applying MTFs measured from edges, sine-waves, 

white noise and even dead leaves signals, to capture systems using non-linear content-aware 

ISP. Chapter 5 presents three novel scene-and-process-dependent MTF (SPD-MTF) 

measures. These aim to address the above limitations by accounting for the scene-dependent 

signal transfer characteristics of non-linear ISP algorithms. They are calculated by revising 

the direct dead leaves MTF implementation [19] (Equation 2.31) to use SPD-NPS measures 

and DFT power spectra computed either from images of scenes or from suitable test charts.  

Section 2.5 concluded the Contextual CSF (cCSF) [35] and Contextual Visual Perception 

Function (cVPF) [8] should be more appropriate HVS models for STV-IQMs and MF-IQMs 

than the traditional CSFs used presently. This is because they account for visual masking 

from relevant suprathreshold signals and noise. This thesis investigates the use of the cCSF 

or cVPF in each IQM proposed. Note that each metric is defined in this chapter with respect 

to these visual functions but can also be computed using the Barten CSF [183, p. 36], [186]. 

3.2.1 Log Noise Equivalent Quanta (log NEQ), Visual log NEQ, and Scene-

and-Process-Dependent NEQ (SPD-NEQ)  

The SPD-NEQ revises the NEQ (defined in Equation 2.49) to account for system signal 

transfer and noise scene-dependency. The one-dimensional (1D) SPD-NEQ is defined below 

and described by Figure 3.8. 𝑀𝑇𝐹PÃá(𝑢), is the SPD-MTF, 𝑁𝑃𝑆PÃá(𝑢) the SPD-NPS, 𝜇 the 

mean linear signal, and 𝑢 is spatial frequency in cycles/degree.  
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𝑁𝐸𝑄PÃá(u) =
𝑀𝑇𝐹PÃáZ(𝑢)
𝑁𝑃𝑆PÃá(𝑢)/𝜇Z

		 (3.12) 

 

 

Figure 3.8 Diagram describing processing by the scene-and-process-dependent Noise Equivalent 

Quanta (SPD-NEQ) system performance measure. 

The log NEQ metric is defined by Equation 3.13. It provides a single figure image quality 

score by taking the logarithm of the integral of an appropriately weighted SPD-NEQ 

measure. The Visual log NEQ metric (Equation 3.14) accounts for the spatial sensitivity of 

the HVS but is otherwise identical to the log NEQ. In both equations, 𝑀𝑇𝐹áFJ�IL¢(𝑢) is the 

MTF of the display [22, p. 16] (Equation 3.2), 𝑁𝐸𝑄PÃá(𝑢) is the SPD-NEQ (Equation 3.12), 

𝑢 is the retinal spatial frequency in cycles/degree, 𝑢ÊLM is the maximum perceivable 

frequency. 𝐶𝑆𝐹ûK=V@MV�LI(𝑢) is either the cCSF [35] (Equation 2.59) or the cVPF [8] 

(Equation 2.60). 𝑘< and 𝑘Z are calibration constants concerning the gradient (gain) and 

intercept (offset) of the metrics.  

𝐿𝑜𝑔𝑁𝐸𝑄 = 𝑘<	log<» ¹t 𝑀𝑇𝐹�FJ�IL¢Z (𝑢)	𝑁𝐸𝑄PÃá(u)
𝑑𝑢
𝑢

�ìíî

»
º + 𝑘Z	 (3.13) 

𝐿𝑜𝑔𝑁𝐸𝑄¡FJ�LI = 𝑘<	log<» ¹t 𝐶𝑆𝐹ûK=V@MV�LIZ (𝑢)
�ìíî

»
𝑀𝑇𝐹�FJ�IL¢Z (𝑢)	𝑁𝐸𝑄PÃá(u)

𝑑𝑢
𝑢 º + 𝑘Z	 

(3.14) 

Both the log NEQ and Visual log NEQ involve minimal levels of calibration. Therefore, 

they relate directly to the fundamental NEQ signal-to-noise relationship defined in Section 

2.4. For both metrics, taking the logarithm of the integral was justified empirically. It caused 

them to predict observer image quality ratings from Chapter 6 more accurately than when 

the logarithm was not taken. Taking the logarithm also means they follow Fechner’s law, 

which states that the relationship between the intensity of a stimulus and its perceived 

intensity is logarithmic. It should also be noted that the logarithm of a similarly weighted 

signal-to-noise function is taken by both the photographic information capacity (Equation 
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2.41) and the PIC (Equation 3.3), prior to integration. Although Shannon’s channel capacity 

does not aim to describe visual perception specifically, it also takes the logarithm of the 

signal energy divided by the noise energy (Equation 2.40). 

Simplicity and functionality were prioritised when developing the log NEQ and Visual log 

NEQ. Simple, functional metrics are used disproportionately over more complex metrics by 

the industry, as the Pareto principle would suggest [318]. Consequently, neither metric 

accounts for display or visual noise, since these affect perceived image quality less than 

display signal transfer (MTF) and spatial visual sensitivity (CSF), respectively, for current 

displays at most output luminance levels. In order for these parameters to have been 

accounted for by the log NEQ and Visual log NEQ, the input parameters to the SPD-NEQ 

would have needed to be specified separately in both metrics. This would have increased the 

metrics’ complexity significantly (making them similar to the SQRIn and PIC).  

3.2.2  Revised STV-IQMs 

The revised SQRIn [12] is calculated using Equation 3.4 when the signal spectrum of the 

displayed image, 𝑆(𝑢), and the total imaging system noise, 𝑁(𝑢), are given by Equations  

3.15 and 3.16, respectively. The CSF parameter, 𝐶𝑆𝐹(𝑢), denotes either the cCSF [35] 

(Equation 2.59) or cVPF [8] (Equation 2.60). 𝑃𝑆JG@=@(𝑢) is the DFT power spectrum of the 

image of the scene (Equation 2.30). 𝑀𝑇𝐹PÃá(𝑢) and 𝑁𝑃𝑆PÃá(𝑢) are the SPD-MTF and SPD-

NPS of the capture system, respectively. 𝑀𝑇𝐹�FJ�IL¢(𝑢), 𝑁𝑃𝑆�FJ�IL¢(𝑢), and 𝛾�FJ�IL¢ are 

the MTF [22, p. 16] (Equation 3.2), NPS (Equation 2.36), and gamma of the display, 

respectively. All other parameters of Equation 3.4 are as previously described. 

𝑆(𝑢) = 𝑃𝑆𝑠𝑐𝑒𝑛𝑒(𝑢). 𝑀𝑇𝐹𝑆𝑃𝐷
2 (𝑢). 𝛾𝑑𝑖𝑠𝑝𝑙𝑎𝑦

2 . 𝑀𝑇𝐹𝑑𝑖𝑠𝑝𝑙𝑎𝑦2 (𝑢)	 (3.15) 

Similarly, the revised PIC [169] is computed by Equation 3.3, when 𝑆(𝑢) and 𝑁(𝑢) are 

given by Equations 3.15 and 3.16 as described above. 𝐶𝑆𝐹(𝑢) refers to either the cCSF [35] 

or cVPF [8]; all other parameters are as previously described. Figure 3.9 describes the input 

parameters and sub-processes for the revised SQRIn and PIC metrics.  

𝑁(𝑢) = 𝑁𝑃𝑆PÃá(𝑢). 𝛾�FJ�IL¢Z .𝑀𝑇𝐹Z�FJ�IL¢(𝑢) + 𝑁𝑃𝑆�FJ�IL¢(𝑢) (3.16) 

																																		≈ 𝑁𝑃𝑆PÃá(𝑢). 𝛾�FJ�IL¢Z .𝑀𝑇𝐹�FJ�IL¢Z (𝑢)				 
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Figure 3.9 Diagram describing processing by both the revised SQRIn [12] and PIC [169] metrics. 

3.2.3 Revised Camera Phone Image Quality (CPIQ) Standard Metric 

The revised CPIQ metric is defined below in four stages.  

A scene-and-process-dependent texture acutance metric is computed, 𝑄PÃá (Equation 3.17). 

𝑀𝑇𝐹PÃá(𝑢) is the SPD-MTF, 𝐶𝑆𝐹ûK=V@MV�LI(𝑢) is the cCSF [35] (Equation 2.59) or cVPF 

[8] (Equation 2.60), 𝑀𝑇𝐹�FJ�IL¢(𝑢) is the MTF of the display [22, p. 16] (Equation 3.2), 𝑢 

is retinal spatial frequency in cycles/degree and 𝑢ÊLM is the cut-off frequency. It is based on 

the texture acutance metric from the IEEE P1858 CPIQ standard (Equation 3.1) [22, p. 54]. 

𝑄PÃá =
∫ 𝑀𝑇𝐹PÃá(𝑢).𝑀𝑇𝐹�FJ�IL¢(𝑢). 𝐶𝑆𝐹ûK=V@MV�LI(𝑢)	𝑑𝑢
�ìíî
»

∫ 𝐶𝑆𝐹ûK=V@MV�LI(𝑢)	𝑑𝑢
v
»

	 (3.17) 

A scene-and-process-dependent visual noise objective metric, ΩPÃá, is computed by revising 

the equivalent metric from the IEEE P1858 CPIQ standard (Equation 3.10) [22, p. 46], as 

follows. The input noise image is a scene-and-process-dependent noise image (defined in 

Section 4.1). The luminance channel of each processed noise image is filtered with the cCSF 

[35] (Equation 2.59) or cVPF [8] (Equation 2.60), instead of Johnson and Fairchild’s CSF 

[188] (Equation 2.54).  

𝑄PÃá and ΩPÃá are substituted in place of 𝑄ë and Ω in Equations 3.9 and 3.10, respectively, 

to yield revised attribute metrics for texture loss, 𝑄𝐿ë@MV�B@_]KJJ, and visual noise, 

𝑄𝐿ÂFJ�LI_[KFJ@. All other parameters remain as defined previously.  

Finally, a revised metric of overall quality loss (𝑄𝐿Ê) is calculated with respect to the above 

revised attribute metrics using Equation 3.7; all other parameters are as previously described. 
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Figure 3.10 describes processing by the revised CPIQ metric. Note that the remaining five 

attribute metrics shown in Figure 3.4 can also be incorporated when calculating 𝑄𝐿Ê.  

 

Figure 3.10 Diagram describing processing by the revised CPIQ metric [22] (with respect to 

texture blur and visual noise attribute metrics only). 

3.3 Summary 

Spatial IQMs have been classified by genre and reviewed critically from a capture systems 

development viewpoint. The MF-IQM and multivariate STV-IQM genres were concluded 

as most applicable to this project. The CPIQ metric [22], SQRIn [12] and PIC [169] were 

selected as suitable IQMs from these genres.  

A novel image quality measurement framework was proposed that accounts for imaging 

system and human visual scene-dependency by using scene-dependent input parameters. 

Following this framework, the three IQMs selected above were revised to implement SPD-

NPS and SPD-MTF system performance measures (defined in Chapter 4 and Chapter 5, 

respectively). They also applied either the cCSF [35] or cVPF [8] as visual models, although 

traditional CSFs can also be used. Two further, novel IQMs were proposed based upon a 

similarly revised NEQ framework. Chapter 6 validates each of these IQM frameworks. 
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Chapter 4 Validation of Scene-and-Process-

Dependent NPSs (SPD-NPS) 

The scene-and-process-dependent Noise Power Spectrum (SPD-NPS) framework is 

defined in this chapter. It characterises temporally varying capture system noise with 

respect to any input signal, accounting for system scene-dependency. Three novel 

SPD-NPS measures are defined that apply this framework. Each characterises one of 

the following:  

1) capture system noise with respect to an image of a given input scene; 

2) the average real-world noise of the system with respect to an image dataset 

comprising of different scenes depicting a variety of subjects;   

3) system noise with respect to the dead leaves chart with an “average scene 

spectrum”. 

Each measure is validated by evaluating measurements from image capture 

simulation pipelines, applying linear and non-linear image signal processing (ISP). 

Finally, a novel measure for capture system noise scene-dependency is presented and 

validated. 

4.1 Derivation of the SPD-NPS Measures 

The Noise Power Spectrum (NPS) is defined in Section 2.3.3. It is commonly measured from 

captured uniform tone patches. For systems applying non-linear ISP algorithms, however, 

Figure 2.3 demonstrates that noise in captured patches is often unrepresentative of 

temporally varying noise in captured scenes. For such systems, the latter forms structured 

patterns that are dependent on both the local scene content and the ISP algorithms used (i.e. 

the noise is local-content-dependent and scene-dependent).  

Non-linear content-aware denoising influences this behaviour in particular. Uniform patches 

provide ideal conditions for these algorithms to remove noise (Section 2.2.1). Thus, for 

systems that apply non-linear denoising, noise images derived from uniform patches are 
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expected to underestimate noise in a given captured scene, as well as the average level of 

system noise in real-world capture scenarios. This renders uniform patch NPS measurements 

unsuitable for image quality modelling (as discussed in Section 2.3.3).  

The SPD-NPS measuring framework is described by Figure 4.1. The framework uses a more 

appropriate scene-and-process-dependent noise image. Equation 2.39 computes this RGB 

noise image when 𝑔(𝑥, 𝑦) is a captured frame of any scene/target, and 𝑔̅(𝑥, 𝑦) is the mean 

image of 𝑁 registered replicates of the scene/target, 𝑟F(𝑥, 𝑦), given by Equation 4.1. These 

noise images are computed using ten replicates in this thesis. This number was found to be 

adequate in related prior art [161]. Averaging the replicates cancels out temporally varying, 

random noise, meaning 𝑔̅(𝑥, 𝑦) contains only the image signal and capture system fixed 

pattern noise (FPN). Thus, subtracting 𝑔̅(𝑥, 𝑦) from 𝑔(𝑥, 𝑦) yields a noise image containing 

temporally varying noise only. The two-dimensional (2D) SPD-NPS is then computed using 

Equation 2.36, where 𝐼(𝑥, 𝑦) is the luminance component of the scene-and-process-

dependent noise image; other parameters are as previously defined. The 1D SPD-NPS is 

given as the rotational average of this 2D SPD-NPS.  

 

Figure 4.1 The scene-and-process-dependent Noise Power Spectrum (SPD-NPS) framework. 

 

𝑔̅(𝑥, 𝑦) =
1
𝑁	ýY𝑟F(𝑥, 𝑦)

[

F\<

þ (4.1) 

Three SPD-NPS measures from this thesis implement the SPD-NPS framework. Each 

measure is defined below and summarised in Table 4.1 alongside the uniform patch NPS. 

They are further used in the scene-and-process-dependent Modulation Transfer Function 

(SPD-MTF) measures, presented in Chapter 5, and in the updated and novel image quality 

metrics (IQM) defined in Chapter 3. Note that from here on in this thesis, when the term 

noise is used in the context of an imaging system, it refers to the temporally varying noise 

of the system only, unless otherwise specified. 
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Table 4.1 Summary of the uniform patch Noise Power Spectrum (NPS) and the scene-and-process-

dependent NPS (SPD-NPS) measures. N is the number of replicate captures of each scene/chart.  

The pictorial image SPD-NPS implements the SPD-NPS framework with respect to an 

image of any input pictorial scene. It can also be computed with respect to any static real 

scene. It accounts for the effect of the scene content on temporally varying noise, produced 

by systems applying non-linear content-aware ISP. Thus, it is the only measure capable of 

characterising noise in such systems with respect to a given input scene. It is expected to be 

a valuable input parameter for IQMs designed for non-linear systems. This is because it aims 

to compensate for the scene-dependent gain and offset in correlations between observer 

image quality ratings and current IQM output scores, as exemplified by Figure 1.5.  

The dead leaves SPD-NPS implements the SPD-NPS framework with respect to the dead 

leaves chart that models the average power spectrum of natural scenes [17]. By measuring 

noise with respect to this mathematically generated “average scene signal”, the dead leaves 

SPD-NPS provides a convenient approximation of the average real-world level of temporally 

varying system noise. It is expected to be a more appropriate measure than the uniform patch 

NPS measure for systems applying non-linear content-aware ISP. However, assumptions 

associated with dead leaves Modulation Transfer Function (MTF) measurements also apply 

to it and may affect its accuracy (these assumptions are discussed in Section 2.3.2).   

Two other noise measures derived from dead leaves signals have been described by Artmann 

[18]. The first determines the level of system noise indirectly, by subtracting the system’s 

intrinsic dead leaves MTF from its original dead leaves MTF [18]; strictly speaking, it is not 

an NPS measure. The second assumes that, the power spectrum of a hypothetical “noiseless 

captured test chart image” can be simulated by cascading the dead leaves test chart’s power 

spectrum with the intrinsic dead leaves MTF [18]. The NPS of the system is then measured 
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indirectly by subtracting the former power spectrum from the captured test chart’s power 

spectrum [18]. Errors may result in both measures from the intrinsic MTF not accounting 

for the effects of reversible image processing [161] (as noted in Section 2.3.2), which is used 

by many current capture systems. The effects of such reversible processes are taken into 

account in the dead leaves SPD-NPS, and the other SPD-NPS measures presented in this 

thesis.  

The mean pictorial image SPD-NPS is the only current measure for characterising the 

average real-world level of temporally varying system noise, accounting for the system’s 

processing of real images of scenes, or the scenes themselves. It accounts for system scene-

dependency. It is derived as the mean of a number of pictorial image SPD-NPS 

measurements, across a large and representative set of images of different scenes (i.e. it is 

given by 𝐹;(𝑠) in Figure 1.4(b), if 𝐹(𝑠<) to 𝐹(𝑠=) are SPD-NPSs for pictorial scene images 

𝑠< to 𝑠=, respectively).  

It is unconventional to average over NPSs, or MTFs, in this fashion. However, Jenkin [2, p. 

130] has demonstrated that averaging over MTFs mitigated inaccuracies caused by simulated 

quantisation noise provided that variations in the output modulation were distributed evenly 

around the input signal modulation. Equations 4.2 to 4.5 adapt the derivation of Jenkin’s 

method [2, p. 130] to express how the mean pictorial image SPD-NPS tends toward the 

hypothetical “correct average real-world SPD-NPS” of the system as the scene image set 

increases in size, provided that comparable conditions are met.  

Let the relationship between the pictorial image SPD-NPS, 𝑁PÃá(𝑢), the hypothetical 

“correct average real-world SPD-NPS” of the system, 𝑁h@=@BLI(𝑢), and the variation 

between them, ∆𝑁PÃá(𝑢), be expressed below for one image of a scene. 𝑢 is spatial 

frequency. 

𝑁PÃá(𝑢) = 𝑁h@=@BLI(𝑢) ± ∆𝑁PÃá(𝑢) (4.2) 

When pictorial image SPD-NPS measurements for each image (𝑖) in a set of 𝑝 images of 

different scenes are averaged, the mean pictorial image SPD-NPS, 𝑁E@L=_PÃá(𝑢), is 

expressed as: 
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𝑁E@L=_PÃá(𝑢) =
1
𝑝 !Y𝑁h@=@BLIF(𝑢) ± ∆𝑁PÃáF(𝑢)

�

F\<

" (4.3) 

This summation is rewritten in expanded form: 

𝑁E@L=_PÃá(𝑢) =
1
𝑝Y𝑁h@=@BLIF(𝑢) 	+		

1
𝑝Y±∆𝑁PÃáF(𝑢)

�

F\<

�

F\<

 (4.4) 

When the limit of 𝑝 → ∞ is considered, the first and second term tend toward 𝑁h@=@BLI(𝑢) 

and zero, respectively, provided that ∆𝑁PÃáF(𝑢) is distributed evenly about zero. Thus, if the 

pictorial image SPD-NPS for a number of images of different scenes, 𝑁PÃáF(𝑢), is 

distributed evenly around 𝑁h@=@BLI(𝑢), the mean pictorial image SPD-NPS, 𝑁E@L=_PÃá(𝑢), 

tends toward the average real-world SPD-NPS of the system, 𝑁h@=@BLI(𝑢).  

𝑁E@L=_PÃá(𝑢) lim�→v =	
1
𝑝
Y𝑁h@=@BLIF(𝑢) 	+		

1
𝑝
Y±∆𝑁PÃáF(𝑢)
�

F\<

�

F\<

		→ 		𝑁𝐺𝑒𝑛𝑒𝑟𝑎𝑙(𝑢) (4.5) 

Provided the scene image set is large enough and reflects the characteristics of commonly 

captured scenes, the mean pictorial image SPD-NPS accounts for the effect of scene-

dependent system behaviour on the average real-world system noise power. If the individual 

pictorial image SPD-NPS measures are biased, however, this bias is carried into the mean 

measure.  

The SPD-NPS measures, and particularly the mean pictorial image SPD-NPS, are more 

computationally complex and more complicated to implement than the uniform patch NPS. 

Reducing the number of replicates lowers computational demand but causes underestimation 

of system noise. All replicates must be registered to mitigate bias that results from the scene-

and-process-dependent noise image being calculated inaccurately. Comparable practical 

measurements of noise from a smartphone [7] and digital single-lens reflex (DSLR) [161] 

camera required captured replicates to be registered using software, despite the use of a 

tripod [7], [161] and camera remote [7] during capture.  

The SPD-NPS measures do not account for FPN which appears in all replicates, 𝑟F(𝑥, 𝑦), 

and is thus present in the mean image, 𝑔̅(𝑥, 𝑦), in Equation 4.1. For the same reasons, certain 

fixed patterns of artefacts that are caused by the mosaicing-demosaicing process are also 
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unaccounted for (shown in Figure 4.2). It should be noted that the uniform patch NPS also 

fails to account for such artefacts, since the artefacts only manifest when spatially varying 

input signals are captured. These artefacts are caused by the sparse sampling of information 

in fixed patterns by the Colour Filter Array (CFA), and the limited capabilities of 

demosaicing algorithms to recover the lost information. The intensity of these artefacts 

relates to the local gradient of each colour channel and is thus scene-dependent. Equation 

4.6 isolates the artefacts, 𝑁ôFM@�(𝑥, 𝑦), by modifying the image capture simulation pipelines 

described in Section 4.2. 𝐼 I�BB@�(𝑥, 𝑦) is the image of the scene after lens blur has been 

modelled. Bayer array sampling and demosaicing were then applied to this image, yielding 

an image corrupted with the mentioned artefacts, 𝐼ûKBB��V@�(𝑥, 𝑦).  

𝑁ôFM@�(𝑥, 𝑦) = 𝐼ûKBB��V@�(𝑥, 𝑦) − 𝐼 I�BB@�(𝑥, 𝑦) (4.6) 

 

 

Figure 4.2 Fixed patterns of artefacts caused by demosaicing the ‘Students’ image [7] (left), and the 

detail of it (right). Global contrast was enhanced to increase artefact intensity.   

A final measure, the pictorial image SPD-NPS standard deviation, describes the level of 

scene-dependent variation in measurements of the system’s temporally varying noise. This 

variation is either caused by genuine system scene-dependency, or scene-dependent 

variation in the level of measurement error of the pictorial image SPD-NPS. It is the only 

current measure for system noise scene-dependency. It is computed by Equation 4.7 as the 

standard deviation, 𝑠(𝑢), of the pictorial image SPD-NPSs, 𝑁PÃáF(𝑢), from a set of 𝑝 images 

of different scenes, where 𝑢 is spatial frequency. 𝑁E@L=_PÃá(𝑢) is the mean pictorial image 
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SPD-NPS. Like the mean pictorial image SPD-NPS, this scene-dependency measure 

becomes more representative as 𝑝 increases, provided its input parameters are unbiased.  

The average real-world level of system noise and its level of scene-dependency are described 

by subtracting and adding the pictorial image SPD-NPS standard deviation from the mean 

pictorial image SPD-NPS (as demonstrated by the broken lines in Figure 4.6). 

𝑠(𝑢) = X
1

𝑝 − 1Y(𝑁PÃáF(𝑢) − 𝑁E@L=_PÃá(𝑢))Z
�

F\<

 (4.7) 

4.2 Validation Methodology 

The SPD-NPS measures were validated by analysing measurements from two simulated 

image capture pipelines, generated in MATLABTM (Figure 4.3). Controllable outputs were 

obtained from each pipeline after demosaicing, denoising and sharpening ISP was applied 

under a variety of simulated exposure conditions, with respect to 50 input images of scenes. 

This enabled each measure to be computed and compared after each ISP stage to evaluate 

pipeline scene-dependency and measurement accuracy. The pipelines were also used to 

validate the SPD-MTF measures and IQM frameworks in Chapters 5 and 6, respectively. 

 

Figure 4.3 The linear (a) and non-linear (b) camera simulation pipeline modelling and image signal 

processing (ISP) stages. Output images were generated at points indicated by the red arrows. 
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Modelling that was common to both pipelines is shaded grey. ISP stages for which the linear and 

non-linear algorithms had very different effects on image quality to one another are shaded blue.  

Both pipelines implemented identical modelling of physical camera processes, including 

lens blur, photon and sensor noise, image pre-processing and Bayer array sampling. One 

pipeline then applied linear demosaicing, denoising and sharpening ISP. The other pipeline 

applied the equivalent non-linear content-aware ISP. These pipelines are referred to as the 

linear pipeline and the non-linear pipeline, respectively, in this thesis.  

The physical processes of digital image capture, described below, were modelled first in 

both pipelines. These processes are shown in grey in Figure 4.3. Their modelling did not aim 

to replicate a particular real system or simulate every relevant process on a quantum level. 

However, it produced images with comparable blur and noise artefacts to real physical 

systems for a range of exposure conditions. These images were then processed by published 

ISP algorithms. Note that it is the interactions between such ISP algorithms and the image 

signals and noise that are of most interest to this thesis, as well as the capabilities of the 

proposed measures/metrics to account for them.  

Lens blur was modelled by convolving the input scene image with a Gaussian approximation 

for the central lobe of a diffraction-limited lens’ airy disk [319], according to the f-number 

and pixel pitch of an iPhone 6 smartphone [320], [321]; outer airy rings were ignored. The 

peak wavelengths for the R, G and B channels were 570nm, 550nm, and 450nm, 

respectively. The Point Spread Function (PSF) kernel dimensions were 9-by-9 pixels.  

2D Poisson noise was modelled using the Imnoise MATLABTM function [322] at 

maximum linear signal-to-noise ratios (SNR), ©𝑞, of 5, 10, 20 and 40, where 𝑞 is the average 

number of events according to Equation 2.32. Thus, the SNR was computed at a normalised 

fractional linear luminance of 1 (i.e. at full-well capacity). These SNRs represent excellent 

(SNR 40) to very poor exposure conditions (SNR 5). The reduced quantum efficiency of 

blue and red pixels was modelled by scaling down the number of events in the R and B 

channels by factors of 2 and 3.33, respectively [165]. Read noise and dark current noise were 

modelled in one step, by adding limited levels of Gaussian noise to each channel with 

increased mean and variance at lower SNRs. This accounted for the fact that DSNU is 

dependent on exposure time (which was assumed longer at lower SNRs). FPN was not 

modelled.  
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The following pre-processing was then applied, in order:  

1) The image was delinearised by applying a Gain Offset Gamma (GOG) model for the 

opto-electronic conversion function (OECF) with the gain, offset and gamma set to 

1, 0 and 0.4545, respectively.  

2) The gain was increased slightly.  

3) Black and white level adjustments were applied using the imadjust MATLABTM 

function, to remove the noise floor and recover highlights, respectively.  

The gain, black and white level adjustments were more intensive at lower SNRs.  

Pixel information was sampled from the R, G and B channels of the image according to a 

‘grbg’ Bayer CFA. Most capture system simulations implement Bayer array sampling before 

noise modelling. The chosen order, however, yielded identical output images to this order 

and facilitated the independent scaling of noise in each colour channel. 

The pipelines then implemented the ISP algorithms described below. If constants are quoted, 

the first constant is with respect to the pipelines tuned at a Poisson noise SNR of 5 and the 

second at SNR 40. Some capture systems can perform demosaicing, denoising and 

sharpening using a single algorithm, or two algorithms. However, the pipelines used three 

separate algorithms so that the effect of each process could be characterised in isolation. 

Algorithms capable of performing two of the above processes were restricted to perform one 

process only.  

The linear pipeline used the following algorithms. Demosaicing was by the Malvar et al. 

[30] algorithm. It estimates the luminance gradient across each real CFA pixel after bilinear 

interpolation, with respect to the interpolated neighbouring pixels. The two interpolated 

colour channels at the same pixel location are adjusted according to this luminance gradient. 

This preserves image edges. The filter is linear since its region of support is within a 5x5 

pixel window [30]. Denoising was by 2D spatial domain Gaussian filtering using the 

Imgaussfilt MATLABTM function [323], with a standard deviation of between 1.8 and 

0.45 pixels. Sharpening was by the imsharpen MATLABTM function’s [85] unsharp mask 

(USM) with a strength of between 1.2 and 2, Gaussian low-pass filter radius of between 3 

and 1 pixels, and no thresholding applied.  

The non-linear pipeline applied the following algorithms. Demosaicing was by the One Step 

Alternating Projections (OSAP) [70] algorithm. It revises the Alternate Projections [72] 
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algorithm to perform one filtering step in the polyphase domain [70] to establish inter-

channel correlations and mitigate aliasing [72]. The algorithm was set to full convergence. 

Denoising was by the Block Matching and 3D Filtering (BM3D) [31] algorithm using the 

‘normal’ profile. It operates on a patch-wise level as described in Section 2.2.1. It uses the 

sliding window transform to search for matching image “blocks”. These blocks are 

assembled and averaged in a three-dimensional (3D) transform domain. Image colour 

channels were then sharpened separately using the detail enhancement property of the 

Guided Image Filter (GIF) [32]. The filtered channels were then concatenated to obtain the 

sharpened RGB image. The local window radius of the filter was set to 1. The regularisation 

parameter was set between 0.02 and 0.045. No external guidance image was specified. 

The input parameters of the denoising and sharpening algorithms were tuned for each 

exposure level to optimise output image quality (judged empirically by the author) after all 

ISP algorithms were applied. Tuning was carried out on a MacBook Pro Retina (2016) 

display at a viewing distance of 60cm, giving a Nyquist frequency of 46 cycles/degree.  

Data generated at each exposure level is referred to, from here on, by the Poisson noise SNR 

of the pipeline it was obtained from. However, the SNR of the output images from the 

pipelines (Equation 2.43) changed after each processing stage and differed from the Poisson 

noise SNR. For example, prior to denoising, the output image SNR was lower than the 

Poisson noise SNR, since it also accounts for read noise, dark current noise, and the scaling 

of Poisson noise in the R and B channels. Denoising and sharpening also affected the output 

image SNR significantly. 

The fifty input images of scenes were selected according to the following rationale:  

1) The set should represent the subject matter and signal content of commonly captured 

scenes.  

2) The set should contain a variety of spatial contents, including naturally occurring and 

human-made structural signals, textures, edges, and uniform-tone regions.  

3) Images should be captured under various natural lighting conditions and depths of 

field.  

4) Each image must contain minimal artefacts and represent its subject faithfully.  

5) The minimum horizontal/vertical pixel dimension, 𝑑, of each image must satisfy 𝑑 >

512.   
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Scene images 1-37 and 38-50 are shown in Appendix C and Appendix D, respectively. Scene 

images 1-17 were from the LIVE Image Quality Assessment Database [225]. Scene images 

18-26 and 38-50 were from University of Westminster publications [7], [8], [14], [102]. 

They were captured using characterised professional digital single-lens reflex (DSLR) 

cameras. Scene images 27-37 were captured using the same DSLR, lens, focal length, 

aperture and ISO as scene images from [14].  

The dimensions of these images were reduced to 512-by-512 pixels by a combination of 

bicubic interpolation and cropping according to Equation 4.8. 𝑑 is the minimum pixel 

dimension of each image, 𝐹¥[(𝑥, 𝑦). 𝐹¤&ë(𝑥, 𝑦) is the resized and cropped image. The 

functions 𝐵{… } and 𝐶{… } describe bicubic interpolation by a scale factor of 0.5 and 

cropping to 512-by-512 pixels, respectively. If 𝑑 ≥ 2048 the process was repeated until 

512 ≤ 𝑑 < 1024. 

If					𝑑 ≥ 1024,																													𝐹¤&ë(𝑥, 𝑦) = 𝐵{𝐹¥[(𝑥, 𝑦)}, (4.8) 

elseif				512 ≤ 𝑑 < 1024,									𝐹¤&ë(𝑥, 𝑦) = 𝐶{𝐹¥[(𝑥, 𝑦)},																	 

else																																																Reject	Image																																										 

Each scene image was then windowed by a bespoke method that tapered its edges to a neutral 

pixel value but preserved its signal as much as possible ( Figure 4.4(b)). This action stopped 

periodic replication artefacts, or wraparound error (present in Figure 4.4(c)) from corrupting 

its two-dimensional (2D) luminance spectrum ( Figure 4.4(d)). These artefacts manifest 

when the opposite edges of the image of the scene differ in luminance, since the luminance 

spectrum is computed using the discrete Fourier transform (DFT) that is a periodic function 

[324, pp. 116–120].  

The edges of all scene-and-process-dependent noise images were of similar luminance. 

Thus, periodic replication artefacts did not corrupt their DFT luminance spectra significantly 

or affect the accuracy of the various SPD-NPS measures. However, such artefacts biased 

MTFs measured using unwindowed scene images significantly (as discussed in Section 5.1). 
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 Figure 4.4 Two-dimensional (2D) discrete Fourier transform (DFT) log luminance spectra for the 

‘Students’ image [7]: before, (c), and after windowing, (d) using the mask (e).  

To window each image, a mask was applied as a transparent layer in Adobe PhotoshopTM. 

The mask was generated in MATLABTM as described below:  

1) An RGB image of 512-by-512 pixels dimensions and normalised pixel value 1 was 

created.  

2) A 2D raised cosine function of 128-by-128 pixels dimensions, frequency 1/128 

cycles/pixel, minimum value 0.46, and maximum value 1 was generated by revising 

the method of Eddins [325]. 

3) The quadrants of 2) were copied to the corresponding corners of 1). 

4) The remaining horizontal/vertical edges of 1) were tapered by copying appropriate 

pixels from the horizontal/vertical edges of the quadrants of 2). 

All input images were linearised before being processed by the pipelines. This was achieved 

using a GOG model that corrected for the gamma of the capture system of 0.4545 (or 1 2.2⁄ ); 

the gain and offset were set to 1 and 0, respectively.  

4.3 Results 

The various SPD-NPS measures and the uniform patch NPS are presented for the linear and 

non-linear pipelines at SNRs 40 and 5. These measurements are analysed after each ISP 
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stage, as indicated by the red arrows in Figure 4.3. Measurements were also taken at SNRs 

10 and 20, which showed comparable trends. Each measurement was “smoothed” using a 

seven-segment moving average filter. MATLABTM code for Burns’ direct dead leaves MTF 

[29] implementation was adapted significantly to deliver all SPD-NPS measurements, and 

the uniform patch NPS.  

There is no current way to obtain the ground truth (or “correct”) NPS for a given system, 

due to the effect(s) of: 1) measurement error, 2) the dependency of Poisson noise on input 

signal intensity, and 3) interactions between the input signal and any non-linear ISP. Thus, 

the SPD-NPS measures are validated via thorough comparison with existing comparable 

measures, and expectations of capture system behaviour. 

Figure 4.5 compares measurements obtained from dead leaves signals only. It is used to 

validate the dead leaves SPD-NPS by comparison with the uniform patch NPS. The y-axis 

of each plot is logarithmically scaled and the test chart images were not windowed, as is 

common practice in the industry.  

Figure 4.6 validates all SPD-NPS measures derived from images of scenes by comparing 

them with the previously validated dead leaves SPD-NPS measure. Note that, all input 

images of scenes and test charts were windowed to enable their fair comparison. The y-axes 

are, again, logarithmically scaled. 

Figure 4.7 examines pipeline noise scene-dependency in depth in a linear-linear space. It 

analyses changes in the distribution and integrated area of pictorial image SPD-NPS 

measurements across 50 images of different windowed scenes.  
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Figure 4.5 Luminance Noise Power Spectra (NPS) and scene-and-process-dependent NPSs (SPD-

NPS) derived from different test charts. The uniform patch NPS (grey curves) and proposed dead 

leaves SPD-NPS (red curves), are shown at different image signal processing (ISP) stages at SNR 

40, (a) to (f), and SNR 5, (g) to (l). The power (y) axis is logarithmically scaled.  

 



 89 

 

 

Figure 4.6 Scene-and-process-dependent luminance Noise Power Spectra (SPD-NPS) derived 

from pictorial images and the dead leaves test chart. The pictorial image SPD-NPS (grey curves), 

mean pictorial image SPD-NPS (black curves), pictorial image SPD-NPS standard deviation 

(black dotted curves), and dead leaves SPD-NPS (red curves) are shown after different stages of 

image signal processing (ISP) at signal-to-noise ratios (SNR) of 40, (a) to (f), and 5, (g) to (l). The 

power (y) axis is logarithmically scaled.  
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Figure 4.7 Demonstration of luminance noise scene-dependency in the non-linear image capture 

pipeline. Pictorial image scene-and-process-dependent Noise Power Spectra (SPD-NPS) are 

plotted on linear axes for the linear and non-linear pipelines at signal-to-noise ratios (SNR) of 40, 

(a) to (f), and 5, (g) to (l). Each curve is coloured according to its integrated area before denoising 

and sharpening. Green curves are of a higher area between zero and Nyquist frequency.  
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As expected from measures based on linear system theory, the uniform patch NPS was 

similar to the various SPD-NPS measurements for the linear pipeline. This shows that both 

the uniform patch NPS and SPD-NPS measures are applicable to the measurement of linear 

systems.  

Figure 4.5 establishes the dead leaves SPD-NPS (red curves) as a more representative (and 

thus more “accurate”) measure of average real-world noise power for systems using non-

linear ISP than the uniform patch NPS (black curves). The uniform patch NPS decreased 

excessively after non-linear denoising since it presented the denoising algorithm with the 

simplest possible input signal for denoising. Consequently, after denoising, the uniform 

patch NPS underestimated the dead leaves SPD-NPS (for which the structure of the dead 

leaves signal impeded the denoising process). The dead leaves SPD-NPS measurements 

obtained using 10 and 100 replicates were virtually identical to one another when plotted on 

logarithmically scaled axes. This validated the computation of further SPD-NPS measures 

with ten replicates. 

Figure 4.6 demonstrates that the pictorial image SPD-NPS (grey curves) accounted suitably 

for the scene-dependent processing of temporally varying noise by the non-linear pipeline. 

This is because measurements from images of different input scenes varied significantly only 

after non-linear content-aware denoising and sharpening algorithms were applied. This 

observation, coupled with the measure’s limited bias, suggests that implementing it in signal 

transfer visual IQMs (STV-IQM) would improve correlations with perceived image quality. 

Likewise, implementing scene-and-process-dependent noise images in the IEEE P1858 

Camera Phone Image Quality (CPIQ) metric [22] is also expected to improve the metric’s 

accuracy.  

It was inferred that, the mean pictorial image SPD-NPS (Figure 4.6, black curves) 

characterised the average real-world level of temporally varying noise in both pipelines 

effectively. This was due to the apparent lack of bias in the pictorial image SPD-NPS curves, 

and the fact the scene image set was both large and representative. The pictorial image SPD-

NPSs (grey curves) were distributed approximately evenly about the mean pictorial image 

SPD-NPS (black curves) after all ISP stages, suggesting the latter measure was 

representative of the “general” performance of the system.  

The dead leaves SPD-NPS (Figure 4.6, red curves) underestimated the mean pictorial image 

SPD-NPS (black curves) after non-linear content-aware denoising and sharpening. This 
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observation suggests that other content-aware algorithms may also denoise dead leaves 

signals more effectively than the “average pictorial scene”. The fact the dead leaves chart 

was denoised differently to images of real scenes was expected, considering the structure of 

this mathematically generated signal has limited relation to real scenes. Its similarity with 

scenes is statistical, not physical. It is expected that the non-linear BM3D algorithm denoised 

the dead leaves signal more effectively for the following reasons. It operates on a patch-wise 

level (Section 2.2.1). The homogeneity of the dead leaves signal (which consists entirely of 

discs with perfect edges) allowed the algorithm to find a larger number of “matched” 

windows than for most images of natural scenes (which contain varied, complex structure).  

The scene-dependent variation in the noise in the non-linear pipeline was successfully 

accounted for by the pictorial image SPD-NPS standard deviation (Figure 4.6, black dotted 

curves). The measure identified non-linear denoising as the main source of noise scene-

dependency, which is valid. Note that, the rapid drop in the lower standard deviation 

boundary in Figure 4.6(k) is not a discontinuity. It resulted from the measurement crossing 

the x-axis of a graph with a logarithmically scaled y-axis.  

Pipeline noise scene-dependency was examined in detail in Figure 4.7, on linear axes. 

Pictorial image SPD-NPS measurements from both pipelines showed minor scene-

dependent variation before denoising (Figure 4.7(a), (d), (g) and (j)). This is expected to be 

due to actual scene-dependent variations in: 1) the level of Poisson noise (which is dependent 

on input signal intensity), 2) the effect of black/white level adjustments on noise, 3) scaling 

of noise when simulating colour channel quantum efficiency. This variation may also be 

caused by scene-dependency in the measurement error, which currently cannot be 

distinguished from genuine system scene-dependency. Regardless of their origin, results 

from the simulations suggest that such variations do not limit significantly the validity of the 

pictorial image SPD-NPS. The same applies to the pictorial image SPD-NPS standard 

deviation and mean pictorial image SPD-NPS that are computed from the latter measure. It 

should also be noted that these variations in the pictorial image SPD-NPS were not 

noticeable on logarithmically scaled axes in Figure 4.6, unlike the variations that resulted 

from application of non-linear content-aware ISP. 

The distribution and relative level of spread of the pictorial image SPD-NPS curves was 

relatively unaffected by the linear ISP algorithms (the curves displayed a smooth transition 

from green to blue throughout Figure 4.7(a) to (c) and (g) to (i)). However, the shape and 
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order of the curves changed dramatically after non-linear denoising and sharpening, as well 

as their relative level of spread. The pictorial image SPD-NPS standard deviation (Figure 

4.6, black dotted curves) accounts for changes in their spread. But it does not account for 

changes in their order which should be considered as a further characteristic of system noise 

scene-dependency. 

4.4 Summary 

Three novel SPD-NPS measures were defined. They were measured from replicate captures 

of relevant input signals, such as scenes. They were validated by analysing measurements 

from two simulated image capture pipelines that applied either linear or non-linear content-

aware ISP algorithms. They accounted for the effect of the input signal on the power of 

temporally varying luminance noise produced by the pipelines. This included the scene-

dependent effects of non-linear ISP. 

All measures displayed limited measurement error. For the linear pipeline, they delivered 

similar measurements to the current standard uniform patch NPS. This suggests they were 

equally biased to the latter measure. Measurements from the non-linear pipeline displayed 

significant scene-dependent variation, as would be expected. Thus, all SPD-NPS measures 

were concluded to be more suitable for non-linear systems than current equivalent measures 

(if equivalent measures exist). Their limitations are that they do not account for FPN, they 

are computationally complex, and they require many replicates to be captured and registered.  

The pictorial image SPD-NPS was the only measure capable of characterising noise in the 

non-linear pipeline, with respect to a given input scene image. Likewise, the dead leaves 

SPD-NPS described the average real-world noise power of this pipeline more appropriately 

than the uniform patch NPS. The former measure, however, was less representative of 

average real-world noise than the mean pictorial image SPD-NPS, since non-linear ISP 

algorithms processed noise in dead leaves signals differently to noise in the average pictorial 

scene image. A measure for the level of system scene-dependency was also validated 

successfully but did not account for all relevant scene-dependent behaviour.  
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Chapter 5 Validation of Scene-and-Process-

Dependent MTFs (SPD-MTF) 

The Scene-and-process-dependent Modulation Transfer Function (SPD-MTF) 

framework is defined. It characterises the modulation (contrast) transfer of the system 

versus spatial frequency, with respect to any input signal, accounting for system 

scene-dependency. In the SPD-MTF derivation, scene-and-process-dependent Noise 

Power Spectrum (SPD-NPS) measures from Chapter 4 are used to account for system 

noise. Three novel SPD-MTF measures that implement this framework are 

presented. Each characterises one of the following:  

1) system signal transfer with respect to an image of a given input scene; 

2) the average real-world level of system signal transfer with respect to many 

images of different input scenes; 

3) system signal transfer with respect to the dead leaves test chart. 

Each measure is validated by analysing measurements from simulated linear and 

non-linear image capture pipelines, defined in Section 4.2. A novel measure for 

capture system signal transfer scene-dependency is also introduced and validated.  

5.1 Derivation of the SPD-MTF Measures 

Traditional Modulation Transfer Functions (MTF) measured from edges, sinusoidal signals 

and white noise are often unrepresentative of average real-world signal transfer for systems 

that apply non-linear content-aware image signal processing (ISP) algorithms (as discussed 

in Section 2.3.2). Average real-world signal transfer in such systems is characterised more 

suitably by MTFs measured from dead leaves signals that model natural scene statistics 

(NSS) [16], [17]. It was concluded in Section 2.3.2 that the direct dead leaves MTF 

implementation [19] (Equation 2.31) is the most appropriate current MTF parameter for 

image quality metrics (IQM) designed for predicting image quality in such systems.  
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However, no prior art has verified whether dead leaves signals trigger non-linear content-

aware ISP algorithms in the same manner as the “average natural scene”. This assumption 

must hold true if dead leaves MTFs are to characterise appropriately the average real-world 

level of signal transfer for systems utilising such processes. It should be noted that Chapter 

4 found this assumption did not hold with respect to processing of noise.  

MTFs measured from dead leaves signals, or any current test chart for that matter, do not 

account for scene-dependent and local-content-dependent variations in the signal transfer of 

non-linear systems. These variations are caused by non-linear content-aware ISP algorithms 

interacting with pictorial scene signals. It is logical to assume that the accuracy of IQMs and 

the Noise Equivalent Quanta (NEQ) measure would improve if their MTF parameters 

accounted for such scene-dependent behaviour. This should reduce the gains and offsets that 

separate correlations between the IQM output scores and quality ratings for each scene. 

The SPD-MTFs of this chapter account for capture system signal transfer scene-dependency. 

They are based upon the scene-derived texture MTFs from Branca et al. [7], which extend 

the direct dead leaves MTF measurement implementation (Equation 2.31) to characterise 

signal transfer with respect to the one-dimensional (1D) power spectrum, 𝑃𝑆(𝑢), of a 

pictorial image luminance signal, 𝐼(𝑥, 𝑦). 𝑃𝑆(𝑢) is given by the rotational average of 

𝑃𝑆(𝑢, 𝑣) that is defined by Equation 2.30; all other parameters to these equations are as 

described previously. Branca et al. [7] characterised a high-end smartphone camera and a 

digital single-lens reflex (DSLR) camera by measuring scene-derived texture MTFs with 

respect to several images of scenes. Scene-dependent variation was higher for the former 

device, as expected, due to the application of greater levels of non-linear content-aware 

processing [7]. 

The resulting MTFs are overestimated, however, for the following two reasons. Firstly, the 

uniform patch Noise Power Spectrum (NPS) is used to compensate for the biasing effect of 

system noise. This measure was found in Chapter 4 to be unsuitable for the purpose since it 

underestimates noise in systems using non-linear content-aware denoising. Thus, the scene-

derived texture MTFs [7] are overestimated for low-signal scene images due to signal-to-

noise limitations. These limitations are defined by Equation 5.1, where 𝑃𝑆¥=��V(𝑢) and 

𝑃𝑆¤�V��V(𝑢) are the input and output scene image power spectra, respectively, and 𝑀𝑇𝐹(𝑢) 

is the scene-derived texture MTF [19]. 𝑁𝑃𝑆E(𝑢) and 𝑁𝑃𝑆O(𝑢) are the measured uniform 

patch NPS and real system NPS, respectively. These limitations are inherent to the direct 
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dead leaves MTF measurement implementation; thus, they also apply to the various SPF-

MTF measures. It should also be noted that 𝑀𝑇𝐹(𝑢) limits to 1 in a theoretical ideal where 

the real system NPS is measured with absolute accuracy (i.e. 𝑁𝑃𝑆E(𝑢) = 𝑁𝑃𝑆O(𝑢)). This 

is because the numerator and denominator of line 3 of Equation 5.1 limit toward an equal 

value as 𝑃𝑆¥=��V(𝑢) limits toward zero. 

if				𝑁𝑃𝑆E(𝑢) < 𝑁𝑃𝑆O(𝑢),	                                                      (5.1) 

 then			 lim
𝑃𝑆𝐼𝑛𝑝𝑢𝑡(𝑢)→0

	 𝑃𝑆¥=��V(𝑢) < 𝑃𝑆¤�V��V(𝑢) − 𝑁𝑃𝑆E(𝑢),																																	  

and				 lim
𝑃𝑆𝐼𝑛𝑝𝑢𝑡(𝑢)→0

	 ¹
𝑃𝑆¤�V��V(𝑢) − 𝑁𝑃𝑆E(𝑢)

𝑃𝑆¥=��V(𝑢)
º = ∞ = 𝑀𝑇𝐹(𝑢)												 

Secondly, zero-padding or windowing were not applied to the input scene images before 

computing the two-dimensional (2D) discrete Fourier transform (DFT) [7]. Thus, periodic 

replication artefacts were introduced into the luminance spectrum at all frequencies when 

opposite scene edges differed in luminance; these artefacts are discussed in Chapter 4, 

Section 4.2.  

Simulation of the effect of periodic replication artefacts on the scene-derived texture MTFs 

are shown in Figure 5.1. They agreed with measurements from real capture systems by 

Branca et al. [7] under comparable conditions. Periodic replication artefacts were unaffected 

by system processing and thus biased the scene-derived texture MTFs toward 𝑀𝑇𝐹(𝑢) = 1. 

The level of bias was scene-dependent. Windowing the input images following the method 

of Section 4.2 mitigated the artefacts and reduced the bias significantly. However, for the 

relatively low-power “Contrail” and “Cloud” images, before denoising, removing these 

artefacts exposed a greater, underlying bias, (shown in Figure 5.1(d)) which originates from 

signal-to-noise limitations (Equation 5.1). 
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Figure 5.1 Scene-derived texture Modulation Transfer Functions (MTF) of Branca et al. [7] for 

the non-linear pipeline at a signal-to-noise ratio (SNR) of 40, before, (a) to (c), and after the 

windowing method of Section 4.2 was applied, (d) to (f). Test images are from Branca et al. [7], 

resized to 512 x 512 pixels by bicubic interpolation. Dotted curves show +/- 1 standard deviation.  

The SPD-MTF framework (Figure 5.2) refines the method of Branca et al. [7] to measure 

the MTF either from windowed images of scenes, or the dead leaves target. It is given by 

𝑀𝑇𝐹(𝑢) in Equation 2.31, when 𝑃𝑆(𝑢) is the rotational average of the 2D DFT luminance 

power spectrum, 𝑃𝑆(𝑢, 𝑣), of the scene/target, 𝐼(𝑥, 𝑦), given by Equation 2.30. 

𝑁𝑃𝑆¤�V��V(𝑢) is the SPD-NPS, as measured from the same scene/target (defined in Section 

4.1). Utilising SPD-NPS measures instead of the uniform patch NPS mitigates bias from 
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signal-to-noise limitations (Equation 5.1). All other input parameters to these equations are 

as stated previously. 

 

Figure 5.2 The scene-and-process-dependent Modulation Transfer Function (SPD-MTF) 

framework. 

Three SPD-MTF measures are presented in this thesis that implement the SPD-MTF 

framework. They are defined below and summarised in Table 5.1 alongside the direct dead 

leaves MTF implementation. They are used as input parameters in various IQMs in Chapter 

6. They are more computationally intensive and difficult to implement than current MTFs.  

 

Table 5.1 Summary of the direct dead leaves Modulation Transfer Function (MTF) measurement 

implementation [19] and the scene-and-process-dependent MTFs (SPD-MTF) of this thesis. PS 

and NPS are the power spectrum and Noise Power Spectrum, respectively. SPD-NPS is the scene-

and-process-dependent NPS. M is the number of images in the test image set.  

The pictorial image SPD-MTF implements the SPD-MTF framework with respect to a single 

windowed image of a scene and employs the pictorial image SPD-NPS as the noise measure. 

It is the only measure capable of characterising the transfer of the signal of a given input 

scene for systems applying non-linear content-aware processing. It offers improvements 

over the original measure (i.e. the scene-derived texture MTF [7]) by mitigating bias that 

results from periodic replication artefacts, as well as the underestimation of noise in systems 
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applying non-linear denoising. Therefore, scene-dependent variations in the SPD-MTF 

measurements are more likely to be representative of genuine scene-dependent behaviour of 

non-linear content-aware ISP algorithms, as opposed to scene-dependent bias. This accuracy 

will be critical if the measure is to compensate for scene-dependent gain and offset in 

correlations between IQM scores and psychophysical image quality ratings.  

The dead leaves SPD-MTF aims to approximate the average real-world signal transfer of the 

system by passing a dead leaves signal through the SPD-MTF framework. Since the dead 

leaves SPD-NPS is used to describe system noise, the measure accounts for noise more 

suitably than the direct dead leaves MTF [19] for systems applying non-linear content-aware 

ISP. This reduces bias due to signal-to-noise limitations (Equation 5.1). Unlike many 

pictorial scenes, the dead leaves test chart contains contrast signals at all frequencies that are 

randomly distributed spatially. Both these characteristics are also expected to help mitigate 

such bias. However, Section 2.3.2 suggests non-linear content-aware ISP algorithms may 

not process dead leaves signals as per the “average scene”. This would render the measure 

unrepresentative of the average real-world level of system signal transfer. 

The mean pictorial image SPD-MTF is the only measure for the average real-world level of 

system signal transfer that accounts for processing of real image signals. It is derived as the 

mean of all pictorial image SPD-MTFs over a large set of images of different scene contents; 

it is adapted from Jenkin’s MTF-averaging method like the equivalent SPD-NPS measure 

[2, p. 130]. It is denoted by 𝑁E@L=_PÃá(𝑢) in Equations 4.2 to 4.5 if 𝑁PÃá(𝑢) is the pictorial 

image SPD-MTF for the system, 𝑁h@=@BLI(𝑢) is the hypothetical “correct” average real-

world SPD-MTF for the system, and ∆𝑁PÃá(𝑢) is the difference between them for a single 

scene image, 𝑖, in a set of 𝑝 scene images. This derivation requires that the scene image set 

is representative of commonly captured scenes and that ∆𝑁PÃáF(𝑢) is distributed evenly 

about zero. The mean pictorial image SPD-MTF is also denoted by 𝐹;(𝑠) in Figure 1.4(b), 

when 𝐹(𝑠<) to 𝐹(𝑠=) are SPD-MTFs measured from scene images 𝑠< to 𝑠=, respectively.  

Finally, the pictorial image SPD-MTF standard deviation, 𝑠(𝑢), describes the level of scene-

dependent variation in measurements of the signal transfer of a system. Like the equivalent 

noise measure, this measurement variation can result either from genuine system scene-

dependency or scene-dependent measurement error. This unique measure is computed using 

Equation 4.7, when 𝑁E@L=_PÃá(𝑢) is the mean pictorial image SPD-MTF and 𝑁PÃáF(𝑢) is 

the pictorial image SPD-MTF for each image, 𝑖, in a set of 𝑝 images of different scenes. The 
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same assumptions and sources of error apply as for the mean pictorial image SPD-MTF. The 

average real-world level and scene-dependency of signal transfer in a given system is 

described by subtracting and adding the pictorial image SPD-MTF standard deviation from 

the mean pictorial image SPD-MTF, as shown by the dotted line in Figure 5.4.  

5.2 Results 

The SPD-MTFs were validated by the same methodology as the SPD-NPS measures in 

Chapter 5. Measurements were taken from the simulated linear and non-linear capture 

pipelines defined in Section 4.2, at signal-to-noise ratios (SNR) of 40 and 5; measurements 

obtained at SNRs 10 and 20 also displayed comparable trends. All the measurements 

presented here were smoothed with a seven-segment moving average filter. Burns’ 

MATLABTM implementation [29] was used to calculate the direct dead leaves MTF and was 

revised significantly to compute all SPD-MTF measures.  

It should be noted that, there is no way of deriving the ground truth MTF of a given system 

for the same reasons as discussed in Chapter 4 for the NPS. Therefore, the various SPD-

MTF measures are validated by observing and comparing the measurements from systematic 

system changes in both pipelines. This method is comparable to that used to validate the 

SPD-NPS measures in Section 4.3. Figure 5.3 compares the dead leaves SPD-MTF and 

direct dead leaves MTF, indicating that the former is a more suitable measure for systems 

applying non-linear content-aware ISP. Figure 5.4 compares the various SPD-MTFs 

measured from pictorial images with the previously validated dead leaves SPD-MTF. The 

formatting of this figure is identical to Figure 4.6 that illustrates the equivalent SPD-NPSs. 

Figure 5.5 applies the same formatting as Figure 4.7 to analyse in detail the scene-dependent 

characteristics of each pipeline. Each pictorial image SPD-MTF curve is coloured according 

to its integrated area after demosaicing.  

Windowing was not applied to the dead leaves test chart image in Figure 5.3, as is common 

practice in the industry. But windowing was applied to both the dead leaves test chart and 

the input scene images in Figures 5.4 and 5.5 to enable fair comparison between 

measurements obtained from these respective input signals. This is the cause for the minor 

variations between the dead leaves SPD-MTF measurements in Figures 5.3 and 5.4. 
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Figure 5.3 Direct dead leaves Modulation Transfer Functions (MTF) (black curves) and proposed 

dead leaves scene-and-process-dependent MTFs (SPD-MTF) (red curves) after different stages of 

image signal processing (ISP) at signal-to-noise ratios (SNR) of 40, (a) to (f), and 5, (g) to (l).  



 102 

 

 

Figure 5.4 Comparison of scene-and-process-dependent Modulation Transfer Functions (SPD-

MTF) from pictorial images and the dead leaves test chart. Pictorial image SPD-MTFs (grey 

curves), mean pictorial image SPD-MTFs (black curves), pictorial image SPD-MTF standard 

deviations (black dotted curves) and dead leaves SPD-MTFs (red curves) are shown after different 

image signal processing (ISP) stages at signal-to-noise ratios (SNR) 40, (a) to (f), and 5, (g) to (l).  
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Figure 5.5 Demonstration of signal transfer scene-dependency in the non-linear image capture 

pipeline. Pictorial image scene-and-process-dependent Modulation Transfer Functions (SPD-

MTF) are shown for the linear and non-linear pipelines at signal-to-noise ratios (SNR) of 40, (a) 

to (f), and 5, (g) to (l). Curves for each scene image are coloured according to their integrated area 

before denoising and sharpening. Green curves are of a higher area between zero and Nyquist 

frequency. Ten replicates were used when computing each SPD-MTF. 
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The experimental conditions at SNR 5 before denoising (i.e. Figures 5.3-5.5 (g) and (j)) were 

considered less relevant when validating each SPD-MTF measure. This was because it is 

common for real capture systems to apply denoising at such exposure levels, and the SPD-

MTFs were intended for systems that apply denoising and other ISP. All other conditions 

are referred to as the most relevant conditions.  

All measures were heavily biased under these less relevant conditions due to signal-to-noise 

limitations expressed in Equation 5.1. Denoising mitigated this bias since it reduced the 

absolute difference between the measured, 𝑁𝑃𝑆E(𝑢), and real noise power, 𝑁𝑃𝑆O(𝑢). 

Figure 5.3 (g) and (j) demonstrate how raising the number of SPD-NPS replicates reduces 

this bias by increasing the accuracy of the SPD-NPS parameter, 𝑁𝑃𝑆E(𝑢). 

Under the most relevant conditions, the dead leaves SPD-MTFs (Figure 5.3, red curves) and 

direct dead leaves MTFs (black curves) were of similar shape for the linear pipeline, as 

expected from linear system theory. Measurement bias was marginally lower when the dead 

leaves SPD-MTF was measured using 100 replicates, compared to 10 replicates. The 

similarity between these measurements justified the decision to compute other SPD-MTF 

measures shown in Figures 5.4 and 5.5 with 10 replicates.  

Figure 5.3(k) and (l) show that the direct dead leaves MTF was overestimated moderately 

after non-linear denoising at SNR 5. Figure 4.5(k) demonstrates that this bias was due to 

signal-to-noise limitations (Equation 5.1) since the uniform patch NPS, 𝑁𝑃𝑆E(𝑢), 

underestimated the real noise power, 𝑁𝑃𝑆O(𝑢), by a significant margin under these 

conditions. Sharpening compounded this bias at SNR 5 (Figure 5.3(l)) and also rendered it 

noticeable at SNR 40 (Figure 5.3(f)). Thus, the dead leaves SPD-MTF was established as 

the more suitable measure for signal transfer in non-linear systems under the most relevant 

conditions.  

After denoising, the scene-dependent variations between pictorial image SPD-MTFs from 

the non-linear pipeline were far higher than for the linear pipeline, as demonstrated in 

Figures 5.4 and 5.5. This important observation is a direct result of the measure accounting 

for interactions between the scene image content and the pipeline’s non-linear content-aware 

ISP algorithms, with respect to both signal transfer and noise. 

However, pictorial image SPD-MTFs from the linear pipeline also displayed significant 

scene-dependent variation under some of the most relevant conditions (Figures 5.4(a) to (c), 
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grey curves). It is not currently possible to diagnose the source of this particular scene-

dependent variation. It is expected to be partly caused by signal transfer in the linear pipeline 

being slightly scene-dependent, resulting from interactions between scene image signals and 

processing during the modelling of Poisson noise, black/white level adjustments and colour 

channel quantum efficiency. The primary cause for the scene-dependent variation, however, 

is expected to be scene-dependent bias from signal-to-noise limitations (Equation 5.1). This 

bias affected particularly the higher frequencies of the low-signal images of scenes, at lower 

SNRs, where the signal power, 𝑃𝑆¥=��V(𝑢), was closer to zero and the pictorial image SPD-

NPS,	𝑁𝑃𝑆E(𝑢), was more likely to underestimate the real noise power, 𝑁𝑃𝑆O(𝑢). It should 

be noted that the scene-dependent variation was much lower after linear denoising, 

especially at lower SNRs. This is attributed to the bias being mitigated, since denoising 

reduced the absolute difference between the measured noise power, 𝑁𝑃𝑆E(𝑢), and real noise 

power, 𝑁𝑃𝑆O(𝑢), more than it reduced the output signal power, 𝑃𝑆¥=��V(𝑢).  

The pictorial image SPD-MTF is the most theoretically valid MTF measure in situations 

where the signal transfer of a non-linear system must be measured with respect to a given 

input scene (e.g. in certain image quality modelling applications). Deriving the MTF in this 

way, however, increased measurement error for the reasons explained above, which affected 

the measure’s accuracy. The trade-offs between these advantages and disadvantages of the 

measure are scene-dependent. They need to be investigated from first principles in further 

work, for example, by adapting the direct dead leaves MTF error propagation method of 

Burns [158]. Performing such an investigation was outside the scope of this thesis. Instead, 

in Chapter 6 of this thesis, the validity of the pictorial image SPD-MTF is evaluated further, 

experimentally, by assessing whether implementing the measure improves the accuracy of 

various IQMs.  

The mean pictorial image SPD-MTF (Figure 5.4, black curves) and dead leaves SPD-MTF 

(red curves) had similar shape for the linear pipeline under the most relevant conditions. It 

can therefore be inferred that, the average level of measurement error across the pictorial 

image SPD-MTFs from the 50 input images was approximately equal to the error in the dead 

leaves SPD-MTF. It can also be inferred that the scene-dependent nature of the bias in the 

former caused the bias to “average out” across the 50 measurements taken. This would 

suggest that, provided that the mean pictorial image SPD-MTF is measured from a 

representative set of images of different scenes, it is not significantly affected by the bias in 

the individual pictorial image SPD-MTF measurements from which it is derived.  
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After non-linear denoising and sharpening, however, the dead leaves SPD-MTF was an 

outlier compared to the pictorial image SPD-MTFs and generally underestimated the mean 

pictorial image SPD-MTF. Observations in the previous paragraph suggest these differences 

were not due to measurement error. It is concluded that the signal transfer of the non-linear 

pipeline’s ISP algorithms was different for dead leaves signals than for the “average scene”.  

More specifically, dead leaves signal transfer was reduced more by non-linear denoising 

than signal transfer for the average pictorial scene image (Figure 5.4(e) and (k)). The global 

power spectrum of natural scenes follows a 1/𝑓 power law with respect to spatial frequency, 

like the dead leaves chart [16], [17]. Their contrast signals are often clustered spatially, 

however, not randomly distributed as per the dead leaves chart. Thus, edges in the average 

natural scene would be expected to have, on average, higher contrast than edges in the dead 

leaves target. The main side-effect of non-linear denoising is removal of texture (i.e. low-

contrast fine details). It is, therefore, understandable that the signal transfer of the lower-

contrast edges of the dead leaves target was particularly affected by it. 

The signal transfer of dead leaves signals was also boosted more by non-linear sharpening 

than the average pictorial scene (Figure 5.4(f)). This is expected to be due to the edges of all 

circles in the dead leaves signal being “perfect” (i.e. with maximum gradient). Perfect edges 

are more responsive to non-linear sharpening algorithms than edges of lower gradient [146].  

The mean pictorial image SPD-MTF is expected to be a more suitable measure than the dead 

leaves SPD-MTF for the average real-world signal transfer of non-linear systems. This was 

despite the former measure inheriting some bias from the pictorial image SPD-MTFs. It 

could not be concluded whether ∆𝑁PÃáF(𝑢) in Equations 4.2 to 4.5 was distributed evenly 

about zero for the pictorial image SPD-MTFs. However, the distribution of the pictorial 

image SPD-MTFs around the mean pictorial image SPD-MTF did not appear skewed under 

the most relevant conditions.  

The pictorial image SPD-MTF standard deviation (Figure 5.4, black dotted curves) indicated 

system scene-dependency was significantly higher after application of the non-linear ISP 

algorithms, than the equivalent linear algorithms. This was expected to be because of the 

increased algorithm content awareness; the difference was particularly clear after intense 

denoising at low SNRs. The value of this scene-dependency measure was, however, larger 

for the linear pipeline than as expected, and as demonstrated in practice by the equivalent 

SPD-NPS measure (Figure 4.6(a) to (c) and (g) to (i), black dotted curves). This was caused 
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by scene-dependent variation in the pictorial image SPD-MTF measurements, which was 

mainly due to bias from signal-to-noise limitations. It should also be noted that the order of 

the pictorial image SPD-MTF curves changed significantly after non-linear ISP algorithms 

were applied (Figure 5.5). The pictorial image SPD-MTF standard deviation did not account 

for this.  

The integrated area under each pictorial image SPD-MTF curve (Figure 5.5) correlated 

relatively well with the busyness [59] of each scene image, before denoising. Applying non-

linear ISP algorithms disturbed this relationship significantly. The busyness descriptor 

expresses, as a single figure, the proportion of the image containing higher frequencies 

exceeding a given contrast threshold [59]. Thus, it accounts for the spatial distribution and 

power of higher-frequency signals, which are both relevant to the signal-to-noise limitations 

that bias the SPD-MTFs.  

 

Table 5.2 R2 correlation coefficients of a logarithmic curve fit of form 𝑦 = 𝑚. ln(𝑥) + 𝑐	, to the 

regression between the integrated area under the pictorial images’ scene-and-process-dependent 

Modulation Transfer Functions (SPD-MTF) and the busyness’ of these scenes [59].  

 

5.3 Summary 

Three novel SPD-MTF measures were proposed. They characterised system signal transfer 

with respect to relevant input signals, accounting for the scene-dependent effect of non-linear 

ISP algorithms. Further, a measure describing the level of system scene-dependency was 

presented. All measures were validated by analysing measurements from simulated linear 

and non-linear camera pipelines.  
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The dead leaves SPD-MTF offered minor improvements over the current direct dead leaves 

MTF measurement implementation [19]. But the signal transfer characteristics of non-linear 

content-aware ISP algorithms were different for dead leaves signals compared to the average 

pictorial scene image. This may affect the relevance of both these measures to capture system 

design and image quality modelling.  

The pictorial image SPD-MTF accounted most comprehensively for system scene-

dependency. But it suffered from scene-dependent bias due to signal-to-noise limitations, 

despite attempts to mitigate it. These limitations were inherent to the direct dead leaves MTF, 

which the proposed measures are based upon. The resultant bias was difficult to distinguish 

from genuine effects of system scene-dependency. It affected the accuracy of the pictorial 

image SPD-MTF standard deviation. Nevertheless, it averaged out across the 50 test scenes 

to levels comparable to bias in the direct dead leaves MTF. Thus, the mean pictorial image 

SPD-MTF is concluded to describe average real-world system signal transfer appropriately, 

but it is computationally inefficient when compared to both the dead leaves SPD-MTF and 

direct dead leaves MTF.  
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Chapter 6 An Evaluation of Scene-and-Process-

Dependent IQMs 

A number of variations of five spatial image quality metrics (IQM) are evaluated in 

this chapter, referred to as variants. Two of these IQMs are novel (log Noise 

Equivalent Quanta (log NEQ) and Visual log NEQ) and are based on the novel scene-

and-process-dependent Noise Equivalent Quanta (SPD-NEQ) performance measure. 

The other IQMs are scene-and-process-dependent versions of the Square Root 

Integral with Noise (SQRIn) [12], Perceived Information Capacity (PIC) [169] and 

IEEE P1858 Camera Phone Image Quality (CPIQ) metrics [22]. Each of these 

metrics is defined in Chapter 3.  

6.1 Methodology 

Variants of each IQM were generated in MATLABTM (Section 6.1.3). Each variant used a 

different permutation of input parameters for imaging system noise (Table 4.1), signal 

transfer (Table 5.1) and human visual system (HVS) sensitivity (Table 6.1). Thus, each 

variant accounted for imaging system and visual scene-dependency to a different degree.  

 

Table 6.1 Summary of the contrast sensitivity functions (CSF) employed in Chapter 6. 

Output scores for each IQM variant were recorded over a series of test images that were 

generated following the method presented in Section 6.1.1. Twenty-seven observers rated 

the quality of the test images using the ISO 20462 [56] softcopy image quality ruler 

psychophysical paradigm (Section 6.1.2). These ratings were expressed on a Standard 

Quality Scale (SQS2) scale [56, p. 3], a ratio scale with calibrated intervals of 1 just-

noticeable difference (JND) in quality ranging from SQS2 0 to 31. The zero-point describes 
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very low-quality pictorial images, the subjects of which are difficult to identify. Thirty one 

represents the highest quality. 

The IQM variants were evaluated by benchmarking their accuracy and level of correlation 

with respect to the observer quality ratings in Section 6.2.2. The behaviour of selected IQM 

variants is analysed further in Section 6.2.3. These evaluations informed upon which input 

parameters were most appropriate for image quality modelling and which IQMs responded 

most favourably to modification.  

6.1.1 Test Image Dataset 

The test image dataset was generated using simulated image capture pipelines implementing 

linear and non-linear image signal processing (ISP) algorithms, presented in Section 4.2. The 

input pictorial images to these pipelines were created from 14 original images that were 

captured and processed by Allen [102] using the method described in Appendix E. 

According to reference [102] their quality in terms of SQS2 was 23 (relatively high). Each 

image was resized to 512-by-512 pixels dimensions according to Equation 4.8 before being 

input into the pipelines.  

The input images to the simulations are shown in Appendix D and were selected to prioritise 

the following: 

1) heterogeneity of scene subjects;  

2) diversity of objective signal contents, including natural and human-made structural 

signals, colours, textures, and smooth tonal gradations;  

3) variation of scene capture settings, including focus distance, focal length, and depth 

of field; 

4) introduction of simulation pipeline artefacts that:  

a. were representative of real capture systems according to the author; 

b. were not overly spatially concentrated.  

Point 4)b encouraged observers to base their opinions on artefacts across the whole image. 

This was a logical choice since the IQM input parameters were global measures. 

The simulation pipelines were identical to those employed to validate the scene-and-process-

dependent Noise Power Spectrum (SPD-NPS) and equivalent Modulation Transfer Function 

(SPD-MTF) measures in Chapters 4 and 5, respectively; they are described in Section 4.2.  
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The following modifications were applied to the pipelines:  

1) The opacity of the linear and non-linear ISP filters was optimised according to Table 

6.2, to maximise the perceived image quality under the viewing conditions, after 

combined denoising and sharpening.  

2) Two-dimensional (2D) photon noise was simulated at maximum linear signal-to-

noise ratios (SNR) of 10, 20, 40 and 80, according to Equation 2.32.  

3) Images with noise simulated at SNR 5 were omitted; pilot experiments showed that 

they were often outside the range of the SQS2 values.  

Appendix I presents all SPD-NPS and SPD-MTF measures, as well as the uniform patch 

NPS and direct dead leaves Modulation Transfer Function (MTF) for these pipelines.  

 

Table 6.2 Optimal opacities for the pipelines’ Image Signal Processing (ISP) filters described in 

Section 4.2. BM3D, GIF, USM and Gaussian refer to the Block Matching with 3D Filtering [31], 

Guided Image Filter [32], MATLABTM imsharpen unsharp mask [85] and Gaussian blur filters, 

respectively.  

 

Figure 6.1 Power spectra for the input images to the simulations (shown in Appendix D). 
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According to Equation 6.1, reducing the percentage opacity (𝑃) of the ISP filters increased 

their transparency by blending a proportion of the image before filtration, 𝑔(𝑥, 𝑦), with a 

proportion of the filtered image, 𝑑(𝑥, 𝑦). This improved subjective image quality by 

reducing ISP filter artefacts in the output image,	𝑜(𝑥, 𝑦), at the expense of slightly higher 

noise which helped to mask the artefacts. Lowering the opacity of the ISP filters provided 

greater challenges for testing the robustness of the SPD-MTF and SPD-NPS algorithms, 

since these measures were designed to account for filtered image signals and noise. It was 

also the only method of lowering the intensity of certain ISP filters to perceptually optimal 

levels (tuning), at certain SNRs. Appendix I discusses the effect of reducing the opacity of 

the ISP filters on all SPD-MTFs and SPD-NPSs. 

𝑜(𝑥, 𝑦) 	=
𝑃
100

. 𝑑(𝑥, 𝑦) +	
100 − 𝑃
100

. 𝑔(𝑥, 𝑦) (6.1) 

Test images from each pipeline were saved as lossless Portable Network Graphics (PNG) 

[326] files after demosaicing, denoising and sharpening ISP stages, shown by red arrows in 

Figure 4.3. Fifty-six images were output from each pipeline after each ISP stage, covering 

all permutations of the 14 input original images at 4 SNRs. Images from the linear pipeline 

were chosen to represent both pipelines before denoising was applied. This was because the 

linear and non-linear demosaicing algorithms produced very similar artefacts to one another 

when they were evaluated subjectively; they also affected the system performance 

measurements to a similar degree. A total of 280 test images were generated.  

6.1.2 Psychophysical Evaluation 

The aim of the psychophysical evaluations was to record subjective quality ratings for the 

test image dataset. The ISO 20462 [56] softcopy image quality ruler was employed for its 

speed and accuracy when measuring image quality differences spanning over many JNDs. 

It has been validated [327] and is implemented widely. The perceived quality of each test 

image was rated by matching its quality with an image from a set of ordered, univariate 

reference stimuli differing in sharpness by intervals of 1 JND in quality. Allen [102, p. 216] 

generated these “ruler images” as described in Appendix E, following the recommendations 

of the ISO 20462 standard [56, p. 9]. The graphics user interface (GUI) employed for the 

evaluations was also developed by Allen following this standard, shown in Figure 6.2. The 

GUI background was set to a uniform neutral tone of luminance 26.6 cd/m2. Test and ruler 
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images were shown on the right and left-hand sides of the display, respectively. Test images 

were presented in a randomised order. The ruler images were of the same scene as the test 

image. The observer adjusted the ruler image quality to match the quality of the test image 

using the keyboard’s arrow keys, or by moving the slider. Once they judged both images to 

be of equal quality, they pressed the “Next Image” button. This recorded the SQS2 value of 

the ruler image, presented the next test image, and randomised the position of the slider.    

 

Figure 6.2 Layout of the image quality ruler graphics user interface (GUI) [102, Sec. 6.5.2]: (a) 

ruler image, (b) test image, (c) slider to select ruler images, (d) button to select next test image.  

Figure 6.3 shows the layout of the laboratory equipment. The EIZO ColorEdge CG245W 

[328] liquid crystal display (LCD) was calibrated to the standardised RGB (sRGB) colour 

space and characterised as described in Appendix F. The viewing distance of 60cm was 

restricted using a head-rest, giving a display Nyquist frequency of 20 cycles/degree. The 

horizontal and vertical viewing angles of the GUI were 47.7 and 30.2 degrees, respectively. 

Other viewing conditions remained constant and close to the typical office viewing 

environment described in the sRGB standard [329]. The luminance of the background, desk 

and table were 25.84 cd/m2, 26.4 cd/m2 and 41.31 cd/m2, respectively, under the moderate 

ambient illuminance level of 106.4 lux, from a light source with Correlated Colour 

Temperature (CCT) of approximately 3600K (with CIE x and y chromaticities of 0.4083 and 

0.4126, respectively).  
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Figure 6.3 Layout of laboratory equipment (plan view).  

The modelled display MTF [22, p. 16] used by each IQM (Equation 3.2) predicted Allen’s 

[102, p. 212] previous display MTF measurements adequately, as shown in Figure 6.4. The 

camera-lens-display system reproduced all visible frequencies at the viewing distance. 

 

Figure 6.4 Modulation Transfer Functions (MTF) of imaging chain components and Barten’s 

optical MTF of the eye [183, p. 29]. The camera-lens, camera-lens-display and display MTFs were 

all measured by Allen [102, p. 212]. The latter was also modelled by Equation 3.2 [22, p. 16]. 

The experimental conditions were very close to the recommendations of ISO 20462, Clause 

6.1, for implementing the softcopy ruler, as indicated in Table 6.3 [56, Sec. 6.1].  
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Table 6.3 Comparison of the conditions of the psychophysical image quality evaluations with the 

recommendations of ISO 20462 [56, Sec. 6.1]. 

The observers wore corrective spectacles/lenses if required for the viewing distance. Before 

participating in the evaluations, each observer tested their visual acuity, under supervision, 

by attempting to read row 7 of the Snellen near vision test card [330] (shown in Appendix 

G) under the viewing conditions. Two prospective observers failed and did not participate 

since their spatial visual sensitivity did not reflect the contrast sensitivity function (CSF) 

models used by the IQMs. Two males passed this acuity test but suffered from red-green 

colour blindness. They were allowed to participate because such observers provided similar 

responses to trichromats in a comparable spatial image quality study [48, p. 59]. Twenty-

seven observers qualified for the evaluations, including 17 males and 10 females of various 

ethnicities, with an approximate age range of 20 to 55. Six observers had previous experience 

evaluating image quality or attribute strength. They are referred to herein as experienced 

observers. All others are referred to as inexperienced observers.  

The evaluations were divided into three stages, according to the three ISP stages shown in 

Figure 4.3. Before participating, each observer read the written instructions shown in 

Appendix H that included examples of images generated after each ISP stage. They were 

then trained in a short trial run of the experiment, where they were encouraged to explain 

their decision making and ask questions. They took between 20 and 45 minutes to complete 

each stage, taking short breaks in between to avoid fatigue.  

6.1.3 Generation of the IQM Variants 

A total of 332 IQM variants were generated. They included variants of the log NEQ and 

Visual log NEQ as well as scene-and-process-dependent versions of the CPIQ metric and 

the PIC and SQRIn. Each variant employed a different permutation of the NPS, MTF and 
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CSF parameters listed in Tables 4.1, 5.1 and 6.1, respectively. Appendix I presents and 

discusses all input parameters. Note that the various NPS and MTF measurements differ 

from those of Chapters 4 and 5, respectively, since the pipelines’ ISP filters were tuned at 

reduced opacity, and images were generated at SNRs 10 to 80.  

The MATLABTM code for Burns’ direct dead leaves MTF implementation [29] was adapted 

to compute all SPD-NPSs and SPD-MTFs, as in Chapters 4 and 5. The CPIQ visual noise 

metric was computed using MATLABTM code [331] from Baxter and Murray’s [332] 

implementation. 

When the Barten CSF [186], Contextual CSF (cCSF) [35] and Contextual Visual Perception 

Function (cVPF) [8] were employed in the CPIQ metric, they were normalised to the same 

integrated area as Johnson and Fairchild’s [188] luminance CSF from the IEEE P1858 

standard [22, p. 72], unless otherwise stated. Likewise, the cCSF/cVPF were normalised to 

the same integrated area as Barten’s CSF when they were employed by the PIC, SQRIn, or 

Visual log NEQ, unless stated otherwise. In both cases, this stopped scene-dependent 

changes in the applied HVS models’ magnitude from affecting the IQM scores, but not 

scene-dependent variations in their shape. It should be noted that IQM variants were also 

generated without this normalisation, for comparison, to assess whether accounting for the 

magnitude of scene-dependent HVS models improved their accuracy (the MAE of these 

variants is analysed in Appendix J). 

Output scores from the SQRIn, PIC, log NEQ and Visual log NEQ were calibrated to the 

SQS2 scale by:  

1) setting 𝑘Z to zero, as carried out in a previous comparable investigation [9, p. 60];  

2) setting the value of 𝑘< according to Equation 6.2, so that the mean of the IQM scores 

for all test images at SNR 80 without denoising or sharpening applied, 𝑚+K�V��V, 

equaled the mean of the respective observers’ SQS2 ratings, 𝑚+P,P.  

𝑘< 	=
𝑚+ 𝑆𝑄𝑆
𝑚+K�V��V

 (6.2) 

The CPIQ metric was calibrated to the SQS2 scale by subtracting the quality loss in JNDs 

(i.e. 𝑄𝐿Ê in Equation 3.7) from the SQS2 value of 23 corresponding to the input images to 

the simulation.  
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6.2 Results 

Subjective image quality ratings from the evaluations are presented in Section 6.2.1. IQM 

variants are benchmarked in terms of their Mean Absolute Error (MAE) and Spearman’s 

Rank Order Correlation Coefficient (SROCC) in Section 6.2.2 and analysed further in 

Section 6.2.3. Appendix J is also referred to that benchmarks the MAE of every IQM variant.  

6.2.1 Subjective Quality Ratings 

Figure 6.5 presents uncalibrated subjective quality ratings for each test image. This was 

because Allen [102, p. 257] observed that calibrating such ratings according to the average 

scene relationship, as described in ISO 20462 [56, p. 19], removed virtually all scene 

susceptibility and/or scene-dependency from the data. Thus, uncalibrated SQS2 ratings were 

more suitable for evaluating the IQMs of this thesis, which are designed for scene-dependent 

systems. Uncalibrated ratings were employed successfully in Allen’s evaluations of IQM 

performance, with respect to scene-dependent Joint Photographic Experts Group (JPEG) and 

JPEG 2000 compression [102, Sec. 7.5].  

Figures 6.6 and 6.7 analyse the scenes’ susceptibilities and observers’ sensitivities to the 

capture system simulation’s artefacts, respectively, following the method of Keelan [46, Ch. 

10]. Scenes/observers were grouped in terms of their susceptibility/sensitivity in the 

following manner. 25% of the scenes/observers with the most data points between the 75% 

and 100% percentiles were classified as high susceptibility/sensitivity. Likewise, 25% of the 

scenes/observers with the most data points between the 0% and 25% percentiles were 

classified as low susceptibility/sensitivity. The remaining 50% of the scenes/observers were 

classified as medium susceptibility/sensitivity. Since noise and ISP artefacts were more 

perceptually significant at lower SNRs, the number of data points at SNRs 10, 20, 40 and 80 

were weighted by factors of 2.5, 2, 1.5 and 1, respectively, during these classifications. 
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Figure 6.5 Mean observer image quality ratings on the Standard Quality Scale (SQS2) for each test 

image; error bars show standard error. 
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Figure 6.6 The scenes’ susceptibilities to perceived quality loss. The x-axis is the grand mean of 

the scenes’ quality ratings. The y-axis is the quality rating for each scene, averaged over all 

observers. Higher susceptibility scenes are distributed closer to the x-axis. The scenes classified 

as high, medium and low susceptibility are labelled [H], [M] and [L], respectively.   
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Figure 6.7 The observers’ sensitivities to perceived quality loss. The x-axis is the grand mean of 

the observers’ quality ratings. The y-axis is the quality rating for each observer, averaged over all 

scenes. Data from higher sensitivity observers is distributed closer to the x-axis. Observers 

classified as high, medium and low sensitivity are labelled [H], [M] and [L], respectively. 

Experienced and inexperienced observers are labelled [Y] and [N], respectively.   
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Perceived image quality was increased by combined denoising and sharpening, for which 

the tuning of the simulations was optimised (see Section 6.1.1 for further information). 

However, it was reduced by denoising alone. Non-linear denoising and sharpening 

algorithms preserved image signal content and mitigated the amplification of noise, 

respectively, as described in Section 2.2.1. Thus, they produced higher quality images than 

equivalent linear ISP algorithms when activated at a higher intensity at lower SNRs. The 

perceived quality of images from the non-linear pipeline was slightly more scene-dependent 

than the linear pipeline.  

The variance of the scenes’ susceptibilities and observers’ sensitivities to quality loss 

generally increased at lower SNRs. The former was also lower than the latter as observed by 

Keelan [46, Ch. 10]. Non-busy scene images, e.g. Summer, Afternoon Tea and Kids, were 

most susceptible to quality losses due to noise and denoising artefacts that dominated at low 

SNRs. The Seagull and Cliffs images were most susceptible to sharpening artefacts. The 

latter affected high-contrast edges in particular, dominating certain scenes at higher SNRs.  

Observers that were sensitive to noise were generally also sensitive to denoising artefacts. 

The variance of observer sensitivities was highest at low SNRs before denoising, and after 

combined sharpening and denoising. This supports Persson’s [48, p. 61] observation that the 

variance of observer sensitivities is higher when the test and ruler image artefacts are 

dissimilar. Inexperienced observers were less consistent, as noted in comparable studies 

[201]. This is expected to be either due to fatigue, erratic quality consciousness, or less 

effective training.  

Experienced observers were not omitted from the dataset as suggested by Keelan [46, p. 9], 

because:  

1) they represented only 22.2% of all observers; 

2) previous successful studies using the image quality ruler [48, p. 53], [102, p. 225], 

[201] included higher proportions of them; 

3) their sensitivity was not found to differ significantly from inexperienced observers 

with respect to denoising (also noted by Persson [48, p. 62]) or sharpening artefacts. 
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6.2.2 Benchmarking of IQM Variants 

All IQM variants were benchmarked according to their MAE and root mean square error 

(RMSE) with respect to the observer image quality ratings, once the IQMs were calibrated. 

The MAE describes specifically the mean difference in SQS2 units between the output scores 

of the metric and the ideal linear relationship with the observer ratings. This ideal linear 

relationship is indicated by the pink line in Figures 6.10 to 6.16, which has equation 𝑦 = 𝑥. 

Thus, if a metric variant has an MAE of 2, then it can be expected to predict the quality of a 

given image with an accuracy of ± 2 JNDs. The RMSE is also calculated with respect to the 

ideal linear relationship. Lower RMSE and MAE values indicate higher IQM accuracy.  

Further, all IQM variants, as well as the Mean Structural Similarity (MSSIM) metric, were 

benchmarked according to their SROCC between the IQM scores and the observer ratings. 

The SROCC describes the goodness of fit to a monotonic function that may not be linear; 

higher values indicate a higher correlation, but not necessarily higher accuracy.  

The MATLABTM implementation by Wang et al. [333] was employed to compute the 

MSSIM (Equation B9) with respect to the image luminance channel using the default 

Gaussian window and dynamic range, specified in Appendix B. The constants 𝐾PP¥E_< and 

𝐾PP¥E_Z in Equations B1 and B3 were set to their default values of 0.01 and 0.03, respectively 

[114]. The reference image was the input image to the simulations. The test image was the 

output image generated by the pipeline at the required processing stage, at the specified SNR.  

Tables 6.4 and 6.5 benchmark the metric variants’ MAEs and SROCCs, respectively, with 

respect to the full dataset of observer quality ratings, i.e. all observers and all scenes. Input 

parameters for the highest and lowest performing variants are listed in the left-hand and 

right-hand tables, respectively. RMSE and MAE scores are colour coded across both tables 

in each figure, from red to green, indicating lowest to highest performance, respectively. 

Figures 6.8 and 6.9 describe the distribution of the MAE and SROCC scores across all 

variants of each metric, respectively. 
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Figure 6.8 Box and whisker plots of Mean Absolute Errors (MAE) of all variants of each metric.  

 

Table 6.4 Input parameters and Mean Absolute Errors (MAE) for the most accurate (left table) 

and least accurate (right table) variants of each image quality metric (IQM). The MAE scores are 

coloured from red to green denoting lowest to highest accuracy.  

 

Figure 6.9 Box and whisker plots of the Spearman’s Rank Order Correlation Coefficient 

(SROCC) of all variants of each metric, including the Mean Structural Similarity (MSSIM).  
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Table 6.5 Input parameters and Spearman’s Rank Order Correlation Coefficients (SROCC) for 

variants of each image quality metric (IQM) that resulted in the highest (left table) and lowest 

correlation (right table), as well as the Mean Structural Similarity (MSSIM) metric. The SROCC 

scores are coloured from red to green denoting lowest to highest correlation, respectively.  

When evaluating the robustness of each metric to changes in its input parameters, the main 

factors to be considered are the accuracy (MAE) of its most accurate variants, and the range 

of accuracies across all variants of the metric. The maximum level and range of the variants’ 

correlations with the observer ratings (SROCC), are further factors to be taken into account. 

The CPIQ metric produced the variants with highest accuracy overall, followed closely by 

the Visual log NEQ and log NEQ metrics proposed in this thesis. However, the Visual log 

NEQ produced the highest accuracy variant for the non-linear pipeline. This is an exciting 

result, considering it is a very simple metric that relates directly to the fundamental NEQ 

measure, and accounts for system scene-dependency. The range of accuracies (MAE) of 

variants of the CPIQ metric was extremely high compared to the other metrics tested, as 

demonstrated in Figure 6.8. This is expected to be due to the metric’s pre-calibration making 

it sensitive to any changes in its input parameters, particularly the CSF parameter. The 

simpler Signal Transfer Visual IQMs (STV-IQM) such as the PIC, SQRIn, log NEQ and 

Visual log NEQ, showed greater consistency when their input parameters were changed to 

account for imaging system and visual scene-dependency.  
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The most accurate IQM variants (shown in Table 6.4) all implemented noise measures 

derived from pictorial images that were most sensitive to system scene-dependency. They 

also used SPD-MTFs that were sensitive to system scene-dependency, measured either from 

pictorial or dead leaves signals. They employed the Barten CSF [186] for all IQMs where 

changing the CSF affected the IQM accuracy significantly. Changing the CSF parameter of 

the PIC and SQRIn did not affect the accuracy or correlation of the metrics since the high 

display luminance rendered visual noise very low relative to the imaging system’s noise at 

most SNRs. Thus, the CSF parameter effectively cancelled itself out, since it was applied to 

both the numerator and denominator of the integral in these IQMs (which are defined in 

Equations 3.3 and 3.4).  

The least accurate IQM variants implemented most often the standard uniform patch NPS 

and the direct dead leaves MTF [19] that accounted least for system scene-dependency, as 

well as the cVPF [8] visual model. The pictorial image SPD-MTF was also used by some of 

the least accurate IQM variants, expected to be due to bias discussed in Chapter 5.  

Benchmarking the IQM variants by their SROCC (Table 6.5) showed comparable trends to 

the MAE benchmarking tables (Table 6.4). The MSSIM provided the lowest SROCC of all. 

Its RMSE and MAE could not be calculated since it is of range 0 ≤ 𝑀𝑆𝑆𝐼𝑀 ≤ 1. 

Appendix J benchmarks the accuracy of every IQM variant, applying the same colour coding 

as Tables 6.4 and 6.5. MAE scores have been tabulated for various scene and observer 

groups, as well as for all observers and all scenes under the following conditions:  

1) without normalising the CSFs following the method of Section 6.1.3; 

2) after restricting the range of integration to 12 < 𝑢 ≤ ∞ cycles/degree, to mitigate 

the effects of bias in the SPD-MTF, discussed in Chapter 5.  

Results from these various data subsets were generally in agreement with one another. 

Trends in the MAE tables were virtually identical to the equivalent RMSE tables and shared 

commonalities with equivalent SROCC tables, which were both omitted from this thesis.  

Benchmarking tables in Appendix J, along with Tables 6.4 and 6.5 and observations from 

Sections 4.3 and 5.2, indicate that the various SPD-MTF and SPD-NPS measures accounted 

well for system scene-dependency. The IQM accuracy increased consistently for the non-

linear pipeline when these measures were used and was sometimes even higher than for the 

linear pipeline. However, the IQMs that implemented SPD-MTFs from pictorial images 
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were, in some cases, less accurate than IQMs that used dead leaves SPD-MTFs or the direct 

dead leaves MTF. This observation is expected to be due to bias in the former measurements. 

Restricting the range of integration to 12 < 𝑢 ≤ ∞ cycles/degree did not improve IQM 

accuracy, despite excluding frequencies with greatest bias and preserving the fundamental 

spatial frequencies for seeing objects [334].  

6.2.3 Further Analysis of Selected IQM Variants 

This section analyses the correlations between selected variants of metrics from this thesis 

and the observer image quality ratings. This analysis is intended to complement the 

benchmarking tables of Section 6.2.2 and Appendix J.  

Figures 6.10 to 6.16 illustrate one or more of the following, concerning each IQM of this 

thesis:  

1) typical IQM variant behaviour;  

2) best/worst case scenarios regarding IQM variant accuracy; 

3) significant changes in IQM variant accuracy that resulted from using input 

parameters that were more sensitive to scene-dependency.  

The data presented is from the full dataset of observers and scenes. Figure 6.17 analyses the 

MSSIM’s correlation. Data in Figures 6.11, 6.12, 6.15 and 6.16 is coloured with respect to 

each scene to express scene-dependency in IQM behaviour. To isolate the effects of different 

ISP stages in Figures 6.10, 6.13, 6.14 and 6.17, data points generated before and after 

denoising are coloured red and green, respectively, and data generated after denoising and 

sharpening is coloured blue; darker markers indicate higher SNRs. 
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Figure 6.10 The mean of all observer image quality ratings vs the log Noise Equivalent Quanta 

(NEQ) metric variants that were less accurate or sensitive to system scene-dependency. They 

implement direct dead leaves Modulation Transfer Functions (MTF) [19]. 

 

Figure 6.11 The mean of all observer image quality ratings vs log Noise Equivalent Quanta (log 

NEQ) variants that were more accurate and sensitive to system scene-dependency. They employ 

the pictorial image SPD-NPS. The most accurate log NEQ variant is shown in (a) and (b).  
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Figure 6.12 The mean of all observer image quality ratings vs the most accurate Visual log NEQ 

variants that both implemented the dead leaves SPD-MTF and mean pictorial image SPD-NPS.  

 

Figure 6.13 The mean of all observer quality ratings vs the Perceived Information Capacity (PIC) 

[169] variants with lowest, (a) and (b), and highest accuracy, (c) and (d). Implementing different 

visual models had minimal effect on the correlations; hence the employed model is not specified.  
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Figure 6.14 The mean of all observer image quality ratings vs the Square Root Integral with noise 

(SQRIn) [12] variants of lowest, (a) and (b), and highest accuracy, (c) and (d). The visual model 

is not specified because implementing different models had minimal effect on the correlations. 
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Figure 6.15 The mean of all observer quality ratings vs CPIQ metric [22] variants that employed 

different contrast sensitivity functions (CSF). All variants implemented the direct dead leaves 

Modulation Transfer Function (MTF) [19] and uniform patch noise images that are default input 

parameters to the IEEE P1858 standard [22] and are least sensitive to system scene-dependency.  
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Figure 6.16 The mean of all observer image quality ratings vs CPIQ metric [22] variants that 

employed different Modulation Transfer Functions (MTF) and noise parameters. All variants 

implemented the Barten contrast sensitivity function (CSF) [186] that was most optimal for the 

CPIQ metric. The most accurate CPIQ metric variant is shown in (e) and (f). 
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Figure 6.17 The mean of all observer quality ratings vs output scores from the Mean Structural 

Similarity (MSSIM) metric [114].  

Variants of the PIC [169] and SQRIn [12] displayed comparable trends to variants of the log 

NEQ and Visual log NEQ in Figures 6.10 to 6.14, as well as Tables 6.4 and 6.5 and Appendix 

J. This is expected to be because the former STV-IQMs are fundamentally signal-to-noise 

measures and are thus also closely related to the NEQ (as noted in Section 2.4).  

But the CPIQ metric [22] displayed contrasting behaviour which was expected to be due to:  

1) differences in design, since it is a more complex Multivariate Formalism IQM (MF-

IQM; see Section 3.1.2 for more information); 

2) it relating less closely to the NEQ; 

3) it applying more extensive pre-calibration (as expressed in Figure 3.3).  

The effect of implementing the revised noise, signal transfer and CSF input parameters in 

the CPIQ metric are expected to be distorted because the calibration was tuned for the 

original parameters of the IEEE P1858 CPIQ standard [22], including uniform patch noise 

images, the direct dead leaves MTF [19], and Johnson and Fairchild’s CSF [188].  
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The following observations demonstrate why the accuracy of the PIC, SQRIn, log NEQ and 

Visual log NEQ improved significantly for the non-linear pipeline when SPD-NPS measures 

were employed that accounted for system scene-dependency (as demonstrated in Tables J2 

to J6). Since Figure 4.5 demonstrates that the uniform patch NPS underestimated noise after 

non-linear denoising, the IQMs that employed this measure overestimated the observer SQS2 

ratings (Figures 6.10(a), 6.13(a) and 6.14(a)). This overestimation of perceived quality was 

mitigated by implementing the dead leaves SPD-NPS (Figure 6.10(c)) and to a greater extent 

the pictorial image SPD-NPS (Figures 6.13(c) and 6.14(c)) that characterised more 

appropriately the non-linear pipeline’s noise.  

The SQRIn overestimated the observed SQS2 ratings at high SNRs, forming a curved 

distribution with decreasing gradient. This supports Töpfer and Jacobson’s [169] 

observation that the SQRIn does not always change linearly with noise or describe perceived 

image quality in equal JND units, as discussed in Section 3.1.1. The expected cause of this 

limitation is that it underestimates the perceptual impact of noise at near-threshold levels 

[169]. The PIC also displayed such behaviour, but to a lesser extent. If the SQRIn or PIC 

were to be re-calibrated at SNR 20 and data at SNRs 40 and 80 were omitted, Figures 6.13 

and 6.14 suggest they would be more representative of the ideal linear relationship and their 

accuracy would improve significantly. Thus, it is concluded that the simulations at SNRs 80 

and 40 reached the limit to which the SQRIn and PIC apply, with respect to noise.  

The CPIQ metric’s distribution was linear when plotted versus the observer SQS2 ratings 

and was close to the ideal linear relationship for the most accurate variant, which employed 

SPD-MTFs and noise images derived from images of pictorial scenes (Figure 6.16(e) and 

(f)). Changing the CSF function altered the gain and offset of this linear distribution, 

affecting the accuracy of the IQM significantly. The gain and offset was most optimal when 

the Barten CSF [186] was employed. This function has a similar band-pass shape to the 

Johnson and Fairchild CSF [188] from the IEEE P1858 CPIQ standard [22] but displayed 

minor scene-dependent variations in shape as indicated by Figure I5. Implementing the cCSF 

[35] or cVPF [8] produced unfavourable gain and offset. These two highly scene-dependent 

HVS models were generally slightly flatter in profile and, once normalised, prioritised high 

frequencies more than the CSF from the standard [188]. This likely rendered them less 

compatible with the calibration or curve fitting of the CPIQ metric (as discussed further in 

Section 7.4). Thus, their negative impact on the accuracy of this metric may not be indicative 

of their appropriateness as HVS functions for image quality modelling.  
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The CPIQ metric’s accuracy improved, however, when SPD-MTFs and noise images from 

pictorial images were employed (Figure 6.16), despite the limitations of revising the input 

parameters of IQMs that applied pre-calibration or curve fitting (discussed further in Section 

7.1).  

This observation, alongside their successful implementation in other metrics, demonstrates 

the following for the various SPD-MTF and SPD-NPS measures:  

1) They are robust.  

2) They are more relevant to image quality modelling than current standard system 

performance measures.  

3) They can likely be substituted successfully in the place of current standard measures, 

even within IQMs implementing pre-calibration or curve fitting.  

The accuracy of the MSSIM was limited by the compound effect of blur, noise, demosaicing, 

denoising and sharpening artefacts. Further work should investigate the extent to which these 

limitations apply to other computational IQMs (CP-IQM) (Section 8.2).  

6.3 Summary 

Correlations between observer image quality ratings (measured using the ISO 20462 image 

quality ruler) and a number of variants of several IQMs have been evaluated. Variants of 

each IQM used different combinations of input parameters. They accounted for scene-

dependency of the imaging and human visual system to varying degrees. The conclusions of 

this chapter are core to the discussions of the thesis. They support the hypothesis that imaging 

system scene-dependency should be accounted for by IQMs, and further validate the various 

SPD-NPS and SPD-MTF measures from pictorial image and dead leaves signals. Less 

support was found for accounting for spatial visual scene-dependency, although this 

observation should not be considered conclusive and should be investigated further. The 

novel log NEQ and Visual log NEQ metrics that are a product of this research, as well as the 

revised scene-and-process-dependent CPIQ metric, performed particularly well when they 

implemented the SPD-MTF and SPD-NPS measures. The latter metric was less consistent. 
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Chapter 7  Discussion 

Spatial image quality metrics (IQM) were firstly reviewed from an image capture systems 

development viewpoint in this thesis. Metrics from the Signal Transfer Visual IQM (STV-

IQM) and Multivariate Formalism (MF-IQM) genres were concluded to be most suitable for 

the purpose. These metrics use as input parameters the Modulation Transfer Function (MTF) 

and Noise Power Spectrum (NPS), which are standard measures of signal transfer and noise, 

respectively; both are used routinely when developing capture systems. The most suitable 

metrics also implemented contrast sensitivity functions (CSF) describing human visual 

sensitivity under the given viewing conditions. Prior art demonstrated these metrics are less 

accurate for the characterisation of non-linear systems. The hypothesis in this thesis is that, 

these inaccuracies are due to limitations of current MTFs, NPSs and CSFs, presented below. 

1) Firstly, non-linear capture system scene-dependency is unaccounted for in MTF and 

NPS measurements derived from test targets that contain uniform tone patches, 

edges, sine-waves and white noise. Also, since none of these signals are 

representative of the “average scene”, the derived measurements do not describe the 

average real-world performance of such systems.  

2) Secondly, the traditional CSF (which is a model of detection of unmasked narrow-

band signals) is not an accurate model for describing the visual tasks related to image 

quality evaluation. The latter is expected to involve both detection and discrimination 

of complex image signals that are usually masked; both were found to be scene-

dependent in prior art [8], [35].  

Frameworks were proposed to revise metrics to incorporate the following MTFs, NPSs and 

CSFs, with the aim of improving metric accuracy:  

1) Scene-and-process-dependent NPSs (SPD-NPS) measured from replicate captures of 

images of scenes (or suitable test charts) to account for noise scene-dependency. 

2) Scene-and-process-dependent MTF (SPD-MTF) measures derived from images of 

scenes (or appropriate test charts) that account for signal transfer scene-dependency.  
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3) Contextual CSFs (cCSF) [35] or Contextual Visual Perception Functions (cVPF) [8] 

that account for the scene-dependent effect of visual masking during detection or 

discrimination of pictorial scene signals, respectively.  

Frameworks for two novel metrics (the log Noise Equivalent Quanta (log NEQ) and Visual 

log NEQ) were also proposed that used the abovementioned parameters.  

The SPD-MTF and SPD-NPS measures were developed in this thesis and validated using 

camera simulation pipelines that generated controlled outputs. The pipelines applied either 

linear or non-linear content-aware ISP algorithms, such as demosaicing, denoising and 

sharpening. The metrics were validated using the same pipelines.  

Although the measures and metrics were not validated using real capture systems, the results 

from these simulations are likely to be representative of real systems. This is particularly the 

case for observations regarding system scene-dependency, and the capability of the measures 

and IQMs to account for it. This is because scene-dependent system behaviour related far 

less to the initial modelling of image capture (i.e. lens blur, noise, mosaicing and pre-

processing) compared to the ISP algorithms applied thereafter.  

The discussion comprises of five sections. The first four concern the contributions of the 

four research chapters (Chapters 3 to 6). Section 7.1 discusses the scene-and-process-

dependent IQM frameworks. Sections 7.2, 7.3 and 7.4 discuss the SPD-NPS measures, SPD-

MTF measures, and scene-and-process-dependent IQMs, respectively. Finally, Section 7.5 

reflects upon the implementation and application of all measures and metrics of this thesis.   

7.1 Image Quality Metric Frameworks  

The IQM frameworks were proposed in Chapter 3. The concept behind them was to transfer 

to STV-IQMs and MF-IQMs the capability of Computational IQMs (CP-IQM) to account 

for imaging system and human visual scene-dependency. To achieve this, the “nature” of the 

input parameters of various STV-IQMs and MF-IQMs was revised to analyse contents from 

the output image (i.e. a captured scene). Namely, their MTF, NPS and CSF parameters were 

substituted for SPD-MTFs, SPD-NPSs and cCSFs/cVPFs, respectively. The novel log NEQ 

and Visual log NEQ metric frameworks were developed following the same principle.  
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The resultant IQM frameworks represent a new sub-genre of STV-IQMs and MF-IQMs. 

They are adaptive to both imaging and visual system scene-dependency. But they still remain 

modular and relate to the underlying physics of both systems, and the viewing conditions. 

The metric frameworks demonstrate some novelty on a conceptual level. 

Substituting the input parameters of existing STV-IQMs and MF-IQMs did not violate these 

metrics, provided the metrics were based upon fundamental relationships between perceived 

image quality and the MTF, NPS, Noise Equivalent Quanta (NEQ) and/or CSF. However, 

this does not apply to metrics that involve significant pre-calibration, or constants that have 

been based on visual image quality rating datasets. Revising the input parameters of such 

metrics can render their original calibration (or curve fitting) less appropriate since it was 

tuned for their original input parameters. In such cases, this places the revised IQM at a 

relative disadvantage to its original incarnation. It can also cause the accuracy of the revised 

IQM to be unrepresentative of the appropriateness of its input parameters. Also, any pre-

calibration (or curve fitting) applied to a given IQM is, strictly speaking, only guaranteed to 

be applicable to the corresponding subjective image quality rating dataset. In certain cases, 

such metrics can lose accuracy when applied to new applications, or to systems that 

significantly exceed or fall below the quality range of the original dataset. These two issues 

were noted for the Square Root Integral with Noise (SQRIn) [12] and the Perceived 

Information Capacity (PIC) [169] metrics in Section 6.2.3. Conversely, other investigations 

found the IEEE P1858 Camera Phone Image Quality (CPIQ) metric could be applied 

accurately outside the quality range of its original dataset [335].  

Strictly speaking, the proposed metric frameworks require a functional prototype of the 

imaging system in order to be executed. This is because the SPD-MTF and SPD-NPS are 

computed from captured (or processed) images. Nevertheless, an envelope of SPD-MTFs 

and SPD-NPSs can be simulated for a given set of input scene images. Likewise, the cCSF 

and cVPF can be computed with respect to these scene images. The resultant measures can 

be used in the metrics to predict the quality ranges of systems under development. 
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7.2 Scene-and-Process-Dependent Noise Power Spectra (SPD-

NPS) 

The novel SPD-NPS measures proposed in this thesis are deemed to be robust. They are the 

most relevant measures available for temporally varying noise in systems that apply non-

linear content-aware ISP. These observations are supported by the validations of each SPD-

NPS measure (Chapter 4), and the fact that the accuracy of IQMs improved when these 

measures were used (Chapter 6 and Appendix J).  

The measures were validated using image capture pipelines that introduced Poisson noise at 

signal-to-noise ratios (SNR), ranging from very good to very poor exposure conditions. Read 

noise and dark current noise were simulated as Gaussian noise with increased mean and 

standard deviation at lower SNRs. This noise modelling accounted for the reduced quantum 

efficiency of the red and blue pixels, but not fixed pattern noise (FPN).  

The validations indicated that the uniform patch NPS is unrepresentative of temporally 

varying noise in non-linear image capture systems. This was found to affect the accuracy of 

any IQMs that used it. Aside from its convenience and ability to account for FPN, there is 

little to support the use of the uniform patch NPS when characterising non-linear systems.  

The dead leaves SPD-NPS proposed in this thesis was found to be more appropriate for the 

image quality modelling of non-linear systems, as predicted. This supports Artmann’s [18] 

observations on the benefits of characterising capture system noise using dead leaves signals. 

Artmann’s [18] noise measures are derived indirectly by comparing measurements from 

different dead leaves MTF measurement implementations. The dead leaves SPD-NPS has 

certain limitations (discussed below) but measures the NPS directly, involving fewer 

assumptions. Artmann’s noise measures should be compared with the dead leaves SPD-NPS 

in further work. 

Temporally varying noise in dead leaves signals were, however, processed differently by 

non-linear content-aware ISP algorithms compared to noise in individual images of scenes, 

or in the “average scene”. The dead leaves chart shares little similarity with pictorial scene 

images, both objectively and visually, beyond replicating the average scene power spectrum. 

Its mathematically-generated signal consists of randomly distributed, overlaid discs with 

“perfect” edges. The target content does not represent the variety of edge gradients, complex 
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structures and surface textures of pictorial scene images, or the fact that these contents are 

usually distributed in a non-random, structured fashion. Work in this thesis demonstrated 

that, the processing of noise by non-linear content-aware ISP algorithms varies significantly 

between different pictorial scene images, due to variations in their signal content. Thus, it is 

understandable that these algorithms should process noise in dead leaves signals differently 

to noise in the “average scene”. This leads to an important question for investigation in 

further work: can a single test chart be developed that triggers non-linear content-aware 

ISP algorithms like the average pictorial scene, and if so, to what extent must it replicate 

real scene signals?  

The results from Chapters 4 to 6 support, in particular, the relevancy of the SPD-NPS 

measures that were derived from images of scenes. These measures displayed comparable 

levels of bias to the uniform patch NPS. They also demonstrated significant advantages over 

other measures when applied to the non-linear pipeline. For example, scene-dependent 

variations in the shape of the pictorial image SPD-NPS resulted from it accounting for the 

effect of the input scene image on the processing of noise by non-linear ISP algorithms. The 

IQMs that used this measure predicted subjective image quality consistently with the highest 

accuracy (as demonstrated in Tables J1-J6). This important observation indicates that scene-

dependent variation in the temporally varying noise of non-linear systems is both 

measurable, and relevant to image quality. The apparent robustness of the pictorial image 

SPD-NPS forms a solid foundation for the pictorial image SPD-NPS standard deviation 

measure of system scene-dependency. It also supports the case for the mean pictorial image 

SPD-NPS being the best measure of average real-world noise for non-linear systems. Indeed, 

the IQMs that used the latter measure were slightly more accurate than metrics using the 

dead leaves SPD-NPS. This difference in accuracy did not reflect the significant disparity 

between these two measures’ curve shapes. The reason for this was the different curve shapes 

did not result in significant variations in integrated area. 

The limitations of these new SPD-NPS measures are summarised in Section 4.1, and include:  

1) the requirement for many replicates to be captured (noise is underestimated if fewer 

replicates are used); 

2) their higher computational complexity than existing measures; 

3) their accuracy being dependent on all replicates being registered accurately; 

4) their inability to account for FPN or fixed patterns of artefacts.  
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1) and 2) are becoming increasingly less problematic. Many cameras can now be controlled 

by software to capture images automatically under pre-specified settings and output them 

directly to a computer. This feature is common for camera phone and autonomous vehicle 

camera modules, for which the SPD-NPS measures are deemed to be most useful. 

Computing the mean of the replicates, and registering them, are the only processes that 

increase in computational demand with greater numbers of replicates. Thus, SPD-NPSs can 

be measured using hundreds of replicates to minimise underestimation of noise, which 

corrupts the SPD-MTF measures and IQMs of this thesis. 

Most modern capture systems are mirrorless. This mitigates vibration and misregistration of 

the replicates (3)), which can also be limited by using an automated robotic arm [336], [337] 

to optimise and maintain steady alignment of the capture device. Various algorithms [338]–

[340] can also correct misregistration automatically in terms of horizontal and vertical 

translation, scale, and orientation. The fact that these algorithms can distort the original 

camera signal and noise should not be overlooked, although prior art [7], [161] applied 

simple x-y translation algorithms successfully to register captured replicates in comparable 

measurements of noise. 

FPN and other forms of capture system sensor noise have been minimised over the last 20 

years [167]. FPN is now less significant than temporally varying noise under most 

conditions. It can be measured from replicate captures of a uniform patch following ISO 

15739 [168, p. 15] procedures. The measured FPN power spectrum can be added to the SPD-

NPS. The resultant total system noise measure still has the limitation of non-linear ISP 

processing FPN differently in captured uniform patches compared to images of scenes. But 

this is minor in comparison to taking all noise measurements from uniform patches.   

7.3 Scene-and-Process-Dependent Modulation Transfer 

Functions (SPD-MTF) 

The results from Chapters 5 and 6 demonstrate the potential of the SPD-MTF measures and 

support their use as IQM input parameters. However, this support was less conclusive than 

for the SPD-NPS measures for two reasons. The first is the bias in the SPD-MTF 

measurements due to signal-to-noise limitations (discussed in Chapter 5). The SPD-MTF 

measures inherited these limitations from the direct dead leaves MTF method; the limitations 
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affected, in particular, SPD-MTFs measured from pictorial images. The second is that the 

SPD-MTFs were validated by comparison with the direct dead leaves MTF. The latter 

presented a more appropriate input signal than the uniform patch NPS against which the 

SPD-NPSs were validated. It is expected that the SPD-MTFs would have demonstrated 

greater improvements over MTFs measured from edges, sine-waves or white-noise signals. 

The same trends would also be expected in the accuracy of IQMs that use these measures.  

All IQMs performed more accurately using the dead leaves SPD-MTF than the direct dead 

leaves MTF (Tables J1-J6). The only exception was the IEEE P1858 Camera Phone Image 

Quality (CPIQ) metric which has inherent constants that originate from its curve fitting 

(making it less adaptable). The improvements were minor, but they further demonstrate the 

relevance of the dead leaves SPD-NPS measure, which is an inherent part of the dead leaves 

SPD-MTF.  

The CPIQ metric and SQRIn were most accurate when they used SPD-MTFs measured from 

images of scenes. But the accuracy of other metrics was less competitive. Thus, the benefits 

of the pictorial image SPD-MTF and mean pictorial image SPD-MTF accounting most 

thoroughly for system scene-dependency were traded off by their bias. Reducing the 

integration range to 0 ≤ 𝑢 ≤ 12 cycles/degree did not improve metric accuracy (as shown 

in Tables J1-J6) despite omitting the most biased frequencies. It affected the metrics’ 

capabilities to account for sharpness changes at higher quality levels. But the metrics still 

accounted for the most relevant frequencies for seeing objects [334].  

Despite Chapter 5 indicating that the signal transfer of non-linear ISP algorithms differs for 

the dead leaves test chart and the average scene, implementing SPD-MTFs measured from 

images of scenes in IQMs is not presently justified. However, the successful implementation 

in IQMs of SPD-NPS measures derived from images of scenes, suggests the respective SPD-

MTF measures should also improve metric accuracy, provided their bias is mitigated further. 

The pictorial image SPD-MTF and mean pictorial image SPD-MTF account for signal 

transfer concerning various signals, including edges and textures. If their bias were mitigated 

further, implementing either measure in the P1858 CPIQ standard’s [22] texture loss 

attribute metric should also perform the role of its Edge Spatial Frequency Response (SFR) 

metric.   
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A parallel PhD study at the Computational Vision and Imaging Technology group, 

University of Westminster, is currently deriving SFRs from edges extracted directly from 

captured scenes [341]. The main difference between these SFRs and the SPD-MTFs of this 

thesis is the former requires no knowledge of the input signal and does not determine a global 

MTF/SFR measurement. There has been no comparison between the error, speed and 

computational complexity of these two very different approaches yet.   

7.4 Scene-and-Process-Dependent Image Quality Metrics  

The revised and novel IQM frameworks were successful. Many variants of each metric were 

generated, using different combinations of MTF, NPS and CSF parameters in Tables 4.1, 

5.1 and 6.1, respectively. All metric variants were validated with respect to images from 

image capture pipelines with ISP filters tuned at reduced opacity. This placed the variants 

that used SPD-MTF and SPD-NPS measures at a disadvantage to the variants that used the 

uniform patch NPS and direct dead leaves MTF. This tested the robustness of the former 

variants for the reasons given below.  

Bias in the SPD-NPS measures related to the level of noise and the number of replicates. 

Reducing the opacity of denoising increased the proportion of higher-power, unfiltered noise 

in the denoised image, biasing all SPD-NPS measures. It increased the accuracy of the 

uniform patch NPS, however, which measured unfiltered noise more accurately than filtered 

noise. Reducing the ISP opacity also gave the direct dead leaves MTF an advantage over the 

various SPD-MTFs. This was because the resultant bias in the SPD-NPS measures was 

carried into the SPD-MTFs due to the latter’s signal-to-noise limitations (Equation 5.1). 

Despite this handicap, metric variants that used SPD-MTFs and SPD-NPSs were 

consistently more accurate than variants using the direct dead leaves MTF and uniform patch 

NPS. This observation demonstrates the robustness of the SPD-MTF and SPD-NPS 

measures, and their relevance to the characterisation and image quality modelling of non-

linear capture systems. Further, it can be inferred that if the ISP filters were at full opacity, 

the metric variants that used SPD-MTF and SPD-NPS measures would have outperformed 

the others by a greater margin.  

The STV-IQMs complement metrics from the more complex MF-IQM genre, such as the 

CPIQ metric. The novel log NEQ and Visual log NEQ metrics developed in this thesis are 



 143 

 

STV-IQMs that are expected to be valuable to the field. Their comparatively high accuracy 

and consistency supports Keelan’s [176] statement on the fundamental relevance of the NEQ 

to imaging systems characterisation and image quality modelling. It also supports the range 

of prior art that applies the NEQ in models of the ideal observer with respect to signal fidelity 

in the presence of noise [179], [180], and for signal detection [342] under various capture 

conditions. The fact that these metrics involved minimal calibration or curve fitting meant 

that analysing their accuracy informed usefully on the relevance of their input parameters to 

image quality modelling. These metrics consistently performed most accurately using the 

various SPD-MTF and SPD-NPS measures. This observation was particularly the case for 

the non-linear pipelines (for which these measures and metrics were designed).  

It is expected that applying further calibration or curve fitting would have improved the 

accuracy of the log NEQ and Visual log NEQ with respect to the subjective image quality 

dataset of this thesis. However, it is likely that the metrics would then:  

1) relate less directly to the fundamental NEQ measure and Fechner’s law;  

2) inform less accurately regarding the relevance of their input parameters to image 

quality modelling; 

3) be less broadly applicable or revisable; 

4) potentially be less accurate outside of the range of the dataset to which their 

calibration or curve fitting was applied; 

5) inherit certain characteristics of the systems they were calibrated with respect to.  

Thus, it was decided that minimal calibration and no curve fitting should be applied, to retain 

the metrics’ “purity” and maximise their relevance across different systems and applications. 

The SQRIn and PIC were not as accurate as the “purer”, simpler, log NEQ and Visual log 

NEQ metrics. This is expected to be because they were calibrated with respect to datasets 

generated by analog capture systems of lower quality. It is proposed that they could be re-

calibrated to represent the performance of higher-quality digital capture systems better.  

The highest performing variants of the CPIQ metric used SPD-MTF measures and scene-

and-process-dependent noise images. They outperformed all variants of the other IQMs 

despite the CPIQ metric’s curve fitting hindering any revisions of it. However, the following 

unexpected behaviour was also noted. Using scene-and-process-dependent noise images in 

the CPIQ metric did not improve its accuracy as much as using the equivalent SPD-NPS 
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parameters in other metrics. Using noise images and SPD-MTFs derived from dead leaves 

signals also did not improve its accuracy compared to using a uniform patch noise image 

and the direct dead leaves MTF. Implementing the cCSF and cVPF models reduced its 

accuracy greatly, probably due to the inhibiting effect of its curve fitting. Retuning the CPIQ 

metric with respect to the SPD-NPS, SPD-MTF and cCSF/cVPF parameters would improve 

the accuracy of metric variants that use them. It is first recommended that the CPIQ metric 

is tested with respect to a range of arbitrary MTFs, NPSs and CSFs of different shapes, to 

investigate its sensitivity to changes in each input parameter. Its sensitivity to changes in the 

shape of the CSF should be of particular interest, which was severe.  

The cCSF, cVPF and other CSF models were cascaded as weighting functions by all metrics 

to account for the priority of different signal frequencies to perceived image quality. This 

has not been problematic traditionally, and many successful metrics implement CSFs in this 

way. However, it should be noted that these visual models are threshold functions for spatial 

vision, not transfer functions. There is less justification for them to be cascaded with the 

image signal compared to transfer functions such as the MTF. The effect of higher-order 

processes of quality judgement on the priority of different signals to image quality are also 

unaccounted for by all these visual models. This should be investigated in further work. 

The Barten or Johnson and Fairchild CSFs are commonly applied as weighting functions by 

IQMs. Normalising the cCSF and cVPF to the same integrated area as these models rendered 

them more suitable weighting functions. After this normalisation, the IQMs still accounted 

for scene-dependent differences in the shape of the cCSF and cVPF (shown in Figures I3 

and I4). However, the IQMs did not account for variations in the magnitude of these 

functions which relate to the contrast of the scene. The revised SQRIn and PIC metrics still 

took scene contrast into consideration since they accounted for the power spectrum of the 

scene image. But this was not the case for the Visual log NEQ. Disabling the normalisation 

of the cCSF and cVPF did not improve the accuracy of any of the IQMs (Tables J2 to J6).  

Empirical data and discussions from prior art suggest that the cCSF and cVPF are more 

suitable visual functions for image quality modelling than traditional CSFs (as detailed in 

Section 2.5). The fact that metrics using the cCSF and cVPF were less accurate than metrics 

using the Barten CSF was unexpected. For the SQRIn, PIC and CPIQ metrics, it is assumed 

this was caused by their calibration being disturbed when the cCSF/cVPF were implemented. 

However, this does not explain the loss of accuracy in the Visual log NEQ metric that applies 
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minimal calibration. Potential explanations for why the cCSF and cVPF reduced metric 

accuracy are given below.  

The cCSF and cVPF account for visual masking using the Linear Amplification Model 

(LAM). The LAM models the effect of masking on detection/discrimination of signals in a 

given frequency band according to the contrast of flanking bands in the contrast spectrum. 

This global model does not account for whether or not the signal being 

detected/discriminated is located next to any masking content. If a local masking model were 

used instead, detection/discrimination would be modelled as varying locally (as in practice) 

dependent on the proximity of the signal to masking content. It is expected that the cCSF 

and cVPF would be implemented more successfully in IQMs if they applied such a model. 

However, it would make them significantly more complex. 

7.5 Implementation and Application 

7.5.1 Practical Implementation of SPD-MTF and SPD-NPS measures 

It is proposed that the SPD-MTF and SPD-NPS measures developed in this thesis are 

implemented with real capture systems by one of the following two methods.  

The first adapts the implementation of Branca et al. [7], as summarised below: 

1) Capturing the test scenes/target with a very-high-resolution, professional camera 

ensuring these captures contain no visible artefacts (Branca et al. [7] used a 

Hasselblad 503 camera with a 28 megapixel Leaf Aptus digital back and standard 

80mm f/2.8 lens).  

2) Printing the test scenes/target at the largest scannable size using a professional 

printer with a very high dynamic range and resolution (Branca et al. [7] used an 

Epson Stylus Pro 7900 printer with resolution of 2880 x 1440 dots per inch (dpi)).  

3) Mounting the printed images flat and positioning them parallel to the sensor of 

the test device at a distance that results in a sampling density of 140 pixels per 

inch (ppi) or lower when they are captured. Illuminating the printed images 

evenly. Note that higher sampling densities may introduce measurement error.  
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4) Capturing the printed images, including any replicates, with the test device 

mounted on a tripod. A cable shutter release should be used, and the test device’s 

mirror lock-up feature should be enabled, if available.  

5) Scanning each printed image using a professional scanner with a pixel resolution 

of 1200 dpi or higher (Branca et al. [7] used the Epson Perfection V850 Pro 

scanner). The MTF and NPS of the scanner should be negligible compared to the 

test device under the capture conditions. Otherwise, the ISO 12233 slanted edge 

MTF and ISO 15739 [168] uniform patch NPS of the scanner can be obtained 

and accounted for in 6). The scanner should be linear to ensure these 

measurements are representative of its average real-world performance.  

6) Resizing the scanned images to the same pixel resolution as the test device 

captures, using lanczos3 interpolation [343]. Computing their one-dimensional 

(1D) discrete Fourier transform (DFT) power spectra (Equation 2.30). 

Compensating for the MTF and NPS of the scanner, if necessary, to yield suitably 

scaled 1D DFT power spectra for each print presented to the test device.  

7) Computing the desired SPD-NPS for the device from the replicate captures of 4).  

8) Calculating the SPD-MTF of the device with respect to the captured scene/target, 

scanned scene/target, and SPD-NPS (given by 4), 6) and 7), respectively).  

Note that the SPD-NPS measures can also be computed from registered captures of real static 

scenes, by adapting step 4) accordingly, and then following step 7). 

The second method requires an automated camera characterisation system to be developed, 

illustrated in Figure 7.1. It enables SPD-MTFs and SPD-NPSs to be obtained conveniently 

from a large number of replicates, reducing error. It should also allow them to be computed 

in real-time from video signals, as suggested in further work. 
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Figure 7.1 Proposed automated display-capture device layout.  

The very-high-resolution display should deliver a linearised, uncompressed output signal. 

Its MTF should be characterised following reference [344] or [102, p. 208]. Its NPS should 

be characterised by subtracting the uniform patch NPS of a professional digital single-lens 

reflex (DSLR) camera (measured following ISO 15739 [168]) from the combined NPS of 

the display and DSLR. The latter should be measured by capturing a similar uniform tone 

signal with the DSLR, presented by the display. Incorrect characterisation of the display will 

result in measurement error; the DSLR must not apply non-linear ISP. The mounting frame 

should align the display and sensor planes precisely to mitigate aliasing and minimise 

vibration of either component. The sensor-to-display distance should be sufficient to ensure 

the pixel resolution and MTF of the display both outresolve the capture device.  

Bespoke software should display the images of the test scenes/target and trigger the device 

to capture them, automatically, including any replicates. It should then compute the SPD-

NPS of the device, by subtracting the NPS of the display from the SPD-NPS of the captured 

scene/target images. The SPD-MTF of the device should then be computed with respect to 

its SPD-NPS, and the 1D DFT power spectra of the captured and displayed images. The 

displayed image should be resized to the same pixel resolution as the captured image using 

lanczos3 interpolation [343], before computing its power spectrum. Its power spectrum 
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should also be multiplied with the square of the MTF of the display to account for the 

display’s limitations. 

7.5.2 Application in Objective Imaging Performance Metrics 

Objective metrics for imaging system noise and its scene-dependency have been developed 

by the author in conjunction with this project [345].  

The mean pictorial image SPD-NPS area metric, 𝐴E@L=, describes the objective level of 

temporally varying system noise as a single figure (Equation 7.1) [345]; it accounts for 

system noise scene-dependency. 𝑁(𝑢) is the mean pictorial image SPD-NPS. 𝑢 and 𝑢[¢-�FJV 

are spatial frequency and the Nyquist frequency, respectively. Like the MTF50 sharpness 

metric and the MTF10 resolution metric, this objective metric for system noise does not 

account for the human visual system (HVS). Thus, it should not be confused with IQMs and 

should be applied as a system noise optimisation parameter.  

𝐴E@L= = t 𝑁(𝑢). 𝑑𝑢
�./0Ï12Í

»
 (7.1) 

The relative standard deviation area (RSDA) of the pictorial image SPD-NPS, 𝐴OPá², 

expresses the objective level of scene-dependency of temporally varying system noise [345]; 

it also does not account for the HVS. It is given by Equation 7.2, where 𝑆(𝑢) is the pictorial 

image SPD-NPS standard deviation (Equation 4.7); other parameters are as above. 

𝐴OPá² =
∫ 𝑆(𝑢). 𝑑𝑢�3/0Ï12Í
»

𝐴E@L=
 (7.2) 

Both metrics were validated in reference [345] with respect to images generated by pipelines 

tuned at full (Chapters 4 and 5) and reduced opacity (Chapter 6). The mean pictorial image 

SPD-NPS area metric scores (Figure 7.2) corroborated observations of mean pictorial image 

SPD-NPS measurements of system noise performance, including those from Chapter 4. For 

example, the former indicated that non-linear denoising and sharpening algorithms removed 

noise more and amplified noise less, than the equivalent linear algorithms, respectively.  
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Figure 7.2 Mean pictorial image SPD-NPS area, in units of pixels.   

Likewise, the RSDA metric (Figure 7.3) agreed with observations of pictorial image SPD-

NPS standard deviation measurements of system scene-dependency. It was unaffected by 

linear ISPs, as would be expected. Non-linear denoising increased it significantly, but not 

non-linear sharpening. The latter did not increase the relative spread of the pictorial image 

SPD-NPS curves (Figure 4.7) but did re-arrange their shape and order. Both the last are 

unaccounted for by the RSDA metric but affect system performance scene-dependency.  

 

Figure 7.3 Relative Standard Deviation Area of the SPD-NPSs of 50 input scenes. This is 

expressed as a percentage of the integrated area under the mean pictorial image SPD-NPS. 

Quoting the RSDA metric alongside the mean pictorial image SPD-NPS area metric 

expresses both the systems performance and scene-dependency, in the same manner as when 

the pictorial image SPD-NPS standard deviation is added/subtracted from the mean pictorial 
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image SPD-NPS in Figure 4.6. This is useful when assessing and benchmarking system 

performance. For example, systems with a low mean pictorial image SPD-NPS area metric 

score, and a high RSDA score are likely to use significant non-linear ISP to improve their 

output image quality, as well as good quality hardware. 

Substituting the equivalent SPD-MTF measures into Equations 7.1 and 7.2 yields objective 

metrics for system signal transfer (accounting for system scene-dependency) and its scene-

dependency, respectively. Both these metrics are currently limited by bias in the pictorial 

image SPD-MTF (discussed in Chapter 5) and would benefit from it being mitigated further.    

7.5.3 Application in Computer Vision and Autonomous Vehicles 

The performance measures and metrics proposed in this thesis are suitable for a wide variety 

of applications beyond visual image quality modelling. For example, the SPD-MTF, SPD-

NPS and scene-and-process-dependent NEQ (SPD-NEQ) can be used to characterise capture 

systems used in computer vision applications. This includes systems that deliver input video 

streams to the deep Convolutional Neural Networks (CNN) used by Advanced Driver 

Assistance Systems (ADAS). These CNNs detect and classify road signs and hazards. The 

video stream is usually processed by a system on chip (SoC) before being analysed by them 

[346]–[349]. SoCs are generally black boxes that automatically apply non-linear content-

aware ISP such as denoising, video noise temporal filtering (VNTF) [350] and sharpening 

[351]. These algorithms are dependent on the spatial or spatiotemporal signal characteristics.  

CNNs are on par or better than human observers at classifying objects in high-quality images 

of scenes, but far less accurate for blurred, noisy images [352]. ISP algorithms should also 

be tuned differently in systems intended for CNNs and human observers, to maximise 

classification accuracy [351], [353]. Jenkin and Kane [351] suggest CNNs should be treated 

presently as “alien observers” and the imaging industry is a long way from producing IQMs 

calibrated for CNNs in the manner of the psychovisually calibrated CPIQ metric. What is 

clear is that for the performance of ADAS systems and relevant metrics to be reliable, their 

capture systems and SoC pipelines must be characterised accurately.  

Jenkin and Kane [351] have proposed a fundamental spatial signal model for autonomous 

vehicle capture systems. It is based on the Effective Pictorial Information Capacity (EPIC) 

metric [195], [252] that relates to the information capacity and NEQ (as discussed in Section 

2.4). It is proposed in this thesis that the “photographic” expression for information capacity 
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(Equation 2.41) [173, p. 631] should be revised for the same purpose. The signal spectrum 

of the displayed image, 𝑆(𝑢), and the total imaging system noise, 𝑁(𝑢), should be obtained 

using Equations 3.15 and 3.16, respectively. 𝛾�FJ�IL¢Z  and 𝑀𝑇𝐹�FJ�IL¢Z (𝑢) should be replaced 

with constants of value 1 since no display exists in this scenario. The resultant measure 

accounts for the SPD-MTF and SPD-NPS, and thus also capture system scene-dependency. 

Kane [342] and Jenkin [354] also developed an Ideal Observer Signal-to-Noise Ratio (SNRI) 

model for autonomous vehicle capture system design and optimisation (Equation 7.3). It 

describes the SNR concerning the decision of the ideal observer, with respect to a given task, 

considering the SNR of the imaging system. It is based upon the detectability index, 𝑑′, that 

applies signal detection theory; both are discussed in Section 2.4. 𝑀𝑇𝐹J¢J and 𝑁𝑃𝑆J¢J are 

the 1D MTF and NPS of the imaging system, respectively. 𝐺(𝑢) is the DFT of the difference 

between the signal and background. 𝐾 is the large area signal transfer factor.  

𝑆𝑁𝑅𝐼Z = 𝐾Z t
|𝐺(𝑢)|Z𝑀𝑇𝐹J¢JZ (𝑢)

𝑁𝑃𝑆(𝑢)
𝑑𝑢 = 𝑑′Z (7.3) 

Jenkin states the SNRI can be obtained by cascading the NEQ with the target and background 

information and that reliable MTF and NPS measurements are critical to its accuracy [354]. 

The following scene-and-process-dependent SNRI (SPD-SNRI) measure is proposed in this 

thesis, in terms of the SPD-NEQ, 𝑁𝐸𝑄PÃá(𝑢); all other parameters are as per Equation 7.3. 

Its similarity with the log NEQ should be noted. The fact the logarithm is not taken is 

understandable considering that, unlike the human visual system, CNNs do not necessarily 

follow Fechner’s law.   

𝑆𝑁𝑅𝐼PÃáZ = 𝐾Z t|𝐺(𝑢)|Z𝑁𝐸𝑄PÃá(𝑢)𝑑𝑢 = 𝑑′Z (7.4) 

Both of the proposed spatial signal models account for capture system signal transfer and 

noise scene-dependency caused by interactions between relevant input signals and non-

linear ISP algorithms. The proposed models would benefit from further reduction of pictorial 

image SPD-MTF measurement error. Computing each model using the pictorial image SPD-

MTF and SPD-NPS accounts for system performance with respect to real video frames. 

Using the mean pictorial image SPD-MTF and SPD-NPS instead, or the dead leaves SPD-

MTF and SPD-NPS, accounts for the system’s average real-world capabilities, including its 

scene-dependency.  
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Chapter 8 Conclusions and Recommendations 

for Further Work 

8.1 Conclusions 

The following conclusions were drawn from research in this thesis:  

• The novel image quality metrics (IQM), scene-and-process-dependent Modulation 

Transfer Functions (SPD-MTF) and Noise Power Spectra (SPD-NPS) of this thesis 

represent a new paradigm of IQMs and imaging performance measures. They 

accounted for the scene-dependency of simulated non-linear image capture pipelines. 

But they are more complex than current equivalent measures. 

• The pictorial image SPD-MTF and SPD-NPS are the only current measures that 

characterise non-linear system performance with respect to a given input scene; they 

accounted most thoroughly for system scene-dependency. They are the most suitable 

input parameters for IQMs when modelling the quality of a given captured scene.  

• The mean pictorial image SPD-MTF and SPD-NPS are, presently, the only measures 

for the average real-world performance of non-linear systems that account for system 

scene-dependency. They are the most suitable IQM input parameters when 

describing the average real-world image quality of such systems.  

• The pictorial image SPD-MTF and SPD-NPS standard deviation are the only current 

measures for the level of system scene-dependency. But they do not account for all 

aspects of it. Combining them with the mean pictorial image SPD-MTF and SPD-

NPS characterises average real-world system performance and scene-dependency.   

• The dead leaves SPD-MTF and SPD-NPS characterised the average real-world 

performance of the non-linear pipeline more appropriately than the direct dead leaves 

Modulation Transfer Function (MTF) and uniform patch Noise Power Spectrum 

(NPS), respectively. They are more convenient and computationally efficient than 

the mean pictorial image SPD-MTF and SPD-NPS and suit the same applications. 

But they were often outliers compared to measures derived from images of scenes, 
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since the dead leaves chart triggered non-linear image signal processes (ISP) at 

different levels to natural scene signals.  

• All SPD-MTF measures suffered from bias due to signal-to-noise limitations. This 

bias was scene-dependent, affecting in particular the measurements at the higher 

frequencies of noisy, low-signal images of scenes. It was mitigated by denoising.  

• Fixed patterns of noise and artefacts were unaccounted for by all SPD-NPS measures. 

• The accuracy of the novel log Noise Equivalent Quanta (log NEQ) and Visual log 

NEQ metrics developed in this thesis, as well as other leading IQMs, improved when 

they used SPD-MTFs and SPD-NPSs as input parameters.  

• The greatest improvements in accuracy occurred when the metrics used SPD-NPS 

measures derived from images of scenes. This shows the SPD-NPS framework is 

robust and relevant to image quality modelling.   

• When the metrics used SPD-MTFs measured from images of scenes, the benefits of 

accounting more thoroughly for system scene-dependency were often traded off 

against bias from signal-to-noise limitations. 

• Implementing Contextual Contrast Sensitivity Function (cCSF) and Visual 

Perception Function (cVPF) spatial visual models did not improve metric accuracy.  

• The IEEE P1858 Camera Phone Image Quality (CPIQ) standard metric [22] achieved 

the highest accuracy of all metrics tested when specific input parameter combinations 

were used (namely, the Barten CSF and SPD-MTFs and noise images derived from 

images of scenes). Other input parameter permutations, especially those involving 

the cCSF and cVPF, appeared to disturb the metric’s calibration and reduced its 

accuracy.   

• The log NEQ and Visual log NEQ applied minimal calibration. Thus, analysing 

changes in the accuracy of these metrics informed most of all on the appropriateness 

of the various input parameters. These metrics were generally more accurate than the 

comparable Pictorial Information Capacity (PIC) and Square Root Integral with 

noise (SQRIn) and more consistent than the CPIQ metric. This demonstrates the 

relevance of the Noise Equivalent Quanta (NEQ) and novel scene-and-process-

dependent NEQ (SPD-NEQ) measures to image quality modelling. It also suggests 

simple, elegant metrics may be the most accurate, provided their input parameters 

characterise system performance comprehensively. This is in agreement with 

Occam’s Razor.  
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8.2 Further Work 

The following further work is recommended that relates to the subjects covered in this thesis: 

• Validation of all measures and metrics of this thesis with real capture systems using 

the practical implementations proposed in Section 7.5.1. This should include systems 

applying Joint Photographic Experts Group (JPEG) and JPEG 2000 compression.  

• Evaluation of variation error and bias in the SPD-MTF and SPD-NPS measures from 

first principles. This can be achieved for the SPD-MTFs by modifying Burns’ error 

propagation method for existing dead leaves MTF implementations [158].  

• Investigation of methods to mitigate bias in the SPD-MTFs resulting from signal-to-

noise limitations.  

• Validation of all measures and metrics of this thesis at higher noise levels. This would 

require extending the low-quality range of the ISO 20462 image quality ruler.  

• Investigation of whether computing the SPD-MTF and SPD-NPS of video frames 

accounts for the spatiotemporal-signal-dependency of non-linear video processing.  

• Comparison of the dead leaves SPD-NPS and Artmann’s [18] noise measures derived 

from the dead leaves test chart. 

• Analysis of the effect of common Colour Correction Matrix (CCM) on the SPD-NPS 

measurements.  

• Analysis of SPD-MTF and SPD-NPS measurements with respect to local regions of 

images of scenes, and how they integrate into the global SPD-MTFs and SPD-NPSs 

of this thesis. Such local measurements could be implemented in IQMs alongside 

visual saliency models, or in signal detection metrics for autonomous vehicles.  

• Integration of envelopes of scene-edge Spatial Frequency Response (SFR) 

measurements (Section 7.3) into global SFRs [341]. These measurements should be 

compared with SPD-MTFs, including their use as IQM input parameters.  

• Validation of the signal models for autonomous vehicles proposed in Section 7.5.3.  

• Examination of the relationships between natural scene statistics (NSS) and typical 

SPD-MTF, SPD-NPS and SPD-NEQ behaviour, as well as bias in each measure.  

• Investigation of the role of masking scene content to perceptions of sharpness and 

noisiness, as well as denoising, sharpening and compression artefact magnitude.  
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• Evaluation of whether contextual detection (cCSF) and discrimination (cVPF) 

models have genuine roles to play in image quality modelling.  

• Implementation of optimal contrast weighting (OCW) functions [14] in the IQMs of 

this thesis to account for relevant cognitive processes of image quality judgement.  

• Benchmarking the IQMs of this thesis versus state-of-the-art Computational IQMs 

(CP-IQM) using the observer image quality rating dataset from Chapter 6.  

• Generation of a test image dataset which triggers a range of non-linear spatial ISP 

algorithm behaviour in terms of signal transfer (SPD-MTF) and noise (SPD-NPS). 

Susceptibility to sharpening and denoising should be considered. 

• Development of a test chart that: 1) relates to the power spectrum, spatial distribution 

of contrast signals and range of edge gradients of the “average scene”. 2) is shift, 

rotation and exposure invariant, like the dead leaves chart. The dead leaves SPD-

MTF and SPD-NPS should be validated with the dead leaves chart substituted for it.  
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Appendix A Linear System Theory Requirements 

All imaging system performance measures that apply linear system theory require the system 

to be linear, spatially invariant and homogenous. This applies to the Modulation Transfer 

Function (MTF), Noise Power Spectrum (NPS) and Noise Equivalent Quanta (NEQ). Each 

requirement is defined below, referring to Dainty and Shaw [6, pp. 206–207]. Failure to 

comply with them or compensate for any deviation results in measurement inaccuracy.  

Let the operator 𝑆{	} denote a 2D imaging system. The condition for the system to be linear 

is given below, where 𝑓<(𝑥, 𝑦) and 𝑓Z(𝑥, 𝑦)	are two separable input image signals [2, p. 4]. 

𝑆{𝑓<(𝑥, 𝑦) + 𝑓Z(𝑥, 𝑦)} = 𝑆{𝑓<(𝑥, 𝑦)} + 𝑆{𝑓Z(𝑥, 𝑦)} (A1) 

The condition for the system to be homogenous is below; 𝑎 is a scaling constant [2, p. 4]. 

𝑆{𝑎𝑥, 𝑎𝑦} = 𝑎𝑆{𝑥, 𝑦}; 									for					𝑎	 > 0          (A2) 

Combining Equations A1 and A2 gives the conditions for the system to be both linear and 

homogenous; 𝑎 and 𝑏 are constants greater than zero [6, p. 206]. 

𝑆{𝑎𝑓<(𝑥, 𝑦) + 𝑏𝑓Z(𝑥, 𝑦)} = 𝑎𝑆{𝑓<(𝑥, 𝑦)} + 𝑏𝑆{𝑓Z(𝑥, 𝑦)} (A3) 

The condition for the system to be stationary is given below [6, p. 207]. ℎ(𝑥, 𝑦	; 𝑥<, 𝑦<) is the 

response of the system at output coordinates 𝑥 and 𝑦 to an input signal at coordinates 𝑥< and 

𝑦<. For a stationary system, this response depends on the differences between the variables 

only, (𝑥 − 𝑥<, 𝑦 − 𝑦<), not on each separate variable. Thus, the Point Spread Function (PSF) 

remains constant at all spatial locations of the image [6, p. 207]. 

ℎ(𝑥 − 𝑥<, 𝑦 − 𝑦<) ≡ 	ℎ(𝑥, 𝑦	; 𝑥<, 𝑦<) (A4) 
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Appendix B Structural Similarity Index (SSIM) 

Definition 

Equation B1 [114] describes the luminance comparison of the Structural Similarity Index 

(SSIM),	𝑙(𝑥, 𝑦), with respect to a nonnegative reference, 𝑥, and test image signal, 𝑦. 𝐿 is the 

pixel value dynamic range (i.e. 255 for an 8-bit grayscale image). 𝐾PP¥E_< is a constant of 

default value 0.01. Equation B2 defines the mean luminance of the reference image 

signal,	𝜇M, where 𝑥F is the luminance at pixel 𝑖, and 𝑁 is the total number of pixels [114]. 𝜇¢ 

is calculated from the test image signal, 𝑦, in the same fashion.  

𝑙(𝑥, 𝑦) =
2𝜇M𝜇¢ +	𝐶<
𝜇MZ + 𝜇¢Z +	𝐶<

; 							where		𝐶< = �𝐾PP¥E_<𝐿�
Z		 (B1) 

𝜇M =
1
𝑁Y𝑥F

[

F\<

	 (B2) 

The contrast comparison of the SSIM,	𝑐(𝑥, 𝑦), is a function of the standard deviations of the 

reference and test image signals (denoted by 𝜎M and 𝜎¢, respectively) within a local window 

(Equation B3); 𝐾PP¥E_Z is set to 0.03 by default [114]. 𝜎M is computed from the reference 

image signal, 𝑥, using Equation B4. 𝜎¢ is calculated from the test image signal in the same 

fashion. All other parameters are as detailed above [114].  

𝑐(𝑥, 𝑦) =
2𝜎M𝜎¢ +	𝐶Z
𝜎MZ + 𝜎¢Z +	𝐶Z

; 							where		𝐶Z = �𝐾PP¥E_Z𝐿�
Z		 (B3) 

𝜎M = ý
1

𝑁 − 1Y
(𝑥F −	𝜇M)Z

[

F\<

þ

<
Z

	 (B4) 

The structural comparison, 𝑠(𝑥, 𝑦), is given as the correlation coefficient between the 

reference, 𝑥, and test image signal, 𝑦, respectively. It is computed by Equation B5 after the 

mean luminance, 𝜇, has been subtracted from the signals, and they have been divided by 

their respective standard deviations, 𝜎, to normalise them [114]. Thus, the structural 
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comparison describes the correlation between the unit vectors (𝑥 − 𝜇M)/𝜎M and 

�𝑦 − 𝜇¢�/𝜎¢. 𝜎M¢ is estimated by Equation B6, where 𝑥F and 𝑦F are pixel intensities at 

position 𝑖 for the reference and test images’ signals, respectively, and 𝜇M and 𝜇¢ are the mean 

intensities of these signals [114]. 𝑁 is the total number of pixels.  

𝑠(𝑥, 𝑦) =
𝜎M¢ +	𝐶ö
𝜎M𝜎¢ +	𝐶ö

; 							where				𝐶ö = 	
𝐶Z
2 	 (B5) 

𝜎M¢ =
1

𝑁 − 1Y
(𝑥F −	𝜇M)�𝑦F −	𝜇¢�

[

F\<

						 (B6) 

The SSIM index between the reference, 𝑥, and test image signal, 𝑦, is given by Equation B7 

where 𝛼 = 𝛽 = 𝛾 = 1. This can be rewritten as Equation B8, where all terms are as 

described above [114].  

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]5 ∙ [𝑐(𝑥, 𝑦)]7 ∙ [𝑠(𝑥, 𝑦)]m	 (B7) 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
�2𝜇M𝜇¢ + 𝐶<��2𝜎M¢ + 𝐶Z�

�𝜇MZ + 𝜇¢Z +	𝐶<��𝜎MZ + 𝜎¢Z +	𝐶Z�
	 (B8) 

A map of SSIM indices is output for a number of local windows of the image, 𝑀, that are 

produced using a circular-symmetric 11-by-11 pixel Gaussian weighting function. The 

SSIM map can be averaged to a single Mean Structural Similarity Index (MSSIM) figure 

using Equation B9. SSIM�𝑥T, 𝑦T� is the SSIM index corresponding to the reference and test 

image signals 𝑥T and 𝑦T, in the 𝑗th local window. 𝑋 and 𝑌 are the reference and test images, 

respectively. 

𝑀𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
1
𝑀	Y𝑆𝑆𝐼𝑀�𝑥T, 𝑦T�

E

T\<

	 (B9) 

 



 159 

 

Appendix C Test Scenes used in Chapters 4 & 5 

This appendix contains input scene images to the simulations used to validate the scene-and-

process-dependent Noise Power Spectrum (SPD-NPS) and equivalent Modulation Transfer 

Function (SPD-MTF) measures in Chapters 4 and 5, respectively. Images 1-17 are from 

[225], 18-19 from [7], 20-23 from [14], 24 from [8], 25-26 from [102]. Images 1-13 from 

Appendix D were also used. Images 27-37 were captured with the same digital single-lens 

reflex (DSLR) camera and lens as images from [14] using identical focal length, aperture 

and ISO settings.  
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Appendix D    Test Scenes used in Chapter 6 

This appendix contains input scene images to the simulations used to validate the revised 

image quality metrics (IQM) in Chapter 6. All were captured and processed by Allen [102]. 
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Appendix E    Generation of Ruler Images by Allen 

Allen’s [102, pp. 216–223] method for generating the ruler image dataset is summarised 

here. It followed Clause 7 of ISO 20462 [56, p. 9]. The ruler images were specific to the 

EIZO ColorEdge CG245W liquid crystal display (LCD) at 60cm viewing distance. They 

were generated from 14 captured scenes similar to those in Appendix D [102]. These original 

images of the scenes were of very high quality with no noticeable artefacts. But they differed 

in terms of subject matter and objective signal content. They were captured using a Canon 

EOS 5D Mark II digital single-lens reflex (DSLR) camera and Canon EF 24-70mm L II 

USM lens, using low ISOs and various focal lengths and F numbers [102, Sec. 5.2.1]. All 

images of the scenes were processed according to a standard imaging workflow [102, Sec. 

5.2.2]. Cascading the Modulation Transfer Function (MTF) after processing with the MTF 

of the display yielded the system MTF (Figure E1(a)).   

 

Figure E1 MTFs and filter transfer functions used by Allen [102, pp. 216–223] to shape the system 

MTF to the aim MTF. 

ISO 20462 [56, p. 9] provides equations to generate ruler image MTFs (Equation E1) 

corresponding to a given Standard Quality Scale (SQS2) value expressed in just-noticeable 

difference (JND) units (Equation E2). Both are given in terms of the constant 𝑘Pû,O; 𝑢 is 

spatial frequency. Allen [102, p. 91] determined an appropriate aim MTF for the system 

when 𝑘Pû,O	was equal to 0.031, (SQS2 ≈ 26).   
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𝑀𝑇𝐹(𝑢) =
2
𝜋	. ¹cos

w<�𝑘Pû,O𝑢� − 𝑘Pû,O𝑢81 − �𝑘Pû,O𝑢�
Zº														𝑘Pû,O𝑢 ≤ 1			 

(E1)  

𝑀𝑇𝐹(𝑢) = 0																																																																																																				𝑘Pû,O𝑢 > 1		 

 

𝑆𝑄𝑆Z =
<9Z:;	�	Z»ö9;Zª𝑆𝐶𝑄𝑅	w	<<:;Ñ»ª𝑆𝐶𝑄𝑅È	w	öÑ9<»9Ñª𝑆𝐶𝑄𝑅<

Ñ9=	w	<ö»:ª𝑆𝐶𝑄𝑅	�	öÑ9ö9Zª𝑆𝐶𝑄𝑅È
									�1 ≤ 100𝑘𝑆𝐶𝑄𝑅 ≤ 26�		             (E2) 

Allen [102, p. 217] divided the aim MTF by the system MTF to obtain the transfer function 

for a frequency domain shaping filter (Figure E1(b)). A 5th degree polynomial curve was 

fitted to this transfer function.  

The scene image’s MTF was then shaped to the aim MTF by [102, p. 217]: 

1) padding the image with zeros to avoid wraparound error; 

2) generating an array of ones, of identical dimensions to the padded image from 1); 

3) applying the abovementioned polynomial function radially to the array from 2), with 

zero frequencies at the centre of the array; 

4) computing and centring the two-dimensional (2D) Fast Fourier Transform (FFT) for 

the image to be filtered; 

5) multiplying the magnitude component of the FFT from 4) with the filter array from 

3); 

6) recombining the result of 5) with the phase component of the FFT from 4); 

7) inverse FFT filtering and removing the zero-padding applied in 1).  

Allen [102, p. 221] determined 𝑘Pû,O values for 30 ruler images using Equation E2. Their 

SQS2 values differed from the SQS2 value of the aim MTF by integer JND units, from +6 

JNDs to -24 JNDs (i.e. SQS2 = 3 to SQS2 = 32). The required MTF for each ruler image was 

computed using Equation E1. Dividing this required MTF, by the system MTF, yielded a 

frequency domain JND filter transfer function for each ruler image, to which a 5th degree 

polynomial function was fitted. Up to 30 ruler images were produced for each scene by 

repeating step 1) to 7) with each polynomial function. 
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Appendix F    Display Characterisation 

The EIZO ColorEdge CG245W display (with specifications given in Table F1) was 

characterised by measuring the following:  

1) white point and peak R, G and B channel output (Table F2); 

2) positional non-uniformity (Figure F1); 

3) tone transfer functions (Figure F2); 

4) viewing angle dependency in terms of luminance and chrominance output (Figures 

F3 and F4); 

5) short-term temporal stability (Figure F5).  

The method of Park [355] was followed when measuring 2), 4) and 5). 

 EIZO ColorEdge CG245W display 

Display technology Liquid crystal display (LCD) 

Displayable area (cm) 51.8 (horizontal) x 32.4 (vertical) 

Native pixel resolution (pixels) 1920 (horizontal) x 1200 (vertical) 

Display colour 24bits (DVI) / 30bits (DP) from a palette of 48 bits 

Viewing angle (degrees) 178 (horizontal), 178 (vertical) 

Pixel pitch 0.27mm (horizontal), 0.27mm (vertical) 

Maximum brightness 270 cd/m2 

Maximum brightness for experiments 120 cd/m2 

Colour representation Standardised RGB (sRGB) 

Target gamma 2.2 

Target white point D65 

Table F1  Display specifications; adapted from Allen [102, p. 299]. 

Before taking measurements from the display, it was allowed to warm up for 1 hour and then 

calibrated using its native colorimeter according to the target settings in Table F2(a). When 

characterising the display, the input signal was delivered by a Lenovo ThinkPad X230 with 

Intel HD Graphics 4000. The output signal was measured using a Konica-Minolta CS-200 

colorimeter using the most accurate “slow” or “very-slow” measurement durations, with the 
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measurement angle set to 0.2 degrees. All measurements were taken in total darkness at a 

distance of 150cm. The temperature of the laboratory was approximately 20 degrees Celsius. 

 

Table F2  (a) target CIE xyY chromaticity coordinates for calibrating the display, and equivalent CIE 1931 

tristimulus values and 1976 [356] chromaticity coordinates. (b) measurements of the above taken from the 

display after calibration using the Minolta CS-200 colorimeter. 

 

Figure F1  Measurements of the positional non-uniformity of the display: (a) shows the 25 positions where 

measurements were taken perpendicular to the display; ℎ and 𝑤 are the display’s height and width [357, p. 25]. 

(b), (c) and (d) show CIE ∆𝐸LA colour differences, CIE ∆𝐶LA colour differences, and CIELAB ∆𝐿∗ lightness 

differences, respectively, between each display region and the centre of the display. 
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Figure F2  Tone transfer functions for the display: (a) linear-linear space, (b) log-log space, (c) normalised 

linear-linear space after dividing the output luminance of each channel by its peak luminance output. All 

measurements were taken perpendicular to the centre of the display. Measurements for 8-bit pixel values under 

50 were omitted due to measurement inaccuracy. 
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Figure F3  Luminance output dependency with respect to viewing angle for the display: (a) 8-bit neutral pixel 

values (PV) ranging from 32 to 255. (b) white point and peak output for the R, G and B channels. Horizontal 

and vertical viewing angle variations are denoted by dotted and solid trend-lines, respectively.  
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Figure F4  Variation in CIE 1976 [356] 𝑢’ and	𝑣’ chromaticity coordinates with respect to viewing angle for 

the display are shown in plots (a) and (b); measurements relating to horizontal and vertical viewing angle 

variations are denoted by dotted and solid trend-lines, respectively. (c) plots all data points from (a) and (b) on 

a standard CIE 𝑢’	𝑣’	chromaticity diagram.  
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Figure F5  Temporal stability of the white point of the display with respect to luminance output (top), CIE 

1931 𝑥 and 𝑦 chromaticity coordinates (bottom).  
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Appendix G    Snellen Near Vision Test Card 

The Snellen [330] near vision test card (Figure G1) was printed at high quality using a laser 

printer. It was used to assess the near vision of participants in the image quality evaluations 

of Chapter 6. 

 

Figure G1  Snellen Near Vision Test Card [330]. 
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Appendix H    Observer Instructions 

The following instructions were provided to each observer before their participation in the 

image quality evaluations of Chapter 6. They are based upon similar instructions from [56, 

p. 13] and [102, p. 306]. Numerical references in the text refer to sections of Figure H1.  

You will be assessing the quality of a series of images using a psychophysical technique called 

the softcopy image quality ruler. Please remember that there are no right or wrong answers. 

Your opinions regarding image quality are a product of your own unique perceptions.  

Here is how we are asking you to evaluate the images: 

A pair of images will be presented on the display. The image on the left is labelled ‘Ruler 

Image’. You can adjust its sharpness using the slider bar or arrow keys, to vary its quality. 

The image on the right is labelled ‘Test Image’ and will contain various artefacts. For each 

test image, we ask you to adjust the quality of the ruler image, until it matches the overall 

quality of the test image.  

Please note that you will be balancing the quality lost due to blur in the ruler images, to the 

quality lost due to various artefacts in the test images. When you are comparing the test and 

ruler images, ask yourself which one you would keep if this were a treasured image and you 

were allowed to keep only one copy. If you prefer the test image, then you should move the 

slider bar to the left for a sharper ruler image. Alternatively, if you prefer the ruler image, 

then you should move the slider bar to the right for a more blurred ruler image. When you 

have finished adjusting the ruler, the two images should be of equal quality in your opinion. 

Your response will be recorded when you press the ‘Next’ button. 

The evaluations will take between 1.5 and 2 hours in total and are separated into three stages. 

Stage 1 takes around 20 to 30 minutes. Stages 2 and 3 each take around 30 to 45 minutes. You 

should take a short break after each stage.  

The test images were generated using a digital camera simulation. Test images from stages 1-

3 correspond to different stages of in-camera image processing. Typical characteristics and 

artefacts for each stage are summarised below. Visual examples are provided on the next page, 

referenced numerically.  

Stage 1 includes demosaicing (2) and noise (1) artefacts.  
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Stage 2 includes demosaicing (2) and noise (1) artefacts. Denoising (3) is also applied. This 

reduces noise but causes blurring and/or loss of image texture and detail. 

Stage 3 includes demosaicing (2) and noise (1) artefacts. Denoising (3) is applied (see Stage 

2, above). Sharpening (4) is also applied that increases detail and edge intensity but also 

amplifies other artefacts. 

Before you participate in Stage 1, you will complete a brief trial run to familiarise yourself 

with the experiment. During the trial run, we encourage you to explain your decision making 

with the supervisor of the experiment. You can also ask questions at any time during the 

evaluations. 
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Figure H1  Examples of capture system artefacts, given to all participants with the instructions. 
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Appendix I    IQM Input Parameters 

The input parameters of all image quality metric (IQM) variants evaluated in Chapter 6 are 

presented. These include relevant imaging system performance measures and visual models.  

Figures I1 and I2 present the Noise Power Spectrum (NPS) and Modulation Transfer 

Function (MTF) system performance measures, respectively. All measurements are from the 

simulated image capture pipelines defined in Section 4.2, where the opacity of the denoising 

and sharpening filters was reduced to levels given in Table 6.2 (refer to Chapter 6 for further 

details). Signal-to-noise ratios (SNR) of 80 and 10 correspond to the highest and lowest 

quality test images, respectively. 

Figures I3 to I5 present various contrast sensitivity functions (CSF) used as input parameters 

to the IQMs (these functions are defined in Section 2.5). They are calculated with respect to 

output images from the mentioned pipelines.  
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Figure I1 Noise Power Spectra (NPS) and scene-and-process-dependent NPS (SPD-NPS) 

measures used as input parameters to the image quality metric (IQM) variants in Chapter 6. Each 

measure is presented after relevant stages of linear and non-linear image signal processing (ISP). 
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Figure I2  Modulation Transfer Function (MTF) and scene-and-process-dependent MTF (SPD-

MTF) measures used as input parameters to the image quality metric (IQM) variants in Chapter 6. 

Each measure is presented after relevant stages of linear and non-linear image signal processing 

(ISP). 
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Figure I3  Contextual Contrast Sensitivity Functions (cCSF) [35] that were used as input 

parameters to the image quality metric (IQM) variants in Chapter 6. cCSFs for each input scene 

image are presented after relevant stages of linear and non-linear image signal processing (ISP). 
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Figure I4  Contextual Visual Perception Functions (cVPF) [8] that were used as input parameters 

to the image quality metric (IQM) variants in Chapter 6. cVPFs for each input scene image are 

presented after relevant stages of linear and non-linear image signal processing (ISP). 
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Figure I5  Barten’s contrast sensitivity function (CSF) [186] for test images at a signal-to-noise 

ratio (SNR) of 80, without denoising or sharpening applied. Sensitivities are expressed in a linear-

linear space (main plot) and log-log space (inset; log10 y-axis for sensitivity and log2 x-axis for 

spatial frequency). Variation due to image signal processing (ISP) was minimal (not shown).  

Reducing the image signal processing (ISP) filter opacity introduced unfiltered noise after 

denoising and decreased the intensity of sharpening. This affected the various NPS measures 

shown in Figure I1 in the following ways, which were most significant at lower SNRs:  

1) A noise floor was introduced to the uniform patch NPS.  

2) Certain pictorial image SPD-NPS measurements tended toward this noise floor at 

mid-to-high frequencies for the non-linear pipeline.  

3) The noise power was higher after denoising compared to the full-opacity pipelines.  

4) Scene-dependent spread in the non-linear pipeline’s SPD-NPS measurements was 

lower compared to when the ISP filters were tuned full opacity (as shown in Figure 

4.6).  

The MTF measures were affected in the following ways by reducing the ISP filter opacity 

(Figure I2). Scene-dependent spread in the SPD-MTFs was lower than at full opacity (Figure 

5.4). After denoising and sharpening, levels of bias in the SPD-MTFs were also higher 

compared to full opacity. This bias was due to increased levels of noise, which was 

underestimated by all SPD-NPS measures. Using more replicates would mitigate this bias. 
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Conversely, reducing the ISP opacity lowered bias in the direct dead leaves MTF for the 

non-linear pipeline (Figure I2(k) and (l)). This was because the uniform patch NPS measured 

unfiltered noise appropriately but underestimated noise filtered by non-linear content-aware 

denoising.  

Barten’s CSF [186] accounted for the luminance of the graphics user interface (GUI) (Figure 

I5). The latter was calculated from a weighted average of the mean test image luminance 

and the background luminance of the GUI, as predicted using a Gain Offset Gamma (GOG) 

model of the standardised RGB (sRGB) colour space (Equation 2.5) [131]. The Contextual 

CSF (cCSF; Figure I3) [35] and Contextual Visual Perception Function (cVPF; Figure I4) 

[8] also accounted for the above. Their shape and magnitude were similar to one another, at 

the different ISP stages. They were more scene-dependent than Barten’s CSF since they also 

accounted for visual masking. Unfiltered noise at SNR 10 impeded detection and 

discrimination of image signals (Figures I3 and I4, (d) and (j)) but this was mitigated by 

denoising. Since linear denoising removed virtually all high frequencies from the image at 

SNR 10, it reduced the effect of masking at these frequencies and raised the cCSF and cVPF.  
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Appendix J    Mean Absolute Errors of IQMs 

Tables J1 to J6 benchmark the Mean Absolute Error (MAE) of all metric variants and are 

discussed in Section 6.2.2. Columns 1 to 3 list the Noise Power Spectrum (NPS), Modulation 

Transfer Function (MTF) and contrast sensitivity function (CSF) input parameters of each 

image quality metric (IQM) variant that are summarised in Tables 4.1, 5.1 and 6.1 

respectively. Note that the Combination CSF refers to the mean of the Contextual CSF 

(cCSF) [35] (Equation 2.59) and Contextual Visual Perception Function (cVPF) [8] 

(Equation 2.60). The Standard CSF refers to Johnson and Fairchild’s [188] luminance CSF 

from the IEEE P1858 Camera Phone Image Quality (CPIQ) standard [22] (Equation 2.54). 

MAE scores were plotted in Columns 4-11 with respect to the following:  

Column 4 – the full observer and scene image dataset (i.e. data for all observers and all 

scene images). 

Columns 5 to 7 – data subsets with respect to different combinations of scene susceptibility 

and observer sensitivity groups defined in Section 6.2.1. 

Columns 8 to 9 – data subsets with respect to different observer experience groups.  

Column 10 – the full observer and scene image dataset. Each IQM variant was calculated 

without the CSF/cCSF/cVPF being normalised as described in Section 6.1.3.  

Column 11 – the full observer and scene image dataset. The range of integration over the 

MTF, NPS and CSF were restricted to 12 < 𝑢 ≤ ∞ cycles/degree to mitigate the effect of 

the most biased frequencies of the scene-and-process-dependent MTF (SPD-MTF) measures 

on the IQMs (discussed in Chapter 5). Thus, the resultant IQMs only account for information 

between 0 < 𝑢 ≤ 12 cycles/degree. This decision was justified since the most important 

spatial frequency range for “seeing objects” is between 0 and 15 cycles/degree [334]. 

Note that Columns 3 and 10 were omitted when comparing the log Noise Equivalent Quanta 

(log NEQ) metric variants that did not implement any CSF (i.e. Table J4). Column 10 was 

also omitted when comparing variants of the CPIQ metric (Table J1) since the CSF is present 

in both the numerator and denominator of the Acutance measure of the CPIQ metric 

(Equation 3.1) and is effectively normalised by default. 
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Table J1  Mean Absolute Error (MAE) between the IEEE P1858 Camera Phone Image Quality 

(CPIQ) metric variant scores for test images generated by the non-linear (top) and linear pipeline 

(bottom), and the perceived quality rating of these images.  
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Table J2  Mean Absolute Error (MAE) between the Visual log NEQ metric variant scores for test 

images generated by the non-linear pipeline, and the perceived quality rating of these images. NB. 

the minimum, maximum, mean, standard deviation and relative standard deviation (bottom) are 

calculated with respect to Table J2 only, but the colour coding is with respect to both pipelines, 

i.e. Tables J2 and J3.  
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Table J3  Mean Absolute Error (MAE) between the Visual log NEQ metric variant scores for test 

images generated by the linear pipeline, and the perceived quality rating of these images. NB. the 

minimum, maximum, mean, standard deviation and relative standard deviation (bottom) are 

calculated with respect to Table J3 only, but the colour coding is with respect to both pipelines, 

i.e. Tables J2 and J3. 
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Table J4  Mean Absolute Error (MAE) between the log Noise Equivalent Quanta (log NEQ) metric 

variant scores for test images generated by the non-linear (top) and linear pipeline (bottom), and 

the perceived quality rating of these images. 
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Table J5  Mean Absolute Error (MAE) between the Perceived Information Capacity (PIC) variant 

scores for test images generated by the non-linear (top) and linear (bottom) pipelines, and the 

perceived quality rating of these images. 
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Table J6  Mean Absolute Error (MAE) between the Square Root Integral with Noise (SQRIn) 

variant scores for test images generated by the non-linear (top) and linear (bottom) pipelines, and 

the perceived quality rating of these images. 
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K.1 List of Publications 

E. W. S. Fry, S. Triantaphillidou, R. B. Jenkin, J. R. Jarvis, and R. E. Jacobson, “Validation 

of Modulation Transfer Functions and Noise Power Spectra from Natural Scenes,” J. 

Imaging Sci. Technol. vol. 63, no. 6, (in print), 2020. * 

E. W. S. Fry, S. Triantaphillidou, R. B. Jenkin, R. E. Jacobson, and J. R. Jarvis, “Scene-and-

Process-Dependent Spatial Image Quality Metrics,” J. Imaging Sci. Technol., vol. 63, no. 6, 

(in print), 2020. * 

E. W. S. Fry, S. Triantaphillidou, R. B. Jenkin, R. E. Jacobson, and J. R. Jarvis, “Noise 

Power Spectrum Scene-Dependency in Simulated Image Capture Systems,” accepted for 

publication in Proc. IS&T Electronic Imaging, Image Quality and System Performance XVII, 

2020. * 

E. W. S. Fry, S. Triantaphillidou, R. E. Jacobson, J. R. Jarvis, and R. B. Jenkin, “Bridging 

the Gap Between Imaging Performance and Image Quality Measures,” in Proc. IS&T 

Electronic Imaging, Image Quality and System Performance XV, 2018. * 

S. Triantaphillidou, J. Smekjal, E. W. S. Fry, and C. H. Hung, “Studies on the effects of 

megapixel sensor resolution on displayed image quality and relevant metrics,” accepted for 

publication in Proc. IS&T Electronic Imaging, Image Quality and System Performance XVII, 

2020. 

S. Triantaphillidou, E. W. S. Fry, V. Sanchis-Jurado, and A. Pons, “Image Quality Loss and 

Compensation for Visually Impaired Observers,” in Proc. IS&T Electronic Imaging, Image 

Quality and System Performance XV, 2018. 

E. W. S. Fry, S. Triantaphillidou, J. Jarvis, and G. Gupta, “Image quality optimization, via 

application of contextual contrast sensitivity and discrimination functions,” in Proc. SPIE 

9396, Image Quality and System Performance XII, 2015. 
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* Asterisks indicate publications directly related to the project for which the author of this 

thesis was the primary author. Selected comments from the reviews of these publications 

are copied below.  

Review of the paper entitled: “Validation of Modulation Transfer Functions and Noise 

Power Spectra from Natural Scenes.” 

“This is a sound paper worthy of an audience at the cutting edge of this area of 

research. I do feel this is work of both rigor and increasing necessity. 

Congratulations on an exciting piece of work.” 

Review of the paper entitled:“Scene-and-Process-Dependent Spatial Image Quality 

Metrics.” 

“The authors revised the traditional engineering input parameters and propose two 

novel image quality metrics. The experiments are detailed and well-desired.” 

Review of the paper entitled: “Noise Power Spectrum Scene-Dependency in Simulated 

Image Capture Systems.” 

“Very interesting and novel work. Prior art, context and motivation nicely explained. 

The abstract further develops the concept of scene-and-process-dependent NPS 

evaluation in image capture systems with content-aware image processing pipelines, 

building on previous papers. For this, two new noise metrics were developed and 

tested.” 

K.2 Presentations at Conferences and Symposia 

E. W. S. Fry (presenter), S. Triantaphillidou, R. B. Jenkin, J. R. Jarvis, and R. E. Jacobson, 

“Validation of Modulation Transfer Functions and Noise Power Spectra from Natural 

Scenes,” at IS&T International Symposium on Electronic Imaging: Image Quality and 

System Performance XVII, 2020, San Francisco, USA. * 

E. W. S. Fry (presenter), S. Triantaphillidou, R. B. Jenkin, R. E. Jacobson, and J. R. Jarvis, 

“Scene-and-Process-Dependent Spatial Image Quality Metrics,” at IS&T International 

Symposium on Electronic Imaging: Image Quality and System Performance XVII, 2020, San 

Francisco, USA. * 
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E. W. S. Fry (presenter), S. Triantaphillidou, R. B. Jenkin, R. E. Jacobson, and J. R. Jarvis, 

“Noise Power Spectrum Scene-Dependency in Simulated Image Capture Systems,” at IS&T 

International Symposium on Electronic Imaging: Image Quality and System Performance 

XVII, 2020, San Francisco, USA. * 

S. Triantaphillidou (presenter), E. W. S. Fry (presenter), and O. van Zwanenberg (presenter), 

“Objective Image Quality Assessment Using Pictures,” at Transactions 

Imaging/Art/Science: Image Quality, Content and Aesthetics, 2019, University of 

Westminster, Regent Street Campus, London, UK. 

E. W. S. Fry (presenter), S. Triantaphillidou, R. E. Jacobson, J. R. Jarvis, and R. B. Jenkin, 

“Bridging the Gap Between Imaging Performance and Image Quality Measures,” at IS&T 

International Symposium on Electronic Imaging: Image Quality and System Performance 

XV, 2018, San Francisco, USA. 

E. W. S. Fry, “Bridging the Gap Between Imaging Performance and Image Quality 

Measures,” at Computer Science and Engineering Session at the University of Westminster 

2018 Faculty of Science and Technology Doctoral Conference, 2018, New Cavendish Street 

Campus, London, UK. 

E. W. S. Fry (presenter), “Visual Image Quality Metrics for Engineers,” at On 

Semiconductor (via video link), 2017, San Jose, USA. 

* Asterisks indicate presentations scheduled for after the date of submission of this thesis, 

but before the viva. 

K.3 Awards 

Best Student Paper for the Image Quality and System Performance (IQSP) XV conference, 

2018, at the Society for Imaging Science and Technology’s (IS&T) Electronic Imaging 

Symposium, 2018, San Francisco, USA. Awarded for the paper entitled “Bridging the Gap 

Between Imaging Performance and Image Quality Measures”.  

First Place Award for Full-Length Presentation at the Computer Science and Engineering 

Session at the University of Westminster Faculty of Science and Technology Doctoral 

Conference, 2018, New Cavendish Street Campus, London, UK. Awarded for the 
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presentation entitled “Bridging the Gap Between Imaging Performance and Image Quality 

Measures”.  

Best Student Paper for the IQSP XII conference, 2015, at the Society of Photo-Optical 

Instrumentation Engineers (SPIE) & IS&T Electronic Imaging Symposium, San Francisco, 

USA. Awarded for the paper entitled “Image quality optimization, via application of 

contextual contrast sensitivity and discrimination functions”.  
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Abbreviations 

1D   1-Dimensional 

2D   2-Dimensional 

3D   3-Dimensional 

AC1C2   AC1C2 colour space 

ACF   Autocovariance Function 

ADAS   Advanced Driver Assistance System 

BKE   Background known exactly 

BM3D   Block Matching and 3D Filter 

cCSF   Contextual Contrast Sensitivity Function 

CFA   Colour filter array 

CIE   Commission Internationale de L’Eclairage 

CIELAB  CIE 1976 L*a*b* colour space 

CIEDE2000  CIE colour difference equation (CIEDE2000) 

CIEXYZ  CIE XYZ tristimulus values 

CNN   Convolutional neural network 

CP-IQM  Computational image quality metric 

CPIQ   Camera Phone Image Quality Initiative 

CPIQ metric  Metric from the IEEE P1858 Camera Phone Image Quality Standard 

CSF   Contrast sensitivity function 

CSF/CIEDE2000 CSF/CIEDE2000 image quality metric 
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cVPF   Contextual Visual Perception Function 

DCT   Discrete Cosine Transform 

DFT   Discrete Fourier Transform 

DMOS   Differential Mean Opinion Score 

dpi   Dots per inch 

DQE   Detective Quantum Efficiency 

DSLR   Digital single-lens reflex 

DSNU   Dark signal non-uniformity 

EOCF   Electro-optic conversion function 

EPIC   Effective Perceived Information Capacity 

ESF   Edge Spread Function 

FBF   Fast Bilateral Filter  

FFT   Fast Fourier Transform 

FPN   Fixed Pattern Noise 

GIF   Guided Image Filter 

GOG   Gain Offset Gamma 

GUI   Graphics user interface 

HVS   Human visual system 

iCSF   Isolated Contrast Sensitivity Function 

IEEE   Institute of Electrical and Electronics Engineers 

IF-IQM  Image fidelity metric 

IFC   Information Fidelity Criterion 

IQM   Image quality metric 
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ISO   International Organization for Standardization 

ISP   Image signal processing 

iVPF   Isolated Visual Perception Function 

JPEG   Joint Photographic Experts Group  

JPEG 2000   JPEG 2000 image compression standard 

JND   Just-noticeable difference 

LAM   Linear Amplification Model 

LBL   Local band-limited 

LCD   Liquid crystal display 

Log NEQ  Logarithm of the integral of the Noise Equivalent Quanta  

LSF   Line Spread Function 

LUT   Look-up table 

MAE   Mean Absolute Error 

MF-IQM  Multivariate formalism image quality metric 

MOS   Mean Opinion Score 

MSE   Mean Square Error 

MSSIM  Mean Structural Similarity Index 

MTF   Modulation Transfer Function 

NEQ   Noise Equivalent Quanta 

NPS   Noise Power Spectrum 

NSS   Natural scene statistics 

OCW   Optimal contrast weighting 

OECF   Opto-electronic conversion function 
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OSAP   One Step Alternating Projections 

OTF   Optical Transfer Function 

PIC   Perceived Information Capacity 

PNG   Portable Network Graphics 

ppi   Pixels per inch 

PRNU   Photoresponse non-uniformity 

PSD   Power Spectral Density 

PSF   Point Spread Function 

PSNR   Peak signal-to-noise ratio 

RGB   Red green blue 

RMS   Root mean square 

RMSE   Root Mean Square Error 

ROI   Region of interest 

S-CIELAB  Spatial extension to the CIELAB colour space 

SFR   Spatial Frequency Response 

SKE   Signal known exactly 

SNR   Signal-to-noise ratio 

SoC   System on Chip 

SPD-MTF  Scene-and-process-dependent Modulation Transfer Function 

SPD-NEQ  Scene-and-process-dependent Noise Equivalent Quanta 

SPD-NPS  Scene-and-process-dependent Noise Power Spectrum 

SPD-SNRI  Scene-and-process-dependent Ideal Observer Signal-to-Noise Ratio 

SQRI   Square Root Integral  
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SQRIn   Square Root Integral with Noise  

SQS2   Standard Quality Scale 

sRGB   Standardised RGB colour space 

SROCC  Spearman’s Rank Order Correlation Coefficient 

SSIM   Structural Similarity Index  

STV-IQM  Signal transfer visual image quality metric 

SVD   Single Value Decomposition 

UQI   Universal Quality Index 

USM   Unsharp mask 

VIF   Visual Information Fidelity 

Visual Log NEQ Visually-weighted logarithm of the integral of the Noise Equivalent 

Quanta 

VNTF Video noise temporal filtering  

WLS   Weighted Least Squares 

YCbCr   YCbCr opponent colour space 
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