
Academic Editor: Hocine Cherifi

Received: 22 November 2024

Revised: 28 December 2024

Accepted: 30 December 2024

Published: 3 January 2025

Citation: El Badaoui, R.; Bonmati

Coll, E.; Psarrou, A.; Asaturyan, H.A.;

Villarini, B. Enhanced CATBraTS for

Brain Tumour Semantic Segmentation.

J. Imaging 2025, 11, 8. https://doi.org/

10.3390/jimaging11010008

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Enhanced CATBraTS for Brain Tumour Semantic Segmentation
Rim El Badaoui *, Ester Bonmati Coll, Alexandra Psarrou, Hykoush A. Asaturyan and Barbara Villarini *

School of Computer Science and Engineering, University of Westminster, London W1W 6UW, UK;
e.bonmaticoll@westminster.ac.uk (E.B.C.); a.psarrou1@westminster.ac.uk (A.P.);
h.asaturyan1@westminster.ac.uk (H.A.A.)
* Correspondence: r.elbadaoui@westminster.ac.uk (R.E.B.); b.villarini@westminster.ac.uk (B.V.)

Abstract: The early and precise identification of a brain tumour is imperative for enhancing
a patient’s life expectancy; this can be facilitated by quick and efficient tumour segmenta-
tion in medical imaging. Automatic brain tumour segmentation tools in computer vision
have integrated powerful deep learning architectures to enable accurate tumour boundary
delineation. Our study aims to demonstrate improved segmentation accuracy and higher
statistical stability, using datasets obtained from diverse imaging acquisition parameters.
This paper introduces a novel, fully automated model called Enhanced Channel Atten-
tion Transformer (E-CATBraTS) for Brain Tumour Semantic Segmentation; this model
builds upon 3D CATBraTS, a vision transformer employed in magnetic resonance imaging
(MRI) brain tumour segmentation tasks. E-CATBraTS integrates convolutional neural net-
works and Swin Transformer, incorporating channel shuffling and attention mechanisms
to effectively segment brain tumours in multi-modal MRI. The model was evaluated on
four datasets containing 3137 brain MRI scans. Through the adoption of E-CATBraTS, the
accuracy of the results improved significantly on two datasets, outperforming the current
state-of-the-art models by a mean DSC of 2.6% while maintaining a high accuracy that is
comparable to the top-performing models on the other datasets. The results demonstrate
that E-CATBraTS achieves both high segmentation accuracy and elevated generalisation
abilities, ensuring the model is robust to dataset variation.

Keywords: brain tumour; convolutional neural network; semantic segmentation; transformer;
tumour segmentation

1. Introduction
A brain lesion is an abnormality in the brain caused by injury or disease, and such

lesions can disrupt communication in the affected area. Brain lesions take many forms
and vary in severity depending on their types and causes [1]. For example, some lesions
are caused by traumatic brain injury, which can lead to strokes, infections in the brain,
decreased cognitive function, and brain tumours [2].

Clinically defined as a cerebral neoplasm, a brain tumour is formed by abnormal and
excessive growth of mutated tissues within or near a brain [3]. Moreover, primary brain
tumours originate in the brain, whereas secondary brain tumours can spread to the brain
from other organs such as the lungs, colon, and kidneys. A benign brain tumour is non-
cancerous and grows relatively slowly in the brain. Symptoms might progressively worsen
over a matter of months or years, which include drowsiness, nausea, and vomiting, and
persistent headaches. In contrast, malignant brain tumours are fast-growing and cancerous,
and a sufferer may quickly develop symptoms over days or weeks [4]. Specialists develop
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treatment plans based on factors such as the location and aggressiveness of the tumour,
which is indicated by its grade and the patient’s age and sex [5].

The mortality rate for brain tumours is the second highest of all major cancers, with a
five-year survival rate of 12%. The highest is pancreatic cancer. There are several factors
behind the low survival rate [6]; they include the misdiagnosis or late detection of malignant
brain tumours. A recent analysis of extensive patient data concluded that a four-week
delay in appropriate treatment is associated with increased mortality [7].

Manual brain tumour detection in medical images such as magnetic resonance imaging
(MRI) volumes is a tedious, time-consuming task and subject to the limitations of human
eyesight. An investigation into radiologists’ workloads [8] revealed that they would have
to read around one medical image scan every 3 s in a work shift to deal with the overload.
Hence, a significant amount of the literature on deep learning (DL) networks focuses on
medical image analysis, particularly in developing precise computer-aided diagnosis (CAD)
tools for tumour segmentation.

As an architecture for DL algorithms, convolutional neural networks (CNNs) have
dominated CAD-based medical image analysis by outperforming artificial neural networks
(ANN) and long short-term memory (LSTM) for automatic 3-dimensional (3D) organ
segmentation [9] and classification in medical images; they have resulted in higher accuracy
relative to the gold standard of expert-led manual segmentation [10,11]. For instance,
CNNs can be employed to classify interstitial lung disease patterns of the lung [12], skin
cancer detection [13], and fundus detection [14]. However, one major drawback of this
architecture is the application of attention mechanisms, which only focus on neighbouring
pixels and do not relate to global features. Thus, transformers were introduced as a self-
attention approach for overcoming this issue, in which every element can link to long-range
dependencies; this approach received exceptional interest after surpassing competing
CNNs in natural language processing (NLP) tasks [15]. Following the tremendous success
of the transformers for NLP, researchers from Google considered applying transformers
for computer visioning and proposed an architecture named Vision Transformer (ViT) [16].
In this paper, we propose an Enhanced Channel Attention Transformer for Brain Tumour
Semantic Segmentation (E-CATBraTS) as a novel state-of-the-art DL model for brain tumour
segmentation in multi-modal MRI volumes. We trained and evaluated E-CATBraTS on four
datasets, demonstrating that our novel approach outperforms the current state-of-the-art
models in accuracy and generalisability. The implementation is available at https://github.
com/RimElBadaoui/E-CATBraTS, (accessed on 31 July 2024). The original contributions to
research in the context of medical image segmentation are as follows:

• A novel ViT-CNN model for the automatic segmentation of brain tumours in MRI
volumes, which uses channel shuffling and a channel-attention mechanism; this
improves both segmentation accuracy and the model’s generalisability on different
MRI sequences and multi-modal MRI datasets;

• An original CNN encoding block with a channel-attention module, which can exploit
tumour features and optimise the robustness of the segmentation on various brain
tumour regions and image artefacts;

• A comprehensive validation on four different datasets, which demonstrates higher
segmentation accuracy and generalisability, compared to the current state-of-the-
art models.

The remainder of this paper is organised as follows. Section 2 provides a brief overview
of current state-of-the-art DL models for medical image segmentation. Section 3 details the
proposed E-CATBraTS model for brain tumour segmentation, while Section 4 describes the
four different datasets used for training, validating and evaluating the proposed approach;
it covers the evaluation and the implementation details. Section 5 delivers and performs

https://github.com/RimElBadaoui/E-CATBraTS
https://github.com/RimElBadaoui/E-CATBraTS
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a quantitative analysis of the segmentation results. Moreover, Section 6 discusses and
provides a critique of these results against the current state-of-the-art models. In conclusion,
Section 7 provides a summary of the proposed novel approach, coupled with findings and
future work.

2. Background
Over the past decade, different types of CNN architectures have dominated the field

of radiomics in modern medicine [17], including the successful integration of an attention
mechanism layer. Most recently still, ViTs have gained popularity as a method for solving
medical image classification and segmentation tasks.

One of the most widely used CNNs is known as U-Net, which is based on the fully
convolutional network [18,19]. The architecture primarily consists of a downsampling
(encoder) and upsampling (decoder) phase. The main contribution of U-Net is presented in
the decoder network consisting of four blocks, in which convolutional upsampling replaces
the max pooling layers to enhance the resolution of the output. U-Net suffers from the
vanishing gradient problem: increasing the number of layers causes the gradients of the
loss function to decrease exponentially as it propagates down to the initial input layer and
leads to degradation in network convergence.

Another encoder–decoder architecture, SegResNet, builds upon ResNet with an auto-
encoder (VAE) branch to address the problem of vanishing gradient [20,21]. First, the
encoder network extracts feature maps from the image using residual blocks. Secondly, the
decoder employs a 3D 1 × 1 convolutional layer and 3D bi-linear upsampling to increase
the maps’ spatial size, which is then added to the output of the equivalent encoding block.
The output classes are computed by a 3D 1× 1 convolutional layer and a sigmoid activation
function. Despite winning the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS)
Challenge of 2018 [22], the SegResNet architecture adds more complexity to the training
phase, leading to an over-fitted model [23].

In the past year, the novel architecture Shifted WINdows UNEt TRansformers (Swin
UNetR) has gained popularity as a ViT neural network for 3D semantic segmentation of
brain tumours in MRI volumes. Swin UNetR is based on the Swin Transformer (Swin-T)
merged with a CNN-based decoder utilising a shifted window module [24].

Swin UNetR passes the network’s input to Swin-T, which creates 3D non-overlapping
tokens of the input using a patch-splitting mechanism. By employing a transformer
encoder, Swin-T reduces the number of patches in one of the four stages; the first stage of
the transformer encoder consists of a linear embedding layer and two transformer blocks
based on shifted windows [25]. Each subsequent stage contains a patch merging layer to
downsize the features by a factor of 2 and two transformer blocks.

Next, the encoded features pass through a CNN residual decoder that upsamples the
features to the original resolution via skip connections. Swin UNetR performed better than
current state-of-the-art models, such as SegResNet, nnU-Net [26,27] and TransBTS [28],
in the BraTS 2021 challenge validation phase. However, the findings could have been
more comprehensive if Swin UNetR had been tested on datasets with varying image
quality. The performance of Swin UNetR is likely to decline when applied to lower-quality
images, which restricts its use to high-quality datasets. It is essential to develop a model
that remains robustly accurate across different imaging qualities so that it can be used
effectively in real-life scenarios where medical images come in various resolutions.

3. Methodology
In a real-life scenario, the quality of medical imaging varies for several reasons. For

example, the slightest movement by a patient during their scanning process will add
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artefacts known as noise to the resultant image and negatively impact its interpretation.
The most common noises include Gaussian, salt and pepper, poison and impulse [29].
Therefore, producing a generalisable model that can be successfully applied to multiple
datasets with high accuracy is essential. For this purpose, we developed E-CATBraTS, a
novel model that improves upon 3D CATBraTS [30] and delivers higher generalisability
and segmentation accuracy across datasets acquired using multiple sequences and scanner
protocols. 3D CATBraTS is a hybrid deep learning method that employs ViTs and CNNs
for 3D brain tumour segmentation in MRI and has outperformed competing methods in
the validation phase of the BraTS 2021 challenge. However, the main weakness of the
approach is its reliance on specific data, which makes it susceptible to biases and results in
poorer segmentation performance when dealing with new, unseen data. To address these
issues, our proposed model, E-CATBraTS, employs channel-shuffling and channel-attention
mechanisms and can be described in three main parts, namely the Swin Transformer, the
down-sampling, and the up-sampling, as shown in Figure 1.

Figure 1. E-CATBraTS with channel shuffle module for shuffling embedded feature maps prior to
reducing its size using a novel CAT encoding block. The blue background represents the encoder,
while the yellow represents the decoder.

The first part integrates the Swin Transformer (Swin-T), as illustrated in Figure 2, which
processes a multi-modal MR image input with dimensions 128 × 128 × 96 × 4 and splits
the volume into non-overlapping shifting windows using a patch partition module. Shifted
windows allow improved efficiency by computing self-attention from local windows, and its
hierarchical structure ensures scalability to compute information at different scales. After
splitting, the patches undergo linear embedding to produce patches of size 2 × 2. Next,
two transformer blocks are applied to the tokens to complete the first stage. The resulting out-
put is processed through the second stage, and each additional stage contains a patch merging
layer that concatenates neighbouring patches and downsamples the number of patches by a
factor of 2, followed by two transformer blocks employed for feature transformation.
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Figure 2. Swin Transformer with four stages: it takes, as an input, non-overlapping patches of
magnetic resonance imaging (MRI) volumes.

In the second part of E-CATBraTS, we introduce five channel shuffling blocks applied
to the output of Swin-T, shown as green blocks in Figure 1. Consider an input of size
W × H × C to represent the width, height and number of channels, respectively. Chan-
nel shuffling is a computationally effective operation that reshapes the feature map as
W × H × G × C

G , where G denotes the number of groups in which to divide the channels.
Next, the tensor is permuted and reshaped to the original dimensions. Figure 3 illustrates
the process of channel shuffling: the squares coloured yellow, red, green, and blue designate
the channels of the four MRI acquisitions T1, T1-weighted, T2, and T2-FLAIR. We set the
number of groups to 4 based on the number of MRI acquisitions. We also experimented
with the module having two groups, allowing each channel to exchange information with
one from another group in order to prevent feature loss. By shuffling the channels, we
enable the flow of information between the feature maps in the same spatial location
so each group holds information from the other groups. We use the channel shuffling
mechanism as a regularisation technique to improve our model’s evaluation accuracy and
convergence rate and help reduce the risk of overfitting. Moreover, when shuffling the
feature maps between the channels, it will work as structured noise for the channels, which
can substantially improve the model’s generalisable capabilities. After shuffling the feature
maps, we perform downsampling using CNN encoding blocks to reduce the size of the
feature maps.

Figure 3. Channel shuffle. Channels are divided into four subgroups. Yellow, red, green, and blue
represent the channels of the four MRI acquisitions: T1, T1-weighted, T2, and T2-FLAIR.
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We removed the residual encoding blocks of 3D CATBraTS and replaced them with
six novel, simplified CNN-based alternatives known as CAT blocks, as presented in Figure 4.
Our proposed encoding block processes a given input, which corresponds to the output
channels generated from the channel shuffling blocks, through a 3 × 3 × 3 convolutional
layer of stride 1 and padding 1. The next step includes 3D batch normalisation and
integration of a channel attention module of two layers: a global average pooling layer and
a fully connected layer. A global average pooling layer reduces the spatial dimension of
feature maps by averaging the feature maps to attain channel weights. This is computed
as follows:

mk =
1

W × H

W

∑
i=1

H

∑
j=1

xk(i, j),

where xk(i, j) represents the feature map of the kth channel on the spatial location (i, j) [31].
mk denotes kth channel global average pooling.

Figure 4. A single CAT encoding block. The block takes X as an input and applies a 3D convolution.
Next, normalisation is performed using a 3D batch normalisation function before progressing through
a channel attention module and activated in a LeakyReLU layer.

The fully connected layer obtains the cross-relationship between the channels and
scales the weights. Not all feature maps exhibit the same level of importance for network
optimisation; for instance, feature maps containing background information contribute less
to the resultant segmentation than feature maps containing more meaningful contextual
information, such as the target tumour and surrounding membrane tissue. Thus, we
employed the attention module to provide extra weight to the channels that significantly
exploit tumour features of interest, which will improve the convergence and generalisation
capabilities of the model [32]. The output of a CAT block is a LeakyReLU of the channel
attention module. It is important to note that the feature maps’ size in the first CAT block is
H × W × D × 48, and this is reduced by a factor of 2 until reaching H

32 × W
32 × D

32 × 768 in
the final block.

In the third part of our proposed model, the feature maps are upsampled to their orig-
inal size using five residual decoding blocks, as highlighted in Figure 1. Upon completion,
a 1 × 1 × 1 convolution is applied to map out three tumour subclasses of interest: whole
tumour (WT), tumour core (TC), and enhancing tumour (ET).

4. Experiments
4.1. Datasets

To evaluate the performance and robustness of E-CATBraTS, we trained and tested
our model on four datasets: UCSF-PDGM, UPENN-GBM, EGD, and BraTS 2021

The UCSF-PDGM dataset includes 501 cases of MRI volumes, which can be accessed
from the Cancer Imaging Archive [33–35]. The imaging modalities include T1, T1-weighted,
T2, and T2-FLAIR primarily. The ground-truth labels were initially generated using a
winning segmentation algorithm and manually reviewed and edited by trained radiologists;
the dataset includes the labels for the enhancing tumour (ET), tumour core (TC), and whole
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tumour (WT). We split the dataset into 351 for training, 101 for validation and 49 cases for
evaluating our proposed model.

UPENN-GBM is a collection of 611 cases of MRI volumes involving de novo Glioblas-
toma (GBM) patients from the University of Pennsylvania Health System (UPENN) between
2006 and 2018 [35–37]. The MR images were obtained via sequences T1, T1-weighted, T2,
and T2-FLAIR, coupled with the techniques of diffusion tensor imaging and dynamic
susceptibility contrast for most cases. In this study, we split the dataset into 427 cases for
training, 122 cases for validation and 62 cases to evaluate our model’s performance.

The Erasmus Glioma Database (EGD) contains the MRI scans of patients with glioma,
with 281 female cases, 492 male cases, and one unknown case [38]. The MR images were
obtained using four main acquisition protocols, including T1, T1Gd, T2, and T2-Flair. A
WT ground truth segmentation was included for each case, 374 of which were manually
annotated before registration to a common atlas, and the remaining 400 were automatically
segmented after registration. For this study, we split the EGD database into 540 cases for
training, 117 cases for validation and 117 for testing our model. EGD is available at the
Health-RI XNAT upon request and granted access after signing a data usage agreement [39].

The Brain Tumor Segmentation BraTS dataset for 2021 is arguably one of the most
popular datasets employed in developing and testing novel brain tumour segmentation
models. BraTS contains the brain MRI scans of 1251 patients diagnosed with brain tumours,
all of whom underwent pre-processing and were manually annotated and reviewed by
specialist radiologists. The dataset also provides the four MRI modalities: T1, T1Gd, T2,
and T2-Flair [40–42]. We used a subset of 50 scans from the UCSF-PDGM dataset for testing.

4.2. Evaluation

To evaluate the segmentation accuracy of E-CATBraTS, we use the Dice similarity
coefficient (DSC), Jaccard index, and Hausdorff distance (HD) performance metrics. DSC
is a score between 0 and 1, which measures the similarity between the ground truth and
prediction as two separate datasets. DSC can be defined as follows:

DSC(G, P) =
2|G ∩ P|
|G|+ |P| ,

where DSC(G, P) is the overlap between G and P, representing the ground truth and the
prediction, respectively.

The Jaccard index, also referred to as Intersection over Union (IoU), computes the
overlap between the ground truth and prediction divided by the union of the two.

IoU(G, P) =
|G ∩ P|
|G ∪ P| ,

The HD measures the Euclidian distance between the points of the ground truth and
the segmentation set. The smaller the Hausdorff distance, the better the match between the
two sets.

HD(G, P) = max
gϵG

{min
pϵP

{d(g, p)}},

where g and p are points in sets G and P, respectively and d(g, p) is the distance between
points g and p.

4.3. Implementation Details

E-CATBraTS was implemented using MONAI framework [43]. All models were
trained with an initial learning rate of 5 × 10−5 on NVIDIA GeForce RTX 3080, Acer,
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London, Uk. Next, using the CosineAnnealingLR scheduler [44], the initial learning rate is
simultaneously decreased by the following equation:

lrt = lrmin +
1
2
(lrmax − lrmin)(1 + cos(

Ecurr

Emax
π)),

where lrt is the learning rate computed at each validation using cosine annealing, lrmax

is the initial learning rate and lrmin represents the minimum learning rate, lrmax is the
maximum number of epochs, Ecurr is the number of epochs since the last restart, and
π = 3.14.

The CosineAnnealingLR scheduler is an effective technique for gradually reducing
the learning rate during training. This scheduler facilitates a smooth adjustment, which
enhances the model’s performance and convergence.

Our proposed model employs the stochastic optimisation method AdamW, which
decays weight per the decoupling weight decay technique from the gradient update [45].
AdamW demonstrates improved generalisation and yields better training loss, outperform-
ing similar methods.

We employ the Dice loss to train E-CATBraTS as it is widely used for handling
imbalanced data, and it is formulated by subtracting the DSC from 1 [46].

5. Results
We trained and evaluated our proposed model and comparable state-of-the-art mod-

els on four MRI datasets. First, Table 1 highlights the results using the UCSF-PDGM
dataset, for which we assessed the channel shuffle mechanism by dividing the channels
into two and four groups known as GRP. Our results demonstrate that, in both experiments,
E-CATBraTS outperformed the state-of-the-art models, achieving a mean DSC of 0.795 and
a standard deviation of 0.034 (GRP = 4), which is 3.8% higher than the nearest competitor,
UNETR. For each tumour subregion, E-CATBraTS raised the mean DSC to 0.722 for TC,
0.884 for WT and 0.778 for ET, a significant improvement that follows the same trend using
the IoU and HD performance metrics. In contrast, applying SegResNet to the same dataset
scored the lowest accuracy with a mean DSC of 0.673, including 0.651, 0.779, and 0.588 for
TC, WT, and ET, respectively. Next to the model that yields the most accurate results is
E-CATBraTS, achieving a mean DSC of 0.761 (GRP = 2) and highlights that E-CATBraTS
significantly boosts 3D brain tumour segmentation by roughly 6% more than 3D CAT-
BraTS, and achieves higher statistical stability with a lower standard deviation to indicate
enhanced robustness.

Table 1. Quantitative evaluation of the proposed approach compared to the state-of-the-art models
on UCSF-PDGM. Results presented as dice similarity coefficient (DSC) mean ± standard deviation
(std). GRP is the number of subgroups in channel shuffle (highest accuracies are highlighted in bold).

Network

Metric Region SegResNet UNETR Swin UNetR 3D CATBraTS E-CATBraTS E-CATBraTS
(GRP = 2) (GRP = 4)

DSC
Mean 0.673 ± 0.031 0.757 ± 0.045 0.749 ± 0.039 0.735 ± 0.038 0.761 ± 0.035 0.795 ± 0.034
TC 0.651 ± 0.073 0.694 ± 0.067 0.667 ± 0.048 0.667 ± 0.064 0.680 ± 0.044 0.722 ± 0.0589
WT 0.779 ± 0.027 0.833 ± 0.026 0.834 ± 0.033 0.802 ± 0.018 0.851 ± 0.023 0.884 ± 0.013
ET 0.588 ± 0.040 0.744 ± 0.054 0.748 ± 0.048 0.737 ± 0.045 0.753 ± 0.05 0.778 ± 0.043

Jaccard
Mean 0.551 ± 0.028 0.653 ± 0.050 0.645 ± 0.041 0.624 ± 0.038 0.659 ± 0.036 0.697 ± 0.039
TC 0.54 ± 0.074 0.586 ± 0.073 0.55 ± 0.043 0.552 ± 0.064 0.568 ± 0.037 0.612 ± 0.065
WT 0.659 ± 0.031 0.735 ± 0.032 0.746 ± 0.04 0.69 ± 0.022 0.761 ± 0.0305 0.803 ± 0.018
ET 0.455 ± 0.037 0.639 ± 0.056 0.641 ± 0.05 0.628 ± 0.044 0.649 ± 0.052 0.675 ± 0.046
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Table 1. Cont.

Network

Metric Region SegResNet UNETR Swin UNetR 3D CATBraTS E-CATBraTS E-CATBraTS
(GRP = 2) (GRP = 4)

Hausdorff
Mean 25.685 ± 4.238 25.755 ± 2.600 21.968 ± 5.591 25.783 ± 5.542 18.323 ± 5.883 13.918 ± 2.482
TC 22.404 ± 7.582 23.152 ± 4.408 23.909 ± 4.513 24.951 ± 5.816 20.768 ± 5.929 16.553 ± 2.684
WT 36.426 ± 5.929 33.393 ± 5.179 20.8 ± 7.744 30.48 ± 6.31 18.333 ± 6.156 15.748 ± 4.457
ET 18.226 ± 5.422 20.719 ± 5.665 21.194 ± 5.384 21.918 ± 6.532 15.866 ± 5.994 9.453 ± 2.238

The performance of models UNETR and Swin UNeTR on the UCSF-PDGM
dataset were 0.757 and 0.749 in mean DSC, respectively. Figure 5 highlights the results of
E-CATBraTS in three cases with brain tumours of varying size, shape, and location. For
each case, the top row depicts an image of the 3D brain reconstruction in the MRI scan,
and for every tumour subclass, the subsequent left and right columns compare the ground
truth and the predictions of our proposed model, respectively.

Figure 5. Brain tumour subregion segmentation in three randomly selected MRI cases from the
test UCSF-PDGM dataset. The tumour subcategories: tumour core (TC), whole tumour (WT), and
enhancing tumour are highlighted in yellow, blue, and red, respectively.

Using the UPENN-GBM dataset, our proposed model yielded the best results in mean
DSC, as presented in Table 2. Given two subgroups in the channel shuffle, E-CATBraTS
achieved the highest segmentation accuracy for TC (0.857) and ET (0.856) and surpassed
the performance of 3D CATBraTS by 4.7% overall. In contrast, the CNN-based SegResNet
trailed behind with the lowest score, a mean DSC of 0.751. They were followed by our
proposed method with four subgroups, UNETR and the Swin UNetR, with mean DSC:
0.850, 0.856, and 0.857, respectively. Figure 6 highlights different evaluations of E-CATBraTS
in three cases.
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Figure 6. Segmented brain tumours in three randomly selected cases in the test UPENN-GBM dataset.
Tumour core (TC) is marked in yellow, whole tumour (WT) in blue, and enhancing tumour (ET)
in red.

Table 2. Quantitative evaluation of proposed approach compared to the state-of-the-art models on
UPENN-GBM. Results presented as dice similarity coefficient (DSC) mean ± standard deviation (std).
GRP is the number of subgroups in channel shuffle (highest accuracies are highlighted in bold).

Network

Metric Region SegResNet UNETR Swin UNetR 3D CATBraTS E-CATBraTS E-CATBraTS
(GRP = 2) (GRP = 4)

DSC
Mean 0.751 ± 0.009 0.856 ± 0.017 0.857 ± 0.019 0.824 ± 0.014 0.871 ± 0.014 0.850 ± 0.009
TC 0.789 ± 0.015 0.823 ± 0.024 0.811 ± 0.027 0.782 ± 0.021 0.857 ± 0.02 0.802 ± 0.015
WT 0.826 ± 0.008 0.891 ± 0.012 0.905 ± 0.013 0.854 ± 0.009 0.9 ± 0.012 0.909 ± 0.009
ET 0.637 ± 0.02 0.854 ± 0.02 0.855 ± 0.02 0.837 ± 0.019 0.856 ± 0.015 0.839 ± 0.012

Jaccard
Mean 0.623 ± 0.01 0.765 ± 0.025 0.769 ± 0.028 0.719 ± 0.019 0.790 ± 0.021 0.759 ± 0.012
TC 0.672 ± 0.02 0.718 ± 0.034 0.705 ± 0.041 0.665 ± 0.028 0.774 ± 0.028 0.693 ± 0.021
WT 0.713 ± 0.01 0.813 ± 0.017 0.835 ± 0.019 0.753 ± 0.012 0.828 ± 0.016 0.84 ± 0.014
ET 0.485 ± 0.019 0.763 ± 0.03 0.767 ± 0.03 0.739 ± 0.026 0.766 ± 0.021 0.744 ± 0.015

Hausdorff
Mean 13.649 ± 1.452 11.128 ± 4.426 7.320 ± 1.726 15.407 ± 7.867 7.093 ± 5.05 7.905 ± 2.143
TC 10.367 ± 1.794 11.872 ± 3.647 9.496 ± 1.36 13.768 ± 7.784 7.776 ± 6.171 10.727 ± 1.614
WT 19.904 ± 5.558 17.012 ± 11.923 7.366 ± 6.142 24.189 ± 11.635 9.273 ± 5.196 7.406 ± 4.835
ET 10.677 ± 1.793 4.501 ± 0.795 5.097 ± 1.154 8.263 ± 5.56 4.23 ± 5.711 5.583 ± 0.773

Using the EGD dataset, E-CATBraTS performed comparably to Swin UNetR as shown
in Table 3, in which case the latter scored less than 0.5% more than the former on WT,
achieving a mean DSC of 0.784. Our results show that E-CATBraTS scored an overall higher
accuracy than 3D CATBraTS in mean DSC of 0.780 and 0.732, respectively.
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Table 3. Dice similarity coefficient (DSC) mean ± standard deviation (std) on EGD (highest accuracies
are highlighted in bold).

Network
Metric Region SegResNet Swin UNetR 3D CATBraTS E-CATBraTS
DSC WT 0.738 ± 0.022 0.774 ± 0.026 0.732 ± 0.032 0.768 ± 0.024

Jaccard WT 0.625 ± 0.024 0.661 ± 0.031 0.616 ± 0.034 0.658 ± 0.032

Hausdorff WT 41.790 ± 8.125 38.313 ± 8.024 44.999 ± 7.836 34.255 ± 8.341

As highlighted in Table 4, our results indicate that 3D CATBraTS yielded better results
on the BraTS 2021 dataset than E-CATBraTS and other state-of-the-art models. When
comparing 3D CATBraTS to our proposed methodology, the former performed roughly 3%
better in mean DSC accuracy (0.809) than the latter (0.770).

Table 4. Segmentation results of E-CATBraTS compared to the current state-of-the-art models trained on
the BraTS 2021 and evaluated on the UCSF-PDGM datasets (highest accuracies are highlighted in bold).

Network
Metric Region SegResNet Swin UNetR 3D CATBraTS E-CATBraTS

DSC
Mean 0.724 ± 0.059 0.751 ± 0.047 0.809 ± 0.033 0.770 ± 0.080
TC 0.737 ± 0.084 0.682 ± 0.084 0.784 ± 0.045 0.726 ± 0.102
WT 0.818 ± 0.016 0.823 ± 0.021 0.851 ± 0.03 0.802 ± 0.032
ET 0.616 ± 0.087 0.748 ± 0.055 0.792 ± 0.03 0.781 ± 0.154

Jaccard
Mean 0.606 ± 0.054 0.648 ± 0.053 0.716 ± 0.04 0.658 ± 0.072
TC 0.630 ± 0.077 0.576 ± 0.093 0.690 ± 0.054 0.613 ± 0.098
WT 0.709 ± 0.021 0.726 ± 0.025 0.766 ± 0.034 0.696 ± 0.043
ET 0.480 ± 0.073 0.643 ± 0.059 0.692 ± 0.037 0.666 ± 0.132

Hausdorff
Mean 18.372 ± 9.995 31.620 ± 4.594 10.034 ± 2.136 13.627 ± 2.284
TC 12.671 ± 11.545 23.667 ± 6.574 9.474 ± 2.286 9.723 ± 1.651
WT 29.155 ± 7.718 50.733 ± 5.304 13.709 ± 4.411 24.559 ± 6.921
ET 13.291 ± 11.915 20.461 ± 7.383 6.919 ± 2.164 6.598 ± 1.783

With respect to the other models, E-CATBraTS has outperformed both SegResNet and
Swin UNeTR by around 2% when compared to the nearest model.

Evaluating the performance of E-CATBraTS with HD metric shows a lower score than
the other models on UCSF-PDGM, UPENN-GBM, and EGD datasets, indicating that our
proposed model has better segmentation of the tumour boundaries and its components.

Moreover, several ablation studies were conducted to demonstrate the importance
of the Channel shuffling and channel attention modules in improving the generalisation
capabilities and segmentation accuracy of E-CATBraTS. The results were compared to
E-CATBraTS on the four datasets and evaluated using DSC, IoU, and HD metrics. The
results of the ablation experiments are shown in Table 5. It is clear from the results that the
addition of the channel shuffling and channel attention modules has increased the accuracy
and stability of the model, which was validated using the three evaluation metrics.

Table 5. Ablation study of the proposed model on four datasets: UCSF, UPENN, EGD, and BraTS 2021
(highest accuracies are highlighted in bold).

Network

Metric Datasets E-CATBraTS No Attention No Shuffle No Shuffle
No Attention

DSC
UCSF 0.795 ± 0.034 0.745 ± 0.033 0.762 ± 0.031 0.719 ± 0.041
UPENN 0.871 ± 0.014 0.854 ± 0.010 0.859 ± 0.021 0.836 ± 0.02
EGD 0.768 ± 0.024 0.753 ± 0.037 0.755 ± 0.028 0.740 ± 0.034
BraTS 2021 0.770 ± 0.080 0.724 ± 0.047 0.707 ± 0.037 0.709 ± 0.052
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Table 5. Cont.

Network

Metric Datasets E-CATBraTS No Attention No Shuffle No Shuffle
No Attention

Jaccard
UCSF 0.697 ± 0.039 0.640 ± 0.031 0.657 ± 0.032 0.605 ± 0.044
UPENN 0.790 ± 0.021 0.765 ± 0.013 0.775 ± 0.030 0.741 ± 0.03
EGD 0.658 ± 0.032 0.639 ± 0.034 0.639 ± 0.032 0.625 ± 0.035
BraTS 2021 0.658 ± 0.072 0.615 ± 0.051 0.596 ± 0.035 0.603 ± 0.053

Hausdorff
UCSF 13.918 ± 2.482 17.461 ± 2.600 25.196 ± 3.243 33.820 ± 4.635
UPENN 7.093 ± 5.05 8.769 ± 2.250 6.609 ± 1.898 6.711 ± 1.241
EGD 34.255 ± 8.341 40.145 ± 8.628 39.773 ± 7.702 46.015 ± 8.462
BraTS 2021 13.627 ± 2.284 23.249 ± 3.504 18.341 ± 2.524 14.272 ± 2.964

6. Discussion
Our main goal in developing E-CATBraTS is to precisely identify and segment 3D

brain tumours in MR images that could be affected by artefacts. We also aim to ensure
that our proposed DL model exhibits statistical stability when applied to various datasets
acquired through different imaging protocols. As such, we evaluated E-CATBraTS on four
datasets generated at multiple medical centres: UCSF-PDGM, UPENN-GBM, EGD, and
BraTS 2021. To the best of our knowledge, this is the first study to develop and apply a DL
model on the aforementioned multi-site, multi-modal brain MRI datasets.

The results of this study, as presented in Section 5, demonstrate that E-CATBraTS
outperforms the current state-of-the-art methods, including Swin UNetR and the leveraged
3D CATBraTS approach. Our proposed novel model generates more robust segmentations
across all tested datasets compared to the other competing models. There are several
explanations for this outcome: first, we perform channel shuffling for the embedded
patches prior to downsampling. Channel shuffling was initially introduced to help reduce
computational costs in object detection tasks involving mobile applications with insufficient
resources [47]. Thus, when integrated into our proposed model, the shuffling operates as
a DL network regulariser, enabling the cross-flow of contextual information between the
T1, T1Gd, T2, and T2-Flair channels by randomly swapping their patches, which improves
the model’s generalisation capabilities. Each MRI modality provides excellent soft-tissue
contrast to highlight tumour subregions of interest, primarily as the intersection between
the modalities generates more precise insight into the tumour subregions.

Furthermore, the proposed enhanced CAT encoding block supports our novel model,
achieving higher segmentation accuracy and statistical stability. This block contains a single
3D convolution that is normalised using the batch function and then processed through a
channel attention block. Employing a channel attention module has significantly improved
the accuracy and robustness of E-CATBraTS without adding expensive computations to
the model. As mentioned in Section 3, the channels have a different impact on each class.
Accordingly, we weigh each channel based on its contribution using an average pooling
layer followed by two fully connected layers.

Overall, the accuracy of our proposed model’s predictions is impacted by the charac-
teristics of the brain tumour and the quality of the input MR image. Brain tumours vary
significantly in shape, size, and location, influenced by several factors such as the tumour
type and grade and patient age and sex. Such variation and inconsistency in structure
and position further challenge the DL model’s ability to identify the tumour of interest
accurately. Moreover, the extent to which an MR image exhibits artefacts plays a vital role
in the reliability of the resultant segmentation prediction. The quality of an input MR image
relies upon, but is not limited to, image acquisition, storage and transmission processes.



J. Imaging 2025, 11, 8 13 of 17

Artefacts can also hinder the reliability of an MRI case, including image anomalies caused
by software, hardware, pulse sequences or patient movement.

Figure 7 highlights E-CATBraTS’ resultant segmentation in a randomly selected case
from each of the four datasets, illustrating the variation in image quality across the datasets.
While the top row shows a single slice from an MRI brain scan, the middle and bottom
row shows the ground truth and our proposed model’s prediction, respectively. Typically,
bigger tumours, as in Case 3, see Figure 7, achieve higher segmentation results than their
smaller counterparts, as in Case 0. Contrary to expectations, the latter outperforms in
accuracy compared to the former, scoring 95.97% DSC versus 61.9% DSC. Such an outcome
underlines the image quality of the datasets in question, with UPENN containing scans
with lower image degradation than the EGD dataset.

Figure 7. Four cases randomly taken from various datasets with different image quality. For each case,
we show at the top row the original brain MRI slice; in row 2, we have the ground truth contoured in
red, and in the last row, we show the prediction of the E-CATBraTS model coloured in green with the
Dice similarity coefficient (DSC).

The results obtained from the ablation study clearly demonstrate the contribution
of the proposed techniques: the channel shuffle and the channel attention mechanisms.
As shown in Table 5, the model’s accuracy significantly improves when both components
are included. Conversely, the model performs poorly across all datasets when either or
both components are omitted. This can be attributed to the positive impact of channel
shuffling, which enhances the model’s convergence and enables it to learn more detailed
features. Additionally, the channel attention mechanism allows the model to focus on the
most relevant features, as previously mentioned.

As detailed in this paper, our findings carry significant implications for developing DL
models tailored towards other medical imaging tasks, such as segmenting breast lesions,
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bone tumours and organ tumours such as lung and pancreatic cancer. The generalisability
of the E-CATBraTS model could also extend towards heart segmentation to assess the risk
of cardiovascular diseases and detect various fetal cardiac anomalies.

Having trained and evaluated E-CATBraTS across four different datasets under the
same experimental setup, we have shown that our novel model achieves robust and
statistically stable results, potentially forming the basis for an investigation into other
biomedical image segmentation tasks and employed by the clinical research community to
assess and better understand graded brain tumours using large-scale MRI data.

Although the study has successfully achieved higher accuracy and shown improved
generalisability across various datasets, it is important to acknowledge certain limitations.
To better reflect real clinical scenarios, other brain imaging protocols such as CT scans,
which are a more cost-effective alternative to MRIs, should have been considered. However,
this was not feasible due to the limited availability of public resources that provide labelled
CT scan datasets. Additionally, there is a need for more diverse datasets to prevent biases
against specific tumour types.

7. Conclusions
This paper proposes E-CATBraTS, a novel deep learning model for a 3D brain tumour

segmentation model in MRI volumes. Our model improves upon 3D CATBraTS, which
originally outperformed state-of-the-art methods in the BraTS 2021 challenge validation
phase. E-CATBraTS was trained on four different datasets to exploit contextual information
by using channel shuffling, thereby enhancing the information exchange and interaction
between feature channels. This component allows the network to learn more complex
information while also helping to prevent overfitting. In addition to channel shuffling, we
incorporated a channel attention module in the encoding block, which assigns weights to
each channel based on its importance. This mechanism enables the network to focus on the
most significant features, ultimately optimising its accuracy. Through our experiments, we
have demonstrated that E-CATBraTS, using the UCSF-PDGM and UPENN-GBM datasets,
raises the segmentation accuracy and statistical stability, which helps in the early diagnosis
of brain tumours, compared to the state-of-the-art models Swin UNetR, SegResNet, UNetR,
and 3D CATBraTS. Furthermore, using the EGD dataset, our results were comparable to the
highest accuracy obtained by Swin UNetR. A natural progression of this work is to assess
the model in a real clinical setup, which could provide more reliable evidence. Further work
will aim to evaluate E-CATBraTS by using other imaging acquisition methods, including
computed tomography (CT) and positron emission tomography (PET). This approach will
not only enhance the robustness of the findings but also ensure that the model can be
adapted to various imaging technologies commonly used in clinical practice. Another
aspect of future research includes investigating the accuracy and broader generalisability
of E-CATBraTS for other biomedical segmentation tasks such as segmentation of lung,
pancreatic, prostate, and breast tumours.
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