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Abstract—In this paper, a novel fixed-point Leaky Sign
Regressor Algorithm (LSRA) based adaptive noise canceller
has been employed for the cancellation of 60 Hz Power Line
Interference (PLI) from the ElectroCardioGram (ECG) signal.
A sufficient condition for the convergence in the mean of the
LSRA algorithm is also derived. The fixed-point LSRA-based
adaptive noise canceller employed in this work is fully quantized
using an in-house quantize function. The most effective number of
quantization bits required for the various parameters are found
to be 6-bits and are determined through rigorous simulations.
The filtered ECG signal free from 60 Hz PLI is successfully
recovered using a novel 6-bit fixed-point LSRA-based adaptive
noise canceller.
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I. INTRODUCTION

Adaptive noise cancellers employed for the cancellation of
various types of artifacts present in the ElectroCardioGram
(ECG) signals have been mostly implemented to work with
floating-point arithmetic operations. For efficient hardware
implementation in terms of performance, power, and space
requirements, an adaptive noise canceller must work with
fixed-point arithmetic operations with the lowest number of
quantization bits. This has been the motivation for carrying
out this work.

Over the years many adaptive and non-adaptive (fixed)
methods have been proposed for the cancellation of Power
Line Interference (PLI) from ECG signals. An efficient Finite
Impulse Response (FIR) filter, with a reduced number of filter
coefficients, proposed for the removal of baseline wander and
50 Hz PLI from the ECG signal showed good performance
[1]. The line interference subtraction filter was successfully
used for the removal of 50 Hz PLI from the signal-averaged
ECG systems in [2]. Digital Infinite Impulse Response notch
filters were used for the removal of 60 Hz PLI from the ECG
signals in [3]. The relative performance of an adaptive and non-
adaptive 60 Hz notch filter was investigated for the reduction of
PLI from the ECG signal in [4]. A nonlinear adaptive method
for the elimination of PLI from the ECG signal was proposed
in [5]. The proposed method offered a robust structure and

was shown to have a high degree of immunity with respect
to external noise [5]. An improved adaptive noise canceller
for the reduction of the fundamental PLI component and its
harmonics from the ECG signal was proposed in [6].

The Field Programmable Gate Array (FPGA) based imple-
mentation of an adaptive noise canceller for the removal of 50
Hz PLI from the ECG signal was shown in [7]. This article
does not tell whether the FPGA-based implementation of the
adaptive noise canceller was fixed-point or floating-point and
does not give details of how many bits. An efficient Recursive
Least Squares (RLS) adaptive notch filter for the suppression
of PLI in ECG signals was developed in [8]. A PLI detector
was also proposed in [8] that employed an optimal linear
discriminant analysis algorithm for the detection of PLI in
ECG signals. An efficient PLI removal algorithm was proposed
based on a sliding discrete Fourier transform phase locking
scheme and was implemented on an FPGA [9]. Again this
article does not mention whether the hardware implementation
of the adaptive noise canceller was fixed-point or floating-point
and does not provide any word length information.

The work in [10] analyzes basic and advanced PLI filtering
techniques and evaluates them in a wearable real-time pro-
cessing scenario, assessing their performance on ECG signals.
The work in [11] implements a state space RLS filter for
tracking and elimination of PLI and its harmonics from a
high resolution ECG signal. A fixed-lag Kalman smoother
was proposed in [12] to filter out PLI from ECG recordings
with minimal distortion of the ECG waveform. An adaptive
notch filter of sharp resolution was proposed in [13] to filter
out PLI from ECG signals. A 34-bit fixed-point Normalized
Least Mean Square (NLMS) and a 34-bit fixed-point Improved
Proportional Normalized Least Mean Square (IPNLMS) based
VLSI architectures were proposed for accurate Fetal Electro-
CardioGram (FECG) and Fetal Heart Rate (FHR) processing
in [14]. In [15], it was shown that the extended Kalman
filter-based adaptive noise canceller system outperforms the
state-space recursive least squares filter-based adaptive noise
canceller system and effectively eliminates PLI from ECG
signals. Moreover, the performance evaluation of both single



stage and multistage adaptive noise cancellers using various
adaptive algorithms was compared for the removal of 60 Hz
PLI and other artifacts from the ECG signal in [16].

The application of novel leaky adaptive algorithms for
ECG denoising is an interesting topic that is unexplored. The
Mean Square Error (MSE) performance of the Leaky Least
Mean Square (LLMS) algorithm was analyzed in [17], [18].
In addition, stability bounds on the step-size of the LLMS
algorithm were also determined in [17], [18].

In this paper, a novel fully quantized fixed-point Leaky
Sign Regressor Algorithm (LSRA) based adaptive noise can-
celler has been implemented for the cancellation of 60 Hz PLI
from ECG signals wherein all the input signals, output signals,
step-size, leakage factor, and filter coefficients are quantized
using various loss of precision schemes. In addition, stability
bound on the step-size of the LSRA algorithm is also derived.

II. FIXED-POINT ADAPTIVE NOISE CANCELLER

The fixed-point adaptive noise canceller for the cancellation
of 60 Hz PLI from ECG signals as shown in Figure 1 is
fully quantized. As can be seen from this figure, di forms
the quantized primary input of the noise canceller, in our case
di contains the ECG signal with 60 Hz PLI, ui forms the
quantized reference input of the noise canceller, in our case
ui contains the reference 60 Hz PLI that is correlated only
with the 60 Hz PLI present in the corrupted ECG signal di,
wi are the quantized filter coefficients, and yi is the quantized
filter output.

Fig. 1. Fixed-point adaptive noise canceller [16], [19].

The newly proposed LSRA algorithm has been employed
in the fixed-point adaptive noise canceller shown in Figure 1.
The weight update equation of the LSRA algorithm is given
by:

wi = (1− µα)wi−1 + µ sgn[ui]
Tei, (1)

where µ is the step-size and α is the leakage factor. Both
these quantities are quantized as discussed in Section IV. The
quantized filtered ECG signal ei is free from 60 Hz PLI. An
in-house quantize function developed was used and invoked
by the following statement:

z = Quantize(′type′, x, 2n); (2)

where x is the unquantized input, type is one of the four
types of quantization methods, namely truncate, round, round-
to-zero, and convergent round, n is the number of quantization
bits, and z is the quantized output.

III. CONVERGENCE ANALYSIS

By subtracting both sides of (1) from the optimal weight
vector wo we get

w̃i = (1− µα)w̃i−1 − µ sgn[ui]
Tei + µαwo, (3)

where the weight error vector w̃i is given by

w̃i = wo −wi. (4)

Taking the expectation of both sides of (3) we obtain

E[w̃i] = (1− µα)E[w̃i−1]− µE
[
sgn[ui]

Tei
]
+ µαwo. (5)

From [20], we have

E
[
sgn[ui]

Tei
]
=

√
2

πσ2
u

RE[w̃i−1], (6)

where σ2
u is the regressor variance and R = E[uT

i ui] is the
regressor covariance matrix. Upon substituting (6) into (5), we
have

E[w̃i] =

[
I− µα− µ

√
2

πσ2
u

R

]
E[w̃i−1] + µαwo. (7)

From (7), it is easy to show that the mean behavior of the
weight error vector, that is E[w̃i], converges to the zero vector
if the step-size µ is bounded by:

0 < µ <
2
√
πσ2

u

α
√
πσ2

u +
√
2λmax

. (8)

where λmax is the maximum eigenvalue of R.

IV. SIMULATION RESULTS

In the results below, 3600 samples of the clean ECG
signal were taken from the MIT-BIH Arrhythmia Database
Record: 105 [21], and they were later added with 3600 samples
of synthetic PLI with amplitude 100 mv, frequency 60 Hz,
sampled at 360 Hz. The sampling frequency of the synthetic
PLI has been chosen to be the same as that of the ECG signal
used in our experiments. The FIR filter length is fixed at
M = 5, the number of iterations are fixed at L = 10, the
step-size is fixed at µ = 0.01, and the leakage factor is fixed
at α = 0.002.

The selection of the most effective number of quantization
bits was done by first fixing the number of quantization bits
used for the filter coefficients to a particular value ranging from
1 to 16 and then by varying the number of quantization bits
used for the primary input, reference input, step-size, leakage
factor, filter output, and filtered ECG signal of the fixed-point
LSRA-based adaptive noise canceller from 1 to 16 for a given
type of quantization method.

Five different experiments are conducted, namely unquan-
tized full-precision, truncate, round, round-to-zero, and con-
vergent round adaptive filtering methods employing the LSRA
algorithm. In the latter four experiments, for example the round
adaptive filtering operated with the same type of quantization
method, namely round was used for the primary input, ref-
erence input, step-size, leakage factor, filter coefficients, filter
output, and filtered ECG signal of the fixed-point LSRA-based
adaptive noise canceller.
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 Unquantized clean ECG signal

Fig. 2. MIT-BIH Arrhythmia Database Record: 105.
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Fig. 3. MIT-BIH Arrhythmia Database Record: 105 + 60 Hz PLI.

The unquantized clean ECG signal free from artifacts is
shown in Figure 2, the unquantized ECG signal with additive
60 Hz PLI is shown in Figure 3, and the filtered ECG
signal recovered from the unquantized full-precision adaptive
filtering method employing the LSRA algorithm is shown in
Figure 4. As can be seen from Figure 4, the unquantized
full-precision adaptive filtering method employing the LSRA
algorithm successfully recovers the clean ECG signal.

The quantized filtered ECG signals recovered from trun-
cate, round, round-to-zero, and convergent round adaptive
filtering methods employing the LSRA algorithm are shown
in Figures 5, 6, 7, and 8, respectively. As can be seen from
Figures 5 and 7, the truncate and round-to-zero adaptive
filtering methods employing the LSRA algorithm failed to
recover the clean ECG signal, respectively. As can be seen
from Figures 6 and 8, the quantized filtered ECG signals
recovered from round and convergent round adaptive filtering
methods employing the LSRA algorithm are found to be
similar and are close to the filtered ECG signal recovered
from the unquantized full-precision adaptive filtering method
employing the LSRA algorithm as shown in Figure 4.
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Fig. 4. Recovered MIT-BIH Arrhythmia Database Record: 105 after
unquantized full-precision adaptive filtering using LSRA.
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 ECG signal after truncate adaptive filtering using LSRA

Fig. 5. Recovered MIT-BIH Arrhythmia Database Record: 105 after
truncate adaptive filtering using LSRA.

As can be seen from Figures 10 and 12, the MSE perfor-
mance of truncate and round-to-zero adaptive filtering methods
employing the LSRA algorithm, respectively, is found to be
similar to each other and is poor. This similarity of poor
performance can also be observed from the quantized filtered
ECG signals recovered from these two methods as shown
in Figures 5 and 7, respectively. The MSE performance of
the unquantized full-precision, round, and convergent round
adaptive filtering methods employing the LSRA algorithm is
found to be similar to each other as shown in Figures 9, 11, and
13, which can also be observed from the filtered ECG signals
recovered from these three methods as shown in Figures 4, 6,
and 8, respectively.

V. CONCLUSIONS

The most cost/performance effective number of quantiza-
tion bits necessary for the primary input, reference input, step-
size, leakage factor, filter coefficients, filter output, and filtered
ECG signal of the fixed-point LSRA-based adaptive noise
canceller were found to be 6-bits for the round and convergent
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 ECG signal after round adaptive filtering using LSRA

Fig. 6. Recovered MIT-BIH Arrhythmia Database Record: 105 after
round adaptive filtering using LSRA.
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Fig. 7. Recovered MIT-BIH Arrhythmia Database Record: 105 after
round-to-zero adaptive filtering using LSRA.

round adaptive filtering methods. Thus, it is shown that in the
presence of a well-correlated reference signal it is possible
to successfully recover the filtered ECG signal free from 60
Hz PLI with 6-bits quantization for both the filter coefficients
as well as the data paths for the round and convergent round
adaptive filtering methods using the fixed-point LSRA-based
adaptive noise canceller for a reduced complexity integrated
implementation. Finally, the upper bound on the step-size of
the LSRA algorithm is shown to be depending on the leakage
factor.
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