

#### WestminsterResearch

http://www.westminster.ac.uk/westminsterresearch

**Scene-Dependency of Spatial Image Quality Metrics** 

Fry, E.

A PhD thesis awarded by the University of Westminster.

© Dr Edward Fry, 2020.

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((<u>http://westminsterresearch.wmin.ac.uk/</u>).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

# Scene-Dependency of Spatial Image Quality Metrics

### Edward William Stewart Fry, B.Sc. (Hons)

School of Computer Science and Engineering

College of Design, Creative and Digital Industries

University of Westminster

A thesis submitted in partial fulfilment of the requirements of the University of Westminster for the Degree of Doctor of Philosophy.

This research programme was completed within the Computational Vision and Imaging Technology Research Group.

February 2020

### Abstract

This thesis is concerned with the measurement of spatial imaging performance and the modelling of spatial image quality in digital capturing systems. Spatial imaging performance and image quality relate to the objective and subjective reproduction of luminance contrast signals by the system, respectively; they are critical to overall perceived image quality.

The Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) describe the signal (contrast) transfer and noise characteristics of a system, respectively, with respect to spatial frequency. They are both, strictly speaking, only applicable to linear systems since they are founded upon linear system theory. Many contemporary capture systems use adaptive image signal processing, such as denoising and sharpening, to optimise output image quality. These non-linear processes change their behaviour according to characteristics of the input signal (i.e. the scene being captured). This behaviour renders system performance "scene-dependent" and difficult to measure accurately. The MTF and NPS are traditionally measured from test charts containing suitable predefined signals (e.g. edges, sinusoidal exposures, noise or uniform luminance patches). These signals trigger adaptive processes at uncharacteristic levels since they are unrepresentative of natural scene content. Thus, for systems using adaptive processes, the resultant MTFs and NPSs are not representative of performance "in the field" (i.e. capturing real scenes).

Spatial image quality metrics for capturing systems aim to predict the relationship between MTF and NPS measurements and subjective ratings of image quality. They cascade both measures with contrast sensitivity functions that describe human visual sensitivity with respect to spatial frequency. The most recent metrics designed for adaptive systems use MTFs measured using the dead leaves test chart that is more representative of natural scene content than the abovementioned test charts. This marks a step toward modelling image quality with respect to real scene signals.

This thesis presents novel scene-and-process-dependent MTFs (SPD-MTF) and NPSs (SPD-NPS). They are measured from imaged pictorial scene (or dead leaves target) signals to account for system scene-dependency. Further, a number of spatial image quality metrics are revised to account for capture system and visual scene-dependency. Their MTF and NPS parameters were substituted for SPD-MTFs and SPD-NPSs. Likewise, their standard visual functions were substituted for contextual detection (cCSF) or discrimination (cVPF) functions. In addition, two novel spatial image quality metrics are presented (the log Noise Equivalent Quanta (NEQ) and Visual log NEQ) that implement SPD-MTFs and SPD-NPSs.

The metrics, SPD-MTFs and SPD-NPSs were validated by analysing measurements from simulated image capture pipelines that applied either linear or adaptive image signal processing. The SPD-NPS measures displayed little evidence of measurement error, and the metrics performed most accurately when they used SPD-NPSs measured from images of scenes. The benefit of deriving SPD-MTFs from images of scenes was traded-off, however, against measurement bias. Most metrics performed most accurately with SPD-MTFs derived from dead leaves signals. Implementing the cCSF or cVPF did not increase metric accuracy.

The log NEQ and Visual log NEQ metrics proposed in this thesis were highly competitive, outperforming metrics of the same genre. They were also more consistent than the IEEE P1858 Camera Phone Image Quality (CPIQ) metric when their input parameters were modified. The advantages and limitations of all performance measures and metrics were discussed, as well as their practical implementation and relevant applications.

### Contents

| Abstract                                                    | i                |
|-------------------------------------------------------------|------------------|
| Contents                                                    | iii              |
| List of Figures                                             | vi               |
| List of Tables                                              | xi               |
| Acknowledgements                                            | xii              |
| Author's Declaration                                        | xiii             |
| Chapter 1 Introduction                                      | 1                |
| 1.1 Imaging Performance Measures and System Non-Linearity   | 5                |
| 1.2 Human Visual System (HVS) Modelling and Non-Linearity   | 8                |
| 1.3 Aims and Overview                                       | 9                |
| 1.4 Original Contributions to Knowledge                     | 10               |
| Chapter 2 Image Quality and System Performance              | 11               |
| 2.1 Defining Image Quality and Fidelity                     |                  |
| 2.2 Scene-Dependency                                        |                  |
| 2.2.1 Imaging System Performance                            | 14               |
| 2.2.2 Human Visual System                                   |                  |
| 2.2.3 Observer Preference                                   |                  |
| 2.3 Image Quality Attributes                                |                  |
| 2.3.1 Contrast and Tone                                     |                  |
| 2.3.2 Sharpness and Resolution                              |                  |
| 2.3.3 Noise                                                 |                  |
| 2.4 Signal-to-Noise Measures                                |                  |
| 2.5 Visual Models                                           |                  |
| 2.6 Summary                                                 | 53               |
| Chapter 3 Image Quality Metrics                             | 54               |
| 3.1 Image Quality Metrics (IQM) Review                      | 54               |
| 3.1.1 Signal Transfer Visual IQMs (STV-IQM)                 |                  |
| 3.1.2 Multivariate Formalism IQMs (MF-IQM)                  | 61               |
| 3.1.3 Image Fidelity IQMs (IF-IQM)                          | 64               |
| 3.1.4 Computational IQMs (CP-IQM)                           | 66               |
| 3.2 Proposed Image Quality Metric (IQM) Frameworks          | 69               |
| 3.2.1 Log Noise Equivalent Quanta (log NEQ), Visual log NEQ | , and Scene-and- |
| Process-Dependent NEQ (SPD-NEQ)                             |                  |

|                                                                      | iv     |
|----------------------------------------------------------------------|--------|
| 3.2.2 Revised STV-IQMs                                               | 72     |
| 3.2.3 Revised Camera Phone Image Quality (CPIQ) Standard Metric      |        |
| 3.3 Summary                                                          |        |
| Chapter 4 Validation of Scene-and-Process-Dependent NPSs (SPD-NPS)   |        |
| 4.1 Derivation of the SPD-NPS Measures                               |        |
| 4.2 Validation Methodology                                           |        |
| 4.3 Results                                                          |        |
| 4.4 Summary                                                          |        |
| Chapter 5 Validation of Scene-and-Process-Dependent MTFs (SPD-MTF)   |        |
| 5.1 Derivation of the SPD-MTF Measures                               | 94     |
| 5.2 Results                                                          | 100    |
| 5.3 Summary                                                          | 107    |
| Chapter 6 An Evaluation of Scene-and-Process-Dependent IQMs          |        |
| 6.1 Methodology                                                      | 109    |
| 6.1.1 Test Image Dataset                                             | 110    |
| 6.1.2 Psychophysical Evaluation                                      | 112    |
| 6.1.3 Generation of the IQM Variants                                 | 115    |
| 6.2 Results                                                          | 117    |
| 6.2.1 Subjective Quality Ratings                                     | 117    |
| 6.2.2 Benchmarking of IQM Variants                                   |        |
| 6.2.3 Further Analysis of Selected IQM Variants                      |        |
| 6.3 Summary                                                          | 134    |
| Chapter 7 Discussion                                                 |        |
| 7.1 Image Quality Metric Frameworks                                  |        |
| 7.2 Scene-and-Process-Dependent Noise Power Spectra (SPD-NPS)        |        |
| 7.3 Scene-and-Process-Dependent Modulation Transfer Functions (SPD-M | TF)140 |
| 7.4 Scene-and-Process-Dependent Image Quality Metrics                | 142    |
| 7.5 Implementation and Application                                   | 145    |
| 7.5.1 Practical Implementation of SPD-MTF and SPD-NPS measures       | 145    |
| 7.5.2 Application in Objective Imaging Performance Metrics           | 148    |
| 7.5.3 Application in Computer Vision and Autonomous Vehicles         | 150    |
| Chapter 8 Conclusions and Recommendations for Further Work           |        |
| 8.1 Conclusions                                                      | 152    |
| 8.2 Further Work                                                     | 154    |
| Appendix A Linear System Theory Requirements                         | 156    |
| Appendix B Structural Similarity Index (SSIM) Definition             |        |
| Appendix C Test Scenes used in Chapters 4 & 5                        |        |

|           |      |                                       | v   |
|-----------|------|---------------------------------------|-----|
| Appendix  | D    | Test Scenes used in Chapter 6         | 163 |
| Appendix  | Е    | Generation of Ruler Images by Allen   | 165 |
| Appendix  | F    | Display Characterisation              | 167 |
| Appendix  | G    | Snellen Near Vision Test Card         | 173 |
| Appendix  | Η    | Observer Instructions                 | 174 |
| Appendix  | Ι    | IQM Input Parameters                  | 177 |
| Appendix  | J    | Mean Absolute Errors of IQMs          | 184 |
| Appendix  | K    | Related Work                          | 191 |
| K.1       | List | of Publications                       | 191 |
| K.2       | Pres | entations at Conferences and Symposia | 192 |
| K.3       | Awa  | urds                                  | 193 |
| Abbreviat | ions |                                       | 195 |
| Reference | es   |                                       | 200 |

## **List of Figures**

| Figure 1.1 A typical imaging chain; adapted from [1, p. 345]. ISP refers to image signal processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1.2 Luminance (a) and chrominance (b) components of the Flower Garden image (c) [4] in the 8-bit digital YCbCr colour space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Figure 1.3 Diagram summarising the function of capture system image quality metrics (IQM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure 1.4 Characteristics of system performance measurements, $F(s)$ , derived from a range of pictorial scene (or test chart) input signals $s$ : a) describes a linear system, b) describes a system applying non-linear image signal processing (ISP). $F(s)$ is the mean of $F(s1)$ to $F(sn)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure 1.5 Subjective image quality averaged over observer vs the Square Root Integral with Noise (SQRIn) [12] metric at varying levels of non-linear Joint Photographic Experts Group (JPEG) compression. The JPEG quality factor of each image varies from value 100 to where subjective quality drops below 10% acceptability. Adapted from [13]; original data from [10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 1.6 Examples of the types of input signals from test charts traditionally used in Modulation Transfer Function (MTF) ((a) to (c)), and Noise Power Spectrum (NPS) measurements (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure 1.7 MTF measurements obtained from a simulated capture system after linear and non-linear processing, from the following test targets: i) Imatest <sup>TM</sup> ISO 12233 [23] Slanted Edge Spatial Frequency Response (E-SFR) test chart [24] using sfrmat3 [25] (blue curves). ii) Imatest <sup>TM</sup> ISO 12233 sinusoidal Siemens Star test chart [26] using Image Engineering <sup>TM</sup> analysis software [27] (grey curves). iii) Imatest <sup>TM</sup> Spilled Coins (dead leaves) test chart using Burns' [28], [29] implementation of the direct dead leaves MTF [19] (orange curves). Both simulation pipelines are described in Section 4.2. The following processes were simulated first: lens blur, Poisson noise at a signal-to-noise ratio of 5, mosaicing and demosaicing [30]. The linear pipeline then applied Gaussian blurring (denoising), and unsharp masking (sharpening). The non-linear pipeline applied Block Matching and 3D Filtering [31] (denoising) and the Guided Image Filter [32] (sharpening) |
| Figure 2.1 Objective and subjective factors that affect perceived image quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Figure 2.2 Image fidelity and quality evaluation processes with respect to imaging chain distortions [1, p. 351]. Adapted from Ford [9, p. 8], and further from [54, p. 34]13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 2.3 Scene-and-process-dependent noise images obtained using ten replicate captures following the method of Section 4.1. All output images and replicates were generated using a simulated image capture pipeline after Poisson noise was added at a linear signal-to-noise ratio (SNR) of 10 and non-linear content-aware denoising [31] and sharpening [84] were applied. Noise images (d), (e) and (f) correspond to the following input information: (a) a uniform-tone patch, (b) the 'Students' image [7], and (c) the 'Architecture' image [7], respectively (Appendix C). The contrast of each noise image was increased to emphasise scene-dependency                                                                                                                                                                                                                                                                                                                                                                          |

vii

| Figure 2.4 Demonstration of local-content-dependency in terms of signal transfer, caused<br>by content-aware denoising and sharpening. Normalised pixel values, y, are plotted vs<br>horizontal, x, and vertical pixel coordinates, z, for: (a) a two-dimensional (2D) input signal<br>consisting of a low-contrast high-frequency signal ( $0 < x \le 15$ ), high contrast edge ( $15 < x \le 18$ ), and uniform tone signal ( $18 < x \le 30$ ). (b) shows (a) after adding Gaussian<br>noise. (c) shows (b) after denoising with the Fast Bilateral Filter (FBF) [93]. (d) shows (c)<br>after sharpening with the Weighted Least Squares (WLS) [92] filter |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2.5 Demonstration of human visual scene-dependency: (a) non-busy portrait [102], (b) busy landscape image [102]. (c) and (d) show the same images with Gaussian noise added at identical levels. Visual masking suppresses noisiness and perceived quality loss due to noise in (d)                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 2.6 Visual saliency maps predicted by the Graph-Based Visual Saliency algorithm [103]. Adapted from [41, p. 43]20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure 2.7 Sinusoidal modulations in terms of: a) luminance, and b) red-green chrominance signals; adapted from [117]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 2.8 Heynacher & Kober's [147] resolving power versus sharpness example: (a) has higher resolving power, (b) has higher contrast at mid-high frequencies and is perceived to be sharper than (a) at most viewing distances                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Figure 2.9 Relationships between the various spread functions and transfer functions that describe system signal transfer. $u$ and $v$ are spatial frequencies with respect to the $x$ and $y$ dimensions of the Point Spread Function (PSF), respectively. $\omega$ is spatial frequency with respect to the $x$ dimension of the Line Spread Function (LSF) or Edge Spread Function (ESF). Adapted from [1, p. 133]                                                                                                                                                                                                                                         |
| Figure 2.10 Test charts used to derive measurements of capture system signal transfer: (a) Imatest <sup>TM</sup> ISO 12233 [23] Slanted Edge Spatial Frequency Response (E-SFR) test chart [24]. (b) Image Engineering <sup>TM</sup> TE265 Dead Leaves test chart [151]. (c) Imatest <sup>TM</sup> Siemens Star test chart [26]. (d) Imatest <sup>TM</sup> Log Frequency-Contrast test chart [152]                                                                                                                                                                                                                                                            |
| Figure 2.11 Simulations by Farrell & Wandell [167] of: (a) temporal photon noise, and (b) read noise, as well as fixed-pattern noise caused by (c) photoresponse non-uniformity (PRNU) and (d) dark signal non-uniformity (DSNU) in image capture systems                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure 2.12 Image Engineering <sup>TM</sup> TE264 test chart [130] for noise measurements according to ISO 15739 [168]. The chart contains 20 uniform-tone patches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Figure 2.13 Noise with identical mean signal and standard deviation (i.e. the same level of root mean square (RMS) noise) but varying correlation [41, p. 32]: (a) low two-<br>dimensional (2D) covariance, (b) high 2D covariance, (c) low vertical covariance and high horizontal covariance.                                                                                                                                                                                                                                                                                                                                                               |
| Figure 2.14 Barten's detection (broken line) [186] and discrimination (solid line) [183, p. 143] contrast sensitivity functions (CSF) [187]47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 2.15 Isolated contrast detection (iCSF) [35] and contextual contrast detection (cCSF) [35] and discrimination (cVPF) functions [8] for the 'Buildings' (a) and 'Bench' (b) images shown in Appendix C. Adapted from [14]50                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Figure 3.1 Generalisation of Full-Reference and Reduced-Reference image quality metric (IQM) characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 3.2 Generalisation of No-Reference (NR) image quality metric (IQM) characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Figure 3.3 Approximate relative levels of calibration employed by image quality metrics (IQM) from different genres and the Noise Equivalent Quanta (NEQ) system performance measure                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3.4 Diagram describing processing by the IEEE P1858 Camera Phone Image<br>Quality (CPIQ) Standard's [22] implementation of Keelan's multivariate formalism IQM<br>(MF-IQM) [46]. Input parameters are shown for the texture blur and visual noise attribute<br>metrics only                                                                                                                                                                                                                                               |
| Figure 3.5 Generalisation of processing by threshold image fidelity metrics (IF-IQM), adapted from [264]                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 3.6 Generalisation of processing by suprathreshold image fidelity metrics (IF-IQM).                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure 3.7 Diagram of processing by the Structural Similarity (SSIM) Index [114]67                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Figure 3.8 Diagram describing processing by the scene-and-process-dependent Noise Equivalent Quanta (SPD-NEQ) system performance measure71                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure 3.9 Diagram describing processing by both the revised SQRIn [12] and PIC [169] metrics                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 3.10 Diagram describing processing by the revised CPIQ metric [22] (with respect to texture blur and visual noise attribute metrics only)74                                                                                                                                                                                                                                                                                                                                                                               |
| Figure 4.1 The scene-and-process-dependent Noise Power Spectrum (SPD-NPS) framework                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Figure 4.2 Fixed patterns of artefacts caused by demosaicing the 'Students' image [7] (left), and the detail of it (right). Global contrast was enhanced to increase artefact intensity                                                                                                                                                                                                                                                                                                                                          |
| Figure 4.3 The linear (a) and non-linear (b) camera simulation pipeline modelling and image signal processing (ISP) stages. Output images were generated at points indicated by the red arrows. Modelling that was common to both pipelines is shaded grey. ISP stages for which the linear and non-linear algorithms had very different effects on image quality to one another are shaded blue                                                                                                                                 |
| Figure 4.4 Two-dimensional (2D) discrete Fourier transform (DFT) log luminance spectra for the 'Students' image [7]: before, (c), and after windowing, (d) using the mask (e)86                                                                                                                                                                                                                                                                                                                                                  |
| Figure 4.5 Luminance Noise Power Spectra (NPS) and scene-and-process-dependent NPSs (SPD-NPS) derived from different test charts. The uniform patch NPS (grey curves) and proposed dead leaves SPD-NPS (red curves), are shown at different image signal processing (ISP) stages at SNR 40, (a) to (f), and SNR 5, (g) to (l). The power (y) axis is logarithmically scaled                                                                                                                                                      |
| Figure 4.6 Scene-and-process-dependent luminance Noise Power Spectra (SPD-NPS) derived from pictorial images and the dead leaves test chart. The pictorial image SPD-NPS (grey curves), mean pictorial image SPD-NPS (black curves), pictorial image SPD-NPS standard deviation (black dotted curves), and dead leaves SPD-NPS (red curves) are shown after different stages of image signal processing (ISP) at signal-to-noise ratios (SNR) of 40, (a) to (f), and 5, (g) to (l). The power (y) axis is logarithmically scaled |
| Figure 4.7 Demonstration of luminance noise scene-dependency in the non-linear image capture pipeline. Pictorial image scene-and-process-dependent Noise Power Spectra (SPD-NPS) are plotted on linear axes for the linear and non-linear pipelines at signal-to-noise ratios (SNR) of 40, (a) to (f), and 5, (g) to (l). Each curve is coloured according to its                                                                                                                                                                |

viii

| integrated area before denoising and sharpening. Green curves are of a higher area between zero and Nyquist frequency90                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 5.1 Scene-derived texture Modulation Transfer Functions (MTF) of Branca <i>et al.</i><br>[7] for the non-linear pipeline at a signal-to-noise ratio (SNR) of 40, before, (a) to (c), and<br>after the windowing method of Section 4.2 was applied, (d) to (f). Test images are from<br>Branca <i>et al.</i> [7], resized to 512 x 512 pixels by bicubic interpolation. Dotted curves show<br>+/- 1 standard deviation                                                                                                                               |
| Figure 5.2 The scene-and-process-dependent Modulation Transfer Function (SPD-MTF) framework                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 5.3 Direct dead leaves Modulation Transfer Functions (MTF) (black curves) and proposed dead leaves scene-and-process-dependent MTFs (SPD-MTF) (red curves) after different stages of image signal processing (ISP) at signal-to-noise ratios (SNR) of 40, (a) to (f), and 5, (g) to (l)                                                                                                                                                                                                                                                             |
| Figure 5.4 Comparison of scene-and-process-dependent Modulation Transfer Functions (SPD-MTF) from pictorial images and the dead leaves test chart. Pictorial image SPD-MTFs (grey curves), mean pictorial image SPD-MTFs (black curves), pictorial image SPD-MTF standard deviations (black dotted curves) and dead leaves SPD-MTFs (red curves) are shown after different image signal processing (ISP) stages at signal-to-noise ratios (SNR) 40, (a) to (f), and 5, (g) to (l)                                                                          |
| Figure 5.5 Demonstration of signal transfer scene-dependency in the non-linear image capture pipeline. Pictorial image scene-and-process-dependent Modulation Transfer Functions (SPD-MTF) are shown for the linear and non-linear pipelines at signal-to-noise ratios (SNR) of 40, (a) to (f), and 5, (g) to (l). Curves for each scene image are coloured according to their integrated area before denoising and sharpening. Green curves are of a higher area between zero and Nyquist frequency. Ten replicates were used when computing each SPD-MTF |
| Figure 6.1 Power spectra for the input images to the simulations (shown in Appendix D).                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 6.2 Layout of the image quality ruler graphics user interface (GUI) [102, Sec. 6.5.2]: (a) ruler image, (b) test image, (c) slider to select ruler images, (d) button to select next test image                                                                                                                                                                                                                                                                                                                                                     |
| Figure 6.3 Layout of laboratory equipment (plan view)114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 6.4 Modulation Transfer Functions (MTF) of imaging chain components and Barten's optical MTF of the eye [183, p. 29]. The camera-lens, camera-lens-display and display MTFs were all measured by Allen [102, p. 212]. The latter was also modelled by Equation 3.2 [22, p. 16]                                                                                                                                                                                                                                                                      |
| Figure 6.5 Mean observer image quality ratings on the Standard Quality Scale (SQS <sub>2</sub> ) for each test image; error bars show standard error                                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure 6.6 The scenes' susceptibilities to perceived quality loss. The x-axis is the grand mean of the scenes' quality ratings. The y-axis is the quality rating for each scene, averaged over all observers. Higher susceptibility scenes are distributed closer to the x-axis. The scenes classified as high, medium and low susceptibility are labelled [H], [M] and [L], respectively                                                                                                                                                                  |
| Figure 6.7 The observers' sensitivities to perceived quality loss. The x-axis is the grand mean of the observers' quality ratings. The y-axis is the quality rating for each observer, averaged over all scenes. Data from higher sensitivity observers is distributed closer to the                                                                                                                                                                                                                                                                       |

ix

| X                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x-axis. Observers classified as high, medium and low sensitivity are labelled [H], [M] and [L], respectively. Experienced and inexperienced observers are labelled [Y] and [N], respectively                                                                                                                                                                                                            |
| Figure 6.8 Box and whisker plots of Mean Absolute Errors (MAE) of all variants of each metric                                                                                                                                                                                                                                                                                                           |
| Figure 6.9 Box and whisker plots of the Spearman's Rank Order Correlation Coefficient (SROCC) of all variants of each metric, including the Mean Structural Similarity (MSSIM)                                                                                                                                                                                                                          |
| Figure 6.10 The mean of all observer image quality ratings vs the log Noise Equivalent Quanta (NEQ) metric variants that were less accurate or sensitive to system scene-<br>dependency. They implement direct dead leaves Modulation Transfer Functions (MTF) [19]                                                                                                                                     |
| Figure 6.11 The mean of all observer image quality ratings vs log Noise Equivalent Quanta (log NEQ) variants that were more accurate and sensitive to system scene-dependency. They employ the pictorial image SPD-NPS. The most accurate log NEQ variant is shown in (a) and (b)                                                                                                                       |
| Figure 6.12 The mean of all observer image quality ratings vs the most accurate Visual log NEQ variants that both implemented the dead leaves SPD-MTF and mean pictorial image SPD-NPS                                                                                                                                                                                                                  |
| Figure 6.13 The mean of all observer quality ratings vs the Perceived Information Capacity (PIC) [169] variants with lowest, (a) and (b), and highest accuracy, (c) and (d). Implementing different visual models had minimal effect on the correlations; hence the employed model is not specified                                                                                                     |
| Figure 6.14 The mean of all observer image quality ratings vs the Square Root Integral with noise (SQRIn) [12] variants of lowest, (a) and (b), and highest accuracy, (c) and (d). The visual model is not specified because implementing different models had minimal effect on the correlations                                                                                                       |
| Figure 6.15 The mean of all observer quality ratings vs CPIQ metric [22] variants that<br>employed different contrast sensitivity functions (CSF). All variants implemented the<br>direct dead leaves Modulation Transfer Function (MTF) [19] and uniform patch noise<br>images that are default input parameters to the IEEE P1858 standard [22] and are least<br>sensitive to system scene-dependency |
| Figure 6.16 The mean of all observer image quality ratings vs CPIQ metric [22] variants that employed different Modulation Transfer Functions (MTF) and noise parameters. All variants implemented the Barten contrast sensitivity function (CSF) [186] that was most optimal for the CPIQ metric. The most accurate CPIQ metric variant is shown in (e) and (f)                                        |
| Figure 6.17 The mean of all observer quality ratings vs output scores from the Mean Structural Similarity (MSSIM) metric [114]132                                                                                                                                                                                                                                                                       |
| Figure 7.1 Proposed automated display-capture device layout147                                                                                                                                                                                                                                                                                                                                          |
| Figure 7.2 Mean pictorial image SPD-NPS area, in units of pixels149                                                                                                                                                                                                                                                                                                                                     |
| Figure 7.3 Relative Standard Deviation Area of the SPD-NPSs of 50 input scenes. This is expressed as a percentage of the integrated area under the mean pictorial image SPD-NPS.                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                         |

### **List of Tables**

| Table 2.1 Input parameters for Johnson and Fairchild's luminance and chrominance CSFs[188] as implemented in the IEEE P1858 Camera Phone Image Quality (CPIQ) standard[22, p. 72]                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2.2 Summary of the most relevant performance measures concerning spatial image quality                                                                                                                                                                                                                                                                                          |
| Table 3.1 Summary of image quality metric (IQM) genres; JND refers to just-noticeable    difference                                                                                                                                                                                                                                                                                   |
| Table 4.1 Summary of the uniform patch Noise Power Spectrum (NPS) and the scene-and-process-dependent NPS (SPD-NPS) measures. N is the number of replicate captures of each scene/chart.                                                                                                                                                                                              |
| Table 5.1 Summary of the direct dead leaves Modulation Transfer Function (MTF) measurement implementation [19] and the scene-and-process-dependent MTFs (SPD-MTF) of this thesis. PS and NPS are the power spectrum and Noise Power Spectrum, respectively. SPD-NPS is the scene-and-process-dependent NPS. M is the number of images in the test image set                           |
| Table 5.2 R <sup>2</sup> correlation coefficients of a logarithmic curve fit of form $y = m \cdot \ln x + c$ , to the regression between the integrated area under the pictorial images' scene-and-process-dependent Modulation Transfer Functions (SPD-MTF) and the busyness' of these scenes [59].                                                                                  |
| Table 6.1 Summary of the contrast sensitivity functions (CSF) employed in Chapter 6109                                                                                                                                                                                                                                                                                                |
| Table 6.2 Optimal opacities for the pipelines' Image Signal Processing (ISP) filters described in Section 4.2. BM3D, GIF, USM and Gaussian refer to the Block Matching with 3D Filtering [31], Guided Image Filter [32], MATLAB <sup>TM</sup> imsharpen unsharp mask [85] and Gaussian blur filters, respectively                                                                     |
| Table 6.3 Comparison of the conditions of the psychophysical image quality evaluationswith the recommendations of ISO 20462 [56, Sec. 6.1].                                                                                                                                                                                                                                           |
| Table 6.4 Input parameters and Mean Absolute Errors (MAE) for the most accurate (left table) and least accurate (right table) variants of each image quality metric (IQM). The MAE scores are coloured from red to green denoting lowest to highest accuracy                                                                                                                          |
| Table 6.5 Input parameters and Spearman's Rank Order Correlation Coefficients (SROCC) for variants of each image quality metric (IQM) that resulted in the highest (left table) and lowest correlation (right table), as well as the Mean Structural Similarity (MSSIM) metric. The SROCC scores are coloured from red to green denoting lowest to highest correlation, respectively. |

### Acknowledgements

This thesis marks the culmination of the efforts of several people who deserve due praise and recognition, not just the author.

Firstly, I thank my Director of Studies and mentor, Dr Sophie Triantaphillidou, for consistently showing belief in my development since my early undergraduate years. Her guidance and knowledge have been instrumental to this research project from the day it was conceptualised. I am also particularly grateful to the three further supervisors of this project, Professors Robin Jenkin, Ralph Jacobson and John Jarvis, for sharing the enormous depth and breadth of their understanding. Their ability as a team to provide a "helicopter view" over this multi-disciplinary project has been invaluable. Moreover, I thank the whole supervisory team for their kind support and encouragement.

I am also grateful to Dr Elizabeth Allen, Dr Peter Burns, and Riccardo Branca for providing their code for the ISO 20462 Image Quality Ruler interface, the direct dead leaves Modulation Transfer Function (MTF) implementation, and the scene-derived texture MTF implementation, respectively.

I must also thank my fellow PhD researchers, Oliver van Zwanenberg and Dr Vicent Sanchis-Jurado, for frequent, engaging conversations, as well as colleagues and friends at the University of Westminster and elsewhere, including Janko Smejkal, Dr Aleka Psarrou, Professor Tamas Kiss, John Smith, Dr Efthemia Bilissi, Dr Olivier Moullard, Dr Jae Young Park, Dr Anastasia Tsifouti and Dr Gaurav Gupta.

Finally, but by no means least, I am grateful to my brother George Fry, sister-in-law Claire Fry, and my girlfriend Jowita Nesterowicz for their unfailing support.

Dedicated to my parents

Jillie and Bernard

### **Author's Declaration**

I, the undersigned, hereby declare that all the material contained in this thesis is my own work, expressed in my own words. It has not been submitted for any other degree or professional qualification. All sources of information, visual material, or data produced by other researchers has been referenced suitably, whether it has been used directly or indirectly.

Edward William Stewart Fry, B.Sc. (Hons)

February 2020

### Chapter 1 Introduction

Evaluating the objective performance of capturing systems and their subjective image quality is necessary to their design, optimisation and comparison. Digital capturing systems record information about an input scene (or subject) as digital image files. Their optics form a continuous, but distorted image of the scene, from which information is extracted by the sensor and electronics discretely. Image signal processing (ISP) is often then applied before the digital image is encoded into a suitable storage format. To view this encoded image, it must be presented by an output system such as a display or printer. Each component in the resultant imaging chain contributes to the characteristics of the output image (Figure 1.1).



Figure 1.1 A typical imaging chain; adapted from [1, p. 345]. ISP refers to image signal processing.

Quantifying the relationship between the input scene and output image is a common, general aim when evaluating imaging system image quality. However, the input scene information is usually unavailable for capture systems, meaning output image quality must be quantified without reference to it.

Subjective (or perceived) image quality refers to the visual impression of goodness that an image conveys [1, p. 345]. It is broken down into a number of perceptual attributes (or dimensions) that are defined in Chapter 2. In this thesis, the term image quality refers specifically to the subjective (visual) image quality unless stated otherwise.

Objective image quality refers to physical measurements of imaging system performance, images or image attributes. These measurements provide a practical (and conceptual) means to assess and predict the effect of changes to the system [2, p. 1]. Certain measurements can be used to characterise systems, components, or processes with respect to a particular attribute, expressing their input-to-output characteristics as mathematical functions, or single figure variables. These measurements describe the physical properties of the

system/component/process that drive its objective performance, and subjective quality, with respect to the attribute in question.

The most useful performance measures correlate with overall perceived image quality or attribute strength. These relationships are well described in the prior art and have resulted in a number of standardised measurement methods discussed in Section 2.3. However, individual performance measures do not predict subjective image quality or attribute strength particularly well because the human visual system (HVS) is unaccounted for.

This thesis focuses on spatial image quality. This relates to the distribution of luminance contrast signals across the image, which are core to the perception of form, shape and detail, as shown in Figure 1.2(a). Spatial image quality is associated with the attributes of resolution, sharpness and noisiness that are primary drivers for the overall subjective image quality of contemporary capture systems [3]. The reproduction of chrominance signals (Figure 1.2(b)) also contributes significantly to overall subjective image quality but is not discussed in this thesis.



Blue-Difference Chroma ( $C_B$ ) is value (128) Red-Difference Chroma ( $C_R$ ) is value (128)

Blue-Difference Chroma ( $C_B$ ) is as per image C Red-Difference Chroma ( $C_B$ ) is as per image C

Figure 1.2 Luminance (a) and chrominance (b) components of the Flower Garden image (c) [4] in the 8-bit digital YCbCr colour space.

A variety of psychophysical paradigms yield quantitative data from qualitative judgements of human observers with respect to subjective image quality, or its attributes [5]. Statistical analysis of this data, based on laws of psychophysics, allows it to produce various numerical psychometric scales [5]. It is desirable that such scales are expressed in intervals of justnoticeable differences (JND) for meaningful description of quality levels. However, psychophysical experiments are generally slow, expensive, and difficult to carry out accurately. They also do not provide easily a causal breakdown of the contributions of different components and processes to the subjective image quality of capture systems.

Image quality metrics (IQM) are often used in conjunction with psychophysical experiments when developing capturing systems. The most suitable metrics originate from imaging and vision science. They map system performance measurements to single figure variables that aim to correlate with psychophysical ratings of image quality (Figure 1.3). Most IQMs implement HVS modelling and account for multiple attributes. Thus, they correlate with subjective image quality more accurately than individual performance measures.



Figure 1.3 Diagram summarising the function of capture system image quality metrics (IQM).

Spatial capture system IQMs generally implement Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) performance measures which characterise system signal transfer (relating to resolution and sharpness) and noise, respectively. The MTF and NPS are defined in Sections 2.3.2 and 2.3.3, respectively. They are founded upon linear system theory [6, pp. 233–269], and are, strictly speaking, only applicable to linear, spatially invariant and homogenous systems that comply with Equations A1 to A4. Such systems deliver consistent performance regardless of the input signal (Figure 1.4(a)). Spatial capture system IQMs cascade visual contrast sensitivity functions (CSF) with these performance measures as weighting functions. This accounts for whether the measurements are perceptually relevant.



Figure 1.4 Characteristics of system performance measurements, F(s), derived from a range of pictorial scene (or test chart) input signals (s): a) describes a linear system, b) describes a system applying non-linear image signal processing (ISP).  $\overline{F}(s)$  is the mean of  $F(s_1)$  to  $F(s_n)$ .

The implementation of advanced ISP algorithms has improved capture system image quality significantly. Denoising and sharpening are two algorithms frequently applied. The simplest, linear denoising filters remove undesirable noise but also detail and edge sharpness that are critical to image quality. Conversely, simple linear sharpening algorithms enhance detail and sharpness but amplify noise. These denoising and sharpening algorithms cancel each other out to some extent when applied together, and image quality is not fully optimised.

It is more common for contemporary capture systems to apply adaptive (or content-aware) denoising and sharpening algorithms. These reduce blurring of the image when denoising, and amplification of noise when sharpening, by filtering image signals selectively; this is described further in Section 2.2.1. These non-linear algorithms optimise image quality more effectively than simple, linear filters and cancel each other to a lesser extent. However, their behaviour is both "*local-content-dependent*" and "*scene-dependent*" (i.e. it varies according to the input signal). Such behaviour is demonstrated in Figures 2.3 and 2.4 and discussed in Section 2.2.1. It follows that the spatial imaging performance of any system applying these algorithms is also scene-dependent, Figure 1.4(b) [2, p. 198], [7]. It should also be noted that the HVS is a highly adaptive system, and visuo-cognitive processes carried out during image quality judgement are expected to be scene-dependent as discussed in Section 2.5.

Spatial capture system IQMs do not account for system scene-dependency [8]. Prior art demonstrates they predict image quality relatively accurately for linear systems, but less accurately for scene-dependent, non-linear systems and/or processes. Their accuracy is limited in the latter case because they are based on performance measurements derived with respect to synthetic signals, not scenes (discussed further in Section 1.1). Likewise, they use CSFs that describe visual sensitivity to unmasked, synthetic signals, not real scenes, as outlined in Section 1.2.

Figure 1.5 provides an example of such inaccuracies when a leading capture system IQM was applied to images of scenes with varying levels of non-linear compression [9, p. 169], [10], [11]. The metric correlated well with the quality of individual scene images. But the correlations for each scene were separated by gains and offsets, resulting in poor overall correlation. These gains and offsets are expected to be due to the scene-dependency of the compression algorithm and human spatial visual sensitivity being unaccounted for.



Figure 1.5 Subjective image quality averaged over observer vs the Square Root Integral with Noise (SQRIn) [12] metric at varying levels of non-linear Joint Photographic Experts Group (JPEG) compression. The JPEG quality factor of each image varies from value 100 to where subjective quality drops below 10% acceptability. Adapted from [13]; original data from [10].

This thesis hypothesises, more generally, that the following factors affect the accuracy of spatial capture system IQMs:

- Signal transfer and noise are characterised inaccurately for scene-dependent, nonlinear capture systems by their MTF and NPS parameters (discussed in Section 1.1).
- Scene-dependent aspects of lower-level spatial vision, including visual masking, are unaccounted for by their CSF parameters (as described in Section 1.2).
- 3) Cognitive factors of quality judgement are unaccounted for by their CSF parameters.

This thesis revises various capture system IQMs and develops two further, novel IQMs, to investigate whether factors 1) and 2) are significant and can be resolved. Factor 3) has been investigated by the author [14]; it is discussed in Section 2.5. The new IQMs were validated by analysing measurements from simulated camera pipelines. These simulated camera operations in a systematic manner with respect to controlled camera and ISP algorithm variables. Comparable pipelines are used in the industry when developing capture systems.

### **1.1 Imaging Performance Measures and System Non-**Linearity

The MTF and NPS are measured from capture systems using test charts (or test targets). These charts provide a predefined, synthetic, input signal for comparison with the output signal of the capture system. Figure 1.6 shows signals from traditional test charts containing sine-waves, edges, noise and uniform luminance patches. According to Figure 1.4(a), each test chart should deliver identical measurements for linear systems. However, measurements are derived by different methods for each chart, with different levels of measurement error. Thus, measurements derived using each chart are not identical in practice.



Figure 1.6 Examples of the types of input signals from test charts traditionally used in Modulation Transfer Function (MTF) ((a) to (c)), and Noise Power Spectrum (NPS) measurements (d).

More importantly, for scene-dependent systems that apply non-linear ISP, deriving the MTF and NPS using each of the above test charts delivers different results [2, p. 10], [9, p. 169], [11]. This contradicts Fourier theory [15], and is demonstrated for the MTF by the blue and grey curves in Figure 1.7 that correspond to a slanted edge signal and sinusoidal signal, respectively. Moreover, since each chart is unrepresentative of real scene signals, these measurements describe the average real-world performance of scene-dependent systems inaccurately (i.e. general performance when capturing real scenes).

This problem has been noted by prior art. Performance measures [16]–[21] and IQMs [22] have since been developed for scene-dependent capturing systems that use the dead leaves chart (shown in Figure 2.10(b)); MTFs measured using the dead leaves chart are shown in orange in Figure 1.7. This chart replicates certain statistical properties of the "average" natural scene (as described in Section 2.3.2), making it more representative than the signals in Figure 1.6.

Deriving measurements with respect to images of real scenes, however, is expected to characterise scene-dependent systems more appropriately than measurements from any test chart, provided they are precise and unbiased. This is because such measurements would account for the effect of real scene signals on non-linear ISP algorithms, thus describing performance in real-world image capture scenarios.



Figure 1.7 MTF measurements obtained from a simulated capture system after linear and nonlinear processing, from the following test targets: i) Imatest<sup>TM</sup> ISO 12233 [23] Slanted Edge Spatial Frequency Response (E-SFR) test chart [24] using sfrmat3 [25] (blue curves). ii) Imatest<sup>TM</sup> ISO 12233 sinusoidal Siemens Star test chart [26] using Image Engineering<sup>TM</sup> analysis software [27] (grey curves). iii) Imatest<sup>TM</sup> Spilled Coins (dead leaves) test chart using Burns' [28], [29] implementation of the direct dead leaves MTF [19] (orange curves). Both simulation pipelines are described in Section 4.2. The following processes were simulated first: lens blur, Poisson noise at a signal-to-noise ratio of 5, mosaicing and demosaicing [30]. The linear pipeline then applied Gaussian blurring (denoising), and an unsharp mask (sharpening). The non-linear pipeline applied Block Matching and 3D Filtering [31] (denoising) and the Guided Image Filter [32] (sharpening).

Considering Figure 1.4(b), the following measurements are obtained from a non-linear, scene-dependent system if a large number, n, of precise, unbiased performance measurements,  $F(s_1)$  to  $F(s_n)$ , are derived with respect to a set of scene images that are representative of commonly captured scenes,  $s_1$  to  $s_n$ :

1)  $F(s_1)$  in Figure 1.4(b) characterises the performance of the system with respect to a specific input scene image,  $s_1$ , accounting for system scene-dependency.

- \$\bar{F}(s)\$ in Figure 1.4(b) characterises the average real-world performance of the system with respect to a large number of images of scenes, accounting for system scene-dependency.
- 3) The standard deviation of  $F(s_1)$  to  $F(s_n)$  in Figure 1.4(b) describes the level of scene-dependent variation in the system's performance (i.e. its scene-dependency).

This thesis develops *scene-and-process-dependent NPS (SPD-NPS) and MTF (SPD-MTF)* measures that characterise system noise and signal transfer, respectively, according to 1) to 3). They are validated by analysing measurements from simulated camera pipelines. Further, they are implemented in a number of IQMs to investigate whether accounting for imaging system scene-dependency improves metric accuracy.

### **1.2 Human Visual System (HVS) Modelling and Non-**Linearity

A wide range of visual models are used in IQMs to describe the function of the HVS. These are reviewed in Section 2.5. Capture system IQMs implement CSFs that describe visual sensitivity to luminance contrast. The CSFs used traditionally in these IQMs have a bandpass shape. They model the reciprocal of the contrast threshold required to detect a sine-wave signal of given spatial frequency on a plain background.

For many years, it has been debated whether these CSFs describe the contrast transduction characteristics of the HVS accurately [33] which are non-linear and locally adaptive. It has also been discussed whether it is appropriate to cascade them with system performance measures founded upon linear system theory [10], [34]. What is clear, is that when observers evaluate the quality of an image, the HVS detects and discriminates complex scene signals and artefacts that are, in general, masked by other content [8]. And that this is a different visuo-perceptive process to the detection of unmasked, narrow-band sine-wave signals.

Recent prior art has developed contextual contrast detection (cCSF) [35] and discrimination functions (cVPF) derived from images of natural scenes to account for HVS non-linearity [8]. Their shape is scene-dependent because they account for the effect of luminance contrast masking on visual sensitivity. They are generally low-pass under most viewing conditions, decaying in high frequencies due to the optical limitations of the eye. These functions were

validated against psychophysical measurements of detection and discrimination of complex scene signals. They are expected to describe the visual processes of image quality evaluation more suitably than the CSFs used traditionally in capture system IQMs [8]. Their implementation in IQMs is investigated in this thesis, with the aim of addressing the hypothesised limitations of current visual models. Previous IQMs have not used them.

#### **1.3** Aims and Overview

The overarching aim of the project is to investigate whether spatial capture system performance can be measured by replacing traditional test charts with images of natural scenes, in order to account for the effects of non-linear, content-aware camera processes. Further, to examine whether such performance measures and contextual human visual models (recently presented in the literature) are more suitable input parameters to spatial image quality metrics.

The objectives of this project are defined below:

- 1) To review and categorise spatial IQMs from a capture system development perspective.
- To examine whether replacing traditional test charts with images of natural scenes produces more accurate measurements of signal transfer (MTF) and noise (NPS) of capture systems that incorporate non-linear content-aware ISP.
- 3) To use revised MTF and NPS measures from 2) and contextual visual models to revise existing IQMs, and to develop novel IQMs that relate to spatial image quality.
- To validate the IQMs from 3) using images from simulated linear and non-linear camera pipelines.

The overview of this thesis is below:

Chapter 2 introduces image quality and fidelity, sources of scene-dependency, spatial image quality attributes, imaging system performance measures, and spatial visual models.

Chapter 3 critically reviews different IQM genres and proposes frameworks for novel and revised IQMs, suitable for camera evaluations.

Chapter 4 proposes and validates three novel NPS measures that characterise noise in capturing systems while accounting for capturing system scene-dependency (SPD-NPS measures).

Chapter 5 proposes and validates three novel MTF measures that characterise signal (contrast) transfer while accounting for capturing system scene-dependency (SPD-MTF measures).

Chapter 6 evaluates a number of variants of the IQMs defined in Chapter 3. These variants use different combinations of the SPD-NPS and SPD-MTF measures, and contextual visual models such as the cCSF and the cVPF.

Chapter 7 presents discussions on the IQM frameworks, SPD-NPS measures, SPD-MTF measures, and the novel and revised IQMs, as well as their implementation and application.

Chapter 8 states the conclusions of the thesis and recommends further work.

#### **1.4 Original Contributions to Knowledge**

Research from this thesis demonstrated the following original contributions to knowledge:

- Three novel *Scene-and-Process-Dependent Noise Power Spectrum (SPD-NPS)* measures for characterisation of camera noise, derived either using the dead leaves chart or images of natural scenes.
- Three novel *Scene-and-Process-Dependent Modulation Transfer Function (SPD-MTF)* measures that characterise camera signal transfer, using either the dead leaves chart, or images of natural scenes.
- Successful revision and verification of classical spatial IQMs by substituting existing MTF and NPS parameters with the newly introduced SPD-NPS and SPD-MTF measures, to account for system scene-dependency.
- Development of novel spatial IQMs designed for scene-dependent capture systems (*log Noise Equivalent Quanta (log NEQ)* and *Visual log NEQ*). These elegant and simple IQMs are proven to compete with state-of-the-art but more complicated IQMs.
- Novel measures for quantification of scene-dependency in camera system signal transfer and noise measurements.

# Chapter 2 Image Quality and System Performance

Background theory on image quality and imaging system performance and their multidimensional nature is introduced. Image quality, fidelity and naturalness are defined. Causes for scene-dependent variations in imaging system performance and perceived image quality are discussed. The image quality attributes and their corresponding system performance measures are reviewed, as well as signal-to-noise-based measures. Human visual system (HVS) models used by relevant image quality metrics (IQM) are presented.

### 2.1 Defining Image Quality and Fidelity

Image quality evaluation should be considered as a scene-dependent, multivariate process [4] with a number of objective and subjective factors [36]. It is difficult to specify uniquely [33], [37]–[39], and no definition has been accepted as universal.

Engeldrum [5, p. 1] defines image quality as: *the integrated set of perceptions of the overall degree of excellence of an image*. He describes image quality perception as the multivariate combination of perceptual attributes, referred to as the "nesses". They include brightness, lightness, sharpness, fineness of detail, textureness, graininess or noisiness, contrastness, colourfulness, hueness, chromaness, naturalness and usefulness [5], [40]–[42]. They form the basis of our language when describing an image's overall quality and its attributes.

Schade [43] was one of the earliest to measure imaging system quality in the modern way. He defines image quality as: a subjective judgement made by a mental comparison of an external image with image impressions stored and remembered more or less distinctly by the observer, who allows for a loss of detail in areas too small to be resolved by the eye. This definition can be extended to describe the output image quality of an imaging system as a function of the input image signal, the imaging system's performance, the observer's visual performance, and their preferences regarding the image's attributes and aesthetics. Figure 2.1 gives a simplified breakdown of these factors, where the image signal flows approximately from left to right. Imaging system performance can be separated from the other factors, but visual performance and quality consciousness are interlinked [44], [45].



Figure 2.1 Objective and subjective factors that affect perceived image quality.

Keelan [46, p. 9] also considers the practicalities of imaging systems development, defining image quality as: *an impression of merit or excellence, as perceived by an observer neither associated with the act of photography, nor closely involved with the subject matter depicted.* Inexperienced observers often prefer different weightings of the strength of image quality attributes, compared to more experienced observers [47]–[49]. The former group is preferable, according to Keelan. They are more representative of the general mean of the population (i.e. the potential customer base). Nevertheless, they may overlook subtle artefacts that are noted by experts in rigorous product reviews on websites such as DxOMark<sup>™</sup> [50].

Yendrikhovskij [51] defines image quality as: *the degree of apparent suitability of the reproduced image to satisfy the corresponding task*. He elaborates, expressing quality as the multivariate combination of an image's usefulness, fidelity and naturalness, where their optimal balance differs with the intended application of the image. Usefulness describes an image's fitness for purpose or the capability of an imaging system to reproduce input scene content in a visibly acceptable way [52]. Fidelity is defined as the *visual equivalence between two images* [34], or more specifically as the perceptibility of differences or distortions between a test and reference image [33], [36], [53]. The reference image is assumed to be ideal, meaning any distortions in the test image reduce fidelity by default [36], regardless of their effect on its perceived quality. However, it is the acceptability of these differences that is relevant, when assessing the relative levels of quality of two images. This requires the quality consciousness (or goodness criteria) of the observer to be accounted for (Figure 2.2).



Figure 2.2 Image fidelity and quality evaluation processes with respect to imaging chain distortions [1, p. 351]. Adapted from Ford [9, p. 8], and further from [54, p. 34].

Naturalness is defined as [55]: *the degree of apparent match between the reproduced image and the internal references, e.g. memory prototypes.* These internal references form part of the quality consciousness of the observer and are comparable to the internal references consulted during image quality evaluation [13]. However, they are not identical to the latter. For example, slight over-enhancement of sharpness or contrast can increase quality but decrease naturalness [14].

#### 2.2 Scene-Dependency

Scene-dependency refers to any variation in the performance of an imaging system, the perceived quality of its images, or the perceived strength of its attributes, which is dependent on input scene content. It has been investigated widely [4], [56]–[60] and adds unpredictability to image quality datasets. Scene-dependency with respect to overall perceived image quality increases when test images are of higher quality [57].

It results from scene-dependent variations in:

- 1) objective imaging system performance;
- 2) visual attention patterns and HVS performance;
- 3) observer preference regarding quality attributes and aesthetics [60].

Sections 2.2.1 to 2.2.3 review 1) to 3) above, respectively.

#### 2.2.1 Imaging System Performance

System performance scene-dependency has long been measured, and compensated for, in both analog and digital capturing systems. Certain sources of scene-dependency apply to both types of systems and can be reduced by ensuring that images are captured in focus, with a wide depth of field, at similar camera-to-subject distances, under consistent illumination and without extremes of contrast [60]. While analog (film) capture systems are generally stationary and isotropic [6, p. 210], their tone reproduction is often non-linear (refer to Appendix A). The latter can be compensated for, however, and system performance measures based on linear system theory have been applied successfully to such systems, especially after non-linear tone reproduction [61], [62] and micro-chemical effects [61] were taken into account.

Digital systems, however, employ discrete sensor arrays consisting of finite sampling apertures, causing non-stationary and non-isotropic behaviour [63] (defined in Appendix A). Consequently, the response of the system varies with respect to input signal phase and angle [63], [64]. Modulation Transfer Functions (MTF) measured from different test charts vary with respect to changes in the orientation of the chart, as well as translation [2, p. 197]. The greatest cause of scene-dependency in digital imaging system performance, however, results from implementing non-linear content-aware Image Signal Processing (ISP) such as demosaicing, denoising, sharpening and compression, which are summarised below. These algorithms cause the objective level of image attributes and artefacts to be dependent on local image content [4], [60], [65], thus rendering system performance scene-dependent. This scene-dependency is compounded when multiple algorithms are applied.

Demosaicing interpolates between the pixels of the sparse single-channel images created by Colour Filter Array (CFA) elements, to produce full-colour images according to an RGB additive colour model. Linear demosaicing averages over neighbouring pixels in the spatial [30] or frequency [66] domain. Non-linear content-aware demosaicing is generally a minor cause of system scene-dependency. Non-linear spatial domain methods [67]–[70] are edgeaware. They omit or weight neighbouring pixel content before averaging, depending on local luminance gradients, to attempt to preserve edges and mitigate noise and colour artefacts. Other non-linear methods operate in the wavelet [71] or frequency [72] domain. The role of denoising is to discriminate between image pixel values that are supposed to be there (i.e. scene content) and spurious image information (noise) [73]. This task is highly challenging, and no denoising algorithm is ideal. Artefacts associated with imperfect denoising include loss of image detail, texture and edge contrast. Linear denoising involves applying mean or Gaussian filters either by convolution or multiplication in the frequency domain. Alternatively, non-linear median filters can be applied. All of these filters 'average out' the noise which, incidentally, reduces the intensity of image details and edges.

Non-linear content-aware denoising filters are less detrimental to quality than the above methods but are a significant cause of system scene-dependency. Image structure impedes, in general, the local removal of noise by these filters, as shown in Figure 2.3. Their signal transfer is also dependent on local image structure (Figure 2.4). For many spatial domain content-aware denoising filters, this is caused by applying thresholding before averaging to reduce denoising in the presence of local luminance gradients [74], [75]. This thresholding results in unmasked noise (which is most visible) being filtered heavily while image edges are preserved. But texture and detail are often mistaken as noise and removed.

Further, *Block Matching and 3D Filtering (BM3D)* [31] and Non-Local Means [76] filters operate on a patch-wise level [73]. These content-aware algorithms compare the structure contained within a given small window (e.g. 8-by-8 pixels) with the structure in other windows across the image. Content from the "matching" windows is then averaged with the original window to remove noise. Sumner *et al.* [73] observe that it is impossible to predict the effect of such algorithms on a small-scale image feature in a real-world capture scenario since the actions of the algorithm depend entirely on the surrounding image features which may vary considerably. Other content-aware filters operate in the Discrete Cosine Transform (DCT) [77] or wavelet [78] domains or employ machine learning [79]–[83]; each of the mentioned content-aware denoising filters results in comparable artefacts concerning texture/detail loss.



Figure 2.3 Scene-and-process-dependent noise images obtained using ten replicate captures following the method of Section 4.1. All output images and replicates were generated using a simulated image capture pipeline after Poisson noise was added at a linear signal-to-noise ratio (SNR) of 10 and non-linear content-aware denoising [31] and sharpening [84] were applied. Noise images (d), (e) and (f) correspond to the following input information: (a) a uniform-tone patch, (b) the 'Students' image [7], and (c) the 'Architecture' image [7], respectively (Appendix C). The contrast of each noise image was increased to emphasise scene-dependency.

Sharpening enhances edges, detail and high-frequency contrast but also amplifies noise and other artefacts. Linear sharpening methods include applying high-pass filters or spatial domain unsharp masks (USM) [85]. Non-linear content-aware sharpening causes scene-dependency in imaging system performance because the performed local contrast adjustments are dependent on local image structure (as demonstrated in Figure 2.4). The unintended local amplification of noise (and other artefacts) is also dependent on local image structure since the objective level of noise/artefact amplification relates directly to the level of contrast amplification. For example, non-linear content-aware USMs [86]–[90] lower their amplification of contrast in regions of low local luminance gradient, to attempt to mitigate the perceived amplification of noise, while still enhancing the structural signals most relevant to perceived image quality. Other non-linear content-aware sharpening algorithms operate in various domains [32], [84], [91], [92], providing detail enhancement, edge sharpening and even optional denoising [84], [91]; some employ guidance images [32] or multi-scale contrast manipulations [92].



Figure 2.4 Demonstration of local-content-dependency in terms of signal transfer, caused by content-aware denoising and sharpening. Normalised pixel values, y, are plotted vs horizontal, x, and vertical pixel coordinates, z, for: (a) a two-dimensional (2D) input signal consisting of a low-contrast high-frequency signal ( $0 < x \le 15$ ), high contrast edge ( $15 < x \le 18$ ), and uniform tone signal ( $18 < x \le 30$ ). (b) shows (a) after adding Gaussian noise. (c) shows (b) after denoising with the Fast Bilateral Filter (FBF) [93]. (d) shows (c) after sharpening with the Weighted Least Squares (WLS) [92] filter.

Tone mapping converts captured image data to a suitable, output-referred state for viewing on the output device [1, p. 241]. Global, one-dimensional operations (e.g. gamma correction) are suitable if the dynamic range of the subject does not significantly exceed the usable dynamic range of the capture system [94] (which is typically between five and nine exposure stops [1, p. 241]). For subjects with wider dynamic range, implementing local tone mapping algorithms results in improved shadow and highlight detail. These adaptive algorithms map one input pixel value to a number of potential output values, depending on the values of other pixels in the region [94], [95]. Very high dynamic range subjects require high-dynamic-range (HDR) processing, described below, to avoid clipping their shadows and highlights. Multiple, bracketed exposures are captured. A high bit-depth HDR image is constructed (typically 32-bits per channel). The subject's radiance value is estimated at each

pixel location using information from all exposures after it has been weighted according to its reliability [1, p. 242]. The resultant image's bit-depth is reduced to 8 or 16 bits per channel, for output, using image-rendering algorithms that can either be global or local [96] (like the tone-mapping algorithms described above). Content-aware intensity adjustments from local image-rendering and tone-mapping algorithms can affect system signal transfer and noise significantly, in a local-content-dependent and scene-dependent manner.

Compression is applied to reduce the file size of an image by lowering the average bit rate (i.e. the bit allocation per pixel). Image compression can be objectively and perceptually lossless. However, lossy Joint Photographic Experts Group (JPEG) [97], [98] and JPEG 2000 [99] algorithms are applied frequently by image capture systems. Both algorithms are highly non-linear but not content-aware. The perceptual significance of their artefacts is scene-dependent [60], [65]. Significant variation was also found between the MTF of JPEG compression when it was derived from edges and sinusoidal signals [9]–[11], [15]. IQMs that employed MTFs derived from these signals also failed to describe the perceived quality of JPEG compressed images accurately [9]–[11] (Figure 1.5) since they did not account for the algorithm's scene-dependency. This suggests that the scene-dependent characteristics of compression algorithms, and other spatial ISP algorithms such as denoising and sharpening, are relevant to perceived image quality and should be accounted for by spatial IQMs.

#### 2.2.2 Human Visual System

Image quality attributes and artefacts are less noticeable in the presence of certain image content due to the effects of visual masking (defined in Section 2.5) and saliency [60], [65], [100], [101]. Thus, for spatially varying images of scenes, uniformly distributed artefacts are more apparent in certain regions, over others. Likewise, if images of different scenes are generated that contain the same objective level of artefacts, the perceived level of these artefacts often varies between the scenes, as demonstrated by Figure 2.5. The same is also true of their overall perceived image quality. Keelan [46, Ch. 10] describes such variations as scene susceptibility. Saliency relates to the probability of observers fixating their visual attention on a given image location in a free-viewing (or image quality evaluation) scenario.



Figure 2.5 Demonstration of human visual scene-dependency: (a) non-busy portrait [102], (b) busy landscape image [102]. (c) and (d) show the same images with Gaussian noise added at identical levels. Visual masking suppresses noisiness and perceived quality loss due to noise in (d).

The factors that affect visual masking are the viewing conditions, the frequency content of the attributes/artefacts in question, and the frequency content of local masking signals or noise. Attributes/artefacts are also more noticeable if they are located in salient image regions which attract visual attention. This includes positions near to the foreground, prominent subjects, text, distinct edges, luminance/colour contrasts, or objects that deliver the meaning of the image. Visual attention patterns can be affected by the viewing task and the level of experience of the observer [45] and can be predicted by certain algorithms, as shown in Figure 2.6.



Figure 2.6 Visual saliency maps predicted by the Graph-Based Visual Saliency algorithm [103]. Adapted from [41, p. 43].

#### 2.2.3 Observer Preference

The aesthetic preferences of observers and their tolerance toward image quality attributes and artefacts are dependent on scene content [104], [105] and can vary with experience [47]–[49] and the viewing task [45]. They are also affected by mood and state of awareness [106], as well as ethnicity and cultural factors [107]. For example, observers prefer skin textures to be "softly focused" compared to other image textures and signal content such as edges. Consequently, close-up portraits are often preferred to be less objectively sharp than other types of images, such as landscapes [104], [105]. Further, the subjective quality of the former decreases when objective quality (sharpness) increases past a threshold level [105]. The aesthetic preferences of observers are affected by the distribution of objects in images [108] and their interrelatedness [109]. For example, related objects are preferred to be positioned closer together than unrelated objects [109].

### 2.3 Image Quality Attributes

The visual attributes of spatial image quality are defined (contrast/tone, resolution, sharpness and noise). Resolution, contrast and noise are also discussed as physical attributes of imaging systems and images. The objective system performance measures that are used to describe each of these attributes are also defined in this section.

The final attribute, colour, is defined objectively (and subjectively) by the reproduction (and perception) of image brightness/lightness, chroma/colourfulness/saturation and hue [1, p. 346]. Brightness and lightness also relate to spatial attributes of contrast/tone and are defined in Section 2.3.1. The other colour attributes are not defined, however, because this project is concerned with spatial IQMs and system performance measures only. The IQMs and performance measures developed in this thesis are validated using colour images. However, the ISP algorithms used by the simulation pipelines affect spatial image quality attributes, in particular, producing mainly spatial artefacts.

The quality attributes form logical components of the observer image quality judgement process [57]. They are fundamental to image quality analysis [13], [38], [52], and the language used to describe relevant perceptions. Their presence can be preferential or detrimental (artefactual) to the overall perceived image quality [46, p. 7], [56, p. 1], [110, p. 1] or preferential up to a point and detrimental thereafter [14]. Attributes that are perceived to be of the highest magnitude have a disproportionate influence on the overall perceived image quality [110], [111]; they suppress attributes of lower perceived magnitude [56, p. 4] and become identifiable features of an image (e.g. a "sharp" image). This is particularly the case for low-quality images [112] for which isoquality contours are particularly steep edged [111].

Of interest to this thesis are the MTF (Section 2.3.2), Noise Power Spectrum (NPS, Section 2.3.3) and Noise Equivalent Quanta (NEQ, Section 2.4) measures of imaging system signal transfer (relating to resolution and sharpness), noise, and signal-to-noise performance, respectively. These measures are based upon linear system theory (defined in Appendix A) and are transformed into the spatial frequency domain. This allows measurements for each imaging chain component to be cascaded at different spatial frequencies, thus expressing the performance of the entire imaging chain. Moreover, if these measurements are projected at the plane of the observer's eye, they can be weighted with the human visual contrast
sensitivity function (CSF) to emphasise the most visually important information [41, p. 6]. This makes them particularly useful input parameters for IQMs, as discussed in Chapter 3.

#### **2.3.1** Contrast and Tone

Subjective contrast is defined as perceived luminance variation [35]. Likewise, colour contrast refers to perceived chrominance variation. Objective differences in luminance (and chrominance) signals across the surface of a two-dimensional (2D) still image produce visual sensations of contrast (and colour contrast), as shown in Figure 2.7. Spatially varying luminance contrast is the principal carrier of image information [33], with respect to perceptions of image structure [113]. Scene structure is fundamental to visual understanding [114]–[116], making luminance contrast core to perceived image quality and fidelity, as well as four out of the five quality attributes: resolution, tone, sharpness and noise. This is exemplified by Figure 1.2(a) which is visibly sharp, contains tonal information, and is far more recognisable and detailed than Figure 1.2(b). Chromatic contrast signals are accounted for by many specialist capture system colour metrics and IQMs. However, they are overlooked by a large number of spatial IQMs, including those developed in this thesis. Consequently, this section focuses mainly on luminance contrast.



Figure 2.7 Sinusoidal modulations in terms of: a) luminance, and b) red-green chrominance signals; adapted from [117].

Subjective perception of luminance contrast in broadband images is a non-linear process [118] that compares local variations in luminance with the surrounding luminance. Adaptations of human vision to luminance and chrominance are also affected by local signal

intensities and the viewing conditions [119], [120]. They can lead to simultaneous contrast phenomena [1, p. 96], [38] that biases both contrast and colour perception [1, p. 96].

Weber contrast,  $C_{Weber}$ , is the simplest contrast measure (Equation 2.1).  $\Delta L$  is the difference between the luminance of a single small stimulus and the uniform background luminance, L[1, p. 338], [118]. Contrast perception is shown to relate to relative changes in luminance, not absolute changes [121, Ch. 8.3]. The perceptual relevance of Weber contrast decreases, however, when stimuli increase in size or number across the visual field [118], making it a poor measure of pictorial image contrast.

$$C_{Weber} = \frac{\Delta L}{L} \tag{2.1}$$

Michelson contrast,  $C_{Michelson}$ , describes suitably the contrast (or modulation) of predictable periodic functions such as sine-waves where the distribution of higher and lower luminances are of equal proportional area (Equation 2.2) [6, p. 212], [118].  $L_{Max}$  and  $L_{Min}$  are the maximum and minimum stimulus luminances, respectively. It is an unsuitable measure for pictorial scene contrast because all other signal intensities are unaccounted for [113], [122].

$$C_{Michelson} = \frac{L_{Max} - L_{Min}}{L_{Max} + L_{Min}}$$
(2.2)

Root mean square (RMS) contrast,  $C_{RMS}$ , accounts for all signal intensities (Equation 2.3). It is thus a more appropriate measure of pictorial image contrast and is employed widely in visual and image quality research for its simplicity. For an image of dimensions  $M \times N$ ,  $L_{ij}$ is the luminance of the *i*<sup>th</sup> and *j*<sup>th</sup> pixel normalised to 0 < L < 1.  $\overline{L}$  is the mean luminance. The RMS contrast spectrum, or simply the contrast spectrum, refers to the RMS contrast of isolated image spatial frequency bands versus their spatial frequency. It is used in the computation of various visual models defined in Section 2.5.

$$C_{RMS} = \sqrt{\frac{1}{MN - 1} \sum_{i=1}^{M} \sum_{j=1}^{N} (L_{ij} - \bar{L})^2}$$
(2.3)

RMS contrast has two limitations as a perceptual contrast measure for pictorial images. It applies equal weighting to all spatial distributions of image contrasts [113]. Also, the spatial frequency of image contrasts is unaccounted for [118], which affects their perceived contrast

magnitude [123], [124]. Local Band-Limited (LBL) contrast addresses these limitations by accounting for HVS quasi-local processing and is computed as follows [118], [123]. Images are filtered to yield several single-octave spatial frequency bands. The LBL contrast,  $C_{LBL}(x, y)$ , for each band, a(x,y), at pixel coordinate (x, y), is given by Equation 2.4 [118], [123]. l(x,y), is a local luminance mean image containing the energy of the image at all frequencies below the band in question. Despite the intricacies of contrast perception in pictorial scenes, Triantaphillidou *et al.* [125] found the mean of the RMS contrast correlated well with the mean of the integral of the LBL contrast, across a large number of natural scene images, at relevant spatial frequencies.

$$C_{LBL}(x,y) = \frac{a(x,y)}{l(x,y)}, \quad where \ l(x,y) > 0$$
 (2.4)

Tone reproduction is the most critical component of image quality and fidelity and influences perceived sharpness, visual resolution and colour significantly [1, p. 377]. It is defined objectively as the relationship between the intensities and intensity differences of a given scene and any reproductions of that scene [38]. Subjectively, tone reproduction refers to the observer's impression of these characteristics and relates to perceptions of scene contrast, lightness or brightness [1, p. 377]. Brightness is defined as the degree to which a signal appears to display more (or less) light [1, p. 78]. Lightness is a relative form of brightness, where the brightness of a given signal is judged relative to the brightness of a white signal [1, p. 78]. Increasing global luminance contrast [126], [127] or the contrast ratio [128] can increase perceived sharpness. It can also raise perceived quality provided that the signal-to-noise ratio (SNR) does not decrease and clipping or display non-linearity does not occur [126].

Imaging system tone reproduction is characterised by tone transfer functions concerning input-to-output intensity. ISO 14524 [129] defines the Opto-Electronic Conversion Function (OECF) that is the tone transfer function for digital image capture systems. Input luminances are plotted against output pixel values, as measured from a TE264 or equivalent chart [130] (Figure 2.12). Plotting measurements of the reverse process characterises the Electro-Optical Conversion Function (EOCF) of a display. The tone reproduction of a capture-display imaging chain is obtained by cascading the OECF, EOCF, and the tone transfer functions of relevant ISP algorithms.

Gamma is a simple measure of global contrast reproduction. It is calculated as the gradient of the relative intensity transfer function of the system (or component) when this function is expressed in a log-log space, or as the exponent of the same transfer function expressed in a linear-linear space [1, p. 378]. Tonal distortion can be prevented by correcting for the gamma of individual components or the imaging chain. The gamma of an imaging chain is given by the product of the gamma of its components. It is set commonly to between 1 and 1.5 for normal and dark viewing conditions, respectively, to achieve optimal subjective tone reproduction [1, p. 379] where lightness is perceived as linear [9].

Gain Offset Gamma (GOG) models [131] describe system tone transfer functions. For example, the display EOCF of the popular standardised RGB (sRGB) [132] colour space can be approximated by Equation 2.5 where the normalised output luminance and digital input count are  $V_{sRGB}$  and  $V'_{sRGB}$ , respectively, gamma,  $\gamma$ , is 2.2, gain,  $\alpha$ , is 1, offset,  $\beta$ , is 0. The white point of the reference display is D65 with CIE xy chromaticity values of 0.3127 and 0.3290, respectively [132, p. 9] and luminance level of 80 cd/m<sup>2</sup>.

$$V_{sRGB} = \alpha (V'_{sRGB} + \beta)^{\gamma}$$
(2.5)

### **2.3.2 Sharpness and Resolution**

Sharpness is a subjective attribute that relates to the visual definition of image edges and texture [1, p. 347]. Objective sharpness is defined as the capability of a system to reproduce object boundaries and edges acutely [16]. This depends on its ability to reproduce contrast, especially at higher spatial frequencies [1, p. 443]. The sharpness of a given image is affected more by the amplitude of its edges/structure than the number of edges or density of the structure [133]. Consequently, low depth of field images can still be perceived as sharp. Blur is the inverse of sharpness.

Image sharpness influences overall impressions of image quality significantly [2, p. 2], [16], [56, Sec. 4.3], [111], [134], [135]. Sharpness and quality correlate well without the presence of image noise [136], but this relationship can break down under certain conditions [52]. The perception of image quality with respect to changes in sharpness is also generally more scene-dependent [60], [137] than the perception of sharpness itself [138], [139]. Image sharpening generally improves perceived image quality, but over-sharpening reduces quality and naturalness [14], [138] in a scene-dependent fashion [60]. Moderate increases in global

contrast and even noise can increase sharpness under some conditions [140]. Evidence of sharpening and over-sharpening are indicated by ISO 12233 [23] slanted edge MTFs reaching above 1 and 1.4, respectively [141].

Resolution is an objective attribute relating to the capability of a system to reproduce fine detail [142]. Visual resolution is a subjective attribute concerning the perceived rendering of detail. Resolution is the most significant factor affecting sharpness [140]. The most critical spatial frequencies regarding sharpness perception occur approximately two octaves above the peak of the standard CSF [14], [139] (refer to Section 2.5 for further information). Thus, reproduction of higher perceivable frequencies (or microcontrast) are important [1, p. 443], [138], [143]. Other research stresses the influence of signals at all visible frequencies [14], [138], [143] or lower frequency structural signals [144] to sharpness.

Early resolution measures are given in line pairs/mm and measured from test charts consisting of equally spaced sharp-edged bars of increasing frequency, such as the USAF 1951 Resolution Test Chart [145]. The spatial limit of resolution is defined by the distance between the centre of two edges when the peak of the Airy disk from one edge coincides with the first minimum of the Airy disk of the other [146]. The reciprocal of this distance is the resolving power [1, p. 35]. Both measures correlate with sharpness to a limited extent, as demonstrated by Figure 2.8 [147]; they are not employed in current IQMs.



Figure 2.8 Heynacher & Kober's [147] resolving power versus sharpness example: (a) has higher resolving power, (b) has higher contrast at mid-high frequencies and is perceived to be sharper than (a) at most viewing distances.

More comprehensive and perceptually relevant measures characterise the transfer of signal modulation (contrast) by systems, with respect to all relevant spatial frequencies. When a system satisfies the requirements of linear system theory, given by Equations A1 to A4, Dainty and Shaw [6, pp. 192–207] state that its signal transfer is defined fully by its Point Spread Function (PSF). Thus, the PSF and the related Line Spread Function (LSF) and Edge Spread Function (ESF) are fundamental to spatial image quality modelling [52]. They are derived by Equations 2.6 to 2.18.

To derive the PSF, the relationship between the input, f(x, y), and output, g(x, y), of an imaging system, S{}, is specified first [6, p. 205]:

$$g(x, y) = S\{f(x, y)\}$$
(2.6)

The Dirac delta function,  $\delta(u)$  [6, p. 192], describes a theoretical point intensity source of infinitesimal width and unit area. Equation 2.7 [6, p. 192] describes its sifting property.

$$\int_{-\infty}^{\infty} \delta(u) f(a-u) du = \int_{-\infty}^{\infty} \delta(a-u) f(u) du = f(a)$$
where  $\delta(u) = 0$  for  $u \neq 0$ ; and  $\int_{-\infty}^{\infty} \delta(u) du = 1$ 
(2.7)

Considering Equation 2.7, the input, f(x, y), and output, g(x, y), of Equation 2.6 can be expressed as a linear combination of weighted and displaced Dirac functions [6, p. 206].

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, y_1) \,\delta(x - x_1) \,\delta(y - y_1) \,dx_1 \,dy_1$$
(2.8)

$$g(x,y) = S\left\{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, y_1) \,\delta(x - x_1) \,\delta(y - y_1) \,dx_1 \,dy_1\right\}$$
(2.9)

Provided that the system is linear and homogeneous (i.e. Equation A3 is satisfied) the output, g(x, y), can be re-expressed with the operator, S { }, inside the integral [6, p. 206]. Thus, the system is described as acting on the Dirac functions, S { $\delta(x - x_1) \delta(y - y_1)$ }, and the input,  $f(x_1, y_1)$ , is applied as a weighting function.

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, y_1) \, S\{\delta(x - x_1) \, \delta(y - y_1)\} \, dx_1 \, dy_1$$
(2.10)

The response of the system at coordinates (x, y) to the Dirac function at coordinates  $(x_1, y_1)$  is the PSF,  $h(x, y; x_1, y_1)$  [6, p. 207]:

$$h(x, y; x_1, y_1) = S\{\delta(x - x_1) \,\delta(y - y_1)\}$$
(2.11)

Substituting the PSF,  $h(x, y; x_1, y_1)$ , in place of  $S\{\delta(x - x_1)\delta(y - y_1)\}$  in Equation 2.10, expresses the system fully by the PSF at a given spatial location [6, p. 207]:

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, y_1) h(x, y; x_1, y_1) dx_1 dy_1$$
(2.12)

Provided that the system is stationary (i.e. Equation A4 is satisfied) the output can be expressed as [6, p. 207]:

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, y_1) h(x - x_1, y - y_1) dx_1 dy_1$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x - x_1, y - y_1) h(x_1, y_1) dx_1 dy_1$$
(2.13)

Equation 2.13 is the imaging equation. It states that the output image can be reproduced by summation of the scaled PSFs across the surface of the image. This is equivalent to convolving the input signal, f(x, y), with the PSF, h(x, y), [1, p. 127], [6, p. 207]:

$$g(x,y) = f(x,y) \otimes h(x,y)$$
(2.14)

The LSF is defined by Dainty and Shaw [6, p. 209] as the response of the system to an ideal, infinitesimally thin line input, represented by a single delta function,  $\delta(x_1)$ , on the  $y_1$  axis. Considering the convolutional relationship in Equation 2.14, the LSF, l(x), is given below:

$$l(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x - x_1) h(x_1, y_1) dx_1 dy_1$$
(2.15)

The sifting property of the delta function allows this to be rewritten below [6, p. 209]. Thus, integrating the PSF with respect to one variable yields the LSF.

$$l(x) = \int_{-\infty}^{\infty} h(x, y_1) \, dy_1 \tag{2.16}$$

The ESF, e(x), is defined using the imaging equation, as the response of the system to an ideal edge signal, f(x), of infinitely high gradient [6, p. 210]. Note that integrating the LSF with respect to  $x_1$  yields the ESF.

$$e(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x - x_1) h(x_1, y_1) dx_1 dy_1 = \int_{-x}^{\infty} l(x_1) dx_1,$$
(2.17)  
where  $f(x) = 0$  for  $x < 0$ , and  $f(x) = 1$  for  $x \ge 0$ 

Thus, differentiating the ESF yields the LSF [6, p. 211]. This relationship is useful since practical measurement of the ESF is more straightforward and less error-prone than the PSF or LSF. This is because producing a physical target with an infinitely small point or thin line is impossible.

$$l(x) = \frac{d}{dx}(e(x)) \tag{2.18}$$

The MTF is the standard objective measure for imaging system resolution and sharpness. It characterises the transfer of modulation (contrast) signals by an imaging system, or its components, with respect to spatial frequency. The MTF provides useful information for the prediction of perceived imaging system resolution, contrast, and sharpness. It is implemented in most spatial capture system IQMs. The popular MTF50 objective sharpness metric and the MTF10 metric for the limit of resolution are given by the lowest frequencies where 50% and 10% modulation transfer occur, respectively; MTF10 relates to the Rayleigh Criterion [146]. Both these objective system performance metrics have limitations since they do not account for the reproduction of all relevant frequencies; neither accounts for the HVS.

Dainty and Shaw [6, pp. 211–213] define the MTF and the related Optical Transfer Function (OTF) with respect to a theoretical sinusoidal input signal, f(x), where u is spatial frequency and  $\varepsilon$  is phase. The amplitude, b, and mean (DC) level, a, of the sinusoid are given by the numerator and denominator of Equation 2.2, respectively.

$$f(x) = a + b\cos(2\pi ux + \varepsilon)$$
(2.19)

The output of the imaging system, g(x), with respect to the sinusoid is given by substituting the full description of f(x) into the imaging equation, given by Equation 2.13 [6, p. 212].

$$g(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (a + b \cos(2\pi u(x - x_1) + \varepsilon)) h(x_1, y_1) dx_1 dy_1$$
(2.20)

Integrating with respect to the  $y_1$  dimension expresses the output, g(x), in terms of the LSF of the system,  $l(x_1)$  [6, p. 212].

$$g(x) = \int_{-\infty}^{\infty} l(x_1)(a+b\cos(2\pi u(x-x_1)+\varepsilon)) \, dx_1$$
 (2.21)

If the LSF is normalised to unit area and Equation 2.21 is expanded according to the trigonometric identity  $\cos(A - B)$ , g(x) may be re-expressed as [6, p. 212]:

$$g(x) = a + b \cos (2\pi ux + \varepsilon) \int_{-\infty}^{\infty} l(x_1) \cos(2\pi ux_1) dx_1 + b \sin (2\pi ux + \varepsilon) \int_{-\infty}^{\infty} l(x_1) \sin(2\pi ux_1) dx_1$$
(2.22)

This can be expressed in terms of the real, C(u), and imaginary parts, -S(u), of the OTF (Equation 2.23) [6, p. 212]. The OTF, denoted by OTF(u), is thus given by the Fourier transform of the LSF,  $l(x_1)$ , and is defined by Equation 2.24 [6, p. 212].

$$g(x) = a + b\cos(2\pi ux + \varepsilon)C(u) + b\sin(2\pi ux + \varepsilon)S(u), \qquad (2.23)$$

where

$$OTF(u) = C(u) - i S(u) = \int_{-\infty}^{\infty} l(x_1) e^{-2\pi i u x_1} dx_1$$
(2.24)

If the modulus and phase of the OTF(u) are defined as MTF(u) and  $\phi(u)$ , respectively, then Equation 2.23 can be reduced, as follows [6, p. 212]:

$$g(x) = a + MTF(u) b \cos(2\pi ux + \varepsilon + \phi(u))$$
(2.25)

Comparing Equations 2.25 and 2.19 shows that for a linear and stationary system (as defined in Appendix A) the output, g(x), is a sinusoid of the same frequency as the input. The output modulation is defined by  $MTF(u)\frac{b}{a}$  [6, p. 213].

Thus, the MTF can either be defined by:

Equation 2.26 as the ratio of the output, M(u)<sub>output</sub>, to the input modulation, M(u)<sub>input</sub>, of sinusoidal input signals, where modulation is calculated using Equation 2.2 [6, p. 213];

2) the modulus of the Fourier transform of the LSF, l(x1), as defined by Equation 2.27
[1, p. 133], [6, p. 213].

$$MTF(u) = \frac{M(u)_{output}}{M(u)_{input}}$$
(2.26)

$$MTF(u) = \left| \int_{-\infty}^{\infty} l(x_1) e^{-2\pi i u x_1} dx_1 \right|$$
(2.27)

Cascading the MTFs of *n* components according to Equation 2.28 yields the MTF of a full imaging chain,  $MTF(u)_{chain}$ , [1, p. 133].

$$MTF(u)_{chain} = MTF(u)_i \times MTF(u)_{i+1} \times MTF(u)_{i+2} \dots \times MTF(u)_n$$
(2.28)





Figure 2.9 Relationships between the various spread functions and transfer functions that describe system signal transfer. u and v are spatial frequencies with respect to the x and y dimensions of the Point Spread Function (PSF), respectively.  $\omega$  is spatial frequency with respect to the x dimension of the Line Spread Function (LSF) or Edge Spread Function (ESF). Adapted from [1, p. 133].

There are three traditional methods of deriving the MTF. Each employs a different input signal. Firstly, the ESF is measured from an appropriate "ideal" edge signal and differentiated to yield the LSF (Equation 2.18) [148]–[150]. The MTF is then derived using Equation 2.27. The ESF is traditionally measured from a trace of pixels perpendicular to an imaged edge that is aligned with the pixel grid [2, p. 20]. The ISO 12233 Spatial Frequency Response (SFR) method [23], [141] is more popular, however. It uses a slanted edge (typically 5°, as shown in Figure 2.10(a)) which enables supersampling, greatly reducing aliasing. The frequency content of the test chart is not corrected for, but it is assumed to be

constant and equal to 1 at the spatial frequencies of interest. Thus, the measure is often referred to as SFR, not MTF. It describes sharpness well in non-linear systems [146] and is implemented in the Edge Sharpness Metric of the IEEE P1858 Camera Phone Image Quality (CPIQ) standard [22, p. 18]. It is sensitive to noise since relevant signals are locally concentrated around each edge [17]. Edge signals are generally sharpened more and denoised less than natural scene signals by non-linear ISP, as discussed in Section 2.2.1.



Figure 2.10 Test charts used to derive measurements of capture system signal transfer: (a) Imatest<sup>TM</sup> ISO 12233 [23] Slanted Edge Spatial Frequency Response (E-SFR) test chart [24]. (b) Image Engineering<sup>TM</sup> TE265 Dead Leaves test chart [151]. (c) Imatest<sup>TM</sup> Siemens Star test chart [26]. (d) Imatest<sup>TM</sup> Log Frequency-Contrast test chart [152].

Alternatively, the MTF is measured from sinusoidal input signals using Equation 2.26, by comparing output to input modulation, M(u), where both are given by Equation 2.2. Measurements can be derived from several sine-wave patches of single frequency [150], [153]–[155] (e.g. Figure 1.6(a)), the ISO 12233 Siemens Star Chart [141], [142] (Figure 2.10(c)) or single sinusoids of varying frequency [2, p. 27], [141], [152] (Figure 2.10(d)). MTFs measured from sinusoidal signals describe system limiting resolution well since they respond less to sharpening [146].

Finally, following Equation 2.38, the MTF can be derived by comparing output and input one-dimensional (1D) luminance power spectra, PS(u), of a white noise signal [150] in Equation 2.29, where PS(u) is given by the rotational average of PS(u, v) in Equation 2.30.

$$PS(u)_{output} = MTF(u)^2 \cdot PS(u)_{input}$$
(2.29)

The 2D luminance power spectrum or power spectral density (PSD), PS(u, v), for discrete systems is given below [29]. I(x, y) is a luminance image of dimensions  $M \times N$ . u and v are spatial frequencies with respect to x and y. In this thesis the term power spectrum refers to the spectrum of the signal. The term NPS refers specifically to the power spectrum of noise, defined in Equation 2.36.

$$PS(u,v) = \left| \sum_{x=\frac{M}{2}+1}^{M/2} \sum_{y=\frac{N}{2}+1}^{N/2} I(x,y) e^{-2\pi i (ux+vy)} \right|^2$$
(2.30)

For linear systems, the MTF is a unique property of the system, in theory, and deriving it using any of the above measurement methods from edges, sinusoidal signals or noise should fully specify the system. Thus, for an idealised, noiseless, linear and stationary system, measurements delivered by each of these methods should converge, as described by F(s) in Figure 1.4(a).

However, in practice, digital imaging systems are non-stationary, and the MTF varies depending on whether the target signal is in or out of phase with the sampling array [156]. MTFs measured by each of the above methods also produce different levels of measurement error (i.e. variation error and bias) [2, p. 198], [41, p. 22], [157], [158].

These errors result from:

- 1) inaccurate specification of the input (test chart) signal;
- 2) inaccurate measurement of the output signal from the system;
- 3) influence of imaging system noise;
- "measurement noise" resulting from processing of input (1) and output (2) signals when computing the MTF (e.g. discrete Fourier transform (DFT) computation).

Consequently, although linear digital systems can be said to have a unique MTF, it cannot be obtained in practice with a single measurement. Averaging over several measurements can result in some convergence toward it by mitigating the effect of measurement noise [157]. Nevertheless, strictly speaking, each of the above methods delivers a slightly different MTF in practice for such systems, none of which are capable of fully specifying the system.

More importantly, when measurements are derived from systems implementing non-linear content-aware denoising, sharpening and tone-mapping ISP, as well as lossy compression, the differences between MTFs obtained from each of the above methods are compounded significantly [146], [159] (as demonstrated in Figure 1.7, and illustrated by F(s) in Figure 1.4(b)). This is because these ISP algorithms react differently to input edges, sinusoids and random noise signals (see Section 2.2.1 for further information). This causes local-content-dependent variations in system signal transfer (and noise) that render the MTF (and NPS) of the system to be *target-dependent* (i.e. dependent upon the signal content of the input test chart). Note that in this thesis, target-dependency is referred to by the related, broader term of scene-dependency. Linearising the signal using look-up tables (LUT) before computing the MTF reduces errors resulting specifically from non-linear system tone reproduction [23, p. 6], [160] but does not account for the mentioned local spatial scene-dependency.

Moreover, since edges, sinusoids and noise signals have limited relation to the average pictorial scene signal, their interaction with non-linear ISP algorithms means that the abovementioned measurements consistently under-estimate or over-estimate the average real-world signal transfer of the system (i.e. they are biased);  $\overline{F}(s)$  in Figure 1.4(b) defines the average real-world signal transfer of such systems. The mentioned measurement methods using edges, sinusoids and noise signals also do not characterise perceived texture loss effectively [17]. The latter is a primary driver of overall perceived quality in today's non-linear capture systems [3]. These limitations motivate the following suggestion: *if the MTF aims to describe the real-world signal transfer performance of a system that implements non-linear content-aware processing, then it should be derived either from a test chart that represents the signal properties of pictorial scenes, or better yet, from images of scenes.* This suggestion only applies, however, if deriving the MTF in such a way does not result in significantly higher levels of measurement error than current MTF measurement methods.

It is now common for the dead leaves test chart [16], [17] (shown in Figure 2.10(b)) to be employed when characterising non-linear capture system signal transfer. This test chart

relates more closely to natural scene signals than edges, sinusoidal signals and noise. It simulates natural scene textures using a stochastic model. Circles of random density are overlaid, reproducing occlusion phenomena and varying contrast levels. It also replicates the average power spectrum of natural scenes, among other natural scene statistics (NSS) [17]. Other useful properties are its shift, scale and rotational invariance. This test chart is employed when measuring the MTF with the intention of triggering non-linear image processing at 'natural' levels (i.e. the same level as when the system processes an "average pictorial scene"). The resultant MTFs are more indicative of the average real-world performance of non-linear systems than measures derived from edges, sinusoidal signals and noise. They also characterise more effectively the texture loss in such systems. There are three dead leaves MTF implementations, summarised below.

The original dead leaves measurement implementation [17] employs Equation 2.29 to calculate the MTF. Since system noise is unaccounted for,  $PS(u)_{output}$  increases erroneously as the power of the noise increases, biasing the MTF.

The *direct dead leaves measurement implementation* [19] is defined in Equation 2.31. It attempts to remove the mentioned bias by subtracting the NPS of the system,  $NPS_{output}(u)$ , from the output power spectrum,  $PS_{output}(u)$ .  $PS_{Input}(u)$  is the input power spectrum, u is spatial frequency, and the rotational average of PS(u, v) in Equation 2.30 yields PS(u). The NPS is measured using a uniform-tone patch with limitations discussed in Section 2.3.3. Error in the NPS is carried into the MTF. This dead leaves measurement implementation is employed by the texture blur metric of the IEEE P1858 CPIQ standard [22, p. 53].

$$MTF(u) = \sqrt{\frac{PS_{output}(u) - NPS_{output}(u)}{PS_{Input}(u)}}$$
(2.31)

The recently standardised *intrinsic dead leaves measurement implementation* [20] compares signal transfer with respect to the cross-spectrum of dead leaves signals, which contains both amplitude and phase information. This measurement implementation is capable of distinguishing between real image structures and certain image processing artefacts and delivers consistent measurements for systems that generate significant noise. It characterises the performance of the lens and imager only and is virtually unaffected by reversible (linear) processing such as contrast stretching or sharpening, provided that clipping or information loss does not occur [161]. The intrinsic implementation is less relevant than the direct

implementation to the aims of this thesis. This is because reversible image processing affects the image quality and perceived sharpness of many capture systems (including non-linear systems that implement a combination of linear and non-linear ISP algorithms). Thus, any image quality metric that aims to account for system scene-dependency should account for the effect of both reversible and non-linear image processing on system signal transfer. The intrinsic implementation is not employed by the IEEE P1858 CPIQ standard [22].

The various dead leaves implementations provide convenient approximations of the average real-world signal transfer characteristics of systems implementing non-linear content-aware processing. No prior art has investigated, however, whether the dead leaves test chart triggers non-linear content-aware processing at the same levels as the "average natural scene" and thus derives the average real-world MTF of such systems accurately and appropriately. This assumption may not be achieved in practice since the mathematically-generated dead leaves chart has limited relation to the diverse and complex spatial signals in real pictorial scenes. Further, no MTF measured from a single printed test chart can account fully for scene-dependent variations in the signal transfer of non-linear systems. This would require MTFs to be measured with respect to signals from images of real scenes, as suggested, to trigger non-linear content-aware processing appropriately. Branca *et al.* [7] were the first to achieve this by revising the dead leaves method. Their methodology is defined, evaluated critically, and extended by the scene-and-process-dependent MTF (SPD-MTF) framework that is proposed in Chapter 5 of this thesis.

#### 2.3.3 Noise

Noise is defined, objectively, as random or non-random spurious image information [1, p. 346], [60]. It is perceived as a particular type of texture [16] and produces sensations of the corresponding subjective attribute of noisiness, which is detrimental to image quality generally [1, p. 433], [46, p. 220].

Scene susceptibility to noisiness relates to the amount of scene texture [58], among other factors, as indicated by Figure 2.5. The perceived impact of physical noise on image quality is also scene-dependent, where higher quality images are most affected [111], [112], [137]. Adding limited levels of noise to images of scenes can increase their perceived sharpness under some conditions [162], [163]. This is either because observers confuse noise with

memory representations of real scene textures [163], or they associate the spurious high frequencies with fine detail only present in images from sharper, higher-quality systems [33].

Noise exists in the output of all imaging system components and processes. Sources of physical noise at all stages of the image capture, processing and display chain are described below in the approximate order that they appear. Visual noise is also experienced by the observer, dependent upon the image presented and viewing conditions. Visual noise models are presented in Section 2.5.

For an ideal detector, the output noise is limited to noise in the input signal. For real detectors, noise is added to the input signal that already contains noise. Noise in the input signal is referred to as Poisson exposure noise, photon noise, or shot noise. It is caused by discrete local variations in flux in the radiant intensity image due to the quantum nature of light [2, p. 48] (Figure 2.11(a)). The number of photons arriving at the active area of each pixel on the sensor is random and is modelled by the Poisson distribution. The SNR of Poisson noise relates to the number of exposure quanta, q [1, p. 442], [6, p. 153], [164, p. 278]; thus, even noise in a hypothetical ideal linear system is scene-dependent. When q is high the SNR increases, and Poisson noise is less perceptible. At low light levels, however, it is common for Poisson noise to dominate over most sources of noise added by the system. The exception is read noise, which can range from 3 electrons to 8 electrons at low and high sensor temperatures, respectively, significantly affecting quality at low light levels [165] (Figure 2.11(b)).

$$SNR = \frac{q}{\sqrt{q}} = \sqrt{q} \tag{2.32}$$

Photoelectric noise and electronic noise are introduced when the radiant intensity image is converted to an electrical signal and processed by capture system components, respectively. Jenkin [166, pp. 433, 442] describes the following sources of this noise. Fixed pattern noise (FPN) is consistent between frames and is caused by imperfections in the CFA elements, including dark/dead pixels that are insensitive to light, hot pixels that saturate too quickly, or dust. Dark signal non-uniformity (DSNU), or dark current noise, is introduced when the number of thermally-generated electrons varies from pixel to pixel (Figure 2.11(d)). It relates to the exposure duration and temperature of the sensor. It exists in the output signal irrespective of whether there is any input signal and can be mitigated by cooling. Photoresponse non-uniformity (PRNU) results from minor differences in pixel sensitivity

due to variations in their pixel well size/area or the properties of the substrate (Figure 2.11(c)). Quantisation noise is introduced when the continuous electrical signal is binned into discrete pixel values. Amplification noise consists of white noise and flicker noise. Both are dependent on the sampling rate. Further, reset noise results from slight variations in the charge stored in each photoelement after they have been reset to the reference voltage after each exposure. Onboard capture system ISP and further imaging chain components and processes alter the characteristics of noise from all the above sources and can add further noise to the displayed image [19]. The ISP algorithms with the greatest effect upon noise include demosaicing, denoising, sharpening, tone-mapping and compression.



(a) Photon noise,  $20 \text{ cd/m}^2$ 



(b) Read noise (15 electrons), 80 cd/m<sup>2</sup>



Figure 2.11 Simulations by Farrell & Wandell [167] of: (a) temporal photon noise, and (b) read noise, as well as fixed-pattern noise caused by (c) photoresponse non-uniformity (PRNU) and (d) dark signal non-uniformity (DSNU) in image capture systems.

The various objective measures of image noise will now be defined and discussed. The standard deviation, or RMS noise, is the most common image noise measure but accounts for the amplitude of spurious image information only [41, p. 28]. A uniform neutral grey patch is first captured under uniform illumination from an appropriate target such as Figure 2.12. The RMS noise is then calculated using Equation 2.3 where  $L_{ij}$  is the

luminance/reflectance of each pixel in the region  $(M \times N)$  and  $\overline{L}$  is the sample mean. Imaging system noise is characterised at different exposures by plotting RMS noise measurements from patches of various luminances vs the patch luminance.



Figure 2.12 Image Engineering<sup>TM</sup> TE264 test chart [130] for noise measurements according to ISO 15739 [168]. The chart contains 20 uniform-tone patches.

The RMS noise measure describes stochastic noise adequately, which has a grainy appearance comparable to Figure 2.12(a). However, the combined effect of the various sources of capture system noise and non-linear content-aware ISP algorithms such as denoising or sharpening often results in noise that is visibly textured [41, p. 32]. Such noise can relate to characteristics of the input signal as indicated by Figure 2.3. Figure 2.13 shows that the RMS noise measure is incapable of accounting for such spatial variations.



Figure 2.13 Noise with identical mean signal and standard deviation (i.e. the same level of root mean square (RMS) noise) but varying correlation [41, p. 32]: (a) low two-dimensional (2D) covariance, (b) high 2D covariance, (c) low vertical covariance and high horizontal covariance.

Measures that account for both the spatial characteristics and amplitude of noise are the Autocovariance Function (ACF), Autocorrelation Function, and the NPS (or Weiner spectrum). The ACF describes the spatial relationship (covariance) between the intensity of each pixel in terms of their separation [41, p. 31]. Noise with a grainy appearance has lower covariance than noise with a patterned structure, as demonstrated by Figure 2.13. Burns [41, p. 31] defines the ACF for digital systems below.  $d_{ij}$  is the luminance/reflectance of each pixel in the region ( $M \times N$ ) of a captured uniform patch.  $m_d$  is the sample mean.

$$A_{k,l} = \frac{1}{(MN-1)} \sum_{i=1}^{M-k} \sum_{j=1}^{N-l} (d_{i,j} - m_d)(d_{i+k,j+l} - m_d)$$
(2.33)

Dividing the ACF,  $A_{k,l}$ , by the variance,  $\sigma^2$ , yields the autocorrelation function of the system,  $C'_{k,l}$ , that is equal to 1 at the origin [41, p. 31].

$$C'_{k,l} = \frac{A_{k,l}}{\sigma^2} \tag{2.34}$$

When the requirements of linear system theory are satisfied (Appendix A), Dainty and Shaw [6, p. 222] state that convolving the original (input) autocorrelation function,  $C_{k,l}$ , twice with the PSF, h(x, y), yields the measured (output) autocorrelation function,  $C'_{k,l}$ .

$$C'_{k,l} = C_{k,l} \circledast h(-x, -y) \circledast h(x, y)$$
(2.35)

The NPS is the standard measure of imaging system noise [2, p. 2], [158]. It defines the power of noise with respect to spatial frequency. It holds its foundation in linear system and communications theory [6, Sec. 6.3] and thus requires Equations A1 to A4 to be satisfied. It is implemented as a noise parameter by many multivariate IQMs for capturing systems [12], [169] that cascade it with MTF and CSF measures. Welch [41, p. 34], [170] defines the NPS of a digital system below.  $\langle ... \rangle_B$  is the average over *B* blocks, I(x, y) is the luminance at pixel coordinates (x, y) in the region  $(M \times N)$  of a captured uniform patch. *u* and *v* are spatial frequencies.  $\Delta x$  and  $\Delta y$  are sampling intervals with respect to *x* and *y*.

$$NPS(u,v) = \frac{1}{NM\Delta x\Delta y} \left\langle \left| \sum_{x=M/2+1}^{M/2} \sum_{y=N/2+1}^{N/2} I(x,y) e^{-2\pi i (ux+vy)} \right|^2 \right\rangle_B$$
(2.36)

The NPSs, NPS(u, v), of two components or processes denoted by the subscripts A and B are combined additively:

$$NPS_{A+B}(u,v) = NPS_A(u,v) + NPS_B(u,v)$$
(2.37)

The NPS and autocorrelation function are Fourier transform pairs according to the Weiner-Khintchin theorem [6, p. 222]. Thus, their relationship as image noise measures is comparable to the relationship between the MTF and PSF measures of signal transfer [6, p. 222]. If the Fourier transform of both sides of Equation 2.35 is taken, the measured (output) NPS, NPS'(u, v), is shown to be equal to the original (input) NPS, NPS(u, v), multiplied by the squared modulus of the OTF, OTF(u, v) [6, p. 223], or the square of the MTF, M(u, v). This relationship also applies to signal power spectra and is fundamental to MTF measurements from white noise and the dead leaves test chart, defined in Equations 2.29 and 2.31, respectively.

$$NPS'(u, v) = NPS(u, v)|OTF(u, v)|^{2} = NPS(u, v)M(u, v)^{2}$$
(2.38)

Each of the mentioned noise measures is derived generally using noise images, I(x, y), from imaged uniform-tone patches, where g(x, y) is the intensity of the captured patch, Equation 2.39. Obtaining noise images in this way is convenient, since the expected value of the captured patch,  $\bar{g}(x, y)$ , is approximately constant at all coordinates, provided that the patch is illuminated uniformly and lens shading correction is applied (or the patch is captured in sensor areas where lens shading is minimal).

$$I(x, y) = g(x, y) - \bar{g}(x, y)$$
(2.39)

Many IQMs employ noise measurements derived in this way. These metrics attempt to describe the perceived performance level of the system either with respect to a particular input scene or the "average pictorial scene" (i.e. concerning the average real-world performance of the system). For such metrics (and the measurements they are derived from) to be appropriate, it must be assumed that the noise in the captured patch represents the characteristics of noise introduced either to the scene in question, or the "average scene". This assumption is justified for linear systems, for which, even considering the slight scene-dependency in Poisson noise and other system noise, there is (within reason) an NPS that fully specifies the system. However, the assumption fails for systems implementing non-linear content-aware denoising and sharpening. For these systems, the structure and magnitude of noise is scene-dependent (and target-dependent) due to interactions between input scene (and test chart) content and the ISP algorithms (refer to Section 2.2.1 for more

information). Since uniform patches provide ideal input conditions for non-linear contentaware denoising algorithms, they are significantly less noisy than real scenes when captured by such systems, as indicated by Figure 2.3(d). Noise measures derived from uniform patch signals, therefore, underestimate the average real-world noise of such systems, as well as noise in a given captured scene. These inaccuracies are carried into IQM measurements and are compounded if non-linear content-aware sharpening is also applied (Section 2.2.1).

Consequently, as with the MTF, it is suggested that more suitable NPS measurements should either be derived directly from images of pictorial scenes, or from test charts that replicate the signal properties of scenes, provided this does not significantly increase measurement error. In this thesis, the scene-and-process-dependent NPS (SPD-NPS) framework, proposed in Chapter 4, is used to deliver such measurements. The various SPD-NPS measures proposed in this thesis are either measured from images of pictorial scenes, or dead leaves signals that model the "average scene spectrum". Thus, they account more appropriately than the uniform patch NPS for the effect of non-linear content-aware ISP algorithms.

## 2.4 Signal-to-Noise Measures

The relative intensity of image signals versus noise affects the capability of the HVS to detect, discriminate and understand the content of a given image. Thus, objective and subjective image quality has been described as a signal-to-noise-based problem for decades. In 1948, Shannon [171] founded the field of information theory. This defined the general signal-to-noise relationship demonstrated in numerous applications of communication as the Channel Capacity, *C*, given by Equation 2.40 [171, p. 47]. When applied to imaging systems, *S* and *N* are the signal and noise energy and *W* is the channel bandwidth, corresponding to sharpness [172].

$$C = W \log_2\left(\frac{S}{N} + 1\right) \tag{2.40}$$

Schade [43] applied Shannon's approach to imaging systems development, resulting in Equation 2.41 [173, p. 631] that expresses the photographic Information Capacity, c, where  $S(u_x, u_y)$  and  $N(u_x, u_y)$  are 2D signal and noise power spectra, respectively, which can be computed using Equations 3.5 and 3.6, respectively for analog systems;  $u_x$  and  $u_y$  are spatial frequency. This equation is at the foundation of Töpfer and Jacobson's *Perceived* 

Information Capacity (PIC) [169] image quality metric that is defined in Equation 3.3.

$$c = \frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} \log_2 \left( \frac{S(u_x, u_y)}{N(u_x, u_y)} + 1 \right) du_x \, du_y \tag{2.41}$$

Higgins [136] expresses imaging system information capacity, c, in a simpler form, below, which is core to the *Effective Pictorial Information Capacity (EPIC)* metric that is defined in Section 3.1.1. The number of independent levels capable of being reproduced at each pixel and the number of pixels in the image are represented by m and n, respectively.

$$c = n \, \log_2 m \tag{2.42}$$

Simple, global SNR measures also correlate to some extent with perceived noise intensity and image quality. The SNR can be expressed as the reciprocal of the coefficient of variation, as shown in Equation 2.43, where  $\mu_{sig}$  is the expected value or mean of the signal and  $\sigma_{bg}$  is the standard deviation of the noise or background. However, the signal transfer characteristics of the system and the structure of the noise are unaccounted for and often vary with spatial frequency.

$$SNR = \frac{\mu_{sig}}{\sigma_{bg}} \tag{2.43}$$

The Detective Quantum Efficiency (DQE) is a more comprehensive signal-to-noise-based performance measure for capture systems. It is essentially a measure of "useful" quantum efficiency and describes how effectively the system reproduces information from a stream of quanta (photons), relative to an ideal photon-counting detector [6, p. 28]. The DQE is defined below.  $SNR_{out}(u)$  is the SNR of the system,  $SNR_{in}(u)$  is the input SNR (i.e. the SNR of an ideal detector [6, p. 153]) and u is spatial frequency. The DQE accounts for the MTF, NPS and tone transfer characteristics of a given system [174], thus providing all necessary information to describe its spatial image quality [175]. Systems with high DQE image small low-contrast objects effectively.

$$DQE(u) = \frac{SNR_{out}^2(u)}{SNR_{in}^2(u)}$$
(2.44)

For an ideal detector, the lower limit of noise is the quantum fluctuations [6, p. 152]. Equation 2.32 shows the SNR of Poisson noise is equal to the square root of the number of exposure quanta. Thus,  $SNR_{in}^2(u)$  is equal to the number of quanta,  $q_A$  [6, p. 153].

$$SNR_{in}^2(u) = q_A \tag{2.45}$$

Although the DQE is normalised conveniently to unity, Keelan [176] states that the NEQ is a more appropriate performance indicator for capture systems. The NEQ relates to the DQE, below [177].  $q_A$  is the number of exposure quanta.

$$DQE(u) = \frac{NEQ(u)}{q_A}$$
(2.46)

Thus, the NEQ is effectively the output SNR squared, with respect to spatial frequency, u.

$$NEQ(u) = DQE(u).SNR_{in}^{2}(u) = SNR_{out}^{2}(u)$$
(2.47)

Burns [177] defines the 1D NEQ below. MTF(u) is the MTF, NPS(u) the NPS and  $q_A$  the number of quanta per unit area.  $G_d$  is the mean level transfer gain,  $dq_A/do$ , where o is the output signal.

$$NEQ(u) = \frac{q_A^2 G_d^2 MTF^2(u)}{NPS(u)}$$
(2.48)

If the MTF and NPS of a given system are input referenced and computed in a linear space,  $G_d$  can be assumed to be 1. Thus Keelan [176], [178] defines the 2D NEQ below, where  $\mu$  is the mean linear signal. The 1D NEQ can be computed either by substituting the 1D MTF and NPS into this equation or as the rotational average of NEQ(u, v).

$$NEQ(u,v) = \frac{MTF^{2}(u,v)}{NPS(u,v)/\mu_{A}^{2}}$$
(2.49)

The NEQ describes the physical number of quanta counted by the system,  $q'_A$ , after accounting for noise, considering an ideal detector is capable of counting  $q_A$  quanta at the same exposure level [6, p. 156]. Therefore, it provides a more relevant comparison of systems at different exposure levels than the DQE [176]. The following investigations have

employed the NEQ in capture system sensor [176]–[178] and image quality modelling [178] successfully.

The NEQ has also long been used in signal detection theory, including in theoretical models of the ideal observer [179], [180] in simple idealised scenarios where the signal is known exactly (SKE) and the background is known exactly (BKE). One such model, the detectability index, d', is defined below for a signal with mean-normalised frequency spectrum,  $S(u_x, u_y)$ , in terms of the two-dimensional (2D) NEQ of the system,  $NEQ(u_x, u_y)$ [178], [181]. It has proven valuable in the design and optimisation of medical imaging equipment [181]. Models for more complex theoretical observers have been developed upon it. These models either account for correlated noise or are applicable in situations where target and background spectra are not known exactly [181].

$$d'^{2} = \int NEQ(u_{x}, u_{y}) S^{2}(u_{x}, u_{y}) du_{x}u_{y}$$
(2.50)

The NEQ, DQE, and photographic information capacity all are founded upon linear system theory. Consequently, when the requirements of Appendix A are not fulfilled, inaccuracies in the traditional MTF and NPS measures (discussed in Sections 2.3.2 and 2.3.3, respectively) are carried into each of these signal-to-noise measures.

## 2.5 Visual Models

The visual models employed by IQMs can be classified broadly as top-down or bottom-up approaches. Top-down approaches are hypothetical and can be characterised as black-boxes or as the combination of a set of black-box sub-processes. They often attempt to describe higher-level processes concerning image quality judgement as well as low-level vision. They are implemented in the *Computational IQM (CP-IQM)* genre that is of less interest to this project for reasons given in Section 3.1.4, where this genre of IQMs is also defined. The same section discusses critically the top-down visual models employed by the most relevant CP-IQM approaches to this thesis.

Bottom-up approaches are employed by all other IQM genres reviewed in this thesis. They model low-level visual processes in a logical and mechanistic step-by-step format with direct relation to psychophysical measurements and the neurophysiology of the HVS. The most commonly employed bottom-up spatial HVS model is the CSF, defined later in this section.

It is employed as a weighting function by most spatial IQMs for capturing systems to account for the perceptual significance of MTF and NPS system performance measurements.

A number of multivariate IQMs for capturing systems also employ bottom-up modelling of visual noise. Noteworthy examples [12], [169] implement Barten's [182] visual noise model, defined below. The IQM from the IEEE P1858 CPIQ standard [22, p. 72] implements a perceptually calibrated *visual noise attribute metric* for image quality loss due to noise. It is defined in Section 3.1.2 and also applies the CSF.

Visual noise is dependent on the viewing distance and the luminance and size of the presented image [182]. Barten's [182] model for the total power of internal noise in the eye,  $NPS_{Visual}(u)$ , vs spatial frequency in cycles/degree, u, is given below.  $\phi_{Ph}$  and  $\phi_{Neu}$  are the visual photon noise and neural noise, given by Equations 2.52 and 2.53, respectively.

$$NPS_{Visual}(u) = \phi_{Ph} + \phi_{Neu}(u) \tag{2.51}$$

Visual photon noise,  $\phi_{Ph}$ , is modelled as follows [182] where *L* is luminance, *d* is the pupil diameter of the eye in mm given by Equation 2.57.  $\eta$  is the quantum efficiency of the eye, recorded as 21% by Ford [9, p. 28] in a comparable study.  $\rho$  is the photon conversion factor of the eye, recorded as 1.285 x 10<sup>6</sup> photons/(s Troland degree<sup>2</sup>) for Illuminant A under photopic viewing conditions [183, p. 61]. *T* is the integration time of the eye given by Töpfer and Jacobson [169] as 0.1s for a stationary signal under such conditions.

$$\phi_{Ph} = \frac{1}{\eta \rho \frac{\pi}{4} d^2 LT} \tag{2.52}$$

Neural noise,  $\phi_{Neu}$ , is modelled below [182] where  $MTF_{Lat}(u)$  is the MTF of the lateral inhibition process [183, p. 33], u is spatial frequency, and  $u_0$  is the threshold at which lateral inhibition ceases.  $\phi_0$  is the intensity of neural noise. Töpfer and Jacobson [169] state  $u_0$  is 11 cycles/degree and  $\phi_0$  is 1.5 x 10<sup>-7</sup> degrees<sup>2</sup> for a typical integration time of 0.1s.

$$\phi_{Neu}(u) = \frac{\phi_0}{MTF_{Lat}(u)} = \frac{\phi_0}{1 - e^{-u^2/u_0^2}}$$
(2.53)

The CSF describes the sensitivity of the HVS to luminance (or chrominance) contrast in terms of spatial frequency. It varies with respect to the signal's luminance, spatial frequency [183, Ch. 3], orientation [184], [185], phase coherency [184], and the intensity of masking

noise [183, Ch. 6]. From an imaging systems development perspective, the most important relationship is between luminance contrast and spatial frequency, with consideration of noise and other masking signals.

Contrast sensitivity is measured conventionally with respect to simple, narrow-band stimuli, such as sine-waves, edges or noise patches. Traditionally, the CSF describes the detection of these stimuli in isolation. Such measurements are obtained by varying the contrast of the stimulus until a threshold of one just-noticeable difference (JND) is reached between the (test) stimulus and an identical luminance patch of zero contrast (the reference stimulus).

To quantify one JND between the stimuli, observers are shown the test and reference stimulus on a calibrated display under strict viewing conditions. The observers are asked to indicate which the test stimulus is. Their votes are divided 50/50 between the test and reference stimulus when differences between the stimuli are imperceptible. For the difference between the stimuli to be exactly one JND, the observers identify the test stimulus correctly 50% of the time (i.e. their votes are split 75/25 in favour of the test stimulus).

Contrast signals above and below the threshold of one JND are termed suprathreshold and sub-threshold, respectively. The traditional CSF, or contrast detection CSF, is given by the reciprocal of this threshold vs spatial frequency (Figure 2.14, broken line). It peaks at around 1-4 cycles/degree for photopic vision.



Figure 2.14 Barten's detection (broken line) [186] and discrimination (solid line) [183, p. 143] contrast sensitivity functions (CSF) [187].

There are a number of models used to predict the CSF. The simplest and most popular are black-box models for contrast detection that account for spatial frequency only. For example,

Johnson and Fairchild's luminance and chrominance CSFs [188] (defined by Equations 2.54 and 2.55, respectively) are used by the IEEE P1858 CPIQ standard [22, p. 72]. The luminance CSF employs Movshon's three-parameter exponential model [189], with different constants given in Table 2.1. u is spatial frequency in cycles/degree.

$$CSF_{luminance}(u) = \frac{a_1 \times u^{c_1} \times e^{-b_1 \times u}}{K}$$
(2.54)

$$CSF_{chrominance}(u) = \frac{a_1 \times e^{-b_1 \times u^{c_1}} + a_2 \times e^{-b_2 \times u^{c_2}} - S}{K}$$
(2.55)

| Parameter | Luminance CSF (A) | Red–Green Chrominance CSF (C1) | Blue-Yellow Chrominance CSF (C2) |
|-----------|-------------------|--------------------------------|----------------------------------|
| a1        | 75                | 109.1413                       | 7.0328                           |
| b1        | 0.2               | 0.0004                         | 0                                |
| c1        | 0.8               | 3.4244                         | 4.2582                           |
| a2        |                   | 93.5971                        | 40.691                           |
| b2        |                   | 0.0037                         | 0.1039                           |
| c2        |                   | 2.1677                         | 1.6487                           |
| K         | 75                | 202.7384                       | 40.691                           |
| S         |                   | 0                              | 7.0328                           |

Table 2.1 Input parameters for Johnson and Fairchild's luminance and chrominance CSFs [188] as implemented in the IEEE P1858 Camera Phone Image Quality (CPIQ) standard [22, p. 72].

Barten's contrast detection model [186] is given below. It accounts for the display's angular size in degrees, w, its luminance, L, and the stimulus' spatial frequency in cycles/degree, u.

$$CSF_{Barten}(u) = \frac{1}{M_t(u)} = au. e^{(-bu).\sqrt{1 + c.e^{(bu)}}},$$
 (2.56)

where

$$a = \frac{540(1+0.7/L)^{-0.2}}{1+\frac{12}{w(1+u/3)^2}}, \qquad b = 0.3(1+100/L)^{0.15}, \text{ and } c = 0.06$$

Barten's mechanistic detection model [183, p. 39] is defined by Equation 2.57 and expands upon the simpler model above. It employs relevant physiological and physical variables, thus bridging the gap between contrast detection/discrimination and the underlying neurophysiology.  $M_{opt}(u)$  is the optical MTF of the eye, k the SNR, T the integration time of the eye.  $X_o$  and  $Y_o$  are horizontal and vertical angular stimulus sizes, respectively, and  $X_{max}$  is the maximum integration area, all given in degrees.  $N_{max}$  is the maximum number of integration cycles,  $\eta$  the quantum efficiency of the eye, *E* the retinal illuminance in Troland and *p* is the photon conversion factor.  $\Phi_0$  is the spectral density of neural noise, *u* is spatial frequency in cycles/degree,  $u_0$  is the frequency where lateral inhibition ceases. *L* is the average luminance of the stimulus,  $\sigma$  the standard deviation of the LSF of the eye and *d* is the diameter of the pupil in mm. The constants  $\sigma_0$  and  $C_{ab}$  are approximately 0.5 and 0.08 arc min/mm, respectively.

$$CSF_{Barten}(u) = \frac{1}{M_t(u)} = \frac{M_{opt}(u)}{k \sqrt{\frac{2}{T} \left(\frac{1}{X_o Y_o} + \frac{1}{X_{max}^2} + \frac{u^2}{N_{max}^2}\right) \left(\frac{1}{\eta p E} + \frac{\Phi_0}{1 - e^{-\left(\frac{u}{u_0}\right)^2}}\right)}}$$
(2.57)

where

$$M_{opt}(u) = e^{-2\pi^2 \sigma^2 u^2}, \quad \sigma = \sqrt{\sigma_0^2 + (C_{ab}d)^2}, \quad d = 5 - 3 \, \tanh\left(0.4 \, \log\left(\frac{LX_o Y_o}{40^2}\right)\right)$$

Contrast discrimination describes sensitivity to variations in suprathreshold signal contrast. Discrimination sensitivity is generally lower and flatter than detection sensitivity (Figure 2.14) due to the effects of visual masking [183, Ch. 7]. For isolated narrow-band stimuli, this is attributed to contrast constancy [190] where neural processing "evens out" suprathreshold contrast perception with respect to spatial frequency [113]. This provides a useful de-blurring effect that compensates for the physical limitations of the HVS. Peli [123] argues, however, that contrast constancy is less applicable to contrast discrimination in complex broadband images because neural processes are activated simultaneously by overlapping contrast signals of varying frequency and orientation.

Barten's contrast discrimination model [183, p. 143],  $CSF_{Discrim}(u)$ , is based upon measurements of dipper functions. k is the Crozier factor [191], [192] that is approximately equal to 3.0. It describes the minimum signal-to-noise level for signal detection [187].  $m_t(u)$ is the modulation threshold required for contrast detection, given by Equation 2.56 or 2.57.  $m_0(u)$  is the modulation of the reference signal, u is spatial frequency in cycles/degree.

$$CSF_{Discrim}(u) = \left[\sqrt{\frac{m_t^2(u) + 0.04k_{crozier}^2 m_0^2(u)}{1 + 0.004k_{crozier} \frac{m_0(u)}{m_t(u)}} + m_0^2(u) - m_0(u)}\right]^{-1}$$
(2.58)

Triantaphillidou *et al.* [187] have extended Barten's models to describe the detection and discrimination of RMS contrast in single-octave spatial frequency bands from images of pictorial scenes. Each band was extracted in the spatial frequency domain using Peli's log cosine filters [118]. The *Isolated CSF (iCSF)* [35] and *Isolated Visual Perception Function* (*iVPF*) [187] model the detection and discrimination of contrast in each band in isolation, respectively. The iCSF is described appropriately at each band's spatial frequency by either of Barten's detection models [183, p. 36], [186] (i.e. Equations 2.56 or 2.57). Likewise, Barten's discrimination model [183, p. 143] (Equation 2.58) expresses the iVPF [187] when  $m_0$  is the pedestal contrast (i.e. the RMS contrast of the band) and  $m_t$  is given by Equation 2.56 or 2.57.

The *Contextual CSF (cCSF)* [35] and *Contextual Visual Perception Function (cVPF)* [8] model detection and discrimination, respectively, of the RMS contrast of a band when all other bands are at full contrast. Both functions are shown in Figure 2.15.



Figure 2.15 Isolated contrast detection (iCSF) [35] and contextual contrast detection (cCSF) [35] and discrimination (cVPF) functions [8] for the 'Buildings' (a) and 'Bench' (b) images shown in Appendix C. Adapted from [14].

To account for visual masking, the cCSF [35] (given by cCSF(u) in Equation 2.59) models as noise the contrast signals in "flanking bands" adjacent to the band in question [8], using the Linear Amplification Model (LAM) [193]. *K* is a scene-dependent constant,  $c_s(u)$  is the RMS contrast spectrum of the image (defined in Section 2.3.1),  $c_i(u)$  is the contrast threshold for isolated detection of each band (i.e. the reciprocal of the iCSF) and *u* is spatial frequency in cycles/degree.

$$cCSF(u) = [Kc_s(u)^2 + c_i(u)^2]^{-0.5}$$
 (2.59)

Substituting the cCSF (Equation 2.59) into Barten's discrimination model [183, p. 143] (Equation 2.58) yields the cVPF that is defined by Equation 2.60 [125].  $c_c(u)$  is the contrast threshold required to achieve contextual detection for each band, i.e. the reciprocal of the cCSF,  $c_s(u)$  is the RMS contrast spectrum,  $k_{crozier}$  is the Crozier factor of approximately 3.0, u is spatial frequency in cycles/degree.

$$cVPF(u) = \left[ \sqrt{\frac{c_c^2(u) + 0.04k_{crozier}^2 c_s^2(u)}{1 + 0.004k_{crozier} \frac{c_s(u)}{c_c(u)}} + c_s^2(u)} - c_s(u) \right]^{-1}$$
(2.60)

There is ongoing debate regarding whether image quality is a function of suprathreshold vision [36], [194] or threshold vision [185], or a combination of both [8], [36], [41, p. 43], [183, p. 4]. Most IQMs based upon linear system theory either cascade system performance measures with threshold CSFs or weight image differences with them [12], [169], [186], [195]–[199]. This has been shown to account for the perceptual relevance of these measurements under the viewing conditions [14]. However, it assumes a direct relationship exists between threshold vision and image quality/fidelity perception. Although there lacks a better alternative, Rogowitz *et al.* [200] have criticised the implementation of threshold CSFs in IQMs, suggesting that image quality judgement involves the subjective scaling and comparison of suprathreshold image content related to quality attributes and artefacts. Likewise, Haun and Peli [113] stress the importance of contrast thresholds when evaluating image quality and have measured the perceived contrast magnitude of spatial frequency bands from pictorial scene images [123], [124]. Their measurements display a similar bandpass profile to traditional CSFs and peak at similar frequencies [123], [124], but they have not been modelled and are subject to inter-observer inconsistency.

During image quality/fidelity evaluation, attributes and artefacts are detected and discriminated within the context of other suprathreshold image signals. Consequently, visual masking models are employed alongside detection/discrimination CSFs in many metrics that aim to describe fidelity [34] (these metrics are defined in Section 3.1.3); it is expected that such modelling would also benefit spatial capture system IQMs. The cCSF and cVPF account for visual masking with respect to complex suprathreshold signals and are expected to be more relevant functions for image quality modelling than both traditional CSFs, the iCSF and the iVPF. The cCSF and cVPF are both scene-dependent with respect to the contrast spectrum of the image and, therefore, may account for scene-dependent gain and offset in correlations between IQM scores and observer image quality ratings (as shown in Figure 1.5). Further, the shape of the cCSF and cVPF are often similar to one another (Figure 2.15). This suggests that contextual contrast detection and discrimination processes may collapse into a single scene-dependent function for contextual human vision, which, if true, would be advantageous for the development of adaptive, scene-dependent IQMs.

Since image quality evaluation involves comparison with internal memory representations [13], [55], it is unlikely that all relevant visuo-cognitive activity is accounted for by traditional CSFs, cCSFs, cVPFs, or any other bottom-up models of lower-level vision [14]. However, the cCSF/cVPF are expected to provide an appropriate half-way point after lower-level visual processing, upon which a hypothetical ideal mechanistic IQM could expand.

The author has developed *optimal contrast weighting (OCW)* [14] functions that describe relationships between CSFs/cCSFs/cVPFs and optimised spatial image quality, to investigate separately the higher-level cognitive processes of image quality judgement. Contrast optimisation was carried out by weighting nine single-octave contrast bands, ranging from 0.125 to 32 cycles/degree. This research found the cCSF and cVPF were more appropriate base functions for OCWs [14] than traditional CSFs that had been tested previously [138], [139]. Further, OCWs formed from high-pass filtered cCSFs and cVPFs outperformed Adobe<sup>TM</sup> Photoshop's sharpening filters [14]. Although image quality optimisation and image quality modelling are not identical, the successful application of cCSFs/cVPFs in OCWs suggests they should also improve IQMs. Further research carried out in laboratories at the University of Westminster [201] has demonstrated that band adjustments are capable of compensating for image quality losses due to visual impairment.

# 2.6 Summary

The reproduction of spatial luminance contrast signals influences subjective image quality significantly, particularly the attributes of resolution, sharpness, noise and contrast. Spatial imaging performance characterisation is fundamental to capture system design and quality modelling. The MTF, NPS and NEQ are used to characterise system signal transfer, noise and signal-to-noise performance, respectively. They are summarised in Table 2.2 and are founded on linear system theory. Current implementations of these measures are derived using test charts. They often characterise scene-dependent systems applying non-linear ISP algorithms inaccurately. This affects the accuracy of relevant spatial IQMs. This thesis develops novel scene-and-process-dependent system performance measures and IQMs to address these limitations.

| Performance<br>Measure                      | Appropriate<br>Test Chart(s)                                                                                                                           | Appropriate<br>Input Data                                                                                                                                  | Objective<br>Characterisation             | Assumed<br>Subjective<br>Relationship                                                       |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|
| Modulation<br>Transfer<br>Function<br>(MTF) | <ul> <li>Sine-wave or Siemens Star charts</li> <li>Straight or slanted edge signals</li> <li>White noise signals</li> <li>Dead-Leaves chart</li> </ul> | <ul> <li>Edge Spread Function (ESF), or</li> <li>Input &amp; output Fourier power<br/>spectra, or</li> <li>Input &amp; output signal modulation</li> </ul> | System signal<br>transfer                 | Perceived sharpness and resolution, and perceived quality with respect to these attributes. |
| Noise Power<br>Spectrum<br>(NPS)            | Uniform tone signal patches                                                                                                                            | Captured noise image                                                                                                                                       | System noise                              | Perceived noisiness,<br>and perceived quality<br>with respect to noise.                     |
| Noise<br>Equivalent<br>Quanta (NEQ)         | Refer to MTF and NPS                                                                                                                                   | <ul><li>MTF</li><li>NPS</li><li>Mean linear signal</li></ul>                                                                                               | System signal-<br>to-noise<br>performance | Perceived quality with<br>respect to sharpness,<br>resolution and noise<br>attributes.      |

Table 2.2 Summary of the most relevant performance measures concerning spatial image quality.

The CSF is a threshold function for human spatial visual sensitivity. Nevertheless, IQMs cascade it with the MTF and NPS as if it were a transfer function for all visuo-cognitive processes of spatial image quality judgement. Contextual visual models [8], [35] are expected to be more suitable for image quality modelling. Unlike traditional CSFs, they account for relevant scene-dependent effects of visual masking. This thesis investigates their use in IQMs.

# **Chapter 3** Image Quality Metrics

The plethora of image quality metrics (IQM), and their contrasting characteristics, reflects the recent expansion of image quality analysis applications. This thesis is concerned with two-dimensional (2D) spatial IQMs for still images. Relevant genres are reviewed critically from a capture systems development perspective. The *Signal Transfer Visual IQM (STV-IQM)* and *Multivariate Formalism IQM (MF-IQM)* genres are concluded most appropriate.

A novel framework is proposed for measuring spatial image quality while accounting for imaging system and human visual scene-dependency. This involves revising STV-IQMs and MF-IQMs to address the limitations of their current input parameters (discussed in Chapters 1 and 2). Frameworks for two further, novel IQMs are presented, based upon a similarly revised Noise Equivalent Quanta (NEQ) measure.

# 3.1 Image Quality Metrics (IQM) Review

Wang [202] states that objective image quality assessment represents a converging point of many research disciplines, including imaging systems development, signal and image processing, information theory, computer vision, visual psychophysics, machine learning and neural physiology. The diverseness of these approaches has evolved a broad spectrum of IQMs, developed for different applications.

This review evaluates a large number of IQMs that describe spatial image quality. They are classified by genres defined by the author that relate to their characteristics, input parameters, and intended applications. Each genre is analysed critically from the perspective of spatial image quality evaluation of 2D still image capture systems. The genres are summarised below and in Table 3.1. Most other IQM reviews evaluate metrics from a particular genre only, with respect to their intended application only [38], [52], [203]–[224].

The STV-IQMs, MF-IQMs and *Image Fidelity Metrics (IF-IQM)* are reviewed in Sections 3.1.1, 3.1.2 and 3.1.3, respectively. They employ system performance measures and human visual system (HVS) models from imaging and vision science, respectively. The most

relevant STV-IQMs to this thesis are multivariate (i.e. they account for multiple attributes, unlike univariate metrics that account for one attribute only). They are based upon fundamental relationships between imaging system signal-to-noise performance and perceived image quality; these relationships are discussed in Section 2.4. MF-IQMs apply the Minkowski combination to account for the perceived effect of several attributes/artefacts. IF-IQMs describe image fidelity specifically, either as the probability of the detection of differences between two images, or the perceived magnitude of these differences. Metrics from the more recent Computational IQM (CP-IQM) genre are reviewed in Section 3.1.4. They are generally black-boxes that analyse image content, features, or natural scene statistics (NSS); most apply top-down visual modelling. Further terminology that is used to classify IQMs in this thesis is defined below.

| IQM<br>Genre                               | Reference<br>Type              | Input Parameter(s)                    | Output Data                      | Correlating Data                                                                                    |
|--------------------------------------------|--------------------------------|---------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------|
| Signal Transfer<br>Visual IQM<br>(STV-IQM) | No<br>Reference                | System<br>performance<br>measurements | Quality or<br>sharpness<br>score | Perceived image quality<br>or sharpness ratings<br>(JND)                                            |
| Multivariate<br>Formalism IQM<br>(MF-IQM)  | No<br>Reference                | System<br>performance<br>measurements | Quality score                    | Perceived image quality rating (JND)                                                                |
| Image Fidelity<br>Metric (IF-IQM)          | Full<br>Reference              | Test image<br>+<br>Reference image    | Fidelity score<br>or error map   | Perceived image fidelity<br>ratings (JND), or<br>probabilities of detection<br>of image differences |
| Computational                              | Full /<br>Reduced<br>Reference | Test image<br>+<br>Reference image    | Quality<br>difference<br>score   | Differential Mean<br>Opinion Score (DMOS)                                                           |
|                                            | No<br>Reference                | Test image                            | Quality score                    | Mean Opinion Score<br>(MOS)                                                                         |

Table 3.1 Summary of image quality metric (IQM) genres; JND refers to just-noticeable difference.

Full-Reference and Reduced-Reference IQMs compare information from a test and reference image (Figure 3.1). Full-Reference IQMs consider all information from these images; Reduced-Reference IQMs examine certain features only. Both aim to correlate with Differential Mean Opinion Scores (DMOS), or quality difference ratings in terms of just-noticeable difference (JND), where observers responded to the question "which image is preferable and to what extent?"

IF-IQMs are Full-Reference by default. *Threshold IF-IQMs* aim to correlate with the probability of detection of image differences, where observers responded to the question "can you see any differences between the images?" *Suprathreshold IF-IQMs* aim to correlate

with perceived image fidelity ratings in JND units, where observers responded to the question "what is the perceptual level of magnitude of differences between the images?"



Figure 3.1 Generalisation of Full-Reference and Reduced-Reference image quality metric (IQM) characteristics.

No-Reference IQMs do not require data from a reference image (Figure 3.2). They aim to correlate with Mean Opinion Scores (MOS), or quality ratings in terms of JND, where observers responded to the question "how do you rate the level of goodness of the image?"



Figure 3.2 Generalisation of No-Reference (NR) image quality metric (IQM) characteristics.

The mentioned psychophysical JND ratings in terms of image quality, fidelity and sharpness relate to the probability of seeing a difference between two images [1, p. 355]; Section 2.5 defines 1 JND with respect to variation of the contrast of a stimulus. Psychometric scales relating to perceived image quality/fidelity/sharpness can be derived by various psychophysical paradigms [1, p. 356]: the paired comparison method, method of limits, method of adjustments, or the method of constant stimuli. The test image is a generally a distorted (or more distorted) version of the reference image. These psychophysical measurements are most relevant when they are output on ratio or interval scales. Ratio scales are the most advanced and have an origin equal to zero. Interval scales are floating scales. Equal differences in ratio/interval scale values are representative of equal perceptual differences in image quality or attribute strength.

MOS and DMOS refer to ratings of image quality and quality difference, respectively, that are not expressed in JNDs. They are assigned to images from the image quality assessment databases [225]–[241] used to validate and benchmark CP-IQMs. These images can contain varying levels of white, Gaussian, masked, quantisation, or spatially varying noise, or artefacts associated with non-content-aware denoising, Gaussian blur, Joint Photographic Experts Group (JPEG) and JPEG 2000 compression and transmission errors. The most popular databases were derived by 5-point psychophysical categorical scaling tests, converted linearly to the range 1 to 100 [242].

Varying levels of calibration are applied by default by each IQM to optimise correlation with their corresponding image quality rating dataset (as illustrated in Figure 3.3). Certain univariate STV-IQMs such as the Acutance (Equation 3.1) apply minimum or no use of calibration constants. This is because they describe fundamental relationships between image quality, system performance measures and/or bottom-up HVS models. IF-IQMs and multivariate STV-IQMs require low levels of calibration typically, for the following reasons. Multivariate STV-IQMs are based upon simple, well-established signal-to-noise relationships between physical parameters and image quality. IF-IQMs apply extensive bottom-up visual modelling and fidelity perception is more straightforward to model than quality perception. MF-IQMs require greater levels of calibration and some curve fitting since they are more complex and account for several attributes and artefacts. CP-IQMs involve the highest levels of calibration. Most examples apply curve fitting extensively.



Figure 3.3 Approximate relative levels of calibration employed by image quality metrics (IQM) from different genres and the Noise Equivalent Quanta (NEQ) system performance measure.
#### 3.1.1 Signal Transfer Visual IQMs (STV-IQM)

STV-IQMs have long been employed in the development and quality modelling of analogue and digital capturing systems. They have been reviewed comprehensively [38], [52], [213], [243]. Most univariate STV-IQMs [22, p. 54], [104], [196], [198], [199], [244]–[247] account for resolution and sharpness attributes. They cascade the Modulation Transfer Function (MTF) of system components (Equation 2.28) to model the imaging chain signal transfer. The contrast sensitivity function (CSF) is also cascaded to account for spatial HVS sensitivity. This cascade is integrated to yield a single figure sharpness (or quality) score.

The Acutance measure of the IEEE P1858 Camera Phone Image Quality (CPIQ) Standard [22, p. 54] (Equation 3.1) is a recent univariate STV-IQM. CSF(u) is contrast sensitivity with respect to retinal spatial frequency in cycles/degree, u. The cut-off frequency is  $u_{max}$ .  $MTF_{system}(u)$  and  $MTF_{display}(u)$  are MTFs of the device and the display, respectively.

$$Q_T = \frac{\int_0^{u_{max}} MTF_{system}(u).MTF_{display}(u).CSF(u) du}{\int_0^\infty CSF(u) du}$$
(3.1)

The display MTF is modelled by a sinc function that describes the frequency response of an ideal pixel [22, p. 16]. The constant  $k_{disp}$  is 0.0243 for a high-quality display of 100 *pixels per inch (ppi)* resolution.

$$MTF_{display}(u) = \left| \frac{\sin(\pi k_{disp} u)}{\pi k_{disp} u} \right|$$
(3.2)

Multivariate STV-IQMs express image quality as the integral of a visually-weighted signalto-noise calculation, building upon the founding work of Shannon [171], Schade [43], Bartleson [111], Nelson [248] and Higgins [136].

Barten's [12] *Square Root Integral with Noise (SQRIn)* [8], [33] is the most widely applied multivariate STV-IQM. It was validated successfully with respect to analogue capture system images [249] varying in contrast, luminance, resolution, addressability, viewing distance and field size [52], [250]. It has since been reformulated by Töpfer and Jacobson [169]. Under certain conditions, however, its JND scaling and correlation with perceived graininess were found to be of limited accuracy [169]. It was found to model the perceived quality of non-linear JPEG6b compressed images with limited success [9], [10], [251].

Töpfer and Jacobson's [169] Perceived Information Capacity (PIC) expands upon Shannon's Channel Capacity [171] and the related Information Capacity measure [173, p. 631] (defined by Equations 2.40 and 2.41, respectively) and accounts for bottom-up HVS modelling. Its calculation is comparable to the SQRIn, with improved correlation with perceived graininess under low-contrast conditions and improved JND scaling [169].

Equations 3.3 and 3.4 define the PIC [169] and Töpfer and Jacobson's [169] reformulation of the SQRIn [12], respectively, for analog capture systems. In this thesis, all further references to the SQRIn refer to this reformulation unless otherwise stated. S(u) and N(u)are the signal power spectrum and Noise Power Spectrum (NPS) of the displayed print, respectively (given by Equations 3.5 and 3.6).  $NPS_{visual}(u)$  is the neural NPS [12]. CSF(u)is Barten's CSF [186] vs retinal spatial frequency, u, in cycles/degree. The maximum perceivable frequency is  $u_{max}$ .  $k_1$  and  $k_2$  are calibration constants.

$$PIC = k_1 \sqrt{\int_0^\infty \ln\left(1 + \frac{S(u)CSF^2(u)}{N(u)CSF^2(u) + NPS_{visual}(u)}\right)} \frac{du}{u} + k_2$$
(3.3)

$$SQRI_{n} = \frac{k_{1}}{\ln 2} \int_{0}^{u_{max}} \left[ \frac{S(u)CSF^{2}(u)}{N(u)CSF^{2}(u) + NPS_{visual}(u)} \right]^{0.25} \frac{du}{u} + k_{2}$$
(3.4)

The signal spectrum of the displayed print from an analog system, S(u), is expressed below [169].  $MTF_{film}(u)$ ,  $MTF_{lens}(u)$  and  $MTF_{paper}(u)$  are the MTFs of the photographic negative, enlarger lens, and paper, respectively. m is magnification and u is retinal spatial frequency in cycles/degree.  $S_0(u)$  is the scene power spectrum modelled by Barten [12].

$$S(u) = S_0(u).MTF_{film}^2(m.u).MTF_{lens}^2(m.u).MTF_{paper}^2(u)$$
(3.5)

The corresponding NPS of the displayed print, N(u), is given below [169].  $NPS_{paper}(u)$ and  $NPS_{film}(u)$  are the NPSs of the photographic paper and film, respectively.  $MTF_{paper}(u)$  and  $MTF_{lens}(u)$  are the MTFs of the photographic paper and enlarger lens, respectively.  $\gamma_{paper}$  is the gamma of the paper, *m* is magnification, and *u* is retinal spatial frequency in cycles/degree.  $a_{nn}$  converts the density of the film to the printing density.

$$N(u) = NPS_{film}(m.u) \cdot \gamma_{paper}^2 \cdot m^2 \cdot a_{nn}^2 \cdot MTF_{lens}^2(m.u) \cdot MTF_{paper}^2(u) + NPS_{paper}(u)$$
(3.6)

The Effective Pictorial Information Capacity (EPIC) metric was developed by Jenkin *et al.* [195], [252]. It is based upon Shannon's [171] information capacity, like the Perceived Information Capacity [169]. It is computed as c in Equation 2.41 [136] as follows. The effective pixel size, n, is given by the width of the Line Spread Function (LSF) at approximately 50% of its peak value. This LSF is calculated [195] as the modulus of the inverse discrete Fourier transform (DFT) of the cascade of the imaging chain's MTF and the optical MTF of the eye (defined in Equation 2.57). The number of effective distinguishable signal levels, m, is modelled by the method of Altman and Zweig [253] according to the standard deviation of the noise of the system. Initial validations were carried out with respect to JPEG [195], [252] and JPEG 2000 [252] compressed images of scenes. Further validations with respect to images of scenes that varied in sharpness and noisiness found the EPIC correlated well with mean image quality ratings over several scenes, but not with ratings for individual scenes containing unusual structural content [254].

Multivariate STV-IQMs, in particular, are well suited for capture system design and quality modelling. They describe relationships between spatial image quality and real fundamental physical quantities related to imaging system performance, the HVSs' physiology and the viewing conditions. Their output scores are delivered by logical step-by-step calculations [185], [206] that establish causal justification for their relationship with perceived image quality. Their use of bottom-up spatial HVS models (defined in Section 2.5) makes them more accurate and appropriate than assumptions based only on signal transfer, noise, or signal-to-noise measurements (defined in Sections 2.3.2, 2.3.3 and 2.4, respectively).

STV-IQMs are more straightforward to implement and less computationally intensive than MF-IQMs and IF-IQMs. They are modular and easily revised [185]. Their input parameters can be altered independently [206] enabling convenient simulation of imaging chain and viewing condition variations. This is beneficial when optimising the trade-offs between cost and quality. STV-IQMs do not require information from the output image. Thus, future systems can be analysed speculatively without the need for functional prototypes, providing the MTF and NPS of their components are known. The SQRIn and PIC are of primary interest to this project since they implement the MTF and NPS directly.

Inaccuracies in MTF and NPS measurements from systems using non-linear content-aware processing are carried into the output scores of STV-IQMs (these inaccuracies are discussed in Sections 2.3.2 and 2.3.3, respectively).

The CSFs employed by STV-IQMs lack models for visual masking that are implemented in many IF-IQMs [34], [185], [255]. The CSF is also treated as an HVS transfer function, but it does not describe HVS processing of suprathreshold signals of all magnitudes [194] (assumptions regarding HVS linearity only apply close to threshold limits [183, p. 154], [256]). High-level cognitive processes associated with observer quality consciousness are also unaccounted for. They are discussed in Section 2.5.

The above are expected to cause the poor overall correlations between STV-IQMs and the subjective image quality of non-linear systems/processes [9], [10], [251] (e.g. Figure 1.5).

#### **3.1.2 Multivariate Formalism IQMs (MF-IQM)**

Keelan's [46] MF-IQM implements the Minkowski combination [257] that has been used traditionally as a visual perceptive model [258], [259], including in metrics for the combined perception of sharpness and graininess [111] and coding artefacts [260], [261]. Overall perceived image quality loss,  $QL_m$ , is modelled by combining calibrated univariate metrics for quality loss,  $QL_i$ , due to several attributes/artefacts, *i* (Equation 3.7).  $n_{max}$  is the power parameter (Equation 3.8) [46, p. 161]. Attributes (or artefacts) that are predicted to be of highest perceived magnitude dominate the overall quality loss score; this is in agreement with human perception [110], [111].

$$QL_m = \left(\sum_i (QL_i)^{n_{max}}\right)^{\left(\frac{1}{n_{max}}\right)} \tag{3.7}$$

The power parameter,  $n_{max}$ , adjusts the level of dominance of the most significant attribute [46, p. 162]. If  $n_{max} = 2$ , Equation 3.7 becomes a root mean square (RMS) sum representing the Euclidean distance.  $QL_{max}$  is the maximum quality loss for the system under the viewing conditions. The constants  $c_1$  and  $c_2$  are 2 and 16.9, respectively [3].

$$n_{max} = 1 + c_1 \cdot \tanh\left(\frac{QL_{max}}{c_2}\right) \tag{3.8}$$

The IEEE P1858 CPIQ Standard [22] defines several attribute metrics that are calibrated for the purpose. Each attribute metric expresses quality loss in JNDs with respect to one of the following: texture loss/blur, visual noise, edge Spatial Frequency Response (SFR), local geometric distortion, lateral chromatic displacement, chroma level and colour uniformity.

Figure 3.4 summarises the function of the MF-IQM for the two attribute metrics of greatest interest to this project, texture loss and visual noise. This MF-IQM is referred to from here on in this thesis as *the CPIQ metric*.



Figure 3.4 Diagram describing processing by the IEEE P1858 Camera Phone Image Quality (CPIQ) Standard's [22] implementation of Keelan's multivariate formalism IQM (MF-IQM) [46]. Input parameters are shown for the texture blur and visual noise attribute metrics only.

Subjective quality loss,  $QL_{Texture\_Loss}$ , predicted by the *texture loss/blur attribute metric* is defined below [22, p. 56].  $Q_T$  is the system Acutance (Equation 3.1) computed using the direct dead leaves MTF (Equation 2.31).

$$QL_{Texture \ Loss} = 3.83 \ Q_F + 52.9 \ Q_F^2 + 9.97 \ Q_F^3, \tag{3.9}$$

where

$$Q_F = 0$$
 for  $Q_T > 0.961$   
 $Q_F = 0.961 - Q_T$ . for  $Q_T \le 0.961$ 

Subjective quality loss,  $QL_{Visual\_Noise}$ , according to the *visual noise attribute metric* [22, p. 46] is given below.  $\Omega$  is a visual noise objective metric for the system (defined in Equation 3.11) [22, p. 69]. The constants *a*, *b*, and c are 0.319, 0.138 and 0.0049, respectively.

$$QL_{Visual\_Noise} = \frac{\Omega - a}{b} - \frac{c \times \ln\left(1 + b \times \frac{\Omega - a}{c}\right)}{b^2} \qquad \text{for} \qquad \Omega > 0.319$$
(3.10)

The visual noise objective metric [22, p. 69] revises the metric of the same name from ISO 15739 [168]. It is computed using noise images from captured uniform-tone patches. These images are first linearised by an inverse standardised RGB (sRGB) tone transfer function [132]. Three colour space conversions are then applied: linear sRGB to CIE XYZ (D65), CIE XYZ (D65) to CIE XYZ (Illuminant E), and CIE XYZ (Illuminant E) to AC<sub>1</sub>C<sub>2</sub>. The resultant image is passed through a 2D Fast Fourier Transform (FFT) and filtered by the following functions: Johnson and Fairchild's [188] luminance and chrominance CSFs (defined in Equations 2.54 and 2.55, respectively), the modelled display MTF [22, p. 16] (defined by Equation 3.2), and a frequency domain high pass filter. The filtered image is transformed back to the spatial domain by applying the inverse 2D FFT. Three further colour space conversions are applied: AC<sub>1</sub>C<sub>2</sub> to CIE XYZ (Illuminant E), CIE XYZ (Illuminant E) to CIE XYZ (D65), and CIE XYZ (D65) to CIELAB [262]. Finally, the *total visual noise*,  $\Omega$ , is given below [22, p. 44].  $\sigma_L^2$ ,  $\sigma_a^2$  and  $\sigma_b^2$  are the variances of the L\*, a\*, and b\* components of the processed noise image, respectively, and  $\sigma_{La}^2$  is its L\*a\* covariance.

$$\Omega = \log_{10}(1 + 23\,\sigma_L^2 + 4.24\,\sigma_a^2 - 5.47\,\sigma_b^2 + 4.77\,\sigma_{La}^2) \tag{3.11}$$

The recently standardised [22] and validated [3] CPIQ metric and its underlying MF-IQM [46] have proven to be accurate and versatile models for capture system image quality [178], [263]. The Minkowski combination at their core and their various attribute metrics are highly modular. Predictions of quality loss by each attribute metric, and the overall quality loss, are justified by logical step-by-step calculations using standard imaging system performance measures and bottom-up visual models. The Minkowski combination requires attribute metrics to be independent [46, Sec. 11.4], [194]. This is not always the case for the image quality attributes [162], [163], but this has not proved a problem in validation studies [3]. The CPIQ metric is more computationally sophisticated and demanding than STV-IQMs or CP-IQMs. For example, its visual noise attribute metric involves six colour space transformations and three stages of Fourier filtration. The CPIQ metric also requires more extensive calibration than STV-IQMs or IF-IQMs (including some curve fitting) to ensure its attribute metrics are perceptually "balanced". Thus, its relation to the underlying physics of the imaging and visual system is less direct than these IQMs. The input parameters of each attribute metric can be altered independently. However, care should be taken not to disturb this calibration. The CPIQ metric's texture loss and visual noise attribute metrics were found to be primary drivers of overall perceived image quality [3]. But both these

attributes can be accounted for, in theory, by the simpler, multivariate STV-IQMs. The visual noise attribute metric uses noise images obtained from imaged uniform patches that have been shown to describe system noise inaccurately in Figure 2.3. The employed Johnson and Fairchild luminance CSF [188] is conveniently uncomplicated but does not account for visual masking, the viewing conditions, the luminance of the stimulus, or the field size.

#### 3.1.3 Image Fidelity IQMs (IF-IQM)

IF-IQMs model the perceptibility (fidelity) of image differences (defined in Section 2.1). They are often erroneously described as expressing perceived image quality difference (i.e. the acceptability of any perceived differences). Threshold IF-IQMs model the probability of observers discriminating differences between an ideal (reference) and distorted (test) image [264]. Suprathreshold IF-IQMs model the perceived magnitude of suprathreshold differences between these images [265]–[267]. Both sub-genres are Full-Reference and have been reviewed extensively [218]–[223].

Threshold IF-IQMs have mainly been employed to assess and optimise compression algorithms [255], [264], [268]–[274], displays and imaging systems [185], [264]. The test and reference images pass through several processing stages, generalised by Figure 3.5. These stages can account for display performance, amplitude non-linearity, divisive normalisation, opponent-space colour vision, contrast sensitivity and visual masking. Probability modelling is then applied to the differences computed between the images at each pixel. This yields distortion maps that express the probability of discrimination of these differences, which can be pooled to single figures [264].



Figure 3.5 Generalisation of processing by threshold image fidelity metrics (IF-IQM), adapted from [264].

Suprathreshold fidelity metrics [36], [265]–[267], [275], [276] account for spatial vision by filtering opponent colour space images with threshold CSFs [188] or suprathreshold contrast discrimination models [277] (Figure 3.6). The popular Spatial Extension to CIELAB (S-CIELAB) [265]–[267] and comparable CSF/CIEDE2000 [36], [275] metrics then apply perceptual colour difference models from CIELAB [262] ( $\Delta E_{ab}^*$ ) and CIEDE2000 [278] ( $\Delta E_{00}^*$ ), respectively. S-CIELAB has since been revised [276] to account for chromatic adaptation and local contrast detection [279].



Figure 3.6 Generalisation of processing by suprathreshold image fidelity metrics (IF-IQM).

The modular, cascade-based IF-IQMs relate to the underlying physics of imaging systems and human vision and provide logical step-by-step pathways to the fidelity score. They generally use more comprehensive bottom-up HVS modelling than STV-IQMs and MF-IQMs. These models include mechanistic 2D CSFs for luminance and chrominance detection or discrimination that can account for visual masking [264] or selectivity by orientation [34], [52]. IF-IQMs are unsuitable for capture system image quality modelling, however, for the following reasons. They do not account for capture system performance measures. Reference images do not exist in image capture scenarios. Perceived quality and fidelity do not always correlate [36] (as discussed in Section 2.1). They are more computationally intensive and complex than both STV-IQMs and CP-IQMs since they perform pixel-by-pixel comparisons between two images after several stages of processing. Suprathreshold IF-IQMs apply threshold CSFs as HVS transfer functions, which has limitations as stated in Section 3.1.1 [194]. Threshold IF-IQMs apply the CSF correctly as a threshold visual model but often clip the probability of detection of suprathreshold image differences to value 1 [34], [185]. Thus, they are best suited for optimising perceptually lossless algorithms [36] or assessing barely perceptible image differences [276]. There is no universally accepted method for pooling their 2D distortion maps into single figure measurements.

#### **3.1.4** Computational IQMs (CP-IQM)

CP-IQMs have increased rapidly in number since 2004 along with the amount of image quality assessment applications. The following are notable examples of the many reviews available [203]–[212], [214]–[217], [224]. CP-IQMs can be characterised broadly as blackbox models that establish statistical relationships between subjective MOS/DMOS datasets and objective image content, features, or NSS. Most examples apply top-down, hypothetical visual models. These models often aim to account for more complex, scene-dependent visual processes associated with image quality judgement.

Full-Reference and Reduced-Reference CP-IQMs aim to correlate with DMOS ratings. They include structural, mathematical, information theoretical, machine learning, visual attention, and hybrid approaches. No-Reference CP-IQMs are categorised as machine learning and information theoretical approaches and aim to correlate with MOS ratings. Each approach is summarised below.

The structural approach has been the most generally accepted Full-Reference paradigm [280] since the Structural Similarity (SSIM) Index and corresponding Mean Structural Similarity (MSSIM) [114] metric were introduced in 2004; both are based on the less stable Universal Quality Index (UQI) [281]. They assume structural distortions in the test image are the primary driver of perceived spatial image quality loss [114]. Structural distortions are defined, hypothetically [114], by reduced levels of local correlation with the reference image [282] after local variance (contrast) and luminance differences have been accounted for. Each stage of SSIM processing is summarised by Figure 3.7 and defined in Appendix B.



Figure 3.7 Diagram of processing by the Structural Similarity (SSIM) Index [114].

The SSIM has been extended to implement multi-scale [283], [284], wavelet domain [285] or Single Value Decomposition (SVD) [286], [287] processing or further classification of image structure [288], [289]. The limitations of structural approaches are as follows, Sheikh [126] states that there is no generally recognised way of defining perceived image structure or structural distortions. Haun and Peli [33] also describe the top-down HVS models employed as abstract and reduced, although some examples emulate visual masking.

The simplicity and tractability [290] of earlier mathematical approaches such as the peak signal-to-noise ratio (PSNR) and Mean Square Error (MSE) has ensured they are the most commonly applied CP-IQMs to date [291]. They employ no HVS modelling, however, and thus lack perceptual relevance [292] and consistency [126]. For example, they are sensitive to intensity scaling, rotation, translation, and zooming beyond perceptual levels [280]. They also describe low-magnitude distortions spread over large areas as more detrimental to quality than higher-magnitude distortions that are more locally concentrated; this does not agree with known perceptual behaviour. Other CP-IQM approaches extend mathematical approaches directly [100], [281], [293]–[296], such as many visual attention approaches.

Visual attention approaches apply saliency maps from eye-tracking experiments to weight distortion maps from other CP-IQMs, such as the MSE [100], PSNR [101], SSIM [101], [297] and the Visual Information Fidelity (VIF) [101]. Improvements in the accuracy of these IQMs were recorded after applying these weightings [100], [101], [297], particularly when gaze duration was accounted for [100]. Other research found minimal improvements [298], noting inaccuracies when perceptually relevant artefacts were in non-salient locations such as the sky and background [101], [298]. Weighting with algorithmically-generated

saliency maps (e.g. Figure 2.6) is less accurate or computationally efficient than with eyetracking data [101]. Adaptive strategies are recommended to account for these limitations [101].

Reduced-Reference approaches [280], [299], [300] are relatively uncommon and compare extracted features such as edge maps or transform coefficients [280]. They are generally more computationally efficient than Full-Reference approaches, at the expense of accuracy.

Hybrid approaches are uncommon. Most examples merge bottom-up low-level HVS models with hypothetical models for higher-level processing [194], [208], [228], [232], [301]. Alternatively, they adapt existing Full-Reference or Reduced-Reference CP-IQMs to account for low-level vision [296].

Information theoretical approaches hold foundations in information theory [171] like the PIC [169] and EPIC [195] STV-IQMs. Their visual modelling, however, is top-down, abstract, and reduced [33]. The CSF and luminance masking models are not implemented, although the orientational selectivity of the HVS and divisive normalisation are accounted for. The Full-Reference Information Fidelity Criterion (IFC) [302] employs a wavelet-based orientation channel decomposition. The popular VIF [126] is a renowned No-Reference metric that builds upon the IFC.

Machine learning approaches treat image quality modelling as a supervised regression problem with respect to data from the test (and reference) image(s) and MOS (or DMOS) ratings [210], [303], [304]. Firstly, image feature(s) are extracted to narrow down the input data. These are usually distortion specific such as blurring, noise, texture, ringing, or blocking [305], [306]. The characteristics and optimal field of application of the metric are determined by which feature(s) are selected. The IQM is then trained to optimise (minimise) the difference between its estimated and desired outputs. Convolutional Neural Networks (CNN) are often used to solve this regression task [307]–[316]. Certain CNN-based examples require no distortion-specific training [314]–[316]. They can operate in the spatial domain [316] or adapt to different domains using supervised [315] or unsupervised approaches [314].

The CP-IQMs are accurate, computationally efficient and suitable for real-time image quality assessment applications. They fill the growing industry demand for user-friendly IQMs with minimal input parameters; unlike the other IQM genres, they do not demand prior knowledge of system performance measures or psychophysical variables [317]. The fact that they are computed from information from the system's output image means they can often account for system performance scene-dependency and human visual scene-dependency.

However, CP-IQMs are less suitable for image capture systems development [206] for the following reasons. They lack modularity and do not employ standard imaging system performance measures. Their top-down, non-mechanistic visual models are mostly hypothetical, with limited reference to psychophysical measurements, the visual neurophysiology, or the viewing conditions (see Section 2.5 for further information). This unconstrained approach to image quality modelling has accelerated the evolution of CP-IQMs but also encourages short cuts when modelling complex physical and visuo-cognitive processes. These short cuts are particularly evident in the No-Reference IQMs that use CNNs to optimise correlation with subjective image quality datasets, with less regard for causation. The CP-IQMs have not been validated with respect to relevant capture system artefacts caused by non-linear content-aware demosaicing, denoising, sharpening, tone-mapping and/or compression, after accounting for lens blur, photon and sensor noise and Bayer sampling. Thus, if a benchmarking study finds that CP-IQMs correlate higher with MOS/DMOS than STV-IQMs or MF-IQMs, one cannot infer they are superior metrics for capture systems.

Full-Reference and Reduced-Reference CP-IQMs cannot account for visually enhancing distortions (e.g. sharpening) since the reference image is assumed to be ideal; reference images are also unavailable in capture system image quality assessment scenarios. No-Reference CP-IQMs are more suitable but are generally least mechanistic, modular, or accurate, with least relation to the physics of imaging systems or the HVS.

## 3.2 Proposed Image Quality Metric (IQM) Frameworks

The review concluded that MF-IQMs (Section 3.1.2) and multivariate STV-IQMs (Section 3.1.1) are the metric genres most applicable to spatial capture system image quality modelling. The SQRIn [12] and PIC [169] were identified as STV-IQMs that were directly suited to this project. Likewise, the CPIQ metric [22] was a suitable MF-IQM.

Frameworks to revise these three IQMs are presented in this section. Frameworks for two further IQMs are also defined (the *log Noise Equivalent Quanta (log NEQ)* and *Visual log* 

*NEQ*), based upon a new *scene-and-process-dependent NEQ (SPD-NEQ)* measure. Each framework uses input parameters that aim to account for system signal transfer and noise scene-dependency, and spatial HVS scene-dependency. The rationale for using these parameters is given below.

Section 2.3.3 demonstrated that standard uniform patch NPS measurements are of limited relevance to capture systems using non-linear content-aware image signal processing (ISP). Three novel scene-and-process-dependent NPS (SPD-NPS) measures are presented in Chapter 4. They are calculated from *scene-and-process-dependent noise images* shown in Figure 2.3, in order to account for these limitations. These noise images are computed from repeated captures of images of any input scene, or an appropriate test chart, referred to from here on as *replicates*. Consequently, they account for the scene-dependent characteristics of temporally varying noise, caused by the application of non-linear ISP.

Section 2.3.2 discusses the limitations of applying MTFs measured from edges, sine-waves, white noise and even dead leaves signals, to capture systems using non-linear content-aware ISP. Chapter 5 presents three novel scene-and-process-dependent MTF (SPD-MTF) measures. These aim to address the above limitations by accounting for the scene-dependent signal transfer characteristics of non-linear ISP algorithms. They are calculated by revising the direct dead leaves MTF implementation [19] (Equation 2.31) to use SPD-NPS measures and DFT power spectra computed either from images of scenes or from suitable test charts.

Section 2.5 concluded the Contextual CSF (cCSF) [35] and Contextual Visual Perception Function (cVPF) [8] should be more appropriate HVS models for STV-IQMs and MF-IQMs than the traditional CSFs used presently. This is because they account for visual masking from relevant suprathreshold signals and noise. This thesis investigates the use of the cCSF or cVPF in each IQM proposed. Note that each metric is defined in this chapter with respect to these visual functions but can also be computed using the Barten CSF [183, p. 36], [186].

# 3.2.1 Log Noise Equivalent Quanta (log NEQ), Visual log NEQ, and Sceneand-Process-Dependent NEQ (SPD-NEQ)

The SPD-NEQ revises the NEQ (defined in Equation 2.49) to account for system signal transfer and noise scene-dependency. The one-dimensional (1D) SPD-NEQ is defined below and described by Figure 3.8.  $MTF_{SPD}(u)$ , is the SPD-MTF,  $NPS_{SPD}(u)$  the SPD-NPS,  $\mu$  the mean linear signal, and u is spatial frequency in cycles/degree.

$$NEQ_{SPD}(u) = \frac{MTF_{SPD}^{2}(u)}{NPS_{SPD}(u)/\mu^{2}}$$
 (3.12)



Figure 3.8 Diagram describing processing by the scene-and-process-dependent Noise Equivalent Quanta (SPD-NEQ) system performance measure.

The log NEQ metric is defined by Equation 3.13. It provides a single figure image quality score by taking the logarithm of the integral of an appropriately weighted SPD-NEQ measure. The Visual log NEQ metric (Equation 3.14) accounts for the spatial sensitivity of the HVS but is otherwise identical to the log NEQ. In both equations,  $MTF_{Display}(u)$  is the MTF of the display [22, p. 16] (Equation 3.2),  $NEQ_{SPD}(u)$  is the SPD-NEQ (Equation 3.12), u is the retinal spatial frequency in cycles/degree,  $u_{max}$  is the maximum perceivable frequency.  $CSF_{contextual}(u)$  is either the cCSF [35] (Equation 2.59) or the cVPF [8] (Equation 2.60).  $k_1$  and  $k_2$  are calibration constants concerning the gradient (gain) and intercept (offset) of the metrics.

$$LogNEQ = k_1 \log_{10} \left( \int_0^{u_{max}} MTF_{display}^2(u) NEQ_{SPD}(u) \frac{du}{u} \right) + k_2$$
(3.13)

$$LogNEQ_{visual} = k_1 \log_{10} \left( \int_0^{u_{max}} CSF_{Contextual}^2(u) MTF_{display}^2(u) NEQ_{SPD}(u) \frac{du}{u} \right) + k_2 \qquad (3.14)$$

Both the log NEQ and Visual log NEQ involve minimal levels of calibration. Therefore, they relate directly to the fundamental NEQ signal-to-noise relationship defined in Section 2.4. For both metrics, taking the logarithm of the integral was justified empirically. It caused them to predict observer image quality ratings from Chapter 6 more accurately than when the logarithm was not taken. Taking the logarithm also means they follow Fechner's law, which states that the relationship between the intensity of a stimulus and its perceived intensity is logarithmic. It should also be noted that the logarithm of a similarly weighted signal-to-noise function is taken by both the photographic information capacity (Equation

2.41) and the PIC (Equation 3.3), prior to integration. Although Shannon's channel capacity does not aim to describe visual perception specifically, it also takes the logarithm of the signal energy divided by the noise energy (Equation 2.40).

Simplicity and functionality were prioritised when developing the log NEQ and Visual log NEQ. Simple, functional metrics are used disproportionately over more complex metrics by the industry, as the Pareto principle would suggest [318]. Consequently, neither metric accounts for display or visual noise, since these affect perceived image quality less than display signal transfer (MTF) and spatial visual sensitivity (CSF), respectively, for current displays at most output luminance levels. In order for these parameters to have been accounted for by the log NEQ and Visual log NEQ, the input parameters to the SPD-NEQ would have needed to be specified separately in both metrics. This would have increased the metrics' complexity significantly (making them similar to the SQRIn and PIC).

#### 3.2.2 Revised STV-IQMs

The revised SQRIn [12] is calculated using Equation 3.4 when the signal spectrum of the displayed image, S(u), and the total imaging system noise, N(u), are given by Equations 3.15 and 3.16, respectively. The CSF parameter, CSF(u), denotes either the cCSF [35] (Equation 2.59) or cVPF [8] (Equation 2.60).  $PS_{scene}(u)$  is the DFT power spectrum of the image of the scene (Equation 2.30).  $MTF_{SPD}(u)$  and  $NPS_{SPD}(u)$  are the SPD-MTF and SPD-NPS of the capture system, respectively.  $MTF_{display}(u)$ ,  $NPS_{display}(u)$ , and  $\gamma_{display}$  are the MTF [22, p. 16] (Equation 3.2), NPS (Equation 2.36), and gamma of the display, respectively. All other parameters of Equation 3.4 are as previously described.

$$S(u) = PS_{scene}(u).MTF_{SPD}^{2}(u).\gamma_{display}^{2}.MTF_{display}^{2}(u)$$
(3.15)

Similarly, the revised PIC [169] is computed by Equation 3.3, when S(u) and N(u) are given by Equations 3.15 and 3.16 as described above. CSF(u) refers to either the cCSF [35] or cVPF [8]; all other parameters are as previously described. Figure 3.9 describes the input parameters and sub-processes for the revised SQRIn and PIC metrics.

$$N(u) = NPS_{SPD}(u) \cdot \gamma_{display}^{2} \cdot MTF_{display}^{2}(u) + NPS_{display}(u)$$
(3.16)  

$$\approx NPS_{SPD}(u) \cdot \gamma_{display}^{2} \cdot MTF_{display}^{2}(u)$$



Figure 3.9 Diagram describing processing by both the revised SQRIn [12] and PIC [169] metrics.

#### 3.2.3 Revised Camera Phone Image Quality (CPIQ) Standard Metric

The revised CPIQ metric is defined below in four stages.

A scene-and-process-dependent texture acutance metric is computed,  $Q_{SPD}$  (Equation 3.17).  $MTF_{SPD}(u)$  is the SPD-MTF,  $CSF_{contextual}(u)$  is the cCSF [35] (Equation 2.59) or cVPF [8] (Equation 2.60),  $MTF_{display}(u)$  is the MTF of the display [22, p. 16] (Equation 3.2), uis retinal spatial frequency in cycles/degree and  $u_{max}$  is the cut-off frequency. It is based on the texture acutance metric from the IEEE P1858 CPIQ standard (Equation 3.1) [22, p. 54].

$$Q_{SPD} = \frac{\int_{0}^{u_{max}} MTF_{SPD}(u). MTF_{display}(u). CSF_{Contextual}(u) du}{\int_{0}^{\infty} CSF_{Contextual}(u) du}$$
(3.17)

A scene-and-process-dependent visual noise objective metric,  $\Omega_{SPD}$ , is computed by revising the equivalent metric from the IEEE P1858 CPIQ standard (Equation 3.10) [22, p. 46], as follows. The input noise image is a scene-and-process-dependent noise image (defined in Section 4.1). The luminance channel of each processed noise image is filtered with the cCSF [35] (Equation 2.59) or cVPF [8] (Equation 2.60), instead of Johnson and Fairchild's CSF [188] (Equation 2.54).

 $Q_{SPD}$  and  $\Omega_{SPD}$  are substituted in place of  $Q_T$  and  $\Omega$  in Equations 3.9 and 3.10, respectively, to yield revised attribute metrics for texture loss,  $QL_{Texture\_Loss}$ , and visual noise,  $QL_{Visual\_Noise}$ . All other parameters remain as defined previously.

Finally, a revised metric of overall quality loss  $(QL_m)$  is calculated with respect to the above revised attribute metrics using Equation 3.7; all other parameters are as previously described.

Figure 3.10 describes processing by the revised CPIQ metric. Note that the remaining five attribute metrics shown in Figure 3.4 can also be incorporated when calculating  $QL_m$ .



Figure 3.10 Diagram describing processing by the revised CPIQ metric [22] (with respect to texture blur and visual noise attribute metrics only).

## 3.3 Summary

Spatial IQMs have been classified by genre and reviewed critically from a capture systems development viewpoint. The MF-IQM and multivariate STV-IQM genres were concluded as most applicable to this project. The CPIQ metric [22], SQRIn [12] and PIC [169] were selected as suitable IQMs from these genres.

A novel image quality measurement framework was proposed that accounts for imaging system and human visual scene-dependency by using scene-dependent input parameters. Following this framework, the three IQMs selected above were revised to implement SPD-NPS and SPD-MTF system performance measures (defined in Chapter 4 and Chapter 5, respectively). They also applied either the cCSF [35] or cVPF [8] as visual models, although traditional CSFs can also be used. Two further, novel IQMs were proposed based upon a similarly revised NEQ framework. Chapter 6 validates each of these IQM frameworks.

# Chapter 4 Validation of Scene-and-Process-Dependent NPSs (SPD-NPS)

The *scene-and-process-dependent Noise Power Spectrum (SPD-NPS) framework* is defined in this chapter. It characterises temporally varying capture system noise with respect to any input signal, accounting for system scene-dependency. Three novel SPD-NPS measures are defined that apply this framework. Each characterises one of the following:

- 1) capture system noise with respect to an image of a given input scene;
- the average real-world noise of the system with respect to an image dataset comprising of different scenes depicting a variety of subjects;
- system noise with respect to the dead leaves chart with an "average scene spectrum".

Each measure is validated by evaluating measurements from image capture simulation pipelines, applying linear and non-linear image signal processing (ISP). Finally, a novel measure for capture system noise scene-dependency is presented and validated.

## 4.1 Derivation of the SPD-NPS Measures

The Noise Power Spectrum (NPS) is defined in Section 2.3.3. It is commonly measured from captured uniform tone patches. For systems applying non-linear ISP algorithms, however, Figure 2.3 demonstrates that noise in captured patches is often unrepresentative of temporally varying noise in captured scenes. For such systems, the latter forms structured patterns that are dependent on both the local scene content and the ISP algorithms used (i.e. the noise is local-content-dependent and scene-dependent).

Non-linear content-aware denoising influences this behaviour in particular. Uniform patches provide ideal conditions for these algorithms to remove noise (Section 2.2.1). Thus, for systems that apply non-linear denoising, noise images derived from uniform patches are

expected to underestimate noise in a given captured scene, as well as the average level of system noise in real-world capture scenarios. This renders uniform patch NPS measurements unsuitable for image quality modelling (as discussed in Section 2.3.3).

The SPD-NPS measuring framework is described by Figure 4.1. The framework uses a more appropriate scene-and-process-dependent noise image. Equation 2.39 computes this RGB noise image when g(x, y) is a captured frame of any scene/target, and  $\bar{g}(x, y)$  is the mean image of *N* registered replicates of the scene/target,  $r_i(x, y)$ , given by Equation 4.1. These noise images are computed using ten replicates in this thesis. This number was found to be adequate in related prior art [161]. Averaging the replicates cancels out temporally varying, random noise, meaning  $\bar{g}(x, y)$  contains only the image signal and capture system fixed pattern noise (FPN). Thus, subtracting  $\bar{g}(x, y)$  from g(x, y) yields a noise image containing temporally varying noise only. The two-dimensional (2D) SPD-NPS is then computed using Equation 2.36, where I(x, y) is the luminance component of the scene-and-processdependent noise image; other parameters are as previously defined. The 1D SPD-NPS is given as the rotational average of this 2D SPD-NPS.



Figure 4.1 The scene-and-process-dependent Noise Power Spectrum (SPD-NPS) framework.

$$\bar{g}(x,y) = \frac{1}{N} \left( \sum_{i=1}^{N} r_i(x,y) \right)$$
 (4.1)

Three SPD-NPS measures from this thesis implement the SPD-NPS framework. Each measure is defined below and summarised in Table 4.1 alongside the uniform patch NPS. They are further used in the scene-and-process-dependent Modulation Transfer Function (SPD-MTF) measures, presented in Chapter 5, and in the updated and novel image quality metrics (IQM) defined in Chapter 3. Note that from here on in this thesis, when the term noise is used in the context of an imaging system, it refers to the temporally varying noise of the system only, unless otherwise specified.

| NPS measure                     | Input parameters                                           | Summary of characterisation                                                   | Accounts for<br>system noise<br>scene-<br>dependency | Sensitivity to<br>system noise<br>scene-<br>dependency |
|---------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|
| Pictorial Image<br>SPD-NPS      | Single pictorial image<br>N x pictorial image replicates   | Characterises temporally<br>varying noise with respect<br>to a specific image | Yes                                                  | Highest                                                |
| Mean Pictorial<br>Image SPD-NPS | Multiple pictorial images<br>N x replicates for each image | Characterises average real-world temporally varying system noise              | Yes                                                  |                                                        |
| Dead Leaves<br>SPD-NPS          | Single dead leaves image<br>N x dead leaves replicates     | Estimates average real-world temporally varying system noise                  | Partially                                            |                                                        |
| Uniform Patch<br>NPS            | Single uniform patch image                                 | Characterises average<br>real-world system noise                              | No                                                   | ↓<br>Lowest                                            |

Table 4.1 Summary of the uniform patch Noise Power Spectrum (NPS) and the scene-and-processdependent NPS (SPD-NPS) measures. N is the number of replicate captures of each scene/chart.

The *pictorial image SPD-NPS* implements the SPD-NPS framework with respect to an image of any input pictorial scene. It can also be computed with respect to any static real scene. It accounts for the effect of the scene content on temporally varying noise, produced by systems applying non-linear content-aware ISP. Thus, it is the only measure capable of characterising noise in such systems with respect to a given input scene. It is expected to be a valuable input parameter for IQMs designed for non-linear systems. This is because it aims to compensate for the scene-dependent gain and offset in correlations between observer image quality ratings and current IQM output scores, as exemplified by Figure 1.5.

The *dead leaves SPD-NPS* implements the SPD-NPS framework with respect to the dead leaves chart that models the average power spectrum of natural scenes [17]. By measuring noise with respect to this mathematically generated "average scene signal", the dead leaves SPD-NPS provides a convenient approximation of the average real-world level of temporally varying system noise. It is expected to be a more appropriate measure than the uniform patch NPS measure for systems applying non-linear content-aware ISP. However, assumptions associated with dead leaves Modulation Transfer Function (MTF) measurements also apply to it and may affect its accuracy (these assumptions are discussed in Section 2.3.2).

Two other noise measures derived from dead leaves signals have been described by Artmann [18]. The first determines the level of system noise indirectly, by subtracting the system's intrinsic dead leaves MTF from its original dead leaves MTF [18]; strictly speaking, it is not an NPS measure. The second assumes that, the power spectrum of a hypothetical "noiseless captured test chart image" can be simulated by cascading the dead leaves test chart's power spectrum with the intrinsic dead leaves MTF [18]. The NPS of the system is then measured

indirectly by subtracting the former power spectrum from the captured test chart's power spectrum [18]. Errors may result in both measures from the intrinsic MTF not accounting for the effects of reversible image processing [161] (as noted in Section 2.3.2), which is used by many current capture systems. The effects of such reversible processes are taken into account in the dead leaves SPD-NPS, and the other SPD-NPS measures presented in this thesis.

The mean pictorial image SPD-NPS is the only current measure for characterising the average real-world level of temporally varying system noise, accounting for the system's processing of real images of scenes, or the scenes themselves. It accounts for system scene-dependency. It is derived as the mean of a number of pictorial image SPD-NPS measurements, across a large and representative set of images of different scenes (i.e. it is given by  $\overline{F}(s)$  in Figure 1.4(b), if  $F(s_1)$  to  $F(s_n)$  are SPD-NPSs for pictorial scene images  $s_1$  to  $s_n$ , respectively).

It is unconventional to average over NPSs, or MTFs, in this fashion. However, Jenkin [2, p. 130] has demonstrated that averaging over MTFs mitigated inaccuracies caused by simulated quantisation noise provided that variations in the output modulation were distributed evenly around the input signal modulation. Equations 4.2 to 4.5 adapt the derivation of Jenkin's method [2, p. 130] to express how the mean pictorial image SPD-NPS tends toward the hypothetical "correct average real-world SPD-NPS" of the system as the scene image set increases in size, provided that comparable conditions are met.

Let the relationship between the pictorial image SPD-NPS,  $N_{SPD}(u)$ , the hypothetical "correct average real-world SPD-NPS" of the system,  $N_{General}(u)$ , and the variation between them,  $\Delta N_{SPD}(u)$ , be expressed below for one image of a scene. u is spatial frequency.

$$N_{SPD}(u) = N_{General}(u) \pm \Delta N_{SPD}(u)$$
(4.2)

When pictorial image SPD-NPS measurements for each image (*i*) in a set of *p* images of different scenes are averaged, the mean pictorial image SPD-NPS,  $N_{Mean\_SPD}(u)$ , is expressed as:

$$N_{Mean\_SPD}(u) = \frac{1}{p} \left[ \sum_{i=1}^{p} N_{General_i}(u) \pm \Delta N_{SPD_i}(u) \right]$$
(4.3)

This summation is rewritten in expanded form:

$$N_{Mean\_SPD}(u) = \frac{1}{p} \sum_{i=1}^{p} N_{General_i}(u) + \frac{1}{p} \sum_{i=1}^{p} \pm \Delta N_{SPD_i}(u)$$
(4.4)

When the limit of  $p \to \infty$  is considered, the first and second term tend toward  $N_{General}(u)$ and zero, respectively, provided that  $\Delta N_{SPD_i}(u)$  is distributed evenly about zero. Thus, if the pictorial image SPD-NPS for a number of images of different scenes,  $N_{SPD_i}(u)$ , is distributed evenly around  $N_{General}(u)$ , the mean pictorial image SPD-NPS,  $N_{Mean\_SPD}(u)$ , tends toward the average real-world SPD-NPS of the system,  $N_{General}(u)$ .

$$N_{Mean\_SPD}(u)\lim_{p\to\infty} = \frac{1}{p}\sum_{i=1}^{p}N_{General_i}(u) + \frac{1}{p}\sum_{i=1}^{p}\pm\Delta N_{SPD_i}(u) \rightarrow N_{General}(u)$$
(4.5)

Provided the scene image set is large enough and reflects the characteristics of commonly captured scenes, the mean pictorial image SPD-NPS accounts for the effect of scenedependent system behaviour on the average real-world system noise power. If the individual pictorial image SPD-NPS measures are biased, however, this bias is carried into the mean measure.

The SPD-NPS measures, and particularly the mean pictorial image SPD-NPS, are more computationally complex and more complicated to implement than the uniform patch NPS. Reducing the number of replicates lowers computational demand but causes underestimation of system noise. All replicates must be registered to mitigate bias that results from the scene-and-process-dependent noise image being calculated inaccurately. Comparable practical measurements of noise from a smartphone [7] and digital single-lens reflex (DSLR) [161] camera required captured replicates to be registered using software, despite the use of a tripod [7], [161] and camera remote [7] during capture.

The SPD-NPS measures do not account for FPN which appears in all replicates,  $r_i(x, y)$ , and is thus present in the mean image,  $\bar{g}(x, y)$ , in Equation 4.1. For the same reasons, certain fixed patterns of artefacts that are caused by the mosaicing-demosaicing process are also unaccounted for (shown in Figure 4.2). It should be noted that the uniform patch NPS also fails to account for such artefacts, since the artefacts only manifest when spatially varying input signals are captured. These artefacts are caused by the sparse sampling of information in fixed patterns by the Colour Filter Array (CFA), and the limited capabilities of demosaicing algorithms to recover the lost information. The intensity of these artefacts relates to the local gradient of each colour channel and is thus scene-dependent. Equation 4.6 isolates the artefacts,  $N_{Fixed}(x, y)$ , by modifying the image capture simulation pipelines described in Section 4.2.  $I_{Blurred}(x, y)$  is the image of the scene after lens blur has been modelled. Bayer array sampling and demosaicing were then applied to this image, yielding an image corrupted with the mentioned artefacts,  $I_{Corrupted}(x, y)$ .

$$N_{Fixed}(x, y) = I_{Corrupted}(x, y) - I_{Blurred}(x, y)$$
(4.6)



Figure 4.2 Fixed patterns of artefacts caused by demosaicing the 'Students' image [7] (left), and the detail of it (right). Global contrast was enhanced to increase artefact intensity.

A final measure, the *pictorial image SPD-NPS standard deviation*, describes the level of scene-dependent variation in measurements of the system's temporally varying noise. This variation is either caused by genuine system scene-dependency, or scene-dependent variation in the level of measurement error of the pictorial image SPD-NPS. It is the only current measure for system noise scene-dependency. It is computed by Equation 4.7 as the standard deviation, s(u), of the pictorial image SPD-NPSs,  $N_{SPD_i}(u)$ , from a set of p images of different scenes, where u is spatial frequency.  $N_{Mean_SPD}(u)$  is the mean pictorial image

SPD-NPS. Like the mean pictorial image SPD-NPS, this scene-dependency measure becomes more representative as p increases, provided its input parameters are unbiased.

The average real-world level of system noise and its level of scene-dependency are described by subtracting and adding the pictorial image SPD-NPS standard deviation from the mean pictorial image SPD-NPS (as demonstrated by the broken lines in Figure 4.6).

$$s(u) = \sqrt{\frac{1}{p-1} \sum_{i=1}^{p} (N_{SPD_i}(u) - N_{Mean\_SPD}(u))^2}$$
(4.7)

## 4.2 Validation Methodology

The SPD-NPS measures were validated by analysing measurements from two simulated image capture pipelines, generated in MATLAB<sup>TM</sup> (Figure 4.3). Controllable outputs were obtained from each pipeline after demosaicing, denoising and sharpening ISP was applied under a variety of simulated exposure conditions, with respect to 50 input images of scenes. This enabled each measure to be computed and compared after each ISP stage to evaluate pipeline scene-dependency and measurement accuracy. The pipelines were also used to validate the SPD-MTF measures and IQM frameworks in Chapters 5 and 6, respectively.



Figure 4.3 The linear (a) and non-linear (b) camera simulation pipeline modelling and image signal processing (ISP) stages. Output images were generated at points indicated by the red arrows.

Modelling that was common to both pipelines is shaded grey. ISP stages for which the linear and non-linear algorithms had very different effects on image quality to one another are shaded blue.

Both pipelines implemented identical modelling of physical camera processes, including lens blur, photon and sensor noise, image pre-processing and Bayer array sampling. One pipeline then applied linear demosaicing, denoising and sharpening ISP. The other pipeline applied the equivalent non-linear content-aware ISP. These pipelines are referred to as the *linear pipeline* and the *non-linear pipeline*, respectively, in this thesis.

The physical processes of digital image capture, described below, were modelled first in both pipelines. These processes are shown in grey in Figure 4.3. Their modelling did not aim to replicate a particular real system or simulate every relevant process on a quantum level. However, it produced images with comparable blur and noise artefacts to real physical systems for a range of exposure conditions. These images were then processed by published ISP algorithms. Note that it is the interactions between such ISP algorithms and the image signals and noise that are of most interest to this thesis, as well as the capabilities of the proposed measures/metrics to account for them.

Lens blur was modelled by convolving the input scene image with a Gaussian approximation for the central lobe of a diffraction-limited lens' airy disk [319], according to the f-number and pixel pitch of an iPhone 6 smartphone [320], [321]; outer airy rings were ignored. The peak wavelengths for the R, G and B channels were 570nm, 550nm, and 450nm, respectively. The Point Spread Function (PSF) kernel dimensions were 9-by-9 pixels.

2D Poisson noise was modelled using the Imnoise MATLAB<sup>TM</sup> function [322] at maximum linear signal-to-noise ratios (SNR),  $\sqrt{q}$ , of 5, 10, 20 and 40, where q is the average number of events according to Equation 2.32. Thus, the SNR was computed at a normalised fractional linear luminance of 1 (i.e. at full-well capacity). These SNRs represent excellent (SNR 40) to very poor exposure conditions (SNR 5). The reduced quantum efficiency of blue and red pixels was modelled by scaling down the number of events in the R and B channels by factors of 2 and 3.33, respectively [165]. Read noise and dark current noise were modelled in one step, by adding limited levels of Gaussian noise to each channel with increased mean and variance at lower SNRs. This accounted for the fact that DSNU is dependent on exposure time (which was assumed longer at lower SNRs). FPN was not modelled. The following pre-processing was then applied, in order:

- The image was delinearised by applying a Gain Offset Gamma (GOG) model for the opto-electronic conversion function (OECF) with the gain, offset and gamma set to 1,0 and 0.4545, respectively.
- 2) The gain was increased slightly.
- 3) Black and white level adjustments were applied using the imadjust MATLAB<sup>™</sup> function, to remove the noise floor and recover highlights, respectively.

The gain, black and white level adjustments were more intensive at lower SNRs.

Pixel information was sampled from the R, G and B channels of the image according to a 'grbg' Bayer CFA. Most capture system simulations implement Bayer array sampling before noise modelling. The chosen order, however, yielded identical output images to this order and facilitated the independent scaling of noise in each colour channel.

The pipelines then implemented the ISP algorithms described below. If constants are quoted, the first constant is with respect to the pipelines tuned at a Poisson noise SNR of 5 and the second at SNR 40. Some capture systems can perform demosaicing, denoising and sharpening using a single algorithm, or two algorithms. However, the pipelines used three separate algorithms so that the effect of each process could be characterised in isolation. Algorithms capable of performing two of the above processes were restricted to perform one process only.

The linear pipeline used the following algorithms. Demosaicing was by the Malvar *et al.* [30] algorithm. It estimates the luminance gradient across each real CFA pixel after bilinear interpolation, with respect to the interpolated neighbouring pixels. The two interpolated colour channels at the same pixel location are adjusted according to this luminance gradient. This preserves image edges. The filter is linear since its region of support is within a 5x5 pixel window [30]. Denoising was by 2D spatial domain Gaussian filtering using the Imgaussfilt MATLAB<sup>TM</sup> function [323], with a standard deviation of between 1.8 and 0.45 pixels. Sharpening was by the imsharpen MATLAB<sup>TM</sup> function's [85] unsharp mask (USM) with a strength of between 1.2 and 2, Gaussian low-pass filter radius of between 3 and 1 pixels, and no thresholding applied.

The non-linear pipeline applied the following algorithms. Demosaicing was by the *One Step Alternating Projections (OSAP)* [70] algorithm. It revises the Alternate Projections [72] algorithm to perform one filtering step in the polyphase domain [70] to establish interchannel correlations and mitigate aliasing [72]. The algorithm was set to full convergence. Denoising was by the Block Matching and 3D Filtering (BM3D) [31] algorithm using the 'normal' profile. It operates on a patch-wise level as described in Section 2.2.1. It uses the sliding window transform to search for matching image "blocks". These blocks are assembled and averaged in a three-dimensional (3D) transform domain. Image colour channels were then sharpened separately using the detail enhancement property of the *Guided Image Filter (GIF)* [32]. The filtered channels were then concatenated to obtain the sharpened RGB image. The local window radius of the filter was set to 1. The regularisation parameter was set between 0.02 and 0.045. No external guidance image was specified.

The input parameters of the denoising and sharpening algorithms were tuned for each exposure level to optimise output image quality (judged empirically by the author) after all ISP algorithms were applied. Tuning was carried out on a MacBook Pro Retina (2016) display at a viewing distance of 60cm, giving a Nyquist frequency of 46 cycles/degree.

Data generated at each exposure level is referred to, from here on, by the Poisson noise SNR of the pipeline it was obtained from. However, the SNR of the output images from the pipelines (Equation 2.43) changed after each processing stage and differed from the Poisson noise SNR. For example, prior to denoising, the output image SNR was lower than the Poisson noise SNR, since it also accounts for read noise, dark current noise, and the scaling of Poisson noise in the R and B channels. Denoising and sharpening also affected the output image SNR significantly.

The fifty input images of scenes were selected according to the following rationale:

- The set should represent the subject matter and signal content of commonly captured scenes.
- The set should contain a variety of spatial contents, including naturally occurring and human-made structural signals, textures, edges, and uniform-tone regions.
- Images should be captured under various natural lighting conditions and depths of field.
- 4) Each image must contain minimal artefacts and represent its subject faithfully.
- 5) The minimum horizontal/vertical pixel dimension, d, of each image must satisfy d > 512.

Scene images 1-37 and 38-50 are shown in Appendix C and Appendix D, respectively. Scene images 1-17 were from the LIVE Image Quality Assessment Database [225]. Scene images 18-26 and 38-50 were from University of Westminster publications [7], [8], [14], [102]. They were captured using characterised professional digital single-lens reflex (DSLR) cameras. Scene images 27-37 were captured using the same DSLR, lens, focal length, aperture and ISO as scene images from [14].

The dimensions of these images were reduced to 512-by-512 pixels by a combination of bicubic interpolation and cropping according to Equation 4.8. d is the minimum pixel dimension of each image,  $F_{IN}(x, y)$ .  $F_{OUT}(x, y)$  is the resized and cropped image. The functions  $B\{...\}$  and  $C\{...\}$  describe bicubic interpolation by a scale factor of 0.5 and cropping to 512-by-512 pixels, respectively. If  $d \ge 2048$  the process was repeated until  $512 \le d < 1024$ .

If 
$$d \ge 1024$$
,  $F_{OUT}(x, y) = B\{F_{IN}(x, y)\}$ , (4.8)  
elseif  $512 \le d < 1024$ ,  $F_{OUT}(x, y) = C\{F_{IN}(x, y)\}$ ,  
else Reject Image

Each scene image was then windowed by a bespoke method that tapered its edges to a neutral pixel value but preserved its signal as much as possible (Figure 4.4(b)). This action stopped *periodic replication artefacts*, or wraparound error (present in Figure 4.4(c)) from corrupting its two-dimensional (2D) luminance spectrum (Figure 4.4(d)). These artefacts manifest when the opposite edges of the image of the scene differ in luminance, since the luminance spectrum is computed using the discrete Fourier transform (DFT) that is a periodic function [324, pp. 116–120].

The edges of all scene-and-process-dependent noise images were of similar luminance. Thus, periodic replication artefacts did not corrupt their DFT luminance spectra significantly or affect the accuracy of the various SPD-NPS measures. However, such artefacts biased MTFs measured using unwindowed scene images significantly (as discussed in Section 5.1).



Figure 4.4 Two-dimensional (2D) discrete Fourier transform (DFT) log luminance spectra for the 'Students' image [7]: before, (c), and after windowing, (d) using the mask (e).

To window each image, a mask was applied as a transparent layer in Adobe Photoshop<sup>™</sup>. The mask was generated in MATLAB<sup>™</sup> as described below:

- An RGB image of 512-by-512 pixels dimensions and normalised pixel value 1 was created.
- A 2D raised cosine function of 128-by-128 pixels dimensions, frequency 1/128 cycles/pixel, minimum value 0.46, and maximum value 1 was generated by revising the method of Eddins [325].
- 3) The quadrants of 2) were copied to the corresponding corners of 1).
- 4) The remaining horizontal/vertical edges of 1) were tapered by copying appropriate pixels from the horizontal/vertical edges of the quadrants of 2).

All input images were linearised before being processed by the pipelines. This was achieved using a GOG model that corrected for the gamma of the capture system of 0.4545 (or 1/2.2); the gain and offset were set to 1 and 0, respectively.

## 4.3 Results

The various SPD-NPS measures and the uniform patch NPS are presented for the linear and non-linear pipelines at SNRs 40 and 5. These measurements are analysed after each ISP

stage, as indicated by the red arrows in Figure 4.3. Measurements were also taken at SNRs 10 and 20, which showed comparable trends. Each measurement was "smoothed" using a seven-segment moving average filter. MATLAB<sup>™</sup> code for Burns' direct dead leaves MTF [29] implementation was adapted significantly to deliver all SPD-NPS measurements, and the uniform patch NPS.

There is no current way to obtain the ground truth (or "correct") NPS for a given system, due to the effect(s) of: 1) measurement error, 2) the dependency of Poisson noise on input signal intensity, and 3) interactions between the input signal and any non-linear ISP. Thus, the SPD-NPS measures are validated via thorough comparison with existing comparable measures, and expectations of capture system behaviour.

Figure 4.5 compares measurements obtained from dead leaves signals only. It is used to validate the dead leaves SPD-NPS by comparison with the uniform patch NPS. The y-axis of each plot is logarithmically scaled and the test chart images were not windowed, as is common practice in the industry.

Figure 4.6 validates all SPD-NPS measures derived from images of scenes by comparing them with the previously validated dead leaves SPD-NPS measure. Note that, all input images of scenes and test charts were windowed to enable their fair comparison. The y-axes are, again, logarithmically scaled.

Figure 4.7 examines pipeline noise scene-dependency in depth in a linear-linear space. It analyses changes in the distribution and integrated area of pictorial image SPD-NPS measurements across 50 images of different windowed scenes.



Figure 4.5 Luminance Noise Power Spectra (NPS) and scene-and-process-dependent NPSs (SPD-NPS) derived from different test charts. The uniform patch NPS (grey curves) and proposed dead leaves SPD-NPS (red curves), are shown at different image signal processing (ISP) stages at SNR 40, (a) to (f), and SNR 5, (g) to (l). The power (y) axis is logarithmically scaled.



Figure 4.6 Scene-and-process-dependent luminance Noise Power Spectra (SPD-NPS) derived from pictorial images and the dead leaves test chart. The pictorial image SPD-NPS (grey curves), mean pictorial image SPD-NPS (black curves), pictorial image SPD-NPS standard deviation (black dotted curves), and dead leaves SPD-NPS (red curves) are shown after different stages of image signal processing (ISP) at signal-to-noise ratios (SNR) of 40, (a) to (f), and 5, (g) to (l). The power (y) axis is logarithmically scaled.



Figure 4.7 Demonstration of luminance noise scene-dependency in the non-linear image capture pipeline. Pictorial image scene-and-process-dependent Noise Power Spectra (SPD-NPS) are plotted on linear axes for the linear and non-linear pipelines at signal-to-noise ratios (SNR) of 40, (a) to (f), and 5, (g) to (l). Each curve is coloured according to its integrated area before denoising and sharpening. Green curves are of a higher area between zero and Nyquist frequency.

As expected from measures based on linear system theory, the uniform patch NPS was similar to the various SPD-NPS measurements for the linear pipeline. This shows that both the uniform patch NPS and SPD-NPS measures are applicable to the measurement of linear systems.

Figure 4.5 establishes the dead leaves SPD-NPS (red curves) as a more representative (and thus more "accurate") measure of average real-world noise power for systems using nonlinear ISP than the uniform patch NPS (black curves). The uniform patch NPS decreased excessively after non-linear denoising since it presented the denoising algorithm with the simplest possible input signal for denoising. Consequently, after denoising, the uniform patch NPS underestimated the dead leaves SPD-NPS (for which the structure of the dead leaves signal impeded the denoising process). The dead leaves SPD-NPS measurements obtained using 10 and 100 replicates were virtually identical to one another when plotted on logarithmically scaled axes. This validated the computation of further SPD-NPS measures with ten replicates.

Figure 4.6 demonstrates that the pictorial image SPD-NPS (grey curves) accounted suitably for the scene-dependent processing of temporally varying noise by the non-linear pipeline. This is because measurements from images of different input scenes varied significantly only after non-linear content-aware denoising and sharpening algorithms were applied. This observation, coupled with the measure's limited bias, suggests that implementing it in signal transfer visual IQMs (STV-IQM) would improve correlations with perceived image quality. Likewise, implementing scene-and-process-dependent noise images in the IEEE P1858 Camera Phone Image Quality (CPIQ) metric [22] is also expected to improve the metric's accuracy.

It was inferred that, the mean pictorial image SPD-NPS (Figure 4.6, black curves) characterised the average real-world level of temporally varying noise in both pipelines effectively. This was due to the apparent lack of bias in the pictorial image SPD-NPS curves, and the fact the scene image set was both large and representative. The pictorial image SPD-NPSs (grey curves) were distributed approximately evenly about the mean pictorial image SPD-NPS (black curves) after all ISP stages, suggesting the latter measure was representative of the "general" performance of the system.

The dead leaves SPD-NPS (Figure 4.6, red curves) underestimated the mean pictorial image SPD-NPS (black curves) after non-linear content-aware denoising and sharpening. This

observation suggests that other content-aware algorithms may also denoise dead leaves signals more effectively than the "average pictorial scene". The fact the dead leaves chart was denoised differently to images of real scenes was expected, considering the structure of this mathematically generated signal has limited relation to real scenes. Its similarity with scenes is statistical, not physical. It is expected that the non-linear BM3D algorithm denoised the dead leaves signal more effectively for the following reasons. It operates on a patch-wise level (Section 2.2.1). The homogeneity of the dead leaves signal (which consists entirely of discs with perfect edges) allowed the algorithm to find a larger number of "matched" windows than for most images of natural scenes (which contain varied, complex structure).

The scene-dependent variation in the noise in the non-linear pipeline was successfully accounted for by the pictorial image SPD-NPS standard deviation (Figure 4.6, black dotted curves). The measure identified non-linear denoising as the main source of noise scene-dependency, which is valid. Note that, the rapid drop in the lower standard deviation boundary in Figure 4.6(k) is not a discontinuity. It resulted from the measurement crossing the x-axis of a graph with a logarithmically scaled y-axis.

Pipeline noise scene-dependency was examined in detail in Figure 4.7, on linear axes. Pictorial image SPD-NPS measurements from both pipelines showed minor scene-dependent variation before denoising (Figure 4.7(a), (d), (g) and (j)). This is expected to be due to actual scene-dependent variations in: 1) the level of Poisson noise (which is dependent on input signal intensity), 2) the effect of black/white level adjustments on noise, 3) scaling of noise when simulating colour channel quantum efficiency. This variation may also be caused by scene-dependency in the measurement error, which currently cannot be distinguished from genuine system scene-dependency. Regardless of their origin, results from the simulations suggest that such variations do not limit significantly the validity of the pictorial image SPD-NPS. The same applies to the pictorial image SPD-NPS standard deviation and mean pictorial image SPD-NPS that are computed from the latter measure. It should also be noted that these variations in the pictorial image SPD-NPS were not noticeable on logarithmically scaled axes in Figure 4.6, unlike the variations that resulted from application of non-linear content-aware ISP.

The distribution and relative level of spread of the pictorial image SPD-NPS curves was relatively unaffected by the linear ISP algorithms (the curves displayed a smooth transition from green to blue throughout Figure 4.7(a) to (c) and (g) to (i)). However, the shape and

order of the curves changed dramatically after non-linear denoising and sharpening, as well as their relative level of spread. The pictorial image SPD-NPS standard deviation (Figure 4.6, black dotted curves) accounts for changes in their spread. But it does not account for changes in their order which should be considered as a further characteristic of system noise scene-dependency.

## 4.4 Summary

Three novel SPD-NPS measures were defined. They were measured from replicate captures of relevant input signals, such as scenes. They were validated by analysing measurements from two simulated image capture pipelines that applied either linear or non-linear content-aware ISP algorithms. They accounted for the effect of the input signal on the power of temporally varying luminance noise produced by the pipelines. This included the scene-dependent effects of non-linear ISP.

All measures displayed limited measurement error. For the linear pipeline, they delivered similar measurements to the current standard uniform patch NPS. This suggests they were equally biased to the latter measure. Measurements from the non-linear pipeline displayed significant scene-dependent variation, as would be expected. Thus, all SPD-NPS measures were concluded to be more suitable for non-linear systems than current equivalent measures (if equivalent measures exist). Their limitations are that they do not account for FPN, they are computationally complex, and they require many replicates to be captured and registered.

The pictorial image SPD-NPS was the only measure capable of characterising noise in the non-linear pipeline, with respect to a given input scene image. Likewise, the dead leaves SPD-NPS described the average real-world noise power of this pipeline more appropriately than the uniform patch NPS. The former measure, however, was less representative of average real-world noise than the mean pictorial image SPD-NPS, since non-linear ISP algorithms processed noise in dead leaves signals differently to noise in the average pictorial scene image. A measure for the level of system scene-dependency was also validated successfully but did not account for all relevant scene-dependent behaviour.
# Chapter 5 Validation of Scene-and-Process-Dependent MTFs (SPD-MTF)

The Scene-and-process-dependent Modulation Transfer Function (SPD-MTF) framework is defined. It characterises the modulation (contrast) transfer of the system versus spatial frequency, with respect to any input signal, accounting for system scene-dependency. In the SPD-MTF derivation, scene-and-process-dependent Noise Power Spectrum (SPD-NPS) measures from Chapter 4 are used to account for system noise. Three novel SPD-MTF measures that implement this framework are presented. Each characterises one of the following:

- 1) system signal transfer with respect to an image of a given input scene;
- the average real-world level of system signal transfer with respect to many images of different input scenes;
- 3) system signal transfer with respect to the dead leaves test chart.

Each measure is validated by analysing measurements from simulated linear and non-linear image capture pipelines, defined in Section 4.2. A novel measure for capture system signal transfer scene-dependency is also introduced and validated.

## **5.1** Derivation of the SPD-MTF Measures

Traditional Modulation Transfer Functions (MTF) measured from edges, sinusoidal signals and white noise are often unrepresentative of average real-world signal transfer for systems that apply non-linear content-aware image signal processing (ISP) algorithms (as discussed in Section 2.3.2). Average real-world signal transfer in such systems is characterised more suitably by MTFs measured from dead leaves signals that model natural scene statistics (NSS) [16], [17]. It was concluded in Section 2.3.2 that the direct dead leaves MTF implementation [19] (Equation 2.31) is the most appropriate current MTF parameter for image quality metrics (IQM) designed for predicting image quality in such systems. However, no prior art has verified whether dead leaves signals trigger non-linear contentaware ISP algorithms in the same manner as the "average natural scene". This assumption must hold true if dead leaves MTFs are to characterise appropriately the average real-world level of signal transfer for systems utilising such processes. It should be noted that Chapter 4 found this assumption did not hold with respect to processing of noise.

MTFs measured from dead leaves signals, or any current test chart for that matter, do not account for scene-dependent and local-content-dependent variations in the signal transfer of non-linear systems. These variations are caused by non-linear content-aware ISP algorithms interacting with pictorial scene signals. It is logical to assume that the accuracy of IQMs and the Noise Equivalent Quanta (NEQ) measure would improve if their MTF parameters accounted for such scene-dependent behaviour. This should reduce the gains and offsets that separate correlations between the IQM output scores and quality ratings for each scene.

The SPD-MTFs of this chapter account for capture system signal transfer scene-dependency. They are based upon the *scene-derived texture MTFs* from Branca *et al.* [7], which extend the direct dead leaves MTF measurement implementation (Equation 2.31) to characterise signal transfer with respect to the one-dimensional (1D) power spectrum, PS(u), of a pictorial image luminance signal, I(x, y). PS(u) is given by the rotational average of PS(u, v) that is defined by Equation 2.30; all other parameters to these equations are as described previously. Branca *et al.* [7] characterised a high-end smartphone camera and a digital single-lens reflex (DSLR) camera by measuring scene-derived texture MTFs with respect to several images of scenes. Scene-dependent variation was higher for the former device, as expected, due to the application of greater levels of non-linear content-aware processing [7].

The resulting MTFs are overestimated, however, for the following two reasons. Firstly, the uniform patch Noise Power Spectrum (NPS) is used to compensate for the biasing effect of system noise. This measure was found in Chapter 4 to be unsuitable for the purpose since it underestimates noise in systems using non-linear content-aware denoising. Thus, the scene-derived texture MTFs [7] are overestimated for low-signal scene images due to signal-to-noise limitations. These limitations are defined by Equation 5.1, where  $PS_{Input}(u)$  and  $PS_{output}(u)$  are the input and output scene image power spectra, respectively, and MTF(u) is the scene-derived texture MTF [19].  $NPS_M(u)$  and  $NPS_R(u)$  are the measured uniform patch NPS and real system NPS, respectively. These limitations are inherent to the direct

dead leaves MTF measurement implementation; thus, they also apply to the various SPF-MTF measures. It should also be noted that MTF(u) limits to 1 in a theoretical ideal where the real system NPS is measured with absolute accuracy (i.e.  $NPS_M(u) = NPS_R(u)$ ). This is because the numerator and denominator of line 3 of Equation 5.1 limit toward an equal value as  $PS_{Input}(u)$  limits toward zero.

$$if NPS_M(u) < NPS_R(u), \tag{5.1}$$

then 
$$\lim_{PS_{Input}(u)\to 0} PS_{Input}(u) < PS_{Output}(u) - NPS_{M}(u),$$
  
and 
$$\lim_{PS_{Input}(u)\to 0} \left(\frac{PS_{Output}(u) - NPS_{M}(u)}{PS_{Input}(u)}\right) = \infty = MTF(u)$$

Secondly, zero-padding or windowing were not applied to the input scene images before computing the two-dimensional (2D) discrete Fourier transform (DFT) [7]. Thus, periodic replication artefacts were introduced into the luminance spectrum at all frequencies when opposite scene edges differed in luminance; these artefacts are discussed in Chapter 4, Section 4.2.

Simulation of the effect of periodic replication artefacts on the scene-derived texture MTFs are shown in Figure 5.1. They agreed with measurements from real capture systems by Branca *et al.* [7] under comparable conditions. Periodic replication artefacts were unaffected by system processing and thus biased the scene-derived texture MTFs toward MTF(u) = 1. The level of bias was scene-dependent. Windowing the input images following the method of Section 4.2 mitigated the artefacts and reduced the bias significantly. However, for the relatively low-power "Contrail" and "Cloud" images, before denoising, removing these artefacts exposed a greater, underlying bias, (shown in Figure 5.1(d)) which originates from signal-to-noise limitations (Equation 5.1).



Figure 5.1 Scene-derived texture Modulation Transfer Functions (MTF) of Branca *et al.* [7] for the non-linear pipeline at a signal-to-noise ratio (SNR) of 40, before, (a) to (c), and after the windowing method of Section 4.2 was applied, (d) to (f). Test images are from Branca *et al.* [7], resized to 512 x 512 pixels by bicubic interpolation. Dotted curves show +/- 1 standard deviation.

The SPD-MTF framework (Figure 5.2) refines the method of Branca *et al.* [7] to measure the MTF either from windowed images of scenes, or the dead leaves target. It is given by MTF(u) in Equation 2.31, when PS(u) is the rotational average of the 2D DFT luminance power spectrum, PS(u,v), of the scene/target, I(x,y), given by Equation 2.30.  $NPS_{output}(u)$  is the SPD-NPS, as measured from the same scene/target (defined in Section 4.1). Utilising SPD-NPS measures instead of the uniform patch NPS mitigates bias from signal-to-noise limitations (Equation 5.1). All other input parameters to these equations are as stated previously.



Figure 5.2 The scene-and-process-dependent Modulation Transfer Function (SPD-MTF) framework.

Three SPD-MTF measures are presented in this thesis that implement the SPD-MTF framework. They are defined below and summarised in Table 5.1 alongside the direct dead leaves MTF implementation. They are used as input parameters in various IQMs in Chapter 6. They are more computationally intensive and difficult to implement than current MTFs.

| MTF measure                        | Input parameters                                                                  | Summary of characterisation                                        | Accounts for<br>system signal<br>transfer scene-<br>dependency? | Accounts for<br>system noise<br>scene-<br>dependency? | Sensitivity to<br>system scene-<br>dependency |
|------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|
| Pictorial Image<br>SPD-MTF         | Input image PS<br>Output image PS<br>Pictorial image SPD-NPS                      | Characterises system<br>signal transfer for an<br>individual image | Yes                                                             | Yes                                                   | Highest<br><b>↑</b>                           |
| Mean<br>Pictorial Image<br>SPD-MTF | M x input image's PSs<br>M x output image's PSs<br>M x pictorial image's SPD-NPSs | Characterises general system signal transfer                       | Yes                                                             | Yes                                                   |                                               |
| Dead Leaves<br>SPD-MTF             | Input dead leaves PS<br>Output dead leaves PS<br>Dead leaves SPD-NPS              | Characterises general system signal transfer                       | Partially                                                       | Partially                                             |                                               |
| Direct Dead<br>Leaves MTF          | Input dead leaves PS<br>Output dead leaves PS<br>Uniform patch NPS                | Characterises general system signal transfer                       | Partially                                                       | No                                                    | Lowest                                        |

Table 5.1 Summary of the direct dead leaves Modulation Transfer Function (MTF) measurement implementation [19] and the scene-and-process-dependent MTFs (SPD-MTF) of this thesis. PS and NPS are the power spectrum and Noise Power Spectrum, respectively. SPD-NPS is the scene-and-process-dependent NPS. M is the number of images in the test image set.

The *pictorial image SPD-MTF* implements the SPD-MTF framework with respect to a single windowed image of a scene and employs the pictorial image SPD-NPS as the noise measure. It is the only measure capable of characterising the transfer of the signal of a given input scene for systems applying non-linear content-aware processing. It offers improvements over the original measure (i.e. the scene-derived texture MTF [7]) by mitigating bias that results from periodic replication artefacts, as well as the underestimation of noise in systems

applying non-linear denoising. Therefore, scene-dependent variations in the SPD-MTF measurements are more likely to be representative of genuine scene-dependent behaviour of non-linear content-aware ISP algorithms, as opposed to scene-dependent bias. This accuracy will be critical if the measure is to compensate for scene-dependent gain and offset in correlations between IQM scores and psychophysical image quality ratings.

The *dead leaves SPD-MTF* aims to approximate the average real-world signal transfer of the system by passing a dead leaves signal through the SPD-MTF framework. Since the dead leaves SPD-NPS is used to describe system noise, the measure accounts for noise more suitably than the direct dead leaves MTF [19] for systems applying non-linear content-aware ISP. This reduces bias due to signal-to-noise limitations (Equation 5.1). Unlike many pictorial scenes, the dead leaves test chart contains contrast signals at all frequencies that are randomly distributed spatially. Both these characteristics are also expected to help mitigate such bias. However, Section 2.3.2 suggests non-linear content-aware ISP algorithms may not process dead leaves signals as per the "average scene". This would render the measure unrepresentative of the average real-world level of system signal transfer.

The mean pictorial image SPD-MTF is the only measure for the average real-world level of system signal transfer that accounts for processing of real image signals. It is derived as the mean of all pictorial image SPD-MTFs over a large set of images of different scene contents; it is adapted from Jenkin's MTF-averaging method like the equivalent SPD-NPS measure [2, p. 130]. It is denoted by  $N_{Mean\_SPD}(u)$  in Equations 4.2 to 4.5 if  $N_{SPD}(u)$  is the pictorial image SPD-MTF for the system,  $N_{General}(u)$  is the hypothetical "correct" average real-world SPD-MTF for the system, and  $\Delta N_{SPD}(u)$  is the difference between them for a single scene image, *i*, in a set of *p* scene images. This derivation requires that the scene image set is representative of commonly captured scenes and that  $\Delta N_{SPD}(u)$  is distributed evenly about zero. The mean pictorial image SPD-MTF is also denoted by  $\overline{F}(s)$  in Figure 1.4(b), when  $F(s_1)$  to  $F(s_n)$  are SPD-MTFs measured from scene images  $s_1$  to  $s_n$ , respectively.

Finally, the *pictorial image SPD-MTF standard deviation*, s(u), describes the level of scenedependent variation in measurements of the signal transfer of a system. Like the equivalent noise measure, this measurement variation can result either from genuine system scenedependency or scene-dependent measurement error. This unique measure is computed using Equation 4.7, when  $N_{Mean\_SPD}(u)$  is the mean pictorial image SPD-MTF and  $N_{SPD_i}(u)$  is the pictorial image SPD-MTF for each image, *i*, in a set of *p* images of different scenes. The same assumptions and sources of error apply as for the mean pictorial image SPD-MTF. The average real-world level and scene-dependency of signal transfer in a given system is described by subtracting and adding the pictorial image SPD-MTF standard deviation from the mean pictorial image SPD-MTF, as shown by the dotted line in Figure 5.4.

### 5.2 Results

The SPD-MTFs were validated by the same methodology as the SPD-NPS measures in Chapter 5. Measurements were taken from the simulated linear and non-linear capture pipelines defined in Section 4.2, at signal-to-noise ratios (SNR) of 40 and 5; measurements obtained at SNRs 10 and 20 also displayed comparable trends. All the measurements presented here were smoothed with a seven-segment moving average filter. Burns' MATLAB<sup>TM</sup> implementation [29] was used to calculate the direct dead leaves MTF and was revised significantly to compute all SPD-MTF measures.

It should be noted that, there is no way of deriving the ground truth MTF of a given system for the same reasons as discussed in Chapter 4 for the NPS. Therefore, the various SPD-MTF measures are validated by observing and comparing the measurements from systematic system changes in both pipelines. This method is comparable to that used to validate the SPD-NPS measures in Section 4.3. Figure 5.3 compares the dead leaves SPD-MTF and direct dead leaves MTF, indicating that the former is a more suitable measure for systems applying non-linear content-aware ISP. Figure 5.4 compares the various SPD-MTFs measured from pictorial images with the previously validated dead leaves SPD-MTF. The formatting of this figure is identical to Figure 4.6 that illustrates the equivalent SPD-NPSs. Figure 5.5 applies the same formatting as Figure 4.7 to analyse in detail the scene-dependent characteristics of each pipeline. Each pictorial image SPD-MTF curve is coloured according to its integrated area after demosaicing.

Windowing was not applied to the dead leaves test chart image in Figure 5.3, as is common practice in the industry. But windowing was applied to both the dead leaves test chart and the input scene images in Figures 5.4 and 5.5 to enable fair comparison between measurements obtained from these respective input signals. This is the cause for the minor variations between the dead leaves SPD-MTF measurements in Figures 5.3 and 5.4.



Figure 5.3 Direct dead leaves Modulation Transfer Functions (MTF) (black curves) and proposed dead leaves scene-and-process-dependent MTFs (SPD-MTF) (red curves) after different stages of image signal processing (ISP) at signal-to-noise ratios (SNR) of 40, (a) to (f), and 5, (g) to (l).



Figure 5.4 Comparison of scene-and-process-dependent Modulation Transfer Functions (SPD-MTF) from pictorial images and the dead leaves test chart. Pictorial image SPD-MTFs (grey curves), mean pictorial image SPD-MTFs (black curves), pictorial image SPD-MTF standard deviations (black dotted curves) and dead leaves SPD-MTFs (red curves) are shown after different image signal processing (ISP) stages at signal-to-noise ratios (SNR) 40, (a) to (f), and 5, (g) to (l).



Figure 5.5 Demonstration of signal transfer scene-dependency in the non-linear image capture pipeline. Pictorial image scene-and-process-dependent Modulation Transfer Functions (SPD-MTF) are shown for the linear and non-linear pipelines at signal-to-noise ratios (SNR) of 40, (a) to (f), and 5, (g) to (l). Curves for each scene image are coloured according to their integrated area before denoising and sharpening. Green curves are of a higher area between zero and Nyquist frequency. Ten replicates were used when computing each SPD-MTF.

The experimental conditions at SNR 5 before denoising (i.e. Figures 5.3-5.5 (g) and (j)) were considered less relevant when validating each SPD-MTF measure. This was because it is common for real capture systems to apply denoising at such exposure levels, and the SPD-MTFs were intended for systems that apply denoising and other ISP. All other conditions are referred to as the most relevant conditions.

All measures were heavily biased under these less relevant conditions due to signal-to-noise limitations expressed in Equation 5.1. Denoising mitigated this bias since it reduced the absolute difference between the measured,  $NPS_M(u)$ , and real noise power,  $NPS_R(u)$ . Figure 5.3 (g) and (j) demonstrate how raising the number of SPD-NPS replicates reduces this bias by increasing the accuracy of the SPD-NPS parameter,  $NPS_M(u)$ .

Under the most relevant conditions, the dead leaves SPD-MTFs (Figure 5.3, red curves) and direct dead leaves MTFs (black curves) were of similar shape for the linear pipeline, as expected from linear system theory. Measurement bias was marginally lower when the dead leaves SPD-MTF was measured using 100 replicates, compared to 10 replicates. The similarity between these measurements justified the decision to compute other SPD-MTF measures shown in Figures 5.4 and 5.5 with 10 replicates.

Figure 5.3(k) and (l) show that the direct dead leaves MTF was overestimated moderately after non-linear denoising at SNR 5. Figure 4.5(k) demonstrates that this bias was due to signal-to-noise limitations (Equation 5.1) since the uniform patch NPS,  $NPS_M(u)$ , underestimated the real noise power,  $NPS_R(u)$ , by a significant margin under these conditions. Sharpening compounded this bias at SNR 5 (Figure 5.3(l)) and also rendered it noticeable at SNR 40 (Figure 5.3(f)). Thus, the dead leaves SPD-MTF was established as the more suitable measure for signal transfer in non-linear systems under the most relevant conditions.

After denoising, the scene-dependent variations between pictorial image SPD-MTFs from the non-linear pipeline were far higher than for the linear pipeline, as demonstrated in Figures 5.4 and 5.5. This important observation is a direct result of the measure accounting for interactions between the scene image content and the pipeline's non-linear content-aware ISP algorithms, with respect to both signal transfer and noise.

However, pictorial image SPD-MTFs from the linear pipeline also displayed significant scene-dependent variation under some of the most relevant conditions (Figures 5.4(a) to (c),

grey curves). It is not currently possible to diagnose the source of this particular scenedependent variation. It is expected to be partly caused by signal transfer in the linear pipeline being slightly scene-dependent, resulting from interactions between scene image signals and processing during the modelling of Poisson noise, black/white level adjustments and colour channel quantum efficiency. The primary cause for the scene-dependent variation, however, is expected to be scene-dependent bias from signal-to-noise limitations (Equation 5.1). This bias affected particularly the higher frequencies of the low-signal images of scenes, at lower SNRs, where the signal power,  $PS_{Input}(u)$ , was closer to zero and the pictorial image SPD-NPS,  $NPS_M(u)$ , was more likely to underestimate the real noise power,  $NPS_R(u)$ . It should be noted that the scene-dependent variation was much lower after linear denoising, especially at lower SNRs. This is attributed to the bias being mitigated, since denoising reduced the absolute difference between the measured noise power,  $NPS_M(u)$ , and real noise power,  $NPS_R(u)$ , more than it reduced the output signal power,  $PS_{Input}(u)$ .

The pictorial image SPD-MTF is the most theoretically valid MTF measure in situations where the signal transfer of a non-linear system must be measured with respect to a given input scene (e.g. in certain image quality modelling applications). Deriving the MTF in this way, however, increased measurement error for the reasons explained above, which affected the measure's accuracy. The trade-offs between these advantages and disadvantages of the measure are scene-dependent. They need to be investigated from first principles in further work, for example, by adapting the direct dead leaves MTF error propagation method of Burns [158]. Performing such an investigation was outside the scope of this thesis. Instead, in Chapter 6 of this thesis, the validity of the pictorial image SPD-MTF is evaluated further, experimentally, by assessing whether implementing the measure improves the accuracy of various IQMs.

The mean pictorial image SPD-MTF (Figure 5.4, black curves) and dead leaves SPD-MTF (red curves) had similar shape for the linear pipeline under the most relevant conditions. It can therefore be inferred that, the average level of measurement error across the pictorial image SPD-MTFs from the 50 input images was approximately equal to the error in the dead leaves SPD-MTF. It can also be inferred that the scene-dependent nature of the bias in the former caused the bias to "average out" across the 50 measurements taken. This would suggest that, provided that the mean pictorial image SPD-MTF is measured from a representative set of images of different scenes, it is not significantly affected by the bias in the individual pictorial image SPD-MTF measurements from which it is derived.

After non-linear denoising and sharpening, however, the dead leaves SPD-MTF was an outlier compared to the pictorial image SPD-MTFs and generally underestimated the mean pictorial image SPD-MTF. Observations in the previous paragraph suggest these differences were not due to measurement error. It is concluded that the signal transfer of the non-linear pipeline's ISP algorithms was different for dead leaves signals than for the "average scene".

More specifically, dead leaves signal transfer was reduced more by non-linear denoising than signal transfer for the average pictorial scene image (Figure 5.4(e) and (k)). The global power spectrum of natural scenes follows a 1/f power law with respect to spatial frequency, like the dead leaves chart [16], [17]. Their contrast signals are often clustered spatially, however, not randomly distributed as per the dead leaves chart. Thus, edges in the average natural scene would be expected to have, on average, higher contrast than edges in the dead leaves target. The main side-effect of non-linear denoising is removal of texture (i.e. low-contrast fine details). It is, therefore, understandable that the signal transfer of the lower-contrast edges of the dead leaves target was particularly affected by it.

The signal transfer of dead leaves signals was also boosted more by non-linear sharpening than the average pictorial scene (Figure 5.4(f)). This is expected to be due to the edges of all circles in the dead leaves signal being "perfect" (i.e. with maximum gradient). Perfect edges are more responsive to non-linear sharpening algorithms than edges of lower gradient [146].

The mean pictorial image SPD-MTF is expected to be a more suitable measure than the dead leaves SPD-MTF for the average real-world signal transfer of non-linear systems. This was despite the former measure inheriting some bias from the pictorial image SPD-MTFs. It could not be concluded whether  $\Delta N_{SPD_i}(u)$  in Equations 4.2 to 4.5 was distributed evenly about zero for the pictorial image SPD-MTFs. However, the distribution of the pictorial image SPD-MTFs around the mean pictorial image SPD-MTF did not appear skewed under the most relevant conditions.

The pictorial image SPD-MTF standard deviation (Figure 5.4, black dotted curves) indicated system scene-dependency was significantly higher after application of the non-linear ISP algorithms, than the equivalent linear algorithms. This was expected to be because of the increased algorithm content awareness; the difference was particularly clear after intense denoising at low SNRs. The value of this scene-dependency measure was, however, larger for the linear pipeline than as expected, and as demonstrated in practice by the equivalent SPD-NPS measure (Figure 4.6(a) to (c) and (g) to (i), black dotted curves). This was caused

by scene-dependent variation in the pictorial image SPD-MTF measurements, which was mainly due to bias from signal-to-noise limitations. It should also be noted that the order of the pictorial image SPD-MTF curves changed significantly after non-linear ISP algorithms were applied (Figure 5.5). The pictorial image SPD-MTF standard deviation did not account for this.

The integrated area under each pictorial image SPD-MTF curve (Figure 5.5) correlated relatively well with the *busyness* [59] of each scene image, before denoising. Applying non-linear ISP algorithms disturbed this relationship significantly. The busyness descriptor expresses, as a single figure, the proportion of the image containing higher frequencies exceeding a given contrast threshold [59]. Thus, it accounts for the spatial distribution and power of higher-frequency signals, which are both relevant to the signal-to-noise limitations that bias the SPD-MTFs.

| Linear Pipeline                            |                                             |       |       |       |       |  |  |  |  |  |
|--------------------------------------------|---------------------------------------------|-------|-------|-------|-------|--|--|--|--|--|
| SNR 40 SNR 20 SNR 10 SNR 5 Mean of all SNR |                                             |       |       |       |       |  |  |  |  |  |
| Denoised X Sharpened X                     | 0.559                                       | 0.690 | 0.758 | 0.765 | 0.693 |  |  |  |  |  |
| Denoised 🗸 Sharpened X                     | 0.560                                       | 0.651 | 0.474 | 0.547 | 0.558 |  |  |  |  |  |
| Denoised 🗸 Sharpened 🗸                     | 0.591                                       | 0.636 | 0.292 | 0.506 | 0.506 |  |  |  |  |  |
| Non-Linear Pipeline                        |                                             |       |       |       |       |  |  |  |  |  |
|                                            | SNR 40 SNR 20 SNR 10 SNR 5 Mean of all SNRs |       |       |       |       |  |  |  |  |  |
| Denoised X Sharpened X                     | 0.438                                       | 0.678 | 0.763 | 0.768 | 0.662 |  |  |  |  |  |
| Denoised 🗸 Sharpened X                     | 0.231                                       | 0.196 | 0.074 | 0.013 | 0.129 |  |  |  |  |  |
| Denoised 🗸 Sharpened 🗸                     | 0.043                                       | 0.003 | 0.043 | 0.010 | 0.025 |  |  |  |  |  |

Table 5.2 R<sup>2</sup> correlation coefficients of a logarithmic curve fit of form  $y = m . \ln(x) + c$ , to the regression between the integrated area under the pictorial images' scene-and-process-dependent Modulation Transfer Functions (SPD-MTF) and the busyness' of these scenes [59].

## 5.3 Summary

Three novel SPD-MTF measures were proposed. They characterised system signal transfer with respect to relevant input signals, accounting for the scene-dependent effect of non-linear ISP algorithms. Further, a measure describing the level of system scene-dependency was presented. All measures were validated by analysing measurements from simulated linear and non-linear camera pipelines.

The dead leaves SPD-MTF offered minor improvements over the current direct dead leaves MTF measurement implementation [19]. But the signal transfer characteristics of non-linear content-aware ISP algorithms were different for dead leaves signals compared to the average pictorial scene image. This may affect the relevance of both these measures to capture system design and image quality modelling.

The pictorial image SPD-MTF accounted most comprehensively for system scenedependency. But it suffered from scene-dependent bias due to signal-to-noise limitations, despite attempts to mitigate it. These limitations were inherent to the direct dead leaves MTF, which the proposed measures are based upon. The resultant bias was difficult to distinguish from genuine effects of system scene-dependency. It affected the accuracy of the pictorial image SPD-MTF standard deviation. Nevertheless, it averaged out across the 50 test scenes to levels comparable to bias in the direct dead leaves MTF. Thus, the mean pictorial image SPD-MTF is concluded to describe average real-world system signal transfer appropriately, but it is computationally inefficient when compared to both the dead leaves SPD-MTF and direct dead leaves MTF.

# Chapter 6 An Evaluation of Scene-and-Process-Dependent IQMs

A number of variations of five spatial image quality metrics (IQM) are evaluated in this chapter, referred to as *variants*. Two of these IQMs are novel (log Noise Equivalent Quanta (log NEQ) and Visual log NEQ) and are based on the novel sceneand-process-dependent Noise Equivalent Quanta (SPD-NEQ) performance measure. The other IQMs are scene-and-process-dependent versions of the Square Root Integral with Noise (SQRIn) [12], Perceived Information Capacity (PIC) [169] and IEEE P1858 Camera Phone Image Quality (CPIQ) metrics [22]. Each of these metrics is defined in Chapter 3.

# 6.1 Methodology

Variants of each IQM were generated in MATLAB<sup>TM</sup> (Section 6.1.3). Each variant used a different permutation of input parameters for imaging system noise (Table 4.1), signal transfer (Table 5.1) and human visual system (HVS) sensitivity (Table 6.1). Thus, each variant accounted for imaging system and visual scene-dependency to a different degree.

| Contrast Sensitivity<br>Function (CSF)                                     | Input Parameters                                                                                                           | Scene-dependent Visual<br>Behaviour Accounted For                                             | Sensitivity to Visual<br>Scene-Dependency |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|--|
| Johnson & Fairchild CSF                                                    | • N/A                                                                                                                      | • N/A                                                                                         | Lowest                                    |  |
| Barten CSF                                                                 | <ul> <li>Mean luminance of the pictorial scene</li> <li>Luminance of the interface's background</li> </ul>                 | <ul> <li>Adaptations with respect to<br/>global image luminance</li> </ul>                    |                                           |  |
| Contextual CSF (cCSF) /<br>Contextual Visual<br>Perception Function (cVPF) | <ul> <li>The pictorial scene's luminance contrast<br/>spectrum</li> <li>Luminance of the interface's background</li> </ul> | <ul><li>Adaptations with respect to global image luminance</li><li>Contrast masking</li></ul> | Highest                                   |  |

Table 6.1 Summary of the contrast sensitivity functions (CSF) employed in Chapter 6.

Output scores for each IQM variant were recorded over a series of test images that were generated following the method presented in Section 6.1.1. Twenty-seven observers rated the quality of the test images using the ISO 20462 [56] softcopy image quality ruler psychophysical paradigm (Section 6.1.2). These ratings were expressed on a Standard Quality Scale (SQS<sub>2</sub>) scale [56, p. 3], a ratio scale with calibrated intervals of 1 just-noticeable difference (JND) in quality ranging from SQS<sub>2</sub> 0 to 31. The zero-point describes

very low-quality pictorial images, the subjects of which are difficult to identify. Thirty one represents the highest quality.

The IQM variants were evaluated by benchmarking their accuracy and level of correlation with respect to the observer quality ratings in Section 6.2.2. The behaviour of selected IQM variants is analysed further in Section 6.2.3. These evaluations informed upon which input parameters were most appropriate for image quality modelling and which IQMs responded most favourably to modification.

#### 6.1.1 Test Image Dataset

The test image dataset was generated using simulated image capture pipelines implementing linear and non-linear image signal processing (ISP) algorithms, presented in Section 4.2. The input pictorial images to these pipelines were created from 14 original images that were captured and processed by Allen [102] using the method described in Appendix E. According to reference [102] their quality in terms of SQS<sub>2</sub> was 23 (relatively high). Each image was resized to 512-by-512 pixels dimensions according to Equation 4.8 before being input into the pipelines.

The input images to the simulations are shown in Appendix D and were selected to prioritise the following:

- 1) heterogeneity of scene subjects;
- diversity of objective signal contents, including natural and human-made structural signals, colours, textures, and smooth tonal gradations;
- variation of scene capture settings, including focus distance, focal length, and depth of field;
- 4) introduction of simulation pipeline artefacts that:
  - a. were representative of real capture systems according to the author;
  - b. were not overly spatially concentrated.

Point 4)b encouraged observers to base their opinions on artefacts across the whole image. This was a logical choice since the IQM input parameters were global measures.

The simulation pipelines were identical to those employed to validate the scene-and-processdependent Noise Power Spectrum (SPD-NPS) and equivalent Modulation Transfer Function (SPD-MTF) measures in Chapters 4 and 5, respectively; they are described in Section 4.2. The following modifications were applied to the pipelines:

- The opacity of the linear and non-linear ISP filters was optimised according to Table
   6.2, to maximise the perceived image quality under the viewing conditions, after combined denoising and sharpening.
- 2) Two-dimensional (2D) photon noise was simulated at maximum linear signal-tonoise ratios (SNR) of 10, 20, 40 and 80, according to Equation 2.32.
- Images with noise simulated at SNR 5 were omitted; pilot experiments showed that they were often outside the range of the SQS<sub>2</sub> values.

Appendix I presents all SPD-NPS and SPD-MTF measures, as well as the uniform patch NPS and direct dead leaves Modulation Transfer Function (MTF) for these pipelines.

| Pinolino Typo |            | Filtor   | Opacity |        |        |        |  |
|---------------|------------|----------|---------|--------|--------|--------|--|
| Pipeline Type | ізр туре   | Filler   | SNR 10  | SNR 20 | SNR 40 | SNR 80 |  |
| Lincor        | Denoising  | Gaussian | 85%     | 83%    | 82%    | 80%    |  |
| Lilleal       | Sharpening | USM      | 60%     | 60%    | 55%    | 55%    |  |
| Nonlinoar     | Denoising  | BM3D     | 87%     | 86%    | 86%    | 85%    |  |
| Non-Linear    | Sharpening | GIF      | 60%     | 70%    | 65%    | 60%    |  |

Table 6.2 Optimal opacities for the pipelines' Image Signal Processing (ISP) filters described in Section 4.2. BM3D, GIF, USM and Gaussian refer to the Block Matching with 3D Filtering [31], Guided Image Filter [32], MATLAB<sup>TM</sup> imsharpen unsharp mask [85] and Gaussian blur filters, respectively.



Figure 6.1 Power spectra for the input images to the simulations (shown in Appendix D).

According to Equation 6.1, reducing the percentage opacity (P) of the ISP filters increased their transparency by blending a proportion of the image before filtration, g(x, y), with a proportion of the filtered image, d(x, y). This improved subjective image quality by reducing ISP filter artefacts in the output image, o(x, y), at the expense of slightly higher noise which helped to mask the artefacts. Lowering the opacity of the ISP filters provided greater challenges for testing the robustness of the SPD-MTF and SPD-NPS algorithms, since these measures were designed to account for filtered image signals and noise. It was also the only method of lowering the intensity of certain ISP filters to perceptually optimal levels (tuning), at certain SNRs. Appendix I discusses the effect of reducing the opacity of the ISP filters on all SPD-MTFs and SPD-NPSs.

$$o(x,y) = \frac{P}{100} \cdot d(x,y) + \frac{100 - P}{100} \cdot g(x,y)$$
(6.1)

Test images from each pipeline were saved as lossless Portable Network Graphics (PNG) [326] files after demosaicing, denoising and sharpening ISP stages, shown by red arrows in Figure 4.3. Fifty-six images were output from each pipeline after each ISP stage, covering all permutations of the 14 input original images at 4 SNRs. Images from the linear pipeline were chosen to represent both pipelines before denoising was applied. This was because the linear and non-linear demosaicing algorithms produced very similar artefacts to one another when they were evaluated subjectively; they also affected the system performance measurements to a similar degree. A total of 280 test images were generated.

#### 6.1.2 Psychophysical Evaluation

The aim of the psychophysical evaluations was to record subjective quality ratings for the test image dataset. The ISO 20462 [56] softcopy image quality ruler was employed for its speed and accuracy when measuring image quality differences spanning over many JNDs. It has been validated [327] and is implemented widely. The perceived quality of each test image was rated by matching its quality with an image from a set of ordered, univariate reference stimuli differing in sharpness by intervals of 1 JND in quality. Allen [102, p. 216] generated these "ruler images" as described in Appendix E, following the recommendations of the ISO 20462 standard [56, p. 9]. The graphics user interface (GUI) employed for the evaluations was also developed by Allen following this standard, shown in Figure 6.2. The GUI background was set to a uniform neutral tone of luminance 26.6 cd/m<sup>2</sup>. Test and ruler

images were shown on the right and left-hand sides of the display, respectively. Test images were presented in a randomised order. The ruler images were of the same scene as the test image. The observer adjusted the ruler image quality to match the quality of the test image using the keyboard's arrow keys, or by moving the slider. Once they judged both images to be of equal quality, they pressed the "Next Image" button. This recorded the SQS<sub>2</sub> value of the ruler image, presented the next test image, and randomised the position of the slider.



Figure 6.2 Layout of the image quality ruler graphics user interface (GUI) [102, Sec. 6.5.2]: (a) ruler image, (b) test image, (c) slider to select ruler images, (d) button to select next test image.

Figure 6.3 shows the layout of the laboratory equipment. The EIZO ColorEdge CG245W [328] liquid crystal display (LCD) was calibrated to the standardised RGB (sRGB) colour space and characterised as described in Appendix F. The viewing distance of 60cm was restricted using a head-rest, giving a display Nyquist frequency of 20 cycles/degree. The horizontal and vertical viewing angles of the GUI were 47.7 and 30.2 degrees, respectively. Other viewing conditions remained constant and close to the typical office viewing environment described in the sRGB standard [329]. The luminance of the background, desk and table were 25.84 cd/m<sup>2</sup>, 26.4 cd/m<sup>2</sup> and 41.31 cd/m<sup>2</sup>, respectively, under the moderate ambient illuminance level of 106.4 lux, from a light source with Correlated Colour Temperature (CCT) of approximately 3600K (with CIE x and y chromaticities of 0.4083 and 0.4126, respectively).



Figure 6.3 Layout of laboratory equipment (plan view).

The modelled display MTF [22, p. 16] used by each IQM (Equation 3.2) predicted Allen's [102, p. 212] previous display MTF measurements adequately, as shown in Figure 6.4. The camera-lens-display system reproduced all visible frequencies at the viewing distance.



Figure 6.4 Modulation Transfer Functions (MTF) of imaging chain components and Barten's optical MTF of the eye [183, p. 29]. The camera-lens, camera-lens-display and display MTFs were all measured by Allen [102, p. 212]. The latter was also modelled by Equation 3.2 [22, p. 16].

The experimental conditions were very close to the recommendations of ISO 20462, Clause 6.1, for implementing the softcopy ruler, as indicated in Table 6.3 [56, Sec. 6.1].

|                                                                                                     | Conditions Recommended by<br>ISO 20462 (Clause 6.1) | Conditions of Experiment                        |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| Maximum Observer-to-<br>Display Viewing<br>Distance Variation:                                      | 4% of Average<br>Viewing Distance                   | 2% of Average<br>Viewing Distance               |
| Maximum Variation in<br>Viewing Distance<br>Across the Stimuli                                      | 2% of Arithmetic Average<br>Viewing Distance        | 2.33% of Arithmetic Average<br>Viewing Distance |
| Maximum Variation in<br>the Viewing Angle from<br>Perpendicular (at the<br>Centre of Each Stimulus) | 10 degrees                                          | 12.6 degrees                                    |
| Recommended Minimum<br>Viewing Distance<br>(2500 x pixel pitch)                                     | 0.675 m                                             | 0.6 m                                           |

Table 6.3 Comparison of the conditions of the psychophysical image quality evaluations with the recommendations of ISO 20462 [56, Sec. 6.1].

The observers wore corrective spectacles/lenses if required for the viewing distance. Before participating in the evaluations, each observer tested their visual acuity, under supervision, by attempting to read row 7 of the Snellen near vision test card [330] (shown in Appendix G) under the viewing conditions. Two prospective observers failed and did not participate since their spatial visual sensitivity did not reflect the contrast sensitivity function (CSF) models used by the IQMs. Two males passed this acuity test but suffered from red-green colour blindness. They were allowed to participate because such observers provided similar responses to trichromats in a comparable spatial image quality study [48, p. 59]. Twenty-seven observers qualified for the evaluations, including 17 males and 10 females of various ethnicities, with an approximate age range of 20 to 55. Six observers had previous experience evaluating image quality or attribute strength. They are referred to herein as experienced observers.

The evaluations were divided into three stages, according to the three ISP stages shown in Figure 4.3. Before participating, each observer read the written instructions shown in Appendix H that included examples of images generated after each ISP stage. They were then trained in a short trial run of the experiment, where they were encouraged to explain their decision making and ask questions. They took between 20 and 45 minutes to complete each stage, taking short breaks in between to avoid fatigue.

#### 6.1.3 Generation of the IQM Variants

A total of 332 IQM variants were generated. They included variants of the log NEQ and Visual log NEQ as well as scene-and-process-dependent versions of the CPIQ metric and the PIC and SQRIn. Each variant employed a different permutation of the NPS, MTF and

CSF parameters listed in Tables 4.1, 5.1 and 6.1, respectively. Appendix I presents and discusses all input parameters. Note that the various NPS and MTF measurements differ from those of Chapters 4 and 5, respectively, since the pipelines' ISP filters were tuned at reduced opacity, and images were generated at SNRs 10 to 80.

The MATLAB<sup>™</sup> code for Burns' direct dead leaves MTF implementation [29] was adapted to compute all SPD-NPSs and SPD-MTFs, as in Chapters 4 and 5. The CPIQ visual noise metric was computed using MATLAB<sup>™</sup> code [331] from Baxter and Murray's [332] implementation.

When the Barten CSF [186], Contextual CSF (cCSF) [35] and Contextual Visual Perception Function (cVPF) [8] were employed in the CPIQ metric, they were normalised to the same integrated area as Johnson and Fairchild's [188] luminance CSF from the IEEE P1858 standard [22, p. 72], unless otherwise stated. Likewise, the cCSF/cVPF were normalised to the same integrated area as Barten's CSF when they were employed by the PIC, SQRIn, or Visual log NEQ, unless stated otherwise. In both cases, this stopped scene-dependent changes in the applied HVS models' magnitude from affecting the IQM scores, but not scene-dependent variations in their shape. It should be noted that IQM variants were also generated without this normalisation, for comparison, to assess whether accounting for the magnitude of scene-dependent HVS models improved their accuracy (the MAE of these variants is analysed in Appendix J).

Output scores from the SQRIn, PIC, log NEQ and Visual log NEQ were calibrated to the SQS<sub>2</sub> scale by:

- 1) setting  $k_2$  to zero, as carried out in a previous comparable investigation [9, p. 60];
- 2) setting the value of  $k_1$  according to Equation 6.2, so that the mean of the IQM scores for all test images at SNR 80 without denoising or sharpening applied,  $\bar{m}_{output}$ , equaled the mean of the respective observers' SQS<sub>2</sub> ratings,  $\bar{m}_{SOS}$ .

$$k_1 = \frac{\overline{m}_{SQS}}{\overline{m}_{output}} \tag{6.2}$$

The CPIQ metric was calibrated to the SQS<sub>2</sub> scale by subtracting the quality loss in JNDs (i.e.  $QL_m$  in Equation 3.7) from the SQS<sub>2</sub> value of 23 corresponding to the input images to the simulation.

# 6.2 Results

Subjective image quality ratings from the evaluations are presented in Section 6.2.1. IQM variants are benchmarked in terms of their Mean Absolute Error (MAE) and Spearman's Rank Order Correlation Coefficient (SROCC) in Section 6.2.2 and analysed further in Section 6.2.3. Appendix J is also referred to that benchmarks the MAE of every IQM variant.

#### **6.2.1 Subjective Quality Ratings**

Figure 6.5 presents uncalibrated subjective quality ratings for each test image. This was because Allen [102, p. 257] observed that calibrating such ratings according to the average scene relationship, as described in ISO 20462 [56, p. 19], removed virtually all scene susceptibility and/or scene-dependency from the data. Thus, uncalibrated SQS<sub>2</sub> ratings were more suitable for evaluating the IQMs of this thesis, which are designed for scene-dependent systems. Uncalibrated ratings were employed successfully in Allen's evaluations of IQM performance, with respect to scene-dependent Joint Photographic Experts Group (JPEG) and JPEG 2000 compression [102, Sec. 7.5].

Figures 6.6 and 6.7 analyse the scenes' susceptibilities and observers' sensitivities to the capture system simulation's artefacts, respectively, following the method of Keelan [46, Ch. 10]. Scenes/observers were grouped in terms of their susceptibility/sensitivity in the following manner. 25% of the scenes/observers with the most data points between the 75% and 100% percentiles were classified as high susceptibility/sensitivity. Likewise, 25% of the scenes/observers with the most data points between the 0% and 25% percentiles were classified as low susceptibility/sensitivity. The remaining 50% of the scenes/observers were classified as medium susceptibility/sensitivity. Since noise and ISP artefacts were more perceptually significant at lower SNRs, the number of data points at SNRs 10, 20, 40 and 80 were weighted by factors of 2.5, 2, 1.5 and 1, respectively, during these classifications.



Figure 6.5 Mean observer image quality ratings on the Standard Quality Scale (SQS<sub>2</sub>) for each test image; error bars show standard error.



Figure 6.6 The scenes' susceptibilities to perceived quality loss. The x-axis is the grand mean of the scenes' quality ratings. The y-axis is the quality rating for each scene, averaged over all observers. Higher susceptibility scenes are distributed closer to the x-axis. The scenes classified as high, medium and low susceptibility are labelled [H], [M] and [L], respectively.



Figure 6.7 The observers' sensitivities to perceived quality loss. The x-axis is the grand mean of the observers' quality ratings. The y-axis is the quality rating for each observer, averaged over all scenes. Data from higher sensitivity observers is distributed closer to the x-axis. Observers classified as high, medium and low sensitivity are labelled [H], [M] and [L], respectively. Experienced and inexperienced observers are labelled [Y] and [N], respectively.

Perceived image quality was increased by combined denoising and sharpening, for which the tuning of the simulations was optimised (see Section 6.1.1 for further information). However, it was reduced by denoising alone. Non-linear denoising and sharpening algorithms preserved image signal content and mitigated the amplification of noise, respectively, as described in Section 2.2.1. Thus, they produced higher quality images than equivalent linear ISP algorithms when activated at a higher intensity at lower SNRs. The perceived quality of images from the non-linear pipeline was slightly more scene-dependent than the linear pipeline.

The variance of the scenes' susceptibilities and observers' sensitivities to quality loss generally increased at lower SNRs. The former was also lower than the latter as observed by Keelan [46, Ch. 10]. Non-busy scene images, e.g. Summer, Afternoon Tea and Kids, were most susceptible to quality losses due to noise and denoising artefacts that dominated at low SNRs. The Seagull and Cliffs images were most susceptible to sharpening artefacts. The latter affected high-contrast edges in particular, dominating certain scenes at higher SNRs.

Observers that were sensitive to noise were generally also sensitive to denoising artefacts. The variance of observer sensitivities was highest at low SNRs before denoising, and after combined sharpening and denoising. This supports Persson's [48, p. 61] observation that the variance of observer sensitivities is higher when the test and ruler image artefacts are dissimilar. Inexperienced observers were less consistent, as noted in comparable studies [201]. This is expected to be either due to fatigue, erratic quality consciousness, or less effective training.

Experienced observers were not omitted from the dataset as suggested by Keelan [46, p. 9], because:

- 1) they represented only 22.2% of all observers;
- 2) previous successful studies using the image quality ruler [48, p. 53], [102, p. 225],
  [201] included higher proportions of them;
- 3) their sensitivity was not found to differ significantly from inexperienced observers with respect to denoising (also noted by Persson [48, p. 62]) or sharpening artefacts.

## 6.2.2 Benchmarking of IQM Variants

All IQM variants were benchmarked according to their MAE and root mean square error (RMSE) with respect to the observer image quality ratings, once the IQMs were calibrated. The MAE describes specifically the mean difference in SQS<sub>2</sub> units between the output scores of the metric and the ideal linear relationship with the observer ratings. This ideal linear relationship is indicated by the pink line in Figures 6.10 to 6.16, which has equation y = x. Thus, if a metric variant has an MAE of 2, then it can be expected to predict the quality of a given image with an accuracy of  $\pm 2$  JNDs. The RMSE is also calculated with respect to the ideal linear relationship. Lower RMSE and MAE values indicate higher IQM accuracy.

Further, all IQM variants, as well as the Mean Structural Similarity (MSSIM) metric, were benchmarked according to their SROCC between the IQM scores and the observer ratings. The SROCC describes the goodness of fit to a monotonic function that may not be linear; higher values indicate a higher correlation, but not necessarily higher accuracy.

The MATLAB<sup>TM</sup> implementation by Wang *et al.* [333] was employed to compute the MSSIM (Equation B9) with respect to the image luminance channel using the default Gaussian window and dynamic range, specified in Appendix B. The constants  $K_{SSIM_1}$  and  $K_{SSIM_2}$  in Equations B1 and B3 were set to their default values of 0.01 and 0.03, respectively [114]. The reference image was the input image to the simulations. The test image was the output image generated by the pipeline at the required processing stage, at the specified SNR.

Tables 6.4 and 6.5 benchmark the metric variants' MAEs and SROCCs, respectively, with respect to the full dataset of observer quality ratings, i.e. all observers and all scenes. Input parameters for the highest and lowest performing variants are listed in the left-hand and right-hand tables, respectively. RMSE and MAE scores are colour coded across both tables in each figure, from red to green, indicating lowest to highest performance, respectively. Figures 6.8 and 6.9 describe the distribution of the MAE and SROCC scores across all variants of each metric, respectively.



Figure 6.8 Box and whisker plots of Mean Absolute Errors (MAE) of all variants of each metric.

|                | Highest Ac                                                     | Variants o | of Each N        | letric          | Lowest Accuracy Variants of Each Metric |           |                                   |                               |                                   |            |      |
|----------------|----------------------------------------------------------------|------------|------------------|-----------------|-----------------------------------------|-----------|-----------------------------------|-------------------------------|-----------------------------------|------------|------|
| Metric<br>Name | Input Parameters                                               |            |                  | Pipeline        | MAG                                     | Metric    | Input Parameters                  |                               |                                   | Pipeline   |      |
|                | Noise<br>Measure                                               | MTF        | CSF              | Туре            | Mar                                     | Name      | Noise<br>Measure                  | MTF                           | CSF                               | Туре       | MAL  |
| CRIO           | Uses Pictorial                                                 | Pictorial  | Denten           | Non-Linear      | 1.82                                    | CRIO      | Uses Dead<br>Leaves<br>Replicates | Direct Dead<br>Leaves MTF     | cVPF                              | Non-Linear | 9.88 |
| Criq           | Replicates                                                     | SPD-MTF    | Barten           | Linear          | 1.57                                    | CFIQ      |                                   |                               |                                   | Linear     | 8.82 |
| Visual         | Mean Pictorial                                                 | Dead       | Parton           | Non-Linear      | 1.68                                    | Visual    | Uniform                           | Pictorial                     | Pictorial                         | Non-Linear | 2.48 |
| NEQ            | Image SPD-NPS                                                  | SPD-MTF    | Barten           | Linear 2.25 NEC | NEQ                                     | Patch NPS | SPD-MTF                           | CVPF                          | Linear                            | 2.38       |      |
| Log            | Pictorial Image                                                | Dead       | N/A              | Non-Linear      | 2.16                                    | Log       | Uniform<br>Patch NPS              | Pictorial<br>Image<br>SPD-MTF | N/A                               | Non-Linear | 3.00 |
| NEQ            | SPD-NPS                                                        | SPD-MTF    | IN/A             | Linear          | 2.04                                    | NEQ       |                                   |                               |                                   | Linear     | 2.13 |
| <b>BIC</b>     | Pictorial Image                                                | Dead       | Any of<br>Parton | Non-Linear      | 2.50                                    | PIC       | Uniform Dir<br>Patch NPS Lea      | Direct Dead                   | Any of<br>Barten,<br>cCSF or cVPF | Non-Linear | 3.15 |
| FIC            | SPD-NPS                                                        | SPD-MTF    | cCSF or cVPF     | Linear          | 2.47                                    | FIC       |                                   | Leaves MTF                    |                                   | Linear     | 2.53 |
| SORIn          | Pictorial Image<br>SPD-NPS                                     | Pictorial  | Any of<br>Parton | Non-Linear      | 5.46                                    | SORIn     | Uniform<br>Patch NPS              | Direct Dead<br>Leaves MTF     | Any of                            | Non-Linear | 6.94 |
| JQRIII         |                                                                | SPD-MTF    | cCSF or cVPF     | Linear          | 4.92                                    | SQKIII    |                                   |                               | cCSF or cVPF                      | Linear     | 5.34 |
|                | Lowest MAE of All Variants of All IQMs (i.e. Highest Accuracy) |            |                  |                 |                                         |           |                                   |                               |                                   |            |      |

Highest MAE of All Variants of All IQMs (i.e. Lowest Accuracy)

Table 6.4 Input parameters and Mean Absolute Errors (MAE) for the most accurate (left table) and least accurate (right table) variants of each image quality metric (IQM). The MAE scores are coloured from red to green denoting lowest to highest accuracy.



Figure 6.9 Box and whisker plots of the Spearman's Rank Order Correlation Coefficient (SROCC) of all variants of each metric, including the Mean Structural Similarity (MSSIM).

| <u> </u>       | ingricot oor                                                         | relating | Varianto     | or Each    |             |                      | 2011031.00            | ficiality ve   | inunto or    | Luoninic   |      |
|----------------|----------------------------------------------------------------------|----------|--------------|------------|-------------|----------------------|-----------------------|----------------|--------------|------------|------|
| Metric<br>Name | Input Parameters                                                     |          |              | Pipeline   | SROCC       | Metric               | In                    | put Parameters | Pipeline     | SROCC      |      |
|                | Noise<br>Measure                                                     | MTF      | CSF          | туре       |             | Name                 | Noise<br>Measure      | MTF            | CSF          | туре       |      |
| CRIO           | Uses Dead                                                            | Direct   | Standard     | Non-Linear | 0.87        | CPIO                 | Uses Pictorial        | Pictorial      | Barten       | Non-Linear | 0.71 |
| Criq           | Replicates                                                           | Leaves   | Standard     | Linear     | 0.91        | CFIQ                 | Replicates            | SPD-MTF        |              | Linear     | 0.87 |
| Visual         | Mean Pictorial                                                       | Direct   | Barton       | Non-Linear | 0.68        | Visual<br>Log<br>NEQ | Uniform Mean          | Mean Pictorial | cVPF         | Non-Linear | 0.33 |
| NEQ            | Image SPD-NPS                                                        | Leaves   | Barten       | Linear     | 0.81        |                      | Patch NPS             | MTF            |              | Linear     | 0.73 |
| Log            | Mean Pictorial<br>Image SPD-NPS                                      | Dead     | Non-Linear   | 0.71       | Log         | Uniform              | Uniform Mean Pictoria | N/A            | Non-Linear   | 0.37       |      |
| NEQ            |                                                                      | SPD-MTF  | D-MTF        | Linear     | 0.80        | NEQ                  | Patch NPS             | MTF            | N/A          | Linear     | 0.70 |
| BIC            | Pictorial<br>Image SPD-NPS                                           | Dead     | Any of       | Non-Linear | 0.64        | PIC                  | Uniform               | Direct Dead    | Any of       | Non-Linear | 0.47 |
| FIC            |                                                                      | SPD-MTF  | cCSF or cVPF | Linear     | 0.71        |                      | Patch NPS             | Leaves MTF     | cCSF or cVPF | Linear     | 0.68 |
| SORIN          | Pictorial<br>Image SPD-NPS                                           | Dead     | Any of       | Non-Linear | 0.66        | CORIN                | Uniform               | Direct         | Any of       | Non-Linear | 0.50 |
| JUNI           |                                                                      | SPD-MTF  | cCSF or cVPF | Linear     | 0.74        | SQRIN                | Patch NPS             | MTF            | cCSF or cVPF | Linear     | 0.72 |
| MACCINA        | N/A                                                                  | N/A N/A  | N/A N/A      | Non-Linear | 0.40        | MESINA               | N/A                   | N/A            | N1/A         | Non-Linear | 0.40 |
| 101221101      |                                                                      |          |              | Linear     | Linear 0.53 | N/A                  | N/A                   | Linear         | 0.53         |            |      |
|                | Highest SROCC of All Variants of All IQMs (i.e. Highest Correlation) |          |              |            |             |                      |                       |                |              |            |      |

Highest Correlating Variants of Each Metric

Lowest Correlating Variants of Each Metric

Lowest SROCC of All Variants of All IQMs (i.e. Lowest Correlation)

Table 6.5 Input parameters and Spearman's Rank Order Correlation Coefficients (SROCC) for variants of each image quality metric (IQM) that resulted in the highest (left table) and lowest correlation (right table), as well as the Mean Structural Similarity (MSSIM) metric. The SROCC scores are coloured from red to green denoting lowest to highest correlation, respectively.

When evaluating the robustness of each metric to changes in its input parameters, the main factors to be considered are the accuracy (MAE) of its most accurate variants, and the range of accuracies across all variants of the metric. The maximum level and range of the variants' correlations with the observer ratings (SROCC), are further factors to be taken into account.

The CPIQ metric produced the variants with highest accuracy overall, followed closely by the Visual log NEQ and log NEQ metrics proposed in this thesis. However, the Visual log NEQ produced the highest accuracy variant for the non-linear pipeline. This is an exciting result, considering it is a very simple metric that relates directly to the fundamental NEQ measure, and accounts for system scene-dependency. The range of accuracies (MAE) of variants of the CPIQ metric was extremely high compared to the other metrics tested, as demonstrated in Figure 6.8. This is expected to be due to the metric's pre-calibration making it sensitive to any changes in its input parameters, particularly the CSF parameter. The simpler Signal Transfer Visual IQMs (STV-IQM) such as the PIC, SQRIn, log NEQ and Visual log NEQ, showed greater consistency when their input parameters were changed to account for imaging system and visual scene-dependency.

The most accurate IQM variants (shown in Table 6.4) all implemented noise measures derived from pictorial images that were most sensitive to system scene-dependency. They also used SPD-MTFs that were sensitive to system scene-dependency, measured either from pictorial or dead leaves signals. They employed the Barten CSF [186] for all IQMs where changing the CSF affected the IQM accuracy significantly. Changing the CSF parameter of the PIC and SQRIn did not affect the accuracy or correlation of the metrics since the high display luminance rendered visual noise very low relative to the imaging system's noise at most SNRs. Thus, the CSF parameter effectively cancelled itself out, since it was applied to both the numerator and denominator of the integral in these IQMs (which are defined in Equations 3.3 and 3.4).

The least accurate IQM variants implemented most often the standard uniform patch NPS and the direct dead leaves MTF [19] that accounted least for system scene-dependency, as well as the cVPF [8] visual model. The pictorial image SPD-MTF was also used by some of the least accurate IQM variants, expected to be due to bias discussed in Chapter 5.

Benchmarking the IQM variants by their SROCC (Table 6.5) showed comparable trends to the MAE benchmarking tables (Table 6.4). The MSSIM provided the lowest SROCC of all. Its RMSE and MAE could not be calculated since it is of range  $0 \le MSSIM \le 1$ .

Appendix J benchmarks the accuracy of every IQM variant, applying the same colour coding as Tables 6.4 and 6.5. MAE scores have been tabulated for various scene and observer groups, as well as for all observers and all scenes under the following conditions:

- 1) without normalising the CSFs following the method of Section 6.1.3;
- after restricting the range of integration to 12 < u ≤ ∞ cycles/degree, to mitigate the effects of bias in the SPD-MTF, discussed in Chapter 5.

Results from these various data subsets were generally in agreement with one another. Trends in the MAE tables were virtually identical to the equivalent RMSE tables and shared commonalities with equivalent SROCC tables, which were both omitted from this thesis.

Benchmarking tables in Appendix J, along with Tables 6.4 and 6.5 and observations from Sections 4.3 and 5.2, indicate that the various SPD-MTF and SPD-NPS measures accounted well for system scene-dependency. The IQM accuracy increased consistently for the nonlinear pipeline when these measures were used and was sometimes even higher than for the linear pipeline. However, the IQMs that implemented SPD-MTFs from pictorial images were, in some cases, less accurate than IQMs that used dead leaves SPD-MTFs or the direct dead leaves MTF. This observation is expected to be due to bias in the former measurements. Restricting the range of integration to  $12 < u \le \infty$  cycles/degree did not improve IQM accuracy, despite excluding frequencies with greatest bias and preserving the fundamental spatial frequencies for seeing objects [334].

#### 6.2.3 Further Analysis of Selected IQM Variants

This section analyses the correlations between selected variants of metrics from this thesis and the observer image quality ratings. This analysis is intended to complement the benchmarking tables of Section 6.2.2 and Appendix J.

Figures 6.10 to 6.16 illustrate one or more of the following, concerning each IQM of this thesis:

- 1) typical IQM variant behaviour;
- 2) best/worst case scenarios regarding IQM variant accuracy;
- significant changes in IQM variant accuracy that resulted from using input parameters that were more sensitive to scene-dependency.

The data presented is from the full dataset of observers and scenes. Figure 6.17 analyses the MSSIM's correlation. Data in Figures 6.11, 6.12, 6.15 and 6.16 is coloured with respect to each scene to express scene-dependency in IQM behaviour. To isolate the effects of different ISP stages in Figures 6.10, 6.13, 6.14 and 6.17, data points generated before and after denoising are coloured red and green, respectively, and data generated after denoising and sharpening is coloured blue; darker markers indicate higher SNRs.



Figure 6.10 The mean of all observer image quality ratings vs the log Noise Equivalent Quanta (NEQ) metric variants that were less accurate or sensitive to system scene-dependency. They implement direct dead leaves Modulation Transfer Functions (MTF) [19].



Figure 6.11 The mean of all observer image quality ratings vs log Noise Equivalent Quanta (log NEQ) variants that were more accurate and sensitive to system scene-dependency. They employ the pictorial image SPD-NPS. The most accurate log NEQ variant is shown in (a) and (b).



Figure 6.12 The mean of all observer image quality ratings vs the most accurate Visual log NEQ variants that both implemented the dead leaves SPD-MTF and mean pictorial image SPD-NPS.



Figure 6.13 The mean of all observer quality ratings vs the Perceived Information Capacity (PIC) [169] variants with lowest, (a) and (b), and highest accuracy, (c) and (d). Implementing different visual models had minimal effect on the correlations; hence the employed model is not specified.



Figure 6.14 The mean of all observer image quality ratings vs the Square Root Integral with noise (SQRIn) [12] variants of lowest, (a) and (b), and highest accuracy, (c) and (d). The visual model is not specified because implementing different models had minimal effect on the correlations.


Figure 6.15 The mean of all observer quality ratings vs CPIQ metric [22] variants that employed different contrast sensitivity functions (CSF). All variants implemented the direct dead leaves Modulation Transfer Function (MTF) [19] and uniform patch noise images that are default input parameters to the IEEE P1858 standard [22] and are least sensitive to system scene-dependency.



Figure 6.16 The mean of all observer image quality ratings vs CPIQ metric [22] variants that employed different Modulation Transfer Functions (MTF) and noise parameters. All variants implemented the Barten contrast sensitivity function (CSF) [186] that was most optimal for the CPIQ metric. The most accurate CPIQ metric variant is shown in (e) and (f).



Figure 6.17 The mean of all observer quality ratings vs output scores from the Mean Structural Similarity (MSSIM) metric [114].

Variants of the PIC [169] and SQRIn [12] displayed comparable trends to variants of the log NEQ and Visual log NEQ in Figures 6.10 to 6.14, as well as Tables 6.4 and 6.5 and Appendix J. This is expected to be because the former STV-IQMs are fundamentally signal-to-noise measures and are thus also closely related to the NEQ (as noted in Section 2.4).

But the CPIQ metric [22] displayed contrasting behaviour which was expected to be due to:

- differences in design, since it is a more complex Multivariate Formalism IQM (MF-IQM; see Section 3.1.2 for more information);
- 2) it relating less closely to the NEQ;
- 3) it applying more extensive pre-calibration (as expressed in Figure 3.3).

The effect of implementing the revised noise, signal transfer and CSF input parameters in the CPIQ metric are expected to be distorted because the calibration was tuned for the original parameters of the IEEE P1858 CPIQ standard [22], including uniform patch noise images, the direct dead leaves MTF [19], and Johnson and Fairchild's CSF [188].

The following observations demonstrate why the accuracy of the PIC, SQRIn, log NEQ and Visual log NEQ improved significantly for the non-linear pipeline when SPD-NPS measures were employed that accounted for system scene-dependency (as demonstrated in Tables J2 to J6). Since Figure 4.5 demonstrates that the uniform patch NPS underestimated noise after non-linear denoising, the IQMs that employed this measure overestimated the observer SQS<sub>2</sub> ratings (Figures 6.10(a), 6.13(a) and 6.14(a)). This overestimation of perceived quality was mitigated by implementing the dead leaves SPD-NPS (Figure 6.10(c)) and to a greater extent the pictorial image SPD-NPS (Figures 6.13(c) and 6.14(c)) that characterised more appropriately the non-linear pipeline's noise.

The SQRIn overestimated the observed SQS<sub>2</sub> ratings at high SNRs, forming a curved distribution with decreasing gradient. This supports Töpfer and Jacobson's [169] observation that the SQRIn does not always change linearly with noise or describe perceived image quality in equal JND units, as discussed in Section 3.1.1. The expected cause of this limitation is that it underestimates the perceptual impact of noise at near-threshold levels [169]. The PIC also displayed such behaviour, but to a lesser extent. If the SQRIn or PIC were to be re-calibrated at SNR 20 and data at SNRs 40 and 80 were omitted, Figures 6.13 and 6.14 suggest they would be more representative of the ideal linear relationship and their accuracy would improve significantly. Thus, it is concluded that the simulations at SNRs 80 and 40 reached the limit to which the SQRIn and PIC apply, with respect to noise.

The CPIQ metric's distribution was linear when plotted versus the observer SQS<sub>2</sub> ratings and was close to the ideal linear relationship for the most accurate variant, which employed SPD-MTFs and noise images derived from images of pictorial scenes (Figure 6.16(e) and (f)). Changing the CSF function altered the gain and offset of this linear distribution, affecting the accuracy of the IQM significantly. The gain and offset was most optimal when the Barten CSF [186] was employed. This function has a similar band-pass shape to the Johnson and Fairchild CSF [188] from the IEEE P1858 CPIQ standard [22] but displayed minor scene-dependent variations in shape as indicated by Figure I5. Implementing the cCSF [35] or cVPF [8] produced unfavourable gain and offset. These two highly scene-dependent HVS models were generally slightly flatter in profile and, once normalised, prioritised high frequencies more than the CSF from the standard [188]. This likely rendered them less compatible with the calibration or curve fitting of the CPIQ metric (as discussed further in Section 7.4). Thus, their negative impact on the accuracy of this metric may not be indicative of their appropriateness as HVS functions for image quality modelling. The CPIQ metric's accuracy improved, however, when SPD-MTFs and noise images from pictorial images were employed (Figure 6.16), despite the limitations of revising the input parameters of IQMs that applied pre-calibration or curve fitting (discussed further in Section 7.1).

This observation, alongside their successful implementation in other metrics, demonstrates the following for the various SPD-MTF and SPD-NPS measures:

- 1) They are robust.
- They are more relevant to image quality modelling than current standard system performance measures.
- They can likely be substituted successfully in the place of current standard measures, even within IQMs implementing pre-calibration or curve fitting.

The accuracy of the MSSIM was limited by the compound effect of blur, noise, demosaicing, denoising and sharpening artefacts. Further work should investigate the extent to which these limitations apply to other computational IQMs (CP-IQM) (Section 8.2).

### 6.3 Summary

Correlations between observer image quality ratings (measured using the ISO 20462 image quality ruler) and a number of variants of several IQMs have been evaluated. Variants of each IQM used different combinations of input parameters. They accounted for scene-dependency of the imaging and human visual system to varying degrees. The conclusions of this chapter are core to the discussions of the thesis. They support the hypothesis that imaging system scene-dependency should be accounted for by IQMs, and further validate the various SPD-NPS and SPD-MTF measures from pictorial image and dead leaves signals. Less support was found for accounting for spatial visual scene-dependency, although this observation should not be considered conclusive and should be investigated further. The novel log NEQ and Visual log NEQ metrics that are a product of this research, as well as the revised scene-and-process-dependent CPIQ metric, performed particularly well when they implemented the SPD-MTF and SPD-NPS measures. The latter metric was less consistent.

# Chapter 7 Discussion

Spatial image quality metrics (IQM) were firstly reviewed from an image capture systems development viewpoint in this thesis. Metrics from the Signal Transfer Visual IQM (STV-IQM) and Multivariate Formalism (MF-IQM) genres were concluded to be most suitable for the purpose. These metrics use as input parameters the Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS), which are standard measures of signal transfer and noise, respectively; both are used routinely when developing capture systems. The most suitable metrics also implemented contrast sensitivity functions (CSF) describing human visual sensitivity under the given viewing conditions. Prior art demonstrated these metrics are less accurate for the characterisation of non-linear systems. The hypothesis in this thesis is that, these inaccuracies are due to limitations of current MTFs, NPSs and CSFs, presented below.

- Firstly, non-linear capture system scene-dependency is unaccounted for in MTF and NPS measurements derived from test targets that contain uniform tone patches, edges, sine-waves and white noise. Also, since none of these signals are representative of the "average scene", the derived measurements do not describe the average real-world performance of such systems.
- 2) Secondly, the traditional CSF (which is a model of detection of unmasked narrowband signals) is not an accurate model for describing the visual tasks related to image quality evaluation. The latter is expected to involve both detection and discrimination of complex image signals that are usually masked; both were found to be scenedependent in prior art [8], [35].

Frameworks were proposed to revise metrics to incorporate the following MTFs, NPSs and CSFs, with the aim of improving metric accuracy:

- Scene-and-process-dependent NPSs (SPD-NPS) measured from replicate captures of images of scenes (or suitable test charts) to account for noise scene-dependency.
- Scene-and-process-dependent MTF (SPD-MTF) measures derived from images of scenes (or appropriate test charts) that account for signal transfer scene-dependency.

 Contextual CSFs (cCSF) [35] or Contextual Visual Perception Functions (cVPF) [8] that account for the scene-dependent effect of visual masking during detection or discrimination of pictorial scene signals, respectively.

Frameworks for two novel metrics (the log Noise Equivalent Quanta (log NEQ) and Visual log NEQ) were also proposed that used the abovementioned parameters.

The SPD-MTF and SPD-NPS measures were developed in this thesis and validated using camera simulation pipelines that generated controlled outputs. The pipelines applied either linear or non-linear content-aware ISP algorithms, such as demosaicing, denoising and sharpening. The metrics were validated using the same pipelines.

Although the measures and metrics were not validated using real capture systems, the results from these simulations are likely to be representative of real systems. This is particularly the case for observations regarding system scene-dependency, and the capability of the measures and IQMs to account for it. This is because scene-dependent system behaviour related far less to the initial modelling of image capture (i.e. lens blur, noise, mosaicing and pre-processing) compared to the ISP algorithms applied thereafter.

The discussion comprises of five sections. The first four concern the contributions of the four research chapters (Chapters 3 to 6). Section 7.1 discusses the scene-and-process-dependent IQM frameworks. Sections 7.2, 7.3 and 7.4 discuss the SPD-NPS measures, SPD-MTF measures, and scene-and-process-dependent IQMs, respectively. Finally, Section 7.5 reflects upon the implementation and application of all measures and metrics of this thesis.

### 7.1 Image Quality Metric Frameworks

The IQM frameworks were proposed in Chapter 3. The concept behind them was to transfer to STV-IQMs and MF-IQMs the capability of Computational IQMs (CP-IQM) to account for imaging system and human visual scene-dependency. To achieve this, the "nature" of the input parameters of various STV-IQMs and MF-IQMs was revised to analyse contents from the output image (i.e. a captured scene). Namely, their MTF, NPS and CSF parameters were substituted for SPD-MTFs, SPD-NPSs and cCSFs/cVPFs, respectively. The novel log NEQ and Visual log NEQ metric frameworks were developed following the same principle.

The resultant IQM frameworks represent a new sub-genre of STV-IQMs and MF-IQMs. They are adaptive to both imaging and visual system scene-dependency. But they still remain modular and relate to the underlying physics of both systems, and the viewing conditions. The metric frameworks demonstrate some novelty on a conceptual level.

Substituting the input parameters of existing STV-IQMs and MF-IQMs did not violate these metrics, provided the metrics were based upon fundamental relationships between perceived image quality and the MTF, NPS, Noise Equivalent Quanta (NEQ) and/or CSF. However, this does not apply to metrics that involve significant pre-calibration, or constants that have been based on visual image quality rating datasets. Revising the input parameters of such metrics can render their original calibration (or curve fitting) less appropriate since it was tuned for their original input parameters. In such cases, this places the revised IQM at a relative disadvantage to its original incarnation. It can also cause the accuracy of the revised IQM to be unrepresentative of the appropriateness of its input parameters. Also, any precalibration (or curve fitting) applied to a given IQM is, strictly speaking, only guaranteed to be applicable to the corresponding subjective image quality rating dataset. In certain cases, such metrics can lose accuracy when applied to new applications, or to systems that significantly exceed or fall below the quality range of the original dataset. These two issues were noted for the Square Root Integral with Noise (SQRIn) [12] and the Perceived Information Capacity (PIC) [169] metrics in Section 6.2.3. Conversely, other investigations found the IEEE P1858 Camera Phone Image Quality (CPIQ) metric could be applied accurately outside the quality range of its original dataset [335].

Strictly speaking, the proposed metric frameworks require a functional prototype of the imaging system in order to be executed. This is because the SPD-MTF and SPD-NPS are computed from captured (or processed) images. Nevertheless, an envelope of SPD-MTFs and SPD-NPSs can be simulated for a given set of input scene images. Likewise, the cCSF and cVPF can be computed with respect to these scene images. The resultant measures can be used in the metrics to predict the quality ranges of systems under development.

# 7.2 Scene-and-Process-Dependent Noise Power Spectra (SPD-NPS)

The novel SPD-NPS measures proposed in this thesis are deemed to be robust. They are the most relevant measures available for temporally varying noise in systems that apply nonlinear content-aware ISP. These observations are supported by the validations of each SPD-NPS measure (Chapter 4), and the fact that the accuracy of IQMs improved when these measures were used (Chapter 6 and Appendix J).

The measures were validated using image capture pipelines that introduced Poisson noise at signal-to-noise ratios (SNR), ranging from very good to very poor exposure conditions. Read noise and dark current noise were simulated as Gaussian noise with increased mean and standard deviation at lower SNRs. This noise modelling accounted for the reduced quantum efficiency of the red and blue pixels, but not fixed pattern noise (FPN).

The validations indicated that the uniform patch NPS is unrepresentative of temporally varying noise in non-linear image capture systems. This was found to affect the accuracy of any IQMs that used it. Aside from its convenience and ability to account for FPN, there is little to support the use of the uniform patch NPS when characterising non-linear systems.

The dead leaves SPD-NPS proposed in this thesis was found to be more appropriate for the image quality modelling of non-linear systems, as predicted. This supports Artmann's [18] observations on the benefits of characterising capture system noise using dead leaves signals. Artmann's [18] noise measures are derived indirectly by comparing measurements from different dead leaves MTF measurement implementations. The dead leaves SPD-NPS has certain limitations (discussed below) but measures the NPS directly, involving fewer assumptions. Artmann's noise measures should be compared with the dead leaves SPD-NPS in further work.

Temporally varying noise in dead leaves signals were, however, processed differently by non-linear content-aware ISP algorithms compared to noise in individual images of scenes, or in the "average scene". The dead leaves chart shares little similarity with pictorial scene images, both objectively and visually, beyond replicating the average scene power spectrum. Its mathematically-generated signal consists of randomly distributed, overlaid discs with "perfect" edges. The target content does not represent the variety of edge gradients, complex

structures and surface textures of pictorial scene images, or the fact that these contents are usually distributed in a non-random, structured fashion. Work in this thesis demonstrated that, the processing of noise by non-linear content-aware ISP algorithms varies significantly between different pictorial scene images, due to variations in their signal content. Thus, it is understandable that these algorithms should process noise in dead leaves signals differently to noise in the "average scene". This leads to an important question for investigation in further work: *can a single test chart be developed that triggers non-linear content-aware ISP algorithms like the average pictorial scene, and if so, to what extent must it replicate real scene signals?* 

The results from Chapters 4 to 6 support, in particular, the relevancy of the SPD-NPS measures that were derived from images of scenes. These measures displayed comparable levels of bias to the uniform patch NPS. They also demonstrated significant advantages over other measures when applied to the non-linear pipeline. For example, scene-dependent variations in the shape of the pictorial image SPD-NPS resulted from it accounting for the effect of the input scene image on the processing of noise by non-linear ISP algorithms. The IQMs that used this measure predicted subjective image quality consistently with the highest accuracy (as demonstrated in Tables J1-J6). This important observation indicates that scenedependent variation in the temporally varying noise of non-linear systems is both measurable, and relevant to image quality. The apparent robustness of the pictorial image SPD-NPS forms a solid foundation for the pictorial image SPD-NPS standard deviation measure of system scene-dependency. It also supports the case for the mean pictorial image SPD-NPS being the best measure of average real-world noise for non-linear systems. Indeed, the IQMs that used the latter measure were slightly more accurate than metrics using the dead leaves SPD-NPS. This difference in accuracy did not reflect the significant disparity between these two measures' curve shapes. The reason for this was the different curve shapes did not result in significant variations in integrated area.

The limitations of these new SPD-NPS measures are summarised in Section 4.1, and include:

- the requirement for many replicates to be captured (noise is underestimated if fewer replicates are used);
- 2) their higher computational complexity than existing measures;
- 3) their accuracy being dependent on all replicates being registered accurately;
- 4) their inability to account for FPN or fixed patterns of artefacts.

1) and 2) are becoming increasingly less problematic. Many cameras can now be controlled by software to capture images automatically under pre-specified settings and output them directly to a computer. This feature is common for camera phone and autonomous vehicle camera modules, for which the SPD-NPS measures are deemed to be most useful. Computing the mean of the replicates, and registering them, are the only processes that increase in computational demand with greater numbers of replicates. Thus, SPD-NPSs can be measured using hundreds of replicates to minimise underestimation of noise, which corrupts the SPD-MTF measures and IQMs of this thesis.

Most modern capture systems are mirrorless. This mitigates vibration and misregistration of the replicates (3)), which can also be limited by using an automated robotic arm [336], [337] to optimise and maintain steady alignment of the capture device. Various algorithms [338]–[340] can also correct misregistration automatically in terms of horizontal and vertical translation, scale, and orientation. The fact that these algorithms can distort the original camera signal and noise should not be overlooked, although prior art [7], [161] applied simple x-y translation algorithms successfully to register captured replicates in comparable measurements of noise.

FPN and other forms of capture system sensor noise have been minimised over the last 20 years [167]. FPN is now less significant than temporally varying noise under most conditions. It can be measured from replicate captures of a uniform patch following ISO 15739 [168, p. 15] procedures. The measured FPN power spectrum can be added to the SPD-NPS. The resultant total system noise measure still has the limitation of non-linear ISP processing FPN differently in captured uniform patches compared to images of scenes. But this is minor in comparison to taking all noise measurements from uniform patches.

# 7.3 Scene-and-Process-Dependent Modulation Transfer Functions (SPD-MTF)

The results from Chapters 5 and 6 demonstrate the potential of the SPD-MTF measures and support their use as IQM input parameters. However, this support was less conclusive than for the SPD-NPS measures for two reasons. The first is the bias in the SPD-MTF measurements due to signal-to-noise limitations (discussed in Chapter 5). The SPD-MTF measures inherited these limitations from the direct dead leaves MTF method; the limitations

affected, in particular, SPD-MTFs measured from pictorial images. The second is that the SPD-MTFs were validated by comparison with the direct dead leaves MTF. The latter presented a more appropriate input signal than the uniform patch NPS against which the SPD-NPSs were validated. It is expected that the SPD-MTFs would have demonstrated greater improvements over MTFs measured from edges, sine-waves or white-noise signals. The same trends would also be expected in the accuracy of IQMs that use these measures.

All IQMs performed more accurately using the dead leaves SPD-MTF than the direct dead leaves MTF (Tables J1-J6). The only exception was the IEEE P1858 Camera Phone Image Quality (CPIQ) metric which has inherent constants that originate from its curve fitting (making it less adaptable). The improvements were minor, but they further demonstrate the relevance of the dead leaves SPD-NPS measure, which is an inherent part of the dead leaves SPD-MTF.

The CPIQ metric and SQRIn were most accurate when they used SPD-MTFs measured from images of scenes. But the accuracy of other metrics was less competitive. Thus, the benefits of the pictorial image SPD-MTF and mean pictorial image SPD-MTF accounting most thoroughly for system scene-dependency were traded off by their bias. Reducing the integration range to  $0 \le u \le 12$  cycles/degree did not improve metric accuracy (as shown in Tables J1-J6) despite omitting the most biased frequencies. It affected the metrics' capabilities to account for sharpness changes at higher quality levels. But the metrics still accounted for the most relevant frequencies for seeing objects [334].

Despite Chapter 5 indicating that the signal transfer of non-linear ISP algorithms differs for the dead leaves test chart and the average scene, implementing SPD-MTFs measured from images of scenes in IQMs is not presently justified. However, the successful implementation in IQMs of SPD-NPS measures derived from images of scenes, suggests the respective SPD-MTF measures should also improve metric accuracy, provided their bias is mitigated further.

The pictorial image SPD-MTF and mean pictorial image SPD-MTF account for signal transfer concerning various signals, including edges and textures. If their bias were mitigated further, implementing either measure in the P1858 CPIQ standard's [22] texture loss attribute metric should also perform the role of its Edge Spatial Frequency Response (SFR) metric.

A parallel PhD study at the Computational Vision and Imaging Technology group, University of Westminster, is currently deriving SFRs from edges extracted directly from captured scenes [341]. The main difference between these SFRs and the SPD-MTFs of this thesis is the former requires no knowledge of the input signal and does not determine a global MTF/SFR measurement. There has been no comparison between the error, speed and computational complexity of these two very different approaches yet.

### 7.4 Scene-and-Process-Dependent Image Quality Metrics

The revised and novel IQM frameworks were successful. Many variants of each metric were generated, using different combinations of MTF, NPS and CSF parameters in Tables 4.1, 5.1 and 6.1, respectively. All metric variants were validated with respect to images from image capture pipelines with ISP filters tuned at reduced opacity. This placed the variants that used SPD-MTF and SPD-NPS measures at a disadvantage to the variants that used the uniform patch NPS and direct dead leaves MTF. This tested the robustness of the former variants for the reasons given below.

Bias in the SPD-NPS measures related to the level of noise and the number of replicates. Reducing the opacity of denoising increased the proportion of higher-power, unfiltered noise in the denoised image, biasing all SPD-NPS measures. It increased the accuracy of the uniform patch NPS, however, which measured unfiltered noise more accurately than filtered noise. Reducing the ISP opacity also gave the direct dead leaves MTF an advantage over the various SPD-MTFs. This was because the resultant bias in the SPD-NPS measures was carried into the SPD-MTFs due to the latter's signal-to-noise limitations (Equation 5.1).

Despite this handicap, metric variants that used SPD-MTFs and SPD-NPSs were consistently more accurate than variants using the direct dead leaves MTF and uniform patch NPS. This observation demonstrates the robustness of the SPD-MTF and SPD-NPS measures, and their relevance to the characterisation and image quality modelling of non-linear capture systems. Further, it can be inferred that if the ISP filters were at full opacity, the metric variants that used SPD-MTF and SPD-NPS measures would have outperformed the others by a greater margin.

The STV-IQMs complement metrics from the more complex MF-IQM genre, such as the CPIQ metric. The novel log NEQ and Visual log NEQ metrics developed in this thesis are

STV-IQMs that are expected to be valuable to the field. Their comparatively high accuracy and consistency supports Keelan's [176] statement on the fundamental relevance of the NEQ to imaging systems characterisation and image quality modelling. It also supports the range of prior art that applies the NEQ in models of the ideal observer with respect to signal fidelity in the presence of noise [179], [180], and for signal detection [342] under various capture conditions. The fact that these metrics involved minimal calibration or curve fitting meant that analysing their accuracy informed usefully on the relevance of their input parameters to image quality modelling. These metrics consistently performed most accurately using the various SPD-MTF and SPD-NPS measures. This observation was particularly the case for the non-linear pipelines (for which these measures and metrics were designed).

It is expected that applying further calibration or curve fitting would have improved the accuracy of the log NEQ and Visual log NEQ with respect to the subjective image quality dataset of this thesis. However, it is likely that the metrics would then:

- 1) relate less directly to the fundamental NEQ measure and Fechner's law;
- inform less accurately regarding the relevance of their input parameters to image quality modelling;
- 3) be less broadly applicable or revisable;
- potentially be less accurate outside of the range of the dataset to which their calibration or curve fitting was applied;
- 5) inherit certain characteristics of the systems they were calibrated with respect to.

Thus, it was decided that minimal calibration and no curve fitting should be applied, to retain the metrics' "purity" and maximise their relevance across different systems and applications.

The SQRIn and PIC were not as accurate as the "purer", simpler, log NEQ and Visual log NEQ metrics. This is expected to be because they were calibrated with respect to datasets generated by analog capture systems of lower quality. It is proposed that they could be re-calibrated to represent the performance of higher-quality digital capture systems better.

The highest performing variants of the CPIQ metric used SPD-MTF measures and sceneand-process-dependent noise images. They outperformed all variants of the other IQMs despite the CPIQ metric's curve fitting hindering any revisions of it. However, the following unexpected behaviour was also noted. Using scene-and-process-dependent noise images in the CPIQ metric did not improve its accuracy as much as using the equivalent SPD-NPS parameters in other metrics. Using noise images and SPD-MTFs derived from dead leaves signals also did not improve its accuracy compared to using a uniform patch noise image and the direct dead leaves MTF. Implementing the cCSF and cVPF models reduced its accuracy greatly, probably due to the inhibiting effect of its curve fitting. Retuning the CPIQ metric with respect to the SPD-NPS, SPD-MTF and cCSF/cVPF parameters would improve the accuracy of metric variants that use them. It is first recommended that the CPIQ metric is tested with respect to a range of arbitrary MTFs, NPSs and CSFs of different shapes, to investigate its sensitivity to changes in each input parameter. Its sensitivity to changes in the shape of the CSF should be of particular interest, which was severe.

The cCSF, cVPF and other CSF models were cascaded as weighting functions by all metrics to account for the priority of different signal frequencies to perceived image quality. This has not been problematic traditionally, and many successful metrics implement CSFs in this way. However, it should be noted that these visual models are threshold functions for spatial vision, not transfer functions. There is less justification for them to be cascaded with the image signal compared to transfer functions such as the MTF. The effect of higher-order processes of quality judgement on the priority of different signals to image quality are also unaccounted for by all these visual models. This should be investigated in further work.

The Barten or Johnson and Fairchild CSFs are commonly applied as weighting functions by IQMs. Normalising the cCSF and cVPF to the same integrated area as these models rendered them more suitable weighting functions. After this normalisation, the IQMs still accounted for scene-dependent differences in the shape of the cCSF and cVPF (shown in Figures I3 and I4). However, the IQMs did not account for variations in the magnitude of these functions which relate to the contrast of the scene. The revised SQRIn and PIC metrics still took scene contrast into consideration since they accounted for the power spectrum of the scene image. But this was not the case for the Visual log NEQ. Disabling the normalisation of the cCSF and cVPF did not improve the accuracy of any of the IQMs (Tables J2 to J6).

Empirical data and discussions from prior art suggest that the cCSF and cVPF are more suitable visual functions for image quality modelling than traditional CSFs (as detailed in Section 2.5). The fact that metrics using the cCSF and cVPF were less accurate than metrics using the Barten CSF was unexpected. For the SQRIn, PIC and CPIQ metrics, it is assumed this was caused by their calibration being disturbed when the cCSF/cVPF were implemented. However, this does not explain the loss of accuracy in the Visual log NEQ metric that applies

minimal calibration. Potential explanations for why the cCSF and cVPF reduced metric accuracy are given below.

The cCSF and cVPF account for visual masking using the Linear Amplification Model (LAM). The LAM models the effect of masking on detection/discrimination of signals in a given frequency band according to the contrast of flanking bands in the contrast spectrum. This global model does not account for whether or not the signal being detected/discriminated is located next to any masking content. If a local masking model were used instead, detection/discrimination would be modelled as varying locally (as in practice) dependent on the proximity of the signal to masking content. It is expected that the cCSF and cVPF would be implemented more successfully in IQMs if they applied such a model. However, it would make them significantly more complex.

### 7.5 Implementation and Application

#### 7.5.1 Practical Implementation of SPD-MTF and SPD-NPS measures

It is proposed that the SPD-MTF and SPD-NPS measures developed in this thesis are implemented with real capture systems by one of the following two methods.

The first adapts the implementation of Branca et al. [7], as summarised below:

- Capturing the test scenes/target with a very-high-resolution, professional camera ensuring these captures contain no visible artefacts (Branca *et al.* [7] used a Hasselblad 503 camera with a 28 megapixel Leaf Aptus digital back and standard 80mm f/2.8 lens).
- Printing the test scenes/target at the largest scannable size using a professional printer with a very high dynamic range and resolution (Branca *et al.* [7] used an Epson Stylus Pro 7900 printer with resolution of 2880 x 1440 dots per inch (dpi)).
- 3) Mounting the printed images flat and positioning them parallel to the sensor of the test device at a distance that results in a sampling density of 140 pixels per inch (ppi) or lower when they are captured. Illuminating the printed images evenly. Note that higher sampling densities may introduce measurement error.

- 4) Capturing the printed images, including any replicates, with the test device mounted on a tripod. A cable shutter release should be used, and the test device's mirror lock-up feature should be enabled, if available.
- 5) Scanning each printed image using a professional scanner with a pixel resolution of 1200 dpi or higher (Branca *et al.* [7] used the Epson Perfection V850 Pro scanner). The MTF and NPS of the scanner should be negligible compared to the test device under the capture conditions. Otherwise, the ISO 12233 slanted edge MTF and ISO 15739 [168] uniform patch NPS of the scanner can be obtained and accounted for in 6). The scanner should be linear to ensure these measurements are representative of its average real-world performance.
- 6) Resizing the scanned images to the same pixel resolution as the test device captures, using *lanczos3* interpolation [343]. Computing their one-dimensional (1D) discrete Fourier transform (DFT) power spectra (Equation 2.30). Compensating for the MTF and NPS of the scanner, if necessary, to yield suitably scaled 1D DFT power spectra for each print presented to the test device.
- 7) Computing the desired SPD-NPS for the device from the replicate captures of 4).
- 8) Calculating the SPD-MTF of the device with respect to the captured scene/target, scanned scene/target, and SPD-NPS (given by 4), 6) and 7), respectively).

Note that the SPD-NPS measures can also be computed from registered captures of real static scenes, by adapting step 4) accordingly, and then following step 7).

The second method requires an automated camera characterisation system to be developed, illustrated in Figure 7.1. It enables SPD-MTFs and SPD-NPSs to be obtained conveniently from a large number of replicates, reducing error. It should also allow them to be computed in real-time from video signals, as suggested in further work.



Figure 7.1 Proposed automated display-capture device layout.

The very-high-resolution display should deliver a linearised, uncompressed output signal. Its MTF should be characterised following reference [344] or [102, p. 208]. Its NPS should be characterised by subtracting the uniform patch NPS of a professional digital single-lens reflex (DSLR) camera (measured following ISO 15739 [168]) from the combined NPS of the display and DSLR. The latter should be measured by capturing a similar uniform tone signal with the DSLR, presented by the display. Incorrect characterisation of the display will result in measurement error; the DSLR must not apply non-linear ISP. The mounting frame should align the display and sensor planes precisely to mitigate aliasing and minimise vibration of either component. The sensor-to-display distance should be sufficient to ensure the pixel resolution and MTF of the display both outresolve the capture device.

Bespoke software should display the images of the test scenes/target and trigger the device to capture them, automatically, including any replicates. It should then compute the SPD-NPS of the device, by subtracting the NPS of the display from the SPD-NPS of the captured scene/target images. The SPD-MTF of the device should then be computed with respect to its SPD-NPS, and the 1D DFT power spectra of the captured and displayed images. The displayed image should be resized to the same pixel resolution as the captured image using *lanczos3* interpolation [343], before computing its power spectrum. Its power spectrum

should also be multiplied with the square of the MTF of the display to account for the display's limitations.

#### 7.5.2 Application in Objective Imaging Performance Metrics

Objective metrics for imaging system noise and its scene-dependency have been developed by the author in conjunction with this project [345].

The mean pictorial image SPD-NPS area metric,  $A_{Mean}$ , describes the objective level of temporally varying system noise as a single figure (Equation 7.1) [345]; it accounts for system noise scene-dependency. N(u) is the mean pictorial image SPD-NPS. u and  $u_{Nyquist}$  are spatial frequency and the Nyquist frequency, respectively. Like the MTF50 sharpness metric and the MTF10 resolution metric, this objective metric for system noise does not account for the human visual system (HVS). Thus, it should not be confused with IQMs and should be applied as a system noise optimisation parameter.

$$A_{Mean} = \int_0^{u_{Nyquist}} N(u). \, du \tag{7.1}$$

The relative standard deviation area (RSDA) of the pictorial image SPD-NPS,  $A_{RSDA}$ , expresses the objective level of scene-dependency of temporally varying system noise [345]; it also does not account for the HVS. It is given by Equation 7.2, where S(u) is the pictorial image SPD-NPS standard deviation (Equation 4.7); other parameters are as above.

$$A_{RSDA} = \frac{\int_0^{u_{Nyquist}} S(u). \, du}{A_{Mean}} \tag{7.2}$$

Both metrics were validated in reference [345] with respect to images generated by pipelines tuned at full (Chapters 4 and 5) and reduced opacity (Chapter 6). The mean pictorial image SPD-NPS area metric scores (Figure 7.2) corroborated observations of mean pictorial image SPD-NPS measurements of system noise performance, including those from Chapter 4. For example, the former indicated that non-linear denoising and sharpening algorithms removed noise more and amplified noise less, than the equivalent linear algorithms, respectively.



Figure 7.2 Mean pictorial image SPD-NPS area, in units of pixels.

Likewise, the RSDA metric (Figure 7.3) agreed with observations of pictorial image SPD-NPS standard deviation measurements of system scene-dependency. It was unaffected by linear ISPs, as would be expected. Non-linear denoising increased it significantly, but not non-linear sharpening. The latter did not increase the relative spread of the pictorial image SPD-NPS curves (Figure 4.7) but did re-arrange their shape and order. Both the last are unaccounted for by the RSDA metric but affect system performance scene-dependency.



Figure 7.3 Relative Standard Deviation Area of the SPD-NPSs of 50 input scenes. This is expressed as a percentage of the integrated area under the mean pictorial image SPD-NPS.

Quoting the RSDA metric alongside the mean pictorial image SPD-NPS area metric expresses both the systems performance and scene-dependency, in the same manner as when the pictorial image SPD-NPS standard deviation is added/subtracted from the mean pictorial

image SPD-NPS in Figure 4.6. This is useful when assessing and benchmarking system performance. For example, systems with a low mean pictorial image SPD-NPS area metric score, and a high RSDA score are likely to use significant non-linear ISP to improve their output image quality, as well as good quality hardware.

Substituting the equivalent SPD-MTF measures into Equations 7.1 and 7.2 yields objective metrics for system signal transfer (accounting for system scene-dependency) and its scene-dependency, respectively. Both these metrics are currently limited by bias in the pictorial image SPD-MTF (discussed in Chapter 5) and would benefit from it being mitigated further.

#### 7.5.3 Application in Computer Vision and Autonomous Vehicles

The performance measures and metrics proposed in this thesis are suitable for a wide variety of applications beyond visual image quality modelling. For example, the SPD-MTF, SPD-NPS and scene-and-process-dependent NEQ (SPD-NEQ) can be used to characterise capture systems used in computer vision applications. This includes systems that deliver input video streams to the deep Convolutional Neural Networks (CNN) used by Advanced Driver Assistance Systems (ADAS). These CNNs detect and classify road signs and hazards. The video stream is usually processed by a system on chip (SoC) before being analysed by them [346]–[349]. SoCs are generally black boxes that automatically apply non-linear content-aware ISP such as denoising, video noise temporal filtering (VNTF) [350] and sharpening [351]. These algorithms are dependent on the spatial or spatiotemporal signal characteristics.

CNNs are on par or better than human observers at classifying objects in high-quality images of scenes, but far less accurate for blurred, noisy images [352]. ISP algorithms should also be tuned differently in systems intended for CNNs and human observers, to maximise classification accuracy [351], [353]. Jenkin and Kane [351] suggest CNNs should be treated presently as "alien observers" and the imaging industry is a long way from producing IQMs calibrated for CNNs in the manner of the psychovisually calibrated CPIQ metric. What is clear is that for the performance of ADAS systems and relevant metrics to be reliable, their capture systems and SoC pipelines must be characterised accurately.

Jenkin and Kane [351] have proposed a fundamental spatial signal model for autonomous vehicle capture systems. It is based on the Effective Pictorial Information Capacity (EPIC) metric [195], [252] that relates to the information capacity and NEQ (as discussed in Section 2.4). It is proposed in this thesis that the "photographic" expression for information capacity

(Equation 2.41) [173, p. 631] should be revised for the same purpose. The signal spectrum of the displayed image, S(u), and the total imaging system noise, N(u), should be obtained using Equations 3.15 and 3.16, respectively.  $\gamma^2_{display}$  and  $MTF^2_{display}(u)$  should be replaced with constants of value 1 since no display exists in this scenario. The resultant measure accounts for the SPD-MTF and SPD-NPS, and thus also capture system scene-dependency.

Kane [342] and Jenkin [354] also developed an Ideal Observer Signal-to-Noise Ratio (SNRI) model for autonomous vehicle capture system design and optimisation (Equation 7.3). It describes the SNR concerning the decision of the ideal observer, with respect to a given task, considering the SNR of the imaging system. It is based upon the detectability index, d', that applies signal detection theory; both are discussed in Section 2.4.  $MTF_{sys}$  and  $NPS_{sys}$  are the 1D MTF and NPS of the imaging system, respectively. G(u) is the DFT of the difference between the signal and background. K is the large area signal transfer factor.

$$SNRI^{2} = K^{2} \int \frac{|G(u)|^{2} MTF_{Sys}^{2}(u)}{NPS(u)} du = d'^{2}$$
(7.3)

Jenkin states the SNRI can be obtained by cascading the NEQ with the target and background information and that reliable MTF and NPS measurements are critical to its accuracy [354]. The following *scene-and-process-dependent SNRI (SPD-SNRI)* measure is proposed in this thesis, in terms of the SPD-NEQ,  $NEQ_{SPD}(u)$ ; all other parameters are as per Equation 7.3. Its similarity with the log NEQ should be noted. The fact the logarithm is not taken is understandable considering that, unlike the human visual system, CNNs do not necessarily follow Fechner's law.

$$SNRI_{SPD}^{2} = K^{2} \int |G(u)|^{2} NEQ_{SPD}(u) du = d'^{2}$$
(7.4)

Both of the proposed spatial signal models account for capture system signal transfer and noise scene-dependency caused by interactions between relevant input signals and non-linear ISP algorithms. The proposed models would benefit from further reduction of pictorial image SPD-MTF measurement error. Computing each model using the pictorial image SPD-MTF and SPD-NPS accounts for system performance with respect to real video frames. Using the mean pictorial image SPD-MTF and SPD-NPS instead, or the dead leaves SPD-MTF and SPD-NPS, accounts for the system's average real-world capabilities, including its scene-dependency.

# Chapter 8 Conclusions and Recommendations for Further Work

### 8.1 Conclusions

The following conclusions were drawn from research in this thesis:

- The novel image quality metrics (IQM), scene-and-process-dependent Modulation Transfer Functions (SPD-MTF) and Noise Power Spectra (SPD-NPS) of this thesis represent a new paradigm of IQMs and imaging performance measures. They accounted for the scene-dependency of simulated non-linear image capture pipelines. But they are more complex than current equivalent measures.
- The *pictorial image SPD-MTF and SPD-NPS* are the only current measures that characterise non-linear system performance with respect to a given input scene; they accounted most thoroughly for system scene-dependency. They are the most suitable input parameters for IQMs when modelling the quality of a given captured scene.
- The *mean pictorial image SPD-MTF and SPD-NPS* are, presently, the only measures for the average real-world performance of non-linear systems that account for system scene-dependency. They are the most suitable IQM input parameters when describing the average real-world image quality of such systems.
- The *pictorial image SPD-MTF and SPD-NPS standard deviation* are the only current measures for the level of system scene-dependency. But they do not account for all aspects of it. Combining them with the mean pictorial image SPD-MTF and SPD-NPS characterises average real-world system performance and scene-dependency.
- The *dead leaves SPD-MTF and SPD-NPS* characterised the average real-world performance of the non-linear pipeline more appropriately than the direct dead leaves Modulation Transfer Function (MTF) and uniform patch Noise Power Spectrum (NPS), respectively. They are more convenient and computationally efficient than the mean pictorial image SPD-MTF and SPD-NPS and suit the same applications. But they were often outliers compared to measures derived from images of scenes,

since the dead leaves chart triggered non-linear image signal processes (ISP) at different levels to natural scene signals.

- All SPD-MTF measures suffered from bias due to signal-to-noise limitations. This bias was scene-dependent, affecting in particular the measurements at the higher frequencies of noisy, low-signal images of scenes. It was mitigated by denoising.
- Fixed patterns of noise and artefacts were unaccounted for by all SPD-NPS measures.
- The accuracy of the novel *log Noise Equivalent Quanta (log NEQ)* and *Visual log NEQ* metrics developed in this thesis, as well as other leading IQMs, improved when they used SPD-MTFs and SPD-NPSs as input parameters.
- The greatest improvements in accuracy occurred when the metrics used SPD-NPS measures derived from images of scenes. This shows the SPD-NPS framework is robust and relevant to image quality modelling.
- When the metrics used SPD-MTFs measured from images of scenes, the benefits of accounting more thoroughly for system scene-dependency were often traded off against bias from signal-to-noise limitations.
- Implementing Contextual Contrast Sensitivity Function (cCSF) and Visual Perception Function (cVPF) spatial visual models did not improve metric accuracy.
- The IEEE P1858 Camera Phone Image Quality (CPIQ) standard metric [22] achieved the highest accuracy of all metrics tested when specific input parameter combinations were used (namely, the Barten CSF and SPD-MTFs and noise images derived from images of scenes). Other input parameter permutations, especially those involving the cCSF and cVPF, appeared to disturb the metric's calibration and reduced its accuracy.
- The log NEQ and Visual log NEQ applied minimal calibration. Thus, analysing changes in the accuracy of these metrics informed most of all on the appropriateness of the various input parameters. These metrics were generally more accurate than the comparable Pictorial Information Capacity (PIC) and Square Root Integral with noise (SQRIn) and more consistent than the CPIQ metric. This demonstrates the relevance of the Noise Equivalent Quanta (NEQ) and novel *scene-and-process-dependent NEQ (SPD-NEQ)* measures to image quality modelling. It also suggests simple, elegant metrics may be the most accurate, provided their input parameters characterise system performance comprehensively. This is in agreement with Occam's Razor.

### 8.2 Further Work

The following further work is recommended that relates to the subjects covered in this thesis:

- Validation of all measures and metrics of this thesis with real capture systems using the practical implementations proposed in Section 7.5.1. This should include systems applying Joint Photographic Experts Group (JPEG) and JPEG 2000 compression.
- Evaluation of variation error and bias in the SPD-MTF and SPD-NPS measures from first principles. This can be achieved for the SPD-MTFs by modifying Burns' error propagation method for existing dead leaves MTF implementations [158].
- Investigation of methods to mitigate bias in the SPD-MTFs resulting from signal-tonoise limitations.
- Validation of all measures and metrics of this thesis at higher noise levels. This would require extending the low-quality range of the ISO 20462 image quality ruler.
- Investigation of whether computing the SPD-MTF and SPD-NPS of video frames accounts for the spatiotemporal-signal-dependency of non-linear video processing.
- Comparison of the dead leaves SPD-NPS and Artmann's [18] noise measures derived from the dead leaves test chart.
- Analysis of the effect of common Colour Correction Matrix (CCM) on the SPD-NPS measurements.
- Analysis of SPD-MTF and SPD-NPS measurements with respect to local regions of images of scenes, and how they integrate into the global SPD-MTFs and SPD-NPSs of this thesis. Such local measurements could be implemented in IQMs alongside visual saliency models, or in signal detection metrics for autonomous vehicles.
- Integration of envelopes of scene-edge Spatial Frequency Response (SFR) measurements (Section 7.3) into global SFRs [341]. These measurements should be compared with SPD-MTFs, including their use as IQM input parameters.
- Validation of the signal models for autonomous vehicles proposed in Section 7.5.3.
- Examination of the relationships between natural scene statistics (NSS) and typical SPD-MTF, SPD-NPS and SPD-NEQ behaviour, as well as bias in each measure.
- Investigation of the role of masking scene content to perceptions of sharpness and noisiness, as well as denoising, sharpening and compression artefact magnitude.

- Evaluation of whether contextual detection (cCSF) and discrimination (cVPF) models have genuine roles to play in image quality modelling.
- Implementation of optimal contrast weighting (OCW) functions [14] in the IQMs of this thesis to account for relevant cognitive processes of image quality judgement.
- Benchmarking the IQMs of this thesis versus state-of-the-art Computational IQMs (CP-IQM) using the observer image quality rating dataset from Chapter 6.
- Generation of a test image dataset which triggers a range of non-linear spatial ISP algorithm behaviour in terms of signal transfer (SPD-MTF) and noise (SPD-NPS). Susceptibility to sharpening and denoising should be considered.
- Development of a test chart that: 1) relates to the power spectrum, spatial distribution
  of contrast signals and range of edge gradients of the "average scene". 2) is shift,
  rotation and exposure invariant, like the dead leaves chart. The dead leaves SPDMTF and SPD-NPS should be validated with the dead leaves chart substituted for it.

## **Appendix A Linear System Theory Requirements**

All imaging system performance measures that apply linear system theory require the system to be linear, spatially invariant and homogenous. This applies to the Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Noise Equivalent Quanta (NEQ). Each requirement is defined below, referring to Dainty and Shaw [6, pp. 206–207]. Failure to comply with them or compensate for any deviation results in measurement inaccuracy.

Let the operator S{ } denote a 2D imaging system. The condition for the system to be linear is given below, where  $f_1(x, y)$  and  $f_2(x, y)$  are two separable input image signals [2, p. 4].

$$S\{f_1(x,y) + f_2(x,y)\} = S\{f_1(x,y)\} + S\{f_2(x,y)\}$$
(A1)

The condition for the system to be homogenous is below; *a* is a scaling constant [2, p. 4].

$$S\{ax, ay\} = aS\{x, y\}; \quad \text{for} \quad a > 0 \tag{A2}$$

Combining Equations A1 and A2 gives the conditions for the system to be both linear and homogenous; a and b are constants greater than zero [6, p. 206].

$$S\{af_1(x, y) + bf_2(x, y)\} = aS\{f_1(x, y)\} + bS\{f_2(x, y)\}$$
(A3)

The condition for the system to be stationary is given below [6, p. 207].  $h(x, y; x_1, y_1)$  is the response of the system at output coordinates x and y to an input signal at coordinates  $x_1$  and  $y_1$ . For a stationary system, this response depends on the differences between the variables only,  $(x - x_1, y - y_1)$ , not on each separate variable. Thus, the Point Spread Function (PSF) remains constant at all spatial locations of the image [6, p. 207].

$$h(x - x_1, y - y_1) \equiv h(x, y; x_1, y_1)$$
(A4)

# Appendix B Structural Similarity Index (SSIM) Definition

Equation B1 [114] describes the luminance comparison of the Structural Similarity Index (SSIM), l(x, y), with respect to a nonnegative reference, x, and test image signal, y. L is the pixel value dynamic range (i.e. 255 for an 8-bit grayscale image).  $K_{SSIM_1}$  is a constant of default value 0.01. Equation B2 defines the mean luminance of the reference image signal,  $\mu_x$ , where  $x_i$  is the luminance at pixel i, and N is the total number of pixels [114].  $\mu_y$  is calculated from the test image signal, y, in the same fashion.

$$l(x,y) = \frac{2\mu_x \mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1}; \quad \text{where } C_1 = \left(K_{SSIM_1}L\right)^2$$
(B1)

$$\mu_x = \frac{1}{N} \sum_{i=1}^N x_i \tag{B2}$$

The contrast comparison of the SSIM, c(x, y), is a function of the standard deviations of the reference and test image signals (denoted by  $\sigma_x$  and  $\sigma_y$ , respectively) within a local window (Equation B3);  $K_{SSIM_2}$  is set to 0.03 by default [114].  $\sigma_x$  is computed from the reference image signal, x, using Equation B4.  $\sigma_y$  is calculated from the test image signal in the same fashion. All other parameters are as detailed above [114].

$$c(x, y) = \frac{2\sigma_x \sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}; \quad \text{where } C_2 = \left(K_{SSIM_2}L\right)^2$$
(B3)

$$\sigma_x = \left(\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)^2\right)^{\frac{1}{2}}$$
(B4)

The structural comparison, s(x, y), is given as the correlation coefficient between the reference, x, and test image signal, y, respectively. It is computed by Equation B5 after the mean luminance,  $\mu$ , has been subtracted from the signals, and they have been divided by their respective standard deviations,  $\sigma$ , to normalise them [114]. Thus, the structural

comparison describes the correlation between the unit vectors  $(x - \mu_x)/\sigma_x$  and  $(y - \mu_y)/\sigma_y$ .  $\sigma_{xy}$  is estimated by Equation B6, where  $x_i$  and  $y_i$  are pixel intensities at position *i* for the reference and test images' signals, respectively, and  $\mu_x$  and  $\mu_y$  are the mean intensities of these signals [114]. *N* is the total number of pixels.

$$s(x,y) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}; \quad \text{where} \quad C_3 = \frac{C_2}{2}$$
(B5)

$$\sigma_{xy} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x) (y_i - \mu_y)$$
(B6)

The SSIM index between the reference, x, and test image signal, y, is given by Equation B7 where  $\alpha = \beta = \gamma = 1$ . This can be rewritten as Equation B8, where all terms are as described above [114].

$$SSIM(x,y) = [l(x,y)]^{\alpha} \cdot [c(x,y)]^{\beta} \cdot [s(x,y)]^{\gamma}$$
(B7)

$$SSIM(x,y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$
(B8)

A map of SSIM indices is output for a number of local windows of the image, M, that are produced using a circular-symmetric 11-by-11 pixel Gaussian weighting function. The SSIM map can be averaged to a single Mean Structural Similarity Index (MSSIM) figure using Equation B9. SSIM $(x_j, y_j)$  is the SSIM index corresponding to the reference and test image signals  $x_j$  and  $y_j$ , in the *j*th local window. X and Y are the reference and test images, respectively.

$$MSSIM(X,Y) = \frac{1}{M} \sum_{j=1}^{M} SSIM(x_j, y_j)$$
(B9)

# Appendix C Test Scenes used in Chapters 4 & 5

This appendix contains input scene images to the simulations used to validate the scene-andprocess-dependent Noise Power Spectrum (SPD-NPS) and equivalent Modulation Transfer Function (SPD-MTF) measures in Chapters 4 and 5, respectively. Images 1-17 are from [225], 18-19 from [7], 20-23 from [14], 24 from [8], 25-26 from [102]. Images 1-13 from Appendix D were also used. Images 27-37 were captured with the same digital single-lens reflex (DSLR) camera and lens as images from [14] using identical focal length, aperture and ISO settings.



1. Bikes



2. Building2



3. Buildings



4. Caps



5. Coins In Fountain



6. Flowers On IH35







8. Lighthouse II



9. Monarch



10. Ocean



11. Painted House



12. Parrots



13. Plane



14. Rapids



15. Sailing I



16. Sailing IV



17. Stream



18. Architecture



19. Students



20. Bench



21. People II



22. Lines



23. Buildings



24. Gallery



25. Player's Navy



26. Pool



27. Architecture II



28. Landscape I



29. Landscape II



30. Landscape III



31. Landscape IV



32. Landscape V



33. Landscape VI



34. People II



35. People III



36. Panther



37. Ferry

# Appendix D Test Scenes used in Chapter 6

This appendix contains input scene images to the simulations used to validate the revised image quality metrics (IQM) in Chapter 6. All were captured and processed by Allen [102].



1. Accordion



2. Afternoon Tea



3. Cliffs



4. Crockery



5. Emporium



6. Kids



7. Lamp



8. Lilies



9. Sculpture





10. Seagull



11. Serpent



12. Flower Garden



13. Summer



14. Stones

### **Appendix E** Generation of Ruler Images by Allen

Allen's [102, pp. 216–223] method for generating the ruler image dataset is summarised here. It followed Clause 7 of ISO 20462 [56, p. 9]. The ruler images were specific to the EIZO ColorEdge CG245W liquid crystal display (LCD) at 60cm viewing distance. They were generated from 14 captured scenes similar to those in Appendix D [102]. These original images of the scenes were of very high quality with no noticeable artefacts. But they differed in terms of subject matter and objective signal content. They were captured using a Canon EOS 5D Mark II digital single-lens reflex (DSLR) camera and Canon EF 24-70mm L II USM lens, using low ISOs and various focal lengths and F numbers [102, Sec. 5.2.1]. All images of the scenes were processed according to a standard imaging workflow [102, Sec. 5.2.2]. Cascading the Modulation Transfer Function (MTF) after processing with the MTF of the display yielded the system MTF (Figure E1(a)).



Figure E1 MTFs and filter transfer functions used by Allen [102, pp. 216–223] to shape the system MTF to the aim MTF.

ISO 20462 [56, p. 9] provides equations to generate ruler image MTFs (Equation E1) corresponding to a given Standard Quality Scale (SQS<sub>2</sub>) value expressed in just-noticeable difference (JND) units (Equation E2). Both are given in terms of the constant  $k_{SCQR}$ ; *u* is spatial frequency. Allen [102, p. 91] determined an appropriate aim MTF for the system when  $k_{SCQR}$  was equal to 0.031, (SQS<sub>2</sub>  $\approx$  26).
$$MTF(u) = \frac{2}{\pi} \cdot \left( \cos^{-1} \left( k_{SCQR} u \right) - k_{SCQR} u \sqrt{1 - \left( k_{SCQR} u \right)^2} \right) \qquad k_{SCQR} u \le 1$$

$$MTF(u) = 0 k_{SCQR}u > 1$$

$$SQS_{2} = \frac{17249 + 203792k_{SCQR} - 114950k_{SCQR}^{2} - 3571075k_{SCQR}^{3}}{578 - 1304k_{SCQR} + 357372k_{SCQR}^{2}} \qquad (1 \le 100k_{SCQR} \le 26)$$
(E2)

Allen [102, p. 217] divided the aim MTF by the system MTF to obtain the transfer function for a frequency domain shaping filter (Figure E1(b)). A 5<sup>th</sup> degree polynomial curve was fitted to this transfer function.

The scene image's MTF was then shaped to the aim MTF by [102, p. 217]:

- 1) padding the image with zeros to avoid wraparound error;
- 2) generating an array of ones, of identical dimensions to the padded image from 1);
- applying the abovementioned polynomial function radially to the array from 2), with zero frequencies at the centre of the array;
- computing and centring the two-dimensional (2D) Fast Fourier Transform (FFT) for the image to be filtered;
- 5) multiplying the magnitude component of the FFT from 4) with the filter array from 3);
- 6) recombining the result of 5) with the phase component of the FFT from 4);
- 7) inverse FFT filtering and removing the zero-padding applied in 1).

Allen [102, p. 221] determined  $k_{SCQR}$  values for 30 ruler images using Equation E2. Their SQS<sub>2</sub> values differed from the SQS<sub>2</sub> value of the aim MTF by integer JND units, from +6 JNDs to -24 JNDs (i.e. SQS<sub>2</sub> = 3 to SQS<sub>2</sub> = 32). The required MTF for each ruler image was computed using Equation E1. Dividing this required MTF, by the system MTF, yielded a frequency domain JND filter transfer function for each ruler image, to which a 5<sup>th</sup> degree polynomial function was fitted. Up to 30 ruler images were produced for each scene by repeating step 1) to 7) with each polynomial function.

### **Appendix F Display Characterisation**

The EIZO ColorEdge CG245W display (with specifications given in Table F1) was characterised by measuring the following:

- 1) white point and peak R, G and B channel output (Table F2);
- 2) positional non-uniformity (Figure F1);
- 3) tone transfer functions (Figure F2);
- 4) viewing angle dependency in terms of luminance and chrominance output (Figures F3 and F4);
- 5) short-term temporal stability (Figure F5).

The method of Park [355] was followed when measuring 2), 4) and 5).

|                                    | EIZO ColorEdge CG245W display                        |
|------------------------------------|------------------------------------------------------|
| Display technology                 | Liquid crystal display (LCD)                         |
| Displayable area (cm)              | 51.8 (horizontal) x 32.4 (vertical)                  |
| Native pixel resolution (pixels)   | 1920 (horizontal) x 1200 (vertical)                  |
| Display colour                     | 24bits (DVI) / 30bits (DP) from a palette of 48 bits |
| Viewing angle (degrees)            | 178 (horizontal), 178 (vertical)                     |
| Pixel pitch                        | 0.27mm (horizontal), 0.27mm (vertical)               |
| Maximum brightness                 | $270 \text{ cd/m}^2$                                 |
| Maximum brightness for experiments | 120 cd/m <sup>2</sup>                                |
| Colour representation              | Standardised RGB (sRGB)                              |
| Target gamma                       | 2.2                                                  |
| Target white point                 | D65                                                  |

Table F1 Display specifications; adapted from Allen [102, p. 299].

Before taking measurements from the display, it was allowed to warm up for 1 hour and then calibrated using its native colorimeter according to the target settings in Table F2(a). When characterising the display, the input signal was delivered by a Lenovo ThinkPad X230 with Intel HD Graphics 4000. The output signal was measured using a Konica-Minolta CS-200 colorimeter using the most accurate "slow" or "very-slow" measurement durations, with the

measurement angle set to 0.2 degrees. All measurements were taken in total darkness at a distance of 150cm. The temperature of the laboratory was approximately 20 degrees Celsius.

| (a)         |        | Target Settings for Calibration |        |        |        |       |       |  |  |  |  |  |  |
|-------------|--------|---------------------------------|--------|--------|--------|-------|-------|--|--|--|--|--|--|
| (4)         | х      | у                               | Χ'     | Y'     | Z'     | u'    | v     |  |  |  |  |  |  |
| White Point | 0.3127 | 0.329                           | 114.05 | 120.00 | 130.69 | 0.198 | 0.468 |  |  |  |  |  |  |
| Peak Red    | 0.64   | 0.33                            | 49.48  | 25.51  | 2.32   | 0.451 | 0.523 |  |  |  |  |  |  |
| Peak Green  | 0.3    | 0.6                             | 42.91  | 85.82  | 14.30  | 0.125 | 0.563 |  |  |  |  |  |  |
| Peak Blue   | 0.15   | 0.06                            | 21.66  | 8.66   | 114.08 | 0.175 | 0.158 |  |  |  |  |  |  |

| (b)         |        | Measurements Obtained After Calibration |        |        |        |       |       |  |  |  |  |  |  |
|-------------|--------|-----------------------------------------|--------|--------|--------|-------|-------|--|--|--|--|--|--|
| (10)        | х      | У                                       | Χ'     | Υ'     | Ζ'     | u'    | v     |  |  |  |  |  |  |
| White Point | 0.318  | 0.3354                                  | 112.27 | 118.41 | 122.36 | 0.199 | 0.472 |  |  |  |  |  |  |
| Peak Red    | 0.6458 | 0.334                                   | 50.64  | 26.19  | 1.58   | 0.452 | 0.526 |  |  |  |  |  |  |
| Peak Green  | 0.302  | 0.6152                                  | 41.41  | 84.36  | 11.35  | 0.124 | 0.566 |  |  |  |  |  |  |
| Peak Blue   | 0.1511 | 0.0609                                  | 21.02  | 8.47   | 109.60 | 0.176 | 0.160 |  |  |  |  |  |  |

Table F2 (a) target CIE xyY chromaticity coordinates for calibrating the display, and equivalent CIE 1931 tristimulus values and 1976 [356] chromaticity coordinates. (b) measurements of the above taken from the display after calibration using the Minolta CS-200 colorimeter.



Figure F1 Measurements of the positional non-uniformity of the display: (a) shows the 25 positions where measurements were taken perpendicular to the display; *h* and *w* are the display's height and width [357, p. 25]. (b), (c) and (d) show CIE  $\Delta E_{ab}$  colour differences, CIE  $\Delta C_{ab}$  colour differences, and CIELAB  $\Delta L^*$  lightness differences, respectively, between each display region and the centre of the display.



Figure F2 Tone transfer functions for the display: (a) linear-linear space, (b) log-log space, (c) normalised linear-linear space after dividing the output luminance of each channel by its peak luminance output. All measurements were taken perpendicular to the centre of the display. Measurements for 8-bit pixel values under 50 were omitted due to measurement inaccuracy.



Figure F3 Luminance output dependency with respect to viewing angle for the display: (a) 8-bit neutral pixel values (PV) ranging from 32 to 255. (b) white point and peak output for the R, G and B channels. Horizontal and vertical viewing angle variations are denoted by dotted and solid trend-lines, respectively.



Figure F4 Variation in CIE 1976 [356] u' and v' chromaticity coordinates with respect to viewing angle for the display are shown in plots (a) and (b); measurements relating to horizontal and vertical viewing angle variations are denoted by dotted and solid trend-lines, respectively. (c) plots all data points from (a) and (b) on a standard CIE u'v' chromaticity diagram.



Figure F5 Temporal stability of the white point of the display with respect to luminance output (top), CIE 1931 x and y chromaticity coordinates (bottom).

# Appendix G Snellen Near Vision Test Card

The Snellen [330] near vision test card (Figure G1) was printed at high quality using a laser printer. It was used to assess the near vision of participants in the image quality evaluations of Chapter 6.



Figure G1 Snellen Near Vision Test Card [330].

### **Appendix H Observer Instructions**

The following instructions were provided to each observer before their participation in the image quality evaluations of Chapter 6. They are based upon similar instructions from [56, p. 13] and [102, p. 306]. Numerical references in the text refer to sections of Figure H1.

You will be assessing the quality of a series of images using a psychophysical technique called the softcopy image quality ruler. Please remember that there are no right or wrong answers. Your opinions regarding image quality are a product of your own unique perceptions.

Here is how we are asking you to evaluate the images:

A pair of images will be presented on the display. The image on the left is labelled 'Ruler Image'. You can adjust its sharpness using the slider bar or arrow keys, to vary its quality. The image on the right is labelled 'Test Image' and will contain various artefacts. For each test image, we ask you to adjust the quality of the ruler image, until it matches the overall quality of the test image.

Please note that you will be balancing the quality lost due to blur in the ruler images, to the quality lost due to various artefacts in the test images. When you are comparing the test and ruler images, ask yourself which one you would keep if this were a treasured image and you were allowed to keep only one copy. If you prefer the test image, then you should move the slider bar to the left for a sharper ruler image. Alternatively, if you prefer the ruler image, then you should move the slider bar to the slider bar to the right for a more blurred ruler image. When you have finished adjusting the ruler, the two images should be of equal quality in your opinion. Your response will be recorded when you press the 'Next' button.

The evaluations will take between 1.5 and 2 hours in total and are separated into three stages. Stage 1 takes around 20 to 30 minutes. Stages 2 and 3 each take around 30 to 45 minutes. You should take a short break after each stage.

The test images were generated using a digital camera simulation. Test images from stages 1-3 correspond to different stages of in-camera image processing. Typical characteristics and artefacts for each stage are summarised below. Visual examples are provided on the next page, referenced numerically.

Stage 1 includes demosaicing (2) and noise (1) artefacts.

*Stage 2* includes demosaicing (2) and noise (1) artefacts. Denoising (3) is also applied. This reduces noise but causes blurring and/or loss of image texture and detail.

**Stage 3** includes demosaicing (2) and noise (1) artefacts. Denoising (3) is applied (see Stage 2, above). Sharpening (4) is also applied that increases detail and edge intensity but also amplifies other artefacts.

Before you participate in Stage 1, you will complete a brief trial run to familiarise yourself with the experiment. During the trial run, we encourage you to explain your decision making with the supervisor of the experiment. You can also ask questions at any time during the evaluations.



Figure H1 Examples of capture system artefacts, given to all participants with the instructions.

## Appendix I IQM Input Parameters

The input parameters of all image quality metric (IQM) variants evaluated in Chapter 6 are presented. These include relevant imaging system performance measures and visual models.

Figures I1 and I2 present the Noise Power Spectrum (NPS) and Modulation Transfer Function (MTF) system performance measures, respectively. All measurements are from the simulated image capture pipelines defined in Section 4.2, where the opacity of the denoising and sharpening filters was reduced to levels given in Table 6.2 (refer to Chapter 6 for further details). Signal-to-noise ratios (SNR) of 80 and 10 correspond to the highest and lowest quality test images, respectively.

Figures I3 to I5 present various contrast sensitivity functions (CSF) used as input parameters to the IQMs (these functions are defined in Section 2.5). They are calculated with respect to output images from the mentioned pipelines.



Figure I1 Noise Power Spectra (NPS) and scene-and-process-dependent NPS (SPD-NPS) measures used as input parameters to the image quality metric (IQM) variants in Chapter 6. Each measure is presented after relevant stages of linear and non-linear image signal processing (ISP).



Figure I2 Modulation Transfer Function (MTF) and scene-and-process-dependent MTF (SPD-MTF) measures used as input parameters to the image quality metric (IQM) variants in Chapter 6. Each measure is presented after relevant stages of linear and non-linear image signal processing (ISP).



Figure I3 Contextual Contrast Sensitivity Functions (cCSF) [35] that were used as input parameters to the image quality metric (IQM) variants in Chapter 6. cCSFs for each input scene image are presented after relevant stages of linear and non-linear image signal processing (ISP).



Figure I4 Contextual Visual Perception Functions (cVPF) [8] that were used as input parameters to the image quality metric (IQM) variants in Chapter 6. cVPFs for each input scene image are presented after relevant stages of linear and non-linear image signal processing (ISP).



Figure I5 Barten's contrast sensitivity function (CSF) [186] for test images at a signal-to-noise ratio (SNR) of 80, without denoising or sharpening applied. Sensitivities are expressed in a linear-linear space (main plot) and log-log space (inset;  $log_{10}$  y-axis for sensitivity and  $log_2$  x-axis for spatial frequency). Variation due to image signal processing (ISP) was minimal (not shown).

Reducing the image signal processing (ISP) filter opacity introduced unfiltered noise after denoising and decreased the intensity of sharpening. This affected the various NPS measures shown in Figure I1 in the following ways, which were most significant at lower SNRs:

- 1) A noise floor was introduced to the uniform patch NPS.
- Certain pictorial image SPD-NPS measurements tended toward this noise floor at mid-to-high frequencies for the non-linear pipeline.
- 3) The noise power was higher after denoising compared to the full-opacity pipelines.
- Scene-dependent spread in the non-linear pipeline's SPD-NPS measurements was lower compared to when the ISP filters were tuned full opacity (as shown in Figure 4.6).

The MTF measures were affected in the following ways by reducing the ISP filter opacity (Figure I2). Scene-dependent spread in the SPD-MTFs was lower than at full opacity (Figure 5.4). After denoising and sharpening, levels of bias in the SPD-MTFs were also higher compared to full opacity. This bias was due to increased levels of noise, which was underestimated by all SPD-NPS measures. Using more replicates would mitigate this bias.

Conversely, reducing the ISP opacity lowered bias in the direct dead leaves MTF for the non-linear pipeline (Figure I2(k) and (l)). This was because the uniform patch NPS measured unfiltered noise appropriately but underestimated noise filtered by non-linear content-aware denoising.

Barten's CSF [186] accounted for the luminance of the graphics user interface (GUI) (Figure I5). The latter was calculated from a weighted average of the mean test image luminance and the background luminance of the GUI, as predicted using a Gain Offset Gamma (GOG) model of the standardised RGB (sRGB) colour space (Equation 2.5) [131]. The Contextual CSF (cCSF; Figure I3) [35] and Contextual Visual Perception Function (cVPF; Figure I4) [8] also accounted for the above. Their shape and magnitude were similar to one another, at the different ISP stages. They were more scene-dependent than Barten's CSF since they also accounted for visual masking. Unfiltered noise at SNR 10 impeded detection and discrimination of image signals (Figures I3 and I4, (d) and (j)) but this was mitigated by denoising. Since linear denoising removed virtually all high frequencies from the image at SNR 10, it reduced the effect of masking at these frequencies and raised the cCSF and cVPF.

### Appendix J Mean Absolute Errors of IQMs

Tables J1 to J6 benchmark the Mean Absolute Error (MAE) of all metric variants and are discussed in Section 6.2.2. Columns 1 to 3 list the Noise Power Spectrum (NPS), Modulation Transfer Function (MTF) and contrast sensitivity function (CSF) input parameters of each image quality metric (IQM) variant that are summarised in Tables 4.1, 5.1 and 6.1 respectively. Note that the *Combination CSF* refers to the mean of the Contextual CSF (cCSF) [35] (Equation 2.59) and Contextual Visual Perception Function (cVPF) [8] (Equation 2.60). The *Standard CSF* refers to Johnson and Fairchild's [188] luminance CSF from the IEEE P1858 Camera Phone Image Quality (CPIQ) standard [22] (Equation 2.54). MAE scores were plotted in Columns 4-11 with respect to the following:

**Column 4** – the full observer and scene image dataset (i.e. data for all observers and all scene images).

**Columns 5 to 7** – data subsets with respect to different combinations of scene susceptibility and observer sensitivity groups defined in Section 6.2.1.

Columns 8 to 9 – data subsets with respect to different observer experience groups.

**Column 10** – the full observer and scene image dataset. Each IQM variant was calculated without the CSF/cCSF/cVPF being normalised as described in Section 6.1.3.

**Column 11** – the full observer and scene image dataset. The range of integration over the MTF, NPS and CSF were restricted to  $12 < u \le \infty$  cycles/degree to mitigate the effect of the most biased frequencies of the scene-and-process-dependent MTF (SPD-MTF) measures on the IQMs (discussed in Chapter 5). Thus, the resultant IQMs only account for information between  $0 < u \le 12$  cycles/degree. This decision was justified since the most important spatial frequency range for "seeing objects" is between 0 and 15 cycles/degree [334].

Note that Columns 3 and 10 were omitted when comparing the log Noise Equivalent Quanta (log NEQ) metric variants that did not implement any CSF (i.e. Table J4). Column 10 was also omitted when comparing variants of the CPIQ metric (Table J1) since the CSF is present in both the numerator and denominator of the Acutance measure of the CPIQ metric (Equation 3.1) and is effectively normalised by default.

|      |                            |                              | 0.010           |                                     | New Lines                                                           | Dis alian                                                |                                                    |                                            |                                          |                                                                                                        |
|------|----------------------------|------------------------------|-----------------|-------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------|
|      |                            |                              | CPIC            | Nietric:                            | Non-Linea                                                           | ar Pipeline                                              |                                                    |                                            |                                          |                                                                                                        |
|      | Noise Image Employed       | MTF Employed                 | CSF<br>Employed | Observers:<br>All<br>Scenes:<br>All | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility | Observers:<br>All<br>Scenes:<br>Medium<br>Susceptibility | Observers:<br>Medium<br>Sensitivity<br>Scenes: All | Observers:<br>Inexperienced<br>Scenes: All | Observers:<br>Experienced<br>Scenes: All | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 < u<br>< 12<br>cycles/degree) |
| ۲    | Pictorial Image Replicates | Pictorial Image SPD-MTF      | Johnson et al.  | 5.92                                | 6.48                                                                | 6.50                                                     | 5.94                                               | 6.24                                       | 5.01                                     | 12.24                                                                                                  |
| qe   | Pictorial Image Replicates | Pictorial Image SPD-MTF      | cCSF            | 5.12                                | 5.64                                                                | 5.61                                                     | 5.15                                               | 5.44                                       | 4.24                                     | 10.32                                                                                                  |
| ē    | Pictorial Image Replicates | Pictorial Image SPD-MTF      | cVPF            | 6.54                                | 7.13                                                                | 7.17                                                     | 6.55                                               | 6.85                                       | 5.61                                     | 13.73                                                                                                  |
| ep   | Pictorial Image Replicates | Pictorial Image SPD-MTF      | Barten          | 1.82                                | 1.87                                                                | 1.73                                                     | 1.87                                               | 1.84                                       | 2.18                                     | 1.80                                                                                                   |
| 7    | Pictorial Image Replicates | Pictorial Image SPD-MTF      | Johnson et al.  | 2.55                                | 2.72                                                                | 2.63                                                     | 2.58                                               | 2.82                                       | 2.09                                     | 4.26                                                                                                   |
| ne l | Pictorial Image Replicates | Mean Pictorial Image SPD-MTF | Combination     | 6.22                                | 6.85                                                                | 6.85                                                     | 6.24                                               | 6.55                                       | 5.28                                     | 12.16                                                                                                  |
| ő    | Pictorial Image Replicates | Mean Pictorial Image SPD-MTF | cCSF            | 5.40                                | 5.96                                                                | 5.93                                                     | 5.44                                               | 5.70                                       | 4.54                                     | 10.31                                                                                                  |
| st   | Pictorial Image Replicates | Mean Pictorial Image SPD-MTF | cVPF            | 6.87                                | 7.51                                                                | 7.51                                                     | 6.87                                               | 7.20                                       | 5.86                                     | 13.61                                                                                                  |
| ŝ    | Pictorial Image Replicates | Mean Pictorial Image SPD-MTF | Barten          | 1.84                                | 1.82                                                                | 1.69                                                     | 1.89                                               | 1.89                                       | 2.13                                     | 1.89                                                                                                   |
|      | Pictorial Image Replicates | Mean Pictorial Image SPD-MTF | Johnson et al.  | 2.70                                | 2.85                                                                | 2.77                                                     | 2.75                                               | 2.96                                       | 2.21                                     | 4.30                                                                                                   |
| TI   | Pictorial Image Replicates | Dead Leaves SPD-MTF          | Combination     | 8.67                                | 9.26                                                                | 9.24                                                     | 8.68                                               | 9.00                                       | 7.66                                     | 12.46                                                                                                  |
|      | Pictorial Image Replicates | Dead Leaves SPD-MTF          | cCSF            | 7.84                                | 8.43                                                                | 8.37                                                     | 7.84                                               | 8.16                                       | 6.88                                     | 11.07                                                                                                  |
|      | Pictorial Image Replicates | Dead Leaves SPD-MTF          | cVPF            | 9.30                                | 9.91                                                                | 9.89                                                     | 9.31                                               | 9.63                                       | 8.27                                     | 13.59                                                                                                  |
|      | Pictorial Image Replicates | Dead Leaves SPD-MTF          | Barten          | 2.26                                | 2.47                                                                | 2.43                                                     | 2.31                                               | 2.44                                       | 2.09                                     | 2.65                                                                                                   |
|      | Pictorial Image Replicates | Dead Leaves SPD-MTF          | Johnson et al.  | 4.48                                | 4.71                                                                | 4.66                                                     | 4.47                                               | 4.78                                       | 3.71                                     | 5.78                                                                                                   |
|      | Dead Leaves Replicates     | Dead Leaves SPD-MTF          | Combination     | 8.91                                | 9.37                                                                | 9.33                                                     | 8.91                                               | 9.23                                       | 7.82                                     | 12.62                                                                                                  |
|      | Dead Leaves Replicates     | Dead Leaves SPD-MTF          | cCSF            | 8.04                                | 8.51                                                                | 9.57                                                     | 8.03                                               | 8.36                                       | 7.00                                     | 11.23                                                                                                  |
|      | Dead Leaves Replicates     | Dead Leaves SPD-MTF          | cVPF            | 9.44                                | 9.96                                                                | 9.95                                                     | 9.44                                               | 9.77                                       | 8.35                                     | 13.68                                                                                                  |
|      | Dead Leaves Replicates     | Dead Leaves SPD-MTF          | Barten          | 2.29                                | 2.46                                                                | 2.41                                                     | 2.35                                               | 2.48                                       | 2.07                                     | 2.69                                                                                                   |
|      | Dead Leaves Replicates     | Dead Leaves SPD-MTF          | Johnson et al.  | 4.55                                | 4.70                                                                | 4.64                                                     | 4.54                                               | 4.86                                       | 3.70                                     | 5.86                                                                                                   |
| - 1  | Dead Leaves Replicates     | Direct Dead Leaves MTF       | Combination     | 9.30                                | 9.81                                                                | 9.79                                                     | 9.29                                               | 9.62                                       | 8.21                                     | 12.51                                                                                                  |
| t    | Dead Leaves Replicates     | Direct Dead Leaves MTF       | cCSF            | 8.41                                | 8.92                                                                | 8.86                                                     | 8.40                                               | 8.72                                       | 7.34                                     | 11.11                                                                                                  |
| b    | Dead Leaves Replicates     | Direct Dead Leaves MTF       | cVPF            | 9.88                                | 10.43                                                               | 10.45                                                    | 9.88                                               | 10.21                                      | 8.79                                     | 13.58                                                                                                  |
| e    | Dead Leaves Replicates     | Direct Dead Leaves MTF       | Barten          | 2.20                                | 2.37                                                                | 2.30                                                     | 2.26                                               | 2.39                                       | 2.00                                     | 2.44                                                                                                   |
| ğ    | Dead Leaves Replicates     | Direct Dead Leaves MTF       | Johnson et al.  | 4.43                                | 4.59                                                                | 4.52                                                     | 4.41                                               | 4.74                                       | 3.56                                     | 5.48                                                                                                   |
| -    | Uniform Patch              | Direct Dead Leaves MTF       | Combination     | 8.83                                | 9.41                                                                | 9.44                                                     | 8.81                                               | 9.12                                       | 7.88                                     | 12.13                                                                                                  |
| ē    | Uniform Patch              | Direct Dead Leaves MTF       | cCSF            | 7.94                                | 8.54                                                                | 8.56                                                     | 7.92                                               | 8.22                                       | 7.02                                     | 10.61                                                                                                  |
| ŝ    | Uniform Patch              | Direct Dead Leaves MTF       | cVPF            | 9.49                                | 10.07                                                               | 10.14                                                    | 9.46                                               | 9.79                                       | 8.52                                     | 13.36                                                                                                  |
| st   | Uniform Patch              | Direct Dead Leaves MTF       | Barten          | 1.99                                | 2.15                                                                | 2.23                                                     | 2.05                                               | 2.08                                       | 2.12                                     | 2.18                                                                                                   |
| Leŝ  | Uniform Patch              | Direct Dead Leaves MTF       | Johnson et al.  | 3.96                                | 4.21                                                                | 4.27                                                     | 3.96                                               | 4.22                                       | 3.30                                     | 4.93                                                                                                   |

|         |                            |                              | CI              | PIQ Metri                           | <b>c:</b> Linear F                                                  | Pipeline                                                 |                                                    |                                            |                                          |                                                                                                        |
|---------|----------------------------|------------------------------|-----------------|-------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------|
|         | Noise Image Employed       | MTF Employed                 | CSF Employed    | Observers:<br>All<br>Scenes:<br>All | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility | Observers:<br>All<br>Scenes:<br>Medium<br>Susceptibility | Observers:<br>Medium<br>Sensitivity<br>Scenes: All | Observers:<br>Inexperienced<br>Scenes: All | Observers:<br>Experienced<br>Scenes: All | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 < u<br>< 12<br>cycles/degree) |
| ŧ       | Pictorial Image Replicates | Pictorial Image SPD-MTF      | Johnson et al.  | 6.90                                | 7.71                                                                | 7.73                                                     | 6.77                                               | 7.21                                       | 5.91                                     | 11.36                                                                                                  |
| qe      | Pictorial Image Replicates | Pictorial Image SPD-MTF      | cCSF            | 6.21                                | 6.97                                                                | 6.95                                                     | 6.09                                               | 6.52                                       | 5.25                                     | 9.86                                                                                                   |
| e       | Pictorial Image Replicates | Pictorial Image SPD-MTF      | cVPF            | 7.41                                | 8.26                                                                | 8.30                                                     | 7.29                                               | 7.73                                       | 6.42                                     | 12.61                                                                                                  |
| ğ       | Pictorial Image Replicates | Pictorial Image SPD-MTF      | Barten          | 1.64                                | 1.71                                                                | 1.59                                                     | 1.78                                               | 1.78                                       | 1.71                                     | 1.70                                                                                                   |
| Ŀ       | Pictorial Image Replicates | Pictorial Image SPD-MTF      | Johnson et al.  | 2.97                                | 3.23                                                                | 3.08                                                     | 2.89                                               | 3.27                                       | 2.29                                     | 4.17                                                                                                   |
| e       | Pictorial Image Replicates | Mean Pictorial Image SPD-MTF | Combination     | 7.19                                | 7.75                                                                | 7.57                                                     | 7.04                                               | 7.51                                       | 6.09                                     | 11.52                                                                                                  |
| ŝ       | Pictorial Image Replicates | Mean Pictorial Image SPD-MTF | cCSF            | 7.19                                | 7.01                                                                | 6.82                                                     | 6.31                                               | 6.79                                       | 5.39                                     | 10.01                                                                                                  |
| st      | Pictorial Image Replicates | Mean Pictorial Image SPD-MTF | cVPF            | 6.46                                | 8.31                                                                | 8.12                                                     | 7.59                                               | 8.07                                       | 6.63                                     | 12.79                                                                                                  |
| š       | Pictorial Image Replicates | Mean Pictorial Image SPD-MTF | Barten          | 1.62                                | 1.73                                                                | 1.59                                                     | 1.76                                               | 1.79                                       | 1.65                                     | 1.73                                                                                                   |
| <b></b> | Pictorial Image Replicates | Mean Pictorial Image SPD-MTF | Johnson et al.  | 3.11                                | 3.28                                                                | 3.03                                                     | 3.02                                               | 3.43                                       | 2.32                                     | 4.27                                                                                                   |
|         | Pictorial Image Replicates | Dead Leaves SPD-MTF          | Combination     | 7.17                                | 7.74                                                                | 7.57                                                     | 7.02                                               | 7.50                                       | 6.09                                     | 11.39                                                                                                  |
|         | Pictorial Image Replicates | Dead Leaves SPD-MTF          | cCSF            | 6.43                                | 6.98                                                                | 8.18                                                     | 6.28                                               | 6.75                                       | 5.37                                     | 9.86                                                                                                   |
|         | Pictorial Image Replicates | Dead Leaves SPD-MTF          | cVPF            | 7.76                                | 8.34                                                                | 8.18                                                     | 7.61                                               | 8.09                                       | 6.65                                     | 12.65                                                                                                  |
|         | Pictorial Image Replicates | Dead Leaves SPD-MTF          | Barten          | 1.59                                | 1.68                                                                | 1.55                                                     | 1.73                                               | 1.75                                       | 1.64                                     | 1.70                                                                                                   |
|         | Pictorial Image Replicates | Dead Leaves SPD-MTF          | Johnson et al.  | 3.05                                | 3.21                                                                | 2.97                                                     | 2.97                                               | 3.36                                       | 2.29                                     | 4.17                                                                                                   |
|         | Dead Leaves Replicates     | Dead Leaves SPD-MTF          | Combination     | 7.17                                | 7.72                                                                | 7.57                                                     | 7.01                                               | 7.49                                       | 6.08                                     | 11.38                                                                                                  |
|         | Dead Leaves Replicates     | Dead Leaves SPD-MTF          | cCSF            | 6.43                                | 6.96                                                                | 6.77                                                     | 6.28                                               | 6.76                                       | 5.37                                     | 9.88                                                                                                   |
|         | Dead Leaves Replicates     | Dead Leaves SPD-MTF          | cVPF            | 7.67                                | 8.29                                                                | 8.17                                                     | 7.52                                               | 8.00                                       | 6.59                                     | 12.58                                                                                                  |
|         | Dead Leaves Replicates     | Dead Leaves SPD-MTF          | Barten          | 1.57                                | 1.66                                                                | 1.53                                                     | 1.71                                               | 1.72                                       | 1.65                                     | 1.65                                                                                                   |
|         | Dead Leaves Replicates     | Dead Leaves SPD-MTF          | Johnson et al.  | 2.97                                | 3.13                                                                | 2.89                                                     | 2.89                                               | 3.28                                       | 2.22                                     | 4.11                                                                                                   |
|         | Dead Leaves Replicates     | Direct Dead Leaves MTF       | Combination     | 8.19                                | 8.84                                                                | 8.69                                                     | 8.04                                               | 8.52                                       | 7.05                                     | 11.69                                                                                                  |
| ent     | Dead Leaves Replicates     | Direct Dead Leaves MTF       | cCSF            | 7.30                                | 7.89                                                                | 7.72                                                     | 7.15                                               | 7.62                                       | 6.18                                     | 10.23                                                                                                  |
| ğ       | Dead Leaves Replicates     | Direct Dead Leaves MTF       | cVPF            | 8.82                                | 9.52                                                                | 9.40                                                     | 8.66                                               | 9.14                                       | 7.69                                     | 12.89                                                                                                  |
| be      | Dead Leaves Replicates     | Direct Dead Leaves MTF       | Barten          | 1.64                                | 1.77                                                                | 1.62                                                     | 1.76                                               | 1.83                                       | 1.64                                     | 1.73                                                                                                   |
| å       | Dead Leaves Replicates     | Direct Dead Leaves MTF       | Johnson et al.  | 3.35                                | 3.53                                                                | 3.29                                                     | 3.24                                               | 3.68                                       | 2.48                                     | 4.35                                                                                                   |
| è       | Uniform Patch              | Direct Dead Leaves MTF       | Combination     | 8.28                                | 8.92                                                                | 8.77                                                     | 8.13                                               | 8.61                                       | 7.14                                     | 11.75                                                                                                  |
| Ser     | Uniform Patch              | Direct Dead Leaves MTF       | cCSF            | 7.40                                | 7.99                                                                | 7.82                                                     | 7.25                                               | 7.73                                       | 6.28                                     | 10.30                                                                                                  |
| Š       | Uniform Patch              | Direct Dead Leaves MTF       | cVPF            | 8.90                                | 9.59                                                                | 9.48                                                     | 8.74                                               | 9.22                                       | 7.77                                     | 12.93                                                                                                  |
| ast     | Uniform Patch              | Direct Dead Leaves MTF       | Barten          | 1.72                                | 1.86                                                                | 1.70                                                     | 1.81                                               | 1.92                                       | 1.64                                     | 1.83                                                                                                   |
| Ľ       | Uniform Patch              | Direct Dead Leaves MTF       | Johnson et al.  | 3.48                                | 3.66                                                                | 3.42                                                     | 3.36                                               | 3.81                                       | 2.57                                     | 4.46                                                                                                   |
|         | Lowest MAE of              | CPIQ Metric                  | Maximum         | 9.88                                | 10.43                                                               | 10.45                                                    | 9.88                                               | 10.21                                      | 8 79                                     | 13.73                                                                                                  |
|         | Variants Across            | Both Pipelines               | Minimum         | 1.57                                | 1.66                                                                | 1.53                                                     | 1.71                                               | 1.72                                       | 1.64                                     | 1.65                                                                                                   |
|         |                            |                              | Mean            | 5.65                                | 6.07                                                                | 6.03                                                     | 5.62                                               | 5.94                                       | 4.89                                     | 8.44                                                                                                   |
|         |                            |                              | Standard Dev.   | 2.68                                | 2.89                                                                | 2.95                                                     | 2.64                                               | 2.74                                       | 2.33                                     | 4 36                                                                                                   |
|         | Highest MAE of             | CPIQ Metric                  | Relative St Dev | 47.48%                              | 47.62%                                                              | 48.96%                                                   | 46.94%                                             | 46 18%                                     | 47.67%                                   | 51 72%                                                                                                 |
|         | variants Across            | Both Pipelines               | Neiduve SLDev   | 47.40%                              | 47.02%                                                              | 40.90%                                                   | 40.54%                                             | 40.16%                                     | 47.07%                                   | 51.7270                                                                                                |

Table J1 Mean Absolute Error (MAE) between the IEEE P1858 Camera Phone Image Quality (CPIQ) metric variant scores for test images generated by the non-linear (top) and linear pipeline (bottom), and the perceived quality rating of these images.

| 1  |                              |                              | Visu              | ial Log N                            | EQ: Non-Li                                                          | near Pipelir                                             | ne                                                        |                                            |                                          |                                                                                 |                                                                                                        |
|----|------------------------------|------------------------------|-------------------|--------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|    | NPS Employed                 | MTF Employed                 | CSF<br>Employed   | Observers<br>: All<br>Scenes:<br>All | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility | Observers:<br>All<br>Scenes:<br>Medium<br>Susceptibility | Observer<br>s:<br>Medium<br>Sensitivity<br>Scenes:<br>All | Observers:<br>Inexperienced<br>Scenes: All | Observers:<br>Experienced<br>Scenes: All | Observers:<br>All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized) | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 < u<br>< 12<br>cycles/degree) |
| Ħ  | Pictorial Image SPD-NPS      | Pictorial Image SPD-MTF      | cCSF              | 2.01                                 | 1.68                                                                | 1.48                                                     | 2.11                                                      | 1.91                                       | 2.66                                     | 2.12                                                                            | 1.99                                                                                                   |
| er | Pictorial Image SPD-NPS      | Pictorial Image SPD-MTF      | cVPF              | 2.04                                 | 1.70                                                                | 1.50                                                     | 2.15                                                      | 1.94                                       | 2.69                                     | 2.16                                                                            | 2.03                                                                                                   |
| b  | Pictorial Image SPD-NPS      | Pictorial Image SPD-MTF      | Barten            | 1.87                                 | 1.56                                                                | 1.37                                                     | 1.99                                                      | 1.77                                       | 2.52                                     | 1.87                                                                            | 1.86                                                                                                   |
| þe | Pictorial Image SPD-NPS      | Mean Pictorial Image SPD-MTF | cCSF              | 1.98                                 | 1.65                                                                | 1.44                                                     | 2.09                                                      | 1.88                                       | 2.64                                     | 2.09                                                                            | 1.97                                                                                                   |
| e  | Pictorial Image SPD-NPS      | Mean Pictorial Image SPD-MTF | cVPF              | 2.02                                 | 1.67                                                                | 1.47                                                     | 2.12                                                      | 1.91                                       | 2.68                                     | 2.13                                                                            | 2.01                                                                                                   |
| e- | Pictorial Image SPD-NPS      | Mean Pictorial Image SPD-MTF | Barten            | 1.86                                 | 1.54                                                                | 1.34                                                     | 1.98                                                      | 1.77                                       | 2.51                                     | 1.86                                                                            | 1.85                                                                                                   |
| en | Pictorial Image SPD-NPS      | Dead Leaves SPD-MTF          | cCSF              | 1.74                                 | 1.41                                                                | 1.22                                                     | 1.88                                                      | 1.65                                       | 2.41                                     | 1.86                                                                            | 1.72                                                                                                   |
| ŝ  | Pictorial Image SPD-NPS      | Dead Leaves SPD-MTF          | cVPF              | 1.77                                 | 1.44                                                                | 1.25                                                     | 1.91                                                      | 1.68                                       | 2.45                                     | 1.91                                                                            | 1.75                                                                                                   |
| št | Pictorial Image SPD-NPS      | Dead Leaves SPD-MTF          | Barten            | 1.71                                 | 1.41                                                                | 1.21                                                     | 1.84                                                      | 1.63                                       | 2.37                                     | 1.71                                                                            | 1.71                                                                                                   |
| ő  | Pictorial Image SPD-NPS      | Direct Dead Leaves MTF       | cCSF              | 1.75                                 | 1.42                                                                | 1.22                                                     | 1.88                                                      | 1.67                                       | 2.40                                     | 1.89                                                                            | 1.74                                                                                                   |
| 2  | Pictorial Image SPD-NPS      | Direct Dead Leaves MTF       | cVPF              | 1.78                                 | 1.45                                                                | 1.25                                                     | 1.91                                                      | 1.70                                       | 2.42                                     | 1.94                                                                            | 1.77                                                                                                   |
|    | Pictorial Image SPD-NPS      | Direct Dead Leaves MTF       | Barten            | 1.73                                 | 1.42                                                                | 1.22                                                     | 1.85                                                      | 1.64                                       | 2.39                                     | 1.73                                                                            | 1.73                                                                                                   |
|    | Mean Pictorial Image SPD-NPS | Pictorial Image SPD-IMTF     | CCSF              | 1.95                                 | 1.67                                                                | 1.48                                                     | 2.06                                                      | 1.85                                       | 2.58                                     | 2.07                                                                            | 1.93                                                                                                   |
|    | Mean Pictorial Image SPD-NPS | Pictorial Image SPD-IVITF    | CVPF              | 1.98                                 | 1.69                                                                | 1.50                                                     | 2.09                                                      | 1.88                                       | 2.61                                     | 2.10                                                                            | 1.97                                                                                                   |
|    | Mean Pictorial Image SPD-NPS | Pictorial Image SPD-IVITF    | Barten            | 1.83                                 | 1.55                                                                | 1.37                                                     | 1.95                                                      | 1.73                                       | 2.47                                     | 1.83                                                                            | 1.82                                                                                                   |
|    | Mean Pictorial Image SPD NPS | Mean Pictorial Image SPD-WIT | CLSF              | 1.92                                 | 1.63                                                                | 1.44                                                     | 2.04                                                      | 1.83                                       | 2.56                                     | 2.03                                                                            | 1.92                                                                                                   |
|    | Mean Pictorial Image SPD-NPS | Mean Pictorial Image SPD-MTP | CVPF              | 1.95                                 | 1.65                                                                | 1.46                                                     | 2.06                                                      | 1.85                                       | 2.59                                     | 2.07                                                                            | 1.95                                                                                                   |
|    | Mean Pictorial Image SPD-NPS | Dood Loover SPD-MTF          | Barten            | 1.82                                 | 1.54                                                                | 1.35                                                     | 1.94                                                      | 1.73                                       | 2.40                                     | 1.82                                                                            | 1.61                                                                                                   |
|    | Mean Pictorial Image SPD-NPS | Dead Leaves SPD-MTF          | cCSF<br>cV/DE     | 1.09                                 | 1.40                                                                | 1.22                                                     | 1.05                                                      | 1.60                                       | 2.34                                     | 1.02                                                                            | 1.08                                                                                                   |
|    | Mean Pictorial Image SPD-NPS | Dead Leaves SPD-MTF          | Parton            | 1.72                                 | 1.45                                                                | 1.25                                                     | 1.00                                                      | 1.62                                       | 2.37                                     | 1.05                                                                            | 1.70                                                                                                   |
|    | Mean Pictorial Image SPD-NPS | Direct Dead Leaves MTE       | Darten            | 1.00                                 | 1.40                                                                | 1.22                                                     | 1.01                                                      | 1.60                                       | 2.33                                     | 1.00                                                                            | 1.00                                                                                                   |
|    | Mean Pictorial Image SPD-NPS | Direct Dead Leaves MTF       | cV/PE             | 1.70                                 | 1.42                                                                | 1.25                                                     | 1.85                                                      | 1.65                                       | 2.35                                     | 1.89                                                                            | 1.70                                                                                                   |
|    | Mean Pictorial Image SPD-NPS | Direct Dead Leaves MTF       | Barten            | 1.72                                 | 1.44                                                                | 1.20                                                     | 1.82                                                      | 1.65                                       | 2.35                                     | 1.05                                                                            | 1.72                                                                                                   |
|    | Dead Leaves SPD-NPS          | Pictorial Image SPD-MTF      | cCSE              | 2.11                                 | 1.42                                                                | 1.25                                                     | 2 21                                                      | 2.01                                       | 2.34                                     | 2.73                                                                            | 2.07                                                                                                   |
|    | Dead Leaves SPD-NPS          | Pictorial Image SPD-MTF      | cVPF              | 2.14                                 | 1.85                                                                | 1.67                                                     | 2.25                                                      | 2.04                                       | 2.76                                     | 2.27                                                                            | 2.12                                                                                                   |
|    | Dead Leaves SPD-NPS          | Pictorial Image SPD-MTF      | Barten            | 1.91                                 | 1.63                                                                | 1.44                                                     | 2.02                                                      | 1.81                                       | 2.53                                     | 1.91                                                                            | 1.89                                                                                                   |
|    | Dead Leaves SPD-NPS          | Mean Pictorial Image SPD-MTF | cCSF              | 2.08                                 | 1.79                                                                | 1.60                                                     | 2.19                                                      | 1.98                                       | 2.70                                     | 2.20                                                                            | 2.06                                                                                                   |
|    | Dead Leaves SPD-NPS          | Mean Pictorial Image SPD-MTF | cVPF              | 2.12                                 | 1.82                                                                | 1.63                                                     | 2.22                                                      | 2.02                                       | 2.75                                     | 2.24                                                                            | 2.11                                                                                                   |
|    | Dead Leaves SPD-NPS          | Mean Pictorial Image SPD-MTF | Barten            | 1.90                                 | 1.61                                                                | 1.42                                                     | 2.01                                                      | 1.80                                       | 2.52                                     | 1.90                                                                            | 1.89                                                                                                   |
|    | Dead Leaves SPD-NPS          | Dead Leaves SPD-MTF          | cCSF              | 1.81                                 | 1.52                                                                | 1.33                                                     | 1.93                                                      | 1.71                                       | 2.44                                     | 1.91                                                                            | 1.79                                                                                                   |
|    | Dead Leaves SPD-NPS          | Dead Leaves SPD-MTF          | cVPF              | 1.84                                 | 1.55                                                                | 1.36                                                     | 1.96                                                      | 1.74                                       | 2.48                                     | 1.95                                                                            | 1.82                                                                                                   |
|    | Dead Leaves SPD-NPS          | Dead Leaves SPD-MTF          | Barten            | 1.74                                 | 1.46                                                                | 1.27                                                     | 1.87                                                      | 1.66                                       | 2.37                                     | 1.74                                                                            | 1.74                                                                                                   |
|    | Dead Leaves SPD-NPS          | Direct Dead Leaves MTF       | cCSF              | 1.83                                 | 1.55                                                                | 1.36                                                     | 1.94                                                      | 1.75                                       | 2.45                                     | 1.96                                                                            | 1.82                                                                                                   |
|    | Dead Leaves SPD-NPS          | Direct Dead Leaves MTF       | cVPF              | 1.87                                 | 1.58                                                                | 1.39                                                     | 1.97                                                      | 1.78                                       | 2.48                                     | 2.01                                                                            | 1.85                                                                                                   |
|    | Dead Leaves SPD-NPS          | Direct Dead Leaves MTF       | Barten            | 1.76                                 | 1.48                                                                | 1.29                                                     | 1.88                                                      | 1.67                                       | 2.39                                     | 1.76                                                                            | 1.75                                                                                                   |
| ÷  | Uniform Patch NPS            | Pictorial Image SPD-MTF      | cCSF              | 2.47                                 | 2.20                                                                | 2.07                                                     | 2.55                                                      | 2.35                                       | 3.18                                     | 2.57                                                                            | 2.49                                                                                                   |
| eu | Uniform Patch NPS            | Pictorial Image SPD-MTF      | cVPF              | 2.48                                 | 2.19                                                                | 2.06                                                     | 2.56                                                      | 2.36                                       | 3.18                                     | 2.57                                                                            | 2.51                                                                                                   |
| p  | Uniform Patch NPS            | Pictorial Image SPD-MTF      | Barten            | 2.41                                 | 2.15                                                                | 2.04                                                     | 2.48                                                      | 2.29                                       | 3.13                                     | 2.41                                                                            | 2.41                                                                                                   |
| e  | Uniform Patch NPS            | Mean Pictorial Image SPD-MTF | cCSF              | 2.46                                 | 2.17                                                                | 2.04                                                     | 2.53                                                      | 2.34                                       | 3.17                                     | 2.54                                                                            | 2.48                                                                                                   |
| le | Uniform Patch NPS            | Mean Pictorial Image SPD-MTF | cVPF              | 2.46                                 | 2.17                                                                | 2.03                                                     | 2.54                                                      | 2.34                                       | 3.17                                     | 2.55                                                                            | 2.49                                                                                                   |
| 1  | Uniform Patch NPS            | Mean Pictorial Image SPD-MTF | Barten            | 2.41                                 | 2.14                                                                | 2.02                                                     | 2.48                                                      | 2.29                                       | 3.03                                     | 2.41                                                                            | 2.41                                                                                                   |
| ň  | Uniform Patch NPS            | Dead Leaves SPD-MTF          | cCSF              | 2.26                                 | 1.98                                                                | 1.87                                                     | 2.35                                                      | 2.14                                       | 3.00                                     | 2.33                                                                            | 2.28                                                                                                   |
| ő  | Uniform Patch NPS            | Dead Leaves SPD-MTF          | cVPF              | 2.25                                 | 1.97                                                                | 1.86                                                     | 2.34                                                      | 2.12                                       | 2.99                                     | 2.32                                                                            | 2.28                                                                                                   |
| 5  | Uniform Patch NPS            | Dead Leaves SPD-MTF          | Barten            | 2.29                                 | 2.03                                                                | 1.94                                                     | 2.36                                                      | 2.17                                       | 3.03                                     | 2.29                                                                            | 2.29                                                                                                   |
| as | Uniform Patch NPS            | Direct Dead Leaves MTF       | CCSF              | 2.30                                 | 2.02                                                                | 1.92                                                     | 2.38                                                      | 2.19                                       | 3.02                                     | 2.39                                                                            | 2.32                                                                                                   |
| Le | Uniform Patch NPS            | Direct Dead Leaves MTF       | CVPF              | 2.29                                 | 2.02                                                                | 1.90                                                     | 2.38                                                      | 2.18                                       | 3.01                                     | 2.39                                                                            | 2.32                                                                                                   |
|    | Uniform Patch NPS            | Direct Dead Leaves MTF       | Barten            | 2.32                                 | 2.06                                                                | 1.96                                                     | 2.38                                                      | 2.20                                       | 3.05                                     | 2.32                                                                            | 2.32                                                                                                   |
|    | Lowest MAE of                | of All Visual Log NEQ        | Maximum           | 2.49                                 | 2.20                                                                | 2.07                                                     | 2.56                                                      | 2.26                                       | 2.10                                     | 2 57                                                                            | 2.51                                                                                                   |
|    | Variants Acros               | ss Both Pipelines            | Minimum           | 2.48                                 | 1.40                                                                | 1.21                                                     | 2.50                                                      | 1.60                                       | 2.33                                     | 1.68                                                                            | 2.51                                                                                                   |
|    |                              |                              | Mean              | 1.00                                 | 1.40                                                                | 1.21                                                     | 2.10                                                      | 1.80                                       | 2.55                                     | 2.06                                                                            | 1.00                                                                                                   |
|    | Highest MAE                  | of All Visual Log NEO        | Standard Dev.     | 0.25                                 | 0.26                                                                | 0.29                                                     | 0.23                                                      | 0.24                                       | 0.28                                     | 0.26                                                                            | 0.26                                                                                                   |
|    | Variants Acros               | ss Both Pipelines            | Relative St. Dev. | 12.63%                               | 15.43%                                                              | 19.10%                                                   | 11.14%                                                    | 12.78%                                     | 10.60%                                   | 12.49%                                                                          | 13.27%                                                                                                 |

Table J2 Mean Absolute Error (MAE) between the Visual log NEQ metric variant scores for test images generated by the non-linear pipeline, and the perceived quality rating of these images. NB. the minimum, maximum, mean, standard deviation and relative standard deviation (bottom) are calculated with respect to Table J2 only, but the colour coding is with respect to both pipelines, i.e. Tables J2 and J3.

|     | Visual Log NEQ: Linear Pipeline |                              |                   |                                      |                                                                     |                                                          |                                                     |                                            |                                          |                                                                                 |                                                                                                        |
|-----|---------------------------------|------------------------------|-------------------|--------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|     | NPS Employed                    | MTF Employed                 | CSF Employed      | Observers<br>: All<br>Scenes:<br>All | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility | Observers:<br>All<br>Scenes:<br>Medium<br>Susceptibility | Observers<br>: Medium<br>Sensitivity<br>Scenes: All | Observers:<br>Inexperienced<br>Scenes: All | Observers:<br>Experienced<br>Scenes: All | Observers:<br>All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized) | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 < u<br>< 12<br>cycles/degree) |
|     | Pictorial Image SPD-NPS         | Pictorial Image SPD-MTF      | cCSF              | 2.34                                 | 2.09                                                                | 2.05                                                     | 2.64                                                | 2.26                                       | 2.94                                     | 2.46                                                                            | 2.30                                                                                                   |
| t   | Pictorial Image SPD-NPS         | Pictorial Image SPD-MTF      | cVPF              | 2.38                                 | 2.12                                                                | 2.08                                                     | 2.68                                                | 2.30                                       | 2.99                                     | 2.51                                                                            | 2.34                                                                                                   |
| e   | Pictorial Image SPD-NPS         | Pictorial Image SPD-MTF      | Barten            | 2.30                                 | 2.08                                                                | 2.04                                                     | 2.60                                                | 2.22                                       | 2.92                                     | 2.30                                                                            | 2.29                                                                                                   |
| č   | Pictorial Image SPD-NPS         | Mean Pictorial Image SPD-MTF | cCSF              | 2.30                                 | 2.09                                                                | 2.05                                                     | 2.61                                                | 2.22                                       | 2.91                                     | 2.42                                                                            | 2.28                                                                                                   |
| ğ   | Pictorial Image SPD-NPS         | Mean Pictorial Image SPD-MTF | cVPF              | 2.34                                 | 2.13                                                                | 2.09                                                     | 2.64                                                | 2.25                                       | 2.95                                     | 2.46                                                                            | 2.32                                                                                                   |
| ŏ١  | Pictorial Image SPD-NPS         | Mean Pictorial Image SPD-MTF | Barten            | 2.29                                 | 2.08                                                                | 2.04                                                     | 2.60                                                | 2.21                                       | 2.90                                     | 2.29                                                                            | 2.28                                                                                                   |
| ę   | Pictorial Image SPD-NPS         | Dead Leaves SPD-MTF          | cCSF              | 2.33                                 | 2.12                                                                | 2.09                                                     | 2.64                                                | 2.24                                       | 2.95                                     | 2.44                                                                            | 2.29                                                                                                   |
| e   | Pictorial Image SPD-NPS         | Dead Leaves SPD-MTF          | cVPF              | 2.38                                 | 2.17                                                                | 2.14                                                     | 2.69                                                | 2.29                                       | 3.01                                     | 2.49                                                                            | 2.33                                                                                                   |
| ပ္တ | Pictorial Image SPD-NPS         | Dead Leaves SPD-MTF          | Barten            | 2.29                                 | 2.08                                                                | 2.04                                                     | 2.60                                                | 2.21                                       | 2.91                                     | 2.29                                                                            | 2.28                                                                                                   |
| st  | Pictorial Image SPD-NPS         | Direct Dead Leaves MTF       | cCSF              | 2.26                                 | 2.05                                                                | 2.01                                                     | 2.56                                                | 2.19                                       | 2.85                                     | 2.38                                                                            | 2.26                                                                                                   |
| ğ   | Pictorial Image SPD-NPS         | Direct Dead Leaves MTF       | cVPF              | 2.30                                 | 2.09                                                                | 2.05                                                     | 2.59                                                | 2.22                                       | 2.87                                     | 2.43                                                                            | 2.29                                                                                                   |
| 2   | Pictorial Image SPD-NPS         | Direct Dead Leaves MTF       | Barten            | 2.27                                 | 2.07                                                                | 2.03                                                     | 2.58                                                | 2.20                                       | 2.89                                     | 2.27                                                                            | 2.27                                                                                                   |
|     | Mean Pictorial Image SPD-NPS    | Pictorial Image SPD-MTF      | cCSF              | 2.33                                 | 2.08                                                                | 2.03                                                     | 2.63                                                | 2.25                                       | 2.93                                     | 2.45                                                                            | 2.29                                                                                                   |
|     | Mean Pictorial Image SPD-NPS    | Pictorial Image SPD-MTF      | cVPF              | 2.37                                 | 2.11                                                                | 2.07                                                     | 2.68                                                | 2.29                                       | 2.97                                     | 2.50                                                                            | 2.34                                                                                                   |
|     | Mean Pictorial Image SPD-NPS    | Pictorial Image SPD-MTF      | Barten            | 2.28                                 | 2.06                                                                | 2.02                                                     | 2.59                                                | 2.21                                       | 2.90                                     | 2.28                                                                            | 2.28                                                                                                   |
|     | Mean Pictorial Image SPD-NPS    | Mean Pictorial Image SPD-MTF | cCSF              | 2.29                                 | 2.08                                                                | 2.04                                                     | 2.60                                                | 2.22                                       | 2.89                                     | 2.41                                                                            | 2.27                                                                                                   |
|     | Mean Pictorial Image SPD-NPS    | Mean Pictorial Image SPD-MTF | cVPF              | 2.33                                 | 2.12                                                                | 2.08                                                     | 2.63                                                | 2.25                                       | 2.93                                     | 2.45                                                                            | 2.32                                                                                                   |
|     | Mean Pictorial Image SPD-NPS    | Mean Pictorial Image SPD-MTF | Barten            | 2.27                                 | 2.06                                                                | 2.03                                                     | 2.59                                                | 2.20                                       | 2.88                                     | 2.27                                                                            | 2.27                                                                                                   |
|     | Mean Pictorial Image SPD-NPS    | Dead Leaves SPD-MTF          | cCSF              | 2.32                                 | 2.11                                                                | 2.07                                                     | 2.63                                                | 2.24                                       | 2.93                                     | 2.43                                                                            | 2.28                                                                                                   |
|     | Mean Pictorial Image SPD-NPS    | Dead Leaves SPD-MTF          | cVPF              | 2.37                                 | 2.16                                                                | 2.13                                                     | 2.68                                                | 2.28                                       | 2.99                                     | 2.48                                                                            | 2.32                                                                                                   |
|     | Mean Pictorial Image SPD-NPS    | Dead Leaves SPD-MTF          | Barten            | 2.28                                 | 2.06                                                                | 2.03                                                     | 2.59                                                | 2.20                                       | 2.89                                     | 2.28                                                                            | 2.27                                                                                                   |
|     | Mean Pictorial Image SPD-NPS    | Direct Dead Leaves MTF       | cCSF              | 2.25                                 | 2.04                                                                | 2.00                                                     | 2.55                                                | 2.18                                       | 2.83                                     | 2.37                                                                            | 2.25                                                                                                   |
|     | Mean Pictorial Image SPD-NPS    | Direct Dead Leaves MTF       | cVPF              | 2.29                                 | 2.08                                                                | 2.05                                                     | 2.58                                                | 2.22                                       | 2.85                                     | 2.42                                                                            | 2.29                                                                                                   |
|     | Mean Pictorial Image SPD-NPS    | Direct Dead Leaves MTF       | Barten            | 2.26                                 | 2.05                                                                | 2.02                                                     | 2.57                                                | 2.19                                       | 2.87                                     | 2.26                                                                            | 2.26                                                                                                   |
|     | Dead Leaves SPD-NPS             | Pictorial Image SPD-MTF      | cCSF              | 2.33                                 | 2.08                                                                | 2.03                                                     | 2.63                                                | 2.25                                       | 2.92                                     | 2.44                                                                            | 2.28                                                                                                   |
|     | Dead Leaves SPD-NPS             | Pictorial Image SPD-MTF      | cVPF              | 2.37                                 | 2.11                                                                | 2.07                                                     | 2.67                                                | 2.29                                       | 2.96                                     | 2.50                                                                            | 2.33                                                                                                   |
|     | Dead Leaves SPD-NPS             | Pictorial Image SPD-MTF      | Barten            | 2.28                                 | 2.06                                                                | 2.02                                                     | 2.59                                                | 2.21                                       | 2.89                                     | 2.28                                                                            | 2.27                                                                                                   |
|     | Dead Leaves SPD-NPS             | Mean Pictorial Image SPD-MTF | cCSF              | 2.29                                 | 2.08                                                                | 2.04                                                     | 2.60                                                | 2.21                                       | 2.89                                     | 2.40                                                                            | 2.27                                                                                                   |
|     | Dead Leaves SPD-NPS             | Mean Pictorial Image SPD-MTF | cVPF              | 2.32                                 | 2.11                                                                | 2.08                                                     | 2.63                                                | 2.24                                       | 2.92                                     | 2.44                                                                            | 2.31                                                                                                   |
|     | Dead Leaves SPD-NPS             | Mean Pictorial Image SPD-MTF | Barten            | 2.27                                 | 2.06                                                                | 2.02                                                     | 2.58                                                | 2.20                                       | 2.88                                     | 2.27                                                                            | 2.27                                                                                                   |
|     | Dead Leaves SPD-NPS             | Dead Leaves SPD-MTF          | cCSF              | 2.32                                 | 2.10                                                                | 2.07                                                     | 2.62                                                | 2.23                                       | 2.93                                     | 2.42                                                                            | 2.27                                                                                                   |
|     | Dead Leaves SPD-NPS             | Dead Leaves SPD-MTF          | cVPF              | 2.36                                 | 2.15                                                                | 2.12                                                     | 2.67                                                | 2.28                                       | 2.98                                     | 2.48                                                                            | 2.32                                                                                                   |
|     | Dead Leaves SPD-NPS             | Dead Leaves SPD-MTF          | Barten            | 2.27                                 | 2.06                                                                | 2.02                                                     | 2.58                                                | 2.20                                       | 2.88                                     | 2.27                                                                            | 2.27                                                                                                   |
|     | Dead Leaves SPD-NPS             | Direct Dead Leaves MTF       | cCSF              | 2.25                                 | 2.04                                                                | 2.00                                                     | 2.55                                                | 2.18                                       | 2.82                                     | 2.37                                                                            | 2.24                                                                                                   |
|     | Dead Leaves SPD-NPS             | Direct Dead Leaves MTF       | cVPF              | 2.28                                 | 2.08                                                                | 2.04                                                     | 2.58                                                | 2.21                                       | 2.85                                     | 2.42                                                                            | 2.28                                                                                                   |
|     | Dead Leaves SPD-NPS             | Direct Dead Leaves MTF       | Barten            | 2.26                                 | 2.05                                                                | 2.01                                                     | 2.57                                                | 2.19                                       | 2.87                                     | 2.26                                                                            | 2.26                                                                                                   |
|     | Uniform Patch NPS               | Pictorial Image SPD-MTF      | cCSF              | 2.32                                 | 2.08                                                                | 2.03                                                     | 2.62                                                | 2.24                                       | 2.91                                     | 2.44                                                                            | 2.28                                                                                                   |
| ŧ   | Uniform Patch NPS               | Pictorial Image SPD-MTF      | cVPF              | 2.37                                 | 2.11                                                                | 2.07                                                     | 2.67                                                | 2.29                                       | 2.96                                     | 2.50                                                                            | 2.33                                                                                                   |
| en  | Uniform Patch NPS               | Pictorial Image SPD-MTF      | Barten            | 2.28                                 | 2.06                                                                | 2.02                                                     | 2.59                                                | 2.20                                       | 2.88                                     | 2.28                                                                            | 2.27                                                                                                   |
| P   | Uniform Patch NPS               | Mean Pictorial Image SPD-MTF | cCSF              | 2.29                                 | 2.08                                                                | 2.04                                                     | 2.59                                                | 2.21                                       | 2.88                                     | 2.40                                                                            | 2.27                                                                                                   |
| be  | Uniform Patch NPS               | Mean Pictorial Image SPD-MTF | cVPF              | 2.32                                 | 2.11                                                                | 2.08                                                     | 2.63                                                | 2.24                                       | 2.92                                     | 2.44                                                                            | 2.31                                                                                                   |
| e l | Uniform Patch NPS               | Mean Pictorial Image SPD-MTF | Barten            | 2.27                                 | 2.06                                                                | 2.02                                                     | 2.58                                                | 2.20                                       | 2.87                                     | 2.27                                                                            | 2.26                                                                                                   |
| 7   | Uniform Patch NPS               | Dead Leaves SPD-MTF          | cCSF              | 2.31                                 | 2.10                                                                | 2.07                                                     | 2.62                                                | 2.23                                       | 2.92                                     | 2.42                                                                            | 2.27                                                                                                   |
| Sug | Uniform Patch NPS               | Dead Leaves SPD-MTF          | cVPF              | 2.36                                 | 2.15                                                                | 2.12                                                     | 2.67                                                | 2.27                                       | 2.98                                     | 2.48                                                                            | 2.32                                                                                                   |
| ŏ   | Uniform Patch NPS               | Dead Leaves SPD-MTF          | Barten            | 2.27                                 | 2.06                                                                | 2.02                                                     | 2.58                                                | 2.20                                       | 2.87                                     | 2.27                                                                            | 2.26                                                                                                   |
| t S | Uniform Patch NPS               | Direct Dead Leaves MTF       | cCSF              | 2.25                                 | 2.04                                                                | 2.00                                                     | 2.54                                                | 2.18                                       | 2.82                                     | 2.37                                                                            | 2.24                                                                                                   |
| as  | Uniform Patch NPS               | Direct Dead Leaves MTF       | cVPF              | 2.28                                 | 2.08                                                                | 2.04                                                     | 2.58                                                | 2.21                                       | 2.84                                     | 2.42                                                                            | 2.28                                                                                                   |
| Le  | Uniform Patch NPS               | Direct Dead Leaves MTF       | Barten            | 2.26                                 | 2.05                                                                | 2.01                                                     | 2.57                                                | 2.19                                       | 2.86                                     | 2.26                                                                            | 2.26                                                                                                   |
|     | Lowest MAE                      | of All Visual Log NEQ        |                   |                                      |                                                                     |                                                          |                                                     |                                            |                                          |                                                                                 |                                                                                                        |
|     | Variants Acro                   | ss Both Pipelines            | Maximum           | 2.38                                 | 2.17                                                                | 2.14                                                     | 2.69                                                | 2.30                                       | 3.01                                     | 2.51                                                                            | 2.34                                                                                                   |
|     |                                 |                              | Minimum           | 2.25                                 | 2.04                                                                | 2.00                                                     | 2.54                                                | 2.18                                       | 2.82                                     | 2.26                                                                            | 2.24                                                                                                   |
|     |                                 |                              | Mean              | 2.30                                 | 2.09                                                                | 2.05                                                     | 2.61                                                | 2.23                                       | 2.91                                     | 2.38                                                                            | 2.29                                                                                                   |
|     | Highest MAE                     | of All Visual Log NEQ        | Standard Dev.     | 0.04                                 | 0.03                                                                | 0.03                                                     | 0.04                                                | 0.03                                       | 0.05                                     | 0.08                                                                            | 0.03                                                                                                   |
|     | Variants Acro                   | ss Both Pipelines            | Relative St. Dev. | 1.68%                                | 1.53%                                                               | 1.69%                                                    | 1.46%                                               | 1.50%                                      | 1.56%                                    | 3.56%                                                                           | 1.15%                                                                                                  |

Table J3 Mean Absolute Error (MAE) between the Visual log NEQ metric variant scores for test images generated by the linear pipeline, and the perceived quality rating of these images. NB. the minimum, maximum, mean, standard deviation and relative standard deviation (bottom) are calculated with respect to Table J3 only, but the colour coding is with respect to both pipelines, i.e. Tables J2 and J3.

|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             | Log NEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : Non-Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ar Pipeline                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ÷ +                      | NPS Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MTFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Employed                                                                                                                                                                                                                                                                                                                                                    | Observers:<br>All<br>Scenes:<br>All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility                                                                                                                                                                                                                                         | Observers<br>: Medium<br>Sensitivity<br>Scenes:<br>All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Observers:<br>Inexperienced<br>Scenes: All                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)                                                                                                                       |
| u a                      | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pictorial I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mage SPD-MTF                                                                                                                                                                                                                                                                                                                                                | 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.01                                                                                                                                                                                                                                                                                          | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.36                                                                                                                                                                               | 2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.32                                                                                                                                                                                                                         |
| ő z                      | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean Pictoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al Image SPD-MTF                                                                                                                                                                                                                                                                                                                                            | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.96                                                                                                                                                                                                                                                                                          | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.36                                                                                                                                                                               | 2.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.34                                                                                                                                                                                                                         |
| e it                     | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dead Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aves SPD-MTF                                                                                                                                                                                                                                                                                                                                                | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.00                                                                                                                                                                                                                                                                                          | 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.27                                                                                                                                                                               | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.29                                                                                                                                                                                                                         |
| j j                      | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Direct De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ad Leaves MTF                                                                                                                                                                                                                                                                                                                                               | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.10                                                                                                                                                                                                                                                                                          | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.36                                                                                                                                                                               | 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.26                                                                                                                                                                                                                         |
| ≥                        | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pictorial I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mage SPD-MTF                                                                                                                                                                                                                                                                                                                                                | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.02                                                                                                                                                                                                                                                                                          | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.31                                                                                                                                                                               | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.27                                                                                                                                                                                                                         |
| ₽                        | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean Pictoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al Image SPD-MTF                                                                                                                                                                                                                                                                                                                                            | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.99                                                                                                                                                                                                                                                                                          | 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.30                                                                                                                                                                               | 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.29                                                                                                                                                                                                                         |
|                          | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dead Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aves SPD-MTF                                                                                                                                                                                                                                                                                                                                                | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.08                                                                                                                                                                                                                                                                                          | 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.33                                                                                                                                                                               | 2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.33                                                                                                                                                                                                                         |
|                          | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Direct De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ad Leaves MTF                                                                                                                                                                                                                                                                                                                                               | 2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.17                                                                                                                                                                                                                                                                                          | 2.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.41                                                                                                                                                                               | 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.30                                                                                                                                                                                                                         |
|                          | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pictorial I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mage SPD-MTF                                                                                                                                                                                                                                                                                                                                                | 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.12                                                                                                                                                                                                                                                                                          | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.44                                                                                                                                                                               | 2.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.37                                                                                                                                                                                                                         |
|                          | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean Pictoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al Image SPD-MTF                                                                                                                                                                                                                                                                                                                                            | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.11                                                                                                                                                                                                                                                                                          | 2.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.43                                                                                                                                                                               | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.38                                                                                                                                                                                                                         |
| _ I                      | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dead Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aves SPD-MTF                                                                                                                                                                                                                                                                                                                                                | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.05                                                                                                                                                                                                                                                                                          | 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.34                                                                                                                                                                               | 2.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.35                                                                                                                                                                                                                         |
| ė t                      | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ad Leaves MTF                                                                                                                                                                                                                                                                                                                                               | 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.12                                                                                                                                                                                                                                                                                          | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.40                                                                                                                                                                               | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.31                                                                                                                                                                                                                         |
| je je                    | Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pictorial I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mage SPD-MTF                                                                                                                                                                                                                                                                                                                                                | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.88                                                                                                                                                                                                                                                                                          | 3.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.97                                                                                                                                                                               | 3.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.07                                                                                                                                                                                                                         |
| Š Š                      | Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean Pictoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al Image SPD-MTF                                                                                                                                                                                                                                                                                                                                            | 3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.86                                                                                                                                                                                                                                                                                          | 3.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.99                                                                                                                                                                               | 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.07                                                                                                                                                                                                                         |
| ast                      | Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dead Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aves SPD-MTF                                                                                                                                                                                                                                                                                                                                                | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.65                                                                                                                                                                                                                                                                                          | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.72                                                                                                                                                                               | 3.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.84                                                                                                                                                                                                                         |
| Ĕ                        | Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Direct De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ad Leaves MTF                                                                                                                                                                                                                                                                                                                                               | 2.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.79                                                                                                                                                                                                                                                                                          | 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.85                                                                                                                                                                               | 3.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.91                                                                                                                                                                                                                         |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             | Log N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EQ: Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pipeline                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                              |
|                          | NPS Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MTF E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | imployed                                                                                                                                                                                                                                                                                                                                                    | Observers:<br>All<br>Scenes:<br>All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility                                                                                                                                                                                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)                                                                                                                                         |
| -9-<br>10-               | NPS Employed Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTF E<br>Pictorial Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mage SPD-MTF                                                                                                                                                                                                                                                                                                                                                | Observers:<br>All<br>Scenes:<br>All<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95                                                                                                                                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.16                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.06                                                                                                                                 |
| cene-                    | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MTF E<br>Pictorial Ir<br>Mean Pictoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mage SPD-MTF                                                                                                                                                                                                                                                                                                                                                | Observers:<br>All<br>Scenes:<br>All<br>2.12<br>2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.04<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95                                                                                                                                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12                                                                                                                         | Observers:<br>Experienced<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>2.06<br>2.05                                                                                                                          |
| : Scene-                 | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF                                                                                                                                                                                                                                                                                                             | Observers:<br>All<br>Scenes:<br>All<br>2.12<br>2.06<br>2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.04<br>2.05<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95                                                                                                                                                                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27<br>2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12                                                                                                                 | Observers:<br>Experienced<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.06<br>2.05<br>2.04                                                                                                                 |
| ost Scene-               | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>dLeaves MTF                                                                                                                                                                                                                                                                                              | Observers:<br>All<br>Scenes:<br>All<br>2.12<br>2.06<br>2.07<br>2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.04<br>2.05<br>2.05<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.93                                                                                                                                                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27<br>2.29<br>2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.06<br>2.05<br>2.04<br>2.04                                                                                                         |
| Most Scene-              | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Des<br>Pictorial Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF                                                                                                                                                                                                                                                                            | Observers:<br>All<br>Scenes:<br>All<br>2.12<br>2.06<br>2.07<br>2.04<br>2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.04<br>2.05<br>2.05<br>2.05<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.93<br>1.96                                                                                                                                                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12<br>2.17                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                                                                                                |
| Most Scene-              | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>al Image SPD-MTF                                                                                                                                                                                                                                                        | Observers:<br>All<br>Scenes:<br>All<br>2.12<br>2.06<br>2.07<br>2.04<br>2.13<br>2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.04<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.93<br>1.96<br>1.96                                                                                                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.12<br>2.12<br>2.12<br>2.12<br>2.17<br>2.13                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                                                                                                |
| Most Scene-              | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dee<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF                                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>All<br>2.12<br>2.06<br>2.07<br>2.04<br>2.13<br>2.06<br>2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:           All           Scenes:           Medium and           Low           Susceptibility           2.04           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05                                                                                                                                                                                                                                                  | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.96                                                                                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.13<br>2.13                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                                                                                                |
| Most Scene-              | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>dd Leaves MTF<br>nage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>dd Leaves MTF                                                                                                                                                                                                                        | Observers:<br>All<br>Scenes:<br>All<br>2.12<br>2.06<br>2.07<br>2.04<br>2.13<br>2.06<br>2.07<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:           All           Scenes:           Medium and           Low           Susceptibility           2.04           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05                                                                                                                                                                       | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.96<br>1.95                                                                                                                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12<br>2.12<br>2.13<br>2.13<br>2.13<br>2.14                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.16<br>2.19<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.06<br>2.05<br>2.04<br>2.07<br>2.06<br>2.06<br>2.06<br>2.06<br>2.05                                                                 |
| Most Scene-              | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Pictorial Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ves SPD-MTF<br>mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>All<br>2.12<br>2.06<br>2.07<br>2.04<br>2.13<br>2.06<br>2.07<br>2.05<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.04<br>2.05<br>2.05<br>2.05<br>2.05<br>2.06<br>2.05<br>2.07<br>2.07<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.96<br>1.96<br>1.95<br>1.94                                                                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.23<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12<br>2.12<br>2.17<br>2.13<br>2.13<br>2.14<br>2.17                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.12<br>2.26<br>2.12<br>2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                                                                                                |
| Most Scene-              | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>nage SPD-MTF<br>al Image SPD-MTF<br>dLeaves MTF<br>mage SPD-MTF<br>al Image SPD-MTF<br>al Image SPD-MTF                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>All<br>2.06<br>2.07<br>2.04<br>2.13<br>2.06<br>2.07<br>2.05<br>2.05<br>2.12<br>2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:           All           Scenes:           Medium and           Low           Susceptibility           2.04           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05                                                                                                                          | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.96<br>1.95<br>1.95<br>1.94<br>1.95                                                                                                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12<br>2.17<br>2.13<br>2.13<br>2.14<br>2.17<br>2.13                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.16<br>2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>2.06<br>2.05<br>2.04<br>2.07<br>2.06<br>2.06<br>2.05<br>2.07<br>2.06                                                                  |
| Most Scene-              | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Direct Dea | mage SPD-MTF<br>al Image SPD-MTF<br>wes SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>al Image SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>al Image SPD-MTF<br>al Image SPD-MTF                                                                                                                                                                               | Observers:<br>All<br>Scenes:<br>All<br>2.02<br>2.04<br>2.07<br>2.04<br>2.13<br>2.06<br>2.07<br>2.05<br>2.12<br>2.05<br>2.12<br>2.05<br>2.12<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:           All           Scenes:           Medium and           Low           Susceptibility           2.04           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.06           2.07           2.05           2.06           2.05           2.06           2.05                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.93<br>1.96<br>1.96<br>1.96<br>1.96<br>1.94<br>1.95<br>1.95                                                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.26<br>2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12<br>2.12<br>2.13<br>2.13<br>2.13<br>2.13                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                                                                                                |
| Most Scene-              | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria<br>Direct Dea<br>Direct Dead Lea<br>Direct Dead Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>mage SPD-MTF<br>al Leaves MTF<br>al Leaves MTF<br>mage SPD-MTF<br>al Leaves MTF<br>mage SPD-MTF<br>al Leaves MTF                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>All<br>2.06<br>2.07<br>2.04<br>2.13<br>2.06<br>2.07<br>2.05<br>2.12<br>2.06<br>2.07<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.04<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.95<br>1.94<br>1.95<br>1.94<br>1.96<br>1.94                                                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12<br>2.12<br>2.13<br>2.13<br>2.14<br>2.17<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13                         | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.19<br>2.12<br>2.26<br>2.19<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.06<br>2.05<br>2.04<br>2.04<br>2.07<br>2.06<br>2.06<br>2.05<br>2.07<br>2.06<br>2.05<br>2.05<br>2.05                                 |
| cene- Most Scene-        | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD                                                                                                                                                                                                                                                            | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>All<br>2.06<br>2.07<br>2.04<br>2.13<br>2.06<br>2.07<br>2.05<br>2.12<br>2.06<br>2.07<br>2.05<br>2.12<br>2.06<br>2.07<br>2.05<br>2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:           All           Scenes:           Medium and           Low           Susceptibility           2.04           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.06           2.06           2.06           2.06           2.06                                                                                                                          | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.96<br>1.96<br>1.94<br>1.95<br>1.95<br>1.95<br>1.94<br>1.95                                                                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.26<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12<br>2.12<br>2.13<br>2.13<br>2.13<br>2.14<br>2.17<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13 | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.06<br>2.05<br>2.04<br>2.04<br>2.06<br>2.06<br>2.05<br>2.05<br>2.07<br>2.06<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05         |
| t Scene- Most Scene-     | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Uniform Patch NPS Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dee<br>Pictorial Im<br>Mean Pictoria<br>Dead Lea<br>Direct Dee<br>Pictorial Im<br>Mean Pictoria<br>Dead Lea<br>Direct Dee<br>Pictorial Im<br>Mean Pictoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>al Image SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>al Image SPD-MTF<br>al Image SPD-MTF<br>al Image SPD-MTF                                                                                       | Observers:<br>All<br>Scenes:<br>All<br>2.06<br>2.07<br>2.04<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:           All           Scenes:           Medium and           Low           Susceptibility           2.04           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.06           2.05           2.06           2.05           2.06           2.06           2.06           2.06           2.06                                | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.96<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.23<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.26<br>2.28<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.12<br>2.12<br>2.12<br>2.17<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13                                         | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.06<br>2.04<br>2.07<br>2.06<br>2.06<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.05<br>2.05<br>2.05<br>2.05<br>2.08<br>2.08<br>2.08 |
| ast Scene- Most Scene-   | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Uniform Patch NPS Uniform Patch NPS Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Pictorial<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Direct Dea | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>al Image SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ves SPD-MTF<br>ves SPD-MTF                                                                                      | Observers:<br>All<br>Scenes:<br>All<br>2.02<br>2.04<br>2.07<br>2.04<br>2.07<br>2.05<br>2.07<br>2.05<br>2.07<br>2.05<br>2.07<br>2.05<br>2.13<br>2.07<br>2.05<br>2.13<br>2.07<br>2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:           All           Scenes:           Medium and           Low           Susceptibility           2.04           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.06           2.05           2.06           2.06           2.06           2.06           2.07           2.06           2.07           2.06           2.07                                                                                                                          | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.96<br>1.96<br>1.94<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95<br>1.95<br>1.94<br>1.95<br>1.95<br>1.95<br>1.94<br>1.95<br>1.95                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12<br>2.17<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13                                 | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.06<br>2.05<br>2.04<br>2.07<br>2.06<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05                                 |
| Least Scene- Most Scene- | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mage SPD-MTF<br>al Image SPD-MTF<br>wes SPD-MTF<br>ad Leaves MTF<br>ad Leaves MTF                                                                                                 | Observers:<br>All<br>Scenes:<br>All<br>2.06<br>2.07<br>2.04<br>2.03<br>2.06<br>2.07<br>2.05<br>2.12<br>2.06<br>2.07<br>2.05<br>2.13<br>2.07<br>2.05<br>2.13<br>2.07<br>2.07<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:           All           Scenes:           Medium and           Low           Susceptibility           2.04           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.06           2.07           2.06           2.06           2.06           2.06           2.06           2.06           2.06           2.06           2.07           2.06           2.07                                                                                                           | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.96<br>1.96<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95                                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12<br>2.12<br>2.13<br>2.13<br>2.13<br>2.13                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                                                                                                |
| Least Scene- Most Scene- | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea<br>Direct Dea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>dd Leaves MTF<br>mage SPD-MTF<br>al Leaves MTF<br>mage SPD-MTF<br>dd Leaves MTF<br>mage SPD-MTF<br>dd Leaves MTF<br>mage SPD-MTF<br>al Image SPD-MTF<br>dd Leaves MTF<br>mage SPD-MTF<br>dd Leaves MTF<br>dd Leaves MTF                                                                                  | Observers:<br>All<br>Scenes:<br>All<br>2.06<br>2.07<br>2.04<br>2.13<br>2.06<br>2.07<br>2.05<br>2.12<br>2.06<br>2.07<br>2.05<br>2.12<br>2.06<br>2.07<br>2.07<br>2.05<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.04<br>2.05<br>2.05<br>2.05<br>2.05<br>2.06<br>2.07<br>2.06<br>2.06<br>2.06<br>2.06<br>2.06<br>2.06<br>2.06<br>2.06                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.96<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95<br>1.96<br>1.94<br>1.95                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>3.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12<br>2.17<br>2.13<br>2.13<br>2.13<br>2.14<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13 | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.19<br>2.12<br>2.26<br>2.19<br>2.12<br>2.26<br>2.19<br>2.12<br>2.26<br>2.19<br>2.12<br>2.21<br>2.26<br>2.19<br>2.12<br>2.26<br>2.19<br>2.12<br>2.21<br>3.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                                                                                                |
| Least Scene- Most Scene- | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Uniform Patch NPS Uniform Patch NPS Uniform Patch NPS Uniform Patch NPS Cuniform Patch N | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Direct Dea<br>Pictorial Ir<br>Mean Pictoria<br>Direct Dea<br>Direct Dea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>mage SPD-MTF<br>al Leaves MTF<br>mage SPD-MTF<br>al Leaves MTF<br>Maximum<br>Minimum                                                                                 | Observers:<br>All<br>Scenes:<br>All<br>2.06<br>2.07<br>2.04<br>2.13<br>2.06<br>2.07<br>2.05<br>2.12<br>2.06<br>2.07<br>2.05<br>2.13<br>2.07<br>2.05<br>2.13<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.05<br>2.13<br>2.07<br>2.07<br>2.05<br>2.12<br>2.06<br>3.01<br>2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.04<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.96<br>1.95<br>1.94<br>1.95<br>1.94<br>1.95<br>1.94<br>1.97<br>1.96<br>1.96<br>1.96<br>1.96<br>1.95<br>5.5<br>5.5<br>1.93                                                                   | Observers:           Medium           Sensitivity           Scenes: All           2.33           2.27           2.29           2.24           2.33           2.27           2.29           2.24           2.33           2.27           2.28           2.24           2.33           2.26           2.28           2.24           2.33           2.26           2.28           2.24           2.33           2.26           2.28           2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.12<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.11<br>3.44<br>2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                                                                                                |
| Least Scene- Most Scene- | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Uniform Patch NPS Uniform Patch NPS Uniform Patch NPS Uniform Patch NPS Lowest MAE of All L Variants Across Bot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MTF E<br>Pictorial Ir<br>Mean Pictoria<br>Direct Dea<br>Direct Dea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>d Leaves MTF<br>Maximum<br>Minimum<br>Mean                                                            | Observers:<br>All<br>Scenes:<br>All<br>2.06<br>2.07<br>2.04<br>2.13<br>2.06<br>2.07<br>2.05<br>2.12<br>2.06<br>2.07<br>2.05<br>2.13<br>2.07<br>2.03<br>2.13<br>2.07<br>2.07<br>2.05<br>3.01<br>2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           2.04           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.06           2.05           2.06           2.06           2.06           2.06           2.06           2.06           2.06           2.06           2.06           2.08           2.08           2.08           2.04           2.04           2.23                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.96<br>1.96<br>1.96<br>1.95<br>1.94<br>1.95<br>1.94<br>1.97<br>1.96<br>1.97<br>1.96<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.23<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.28<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.29<br>2.24<br>2.28<br>2.26<br>2.28<br>2.26<br>2.28<br>2.26<br>2.28<br>2.26<br>2.28<br>2.26<br>2.28<br>2.26<br>2.28<br>2.26<br>2.28<br>2.26<br>2.28<br>2.26<br>2.28<br>2.24<br>2.28<br>2.26<br>2.28<br>2.24<br>2.28<br>2.26<br>2.28<br>2.24<br>2.28<br>2.26<br>2.28<br>2.24<br>2.28<br>2.26<br>2.28<br>2.24<br>2.28<br>2.24<br>2.28<br>2.24<br>2.28<br>2.24<br>2.28<br>2.24<br>2.28<br>2.24<br>2.24 | Observers:<br>Inexperienced<br>Scenes: All<br>2.16<br>2.12<br>2.12<br>2.17<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13                                         | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.16<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.16<br>2.16<br>2.16<br>2.16<br>2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>2.06<br>2.05<br>2.04<br>2.07<br>2.06<br>2.06<br>2.05<br>2.07<br>2.06<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05  |
| Least Scene- Most Scene- | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Lonform Patch NPS Uniform Patch NPS Lowest MAE of All L Variants Across Bott Highest MAE of All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTF E<br>Pictorial In<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Pictorial In<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Pictorial In<br>Mean Pictoria<br>Dead Lea<br>Direct Dea<br>Direct  | mage SPD-MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>al Image SPD-MTF<br>ad Leaves MTF<br>ad Leaves MTF<br>al Image SPD-MTF<br>ves SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>ad Leaves MTF<br>mage SPD-MTF<br>wes SPD-MTF<br>ad Leaves MTF<br>Maximum<br>Minimum<br>Mean<br>Standard Dev. | Observers:<br>All<br>Scenes:<br>All<br>2.06<br>2.07<br>2.04<br>2.03<br>2.06<br>2.07<br>2.05<br>2.12<br>2.06<br>2.07<br>2.05<br>2.12<br>2.06<br>2.07<br>2.05<br>2.12<br>2.06<br>3.01<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.04<br>2.07<br>2.05<br>2.12<br>2.05<br>2.12<br>2.05<br>2.07<br>2.04<br>2.07<br>2.04<br>2.05<br>2.07<br>2.04<br>2.05<br>2.07<br>2.04<br>2.05<br>2.07<br>2.04<br>2.05<br>2.07<br>2.04<br>2.05<br>2.07<br>2.04<br>2.05<br>2.07<br>2.04<br>2.05<br>2.07<br>2.04<br>2.05<br>2.07<br>2.04<br>2.05<br>2.07<br>2.04<br>2.05<br>2.07<br>2.05<br>2.07<br>2.04<br>2.05<br>2.07<br>2.05<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.06<br>2.07<br>2.05<br>2.05<br>2.07<br>2.05<br>2.07<br>2.05<br>2.07<br>2.05<br>2.07<br>2.05<br>2.07<br>2.05<br>2.07<br>2.05<br>2.07<br>2.05<br>2.07<br>2.05<br>2.07<br>2.05<br>2.07<br>2.05<br>2.07<br>2.05<br>2.07<br>2.07<br>2.05<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07 | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           2.04           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.05           2.06           2.05           2.06           2.06           2.06           2.06           2.06           2.06           2.06           2.06           2.06           2.06           2.06           2.08           2.08           2.08           2.02           2.03           2.04           2.23           0.26 | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.95<br>1.95<br>1.95<br>1.96<br>1.96<br>1.96<br>1.96<br>1.96<br>1.95<br>1.94<br>1.97<br>1.96<br>1.94<br>1.97<br>1.96<br>1.96<br>1.96<br>1.95<br>1.96<br>1.95<br>1.96<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.24<br>2.33<br>2.26<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.24<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.27<br>2.29<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.28<br>2.24<br>2.33<br>2.26<br>2.24<br>2.33<br>2.26<br>2.24<br>2.33<br>2.26<br>2.24<br>2.33<br>2.26<br>2.24<br>2.34<br>2.32<br>2.26<br>2.24<br>2.32<br>2.24<br>2.33<br>2.26<br>2.24<br>2.32<br>2.24<br>2.33<br>2.26<br>2.24<br>2.34<br>2.24<br>2.32<br>2.24<br>2.32<br>2.24<br>2.32<br>2.24<br>2.32<br>2.24<br>2.24         | Observers:<br>Inexperienced<br>Scenes: All<br>2.12<br>2.12<br>2.12<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.27<br>2.16<br>2.20<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.16<br>2.19<br>2.12<br>2.26<br>2.16<br>2.16<br>2.16<br>2.16<br>2.16<br>2.16 | Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                                                                                                |

Table J4 Mean Absolute Error (MAE) between the log Noise Equivalent Quanta (log NEQ) metric variant scores for test images generated by the non-linear (top) and linear pipeline (bottom), and the perceived quality rating of these images.

|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PIC: No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on-Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pipeline                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | NPS Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSF<br>Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility                                                                                                                 | Observers<br>: Medium<br>Sensitivity<br>Scenes:<br>All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:<br>Inexperienced<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All                                                                                         | Observers:<br>All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)                                                                                                                                                                                                                                                                                                                                                                              |
| ent                                          | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.09                                                                                                                                                                  | 2.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.50                                                                                                                             | 2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pue                                          | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pictorial Image SPD-MIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCSF<br>CVPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.09                                                                                                                                                                  | 2.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.50                                                                                                                             | 2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| be                                           | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.09                                                                                                                                                                  | 2.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.50                                                                                                                             | 2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ą                                            | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.02                                                                                                                                                                  | 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.50                                                                                                                             | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ne                                           | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.02                                                                                                                                                                  | 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.51                                                                                                                             | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ŝ                                            | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.02                                                                                                                                                                  | 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.51                                                                                                                             | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| st                                           | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.02                                                                                                                                                                  | 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.51                                                                                                                             | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ŷ                                            | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.88                                                                                                                                                                  | 2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.21                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                            | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.88                                                                                                                                                                  | 2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.21                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Т                                            | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.88                                                                                                                                                                  | 2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.21                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.88                                                                                                                                                                  | 2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.21                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.10                                                                                                                                                                  | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.58                                                                                                                             | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.10                                                                                                                                                                  | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.58                                                                                                                             | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.10                                                                                                                                                                  | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.58                                                                                                                             | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.10                                                                                                                                                                  | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.58                                                                                                                             | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.05                                                                                                                                                                  | 2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.57                                                                                                                             | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.05                                                                                                                                                                  | 2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.57                                                                                                                             | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ranton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.05                                                                                                                                                                  | 2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.57                                                                                                                             | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dead Leaver SDD MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.05                                                                                                                                                                  | 2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.57                                                                                                                             | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dead Leaves SPD-MIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.96                                                                                                                                                                  | 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.31                                                                                                                             | 2.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dead Leaves SPD-WITF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c)/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.96                                                                                                                                                                  | 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.31                                                                                                                             | 2.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dead Leaves SPD-WITF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.96                                                                                                                                                                  | 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.31                                                                                                                             | 2.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.90                                                                                                                                                                  | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.40                                                                                                                             | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.90                                                                                                                                                                  | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.40                                                                                                                             | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I                                            | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.90                                                                                                                                                                  | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.40                                                                                                                             | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| art                                          | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.90                                                                                                                                                                  | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.40                                                                                                                             | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| p                                            | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.08                                                                                                                                                                  | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.50                                                                                                                             | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| per                                          | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.08                                                                                                                                                                  | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.50                                                                                                                             | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ē                                            | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.08                                                                                                                                                                  | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.50                                                                                                                             | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.08                                                                                                                                                                  | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.50                                                                                                                             | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| en                                           | Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.11                                                                                                                                                                  | 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.27                                                                                                                             | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| š                                            | Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.11                                                                                                                                                                  | 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.27                                                                                                                             | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ast                                          | Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.11                                                                                                                                                                  | 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.27                                                                                                                             | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ľe                                           | Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.11                                                                                                                                                                  | 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.27                                                                                                                             | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DIC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Linoar Dir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | olino                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  | Oheemuere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  | Observers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  | A11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers. All                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Observers:<br>All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All                                                                                                                                                        | Observers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers                                                                                                                        | All<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                              | NPS Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTE Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSE Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers:<br>All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers:<br>All<br>Scenes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers: All<br>Scenes:                                                                                                                                             | <b>Observers:</b><br>Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:                                                                                                                       | All<br>Scenes: All<br>(CSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Scenes: All<br>(MTF & NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                              | NPS Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers:<br>All<br>Scenes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>Medium and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers: All<br>Scenes:<br>Medium                                                                                                                                   | Observers:<br>Medium<br>Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers:<br>Inexperienced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:<br>Experienced                                                                                                        | All<br>Scenes: All<br>(CSF<br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Scenes: All<br>(MTF & NPS<br>Domain                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | NPS Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers:<br>All<br>Scenes:<br>All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes:<br>Medium<br>Susceptibility                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All                                                                                         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                              | NPS Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers:<br>All<br>Scenes:<br>All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All                                                                                         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)                                                                                                                                                                                                                                                                                                                                                                                                |
| t                                            | NPS Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers:<br>All<br>Scenes:<br>All<br>2,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers: All<br>Scenes:<br>Medium<br>Susceptibility                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All                                                                                         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28                                                                                                                                                                                                                                                                                                                                                                                        |
| ident                                        | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CSF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90                                                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31                                                                         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>2.28<br>2.28                                                                                                                                                                                                                                                                                                                                                                                 |
| sendent                                      | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CSF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90                                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.31                                                                 | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28                                                                                                                                                                                                                                                                                                                                                                        |
| Dependent                                    | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Combination<br>cCSF<br>cVPF<br>Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.31<br>2.31                                                         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28                                                                                                                                                                                                                                                                                                                                                         |
| e-Dependent                                  | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.91                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.60<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.31<br>2.31<br>2.34                                                 | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.30                                                                                                                                                                                                                                                                                                                                        |
| sene-Dependent                               | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:         All           Scenes:         Medium and           Low         Susceptibility           2.12         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.12         2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.31<br>2.34<br>2.34                                                 | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.30<br>2.30                                                                                                                                                                                                                                                                                                                                        |
| t Scene-Dependent                            | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91                                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34                                 | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.30<br>2.30                                                                                                                                                                                                                                                                                                                                |
| ost Scene-Dependent                          | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Combination<br>cCSF<br>cVPF<br>Barten<br>COmbination<br>cCSF<br>cVPF<br>Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91                                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34                         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.30<br>2.30<br>2.30<br>2.30                                                                                                                                                                                                                                                                                                                |
| · Most Scene-Dependent                       | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Nean Pictorial Image SPO-MTF<br>Mean Pictorial Image SPO-MTF<br>Mean Pictorial Image SPO-MTF<br>Mean Pictorial Image SPO-MTF<br>Dead Leaves SPO-MTF<br>Dead Leaves SPO-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:           All           Scenes:           Medium and           Low           Susceptibility           2.12           2.12           2.12           2.12           2.14           2.14           2.14           2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34 | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30                                                                                                                                                                                                                                                                                                |
| ➡ Most Scene-Dependent                       | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Combination<br>cCSF<br>cVPF<br>Barten<br>COmbination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>combination<br>cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34 | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30<br>2.29<br>2.29                                                                                                                                                                                                                                                                                                |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:         All           All         Scenes:           Medium and         Low           Susceptibility         2.12           2.12         2.12           2.12         2.14           2.14         2.14           2.14         2.14           2.12         2.12           2.12         2.12           2.13         2.14           2.14         2.12           2.12         2.12           2.12         2.12           2.12         2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91<br>1.90<br>1.90                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Construction All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0.4<br>vc/cles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30<br>2.29<br>2.29<br>2.29<br>2.29                                                                                                                                                                                                                                                             |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>Barten<br>COMbination<br>cCSF<br>cVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14<br>2.14<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34 | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                 |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14<br>2.14<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.93<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34 | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29                                                                                                                                                                                                                                        |
| ► Most Scene-Dependent                       | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>COmbination<br>cCSF<br>cVPF<br>cVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0bservers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.48<br>2.48<br>2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All           (MTF & NPS           Domain           Restricted to 0.4           2.28           2.28           2.28           2.28           2.30           2.30           2.30           2.30           2.30           2.30           2.30           2.30           2.30           2.30           2.30           2.29           2.29           2.29           2.29           2.29           2.29           2.29           2.29           2.29           2.29           2.29 |
| ► Most Scene-Dependent                       | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91<br>1.90<br>1.90                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.48<br>2.48<br>2.48<br>2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                 |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:         All           All         Scenes:           Medium and         Low           Susceptibility         2.12           2.12         2.12           2.12         2.12           2.14         2.14           2.14         2.14           2.14         2.14           2.12         2.14           2.14         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.13         2.13           2.13         2.13           2.13         2.13           2.13         2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:           Medium           Sensitivity           Scenes: All           2.60           2.60           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.66                                              | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29<br>2.2                                                                                                                                                                                                                         |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0bservers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2:47<br>2:47<br>2:47<br>2:47<br>2:51<br>2:51<br>2:51<br>2:51<br>2:51<br>2:51<br>2:51<br>2:47<br>2:47<br>2:47<br>2:47<br>2:47<br>2:47<br>2:47<br>2:47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0.4<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.                                                                                                                                                                                                                                                                                                                                                              |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>COPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.90<br>1.90                                         | Observers:           Medium           Sensitivity           Scenes: All           2.60           2.60           2.60           2.60           2.65           2.65           2.65           2.65           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.66           2.66                                              | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.48<br>2.48<br>2.48<br>2.48<br>2.48<br>2.48<br>2.48<br>2.53<br>2.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                 |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:         All           All         Scenes:           Medium and         Low           Susceptibility         2.12           2.12         2.12           2.12         2.12           2.12         2.14           2.14         2.14           2.14         2.14           2.14         2.14           2.12         2.12           2.13         2.12           2.12         2.12           2.12         2.12           2.13         2.13           2.13         2.15           2.15         2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:           Medium           Sensitivity           Scenes: All           2.60           2.60           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.66           2.66           2.66                                                                                                                                        | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.20<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30<br>2.30                                                                                                                                                                                                                                                                                |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSF Employed<br>COmbination<br>CCSF<br>CVPF<br>Barten<br>COmbination<br>CCSF<br>CVPF<br>Barten<br>COmbination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2:47<br>2:47<br>2:47<br>2:47<br>2:51<br>2:51<br>2:51<br>2:51<br>2:51<br>2:51<br>2:51<br>2:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0.4<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.                                                                                                                                                                                                                                                                                                                                                              |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.90<br>1.90                                         | Observers:           Medium           Sensitivity           Scenes: All           2.60           2.60           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.66           2.66           2.66           2.66           2.63           2.63                               | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                 |
| Most Scene-Dependent                         | NPS Employed  Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS                                                                                                                                                                                  | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>COMBINATION<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>C                  | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:         All           All         Scenes:           Medium and         Low           2.12         2.12           2.12         2.12           2.12         2.12           2.14         2.14           2.14         2.14           2.14         2.14           2.14         2.12           2.12         2.12           2.13         2.12           2.12         2.12           2.13         2.13           2.13         2.15           2.15         2.15           2.15         2.12           2.12         2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91                                                 | Observers:           Medium           Sensitivity           Scenes: All           2.60           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.66           2.66           2.66           2.66           2.63           2.63                               | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                 |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dictorial Image SPD-MTF Dead Leaves S                                                                                                                                                                                             | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                 |
| Most Scene-Dependent                         | NPS Employed Pictorial Image SPD-NPS Nean Pictorial Image SPD-NPS Mean                                                                                                                                                                                   | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-                                                                                                                                                                                             | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION                                                                                                                                                                                                                                                                                        | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:         All           All         Scenes:           Medium and         Low           Susceptibility         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.14         2.14           2.14         2.14           2.14         2.14           2.12         2.12           2.12         2.12           2.12         2.12           2.13         2.13           2.13         2.13           2.15         2.15           2.15         2.15           2.12         2.12           2.12         2.12           2.13         2.15           2.15         2.15           2.12         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.12         2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.90<br>1.90                                         | Observers:           Medium           Sensitivity           Scenes: All           2.60           2.60           2.60           2.60           2.65           2.65           2.65           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.63           2.63           2.63           2.63           2.63           2.63                               | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.33<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34                 | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                 |
| Most Scene-Dependent                         | NPS Employed  Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Le                                                                                                                                                                                             | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CONF<br>CO                | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:         All           All         Scenes:           Medium and         Low           2.12         2.12           2.12         2.12           2.12         2.12           2.12         2.14           2.14         2.14           2.14         2.14           2.14         2.12           2.12         2.13           2.12         2.12           2.13         2.13           2.13         2.13           2.13         2.15           2.15         2.15           2.12         2.12           2.12         2.12           2.12         2.12           2.13         2.15           2.15         2.12           2.12         2.12           2.12         2.12           2.12         2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91                                                 | Observers:           Medium           Sensitivity           Scenes: All           2.60           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>was not<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control Ari<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                              |
| ent  Most Scene-Dependent                    | NPS Employed  Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS D                                                                                                                                                                                  | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dictorial Image SPD-MTF Pictorial Image SPD-MTF Dictorial Image SPD                                                                                                                                                                                             | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                 |
| ndent  Most Scene-Dependent                  | NPS Employed Pictorial Image SPD-NPS Nean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Le                                                                                                                                                                                  | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF                                                                                                                                                                                             | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVP                          | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:         All           All         Scenes:           Medium and         Low           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:14         2:14           2:14         2:14           2:14         2:14           2:12         2:12           2:12         2:12           2:13         2:13           2:13         2:13           2:15         2:15           2:15         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:15         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.90<br>1.90                                         | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.33<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34                 | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                 |
| pendent  Most Scene-Dependent                | NPS Employed  Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves                                                                                                                                                                                  | MTF Employed Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF                                                                                                                                                                                              | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBARTEN<br>COMBA                                                                                                                                                                                                                                    | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:         All           All         Scenes:           Medium and         Low           Susceptibility         2:12           2:12         2:12           2:12         2:12           2:14         2:14           2:14         2:14           2:14         2:14           2:12         2:12           2:12         2:12           2:13         2:13           2:13         2:13           2:13         2:15           2:15         2:15           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91                                                 | Observers:           Medium           Sensitivity           Scenes: All           2.60           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control Ari<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0.4<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.                                                                                                                                                                                                                                                                                                                                               |
| Dependent  Most Scene-Dependent              | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead L                                                                                                                                                                                  | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Dead Leaves SPD- | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>COFF<br>Barten<br>Combination<br>CCSF<br>COFF<br>Barten<br>Combination<br>CCSF<br>COFF<br>Barten<br>Combination<br>CCSF<br>COFF<br>Barten<br>Combination<br>CCSF<br>COFF<br>Barten<br>Combination<br>CCSF<br>COFF<br>Barten<br>Combination<br>CCSF<br>COFF<br>Barten<br>Combination<br>CCSF<br>COFF<br>Barten<br>Combination<br>CCSF<br>COFF<br>Barten<br>COMBination<br>CCSF<br>COFF<br>Barten<br>COMBination<br>CCSF<br>COFF<br>Barten<br>COFF<br>Barten<br>COFF<br>COFF<br>Barten<br>COFF<br>COFF<br>Barten<br>COFF<br>COFF<br>Barten<br>COFF<br>COFF<br>Barten<br>COFF<br>COFF<br>Barten<br>COFF<br>COFF<br>COFF<br>Barten<br>COFF<br>COFF<br>Barten<br>COFF<br>COFF<br>COFF<br>Barten<br>COFF<br>COFF<br>Barten<br>COFF<br>COFF<br>COFF<br>Barten<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COFF<br>COF                                              | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:           Inexperienced           Scenes: All           2.60           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.60           2.63           2.63           2.63           2.63           2.63           2.67           2.67           2.67           2.67           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                 |
| he-Dependent                                 | NPS Employed  Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves S                                                                                                                                                                                  | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Dead Leaves SPTF<br>Direct Dead Leaves MTF<br>Direct Dead Leaves MTF<br>Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF                          | Observers:           All           Scenes:           All           2.47           2.47           2.47           2.47           2.51           2.51           2.47           2.47           2.47           2.47           2.47           2.47           2.47           2.47           2.47           2.47           2.47           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.49           2.49           2.49           2.49           2.49           2.49           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.51           2.51 <td>Observers:         All           All         Scenes:           Medium and         Low           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:14         2.14           2:14         2.14           2:14         2.14           2:14         2.14           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.13           2:13         2.13           2:14         2.15           2:15         2.15           2:15         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12</td> <td>Observers: All<br/>Scenes:<br/>Medium<br/>Susceptibility<br/>1.90<br/>1.90<br/>1.90<br/>1.90<br/>1.91<br/>1.91<br/>1.91<br/>1.91</td> <td>Observers:<br/>Medium<br/>Sensitivity<br/>Scenes: All<br/>2.60<br/>2.60<br/>2.65<br/>2.65<br/>2.65<br/>2.65<br/>2.65<br/>2.65<br/>2.65<br/>2.62<br/>2.62</td> <td>Observers:<br/>Inexperienced<br/>Scenes: All<br/>2.60<br/>2.60<br/>2.60<br/>2.65<br/>2.65<br/>2.65<br/>2.65<br/>2.65<br/>2.65<br/>2.65<br/>2.65</td> <td>Observers:<br/>Experienced<br/>Scenes: All<br/>2.31<br/>2.31<br/>2.34<br/>2.34<br/>2.34<br/>2.34<br/>2.34<br/>2.34<br/>2.34<br/>2.34</td> <td>All<br/>Scenes: All<br/>(CSF<br/>Parameter<br/>was not<br/>Normalized)<br/>2.47<br/>2.47<br/>2.47<br/>2.47<br/>2.47<br/>2.51<br/>2.51<br/>2.51<br/>2.47<br/>2.47<br/>2.47<br/>2.47<br/>2.47<br/>2.47<br/>2.47<br/>2.47</td> <td>Scenes: All<br/>(MTF &amp; NPS<br/>Domain<br/>Restricted to 0 &lt;<br/>u &lt; 12<br/>cycles/degree)<br/>2.28<br/>2.28<br/>2.28<br/>2.28<br/>2.28<br/>2.28<br/>2.28<br/>2.2</td> | Observers:         All           All         Scenes:           Medium and         Low           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:14         2.14           2:14         2.14           2:14         2.14           2:14         2.14           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.13           2:13         2.13           2:14         2.15           2:15         2.15           2:15         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12           2:12         2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                 |
| cene-Dependent  Most Scene-Dependent         | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SP                                                                                                                                                                                  | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Dead Leaves SPT<br>Direct Dead Leaves MTF<br>Direct Dead Leaves MTF<br>Direct Dead Leaves MTF<br>Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CSF Employed<br>Combination<br>cCSF<br>CVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>CCSF<br>cVPF<br>Barten<br>Combination<br>CCSF<br>cVPF<br>Barten<br>Combination<br>CCSF<br>cVPF<br>Barten<br>Combination<br>CCSF<br>cVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>C                                                                                                                                                                                                                                              | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:         All           All         Scenes:           Medium and         Low           Susceptibility         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.14         2.14           2.14         2.14           2.14         2.14           2.12         2.12           2.13         2.13           2.13         2.13           2.13         2.15           2.15         2.15           2.15         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.15         2.15           2.15         2.15           2.16         2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                                             |
| t Scene-Dependent  Most Scene-Dependent      | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS                                                                                                                                                                                   | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Dead Leaves SPTF<br>Direct Dead Leaves MTF<br>Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>COMBination<br>CCSF<br>Barten<br>COMBination<br>CCSF<br>Barten<br>COMBination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Combination<br>CCSF<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Combination<br>CCSF<br>Combination<br>CCSF<br>Combination<br>CCSF<br>Combination<br>CCSF<br>Combination<br>CCSF<br>Combination<br>CCSF<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:           Medium           Sensitivity           Scenes: All           2.60           2.60           2.60           2.60           2.60           2.60           2.65           2.65           2.65           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.65 | Observers:           Inexperienced           Scenes: All           2.60           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.60           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.64           2.65           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.66           2.66 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                 |
| ast Scene-Dependent   Most Scene-Dependent   | NPS Employed  Pictorial Image SPD-NPS Nean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NP                                                                                                                                                                                  | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Direct Dead Leaves MTF<br>Direct Dead Leaves MTF<br>Direct Dead Leaves MTF<br>Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>COMBINATION<br>CCSF<br>CCSF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF                                             | Observers:           All           Scenes:           All           2.47           2.47           2.47           2.47           2.51           2.51           2.47           2.47           2.47           2.47           2.47           2.47           2.47           2.47           2.47           2.47           2.47           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.49           2.49           2.49           2.49           2.49           2.49           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.48           2.51           2.51           2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:         All           All         Scenes:           Medium and         Low           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:14           2:14         2:14           2:14         2:14           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:13         2:15           2:15         2:12           2:12         2:12           2:12         2:12           2:13         2:12           2:14         2:12           2:15         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:12         2:12           2:13         2:15           2:15         2:15           2:16         2:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.20<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29                                                                                                                                                                                                                                                                                |
| Least Scene-Dependent   Most Scene-Dependent | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS<br>Dead Leaves SPD-NPS<br>Dead | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Dead Leaves SPTF<br>Direct Dead Leaves MTF<br>Direct Dead Leaves             | CSF Employed<br>COmbination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>CO                                                                                                                                                                                                    | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:         All           All         Scenes:           Medium and         Low           Susceptibility         2.12           2.12         2.12           2.12         2.12           2.14         2.14           2.14         2.14           2.14         2.14           2.12         2.12           2.12         2.12           2.13         2.13           2.13         2.13           2.13         2.15           2.15         2.15           2.12         2.12           2.12         2.12           2.12         2.12           2.15         2.15           2.15         2.15           2.12         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.12         2.12           2.13         2.15           2.15         2.15           2.15         2.15           2.15         2.15           2.15         2.15           2.15         2.15           2.15         2.16 <t< th=""><th>Observers: All<br/>Scenes:<br/>Medium<br/>Susceptibility<br/>1.90<br/>1.90<br/>1.90<br/>1.90<br/>1.90<br/>1.90<br/>1.90<br/>1.90</th><th>Observers:<br/>Medium<br/>Sensitivity<br/>Scenes: All<br/>2.60<br/>2.60<br/>2.65<br/>2.65<br/>2.65<br/>2.65<br/>2.65<br/>2.65<br/>2.65<br/>2.62<br/>2.62</th><th>Observers:           Inexperienced           Scenes: All           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.60           2.65           2.60           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.64           2.67           2.67           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.66           2.66           2.66</th><th>Observers:<br/>Experienced<br/>Scenes: All<br/>2.31<br/>2.31<br/>2.34<br/>2.34<br/>2.34<br/>2.34<br/>2.34<br/>2.34<br/>2.34<br/>2.34</th><th>All<br/>Scenes: All<br/>(CSF<br/>Parameter<br/>was noter<br/>was noter<br/>and the second<br/>content of the second</th><th>Scenes: All<br/>(MTF &amp; NPS<br/>Domain<br/>Restricted to 0 &lt;<br/>vçvles/degree)<br/>2.28<br/>2.28<br/>2.28<br/>2.28<br/>2.28<br/>2.28<br/>2.28<br/>2.2</th></t<> | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:           Inexperienced           Scenes: All           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.60           2.65           2.60           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.64           2.67           2.67           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.66           2.66           2.66 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was noter<br>was noter<br>and the second<br>content of the second | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>vçvles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                           |
| Least Scene-Dependent  Most Scene-Dependent  | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS                                                                                                                                                                                   | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF DIrect Dead Leaves SPT Direct Dead Leave                                                                                                                                                                                             | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>COF<br>Barten<br>Combination<br>CCSF<br>COF<br>Barten<br>Combination<br>CCSF<br>COF<br>Barten<br>Combination<br>CCSF<br>COF<br>Barten<br>Combination<br>CCSF<br>COF<br>Barten<br>Combination<br>CCSF<br>COF<br>Barten<br>COF<br>Barten<br>COF<br>Barten<br>COF<br>COF<br>Barten<br>COF<br>COF<br>Barten<br>COF<br>COF<br>Barten<br>COF<br>COF<br>COF<br>COF<br>COF<br>COF<br>COF<br>COF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:           Medium           Sensitivity           Scenes: All           2.60           2.60           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.65           2.65           2.65           2.65 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.29<br>2.29                                                                                                                                                                                                                                                                                                                                |
| Least Scene-Dependent                        | NPS Employed  Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves S                                                                                                                                                                                  | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF DEad                                                                                                                                                                                             | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COSF<br>CVPF<br>Barten<br>COSF<br>CVPF<br>Barten<br>COSF<br>CVPF<br>Barten<br>COSF<br>CVPF<br>Barten<br>COSF<br>CVPF<br>Barten<br>COSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVP                                                                                          | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>Ail<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Inexperienced<br>Scenes: All<br>2.60<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.60<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.63<br>2.64<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.33<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34                 | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.20<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29                                                                                                                                                                                                                                                                                |
| Least Scene-Dependent  Most Scene-Dependent  | NPS Employed  Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves S                                                                                                                                                                                  | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Dead Leaves SPTF<br>Direct Dead Leaves MTF<br>Direct Dead Leav             | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COP                                                                                                              | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>Ail<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.12<br>2.14<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:           Inexperienced           Scenes: All           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.60           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.64           2.67           2.67           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.66           2.66           2.68 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was noter<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>vc/les/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.2                                                                                                                                                                                                                                                                                                                                           |
| Least Scene-Dependent                        | NPS Employed  Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leave                                                                                                                                                                                  | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF Direct Dead Leaves MTF Direct Dead Le                                                                                                                                                                                             | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CONF<br>Barten<br>Combination<br>CCSF<br>CONF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>COMBination<br>CCSF<br>CVPF<br>COMBination<br>CCSF<br>CVPF<br>COMBination<br>CCSF<br>CVPF<br>COMBination<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CC                                                                                                                    | Observers:<br>All<br>Scenes:<br>All<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:           All           Scenes:           Medium and           Low           Susceptibility           2.12           2.12           2.12           2.12           2.12           2.12           2.14           2.14           2.14           2.14           2.14           2.14           2.14           2.14           2.14           2.14           2.12           2.12           2.12           2.13           2.13           2.13           2.13           2.13           2.13           2.13           2.15           2.15           2.15           2.15           2.12           2.12           2.12           2.12           2.12           2.12           2.12           2.12           2.13           2.14           2.15           2.16           2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>1.90<br>1.90<br>1.90<br>1.91<br>1.91<br>1.91<br>1.91<br>1.91                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>2.60<br>2.60<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.62<br>2.62<br>2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:           Inexperienced           Scenes: All           2.60           2.60           2.60           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.65           2.60           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.63           2.64           2.65           2.66           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.62           2.66           2.66           2.66           2.66           2.66           2.68           2.68           2.68 | Observers:<br>Experienced<br>Scenes: All<br>2.31<br>2.31<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34         | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.51<br>2.51<br>2.51<br>2.51<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.28<br>2.29<br>2.29                                                                                                                                                                                                                                                                                                                                |

Table J5 Mean Absolute Error (MAE) between the Perceived Information Capacity (PIC) variant scores for test images generated by the non-linear (top) and linear (bottom) pipelines, and the perceived quality rating of these images.

|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SORIn: N                                                                                                                                                                                                                            | Jon-Linea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r Pipeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | NPS Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MTF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSF<br>Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>All                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers: All<br>Scenes:<br>Medium<br>Susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers<br>: Medium<br>Sensitivity<br>Scenes:<br>All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers:<br>Inexperienced<br>Scenes: All                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:<br>All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)                                                                 |
| at                                           | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.46                                                                                                                                                                                                                                | 5.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.68                                                                                                                                                                       | 4.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.62                                                                                                                                                                   |
| p                                            | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCSF<br>CVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.46                                                                                                                                                                                                                                | 5.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.68                                                                                                                                                                       | 4.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.62                                                                                                                                                                   |
| bei                                          | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.46                                                                                                                                                                                                                                | 5.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.68                                                                                                                                                                       | 4.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.62                                                                                                                                                                   |
| å                                            | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.50                                                                                                                                                                                                                                | 5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.73                                                                                                                                                                       | 4.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.65                                                                                                                                                                   |
| -e                                           | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.50                                                                                                                                                                                                                                | 5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.73                                                                                                                                                                       | 4.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.65                                                                                                                                                                   |
| Sce                                          | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.50                                                                                                                                                                                                                                | 5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.73                                                                                                                                                                       | 4.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.65                                                                                                                                                                   |
| sts                                          | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.50                                                                                                                                                                                                                                | 5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.73                                                                                                                                                                       | 4.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.65                                                                                                                                                                   |
| ő                                            | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.68                                                                                                                                                                                                                                | 5.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.91                                                                                                                                                                       | 4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.84                                                                                                                                                                   |
| á                                            | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.68                                                                                                                                                                                                                                | 5.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.91                                                                                                                                                                       | 4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.84                                                                                                                                                                   |
| Т                                            | Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dead Leaves SPD-MIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.68                                                                                                                                                                                                                                | 5.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.91                                                                                                                                                                       | 4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.84                                                                                                                                                                   |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dead Leaves SPD-WIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.08                                                                                                                                                                                                                                | 5.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.91                                                                                                                                                                       | 4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.85                                                                                                                                                                   |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cCSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.71                                                                                                                                                                                                                                | 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.93                                                                                                                                                                       | 4.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.85                                                                                                                                                                   |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.71                                                                                                                                                                                                                                | 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.93                                                                                                                                                                       | 4.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.85                                                                                                                                                                   |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.71                                                                                                                                                                                                                                | 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.93                                                                                                                                                                       | 4.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.85                                                                                                                                                                   |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.75                                                                                                                                                                                                                                | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.97                                                                                                                                                                       | 4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.87                                                                                                                                                                   |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.75                                                                                                                                                                                                                                | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.97                                                                                                                                                                       | 4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.87                                                                                                                                                                   |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.75                                                                                                                                                                                                                                | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.97                                                                                                                                                                       | 4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.87                                                                                                                                                                   |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inviean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.75                                                                                                                                                                                                                                | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.97                                                                                                                                                                       | 4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.87                                                                                                                                                                   |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dead Leaves SPD-MIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.92                                                                                                                                                                                                                                | 5.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.15                                                                                                                                                                       | 5.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.05                                                                                                                                                                   |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.92                                                                                                                                                                                                                                | 5.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.15                                                                                                                                                                       | 5.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.05                                                                                                                                                                   |
|                                              | Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.92                                                                                                                                                                                                                                | 5.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.15                                                                                                                                                                       | 5.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.05                                                                                                                                                                   |
|                                              | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.88                                                                                                                                                                                                                                | 5.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.10                                                                                                                                                                       | 5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.06                                                                                                                                                                   |
|                                              | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.88                                                                                                                                                                                                                                | 5.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.10                                                                                                                                                                       | 5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.06                                                                                                                                                                   |
| ÷                                            | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.88                                                                                                                                                                                                                                | 5.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.10                                                                                                                                                                       | 5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.06                                                                                                                                                                   |
| den                                          | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.88                                                                                                                                                                                                                                | 5.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.10                                                                                                                                                                       | 5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.06                                                                                                                                                                   |
| ene                                          | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct Dead Leaves MIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.95                                                                                                                                                                                                                                | 5.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.18                                                                                                                                                                       | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.00                                                                                                                                                                   |
| bep                                          | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.95                                                                                                                                                                                                                                | 5.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.18                                                                                                                                                                       | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.00                                                                                                                                                                   |
|                                              | Dead Leaves SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.95                                                                                                                                                                                                                                | 5.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.18                                                                                                                                                                       | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.00                                                                                                                                                                   |
| Sen                                          | Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.94                                                                                                                                                                                                                                | 7.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.11                                                                                                                                                                       | 6.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.65                                                                                                                                                                   |
| š                                            | Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.94                                                                                                                                                                                                                                | 7.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.11                                                                                                                                                                       | 6.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.65                                                                                                                                                                   |
| ast                                          | Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.94                                                                                                                                                                                                                                | 7.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.11                                                                                                                                                                       | 6.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.65                                                                                                                                                                   |
| Ľ                                            | Uniform Patch NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Direct Dead Leaves MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.94                                                                                                                                                                                                                                | 7.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.11                                                                                                                                                                       | 6.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.65                                                                                                                                                                   |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SQRIr                                                                                                                                                                                                                               | : Linear P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lipeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     | Observers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers: All                                                                                                                                                         |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:                                                                                                                                                                                                                          | Observers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers: All<br>Scenes: All                                                                                                                                          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All                                                                                                                                                                                                                   | Observers:<br>All<br>Scenes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Observers: All<br>Scenes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Observers:                                                                                                                                                                 | Observers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Observers: All<br>Scenes: All<br>(MTF & NPS                                                                                                                            |
|                                              | NPS Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MTF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:<br>All<br>Scenes:                                                                                                                                                                                                        | Observers:<br>All<br>Scenes:<br>Medium and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers: All<br>Scenes:<br>Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:<br>Medium<br>Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Inexperienced                                                                                                                                                | Observers:<br>Experienced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | All<br>Scenes: All<br>(CSF<br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain                                                                                                                  |
|                                              | NPS Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MTF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:<br>All<br>Scenes:<br>All                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>Medium and<br>Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12                                                                                   |
|                                              | NPS Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MTF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:<br>All<br>Scenes:<br>All                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers: All<br>Scenes:<br>Medium<br>Susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)                                                                 |
| nt                                           | NPS Employed Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTF Employed Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:<br>All<br>Scenes:<br>All<br>4.99                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers:<br>Medium<br>Sensitivity<br>Scenes: All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All                                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>4.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>4,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>5.11                                                         |
| ndent                                        | NPS Employed Pictorial Image SPD-NPS Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CSF Employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>4.42<br>4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25                                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>4.99<br>4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>5.11<br>5.11                                                 |
| pendent                                      | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CSF Employed<br>Combination<br>cCSF<br>cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>4.42<br>4.42<br>4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.25                                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>4.99<br>4.99<br>4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>5.11<br>5.11<br>5.11                                          |
| Dependent                                    | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Distriction Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>4.99                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>Medium and<br>Low<br>Susceptibility<br>4.42<br>4.42<br>4.42<br>4.42<br>4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25                                                                                 | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>4.99<br>4.99<br>4.99<br>5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11                                 |
| ne-Dependent                                 | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04                                                                                                                                                 | Observers:         All           Scenes:         Medium and           Low         Susceptibility           4.42         4.42           4.42         4.42           4.42         4.42           4.42         4.42           4.41         4.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.30<br>5 30                                                                 | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.08<br>4.12<br>4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:         All           Scenes: All         (CSF           Parameter         was not           Normalized)         4.99           4.99         4.99           4.99         5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13                 |
| scene-Dependent                              | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04                                                                                                                                         | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30                                                                 | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.08<br>4.12<br>4.12<br>4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers:         All           All         Scenes: All           (CSF         Parameter           Was not         Normalized)           4.99         4.99           4.99         4.99           5.04         5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers: All           Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                 |
| st Scene-Dependent                           | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPO-MTF<br>Mean Pictorial Image SPO-MTF<br>Mean Pictorial Image SPO-MTF<br>Mean Pictorial Image SPO-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04                                                                                                                                         | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.41           4.41           4.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30                                                         | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.08<br>4.12<br>4.12<br>4.12<br>4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           4.99         5.04           5.04         5.04           5.04         5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All           Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                 |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CSF Employed<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>cVPF<br>cVPF<br>cVPF<br>cVPF<br>cVPF<br>cVPF<br>cVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92                                                                                                                                 | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.41           4.41           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.31                                                         | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.08<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers:<br>All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13  |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92                                                                                                                         | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.41           4.41           4.29           4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.81<br>3.81<br>3.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.84<br>4.84<br>4.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                  | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.08<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.2<br>4.2<br>4.2<br>4.2<br>4.2<br>4.2<br>4.2<br>4.2<br>4.2<br>4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           4.99         5.04           5.04         5.04           5.04         4.92           4.92         4.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u<12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13   |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92                                                                                                                 | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.43           4.41           4.29           4.29           4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.84<br>4.84<br>4.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.19<br>5.19<br>5.19<br>5.19<br>5.19 | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.08<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:         All           All         Scenes: All           (CSF         Parameter           Parameter         was not           Normalized)         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         4.92           4.92         4.92           4.92         4.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13<br>5.13  |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>COPF<br>Barten<br>COPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11                                                                                                 | Observers:<br>All         All           Scenes:         Medium and<br>Low           Susceptibility         4.42           4.42         4.42           4.42         4.42           4.41         4.41           4.41         4.41           4.41         4.41           4.42         4.42           4.42         4.42           4.41         4.41           4.42         4.42           4.42         4.41           4.42         4.29           4.29         4.29           4.29         4.29           4.55         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers:<br>All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13<br>5.13  |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Combination<br>cCSF<br>cVPF<br>Barten<br>COmbination<br>cCSF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>COMPF<br>Barten<br>COMPF<br>Barten<br>Combination<br>cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11                                                                                 | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.42           4.29           4.29           4.29           4.29           4.29           4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.08<br>4.08<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.02<br>4.02<br>4.02<br>4.02<br>4.02<br>4.02<br>4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           4.99         5.04           5.04         5.04           5.04         4.92           4.92         4.92           4.92         4.92           4.92         4.92           5.11         5.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13  |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11<br>5.11<br>5.11                                                                         | Observers:<br>All           Scenes:           Scenes:           Medium and<br>Low           Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.42           4.42           4.41           4.42           4.29           4.29           4.29           4.29           4.29           4.55           4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>5.02<br>5.02<br>5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.39<br>5.19<br>5.19<br>5.19<br>5.19<br>5.37<br>5.37<br>5.37                 | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.08<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.02<br>4.02<br>4.02<br>4.02<br>4.02<br>4.03<br>4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         4.92           4.92         4.92           4.92         4.92           5.11         5.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycleX/degree)<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13<br>5.13  |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CSF Employed<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11<br>5.11                                                                 | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.42           4.42           4.41           4.41           4.42           4.42           4.42           4.41           4.42           4.42           4.55           4.55           4.55           4.55           4.55           4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All Secrets:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.84<br>4.84<br>4.84<br>4.84<br>5.02<br>5.02<br>5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.02<br>4.02<br>4.02<br>4.02<br>4.02<br>4.02<br>4.03<br>4.19<br>4.19<br>4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           5.04         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.04           5.04         5.04           5.05         5.04           5.01         5.11           5.11         5.11           5.11         5.11                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observers: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13<br>5.13                 |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11<br>5.11<br>5.11<br>5.15                                 | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.42           4.29           4.29           4.55           4.55           4.55           4.55           4.55           4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.13           4.19           4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized           Normalized         4.99           4.99         4.99           4.99         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.02           4.92         4.92           4.92         5.11           5.111         5.111           5.111         5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13  |
| Most Scene-Dependent                         | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS  | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11<br>5.11<br>5.11<br>5.11<br>5.16<br>5.66                                                         | Observers:<br>All           Scenes:           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.42           4.42           4.42           4.41           4.41           4.42           4.29           4.29           4.29           4.29           4.55           4.55           4.55           4.55           4.55           4.55           4.55           4.55           4.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.81<br>3.81<br>3.81<br>3.81<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>5.02<br>5.02<br>5.02<br>5.07<br>5.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.08<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           4.99         5.04           5.04         5.04           5.04         4.92           4.92         4.92           4.92         4.92           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.21           5.11         5.11           5.11         5.11           5.11         5.16           5.16         5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13  |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers:<br>All<br>5cenes:<br>All<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11<br>5.11<br>5.11<br>5.11<br>5.16<br>5.16                                                 | Observers:<br>All           Scenes:           Scenes:           Medium and<br>Low           Low           Suscettibility           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.42           4.42           4.41           4.42           4.42           4.42           4.42           4.29           4.29           4.55           4.55           4.55           4.55           4.55           4.54           4.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                                  | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.08           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.02           4.02           4.02           4.02           4.19           4.19           4.19           4.25           4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observers:<br>All<br>Scenes: All<br>(CSF<br>Parameter<br>was not<br>Normalized)<br>4.99<br>4.99<br>5.04<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cyclex/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13                 |
| Most Scene-Dependent                         | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11<br>5.11<br>5.11<br>5.11<br>5.16<br>5.16<br>5.05                                 | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.41           4.42           4.41           4.41           4.42           4.41           4.42           4.42           4.42           4.42           4.42           4.41           4.42           4.42           4.55           4.54           4.55           4.55           4.55           4.55           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           4.08           4.08           4.08           4.08           4.12           4.12           4.12           4.02           4.02           4.03           4.19           4.19           4.25           4.25           4.25           4.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized           Normalized         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.11         5.11           5.11         5.11           5.11         5.15           5.16         5.16           5.05         5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13<br>5.13  |
| Most Scene-Dependent                         | NPS Employed Pictorial Image SPD-NPS Mean Pictoria Image SPD-NPS Mean Pictorial Image SPD-NPS Mean Pictoria Image SPD-NPS Me | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04                                                                                                         | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.41           4.42           4.29           4.29           4.29           4.29           4.55           4.55           4.55           4.55           4.55           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.08           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.02           4.02           4.02           4.02           4.02           4.19           4.19           4.19           4.25           4.25           4.25           4.25           4.25           4.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized           Normalized         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.02           4.92         4.92           4.92         5.11           5.11         5.11           5.11         5.16           5.16         5.16           5.16         5.16           5.16         5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13 |
| Most Scene-Dependent                         | NPS Employed Pictorial Image SPD-NPS Mean Pictoria Image SPD-NPS Mean Pictoria Image SPD-NPS Mean Pictoria Image SPD-NPS Mean Pictoria Image SPD-NPS Mean | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Distorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIATION<br>COMPINIAT                                                                                                                      | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11<br>5.11<br>5.11<br>5.16<br>5.16<br>5.16<br>5.05<br>5.05<br>5.05                         | Observers:<br>All           Scenes:           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.41           4.42           4.29           4.29           4.29           4.29           4.55           4.55           4.55           4.55           4.55           4.54           4.54           4.54           4.54           4.54           4.54           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A construction of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>5.02<br>5.02<br>5.02<br>5.02<br>5.07<br>5.07<br>5.07<br>5.07<br>4.96<br>4.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:<br>Experienced<br>Scenes: All<br>4.08<br>4.08<br>4.08<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.11         5.11           5.11         5.11           5.16         5.16           5.05         5.05           5.05         5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycle/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13   |
| ► Most Scene-Dependent                       | NPS Employed<br>Pictorial Image SPD-NPS<br>Pictorial Image SPD-NPS<br>Mean Pictorial Image SPD-NPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11<br>5.11<br>5.11<br>5.11<br>5.11<br>5.16<br>5.16<br>5.16                                         | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.41           4.42           4.41           4.41           4.42           4.41           4.42           4.42           4.42           4.42           4.55           4.55           4.55           4.55           4.55           4.55           4.54           4.55           4.55           4.55           4.54           4.55           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.81<br>3.81<br>3.81<br>3.81<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>5.02<br>5.02<br>5.02<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           4.08           4.08           4.08           4.08           4.12           4.12           4.12           4.02           4.02           4.02           4.02           4.19           4.19           4.25           4.25           4.25           4.25           4.24           4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers:         All           All         Scenes: All           (CSF         Parameter           wasnot         Noralized           Noralized         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         4.92           4.92         5.11           5.11         5.11           5.11         5.11           5.11         5.11           5.16         5.16           5.16         5.05           5.05         5.05           5.05         5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13<br>5.13 |
| Most Scene-Dependent                         | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS  | MTF Employed Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD                                                                                                                                                                                             | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>Combination<br>cCSF<br>cVPF<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION<br>COMBINATION                                                                                                                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.9                                                                          | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.42           4.41           4.42           4.41           4.29           4.29           4.55           4.55           4.55           4.55           4.55           4.54           4.55           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.85<br>5.02<br>5.02<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5. | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.12           4.12           4.12           4.12           4.02           4.02           4.02           4.02           4.02           4.19           4.19           4.25           4.25           4.25           4.24           4.14           4.14           4.14           4.14           4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized           Normalized         4.99           4.99         4.99           4.99         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.05           5.05         5.05           5.05         5.05           5.05         5.05           5.05         5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13  |
| Most Scene-Dependent                         | NPS Employed Pictorial Image SPD-NPS Mean Picto | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CCSF<br>CCVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CCVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CCVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CV | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04                                                                                                         | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.42           4.29           4.29           4.55           4.55           4.55           4.55           4.55           4.54           4.54           4.54           4.54           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All Servers: All Secres: Medium Medium Susceptibility 3.99 3.99 3.99 3.99 3.99 3.94 3.94 3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.02           4.02           4.02           4.02           4.03           4.19           4.19           4.25           4.25           4.25           4.25           4.25           4.25           4.14           4.14           4.14           4.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.05           5.11         5.11           5.11         5.11           5.11         5.16           5.16         5.16           5.05         5.05           5.05         5.05           5.06         5.06           5.08         5.08           5.08         5.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13 |
| ant                                          | NPS Employed Pictorial Image SPD-NPS Nean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leave | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Le                                                                                                                                                                                             | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11<br>5.11<br>5.11<br>5.11<br>5.16<br>5.16<br>5.16<br>5.05<br>5.05<br>5.05<br>5.05<br>5.08 | Observers:<br>All           Scenes:           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.41           4.42           4.29           4.29           4.29           4.29           4.55           4.55           4.55           4.55           4.54           4.54           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.45           4.45           4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Deservers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>5.02<br>5.02<br>5.02<br>5.02<br>5.02<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.99<br>4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.08           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.13           4.19           4.19           4.19           4.12           4.25           4.25           4.25           4.25           4.14           4.14           4.14           4.14           4.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           4.99         4.99           4.99         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.11         5.11           5.11         5.16           5.16         5.16           5.05         5.05           5.05         5.05           5.05         5.05           5.05         5.05           5.08         5.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u <12<br>cycle/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13   |
| ndent  Most Scene-Dependent                  | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead  | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Nean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD                                                                                                                                                                                             | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>CCSF<br>cVPF<br>Barten<br>Combination<br>CCSF<br>cVPF<br>Barten<br>Combination<br>CCSF<br>cVPF<br>Barten<br>Combination<br>CCSF<br>cVPF<br>Barten<br>Combination<br>CCSF<br>cVPF<br>Barten<br>Combination<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>COSF<br>CON<br>COSF<br>CON<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF<br>COSF                                                            | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04                                                                                                         | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.42           4.41           4.41           4.42           4.42           4.42           4.41           4.51           4.52           4.55           4.55           4.55           4.55           4.54           4.55           4.54           4.54           4.54           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.45           4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>5.02<br>5.02<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>5.02<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5. | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           4.08           4.08           4.08           4.12           4.12           4.12           4.12           4.02           4.02           4.02           4.19           4.19           4.19           4.25           4.25           4.25           4.25           4.25           4.25           4.24           4.14           4.17           4.17           4.17           4.17           4.17           4.17           4.17           4.17           4.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized           Normalized         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.05           5.11         5.11           5.16         5.16           5.05         5.05           5.05         5.05           5.05         5.05           5.08         5.08           5.08         5.08           5.08         5.08           5.03         5.03                                                                                                                                                                                                                                                                                                                                                                                                   | Observers: All           Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                 |
| ipendent  Most Scene-Dependent               | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leave | MTF Employed Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF DEad                                                                                                                                                                                             | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04                                                                                         | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.42           4.29           4.29           4.29           4.55           4.55           4.55           4.55           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.45           4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All           Scenes:           Medium           Susceptibility           3.99           3.99           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.81           3.81           4.12           4.12           4.08           4.08           4.08           3.96           3.96           3.96           3.99           3.99           3.99           3.99           3.99           3.99           3.99           3.99           3.99           3.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>5.02<br>5.02<br>5.02<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.21<br>5.21<br>5.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.08           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.12           4.02           4.02           4.02           4.02           4.02           4.02           4.25           4.25           4.25           4.25           4.25           4.25           4.14           4.14           4.14           4.17           4.17           4.17           4.17           4.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normaled           Normaled         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.05           5.11         5.11           5.11         5.16           5.16         5.16           5.06         5.05           5.05         5.05           5.08         5.08           5.08         5.08           5.08         5.08           5.08         5.08                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13 |
| -Dependent                                   | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SP | MTF Employed<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Mean Pictorial Image SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Dead Leaves SPD-MTF<br>Pictorial Image SPD-MTF<br>Dead Leaves SPD-M | Combination<br>CCSF<br>CVPF<br>Barten<br>COmbination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>COPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COMBINATION<br>CCSF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>COPF<br>CO                     | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11<br>5.11<br>5.11<br>5.11<br>5.11<br>5.16<br>5.16<br>5.16                                 | Observers:<br>All           Scenes:           Medium and<br>Low           Use           Use           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.41           4.41           4.42           4.29           4.29           4.29           4.55           4.55           4.55           4.55           4.54           4.54           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.45           4.45           4.45           4.45           4.45           4.70 <td>Observers: All<br/>Scenes:<br/>Medium<br/>Susceptibility<br/>3.99<br/>3.99<br/>3.99<br/>3.94<br/>3.94<br/>3.94<br/>3.94<br/>3.94</td> <td>Observers:<br/>Medium<br/>Sensitivity<br/>Scenes: All<br/>4.90<br/>4.90<br/>4.90<br/>4.95<br/>4.95<br/>4.95<br/>4.95<br/>4.95<br/>4.95<br/>4.95<br/>4.95</td> <td>Observers:<br/>Inexperienced<br/>Scenes: All<br/>5.25<br/>5.25<br/>5.25<br/>5.30<br/>5.30<br/>5.30<br/>5.30<br/>5.30<br/>5.30<br/>5.30<br/>5.3</td> <td>Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.03           4.19           4.19           4.19           4.12           4.25           4.25           4.25           4.25           4.25           4.14           4.14           4.14           4.17           4.17           4.38           4.38</td> <td>Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.05           5.16         5.16           5.16         5.16           5.05         5.05           5.05         5.05           5.06         5.08           5.08         5.08           5.08         5.30           5.30         5.30</td> <td>Observers: All           Scenes: All           (MTF &amp; NPS           Domain           Restricted to 0 &lt;</td> u < 12 | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.03           4.19           4.19           4.19           4.12           4.25           4.25           4.25           4.25           4.25           4.14           4.14           4.14           4.17           4.17           4.38           4.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.05           5.16         5.16           5.16         5.16           5.05         5.05           5.05         5.05           5.06         5.08           5.08         5.08           5.08         5.30           5.30         5.30                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All           Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                 |
| ine-Dependent  Most Scene-Dependent          | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead  | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF DEad Le                                                                                                                                                                                             | Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COF<br>CVPF<br>Barten<br>COF<br>CVPF<br>Barten<br>COF<br>CVPF<br>Barten<br>COF<br>CVPF<br>Barten<br>COF<br>CVPF<br>CVPF<br>Barten<br>COF<br>CVPF<br>CVPF<br>Barten<br>COF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>C                                         | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>5.11<br>5.11<br>5.11<br>5.11<br>5.11<br>5.16<br>5.16<br>5.16                                 | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.41           4.42           4.42           4.41           4.42           4.41           4.42           4.42           4.42           4.29           4.29           4.55           4.55           4.55           4.55           4.54           4.55           4.54           4.55           4.54           4.54           4.55           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.43           4.45           4.45           4.45           4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>5.02<br>5.02<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5. | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.12           4.02           4.02           4.02           4.02           4.03           4.19           4.19           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.14           4.17           4.17           4.17           4.38           4.38           4.38           4.38           4.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normaleder           Normaleder         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.05           5.11         5.11           5.11         5.11           5.16         5.16           5.05         5.05           5.05         5.05           5.08         5.08           5.08         5.08           5.09         5.08           5.00         5.03           5.00         5.03           5.00         5.03           5.00         5.30           5.30         5.30           5.30         5.30           5.30         5.30 <td>Observers: All           Scenes: All           (MTF &amp; NPS           Domain           Restricted to 0 &lt;</td> u < 12                                                                                             | Observers: All           Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                 |
| Scene-Dependent   Most Scene-Dependent       | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leave | MTF Employed Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF DEAD                                                                                                                                                                                             | Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>Barten<br>Combination<br>cCSF<br>cVPF<br>COMBARTEN<br>Combination<br>cCSF<br>cVPF<br>COMBARTEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN<br>COMBINATEN                                                                                                                                                                                                                         | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04                                                                                                         | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.41           4.42           4.42           4.41           4.42           4.41           4.41           4.42           4.41           4.29           4.29           4.55           4.55           4.55           4.55           4.54           4.55           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.52           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.45           4.45           4.70           4.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All           Scenes:           Medium           Susceptibility           3.99           3.99           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.81           3.81           3.81           4.12           4.12           4.12           4.08           4.08           3.96           3.96           3.96           3.96           3.99           3.99           3.99           3.99           3.99           3.99           3.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>5.02<br>5.02<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5.21<br>5. | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.19           4.19           4.25           4.25           4.25           4.25           4.25           4.14           4.14           4.17           4.17           4.17           4.38           4.38           4.38           4.38           4.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized           Normalized         4.99           4.99         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.05           5.10         5.11           5.16         5.16           5.05         5.05           5.06         5.06           5.08         5.08           5.08         5.08           5.08         5.30           5.30         5.30           5.30         5.30           5.30         5.30                                                                                                                                                                                                                                                                                                                                                                       | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13 |
| st Scene-Dependent                           | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS  | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF                                                                                                                                                                                              | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04                                                                                                         | Observers:<br>All           Scenes:           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.42           4.42           4.42           4.42           4.29           4.29           4.29           4.55           4.55           4.55           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All           Scenes:           Medium           Susceptibility           3.99           3.99           3.99           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.81           3.81           3.81           3.81           4.12           4.12           4.12           4.08           4.08           3.96           3.96           3.99           3.99           3.99           3.99           3.99           3.99           3.99           3.99      3.99      3.99 <t< td=""><td>Observers:<br/>Medium<br/>Sensitivity<br/>Scenes: All<br/>4.90<br/>4.90<br/>4.90<br/>4.90<br/>4.95<br/>4.95<br/>4.95<br/>4.95<br/>4.95<br/>4.95<br/>4.95<br/>4.95<br/>4.95<br/>4.95<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.84<br/>4.95<br/>5.02<br/>5.02<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.07<br/>5.21<br/>5.21<br/>5.21<br/>5.22<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.25<br/>5.</td><td>Observers:<br/>Inexperienced<br/>Scenes: All<br/>5.25<br/>5.25<br/>5.25<br/>5.30<br/>5.30<br/>5.30<br/>5.30<br/>5.30<br/>5.30<br/>5.30<br/>5.3</td><td>Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.19           4.19           4.19           4.12           4.14           4.14           4.14           4.17           4.17           4.18           4.38           4.38           4.38           4.38           4.42           4.42</td><td>Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.05           5.11         5.11           5.11         5.16           5.16         5.16           5.05         5.05           5.05         5.08           5.08         5.08           5.08         5.08           5.30         5.30           5.30         5.33           5.30         5.34           5.34         5.34</td><td>Observers: All<br/>Scenes: All<br/>(MTF &amp; NPS<br/>Domain<br/>Restricted to 0 &lt;<br/>u &lt; 12<br/>cycles/degree)<br/>5.11<br/>5.11<br/>5.11<br/>5.11<br/>5.13<br/>5.13<br/>5.13<br/>5.13</td></t<> | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.95<br>5.02<br>5.02<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.21<br>5.21<br>5.21<br>5.22<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5. | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.19           4.19           4.19           4.12           4.14           4.14           4.14           4.17           4.17           4.18           4.38           4.38           4.38           4.38           4.42           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized)           4.99         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.05           5.11         5.11           5.11         5.16           5.16         5.16           5.05         5.05           5.05         5.08           5.08         5.08           5.08         5.08           5.30         5.30           5.30         5.33           5.30         5.34           5.34         5.34                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13 |
| .east Scene-Dependent                        | NPS Employed Pictorial Image SPD-NPS Nean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD                                                                                                                                                                                             | CSF Employed<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CVPF<br>COMBINATION<br>CCSF<br>CCMPF<br>COMBINATION<br>CCSF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCMPF<br>CCM                                                                                                                                     | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.92<br>4.9                                                                          | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.42           4.42           4.41           4.42           4.42           4.42           4.29           4.29           4.55           4.55           4.55           4.55           4.55           4.54           4.55           4.54           4.55           4.54           4.55           4.55           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A constraints of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           4.08           4.08           4.08           4.12           4.12           4.12           4.12           4.02           4.02           4.02           4.02           4.19           4.19           4.19           4.19           4.19           4.14           4.17           4.18           4.25           4.25           4.25           4.25           4.24           4.14           4.17           4.17           4.18           4.38           4.38           4.38           4.38           4.43           4.42           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers:         All           All         Scenes: All         (CSF           (CSF         Parameter         was not           Normalized)         4.99         4.99           4.99         4.99         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.01         5.11         5.11           5.11         5.11         5.16           5.16         5.16         5.05           5.05         5.05         5.05           5.05         5.05         5.05           5.06         5.08         5.08           5.08         5.08         5.30           5.30         5.30         5.30           5.30         5.33         5.34           5.34         5.34         5.34                                                                                                                                                                                                                                       | Observers: All           Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                 |
| Least Scene-Dependent   Most Scene-Dependent | NPS Employed  Pictorial Image SPD-NPS Nean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves S | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves MTF Direct Dead Leaves MTF Direct Dead Leaves MTF Direct De                                                                                                                                                                                             | Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CVPF<br>CV                                                                                             | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04                                                                                                                 | Observers:<br>All           Scenes:           All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.41           4.42           4.41           4.42           4.42           4.41           4.42           4.42           4.41           4.42           4.42           4.29           4.55           4.55           4.55           4.54           4.55           4.54           4.55           4.54           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>5.02<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.21<br>5.21<br>5.21<br>5.22<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5. | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.08           4.12           4.12           4.12           4.12           4.02           4.02           4.02           4.19           4.19           4.19           4.19           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.25           4.23           4.38           4.38           4.38           4.38           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized           Normalized         4.99           4.99         4.99           4.99         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.05           5.06         5.05           5.05         5.05           5.06         5.08           5.08         5.08           5.08         5.30           5.30         5.33           5.33         5.34           5.34         5.34           5.34         5.34           5.34         5.34                                                                                                                                                                                                                                                                                                                                                                       | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13<br>5.13 |
| Least Scene-Dependent — Most Scene-Dependent | NPS Employed  Pictorial Image SPD-NPS Nean Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SPD-NPS Dead Leav | MTF Employed Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF DEad                                                                                                                                                                                             | CSF Employed<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>COMBination<br>CCSF<br>CVPF<br>COMBination<br>CCSF<br>CVPF<br>COMBination<br>CCSF<br>CVPF<br>Barten<br>COMBination<br>CCSF<br>CVPF<br>COMBination<br>CCSF<br>CVPF<br>COMBination<br>CCSF<br>CVPF<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>COMBIN<br>CO                                                                                                                                                 | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04                                                                                                         | Observers:<br>All           Scenes:           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.42           4.42           4.42           4.42           4.42           4.29           4.55           4.55           4.55           4.55           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.02           4.19           4.19           4.25           4.25           4.25           4.25           4.25           4.14           4.14           4.17           4.17           4.17           4.18           4.38           4.38           4.38           4.42           4.42           4.42           4.42           4.42           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Observers:         All           All         Scenes: All           (CSF         Parameter           was not         Normalized           Normalized         4.99           4.99         4.99           4.99         4.99           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.04         5.04           5.05         5.05           5.16         5.16           5.16         5.16           5.05         5.05           5.08         5.08           5.08         5.08           5.30         5.30           5.30         5.30           5.33         5.34           5.34         5.34           5.34         5.34           5.34         5.34                                                                                                                                                                                                                                                                                                                                           | Observers: All<br>Scenes: All<br>(MTF & NPS<br>Domain<br>Restricted to 0 <<br>u < 12<br>cycles/degree)<br>5.11<br>5.11<br>5.11<br>5.11<br>5.13<br>5.13<br>5.13<br>5.13 |
| Least Scene-Dependent — Most Scene-Dependent | NPS Employed Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves SP | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves SPD-MTF DEAD CANTF DEAD SPD SPD SPD-MTF DEAD SPD SPD SPD SPD SPD-MTF DEAD SPD SPD SPD SPD SPD-MTF DEAD SPD SPD SPD SPD SPD SPD-MTF DEAD SPD SPD SPD SPD SPD SPD SPD SPD SPD SP                                                                                                                                                                                                                                                                       | CSF Employed<br>COMbination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>Combination<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>Barten<br>COMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CMBINATION<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF<br>CCSF                                                                                                                                           | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04                                                                                                 | Observers:<br>All           Scenes:           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.42           4.42           4.42           4.42           4.42           4.41           4.41           4.41           4.41           4.42           4.29           4.55           4.55           4.55           4.55           4.55           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.45           4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All           Scenes:           Medium           Susceptibility           3.99           3.99           3.99           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.94           3.81           3.81           4.12           4.12           4.12           4.12           4.12           4.08           3.96           3.96           3.99           3.99           3.99           3.99           3.99           3.99           4.25           4.25           4.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           Scenes: All           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.08           4.12           4.12           4.12           4.02           4.02           4.02           4.02           4.02           4.02           4.19           4.19           4.19           4.19           4.12           4.25           4.25           4.25           4.25           4.25           4.25           4.14           4.14           4.17           4.17           4.38           4.38           4.38           4.38           4.32           4.42           4.42           4.42           4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observers:           All           Scenes:           All           (CSF           Parameter           was not           Normalized)           4.99           4.99           4.99           5.04           5.04           5.04           5.04           5.04           5.04           5.04           5.04           5.04           5.04           5.04           5.04           5.04           5.04           5.04           5.04           5.04           5.04           5.05           5.11           5.116           5.16           5.05           5.05           5.05           5.06           5.08           5.08           5.08           5.30           5.30           5.33           5.34           5.34           5.34           5.34           5.34           5.34                                                                                                                                                                                                                                                                                                                                                                                                    | Observers: All           Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                 |
| Least Scene-Dependent   Most Scene-Dependent | NPS Employed  Pictorial Image SPD-NPS Mean Pictorial Image SPD-NPS Dead Leaves S | MTF Employed Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Mean Pictorial Image SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Dead Leaves SPD-MTF Pictorial Image SPD-MTF Dead Leaves                                                                                                                                                                                             | CSF Employed<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>Combination<br>CCSF<br>CVPF<br>Barten<br>COMB<br>CCSF<br>CVPF<br>Barten<br>CON<br>CCSF<br>CVPF<br>Barten<br>COMB<br>CCSF<br>CVPF<br>Barten<br>COMB<br>CCSF<br>CVPF<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>Barten<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB<br>COMB                                                                 | Observers:<br>All<br>Scenes:<br>All<br>4.99<br>4.99<br>4.99<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04<br>5.04                                                                                                         | Observers:<br>All           Scenes:           Medium and<br>Low           Susceptibility           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.41           4.42           4.42           4.41           4.42           4.42           4.42           4.29           4.29           4.29           4.55           4.55           4.55           4.54           4.55           4.54           4.55           4.54           4.54           4.54           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers: All<br>Scenes:<br>Medium<br>Susceptibility<br>3.99<br>3.99<br>3.99<br>3.94<br>3.94<br>3.94<br>3.94<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observers:<br>Medium<br>Sensitivity<br>Scenes: All<br>4.90<br>4.90<br>4.90<br>4.90<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.95<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.84<br>4.95<br>5.02<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.07<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5.25<br>5. | Observers:<br>Inexperienced<br>Scenes: All<br>5.25<br>5.25<br>5.25<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.3                                          | Observers:           Experienced           4.08           4.08           4.08           4.08           4.12           4.12           4.12           4.02           4.02           4.02           4.02           4.19           4.19           4.19           4.19           4.19           4.13           4.14           4.17           4.18           4.14           4.17           4.18           4.14           4.17           4.18           4.18           4.14           4.17           4.18           4.18           4.14           4.17           4.18           4.38           4.38           4.38           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42           4.42      4.42      4.42 <tr< td=""><td>Observers:         All           All         Scenes:         All           (CSF         Parameter         was not           Normalized         4.99         4.99           4.99         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.11         5.11         5.11           5.11         5.11         5.16           5.16         5.16         5.05           5.05         5.05         5.05           5.08         5.08         5.08           5.08         5.08         5.30           5.30         5.30         5.30           5.30         5.30         5.30           5.30         5.33         5.34           5.34         5.34         5.34           5.34         5.34         5.34           5.34         5.34         5.34      <t< td=""><td>Observers: All           Scenes: All           (MTF &amp; NPS           Domain           Restricted to 0 &lt;</td>           u &lt; 12</t<></td>           cycles/degree)           5.11           5.11           5.13           5.13           5.13           5.13           5.11           5.13           5.13           5.11           5.13           5.11           5.13           5.11           5.13           5.11           5.12           5.23           5.25           5.25           5.25           5.23           5.23           5.23           5.23           5.25           5.25           5.25           5.25           5.25           5.23           5.25           5.25           5.25           5.25           5.31           5.31           5.31           5.33           5.35           5.35           5.35&lt;</tr<> | Observers:         All           All         Scenes:         All           (CSF         Parameter         was not           Normalized         4.99         4.99           4.99         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.04         5.04         5.04           5.11         5.11         5.11           5.11         5.11         5.16           5.16         5.16         5.05           5.05         5.05         5.05           5.08         5.08         5.08           5.08         5.08         5.30           5.30         5.30         5.30           5.30         5.30         5.30           5.30         5.33         5.34           5.34         5.34         5.34           5.34         5.34         5.34           5.34         5.34         5.34 <t< td=""><td>Observers: All           Scenes: All           (MTF &amp; NPS           Domain           Restricted to 0 &lt;</td>           u &lt; 12</t<> | Observers: All           Scenes: All           (MTF & NPS           Domain           Restricted to 0 <                                                                 |

Table J6 Mean Absolute Error (MAE) between the Square Root Integral with Noise (SQRIn) variant scores for test images generated by the non-linear (top) and linear (bottom) pipelines, and the perceived quality rating of these images.

### **Appendix K** Related Work

#### K.1 List of Publications

E. W. S. Fry, S. Triantaphillidou, R. B. Jenkin, J. R. Jarvis, and R. E. Jacobson, "Validation of Modulation Transfer Functions and Noise Power Spectra from Natural Scenes," *J. Imaging Sci. Technol. vol.* 63, no. 6, (in print), 2020. \*

E. W. S. Fry, S. Triantaphillidou, R. B. Jenkin, R. E. Jacobson, and J. R. Jarvis, "Scene-and-Process-Dependent Spatial Image Quality Metrics," *J. Imaging Sci. Technol., vol. 63, no. 6, (in print)*, 2020. \*

E. W. S. Fry, S. Triantaphillidou, R. B. Jenkin, R. E. Jacobson, and J. R. Jarvis, "Noise Power Spectrum Scene-Dependency in Simulated Image Capture Systems," accepted for publication in *Proc. IS&T Electronic Imaging, Image Quality and System Performance XVII*, 2020. \*

E. W. S. Fry, S. Triantaphillidou, R. E. Jacobson, J. R. Jarvis, and R. B. Jenkin, "Bridging the Gap Between Imaging Performance and Image Quality Measures," in *Proc. IS&T Electronic Imaging, Image Quality and System Performance XV*, 2018. \*

S. Triantaphillidou, J. Smekjal, E. W. S. Fry, and C. H. Hung, "Studies on the effects of megapixel sensor resolution on displayed image quality and relevant metrics," accepted for publication in *Proc. IS&T Electronic Imaging, Image Quality and System Performance XVII*, 2020.

S. Triantaphillidou, E. W. S. Fry, V. Sanchis-Jurado, and A. Pons, "Image Quality Loss and Compensation for Visually Impaired Observers," in *Proc. IS&T Electronic Imaging, Image Quality and System Performance XV*, 2018.

E. W. S. Fry, S. Triantaphillidou, J. Jarvis, and G. Gupta, "Image quality optimization, via application of contextual contrast sensitivity and discrimination functions," in *Proc. SPIE* 9396, *Image Quality and System Performance XII*, 2015.

\* Asterisks indicate publications directly related to the project for which the author of this thesis was the primary author. Selected comments from the reviews of these publications are copied below.

Review of the paper entitled: "Validation of Modulation Transfer Functions and Noise Power Spectra from Natural Scenes."

"This is a sound paper worthy of an audience at the cutting edge of this area of research. I do feel this is work of both rigor and increasing necessity. Congratulations on an exciting piece of work."

Review of the paper entitled: "Scene-and-Process-Dependent Spatial Image Quality Metrics."

"The authors revised the traditional engineering input parameters and propose two novel image quality metrics. The experiments are detailed and well-desired."

Review of the paper entitled: "Noise Power Spectrum Scene-Dependency in Simulated Image Capture Systems."

"Very interesting and novel work. Prior art, context and motivation nicely explained. The abstract further develops the concept of scene-and-process-dependent NPS evaluation in image capture systems with content-aware image processing pipelines, building on previous papers. For this, two new noise metrics were developed and tested."

#### K.2 Presentations at Conferences and Symposia

E. W. S. Fry (presenter), S. Triantaphillidou, R. B. Jenkin, J. R. Jarvis, and R. E. Jacobson, "Validation of Modulation Transfer Functions and Noise Power Spectra from Natural Scenes," at *IS&T International Symposium on Electronic Imaging: Image Quality and System Performance XVII*, 2020, San Francisco, USA. \*

E. W. S. Fry (presenter), S. Triantaphillidou, R. B. Jenkin, R. E. Jacobson, and J. R. Jarvis, "Scene-and-Process-Dependent Spatial Image Quality Metrics," at *IS&T International Symposium on Electronic Imaging: Image Quality and System Performance XVII*, 2020, San Francisco, USA. \* E. W. S. Fry (presenter), S. Triantaphillidou, R. B. Jenkin, R. E. Jacobson, and J. R. Jarvis, "Noise Power Spectrum Scene-Dependency in Simulated Image Capture Systems," at *IS&T International Symposium on Electronic Imaging: Image Quality and System Performance XVII*, 2020, San Francisco, USA. \*

S. Triantaphillidou (presenter), E. W. S. Fry (presenter), and O. van Zwanenberg (presenter), "Objective Image Quality Assessment Using Pictures," at *Transactions Imaging/Art/Science: Image Quality, Content and Aesthetics*, 2019, University of Westminster, Regent Street Campus, London, UK.

E. W. S. Fry (presenter), S. Triantaphillidou, R. E. Jacobson, J. R. Jarvis, and R. B. Jenkin, "Bridging the Gap Between Imaging Performance and Image Quality Measures," at *IS&T International Symposium on Electronic Imaging: Image Quality and System Performance XV*, 2018, San Francisco, USA.

E. W. S. Fry, "Bridging the Gap Between Imaging Performance and Image Quality Measures," at Computer Science and Engineering Session at *the University of Westminster 2018 Faculty of Science and Technology Doctoral Conference*, 2018, New Cavendish Street Campus, London, UK.

E. W. S. Fry (presenter), "Visual Image Quality Metrics for Engineers," at *On Semiconductor (via video link)*, 2017, San Jose, USA.

\* Asterisks indicate presentations scheduled for after the date of submission of this thesis, but before the viva.

#### K.3 Awards

Best Student Paper for the Image Quality and System Performance (IQSP) XV conference, 2018, at the Society for Imaging Science and Technology's (IS&T) Electronic Imaging Symposium, 2018, San Francisco, USA. Awarded for the paper entitled "*Bridging the Gap Between Imaging Performance and Image Quality Measures*".

First Place Award for Full-Length Presentation at the Computer Science and Engineering Session at the University of Westminster Faculty of Science and Technology Doctoral Conference, 2018, New Cavendish Street Campus, London, UK. Awarded for the presentation entitled "Bridging the Gap Between Imaging Performance and Image Quality Measures".

Best Student Paper for the IQSP XII conference, 2015, at the Society of Photo-Optical Instrumentation Engineers (SPIE) & IS&T Electronic Imaging Symposium, San Francisco, USA. Awarded for the paper entitled "*Image quality optimization, via application of contextual contrast sensitivity and discrimination functions*".

# Abbreviations

| 1D            | 1-Dimensional                                                  |
|---------------|----------------------------------------------------------------|
| 2D            | 2-Dimensional                                                  |
| 3D            | 3-Dimensional                                                  |
| $AC_1C_2$     | AC <sub>1</sub> C <sub>2</sub> colour space                    |
| ACF           | Autocovariance Function                                        |
| ADAS          | Advanced Driver Assistance System                              |
| BKE           | Background known exactly                                       |
| BM3D          | Block Matching and 3D Filter                                   |
| cCSF          | Contextual Contrast Sensitivity Function                       |
| CFA           | Colour filter array                                            |
| CIE           | Commission Internationale de L'Eclairage                       |
| CIELAB        | CIE 1976 L*a*b* colour space                                   |
| CIEDE2000     | CIE colour difference equation (CIEDE2000)                     |
| CIEXYZ        | CIE XYZ tristimulus values                                     |
| CNN           | Convolutional neural network                                   |
| CP-IQM        | Computational image quality metric                             |
| CPIQ          | Camera Phone Image Quality Initiative                          |
| CPIQ metric   | Metric from the IEEE P1858 Camera Phone Image Quality Standard |
| CSF           | Contrast sensitivity function                                  |
| CSF/CIEDE2000 | CSF/CIEDE2000 image quality metric                             |

| cVPF   | Contextual Visual Perception Function             |
|--------|---------------------------------------------------|
| DCT    | Discrete Cosine Transform                         |
| DFT    | Discrete Fourier Transform                        |
| DMOS   | Differential Mean Opinion Score                   |
| dpi    | Dots per inch                                     |
| DQE    | Detective Quantum Efficiency                      |
| DSLR   | Digital single-lens reflex                        |
| DSNU   | Dark signal non-uniformity                        |
| EOCF   | Electro-optic conversion function                 |
| EPIC   | Effective Perceived Information Capacity          |
| ESF    | Edge Spread Function                              |
| FBF    | Fast Bilateral Filter                             |
| FFT    | Fast Fourier Transform                            |
| FPN    | Fixed Pattern Noise                               |
| GIF    | Guided Image Filter                               |
| GOG    | Gain Offset Gamma                                 |
| GUI    | Graphics user interface                           |
| HVS    | Human visual system                               |
| iCSF   | Isolated Contrast Sensitivity Function            |
| IEEE   | Institute of Electrical and Electronics Engineers |
| IF-IQM | Image fidelity metric                             |
| IFC    | Information Fidelity Criterion                    |
| IQM    | Image quality metric                              |

| ISO       | International Organization for Standardization           |
|-----------|----------------------------------------------------------|
| ISP       | Image signal processing                                  |
| iVPF      | Isolated Visual Perception Function                      |
| JPEG      | Joint Photographic Experts Group                         |
| JPEG 2000 | JPEG 2000 image compression standard                     |
| JND       | Just-noticeable difference                               |
| LAM       | Linear Amplification Model                               |
| LBL       | Local band-limited                                       |
| LCD       | Liquid crystal display                                   |
| Log NEQ   | Logarithm of the integral of the Noise Equivalent Quanta |
| LSF       | Line Spread Function                                     |
| LUT       | Look-up table                                            |
| MAE       | Mean Absolute Error                                      |
| MF-IQM    | Multivariate formalism image quality metric              |
| MOS       | Mean Opinion Score                                       |
| MSE       | Mean Square Error                                        |
| MSSIM     | Mean Structural Similarity Index                         |
| MTF       | Modulation Transfer Function                             |
| NEQ       | Noise Equivalent Quanta                                  |
| NPS       | Noise Power Spectrum                                     |
| NSS       | Natural scene statistics                                 |
| OCW       | Optimal contrast weighting                               |
| OECF      | Opto-electronic conversion function                      |

| OSAP     | One Step Alternating Projections                                 |
|----------|------------------------------------------------------------------|
| OTF      | Optical Transfer Function                                        |
| PIC      | Perceived Information Capacity                                   |
| PNG      | Portable Network Graphics                                        |
| ppi      | Pixels per inch                                                  |
| PRNU     | Photoresponse non-uniformity                                     |
| PSD      | Power Spectral Density                                           |
| PSF      | Point Spread Function                                            |
| PSNR     | Peak signal-to-noise ratio                                       |
| RGB      | Red green blue                                                   |
| RMS      | Root mean square                                                 |
| RMSE     | Root Mean Square Error                                           |
| ROI      | Region of interest                                               |
| S-CIELAB | Spatial extension to the CIELAB colour space                     |
| SFR      | Spatial Frequency Response                                       |
| SKE      | Signal known exactly                                             |
| SNR      | Signal-to-noise ratio                                            |
| SoC      | System on Chip                                                   |
| SPD-MTF  | Scene-and-process-dependent Modulation Transfer Function         |
| SPD-NEQ  | Scene-and-process-dependent Noise Equivalent Quanta              |
| SPD-NPS  | Scene-and-process-dependent Noise Power Spectrum                 |
| SPD-SNRI | Scene-and-process-dependent Ideal Observer Signal-to-Noise Ratio |
| SQRI     | Square Root Integral                                             |

| SQRIn            | Square Root Integral with Noise                                            |
|------------------|----------------------------------------------------------------------------|
| SQS <sub>2</sub> | Standard Quality Scale                                                     |
| sRGB             | Standardised RGB colour space                                              |
| SROCC            | Spearman's Rank Order Correlation Coefficient                              |
| SSIM             | Structural Similarity Index                                                |
| STV-IQM          | Signal transfer visual image quality metric                                |
| SVD              | Single Value Decomposition                                                 |
| UQI              | Universal Quality Index                                                    |
| USM              | Unsharp mask                                                               |
| VIF              | Visual Information Fidelity                                                |
| Visual Log NEQ   | Visually-weighted logarithm of the integral of the Noise Equivalent Quanta |
| VNTF             | Video noise temporal filtering                                             |
| WLS              | Weighted Least Squares                                                     |
| YCbCr            | YCbCr opponent colour space                                                |

### References

- E. Allen and S. Triantaphillidou, *The Manual of Photography: Photographic and Digital Imaging*, 10th ed. Focal Press, 2011.
- [2] R. B. Jenkin, "On the Application of the Modulation Transfer Function to Discrete Imaging Systems," PhD Thesis, University of Westminster, UK, 2001.
- [3] E. W. Jin *et al.*, "Towards the Development of the IEEE P1858 CPIQ Standard A validation study," in *Proc. IS&T Electronic Imaging: Image Quality and System Performance XIV*, 2017, pp. 88–94.
- [4] E. Allen, S. Triantaphillidou, and R. E. Jacobson, "Perceptibility and acceptability of JPEG 2000 compressed images of various scene types," in *Proc. SPIE 9016*, *Image Quality and System Performance XI*, 2014.
- [5] P. G. Engeldrum, *Psychometric Scaling: A Toolkit for Imaging Systems* Development. Winchester MA: Imcotek Press, 2000.
- [6] J. C. Dainty and R. Shaw, Image Science: Principles, Analysis and Evaluation of Photographic-type Imaging Processes. London: Academic Press Ltd., 1974.
- [7] R. Branca, S. Triantaphillidou, and P. D. Burns, "Texture MTF from images of natural scenes," in *Proc. IS&T Electronic Imaging: Image Quality and System Performance XIV*, 2017, pp. 113–120.
- [8] S. Triantaphillidou, J. R. Jarvis, and G. Gupta, "Spatial contrast sensitivity and discrimination in pictorial images," in *Proc. SPIE 9016 Image Quality and System Performance XI*, 2014, pp. 901604-1-901604–15.
- [9] A. M. Ford, "Relationships Between Image Quality and Image Compression," PhD Thesis, University of Westminster, UK, 1997.
- [10] R. E. Jacobson, A. M. Ford, and G. G. Attridge, "Evaluation of the effects of compression on the quality of images on a soft display," in *Proc. SPIE. 3016*, *Human Vision and Electronic Imaging II*, 1997, pp. 114–125.

- [11] A. M. Ford, "Determination of Compressed Image Quality," in *Colour Imaging: Vision and Technology*, L. W. Macdonald and M. R. Luo, Eds. Chichister, UK: John Wiley & Sons, 1999, pp. 315–337.
- P. G. J. Barten, "Evaluation of the Effect of Noise on Subjective Image Quality," in *Proc. SPIE 1453, Human Vision, Visual Processing, and Digital Display II*, 1991, pp. 2–15.
- [13] R. E. Jacobson and S. Triantaphillidou, "Metric Approaches to Image Quality," in *Colour Image Science: Exploiting Digital Media*, John Wiley & Sons, 2002, pp. 371–392.
- [14] E. W. S. Fry, S. Triantaphillidou, J. Jarvis, and G. Gupta, "Image quality optimization, via application of contextual contrast sensitivity and discrimination functions," in *Proc. SPIE 9396, Image Quality and System Performance XII*, 2015.
- [15] R. B. Fagard-Jenkin, R. E. Jacobson, and K. Maclennan-Brown, "Determination of the MTF of JPEG Compression Using the ISO 12233 Spatial Frequency Response Plug-in," in Proc. IS&T PICS Conference: Image Processing, Image Quality, Image Capture Systems, 2000, pp. 254–258.
- [16] F. Cao, F. Guichard, and H. Hornung, "Dead leaves model for measuring texture quality on a digital camera," in *Proc. SPIE 7537, Digital Photography VI*, 2010, p. 75370E.
- [17] F. Cao, F. Guichard, and H. Hornung, "Measuring Texture Sharpness of A Digital Camera," in *Proc. SPIE 7250, Digital Photography V*, 2009, p. 72500H.
- [18] U. Artmann, "Measurement of Noise Using the Dead Leaves Pattern," in *Proc. IS&T Electronic Imaging: Image Quality and System Performance XV*, 2018, pp. 341-1-341–6.
- [19] J. McElvain, S. P. Campbell, J. Miller, and E. W. Jin, "Texture-based measurement of spatial frequency response using the dead leaves target: extensions, and application to real camera systems," in *Proc. SPIE 7537, Digital Photography VI*, 2010, pp. 75370D-1-75370D–11.
- [20] ISO 19567-2: 2019: Photography Digital cameras, Part 2: Texture analysis
using stochastic pattern. International Organization for Standardization (ISO), 2019.

- [21] L. Kirk, P. Herzer, U. Artmann, and D. Kunz, "Description of Texture Loss Using the Dead Leaves Target - Current Issues and a New Intrinsic Approach," in *Proc. SPIE 9023, Digit. Photog. X*, 2014.
- [22] *IEEE Std 1858<sup>TM</sup>-2016: IEEE Standard for Camera Phone Image Quality*. IEEE Standards Association Board of Governors, 2016.
- [23] ISO 12233:2017: Photography Electronic still picture imaging resolution and spatial frequency responses. International Organization for Standardization (ISO), 2017.
- [24] Imatest, "ISO 12233: 2014 Edge SFR (eSFR) Photographic chart," 2018. [Online]. Available: http://store.imatest.com/test-charts/iso-cpiq-standard-testcharts/photographic-iso-12233-2014-esfr-chart.html#. [Accessed: 02-Jan-2019].
- [25] P. D. Burns, "sfrmat3: SFR evaluation for digital cameras and scanners," 2015.
   [Online]. Available: http://www.losburns.com/imaging/software/SFRedge/sfrmat3\_post/index.html.
   [Accessed: 04-Dec-2019].
- [26] Imatest, "Sinusoidal Siemens Star," 2019. [Online]. Available: http://store.imatest.com/test-charts/iso-cpiq-standard-test-charts/sinusoidal-siemensstar.html. [Accessed: 17-Mar-2019].
- [27] Image Engineering, "Index of /software/IE-Resolution," 2016. [Online]. Available: https://downloads.image-engineering.de/software/IE-Resolution/. [Accessed: 07-Dec-2019].
- [28] P. D. . Burns, "Texture MTF: Based on Dead-leaves type of test targets," 2013.
   [Online]. Available: http://burnsdigitalimaging.com/software/texture-mtf-based-ondead-leaves-target/. [Accessed: 01-Jan-2017].
- [29] P. D. Burns, "Refined Measurement of Digital Image Texture Loss," in *Proc. SPIE* 8653, Image Quality and System Performance X, 2013, p. 86530H.
- [30] H. S. Malvar, L. He, and R. Cutler, "High-quality linear interpolation for demosaicing of Bayer-patterned color images," in 2004 IEEE International

Conference on Acoustics, Speech, and Signal Processing, 2004, vol. 3, pp. 5-8.

- [31] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising with blockmatching and 3D filtering," in *Proc. SPIE 6064, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning*, 2006, pp. 606414-1-606414–12.
- [32] K. He, J. Sun, and X. Tang, "Guided Image Filtering," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 35, no. 6, pp. 1397–1409, 2010.
- [33] A. Haun and E. Peli, "Is image quality a function of contrast perception?," in *Proc.* SPIE 8651: Human Vision and Electronic Imaging XVIII, 2013, pp. 86510C-1-86510C-5.
- [34] S. Daly, "The visible difference predictor: an algorithm for the assessment of image fidelity," in *Digital Images and Human Vision*, A. B. Watson, Ed. The MIT Press, 1993, pp. 179–206.
- [35] S. Triantaphillidou, J. R. Jarvis, A. Psarrou, and G. Gupta, "Contrast detection in images of natural scenes," *Signal Process. Image Commun.*, vol. 75, pp. 64–75, 2019.
- [36] D. A. Silverstein and J. E. Farrell, "The relationship between image fidelity and image quality," in *Proc. 3rd IEEE International Conference on Image Processing*, 1996, vol. 1, pp. 881–884.
- [37] B. W. Keelan and H. Urabe, "ISO 20462: a psychophysical image quality measurement standard," in *Proc. SPIE 5294: Image Quality and System Performance*, 2004, pp. 181–189.
- [38] R. E. Jacobson, "Approaches to total quality assessment of imaging systems," *Inf. Serv. Use*, vol. 13, pp. 235–246, 1993.
- [39] E. W. Jin and B. W. Keelan, "Slider-adjusted softcopy ruler for calibrated image quality assessment," *J. Electron. Imaging*, vol. 19, no. 1, pp. 011009-1-011009–12, 2010.
- [40] P. G. Engeldrum, "Psychometric Scaling : Avoiding the Pitfalls and Hazards," in *PICS: Image Processing, Image Quality, Image Capture Systems Conference*, 2001, pp. 101–107.

- [41] P. D. Burns, "Image Quality Concepts," in *Handbook of Digital Imaging*, M. Kriss, Ed. Wiley, 2014, pp. 1–47.
- [42] R. E. Jacobson, "Image Quality Measurements: Necessity, Numbers and '.... nesses
  '." Plenary Talk: Digital Futures 2009: Image Physics & Psychophysics November
  3rd 2009. The Institute of Physics, London, 2009.
- [43] O. H. Schade, "Image Quality: A Comparison of Photographic and Television Systems," *RCA Lab.*, 1975.
- [44] P. Vetter and A. Newen, "Varieties of cognitive penetration in visual perception," *Conscious. Cogn.*, vol. 27, pp. 62–75, 2014.
- [45] Z. Pylyshyn, "Is vision continuous with cognition? The case for cognitive impenetrability of visual perception.," *Behav. Brain Sci.*, vol. 22, no. 3, pp. 341-365;, 1999.
- [46] B. W. Keelan, *Handbook of Image Quality, Characterisation and Prediction*. New York: Marcel Dekker, 2002.
- [47] I. E. Heynderickx and S. Bech, "Image quality assessment by expert and non-expert viewers," in *Proc. SPIE 4622, Human Vision and Electronic Imaging VII*, 2003, pp. 129–137.
- [48] M. Persson, "Subjective Image Quality Evaluation Using the Softcopy Quality Ruler Method," Lund University, 2014.
- [49] G. Deffner, M. Yuasa, M. Mckeon, and D. Arndt, "Evaluation of display-image quality: experts versus non-experts," in 1994 SID International Symposium, Digest of Technical Papers, 1994, pp. 475–478.
- [50] DxOMark, "DxOMark: Find Scores and Reviews," 2017. [Online]. Available: https://www.dxomark.com/. [Accessed: 06-Feb-2017].
- [51] S. Yendrikhovskij, "Image Quality and Colour Categorisation," in *Colour Image Science*, L. W. Macdonald and M. R. Luo, Eds. John Wiley & Sons, 2002, pp. 392–418.
- [52] R. E. Jacobson, "An evaluation of image quality metrics," J. Photogr. Sci., vol. 43,

pp. 7–16, 1995.

- [53] S. A. Klein, "Image quality and image compression: a psychophysicist's viewpoint," in *Digital Images and Human Vision*, A. B. Watson, Ed. Cambridge: MIT Press, 1993, pp. 74–98.
- [54] S. Triantaphillidou, "Aspects of Image Quality in the Digitisation of Photographic Collections," PhD Thesis, School of Communication and Creative Industries, University of Westminster, UK, 2001.
- [55] S. Yendrikhovskij, F. J. Blommaert, and H. de Ridder, "Towards perceptually optimal colour reproduction of natural scenes," in *Colour Imaging Vision and Technology*, L. W. Macdonald and M. Ronnier Luo, Eds. Chichister: Wiley, 1999.
- [56] ISO 20462-3:2012: Photography -- Psychophysical experimental methods for estimating image quality -- Part 3: Quality ruler method. International Organization for Standardization (ISO), 2012.
- [57] K. H. Oh, S. Triantaphillidou, and R. E. Jacobson, "Peceptual image attribute scales derived from overall image quality assessments," in *Proc SPIE 7242, Image Quality* and System Performance VI, 2009, p. 72420C.
- [58] K. H. Oh, S. Triantaphillidou, and R. E. Jacobson, "Scene classification with respect to image quality measurements," in *Proc SPIE 7529, Image Quality and System Performance VII.*, 2010, p. 752908.
- [59] M. Orfanidou, S. Triantaphillidou, and E. Allen, "Predicting Image Quality using a Modular Image Difference Model," in *Proc. SPIE 6808, Image Quality and System Performance V*, 2008, p. 68080F.
- [60] S. Triantaphillidou, E. Allen, and R. E. Jacobson, "Image Quality Comparison Between JPEG and JPEG2000. II. Scene Dependency, Scene Analysis, and Claissification," J. Imaging Sci. Technol., vol. 51, no. 3, 2007.
- [61] C. N. Nelson, F. C. Eisen, and G. C. Higgins, "Effect Of Nonlinearities When Applying Modulation Transfer Techniques To Photographic Systems," in *Proc.* SPIE 13: Modulation Transfer Function, 1968, pp. 127–134.
- [62] G. C. Higgins, "Methods for analyzing the photographic system, including the

effects of nonlinearity and spatial frequency response," *Photogr. Sci. Eng.*, vol. 15, no. 2, pp. 106–118, 1971.

- [63] S. E. Reichenbach, S. K. Park, and R. Narayanswamy, "Characterizing digital image acquisition devices," *Opt. Eng.*, vol. 30, no. 2, pp. 170–177, 1991.
- [64] J. C. Feltz and M. A. Karim, "Modulation Tranfer Function of Charge-Coupled Devices," *Appl. Opt.*, vol. 29, pp. 717–722, 1990.
- [65] E. Allen, S. Triantaphillidou, and R. E. Jacobson, "Image Quality Comparison between JPEG and JPEG2000. I. Psychophysical Investigation," *J. Imaging Sci. Technol.*, vol. 52, no. 1, pp. 1–15, 2008.
- [66] J. W. Glotzbach, R. W. Schafer, and K. Illgner, "A method of color filter array interpolation with alias cancellation properties," in *Proc. IEEE 2001 International Conference on Image Processing*, 2001, vol. 1, pp. 141–144.
- [67] D. Menon, S. Andriani, and G. Calvagno, "Demosaicing with directional filtering and a posteriori decision," *IEEE Trans. Image Process.*, vol. 16, no. 1, pp. 132–141, 2007.
- [68] M. Kriss, "Color Reproduction for Digital Cameras," in *Handbook of Digital Imaging*, M. Kriss, Ed. Wiley Online Library, 2015, pp. 1–68.
- [69] L. Zhang, X. Wu, A. Buades, and X. Li, "Color demosaicking by local directional interpolation and nonlocal adaptive thresholding," *J. Electron. Imaging*, vol. 20, no. 2, 2011.
- [70] Y. M. Lu, M. Karzand, and M. Vetterli, "Demosaicking by alternating projections: Theory and fast one-step implementation," *IEEE Trans. Image Process.*, vol. 19, no. 8, pp. 2085–2098, 2010.
- [71] Y. Hel-Or and D. Keren, *Demosaicing of color images using steerable wavelets*, vol. 206. HP Labs Israel, Technical Report HPL-2002-206R1, 2002.
- [72] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, "Color plane interpolation using alternating projections," *IEEE Trans. Image Process.*, vol. 11, no. 9, pp. 997– 1013, 2002.

- [73] R. C. Sumner, R. Burada, and N. Kram, "The Effects of Misregistration on the Dead Leaves Cross-Correlation Texture Blur Analysis," in *Proc. IS&T Electronic Imaging: Image Quality and System Performance XIV*, 2017, pp. 121-129(9).
- [74] J. B. Phillips, S. M. Coppola, E. W. Jin, Y. Chen, J. H. Clark, and T. A. Mauer,
   "Correlating objective and subjective evaluation of texture appearance with applications to camera phone imaging," in *Proc. SPIE-IS&T Electronic Imaging* 7242, *Image Quality and System Performance VI*, 2009, pp. 724207-1-724207–11.
- [75] C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and Color Images," in International Conference on Computer Vision (ICCV), 1998, pp. 839–846.
- [76] A. Buades, B. Coll, and J. Morel, "A Review of Image Denoising Algorithms, with a New One," *Multiscale Model. Simul.*, vol. 4, no. 2, pp. 490–530, 2005.
- [77] A. Foi, V. Katkovnik, and K. Egiazarian, "Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Color Images," *IEEE Trans. Image Process.*, vol. 16, no. 5, pp. 1–17, 2007.
- [78] C. Knaus and M. Zwicker, "Dual-domain image denoising," in *Proc. IEEE International Conference on Image Processing*, 2013, no. 4, pp. 440–444.
- [79] S. Roth and M. J. Black, "Fields of Experts: a framework for learning image priors," in *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (CVPR), 2005, p. 10.1109/CVPR.2005.160.
- [80] M. Elad and M. Aharon, "Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries," *IEEE Trans. Image Process.*, vol. 15, no. 12, pp. 754–758, 2006.
- [81] W. Dong, G. Shi, and X. Li, "Nonlocal image restoration with bilateral variance estimation: A low-rank approach," *IEEE Trans. Image Process.*, vol. 22, no. 2, pp. 700–711, 2013.
- [82] H. C. Burger, C. J. Schuler, and S. Harmeling, "Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds," *J. Mach. Learn. Res.*, pp. 1–38, 2012.
- [83] D. Zoran and Y. Weiss, "From learning models of natural image patches to whole

image restoration," in 2011 IEEE International Conference on Computer Vision, 2011, pp. 479–486.

- [84] X. Zhu and P. Milanfar, "Restoration for weakly blurred and strongly noisy images," in 2011 IEEE Workshop on Applications of Computer Vision (WACV), 2011, pp. 103–109.
- [85] MathWorks, "Imsharpen: Sharpen image using unsharp masking," 2017. [Online]. Available: http://uk.mathworks.com/help/images/ref/imsharpen.html. [Accessed: 05-Feb-2017].
- [86] G. Ramponi and A. Polesel, "Rational unsharp masking technique," J. Electron. Imaging, vol. 7, no. 2, p. 333, 1998.
- [87] G. Deng, "A generalized unsharp masking algorithm," *IEEE Trans. Image Process.*, vol. 20, no. 5, pp. 1249–1261, 2011.
- [88] K. Kintali, "Adaptive Median Filter," 2016. [Online]. Available: http://uk.mathworks.com/matlabcentral/fileexchange/30068-adaptive-median-filter--matlab-code-/content/AdaptiveMedianFilter\_MATLAB\_code/MALTAB\_code/aMediantFilter\_2 D.m. [Accessed: 01-Feb-2017].
- [89] S. H. Kim and J. P. Allebach, "Optimal unsharp mask for image sharpening and noise removal," *J. Electron. Imaging*, vol. 14, no. 2, 2005.
- [90] A. Polesel, G. Ramponi, and V. J. Mathews, "Image enhancement via adaptive unsharp masking," *IEEE Trans. Image Process.*, vol. 9, no. 3, pp. 505–510, 2000.
- [91] E. S. L. Gastal and M. M. Oliveira, "Domain Transform for Edge-Aware Image and Video Processing," in *ACM Transactions on Graphics (ToG)*, 2011, vol. 30, no. 4, p. 69.
- [92] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, "Edge-preserving decompositions for multi-scale tone and detail manipulation," in *Transactions on Graphics (TOG) Proceedings of ACM SIGGRAPH 2008*, 2008, vol. 27, no. 3, p. 67.
- [93] S. Ghosh and K. N. Chaudhury, "On Fast Bilateral Filtering Using Fourier Kernels,"

IEEE Signal Process. Lett., vol. 23, no. 5, pp. 570-574, 2016.

- [94] N. Moroney, "Local color correction using non-linear masking," IS&T/SID 8th Color Imaging Conf., pp. 108–111, 2000.
- [95] A. Capra, A. Castorina, S. Corchs, F. Gasparini, and R. Schettini, "Dynamic range optimization by local contrast correction and histogram image analysis," *Dig. Tech. Pap. - IEEE Int. Conf. Consum. Electron.*, vol. 2006, pp. 309–310, 2006.
- [96] J. Kuang, H. Yamaguchi, C. Liu, G. M. Johnson, and M. D. Fairchild, "Evaluating HDR Rendering Algorithms," ACM Trans. Appl. Percept., vol. 4, no. 2, p. 9, 2007.
- [97] ISO/IEC 10918-1:1994. Information technology -- Digital compression and coding of continuous-tone still images. International Standardisation Organization (ISO) & International Electrotechnical Commission (IEC), 1994.
- [98] G. K. Wallace, "The JPEG still picture compression standard," *IEEE Trans. Consum. Electron.*, vol. 38, no. 1, pp. xviii–xxxiv, 1992.
- [99] ISO/IEC 15444-1. Information technology -- JPEG 2000 image coding system: Core coding system. International Organization for Standardization (ISO) & International Electrotechnical Commission (IEC), 2016.
- [100] X. Min, G. Zhai, Z. Gao, and K. Gu, "Visual attention data for image quality assessment databases," in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 2014, pp. 894–897.
- [101] H. Liu and I. Heynderickx, "Visual attention in objective image quality assessment: Based on eye-tracking data," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 21, no. 7, pp. 971–982, 2011.
- [102] E. Allen, "Image Quality Evaluation in Lossy Compressed Images," PhD Thesis, Faculty of Media Arts and Design, University of Westminster, UK, 2017.
- [103] J. Harel, C. Koch, and P. Perona, "Graph-Based Visual Saliency," in *Proceedings of Conference on Neural Information Processing Systems (NIPS)*, 2006, pp. 545–552.
- [104] E. M. Granger and K. N. Cupery, "An optical merit function (SQF) which correlates with subjective image judgments," *Photogr. Sci. Eng.*, vol. 16, no. 3, pp. 221–230,

1972.

- [105] E. M. Biederman, "Photographic Korrespondent," vol. 25 and 41, p. 103, 1967.
- [106] E. a. Fedorovskaya and H. De Ridder, "Subjective matters: from image quality to image psychology," SPIE Proc. Vol. 8651, vol. 8651, pp. 86510O-86510O-11, 2013.
- [107] W. Fushikida, K. Schloss, K. Yokosawa, and S. Palmer, "Cross-Cultural Differences in Color Preference: Japan vs. the USA," J. Vis., vol. 9, no. 336, 2009.
- [108] L. A. Jones and H. R. Condit, "The Brightness scale of exterior scenes and the computation of correct photographic exposure," J. Opt. Soc. Am., vol. 31, no. 651, 1941.
- [109] M. H. R. Leyssen, S. Linsen, J. Sammartino, and S. E. Palmer, "Aesthetic Preference for Spatial Composition in Multiobject Pictures," *Iperception.*, vol. 3, no. 1, pp. 25–49, 2012.
- [110] ISO 20462-1:2005: Photography Psychophysical experimental methods for estimating image quality – Part 1: Overview of Psychophysical Elements. International Organization for Standardization (ISO), 2005.
- [111] C. J. Bartleson, "The combined influence of sharpness and graininess on the quality of color prints," J. Photogr. Sci., vol. 30, pp. 33–38, 1982.
- [112] J. F. Sawyer, "Effect of graininess and sharpness on perceived print quality," in *Photographic Image Quality Symposium*, 1980, pp. 222–231.
- [113] A. M. Haun and E. Peli, "Complexities of complex contrast," in *Proc SPIE* 8292, *Color Imaging XVII: Displaying, Processing, Hardcopy, and Applications*, 2012.
- [114] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image Quality Assessment: From Error Visibility to Structural Similarity," *IEEE Trans. Image Process.*, vol. 13, no. 4, pp. 600–612, 2004.
- [115] W. S. Geisler, "Visual Perception and the Statistical Properties of Natural Scenes," *Annu. Rev. Psychol.*, vol. 59, pp. 167–192, 2008.
- [116] E. P. Simoncelli and B. A. Olshausen, "Natural image statistics and neural

representation," Annu. Rev. Neurosci., vol. 24, pp. 1193-216, 2001.

- [117] B. Cooper, H. Sun, and B. Lee, "Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies," *J. Opt. Soc. Am. A*, vol. 28, no. 2, pp. A314–A323, 2012.
- [118] E. Peli, "Contrast in complex images," J. Opt. Soc. Am. A, vol. 7, no. 10, pp. 2032–2040, 1990.
- [119] S. Triantaphillidou, R. E. Jacobson, and A. M. Ford, "Preferred Tone Reproduction of Images on Soft Displays," in *International Conference on the Physics of Semiconductors (ICPS)*, 1998, pp. 205–208.
- [120] R. W. G. Hunt, I. T. Pitt, and P. C. Ward, "The Tone Reproduction of Colour Photographic Materials," J. Photogr. Sci., vol. 17, pp. 198–204, 1969.
- [121] A. C. Bovik, Handbook of Image and Video Processing, 2nd ed. Academic Press Ltd., 2010.
- [122] B. Bringier, N. Richard, M. C. Larabi, and C. Fernandez-Maloigne, "No-reference perceptual quality assessment of colour image," in *Proceedings of the 14th IEEE European Signal Processing Conference (EUSIPCO 2006)*, 2006.
- [123] A. M. Haun and E. Peli, "Perceived contrast in complex images," J. Vis., vol. 13, no. 3, pp. 1–21, 2013.
- [124] A. M. Haun and E. Peli, "Measuring the Perceived Contrast of Natural Images," SID Symp. Dig. Tech. Pap., vol. 42, pp. 302–304, 2011.
- [125] S. Triantaphillidou, J. Jarvis, G. Gupta, and H. Rana, "Defining human contrast sensitivity and discrimination from complex imagery," in *Proc. SPIE 8901, Optics* and Photonics for Counterterrorism, Crime Fighting and Defence IX, 2013, pp. 89010C-1-89010C-12.
- [126] H. R. Sheikh and A. C. Bovik, "Image information and visual quality," *IEEE Trans. Image Process.*, vol. 15, no. 2, pp. 430–444, 2006.
- [127] J. A. J. Roufs, V. J. Koselka, and A. A. Tongeren, "Global brightness contrast and the effect on perceptual image quality," in *Proc SPIE 2179, Human Vision, Visual*

Processing, and Digital Display V;, 1994, pp. 80–89.

- [128] C. A. Poynton, "Gamma and its disguises: the non-linear mappings of intensity in perception, CRTs, film and video," J. Soc. Mot. Pict. Telivis. Engnrs., pp. 1099– 1108, 1993.
- [129] ISO 14524:2009 Photography Electronic still-picture cameras Methods for measuring opto-electronic conversion functions (OECFs). International Organization for Standardization (ISO), 2009.
- [130] Image Engineering, "TE264 OECF 20 Chart (following ISO 14524/15739) contrast 10.000:1, 100.000:1, 1.000.000:1," 2019. [Online]. Available: https://www.imageengineering.de/products/charts/all/581-te264. [Accessed: 03-Mar-2019].
- [131] R. S. Berns, "Methods for characterizing CRT displays," *Displays*, vol. 16, no. 4, pp. 173–182, 1996.
- [132] BS EN 61966-2-1:2000 Multimedia systems and equipment Colour measurement and management – Part 2-1: Colour management - Default RGB colour space sRGB. International Organization for Standardization (ISO), 2000.
- [133] D. J. Field and N. Brady, "Visual Sensitivity, Blur and the Sources of Variability in the Amplitude Spectra of Natural Scenes," *Vis. Res.*, vol. 37, no. 23, pp. 3367–3383, 1997.
- [134] K. Biedermann and Y. Feng, "Quality criteria for photographic images and lenses," in *Photographic and Electronic Image Quality*, 1984, pp. 32–37.
- [135] L. Macdonald, "Framework for an Image Sharpness Management System," in Proc. IS&T/SID, The Seventh Color Imaging Conference: Color Science, Systems, and Applications, 1999, pp. 75–79.
- [136] G. C. Higgins, "Image Quality Criteria," J. Appl. Photogr. Eng., vol. 3, no. 2, pp. 53–60, 1977.
- [137] G. P. Corey, M. J. Clayton, and K. N. Cupery, "Scene Dependence of Image Quality," *Photogr. Sci. Eng.*, vol. 27, pp. 9–13, 1983.
- [138] S. Bouzit and L. W. Macdonald, "Assessing the enhancement of image sharpness,"

in Proc. SPIE 6059, Image Quality and System Performance III, 2006, pp. 605904-1-605904–10.

- [139] S. Bouzit and L. W. MacDonald, "Sharpness Enhancement through Spatial Frequency Decomposition," in Proc IS&T, PICS 2001: Image Processing, Image Quality, Image Capture Systems Conference, 2001, pp. 377–381.
- [140] G. M. Johnson and M. D. Fairchild, "Sharpness Rules," in Proc. IS&T, Eighth Color Imaging Conference: Color Science and Engineering Systems Technologies, Applications 8, 2000, pp. 1–28.
- [141] N. Koren, Imatest Documentation © 2009. Imatest LLC, 2009.
- [142] C. Loebich, D. Wueller, B. Klingen, and A. Jaeger, "Digital Camera Resolution Measurement Using Sinusoidal Siemens Stars," in *Proc. SPIE 6502, Digital Photography III*, 2007.
- [143] S. Bouzit and L. W. Macdonald, "Does Sharpness Affect the Reproduction of Colour Images?," in Proc. SPIE 4421, 9th Congress of the International Colour Association, 2002, pp. 902–905.
- [144] J. Buzzi and F. Guichard, "Uniqueness of Blur Measure," in 2004 IEEE International Conference on Image Processing (ICIP), 2004, pp. 2985–2988.
- [145] LaserSoft Imaging, "SilverFast Resolution Target (USAF 1951) by LaserSoft Imaging," 2019. [Online]. Available: https://www.silverfast.com/show/resolutiontarget/en.html. [Accessed: 06-Aug-2019].
- [146] U. Artmann, "Image quality assessment using the dead leaves target : experience with the latest approach and further investigations," in *Proc. SPIE 9404, Digital Photography XI*, 2015, pp. 1–15.
- [147] E. Heynacher and F. Kober, Zeiss Information No 51: Resolving Power and Contrast. Oberkochen: Carl Zeiss, 1976.
- [148] R. A. Jones and E. C. Yeadon, "Determination of the spread function from noisy edge scans," *Photogr. Sci. Eng.*, vol. 13, no. 4, pp. 200–204, 1969.
- [149] R. A. Jones, "An automated technique for deriving MTF's from edge traces,"

Photogr. Sci. Eng., vol. 13, no. 2, pp. 102-106, 1967.

- [150] J. C. Dainty, "Methods of Measuring the Modulation Transfer Function of Photographic Emulsions," *Opt. Acta Int. J. Opt.*, vol. 18, no. 11, pp. 795–813, 1971.
- [151] Image Engineering, "TE265 Dead Leaves," 2019. [Online]. Available: https://www.image-engineering.de/products/charts/all/582-te265. [Accessed: 01-Jan-2019].
- [152] Imatest, "Documentation: Log F-Contrast," 2019. [Online]. Available: http://www.imatest.com/docs/log\_f\_cont/. [Accessed: 17-Mar-2019].
- [153] ANSI-PH2.29-1977. Method of Measuring the Photographic Modulation Transfer Function of Continuous-Tone, Black-and-White Photographic Films. New York, USA: American National Standards Institute (ANSI), 1977.
- [154] R. L. Lamberts, "Sine-wave response techniques in photographic printing," J. Opt. Soc. Am. A, vol. 51, p. 982, 1961.
- [155] J. W. Coltman, "The specification of imaging properties by response to a sine wave input," J. Opt. Soc. Am. A, vol. 44, p. 468, 1954.
- [156] R. B. Fagard-Jenkin, R. E. Jacobson, and N. R. Axford, "A Novel Approach to the Derivation of Expressions for Geometrical MTF in Sampled Systems," Soc. Imaging Sci. Technol. Image Process. Image Qual. Image Capture, Syst. Conf., pp. 225–230, 1999.
- [157] E. C. Yeadon, R. A. Jones, and J. T. Kelly, "Confidence Limits for Individual Modulation Transfer Function Measurements based on the Phase Transfer Function," *Photogr. Sci. Eng.*, vol. 14, no. 2, pp. 153–156, 1970.
- [158] P. D. Burns, "Estimation Error in Image Quality Measurements," in *Proc. SPIE* 7867, *Image Quality and System Performance VIII*, 2011, p. 78670H.
- [159] U. Artmann and D. Wueller, "Differences of digital camera resolution metrology to describe noise reduction artifacts," in *Proc. SPIE 7529: Image Quality and System Performance VII*, 2010, pp. 1–12.
- [160] U. Artmann, "Linearization and Normalization in Spatial Frequency Response

Measurement," in *Proc. IS&T Electronic Imaging, Image Quality and System Performance XIII*, 2016, pp. 1–6.

- [161] P. D. Burns and J. Martinez Bauza, "Intrinsic camera resolution measurement," in Proc. SPIE 9396, Image Quality and System Performance XII, 2015, p. 939609.
- [162] H. Kurihara, T.; Aoki, N.; Kobayashi, "Analysis of sharpness increase by image noise," J. Imaging Sci. Technol., vol. 55, no. 3, pp. 30504–1, 2011.
- [163] X. Wan, N. Aoki, and H. Kobayashi, "Improving the Perception of Image Sharpness Using Noise Addition," *Bull. Soc. Photogr. Imag. Japan.*, vol. 24, no. 2, pp. 19–26, 2014.
- [164] J. T. Bushberg, J. A. Seibert, E. M. Leidholdt Jr., and J. M. Boone, *The Essential Physics of Medical Imaging*, Second. Philadelphia, USA: Lippincott Williams & Wilkins, 2002.
- [165] R. B. Jenkin, Private communication. 2017.
- [166] R. B. Jenkin, "Noise, sharpness, resolution and information," in *The Manual of Photography: Photographic and Digital Imaging*, 10th ed., E. Allen and S. Triantaphillidou, Eds. Focal Press, 2011.
- [167] J. E. Farrell and B. A. Wandell, "Image Systems Simulation," in *Handbook of Digital Imaging*, M. Kriss, Ed. Wiley, 2015, pp. 1–28.
- [168] ISO 15739:2017, Photography Electronic still-picture imaging Noise measurements. International Organization for Standardization (ISO), 2017.
- [169] K. Topfer and R. E. Jacobson, "The Relationship Between Objective and Subjective Image Quality Criteria," J. Inf. Rec. Mater., vol. 21, pp. 5–27, 1993.
- [170] P. D. Welch, "The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms," *IEEE Trans. Audio Electroacoust.*, vol. 15, pp. 70–73, 1967.
- [171] C. E. Shannon, "A Mathematical Theory of Communication," *Bell Syst. Tech. J.*, vol. 27, pp. 623–656, 1948.
- [172] Imatest, "Imatest Documentation: Shannon Information Capacity," 2019. [Online].

Available: http://www.imatest.com/docs/shannon/. [Accessed: 26-Mar-2019].

- [173] The Society for Imaging Science and Technology (IS&T), Handbook of Photographic Science and Engineering., 2nd ed. The Society for Imaging Science and Technology (IS&T), 1997.
- [174] I. E. Abdou and N. J. Dusaussoy, "Survey of Image Quality Measurements," in Proceedings of 1986 IEEE ACM Fall Joint Computer Conference, 1986, pp. 71–78.
- [175] B. Rodricks and K. Venkataraman, "First Principles' Imaging Performance Evaluation of CCD- and CMOS-based Digital Camera Systems," in *Proc. SPIE* 5678, Digital Photography, 59 - Sensor and Camera Characterization, 2005, pp. 59–74.
- [176] B. W. Keelan, "Imaging Applications of Noise Equivalent Quanta," in *Proc. IS&T Electronic Imaging 2016, Image Quality and System Performance XIII*, 2016, pp. 1–7.
- [177] P. D. Burns, "Signal-to-noise ratio analysis of charge-coupled device imagers," in *Proc. SPIE 1242, Charge-Coupled Devices and Solid State Optical Sensors*, 1990, pp. 187–194.
- [178] B. W. Keelan, "Objective and subjective measurement and modeling of image quality: a case study," in *Proc. SPIE 7798: Applications of Digital Image Processing XXXIII*, 2010, pp. 779815-1-779815–9.
- [179] H. H. Barrett, "NEQ: its progenitors and progeny," in Proc. SPIE 7263, Medical Imaging 2009: Image Perception, Observer Performance, and Technology Assessment, 2009, pp. 72630F-1-72630F–7.
- [180] H. H. Barrett, J. L. Denny, R. F. Wagner, and K. J. Myers, "Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance," J. Opt. Soc. Am. A, vol. 12, no. 5, pp. 834–852, 1995.
- [181] ICRU Report 54: Medical Imaging The Assessment of Image Quality. Bethseda, MD, USA: International Commission on Radiation Units and Measurements (ICRU), 1996.
- [182] P. G. J. Barten, "Physical model for the contrast sensitivity of the human eye," in

*Proc. SPIE/IS&T Electronic Imaging: Science and Technology 1666, Human Vision, Visual Processing, and Digital Display III, 1992, pp. 57–72.* 

- [183] P. G. J. Barten, Contrast sensitivity of the human eye and its effects on image quality. Bellingham, WA: SPIE press, 1999.
- [184] S. Daly, "A visual model for optimizing the design of image processing algorithms," in *Proc. IEEE 1st International Conference on Image Processing*, 1994, vol. 2, pp. 16–20.
- [185] J. Lubin, "The Use of Psychophysical Data and Models in the Analysis of Display System Performance," in *Digital Images and Human Vision*, A. Watson, Ed. MIT Press, 1993, pp. 163–178.
- [186] P. G. J. Barten, "The Square Root Integral (SQRI): a New Metric to Describe the Effect of Various Display Parameters on Image Quality," in *Proc. SPIE 1077: Human Vision, Visual Processing, and Digital Display*, 1989, pp. 73–82.
- [187] S. Triantaphillidou, J. Jarvis, and G. Gupta, "Contrast sensitivity and discrimination of complex scenes," in *Proc. SPIE 8653, Image Quality and System Performance X*, 2013, p. 86530C.
- [188] G. M. Johnson and M. D. Fairchild, "A top down description of S-CIELAB and CIEDE2000," *Color Res. Appl.*, vol. 28, no. 6, pp. 425–435, 2003.
- [189] J. A. Movshon and L. Kiorpes, "Analysis of the development of spatial sensitivity in monkey and human infants," J. Opt. Soc. Am., vol. 5, no. 12, pp. 2166–2172, 1988.
- [190] M. A. Georgeson and G. D. Sullivan, "Contrast Constancy: Deblurring in Human Vision by Spatial Frequency Channels," J. Physiol., vol. 1, no. 4, pp. 627–656, 1975.
- [191] O. H. Schade, "Optical and photoelectric analog of the eye," J. Opt. Soc. Am., vol. 46, pp. 721–739, 1956.
- [192] J. A. J. Roufs, "Dynamic properties of vision V1. Stochastic threshold fluctuations and their effect on flash-to-flicker sensitivity ratio," *Vision Res.*, vol. 14, pp. 871– 888, 1974.

- [193] G. E. Legge, D. Kersten, and A. E. Burgess, "Contrast discrimination in noise.," J. Opt. Soc. Am. A., vol. 4, no. 2, pp. 391–404, 1987.
- [194] V. Laparra, J. Muñoz-Marí, and J. Malo, "Divisive normalization image quality metric revisited," J. Opt. Soc. Am. A JOSA-A, Opt. image Sci. Vis., vol. 27, no. 4, pp. 852–864, 2010.
- [195] R. B. Jenkin, S. Triantaphillidou, and M. A. Richardson, "Effective Pictorial Information Capacity as an Image Quality Metric," in *Proc. SPIE 6494, Image Quality and System Performance IV*, 2007, p. 649400.
- [196] A. van Meeteren, "Visual aspects of image intensification," PhD Thesis, University of Utrecht, The Netherlands, 1973.
- [197] H. L. Snyder, "Image Quality and Observer Performance," in *Perception of Displayed Information*, L. M. Biberman, Ed. New York: Plenum Press, 1973, pp. 87–118.
- [198] R. G. Gendron, "An improved objective method for rating picture sharpness: CMT acutance," J. Soc. Motion Pict. Telev. Eng., vol. 82, pp. 1009–1012, 1973.
- [199] E. M. Crane, "Acutance and Granulance," in *Proc. SPIE 310, Image Quality*, 1981, pp. 125–132.
- [200] B. E. Rogowitz, T. N. Pappas, and J. P. Allebach, "Human Vision and Electronic Imaging," J. Electron. Imaging, vol. 10, no. 1, pp. 10–19, 2001.
- [201] S. Triantaphillidou, E. W. S. Fry, V. Sanchis-Jurado, and A. Pons, "Image Quality Loss and Compensation for Visually Impaired Observers," in *Proc IS&T Electronic Imaging, Image Quality and System Performance XV*, 2018, pp. 365-1-365–6(6).
- [202] Z. Wang, "Applications of objective image quality assessment methods," *IEEE Signal Process. Mag.*, vol. 28, no. 6, pp. 137–142, 2011.
- [203] R. Dosselmann and X. D. Yang, "A Formal Assessment of the Structural Similarity Index," Technical Report TR-CS 2008-2, Department of Computer Science, University of Regina, Canada, 2008.
- [204] M. Pedersen and J. Y. Hardeberg, "Survey of full-reference image quality metrics,"

GCIS'2009 Glob. Congr. Intell. Syst., no. 5, pp. 1–74, 2009.

- [205] K. Seshadrinathan et al., "Image Quality Assessment," in Essential Guide of Image Processing, Elsevier, 2009, pp. 553–589.
- [206] X. Gao, W. Lu, D. Tao, and X. Li, "Image quality assessment and human visual system," in *Proc. SPIE 7744, Visual Communications and Image Processing 2010*, 2010, pp. 77440Z-77440Z-10.
- [207] K. Seshadrinathan and A. C. Bovik, "Automatic prediction of perceptual quality of multimedia signals-a survey," *Multimed. Tools Appl.*, vol. 51, pp. 163–186, 2011.
- [208] M. Pedersen and J. Y. Hardeberg, "Full-Reference Image Quality Metrics: Classification and Evaluation," *Found. Trends Comput. Graph. Vis.*, vol. 7, no. 1, pp. 1–80, 2011.
- [209] M. Pedersen, "Image quality metrics for the evaluation of printing workflows," PhD Thesis, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway, 2011.
- [210] A. Lahoulou, M. C. Larabi, A. Beghdadi, E. Viennet, and A. Bouridane,
  "Knowledge based Taxonomic Scheme for Full Reference Objective Image Quality Measurement Models," *J. Imaging Sci. Technol.*, vol. 60, no. 6, pp. 64–78, 2016.
- [211] T. Eerola *et al.*, "Full Reference Printed Image Quality: Measurement Framework and Statistical Evaluation," *J. Imaging Sci. Technol.*, vol. 54, no. 1, pp. 1–13, 2010.
- [212] A. K. Moorthy and A. C. Bovik, "Visual quality assessment algorithms: what does the future hold?," *Multimed. Tools Appl.*, vol. 51, no. 2, pp. 675–696, 2010.
- [213] J. J. Gallimore, "Review of Psychophysically Based Image Quality Metrics," Wright State University, Defense Technical Information Center, 1991.
- [214] Z. Wang and A. Bovik, "Reduced and No-Reference Image Quality Assessment," *IEEE Signal Process. Mag.*, vol. 28, no. 6, pp. 29–40, 2011.
- [215] M. Pedersen, N. Bonnier, J. Y. Hardeberg, and F. Albregtsen, "Image quality metrics for the evaluation of print quality," in *Proc. SPIE 7867, Image Quality and System Performance VIII*, 2011, pp. 786702–786702–19.

- [216] D. M. Chandler, "Seven Challenges in Image Quality Assessment: Past, Present, and Future Research," *ISRN Signal Process.*, vol. 2013, pp. 1–53, 2013.
- [217] R. Soundararajan and A. C. Bovik, "Survey of information theory in visual quality assessment," *Signal, Image Video Process.*, vol. 7, no. 3, pp. 391–401, 2013.
- [218] M. P. Eckert and A. P. Bradley, "Perceptual quality metrics applied to still image compression," *Signal Processing*, vol. 70, pp. 177–200, 1998.
- [219] Z. Wang, "Objective Image / Video Quality Measurement A Literature Survey," in EE 381k: multidimensional digital signal processing, 1998.
- [220] W. Osberger, "Perceptual Vision Models for Picture Quality Assessment and Compression Applications," PhD Thesis, Queensland University of Technology, Australia, 1999.
- [221] A. M. Eskicioglu, "Quality measurement for monochrome compressed images in the past 25 years," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2000, pp. 1907–1910.
- [222] A. Chalmers, S. Daly, K. Myszkowskin, and T. Troscianko, "Image Quality Metrics," SIGGRAPH Course #44, 2000.
- [223] S. Winkler, "Vision Models and Quality Metrics for Image Processing Applications," PhD Thesis, Departmente d'Electricite, Ecole Polytechnique Federale de Lausanne, Switzerland, 2000.
- [224] K. Seshadrinathan and A. C. Bovik, "New vistas in image and video quality assessment," in *Proc SPIE 6492, Human Vision and Electronic Imaging XII*, 2007, pp. 649202-649202–13.
- [225] University of Texas Laboratory for Image & Video Engineering, "LIVE Image Quality Assessment Database," 2017. [Online]. Available: http://live.ece.utexas.edu/research/quality/subjective.htm. [Accessed: 31-Jul-2017].
- [226] H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik, "LIVE Image Quality Assessment Database Release 2," 2008. [Online]. Available: http://live.ece.utexas.edu/research/quality. [Accessed: 13-Jun-2017].

- [227] P. Le Callet and F. Autrusseau, "Subjective quality assessment IVC database,"
   2005. [Online]. Available: http://www2.irccyn.ec-nantes.fr/ivcdb/. [Accessed: 13-Jun-2016].
- [228] E. C. Larson and D. M. Chandler, "Most apparent distortion: full-reference image quality assessment and the role of strategy," *J. Electron. Imaging*, vol. 19, no. 1, p. 011006, 2010.
- [229] X. Liu, "CID : IQ A new image quality database," PhD Thesis, Department of Computer Science and Media Technology, Gjøvik University College, Norway, 2013.
- [230] X. Liu, M. Pedersen, and J. Y. Hardeberg, "CID:IQ A New Image Quality Database," in *Proc. 6th International Conference on Image and Signal Processing* (*ICISP*), 2014, pp. 193–202.
- [231] U. Engelke, M. Kusuma, H. J. Zepernick, and M. Caldera, "Reduced-reference metric design for objective perceptual quality assessment in wireless imaging," *Signal Process. Image Commun.*, vol. 24, no. 7, pp. 525–547, 2009.
- [232] D. M. Chandler and S. S. Hemami, "VSNR: A wavelet-based visual signal-to-noise ratio for natural images," *IEEE Trans. Image Process.*, vol. 16, no. 9, pp. 2284– 2298, 2007.
- [233] D. M. Chandler and S. S. Hemami, "Cornell-CVL A57 Database," 2007. [Online]. Available: http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html.
- [234] University of Texas Laboratory for Image & Video Engineering, "LIVE In the Wild Image Quality Challenge Database," 2017. [Online]. Available: http://live.ece.utexas.edu/research/ChallengeDB/index.html. [Accessed: 31-Jul-2017].
- [235] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, "A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms," *Image Process. IEEE Trans.*, vol. 15, no. 11, pp. 3441–3452, 2006.
- [236] D. Jayaraman, A. Anish Mittal, K. Moorthy, and A. C. Bovik, "Objective Image Quality Assessment of Multiply Distorted Images," in *Proceedings of the Forty*

Sixth IEEE Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, pp. 1058–1697.

- [237] N. Ponomarenko *et al.*, "TID2008-A database for evaluation of full-reference visual quality assessment metrics," *Adv. Mod. Radioelectron.*, vol. 10, pp. 30–45, 2009.
- [238] N. Ponomarenko, "Tampere Image Database 2013 (TID2013), Version 1.0," 2013.
   [Online]. Available: http://www.ponomarenko.info/tid2013.htm. [Accessed: 13-Jun-2016].
- [239] N. Ponomarenko et al., "A New Color Image Database TID2013: Innovations and Results," in International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS), 2013, pp. 402–413.
- [240] A. Ciancio, A. L. N. Targino da Costa, E. A. B. da Silva, A. Said, R. Samadani, and P. Obrador, "No-reference blur assessment of digital pictures based on multifeature classifiers," *IEEE Trans. Image Process.*, vol. 20, no. 1, pp. 64–75, 2011.
- [241] Y. Horita, K. Shibata, Y. Kawayoke, and Z. M. Parvez Sazzad, "MICT-Toyama Image Quality Evaluation Database," 2011. [Online]. Available: http://mict.eng.utoyama.ac.jp/mictdb.html. [Accessed: 01-Dec-2015].
- [242] H. R. Sheikh, A. C. Bovik, L. Cormack, and Z. Wang, "LIVE Image Quality Assessment Database Release 1: Subjective database for JPEG Readme File," 2003.
   [Online]. Available: https://live.ece.utexas.edu/research/quality/JPEG/readme.txt.
   [Accessed: 17-May-2019].
- [243] P. G. Engeldrum, "A short image quality model taxonomy," J. Imaging Sci. Technol., vol. 48, no. 2, pp. 160–165, 2004.
- [244] E. Crane, "An Objective Method of Rating Picture Sharpness: SMT Acutance," SMPTE Motion Imaging J., vol. 73, no. 8, pp. 643–647, 1964.
- [245] C. Carlson and R. Cohen, "A simple psychophysical model for predicting the visibility of displayed information," in *Proc. Society of Information Display (SID)*, 1980, vol. 21, pp. 229–245.
- [246] H. L. Snyder, "Modulation Transfer Function Area as a Measure of Image Quality," in Visual Search Symposium Committee on Vision, 1973, pp. 93–105.

- [247] P. G. J. Barten, "The SQRI Method: A New Method for the Evaluation of Visible Resolution on a Display," in *Proc. SID*, 1987, vol. 28, no. 3, pp. 253–262.
- [248] C. N. Nelson, "Image Sharpness Criteria," J. Opt. Soc. Amer., vol. 63, p. 1289, 1973.
- [249] J. H. D. M. Westerlink and J. A. J. Roufs, "Subjective image quality as a function of viewing distance, resolution and picture size," *SMPTE Motion Imaging J.*, vol. 98, no. 2, pp. 113–119, 1989.
- [250] P. G. J. Barten, "Evaluation of subjective image quality with the square-root integral method," J. Opt. Soc. Am. A, vol. 7, no. 10, p. 2024, 1990.
- [251] R. B. Jenkin, R. E. Jacobson, and M. A. Richardson, "Use of the First Order Wiener Kernel Transform in the Evaluation of SQRIn and PIC Quality Metrics for JPEG Compression," in *Proc. SPIE 5294, Image Quality and System Performance*, 2004, pp. 60–70.
- [252] R. B. Jenkin and M. A. Richardson, "Comparison between the effective pictorial information capacities of JPEG 6b and 2000," in *Proc. SPIE 5823, Opto-Ireland* 2005, 2005, pp. 13–19.
- [253] J. H. Altman and H. J. Zweig, "Effects of Spread Function on the Storage of Information on Photographic Emulsions," *Photogr. Sci. Eng.*, vol. 7, no. 3, pp. 173– 177, 1963.
- [254] K. H. Oh, S. Triantaphillidou, and R. E. Jacobson, "Device-dependent scenedependent quality predictions using effective pictorial information capacity," in *Proc. SPIE 7867, Image Quality and System Performance VIII*, 2011.
- [255] D. J. Heeger and P. C. Teo, "A model of perceptual image fidelity," in *IEEE International Conference on Image Processing*, 1995, vol. 2, pp. 343–345.
- [256] T. Mitsa and K. L. Varkur, "Evaluation of Contrast Sensitivity Functions for the Formulation of Quality Measures Incorporated in Halftoning Algorithms," in *IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, 1993, pp. 301–304.
- [257] R. N. Shepherd, "Metric structures in ordinal data," J. Math. Psychol., vol. 3, pp.

287-315, 1966.

- [258] P. E. Green, F. J. Carmone, and S. M. Smith, *Multidimensional scaling: concepts and applications*. Boston: Allyn and Bacon, 1989.
- [259] L. A. Olzak and J. P. Thomas, "Seeing spatial patterns," in *Handbook of perception and human performance, Vol. 1: Sensory processes*, L. Kaufman and J. P. Thomas, Eds. New York: John Wiley and Sons, 1986.
- [260] H. de Ridder, "Subjective evaluation of scale-space image coding," in *Proc. SPIE* 1453, Human Vision, Visual Processing, and Digital Display II, 1991, pp. 31–42.
- [261] H. De Ridder, "Minkowski-metrics as a combination rule for digital-image-coding impairments," in Proc. SPIE 1666, Human Vision, Visual Processing, and Digital Display III, 1992, pp. 16–26.
- [262] ISO 11664-4:2011 Colorimetry: Part 4: CIE 1976 L\*a\*b\* Colour space.Commission Internationale de l'Eclairage (CIE), 2011.
- [263] B. Keelan, "Predicting Multivariate Image Quality from Individual Perceptual Attributes," in *Proc. IS&T 2002 PICS Conference*, 2002, pp. 82–87.
- [264] S. Daly, "Visible differences predictor: an algorithm for the assessment of image fidelity," in *Proc. SPIE 1666, Human Vision, Visual Processing, and Digital Display III*;, 1992, pp. 179–206.
- [265] X. Zhang and B. A. Wandell, "A spatial extension of CIELAB for digital color image reproduction," J. Soc. Inf. Disp., vol. 5, no. 1, p. 61, 1997.
- [266] X. Zhang, J. E. Farrell, and B. A. Wandell, "Applications of a Spatial Extension to CIELAB," in *Proc. IS&T & SPIE Electronic Imaging 3025*, 1997, pp. 154–157.
- [267] X. Zhang, D. A. Silverstein, J. E. Farrell, and B. A. Wandell, "Color image quality metric S-CIELAB and its application on halftone texture visibility," in *Proc. IEEE COMPCON 97. Digest of Papers*, 1997.
- [268] P. Teo and D. J. Heeger, "Perceptual Image Distortion," in Proc. IEEE 1st International Conference on Image Processing (ICIP), 1994, pp. 982–986.
- [269] M. Miyahara, K. Kotani, and V. R. Algazi, "Objective picture quality scale (PQS)

for image coding," IEEE Trans. Commun., vol. 46, no. 9, pp. 1215–1226, 1998.

- [270] C. H. Chou and Y.-C. Li, "A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 5, no. 6, pp. 467–476, 1994.
- [271] S. A. Karunasekera and N. G. Kingsbury, "A distortion measure for image artifacts based on human visual sensitivity," in *IEEE International Conference on Acoustics*, *Speech, and Signal Processing ICASSP-94*, 1994, pp. 117–120.
- [272] J. Lubin, "A visual discrimination model for imaging system design and evaluation," in Vision Models for Target Detection and Recognition: In Memory of Arthur Menendez., 1995, pp. 245–283.
- [273] J. L. Mannos and D. J. Sakrison, "The Effects of a Visual Fidelity Criterion on the Encoding of Images," *IEEE Trans. Inf. Theory*, vol. 20, no. 4, pp. 525–536, 1974.
- [274] R. J. Safranek and J. D. Johnston, "A perceptually tuned sub-band image coder with image dependent quantization and post-quantization data compression," in *Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP)*, 1989, pp. 1945–1948.
- [275] G. M. Johnson and M. D. Fairchild, "On contrast sensitivity in an image difference model," in *Proc. IS&T PICS Conference*, 2002, pp. 18–23.
- [276] M. D. Fairchild and G. M. Johnson, "iCAM framework for image appearance, differences, and quality," J. Electron. Imaging, vol. 13, no. 1, p. 126, 2004.
- [277] N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik,
   "Image quality assessment based on a degradation model," *IEEE Trans. Image Process.*, vol. 9, no. 4, pp. 636–650, 2000.
- [278] M. R. Luo, G. Cui, and B. Rigg, "The development of the CIE 2000 colourdifference formula: CIEDE2000," *Color Res. Appl.*, vol. 7, no. 13, pp. 340–350, 2001.
- [279] M. D. Fairchild and G. M. Johnson, "Meet iCAM: A next-generation color appearance model," in *Proc. IS&T/SID 10th Color Imaging Conference*, 2002, pp. 33–38.

- [280] G. Zhai, X. Wu, X. Yang, W. Lin, and W. Zhang, "A psychovisual quality metric in free-energy principle," *IEEE Trans. Image Process.*, vol. 21, no. 1, pp. 41–52, 2012.
- [281] Z. Wang and A. Bovik, "A universal image quality index," *IEEE Signal Process*. *Lett.*, vol. 9, no. 3, pp. 81–84, 2002.
- [282] Z. Wang and A. C. Bovik, "Why is image quality assessment so difficult?," in *IEEE International Conference on Acoustics, Speech, & Signal Processing*, 2002, pp. 3313–3316.
- [283] Z. Wang, E. P. Simoncelli, and A. C. Bovik, "Multi-Scale Structural Similarity For Image Quality Assessment," in Proc. IEEE Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–1402.
- [284] D. M. Rouse and S. S. Hemami, "Analyzing the Role of Visual Structure in the Recognition of Natural Image Content with Multi-Scale SSIM," in *Proc. SPIE 6806*, *Human Vision and Electronic Imaging XIII.*, 2008, p. 680615.
- [285] Z. Wang and E. P. Simoncelli, "Translation Insensitive Image Similarity in Complex Wavelet Domain," in *IEEE International Conference on Acoustics*, *Speech, and Signal Processing*, 2005, vol. 2, pp. 573–576.
- [286] A. Shnayderman, A. Gusev, and A. M. Eskicioglu, "An SVD-based grayscale image quality measure for local and global assessment," *IEEE Trans. Image Process.*, vol. 15, no. 2, pp. 422–429, 2006.
- [287] M. Narwaria and W. Lin, "Objective image quality assessment based on support vector regression," *IEEE Trans. Neural Networks*, vol. 21, no. 3, pp. 515–9, 2010.
- [288] X. Gao, T. Wang, and J. Li, "A Content-Based Image Quality Metric," in *Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing*, Springer, 2005, pp. 231–240.
- [289] K. Gu, G. Zhai, X. Yang, and W. Zhang, "An improved full-reference image quality metric based on structure compensation," in *Proc. IEEE 2012 Asia Pacific Signal* and Information Processing Association Annual Summit and Conference, 2012, pp. 1–6.
- [290] I. Avcibas, B. Sankur, and K. Sayood, "Statistical evaluation of image quality

measures," J. Electron. Imaging, vol. 11, no. 2, pp. 206–223, 2002.

- [291] R. Gupta, D. Bansal, and C. Singh, "A Survey on Various Objective Image Quality Assessment Techniques," Int. J. Eng. Tech. Res., vol. 2, no. 7, pp. 99–104, 2014.
- [292] B. Girod, "What's Wrong with Mean-squared Error?," in *Digital Images and Human Vision*, A. B. Watson, Ed. MIT Press, 1993, pp. 207–220.
- [293] Z. Wang and Q. Li, "Information content weighting for perceptual image quality assessment," *IEEE Trans. Image Process.*, vol. 20, no. 5, pp. 1185–1198, 2011.
- [294] Z. Cui, Z. Gan, G. Tang, F. Liu, and X. Zhu, "Simple and Effective Image Quality Assessment Based on Edge Enhanced Mean Square Error," in *Proc. IEEE Sixth International Conference on Wireless Communications and Signal Processing* (WCSP), 2014, pp. 1–5.
- [295] K. Egiazarian, J. Astola, N. Ponomarenko, V. Lukin, F. Battisti, and M. Carli, "Two New Full-Reference Quality Metrics based on HVS," in *Proceedings of the Second International Workshop on Video Processing and Quality Metrics*, 2006, pp. 2–5.
- [296] N. Ponomarenko, F. Silvestri, K. Egiazarian, M. Carli, J. Astola, and V. Lukin, "On Between-coefficient Contrast Masking of DCT Basis Functions," in *Proc.Third International Workshop on Video Processing and Quality Metrics*, 2007, vol. 4, pp. 1–4.
- [297] K. Gu, G. Zhai, X. Yang, L. Chen, and W. Zhang, "Nonlinear additive model based saliency map weighting strategy for image quality assessment," in *Proc. IEEE 14th International Workshop on Multimedia Signal Processing (MMSP)*, 2012, pp. 313– 318.
- [298] A. Ninassi, O. Le Meur, P. Le Callet, and D. Barba, "Does where you gaze on an image affect your perception of quality? Applying visual attention to image quality metric," in *Proc. IEEE International Conference on Image Processing (ICIP)*, 2007, vol. 2, pp. 169–172.
- [299] Q. Li and Z. Wang, "Reduced-Reference Image Quality Assessment Using Divisive Normalization-Based Image Representation," *IEEE J. Sel. Top. Signal Process.*, vol. 3, no. 2, pp. 202–211, 2009.

- [300] A. Rehman and Z. Wang, "Reduced-reference image quality assessment by structural similarity estimation.," *IEEE Trans. Image Process.*, vol. 21, no. 8, pp. 3378–89, 2012.
- [301] K. H. Thung and P. Raveendran, "A survey of image quality measures," in *Proc. IEEE International Conference for Technical Postgraduates (TECHPOS)*, 2009, pp. 1–4.
- [302] H. R. Sheikh, A. C. Bovik, and G. de Veciana, "An information fidelity criterion for image quality assessment using natural scene statistics," *IEEE Trans. Image Process.*, vol. 14, no. 12, pp. 2117–2128, 2005.
- [303] A. K. Moorthy and A. C. Bovik, "Blind image quality assessment: from natural scene statistics to perceptual quality," *IEEE Trans. Image Process.*, vol. 20, no. 12, pp. 3350–64, 2011.
- [304] A. Mittal, A. K. Moorthy, and A. C. Bovik, "No-Reference Image Quality Assessment in the Spatial Domain," *IEEE Trans. Image Process.*, vol. 21, no. 12, pp. 4695–4708, 2012.
- [305] H. Tang and N. Joshi, "Learning a Blind Measure of Perceptual Image Quality," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 305–312.
- [306] T. H. Falk, Y. Guo, and W. Y. Chan, "Improving robustness of image quality measurement with degradation classification and machine learning," in *IEEE 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers*, 2007, pp. 503–507.
- [307] D. Ghadiyaram and A. C. Bovik, "Blind image quality assessment on real distorted images using deep belief nets," in *IEEE Global Conference on Signal and Information Processing*, 2014, pp. 946–950.
- [308] Y. Lv, G. Jiang, M. Yu, H. Xu, F. Shao, and S. Liu, "Difference of Gaussian statistical features based blind image quality assessment: A deep learning approach," in *IEEE International Conference on Image Processing*, 2015, pp. 2344– 2348.

- [309] H. Tang, N. Joshi, and A. Kapoor, "Blind Image Quality Assessment Using Semisupervised Rectifier Networks," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2014, pp. 2877–2884.
- [310] L. Kang, P. Ye, Y. Li, and D. Doermann, "Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks," in *IEEE International Conference on Image Processing (ICIP)*, 2015, pp. 2791–2795.
- [311] D. Ghadiyaram and A. C. Bovik, "Massive Online Crowdsourced Study of Subjective and Objective Picture Quality," *IEEE Trans. Image Process.*, vol. 25, no. 1, pp. 1–16, 2016.
- [312] S. Bianco, L. Celona, P. Napoletano, and R. Schettini, "On the Use of Deep Learning for Blind Image Quality Assessment," *Signal, Image Video Process.*, vol. 12, no. 2, 2016.
- [313] S. A. Amirshahi, M. Pedersen, and S. X. Yu, "Image Quality Assessment by Comparing CNN Features Between Images," *Electron. Imaging*, vol. 12, pp. 1–19, 2017.
- [314] P. Ye, J. Kumar, D. Doermann, and L. Kang, "Unsupervised feature learning framework for no-reference image quality assessment," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2012, pp. 1098–1105.
- [315] P. Ye, J. Kumar, L. Kang, and D. Doermann, "Real-time no-reference image quality assessment based on filter learning," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2013, pp. 987–994.
- [316] L. Kang, P. Ye, Y. Li, and D. Doermann, "Convolutional Neural Networks for No-Reference Image Quality Assessment," in *IEEE Conference on Computer Vision* and Pattern Recognition (CVPR), 2014, pp. 1733–1740.
- [317] W. Lin and C. C. Jay Kuo, "Perceptual visual quality metrics: A survey," J. Vis. Commun. Image Represent., vol. 22, no. 4, pp. 297–312, 2011.
- [318] V. Pareto, Cours d'Économie Politique. Lausanne: L'Université de Lausanne, 1896.
- [319] Wikipedia, "Airy Disk: Approximation using a Gaussian profile," 2017. [Online]. Available: https://en.wikipedia.org/wiki/Airy\_disk. [Accessed: 05-Feb-2017].

- [320] Apple Inc., "iPhone 6 Technical Specifications," 2017. [Online]. Available: https://support.apple.com/kb/sp705?locale=en\_GB. [Accessed: 03-Dec-2016].
- [321] Wikipedia, "Image sensor format," 2017. [Online]. Available: https://en.wikipedia.org/wiki/Image\_sensor\_format. [Accessed: 01-Feb-2017].
- [322] MathWorks, "Imnoise: Add noise to image," 2017. [Online]. Available: http://uk.mathworks.com/help/images/ref/imnoise.html. [Accessed: 07-Apr-2018].
- [323] Mathworks, "Imgaussfilt: 2-D Gaussian filtering of images," 2017. [Online].
   Available: https://uk.mathworks.com/help/images/ref/imgaussfilt.html. [Accessed: 07-Feb-2017].
- [324] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, *Digital Image Processing using MATLAB*, 1st ed. New Jersey, USA: Pearson Prentice Hall, 2004.
- [325] S. Eddins, "Fourier transform visualization using windowing," *MathWorks Blogs*, 2009. [Online]. Available: https://blogs.mathworks.com/steve/2009/12/04/fouriertransform-visualization-using-windowing/. [Accessed: 12-Feb-2018].
- [326] ISO/IEC 15948:2003 (E): Information technology Computer graphics and image processing – Portable Network Graphics (PNG): Functional specification. World Wide Web Consortium (WC3), 2003.
- [327] E. W. Jin, B. W. Keelan, J. Chen, J. B. Phillips, and Y. Chen, "Softcopy quality ruler method: implementation and validation," in *Proc. SPIE 7242, Image Quality* and System Performance VI, 2009, pp. 724206-724206–14.
- [328] Eizo Nanao Corporation, User's Manual: ColorEdge CG245W Calibration Color LCD Monitor. Eizo Nanao Corporation, 2010.
- [329] IEC/4WD 61966-2-1: Colour Measurement and Management in Multimedia Systems and Equipment - Part 2-1: Default RGB Colour Space - sRGB.
   International Electrotechnical Commission (IEC), 1998.
- [330] J. Schneider, "Snellen Near Vision Test Card," 2002. [Online]. Available: http://plantphys.info/sciencematters/snellenchart.pdf. [Accessed: 03-Mar-2018].
- [331] IEEE Standards Association, "IEEE Standards Downloads and Executable Files:

IEEE 1858™," 2016. [Online]. Available: https://standards.ieee.org/content/dam/ieeestandards/standards/web/download/1858-2016\_downloads.zip. [Accessed: 27-Oct-2018].

- [332] D. J. Baxter and A. Murray, "Calibration and adaptation of ISO visual noise for I3A's Camera Phone Image Quality initiative," in *Proc. SPIE 8293, Image Quality* and System Performance IX, 2012, no. May, pp. 829303-1-829303–14.
- [333] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "The SSIM Index for Image Quality Assessment." [Online]. Available: https://ece.uwaterloo.ca/~z70wang/research/ssim/. [Accessed: 11-Sep-2019].
- [334] T. T. Norton, D. A. Corliss, and J. E. Bailey, *The Psychophysical Measurement of Visual Function*. Butterworth-Heinemann, 2002.
- [335] S. Triantaphillidou, J. Smekjal, E. W. S. Fry, and C. H. Hung, "Studies on effect of megapixel sensor resolution on displayed image quality and relevant metrics," in *Proc IS&T Electronic Imaging, Image Quality and System Performance XVII*, 2020.
- [336] Image Engineering, "iQ Automator Solution," 2019. [Online]. Available: https://www.image-engineering.de/products/solutions/all-solutions/iq-automator. [Accessed: 09-May-2019].
- [337] Imatest, "Sofica IQLaR Image Quality Lab Automation and Robotics," 2019. [Online]. Available: http://store.imatest.com/equipment/robotic-automation/soficaiqlar-image-quality-laboratory-automation-and-robotics.html. [Accessed: 09-May-2019].
- [338] B. Srinivasa Reddy and B. N. Chatterji, "An FFT-based Technique for Translation, Rotation, and Scale-Invariant Image Registration," *IEEE Trans. Image Process.*, vol. 5, no. 8, pp. 1266–1271, 1996.
- [339] M. Mcguire, "An image registration technique for recovering rotation, translation and scale parameters," in *Technical Report 98-018*, NEC Research Institute, *Technical Report*, 1998, pp. 1–29.
- [340] G. Tzimropoulos, V. Argyriou, S. Zafeiriou, and T. Stathaki, "Robust FFT-based

scale-invariant image registration with image gradients," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 32, no. 10, pp. 1899–1906, 2010.

- [341] O. van Zwanenberg, S. Triantaphillidou, R. Jenkin, and A. Psarrou, "Edge Detection Techniques for Quantifying Spatial Imaging System Performance and Image Quality," in Proc. IEEE New Trends in Image Restoration and Enhancement (NTIRE) workshop, in conjunction with Conference on Computer Vision and Pattern Recognition (CVPR) 2019, 2019.
- [342] P. Kane, "Signal Detection Theory and Automotive Imaging," in Proc. IS&T Electronic Imaging, Autonomous Vehicles and Machines Conference, 2019, pp. 027-1-027–7.
- [343] Vargas Aguilera C A, "LanczosFilter.m," 2019. [Online]. Available: https://uk.mathworks.com/matlabcentral/fileexchange/14041 -lanczosfilter-m.
   [Accessed: 19-Nov-2019].
- [344] S. Triantaphillidou and R. E. Jacobson, "Measurements of the modulation transfer function of image displays," *J. Imaging Sci. Technol.*, vol. 48, no. 1, pp. 58–65, 2004.
- [345] E. W. S. Fry, S. Triantaphillidou, R. B. Jenkin, R. E. Jacobson, and J. R. Jarvis, "Noise Power Spectrum Scene-Dependency in Simulated Image Capture Systems," in Proc IS&T Electronic Imaging, Image Quality and System Performance XVII (submitted, under review), 2020.
- [346] M. Mody et al., "Image Signal Processing for Front Camera based Automated Driver Assistance System," in IEEE 5th International Conference on Consumer Electronics - Berlin (ICCE-Berlin), 2015, pp. 158–159.
- [347] M. Mody et al., "High Performance Front Camera ADAS Applications on TI's TDA3X Platform," in Proc. 22nd IEEE International Conference on High Performance Computing (HiPC), 2015, pp. 456–463.
- [348] Nvidia Corporation, NVIDIA Tegra X1 Mobile Processor: Technical Reference Manual. Nvidia Corporation, 2016.
- [349] R. Saussard, B. Bouzid, M. Vasiliu, and R. Reynaud, "Optimal performance

prediction of ADAS algorithms on embedded parallel architectures," in *Proc. IEEE* 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security and 2015 IEEE 12th International Conference on Embedded Software and Systems, 2015, pp. 213–218.

- [350] Texas Instruments, Advanced Driver Assistance (ADAS) Solutions Guide. Texas Instruments, 2015.
- [351] R. Jenkin and P. Kane, "Fundamental Imaging System Analysis for Autonomous Vehicles," in Proc. IS&T Electronic Imaging, Autonomous Vehicles and Machines Conference, 2018, no. 17, pp. 105-1-105–10.
- [352] S. Dodge and L. Karam, "A study and comparison of human and deep learning recognition performance under visual distortions," in *Proc. IEEE 26th International Conference on Computer Communications and Networks (ICCCN)*, 2017.
- [353] S. Diamond, V. Sitzmann, S. Boyd, G. Wetzstein, and F. Heide, "Dirty Pixels: Optimizing Image Classification Architectures for Raw Sensor Data," *arXiv Prepr.* arXiv1701.06487, 2017.
- [354] R. B. Jenkin, "Comparison of Detectability Index and Contrast Detection Probability," J. Imaging Sci. Technol. (in print), 2020.
- [355] J. Y. Park, "Evaluation of changes in image appearance with changes in displayed image size," PhD Thesis, Faculty of Media, Arts and Design, University of Westminster, UK, 2014.
- [356] Recommendations on Uniform Color Spaces, Color Difference Equations, Psychometric Color Terms. Supplement No.2 to CIE Publication No.15 (E.-1.3.1) 1971/(TC-1.3). Commission Internationale de l'Eclairage (CIE), 1978.
- [357] IEC 61966-4:2000: Multimedia systems and equipment Colour measurement and management – Part 4: Equipment using liquid crystal display panels. International Electrotechnical Commission (IEC), 2000.