D3.5 Opportunities for innovative ATM research (interim report)

Deliverable 3.5

Engage	
Grant:	783287
Call:	H2020-SESAR-2016-2
Торіс:	SESAR-ER3-01-2016 Knowledge Transfer Network
Consortium coordinator:	University of Westminster
Edition date:	26 July 2019
Edition:	01.02.00

Authoring & Approval

Authors of the document				
Name/Beneficiary	Position/Title	Date		
Dirk Schaefer / EUROCONTROL	Consortium member	02 July 2019		
Marc Bourgois / EUROCONTROL	Consortium member	02 July 2019		
Peter Hullah / EUROCONTROL	Consortium member	02 July 2019		

Reviewers internal to the project				
Name/Beneficiary	Position/Title	Date		
Dirk Schaefer / EUROCONTROL	Consortium member	16 July 2019		
Marc Bourgois / EUROCONTROL	Consortium member	16 July 2019		
Peter Hullah / EUROCONTROL	Consortium member	16 July 2019		
Graham Tanner / University of Westminster	Consortium member	26 July 2019		

Approved for submission to the SJU By — Representatives of beneficiaries involved in the project

Name/Beneficiary	Position/Title	Date
Andrew Cook / University of Westminster	Project coordinator	26 July 2019

Rejected By - Representatives of beneficiaries involved in the project

Name/Beneficiary	Position/Title	Date
N/A		

Document History

Edition	Date	Status	Author	Justification
01.00.00	04 February 2019	Release	Engage Consortium	New document for review by the SJU
01.01.00	16 July 2019	Release	Engage Consortium	Incorporating SJU comments
01.02.00	26 July 2019	Release	Engage Consortium	Incorporating SJU comments

2 © – 2019 – University of Westminster, Innaxis, Università degli studi di Trieste, Univerzitet u Beogradu, Technische Universiteit Delft, Frequentis AG, EUROCONTROL, European Aviation Safety Agency. All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

EUROPEAN UNION EUROCONTROL

THE SESAR KNOWLEDGE TRANSFER NETWORK

This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under grant agreement No 783287 under European Union's Horizon 2020 research and innovation programme.

Abstract

This document reports on the topics and academic disciplines of past Exploratory Research projects, notably SESAR Workpackage E (long-term and innovative research) and SESAR Exploratory Research (ER) with a view of tracing the evolution of research as well as opportunities for future research. This analysis is complemented with relevant activities in Engage, such as the Engage thematic challenges.

The opinions expressed herein reflect the authors' views only. Under no circumstances shall the SESAR Joint Undertaking be responsible for any use that may be made of the information contained herein.

Table of Contents

	Abstra	ct		
	Execut	ive summary6		
1	Intr	oduction7		
	1.1	The Engage KTN7		
	1.2	Objectives of this document7		
	1.3	Scope of D3.5		
2	Ana	lysis of SESAR Exploratory Research8		
	2.1	Thematic Areas in SESAR WP-E and ER		
3	ATN	1 Scope, Scientific Disciplines and Validation Approach in SESAR WP-E and ER13		
	3.1	ATM scope		
	3.2	Scientific disciplines		
	3.3	Validation approach		
	3.4	Conclusions		
4	Cha	Ilenges identified by WP-E Scientific Networks		
	4.1	ComplexWorld: Complexity Challenges in ATM 21		
	4.2	HALA! Automation Challenges		
5	Eng	age Thematic Challenges24		
	5.1	Establishing thematic challenges		
	5.2	Engage TC Workshop recommendations		
6	Con	clusions		
	6.1	Lessons learned		
7	Refe	erences		
8	Acro	onyms		
A	ppendi	x A: Project Review – ATM Scope		
A	Appendix B: Project Review – Scientific Disciplines			
A	ppendi	x C: Project Review – Validation Approach53		

List of tables

Table 1. SESAR Exploratory Research call thematic areas	8
Table 2. SESAR Exploratory Research projects and networks	9

List of figures

Figure 1. Number of Exploratory Research projects per thematic area	12
Figure 2. ATM Scope of WP-E and ER projects	14
Figure 3. Scientific disciplines of WP-E and ER projects	16
Figure 4. Validation approach of WP-E and ER projects	18

Executive summary

Engage is the SESAR 2020 Knowledge Transfer Network (KTN). It is managed by a consortium of academia and industry to promote and facilitate the development of air traffic management research in Europe. Its focus is two-fold: inspiring new researchers and helping to align exploratory and industrial research, through a wide range of activities and financial support actions.

This document provides a review of previous SESAR Exploratory Research, not so much in order to synthesise their results and achievements (such an analysis is provided elsewhere) but with a view to obtaining a more global perspective of the subject matter and academic disciplines explored in these projects. A total of 40 SESAR WP-E projects and 35 SESAR ER projects from the ER1 and ER3 waves have been reviewed in such a fashion. The analysis is complemented with relevant findings from the WP-E *HALA! – Towards Higher Automation Levels in ATM –* and *ComplexWorld* networks and the *Engage* Knowledge Transfer Network.

© – 2019 – University of Westminster, Innaxis, Università degli studi di Trieste, Univerzitet u Beogradu, Technische Universiteit Delft, Frequentis AG, EUROCONTROL, European Aviation Safety Agency. All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

1 Introduction

1.1 The Engage KTN

Engage is the SESAR 2020 Knowledge Transfer Network (KTN). It is managed by a consortium of academia and industry, with the support of the SESAR Joint Undertaking, to promote and facilitate the development of air traffic management research in Europe. Its focus is two-fold: inspiring new researchers and helping to align exploratory and industrial research, through a wide range of activities and financial support actions.

1.2 Objectives of this document

This document provides a systematic review of the scope and outcomes of previous European innovative/exploratory ATM research projects in order to illustrate progress made, changing objectives and avenues that could be explored further.

1.3 Scope of D3.5

The analysis provided in this document is based on a review of the following sources:

- SESAR WP-E (long-term and innovative research) projects following the first and second call;
- The SESAR WP-E HALA! Towards Higher Automation Levels in ATM and ComplexWorld networks;
- SESAR 2020 Exploratory Research projects following the ER1 and ER3 calls (call ER2 exclusively funded RPAS projects which were found less relevant for D3.5);
- The SESAR Knowledge Transfer Network, Engage, notably the Engage thematic challenges and the outcomes of the workshops held in Q4/2018.

2 Analysis of SESAR Exploratory Research

2.1 Thematic Areas in SESAR WP-E and ER

A series of Exploratory Research calls have been let by SESAR. Within SESAR 1, Workpackage E (longterm and innovative research) let two calls (2010 and 2012) resulting in two networks and a total of 40 research projects. Within SESAR 2020, Exploratory Research calls ER1 (2015) and ER3 (2017) led to a total of 35 projects and the Engage Knowledge Transfer Network. For all four calls, thematic areas were defined to focus the limited resources on areas which were expected to lead to greatest benefits. The thematic areas evolved slightly over time and are shown below; colours indicate related areas.

WP-E First Call	WP-E Second Call	ER-1 Call	ER-3 Call
			Knowledge Transfer Network
Toward Higher Levels of Automation in ATM	Toward Higher Levels of Automation in ATM	Automation, Robotics and Autonomy	
			Separation Management
		Advanced Air Traffic Services	Trajectory Based Operations
Mastering Complex Systems Safely	Mastering Complex Systems Safely	Complexity, Data Science and Information Management	
	Information Management, Uncertainty And Optimisation		,
Legal Aspects Of Paradigm Shift	Enabling Change In ATM	Economics, Legal and Regulation	
(Economics And Performance)			I
	-	Environment and meteorology in ATM	
8 © – 2019 – University of Univerzitet u Beogradu, 7 EUROCONTROL, Europea the SESAR Joint Undertak	Westminster, Innaxis, Università de Fechnische Universiteit Delft, Frequ In Aviation Safety Agency. All rights king under conditions.	egli studi di Trieste, Ientis AG, reserved. Licensed to	Founding Members

Table 1. SESAR Exploratory Research call thematic areas

WP-E First Call	WP-E Second Call	ER-1 Call	ER-3 Call
		Enabling Aviation Infrastructure	CNS for General Aviation
			CNS
	System Architecture and System Design	ATM Operations, Architecture, Performance and Validation	ATM Architecture, performance and validation
		High Performing Airport Operations	

Projects and networks covering the different thematic areas are shown below.

Table 2. SESAR Exploratory Research projects and networks

WP-E First Call	WP-E Second Call	ER-1 Call	ER-3 Call
			Knowledge Transfer Network
Toward Higher Levels of	Toward Higher Levels of	Automation, Robotics	
Automation in ATM	Automation in ATM	and Autonomy	
HALA! Network	HALA! Network	ТаСо	
STREAM	AGATHA	MINIMA	
SUPEROPT	SAFECORAM	AGENT	
C-SHARE	NINA	STRESS	
ZeFMaP	MOTA	AUTOPACE	
ADAHR	6th Sense		
MUFASA	ERAINT		
τες	Proga		
SPAD	АСГ		
of the			Separation Management
		Advanced Air Traffic	Trajectory Based
		Services	Operations
		R-VVAKE	
		COPTRA	COTTON
		OptiFrame	
		PARTAKE	

© – 2019 – University of Westminster, Innaxis, Università degli studi di Trieste, Univerzitet u Beogradu, Technische Universiteit Delft, Frequentis AG, EUROCONTROL, European Aviation Safety Agency. All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

WP-E First Call	WP-E Second Call	ER-1 Call	ER-3 Call
Mastering Complex Systems Safely ComplexWorld Network MAREA NEWO ONBOARD COMPASS ASHICS CASSIOPEIA POEM ELSA	Mastering Complex Systems Safely ComplexWorld Network TREE ComplexityCosts EMERGIA	Complexity, Data Science and Information Management BigData4ATM DART MALORCA BEST	
LLJA	Information Management, Uncertainty And Optimisation RobustATM SecureDataCloud IMET		
Legal Aspects Of Paradigm Shift ALIAS	Enabling Change In ATM ACCESS SATURN ALIAS II ACCHANGE AFROGAME	Economics, Legal and Regulation COCTA COMPAIR Vista	
(Economics And Performance)			
		Environment and meteorology in ATM	
		TBO-MET PNOWWA ATM4E	
		Enabling Aviation	CNS for General Aviation
		SAPIENT NAVISAS	EMPHASIS
			CNS
			ENVISION GATEMAN

WP-E First Call	WP-E Second Call	ER-1 Call	ER-3 Call
	System Architecture and System Design FLITE SCALES EMFASE	ATM Operations, Architecture, Performance and Validation APACHE INTUIT AURORA PACAS	ATM Architecture, performance and validation Domino EvoATM
		High Performing Airport Operations RETINA MOTO	

Although the maximum funding of projects in WP-E and ER1 and ER3 was slightly different (the maximum SESAR contribution was €600k in WP-E; €600k for ER1/ER3 Excellent Science and Outreach projects and €1M for ER1/ER3 Application-Oriented projects) the number of projects can be used as a rough indication of weight the different thematic areas had in WP-E and ER. Note that a better balance between these areas might have been desirable and the greater number of projects in certain areas is indicative of the greater number of (good) project proposals received.

Figure 1 shows the number of projects awarded in the different areas in WP-E and ER calls.

Figure 1. Number of Exploratory Research projects per thematic area

3 ATM Scope, Scientific Disciplines and Validation Approach in SESAR WP-E and ER

The SESAR Exploratory Research projects in the first and second WP-E calls, and SESAR 2020 ER1 and ER3 were analysed with regard to the ATM Scope, the academic discipline and the validation technique used by the projects. 73 projects were analysed (for two of the 75 projects documentation was not easily available in the required detail). General findings are reported here; a more detailed analysis can be found in Appendices A, B and C.

Despite the relatively large sample, there are a few methodological limitations:

- The review was carried out based on the publishable summary of the projects and are hence somewhat dependent on the project teams' views of their approach and achievements.
- The categories used to classify ATM Scope, academic discipline and validation technique evolved slightly during the analysis; revisiting the analysis might lead to slightly altered results and this could be considered for future editions of this document.
- The analysis reported here was carried out by experts external to the projects with general knowledge of ATM and scientific methods but not necessarily specific expertise on the validation techniques, academic disciplines or ATM operations explored in any specific project.
- The seven ER3 projects in this analysis have started but have not yet finished. This means that results are not fully available and the analysis had to refer to the projects' plans and ambitions rather than achievements.

The 73 projects studied covered four calls in the period from 2010 to the present day. Analysing the categories of each call separately and comparing them to trace an evolution might be an interesting endeavour. We still refrained from presenting such an analysis for a number of reasons:

- The projects awarded in each of the calls are a function of the scope of the call. For example, the scope of ER1 included excellent science (TRL0) and application-oriented (TRL1) research projects whilst ER3 only called for application-oriented proposals.
- Upon closure of each of the calls, a greater number of proposals were received in the more 'traditional' scope areas (such as automation) than in less common areas (such as legal and economics). As part of the selection process, the best proposals according to the selection criteria defined in the call were selected. This led to the situation that the number of proposals per topic was not necessarily balanced.
- Again, the ER3 projects are ongoing so that an analysis is very preliminary.

3.1 ATM scope

Figure 2. ATM Scope of WP-E and ER projects

Figure 2 shows the ATM Scope of WP-E and ER projects. Note that many projects were related to more than one of the categories defined for scope so that the sum of the individual categories is greater than 73, the number of projects reviewed. Note that the projects awarded following ER call 2 (UAV) were not included in the analysis – including the ER2 projects would have led to a different distribution of ATM Scope.

When reviewing the ATM Scope the following observations were made:

- ANSPs and the NM were the target stakeholders, with 48 projects looking at aspects of their work. 23 projects involved tasks performed by controllers, while 17 examined network operations, and 18 concerned trajectory-based operations.
- Airport operations were the subject of 17 projects while airline operations were involved in just eight of them.
- Only six projects had a relation to smaller aircraft and only four of those looked at the looming problem of integrating UAS into the airspace. The SESAR JU is managing other, less innovatory projects in this domain, however.
- The performance of the ATM system was either studied by, or could be improved by the results of, 26 projects.
- Eleven projects had a regard to the safety aspects of ATM, a fairly low number for a topic that is generally considered 'paramount'. Twelve were concerned with the resilience of the system.
- The legal and regulatory side of ATM was examined by 8 projects, with one of these looking also at legal/liability concerns.
- CNS was the topic of three projects, while three others touched on change management, economics, investment decisions and security.

3.2 Scientific disciplines

Figure 3. Scientific disciplines of WP-E and ER projects

Figure 3 shows the scientific disciplines of the investigated projects – note again that many projects were related to more than one category. The following observations were made:

• 17 projects used established optimisation techniques, with another seven using novel techniques of artificial intelligence (essentially machine learning and occasionally evolutionary computation).

- The use of agent-based models is now established, having been used in 14 projects.
- The use of formal methods and semi-formal models such as networks and graph models is also widespread with 25 projects using one or other of these techniques and three using both.
- 28 projects explore or rely mainly on statistical methods and data analysis techniques. However, the number of projects performing statistical analysis as a method is, as expected, much the higher of the two.
- A total of 18 projects explore examine the area of human factors which therefore seems a well-covered area.
- 13 projects are concerned with interaction and visualisation techniques. The true number of projects actually exploring these techniques is lower because these 12 projects include many that only use these techniques as a tool rather than a field of study.
- A small number of projects focus on socio-economics (7), cryptography and security (2), regulation and liability (2) and meteorology (2).

3.3 Validation approach

Figure 4 shows the validation approach followed by WP-E and ER projects. As before, the total number is greater than the number of projects since a combination of validation techniques was often used. The following observations were made:

- Three projects (4%) had no visible means of validation available. Of these "Emphasis" had very little information publicly available and "ACChange" made no reference to validation in its publishable summary.
- 59 projects used at least one of the following approaches for validation: experimental tools (simulators etc.) (42); experiments (30); or data and measurements (27) to validate their outcomes.
- 26 projects defined their validation as using the airspace, some defined which airspace they used; 34 defined operator roles which were evaluated during the validation.
- Uncertainties were a part of the validation of twelve projects, whereas eight of them used other techniques.

Figure 4. Validation approach of WP-E and ER projects

3.4 Conclusions

The analysis presented here is preliminary in nature and could be repeated or confirmed in future editions of this document, for example using a consistent set of categories and integrating the results of ER3 projects and future ER calls. However, despite some limitations in the approach a number of interesting conclusions can be drawn.

Very few projects actually 'fail' in the sense that they come to the conclusion that the concepts and ideas proposed when starting the project just do not work. This is surprising especially for

Exploratory Research where both costs and success rates (measured by the number of studies leading to implementation) are significantly lower than for example in industrial research or implementation. Not surprisingly, management theory on innovation suggests that the further concepts and ideas are from implementation (in the sense of concept or product maturity) the smaller the percentage that actually make all the way to implementation.

A number of observations come to mind:

- If most projects really do succeed in the sense that they deliver a concept or prototype that are implemented in downstream research then perhaps the calls have not been ambitious enough in the sense that they encourage exploring new and uncharted territory. Our very subjective and preliminary impression is that this has not been the case, since many projects did actually explore new areas.
- Demonstrating that a concept of approach does not work is, from a scientific point of view, just as satisfying as demonstrating that it does work yet very few projects, if any, document such conclusions. It might be that our research culture does not reward proven negative findings sufficiently. Publishing 'negative' findings should be encouraged, for example specifically encouraging scientific publications.
- In the absence of well-formulated hypotheses and a well-defined scientific method to confirm or refute their hypotheses the project team will gravitate towards calling their project a success rather than a failure. It is our impression that this explanation holds true not for the majority but at least for a fraction of the projects analysed. Failure to apply a correct scientific method must be discouraged. For example, the soundness of the scientific approach and the existence of a clear research/experimental/validation plan should be established as a criterion in the proposal selection and contract negotiation phase.
- Perhaps as a relatively small community, we shy away from making harsh judgements on our peers' results.
- The 'broken innovation pipeline' is often cited, meaning that the transfer and uptake of ideas and concepts that are successful on a lower TRLs to applied research could be improved. Involvement of players from more mature phases of R&D in exploratory research must be encouraged further and the SJU and Engage are putting in place a number of measures to do so.

Elaborating further on the last bullet point and recognising that several projects within WP-E have led to interesting results: it is somewhat sobering to realise that not all of these were followed up as much as could have been possible. Problems that could potentially offer part of an explanation are:

- A process for following up on interesting findings, e.g. by granting an extension to successful research projects was, at least at the time of the projects reported here, not in place or very *ad hoc*. Note that delay in following up on interesting findings often means that know-how is lost as researchers have moved on to other fields.
- Perhaps not enough emphasis has been put on documenting and disseminating research results and, again, perhaps the processes for this were not well in place. We acknowledge that a period of six months after project closure is eligible for disseminating project results in the ER4 call; this was not the case for WP-E, ER1 and ER3.
- Perhaps the proposal selection process is not sufficiently punitive of research that repeats well-established existing work.

- The approach, culture and composition of project teams are quite different for exploratory and industrial research so that extending ER projects into industrial research is not a solution. A real transfer of the results is needed and this requires better exchange between earlier and later phases of the research cycle. Note that this transfer is bidirectional to ensure that (a) operational problems and constraints are sufficiently well understood by ER projects and (b) industrial research guides and 'owns' the potential of ER projects.
- Growing a community around successful concepts and projects might help counter attrition of expertise and exploiting their potential better. This is what the WP-E networks and the Engage thematic challenges attempt(ed) to do.
- The use of standard datasets, scenarios and validation approaches would increase the comparability and reproducibility of research results and hence benefit transfer.

We recognise that these problems are increasingly being addressed in the present (ER1, ER3) and future (ER4) set-up of Exploratory Research; for instance, 11 ER1 projects were identified as inputs for Wave 2 IR solutions, and many fundamental research projects were assessed to be mature enough to move to the applied research, and would have a chance of being selected for continuation.

4 Challenges identified by WP-E Scientific Networks

4.1 ComplexWorld: Complexity Challenges in ATM

The ComplexWorld Network, funded through SESAR WP-E (long-term and innovative research) between 2010 and 2016 identified the following challenges for future ATM research [7]:

<u>A. Developing and demonstrating new metrics in ATM:</u> New metrics should extend the range of flight-centric metrics (e.g. average departure delay) currently used by industry, and cover such performance aspects as cost, resilience, and passenger service delivery. The use of non-classical metrics (including complexity) is expected to continue to play an important role in many instances, although not necessarily required in all cases. Consideration of the complex sociotechnical nature of the air transportation system remains underexploited. Improved pathways towards industry adoption of appropriate new metrics are also important.

<u>B. Building resilience into systems design taking into account emergent behaviour:</u> A key challenge is how to make the ATM system more resilient regarding disturbances and disruptions. This resilience performance question is, however, only one side of the ATM performance medal; the other side consists of established key performance areas such as economy, capacity and safety. Therefore, we are in need of an ATM system design that is more resilient against disturbances and disruptions and at the same time maintains a good balance with other key performance areas. In support of a step change in future ATM design, this challenge concerns building resilience into systems design taking into account emergent behaviour.

<u>C. Understanding trade-offs through metrics:</u> Current (Key) Performance Indicators and the tradeoffs between them are not sufficiently understood, especially in terms of stakeholder impacts, such as costs. Some established work has been carried out by EUROCONTROL on the trade-offs between en-route capacity provision and ATFM delay, but this represents one of few such examples. Tradeoffs between monetised and non-monetised metrics are particularly challenging.

<u>D. Data science and managing and visualising (big) data</u>: Data science techniques together with complex systems theory and practice open a new approach in the study of the complexity of air transport. Significant research challenges in this field are data management, data processing, data sharing and protection, deep analytics or visualisation. For aviation to access and manage the datasets generated by the different agents, suitable data infrastructure paradigms need to be developed. Extracting knowledge from data that represent, predict and improve the behaviour of the system, requires collecting, validating, formatting, correcting and consolidating different datasets. Considering the heterogeneity of the data sources (aircraft, airlines, passengers, navigation services,

ground handling, retail sub-systems...) the management of big data can be considered a complex challenge in the aviation field. Even more, if we consider the volume, variety and velocity of the datasets. Other techniques barely explored in aviation, like data protection paradigms or data visualisation can be enormously helpful in the field of air transport, ensuring the analysis of the performance, the use of existing resources and the support to the decision-making processes can be improved several orders of magnitude.

<u>E. Integrating multi-agent systems into decision-support tools:</u> Multi Agent Systems (MAS) in Air Traffic Management (ATM) can have important advantages for policy makers as they allow evaluation during the design of a novel operation and they allow performing scenario simulations in terms of what-if studies through tuning the relevant parameters of the model. Moreover, MAS and Agent-Based Models (ABM) can be relevant for the investigation of the behaviour of the ATM main actors, as they can provide useful insights about the learning mechanisms on which the agents' behaviour is based. These features can be fruitfully exploited by using integrated decision-support tools (DST), based on MAS and ABM that will help in selecting the best policies and strategies to improve the general efficiency of the ATM system, building on the analysis of historical data.

<u>F. Integrating uncertainty into decision-support tools:</u> There are many scenarios in ATM where uncertainty plays an important role. Examples of these include scheduling of arrivals/departures, routing around adverse weather, trajectory prediction, conflict resolution, and flow management. In the past, most integrated decision-support tools (DST) that have been developed to help manage these scenarios commonly neglect uncertainty. However, including the effect of uncertainty in DSTs might help to improve their efficiency, thus benefiting the ATM system. There are many challenges in including uncertainty in a DST: for instance, it is not clear what type of statistical models should be used to realistically capture uncertainty; there is also a trade-off between robustness and performance: if one tries to accommodate too high levels of uncertainty, it might lead to excessive conservativeness in DST solutions. In addition, while in a deterministic setting an optimal solution is easy to define, this notion is not totally clear in an uncertain environment.

<u>G. Characterisation of meteorological uncertainty:</u> Optimum routes for air traffic have a strong dependency on meteorological parameters such as the position of the jet stream or the strength and/or direction of prevailing winds. Moreover, in a very few cases and limited areas, MET hazards can potentially perturb the nominal traffic (significant weather conditions); indeed, adverse weather continues to be a major cause of delays in air travel. However, accurate numerical weather prediction (NWP) forecast models continue to be challenging due to issues including uncertainty in observations used to initialise the forecasts and an incomplete understanding of the physical processes that occur in the atmosphere.

<u>H. Model-based identification of emergent behaviours at the design stage, including comparison with reality:</u> In support of a step change in future ATM design, this challenge concerns model-based identification of emergent behaviours from early design stage on, including comparison with reality. Established system design takes a conservative approach regarding emergent behaviour by trying to avoid it. However, this may be counterproductive because for a complex socio-technical system, it is impossible to identify and learn understanding emergent behaviour at all frequencies without conducting adequate simulations. As long as not all emergent behaviour is identified and understood it is unknown which are positive and which are negative. Though once understood, there is the possibility to adopt or strengthen positive emergent behaviour and to avoid or mitigate negative emergent behaviour. This means there is great design value in timely identifying positive and

negative emergent behaviours of future socio-technical designs at frequencies ranging from regular to extremely rare.

4.2 HALA! Automation Challenges

The SESAR WP-E research network HALA! – Towards Higher Automation Levels in ATM has reviewed challenges pertaining to ATM automation in their position paper [8, 9]. HALA! considers the need to align the research efforts into two challenging broad areas of special interest, from the research point of view, as crucial and complementary issues.

- aircraft trajectory hierarchal, spatial, and temporal cohesion among the different ATM organisations and agents, considered as part of a sociotechnical multi-agent system, as key elements for an efficient integrated ATM; and
- trajectory management, including trajectory optimisation, DCB, TS safety barriers, detect and avoid systems, autonomy of flight/vs, centralised services provision, latency effects on all kind of agents remotely controlled are, among others, key research issues, that involves especially remotely piloted aircraft systems (RPASs).

HALA! proposes to evolve toward higher level of automation ATM by providing decision tools delivering compatible and efficient trajectories for all airspace users, enhancing the hierarchical, spatial, and temporal cohesion among the different organisations/agents involved in the planning and operational phases of the trajectory management process. To this end, automation shall also provide decision tools within the trajectory management process itself focused on trajectory optimisation, traffic synchronisation, safety nets behaviour, and compatibility between autonomy of flights and centralised services provision.

Associated to the two HALA! general ATM oriented challenges presented previously, there are related scientific challenges dealing with specific issues associated to automation processes:

- 1. resilience and system degradation;
- 2. ability to formalise, understand, and model the system to be controlled in all possible normal and abnormal operational conditions, and to face possible unexpected situations;
- 3. the adequateness and correctness of the human role in the control system, in particular the ability to ensure human motivation, trust, and dependence on automation, and the ability to maintain situational awareness;
- 4. responsive and adaptive automation able to adapt the level of automation and allocation of functions to agents and performed by humans or machines depending on needs; and
- 5. change management when going towards higher levels of automation and introducing new technologies.

5 Engage Thematic Challenges

In order to facilitate the orientation of exploratory ATM research towards operational challenges the Engage network has let a call for thematic challenges. These challenges, once established, should provide a means for research and industry together, to develop and propose approaches to address the underlying problems. Funding available in a subsequent catalyst call should help address some of these. The selection process as well as the conclusions of a first series of workshops are documented in greater detail in Engage deliverables D3.4 (Thematic challenges priming report for first workshops) [3] and D2.5 (Annual combined thematic workshops progress report) [4] and will therefore only briefly be summarised here.

5.1 Establishing thematic challenges

Following the call, 54 proposals were received from 33 organisations, covering industry (including airspace users and ANSPs), research institutes, universities and consultancies. All 54 proposals were evaluated individually by eight members of the Engage Awards Board based on the following criteria:

- Operational relevance
- Focus of challenge
- Capability of network and/or proposer

As expected, there were several links between the 54 proposals; grouping these and ranking them in the order of the evaluations the related proposals received led to a prioritised list of themes. In this fashion, six themes were identified, from which the top four were selected; two remaining themes are maintained as candidate future themes. The four themes cover ten out of the top twelve individual proposals. The four selected themes have been established as the Engage thematic challenges; they are:

- Vulnerabilities and global security of the CNS/ATM system;
- Data-driven trajectory prediction;
- Efficient provision and use of meteorological information in ATM;
- Novel and more effective allocation markets in ATM.

The experts submitting the two to four top-scoring proposals leading to each of these challenges were invited to form a challenges team which was accompanied by one or two Engage members and invited to organise a thematic challenge workshop. Workshops were held in October and November 2018 for three out of the four challenges (Vulnerabilities and global security of the CNS/ATM system will hold a workshop in Q1/2019).

5.2 Engage TC Workshop recommendations

The three thematic challenge workshops involved a series of technical presentations and a subsequent facilitated session in which workshop participants brainstormed on:

- What specific types of follow-up research are likely to be useful to mature the state of the art (especially those that could be addressed by catalyst funding from the Engage KTN)?
- What are the measures of success that could be used to assess the progress of the challenge?
- What are the likely barriers to prevent progress towards maturing the challenge, and how might we overcome them?

The conclusions of the three workshops which took place in Q4/2018 are replicated here for completeness (a fuller description can be found in Engage deliverable D2.5 (Annual combined thematic workshops progress report) [4].

TC2: Data-driven trajectory prediction

The following have been identified as *example* ideas for potential further exploration:

- 1. Trajectory predictors supporting airborne self-separation: definition of requirements and concept development of enabling technologies;
- 2. Improved DCB: enhanced TPs integrating uncertainty assessment, robust planning and costefficiency assessment at network level;
- 3. Data-driven approaches for understanding and prediction of AU preferences and behaviours enabling improved NM operations;
- 4. Mapping requirements definition and concept development of data-driven TP in support of collaborative multi-sector CD&R;
- 5. Optimising and integrating local planning activities with a view to assess, contain and communicate their network effects;
- 6. Improving data-sharing and data access to satisfy AU, NM and ANSP technical and organisational requirements and expectations.

TC3: Efficient provision and use of meteorological information in ATM

The following have been identified as *example* ideas for potential further exploration:

1. Very high-resolution, very short-range forecasts using numerical weather prediction models and observational data assimilation;

- 2. Quantifying the sensitivity of operational processes to MET uncertainty, comparing these with other sources of uncertainty;
- 3. Incorporation of ensemble weather information into decision-support tools, adapted for different ATM stakeholders;
- 4. Accurate prediction of weather conditions (e.g. visibility, glide-path wind) influencing airport arrival and departure operations;
- 5. Consolidation of climate risk assessment methodologies for airports;
- 6. Creating a climate forecast 'baseline' for aviation from the IPCC UN panel report.

TC4: Novel and more effective allocation markets in ATM

The following have been identified as *example* ideas for potential further exploration:

- 1. Incorporating behavioural science methods into improved traffic demand and distribution predictor tools for ANSPs and UDPP;
- 2. Assessing if incentives or penalties work as better drivers of behaviour: whether social norms can be used to improve collaboration;
- 3. Predicting and avoiding undesirable behaviour, such as gaming, in ATM allocation mechanisms;
- 4. Building a better understanding of 'equity' and 'fairness', plus trade-offs across different stakeholders, and with 'flexibility';
- 5. Improving the assessment of uncertainty and disturbance, and of new mechanism implications for policy recommendations;
- 6. Running models and tools in shadow-mode, with practical user interfaces and value in output metrics (e.g. costs, overloads).

6 Conclusions

The analysis presented here is based on SESAR WP-E and ER project calls as well the HALA!, ComplexWorld and Engage networks. Despite its preliminary nature and its limitation, some interesting findings can be derived (and should perhaps be confirmed with a greater scope and more established methodology in future revisions of this document).

6.1 Lessons learned

1. Build the community.

SESAR Exploratory Research started with WP-E projects and networks in which areas such as automation, human factors and human-computer interaction were covered. From the beginning, attempts were made to include non-traditional areas and these attempts seem gradually have to come to fruition. For reasons explained in Section 3 we refrain from analysing the evolution of topic areas over time. Yet even without such an analysis one can observe that some areas such as complexity and data science, economics and legal aspects are now an integral part of Exploratory Research. Some observations:

- a) Projects in new areas have often been most successful when they involved experts from new fields, often naïve to ATM who teamed up with the experts from the ATM research community.
- b) The research community in new areas has to be built and strengthened over time and this cannot be achieved quickly. Conference attendance, invitations to workshops and project bids are stepping stones for involving players from new areas.

2. Transfer results of successful research projects.

The degree to which interesting results from Exploratory Research projects are picked up by subsequent projects and lead into higher maturity phases could certainly be improved. A number of avenues could be explored:

- a) Establish a process for slightly extending *successful* projects, for example, with a view to solving specific challenges identified in the project, exploring the potential of specific approaches and disseminating the results.
- b) Improve the transfer of knowledge, data and concepts between exploratory and industrial research in both directions, predominantly through involvement of industrial research members in Exploratory Research. Although we acknowledge that some progress has been made, this is still an area for improvement.

c) Establish a proposal selection process that is less forgiving of projects reproducing established findings (whilst encouraging the maturing of successful concepts to downstream research/higher TRLs).

3. Encourage reporting on unsuccessful concepts

Although we would expect the majority of Exploratory Research projects to conclude and demonstrate that the concepts or methods explored are not successful, very few projects actually document such 'negative' results. Such documented failure, unless due to flaws in the scientific methods, would be desirable and should be encouraged, for example by:

- a) Instilling a culture that rewards documenting negative as well as positive research results (a section could be added to the project report template that explicitly solicits findings about approaches that do not work).
- b) Not shying away from calling a failure by its name. Although the merit of a research project is difficult to establish, a somewhat subjective and very sensitive review of past projects shows some patterns. How these can be used to reward researchers with a good track record in the proposal selection process could be discussed.

4. Insist on the use of established scientific methods.

Not all projects reviewed in this document applied a sound scientific method leading to unclear, anecdotal or debatable results. Whilst we recognise that not all projects lend themselves to quantitative and statistical analyses, the use of a sound method leading to statistically significant results should be encouraged as far as possible.

5. Improve availability and use of standard scenarios and datasets.

Encourage the use of standard tools, datasets, scenarios, etc. to improve comparability and transferability of research results and thus benefit uptake through downstream research phases. Make such datasets and scenarios available to the community, solving problems of ownership and confidentiality.

7 References

- [1] Engage website, 2018. http://engagektn.com/.
- [2] Engage project, 2017. Grant Agreement 783287, Ref. Ares(2017)6114946 13/12/2017.
- [3] Engage project, 2018. D3.4 Thematic challenges priming report for first workshops, Edition 01.00.00, June 2018.
- [4] Engage project, 2019. D2.5 Annual combined thematic workshops progress report (priming wave 1), Edition 01.01.00, January 2019.
- [5] SESAR Joint Undertaking, 2010. Long-Term and Innovative Research WP-E Thematic Programme (document package first WP-E project call), Edition v2.8, February 2010.
- [6] SESAR Joint Undertaking, 2012. Long-Term and Innovative Research WP-E Thematic Programme (document package second WP-E project call), Edition v3.0, May 2012.
- [7] The ComplexWorld Network, 2016. Complexity Challenges in ATM.
- [8] HALA! SESAR Research Network, 2015. Towards Higher Levels of Automation in ATM, Position Paper.
- [9] Francisco Javier Saez Nieto, 2015. The long journey toward a higher level of automation in ATM as safety critical, sociotechnical and multi-agent system. Proc IMechE Part G: J Aerospace Engineering 0(0) 1–15 ! IMechE 2015, DOI: 10.1177/0954410015596763.
- [10] SESAR Exploratory Research Projects repository https://www.sesarju.eu/searchcontent/projects?_query=&field_projects_activity=16&field_projects_benefits=&field_projects_ key_areas=&field_projects_project_status=&field_projects_stakeholder_type=
- [11] SESAR Long-term and Innovative Research projects (enter WP E as search term) https://www.sesarju.eu/search-content/documents

8 Acronyms

ABM	Agent-Based Models
AI	Artificial intelligence
ANSP	Air Navigation Service Provider
ATFM	Air Traffic Flow Management
ATM	Air traffic management
ATS	Air Traffic Services
AU	Airspace user
CD&R	Conflict detection and resolution
CNS	Communication, navigation, surveillance
CSA	Coordination and Support Action
DCB	Demand-capacity balancing
DST	Decision-support tools
EC	European Commission
ER	Exploratory Research
H2020	Horizon 2020 research programme
HALA!	Higher Automation Levels in ATM (WP-E Network)
IPCC	Intergovernmental Panel on Climate Change
KTN	Knowledge Transfer Network
MAS	Multi Agent Systems
MET	Meteorology/meteorological services
NM	Network Manager
NWP	Numerical weather prediction
PMP	Project management plan
RPAS	Remotely piloted aircraft systems
SESAR	Single European Sky ATM research
SIDs	SESAR Innovation Days

SJU SESAR Joint Undertaking

^{30 © - 2019 -} University of Westminster, Innaxis, Università degli studi di Trieste, Univerzitet u Beogradu, Technische Universiteit Delft, Frequentis AG, EUROCONTROL, European Aviation Safety Agency. All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

ТВО	Trajectory-based operations
ТС	Thematic challenge
ТР	Trajectory predictor/prediction
TRL	Technology Readiness Level
UAS	Unmanned aircraft system
UAV	Unmanned aerial vehicle
UDPP	User-Driven Prioritisation Process
UN	United Nations
WP	Workpackage
WP-E	SESAR Workpackage E (long-term and innovative research)

Appendix A: Project Review – ATM Scope

Project	SUPEROPT	NEWO	STREAM	ONBOARD	ASHICS	POEM	TESA	MUFASA
controller tasks	conflict		conflict				risk-based	conflict
	resolution		detection and				conflict	resolution
	strategies		resolution				resolution	strategies
airport ops		departures						
		prioritisation						
trajectory-based			exploiting shared				trajectory	
ops			business				prediction	
			trajectories					
network ops				ATM system				
				predictability				
airline ops								
UAS and GA								
CNS								
safety analysis					automated			
					hazard analysis			
Performance		delay		ATM		flight-centred;		individual
/metrics		propagation		performance;		passenger-		performance
				delay; knock-on		centred		variability
				effects				
resilience				weather				
legal								
regulation								
other								

Project	ADAHR	MAREA	C-SHARE	COMPASS	ALIAS	CASSIOPEI	UTOPIA	ZEFMAP
						A		
controller tasks				resolution incl.				tower workflow:
				knock-on				electronic flight strips;
				effects				hand-over points
airport ops	airport operation					night		integrated arrival
	centre					curfew		management and
	automation							taxiing
trajectory-			shared				trajectory	
based ops			representation;				synchronisation;	
			route				required time of	
			advisories				arrival; aircraft intent	
network ops	airspace					en-route	,	
•	organisation and					slot swaps		
	management:							
	automation							
airline ons						dynamic		
						cost		
						indexing		
UAS and GA						Indexing		
CNS								
safety analysis		exploiting		safety patterns				failure mode analysis
		hazard		salety patterns				
		database						
Performance		uuuuuuu						
/metrics								
rosilionco		human						
resilience		flovibility and						
		menitoring						
lasel		monitoring		lia hilitu				
iegai				liability	Automation in socio-			
					technical systems -			
					legal aspects	ļ		
regulation				national;				

Founding Members

		supra-national		
other				

Project	SPAD	ELSA	ROBUSTATM	AGATHA	SAFECORAM	NINA	ALIAS2	MOTA
controller	AMAN	conflict resolution			sharing of authority	sharing of tasks	sharing of liability	
tasks		strategies; ATCo			between automation	between	between	
		workload			and humans	automation and	automation and	
						humans	humans	
airport ops			Runway utilisation					automated
			and planning					taxiing
			stability					
trajectory-				seamless				
based ops				integration				
network ops		Predictability of	pre-tactical					
		last-filed flight plan;	planning					
		sector capacity mgt						
airline ops								
UAS and GA	RPAS with			GA				
	self-							
	separation							
CNS								
safety		correlation between						
analysis		STCAs; critical						
		navpoints						
Performance	productivity	satisfaction			delay; fuel burn;			environmental
/metrics					pollution; airport			impact
					capacity; airline			
					capacity			
resilience	degradation				resilience engineering			
	propagation							
legal								
regulation								
other								

Project	6SENSE	FLITE	SCLOUD	TREE	ACCESS	SCALES	ACCHANGE	EMFASE
controller tasks	ground control							
airport ops		runway capacity;	slot trading		slot allocation			
		satellite airports;						
		intermodality						
trajectory-based		separation in						
ops		TMA						
network ops								
airline ops				slot swapping;				
				cancellation				
UAS and GA								
CNS								
safety analysis						early warning		
Performance			delay	reactionary				
/metrics				delays				
resilience	resilience			bad weather		resilience		
						abilities		
legal								
regulation					slot regulation			
other							(No validation	security
							activity	
							discussed)	

Founding Members

Project	SATURN	ERAINT	COMPLEXITYCOSTS	PROGA	AEROGAME	EMERGIA	AGENT	AUTOPACE
controller tasks			increased sector ops			fully automated tactical control	separation management; collision avoidance	greater automation and performance
airport ops			advanced CDM					
trajectory-based ops		flight intent		flight intent	Transition to 4D trajectory-based ATM	conflict-free; strategic and tactical	Trajectory options for collision avoidance	
network ops								
airline ops			dynamic cost indexing; passenger re-accommodation				cooperative collision avoidance	
UAS and GA		RPAS integration					RPAS/UAS integration	
CNS								
safety analysis				safety assessment			maintained levels of safety	preliminary safety assessment
Performance /metrics			cost of delay; flight- centred; passenger- centred					
resilience			local disturbances; network-wide disturbances					
legal								
regulation	charging mechanisms							
other					investment decisions			

Project	MINIMA	TACO	STRESS	BIGDATA4ATM	DART	MALORCA	BEST	ATM4E
controller tasks	greater	human-	Controller			CPDLC		
	automation and	automation	vigilance;					
	out-of-the-loop	handover	Human-in-the-					
	phenomena;		loop; ATC					
	vigilance		automation					
airport ops		Surface						
		movement						
		optimisation;						
		control of						
		automation						
trajectory-based					trajectory			
ops					prediction			
network ops				passenger	DCB		SWIM	traffic flows
				behaviour			applications	
airline ops								flight planning
UAS and GA								
CNS								
safety analysis								
Performance	preliminary			delay				environmental
/metrics	safety							impact
	assessment							
resilience		non-nominal						
		conditions						
legal								
regulation								
other								

Project	PNOWWA	TBO-MET	COCTA	COMPAIR	VISTA	мото	RETINA	COPTRA
controller tasks								
airport ops	ground			Competition in		remote tower	tower in low	
	operations			Airport services			visibility	
trajectory-based		trajectory						probabilistic
ops		planning						prediction
network ops			DCB	Competition in	ATM cost			DCB
				ATM services	efficiency			
airline ops								
UAS and GA								
CNS								
safety analysis								
Performance	delay		flexibility	efficiency	Trade-offs			predictability
/metrics					between KPAs;			
					Departure delay;			
					Cost efficiency			
resilience	adverse weather							
legal								
regulation			route charges;	route charges;	market			
			market	market	competition			
			competition	competition				
other								

Project	OPTIFRAME	PARTAKE	R-WAKE	SALSA	NAVISAS	SAPIENT	APACHE	AURORA	INTUIT
controller		departure	wake vortex	CPDLC					
tasks		clearances	separation						
airport ops									
trajectory-	pre-tactical	interdependen					trajectory		
based ops		cies					planning		
network ops		DCB; capacity					dynamic		
		management;					airspace		
		decision					configuration;		
		support					free routes;		
							DCB		
airline ops							cruise climb		
UAS and GA					small aircraft	BVLOS UAS			
CNS				ADS-B for non-	satellite	CNS; Air-			
				radar airspace	navigation	ground			
						datalink			
safety analysis			separation				airspace		
			schemes				complexity		
Performance	predictability;	Airspace					trajectory	flight	Trade-offs
/metrics	flexibility	optimisation					optimisation	efficiency	between KPAs
resilience						datalink			
						resilience			
legal									
regulation									
other									

Founding Members

Project	PACAS	DOMINO	EMPHASIS	COTTON	GATEMAN	ADAPT	ENVISION	EvoATM
controller tasks								
airport ops		E-AMAN					Surface	
							surveillance	
trajectory-based				effectiveness of				
ops				capacity				
				management				
				processes in TBOs				
network ops		UDPP		Dynamic airspace		traffic prediction;		
				configuration;		flight information		
				capacity		sharing & flexibility		
				management		to mitigate		
						network		
						congestion		
airline ops		Dynamic cost	GA/Rotorcraft					
		indexing	and UAS					
			integration					
UAS and GA								
CNS								
safety analysis								
Performance		impact of applying						performance-
/metrics		new mechanisms;						ATM design
		coupling of systems						relationship
resilience					managing			
					threats to GNSS			
legal								
regulation								
other	change							
	management							

Project	ACF	IMET
controller tasks		
airport ops	RWY and TXY	
	terminal security	
trajectory-based		probabilistic
ops		prediction
network ops		
airline ops		Flight planning
UAS and GA		
CNS		
safety analysis		
Performance	Capacity	fuel burn and
/metrics	forecasting	flight duration
resilience	Disrupted	
	operations	
legal		
regulation		
other		

Appendix B: Project Review – Scientific Disciplines

Project	SUPEROPT	NEWO	STREAM	ONBOARD	ASHICS	POEM	TESA	MUFASA
optimisation techniques & control systems	mixed-integer linear programming; global, non- linear		linear time algorithm?	integer programming; disturbance feedback	random-hill climbing			
artificial intelligence					evolutionary computation; search harness			
agent-based modelling								
network/graph models		mesoscopic model; dynamic graphs		aggregate flow model		factor analysis for data reduction; granger causality for time series		
formal methods								
statistics & data analysis						factor analysis for data reduction; granger causality for time series	trajectory prediction from data analysis	
interaction &	constraint							
visualisation	visualisation							
human factors								automation acceptance and bias

42 © – 2019 – University of Westminster, Innaxis, Università degli studi di Trieste, Univerzitet u Beogradu, Technische Universiteit Delft, Frequentis AG, EUROCONTROL, European Aviation Safety Agency. All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

Founding Members

Project	SUPEROPT	NEWO	STREAM	ONBOARD	ASHICS	POEM	TESA	MUFASA
socio-economics								
cryptography /								
security								
other								

Project	ADAHR	MAREA	C-SHARE	COMPASS	ALIAS	CASSIOPEIA	UTOPIA
optimisation							
techniques &							
control systems							
artificial							
intelligence							
agent-based		ABM; multi-agent				ABM modelling	
modelling		dynamic risk				architecture	
		modelling					
network/graph							
models							
formal methods		critical	functional model		flow diagrams; risk		language for
		observability +			trees		trajectory
		compositional					modelling
		bisimulation;					
		hybrid system					
		modelling					
statistics & data				time-based pattern		game theory	
analysis				detection;			
				synchronisation			
				likelihood			
interaction &							
visualisation							
human factors	automation	reuse of cognitive	joint cognitive		fair treatment of		
	acceptance; trust;	modelling	system design		operators		
	situational	constructs					
	awareness;						
	workload						
socio-economics							
cryptography /							
security							
other					argument-based		
					case structure;		
					doctrinal analysis		

Project	ZEFMAP	SPAD	ELSA	ROBUSTATM	AGATHA	SAFECORAM	NINA
optimisation				robust		graph-based	adaptive
techniques &				optimisation;		optimisation	automation
control systems				stochastic			
				optimisation/			
				mixed-integer			
				linear			
				programming			
artificial							
intelligence							
agent-based			multi-layered:				
modelling			tactical and				
			strategic				
network/graph		graph-based route					
models		network					
formal methods	workflow process	multi-viewpoint				functional models;	state-classifier
	modelling; failure	models: FRAM;				flow diagram	algorithm
	mode, effects and	HAIVISTERS					
	criticality method						
statistics & data	(FIVIECA)		community				
			detection				
didiysis	norformanco		uelection				
visualisation	visualisation						
Visualisation	visualisation					tack allocation	
numan factors	operator						assessing cognitive
	productivity						framework
socio oconomics							Indifference
socio-economics							
cryptography /							
other					(wireless CNS		
Uner					technologies)		
1			1	1	(echinologies)		1

Founding Members

Project	ALIAS2	MOTA	6SENSE	FLITE	SCLOUD	TREE	ACCESS	SCALES
optimisation		graph-based						
techniques &		optimisation						
control systems								
artificial			machine learning;					
intelligence			pattern recognition					
agent-based		multi-agent				Datatree-driven	Agent-based	
modelling		models				ABM	modelling	
network/graph								semantic wiki
models								
formal methods	workflow models							multi-viewpoint
								enterprise
								architecture;
								EATMA
statistics & data		learning effects	outlier detection	Unspecified	data	Datatrees	asymmetry of	
analysis				"analysis" of	confidentiality		information	
				future	and sensitivity;			
				scenarios	benchmarking			
interaction &		ground-control	eye tracking; voice					
visualisation		interface	recognition;					
			gesture control;					
			time-series					
			visualisation					
human factors	user-centred	trust in	human error;					
	design	automation	stress					
socio-economics					sealed-bid		combinatorial	
					auctions;		auctions;	
					elections		bounded	
							rationality	
cryptography /					secure multi-			
security					party			
	1. 1. 1. 1.				computation			
other	Liability	1		1			1	1

Project	ACCHANGE	EMFASE	SATURN	ERAINT	COMPLEXITYCOSTS	PROGA	AEROGAME
optimisation			stackelberg games				
techniques &							
control systems							
artificial							
intelligence							
agent-based	network						serious games
modelling	congestion game						
network/graph	economic network				stochastic layered	barriers and	
models	model				network model	precursors diagram	
formal methods		EOCVM				functional hazard	
						analysis	
statistics & data	asymmetry of			Analysis by human-		statistical	
analysis	information			in-the-loop		characterisation of	
				simulation		nominal behaviour	
interaction &		textual and visual				cockpit displays	board game;
visualisation		risk assessment					electronic score
		methods					board
human factors		cognitive fit theory;				situational	learning effect
		actual vs perceived				awareness	
		effectiveness					
socio-economics	incentives; price-		pricing		early adopters and		last-mover
	caps; vertical		mechanisms		followers		advantage
	integration; fore-						
	runners for tech-						
	nology adoption;						
	labour union						
	model; public						
	utility model						
cryptography /		threat catalogues					
security							
other	economic	method evaluation					
	regulation	method					

Founding Members

Project	EMERGIA	AGENT	AUTOPACE	MINIMA	TACO	STRESS	BIGDATA4ATM	DART	MALORCA
optimisation					gaming				
techniques &									
control									
systems									
artificial								reinforcement	machine
intelligence								learning	learning
agent-based	agent-based	intelligent						ABM	
modelling	safety	agents							
	assessment								
network/grap	petri models								
h models									
formal									
methods									
statistics &							data mining	Data-driven	
data analysis								trajectory	
								prediction	
interaction &									speech
visualisation									recognition
human factors			cognitive	out-of-the-		controller			
			model; out-of-	loop; dynamic		cognitive			
			the-loop;	vigilance;		state			
			automation	attention					
			acceptance						
			and bias;						
			training						
socio-									
economics									
cryptography /									
security									
other									

Project	BEST	ATM4E	PNOWWA	TBO-MET	COCTA	COMPAIR	VISTA	мото	RETINA
optimisation				stochastic					
techniques &				optimisation					
control									
systems									
artificial									
intelligence						-			
agent-based									
modelling									
network/grap				probabalistic		economic			
h models				trajectory		network model			
				prediction					
formal	semantic								
methods	technologies								
statistics &			nowcasting	nowcasting	trade-off		trade-off		
data analysis					analysis		analysis		
interaction &								virtual reality;	augmented
visualisation								head-mounted	reality; see-
								display; tactile	through head-
								stimulus;	mounted display;
								auditory	conformal head-
								stimulus	up displays
human factors								situational	
								awareness;	
								workload	
socio-						market-based			
economics						design;			
						unbundling			
cryptography /									
security									
other		climate	meteorology	meteorology			model		
		chemistry modelling					development		

Founding Members

Project	COPTRA	OPTIFRAME	PARTAKE	R-WAKE	SALSA	NAVISAS	SAPIENT	APACHE	AURORA
optimisation	model-driven	multi-	constraint logic		system-of-			pareto front	
techniques &	state	objective	programming		systems				
control	estimation	optimisation							
systems									
artificial									
intelligence									
agent-based									
modelling									
network/grap			petri nets					multi-scale	
h models								models	
formal				dynamic risk					
methods				model;					
				conditioned					
				individual risk					
statistics &		trade-off	Spatio-temporal						Data analytics
data analysis		analysis	interdependency						
			analysis						
interaction &									
visualisation									
human factors									
socio-									
economics									
cryptography /									
security									
other						(technology	System		
						evaluation)	architecture		
							development		

Project	INTUIT	PACAS	DOMINO	EMPHASIS	COTTON	GATEMAN	ADAPT	ENVISION	EvoATM
optimisation									
techniques & control									
systems									
artificial intelligence	machine							Machine	evolutionary
	learning							learning	computing
agent-based		serious	ABM						ABM
modelling		games							
network/graph							Percolation		
models									
formal methods					Baysian				
					network				
					modelling				
statistics & data	data-driven		complex		Complexity		Percolation		sensitivity
analysis	modelling		network		science;				analysis
	techniques		science		Uncertainty				
interaction &	visual analysis;							video	
visualisation	interactive							analytics	
	dashboard								
human factors									
socio-economics									
cryptography /									
security									
other				(No		GNSS interference			
				information		mitigation barrier			
				found)		development			

Project	ACF	IMET
optimisation		
techniques &		
control		
systems		
artificial		
intelligence		
agent-based		
modelling		
network/grap		
h models		
formal		
methods		
statistics &	Probability	Ensemble
data analysis	trees	methods
interaction &	dashboard	GUI
visualisation		
human factors		
socio-		
economics		
cryptography /		
security		
other		

Appendix C: Project Review – Validation Approach

Project	SUPEROPT	NEWO	STREAM	ONBOARD	ASHICS	POEM	TESA	MUFASA
experimental	demonstrator;		numerical	multi-agent	numerical ATC	numerical		mock-up?
tool	what-if scenarios		simulator	simulator	simulator	simulator		
airspace	multi-sector	at specific	from pre-			n/a	all	en-route sector?
	Wales and NW	airports at	departure to					
	England	specific times	execution					
roles	en-route	departure mgr		network	en-route	passenger		en-route
	controller			manager; airline	controller	journeys		controller?
				ops mgr				
experiments		numerical		incl. knock-on		re-		varying traffic
		experiments		reactionary		accommodation		complexity, level
				delays		rules; trade-offs		of automation,
								level of
								conformance
data &		low equipage				50 largest		
measurements		rates				airports in		
						Europe; busy day		
						in September		

Founding Members

Project	SUPEROPT	NEWO	STREAM	ONBOARD	ASHICS	POEM	TESA	MUFASA
uncertainty		thru noise	perturbations in	due to weather;			along-track and	
			along track	due to			cross-track wind	
			error;	unscheduled			estimates; initial	
			perturbations in	demand			mass	
			estimated time					
			of departure					
			error					
other								

Project	ADAHR	MAREA	C-SHARE	COMPASS	ALIAS	CASSIOPEIA	UTOPIA	ZEFMAP	SPAD
experimental tool	serious gaming mock-up and platform	monte-carlo petri-net simulator	human-in-the- loop simulator with different levels of automation	numerical simulator	case template	multi-agent simulator	demon- strator	human-in- the-loop simulator	demon- strator
airspace	planning phase	all		en-route sectors		n/a	major hub; TMA	airports	en-route sectors (generic, 3)
roles	airport agent; airline ops mgr; network mgr; local traffic mgr; A- CDM mgr	controller		en-route controller				tower controller	en-route controller; remote pilot
experiments	5 experts; 60 students; 2 iterations	thought experiments with experts; one numerical scenario	expert workshop (7p); expert workshop (16p); 8 scenarios (3p); 1 scenario (12p)		expert workshops	baseline current ops with current traffic; scenario current ops with future traffic; scenario future ops with future traffic		5 experts	few experts
data & measurements		half hazard set reserved for validation		historical data for 44 days			heterogen- eous traffic	Hamburg airport	
uncertainty							due to wind prediction; due to bad weather cells		
other									

Founding Members

Project	ELSA	ROBUSTATM	AGATHA	SAFECORAM	NINA	ALIAS2	MOTA
experimental tool	numerical	monte-carlo		agent-based	human-in-the-loop		human-in-the-loop
	simulator for	simulator		simulator at	simulator;		simulator
	tactical and			mesoscale	controlled		
	strategic layers				experiments		
airspace	en-route sectors	runway movements					ground movements
roles	en-route controller; network manager; airline ops manager	Pre-tactical and tactical slot allocation	private pilots; professional pilots; controllers		controllers; controller students	end-users and stakeholders; ACAS and RPAS experts	controllers; autonomous tugs; aircraft; taxiways
experiments	expert workshops		expert panels; mental exercises; interviews	expert workshops	expert observations; questionnaires and interviews with 37 subjects	interviews	3 iterations; 18 experts; 35 mins scenarios
data &	?	200 flights at large		2050 and beyond	system logs; neuro-		CDG airport;
measurements		German airport			physiologic		different equipage
					indicators		ratios; different traffic density
uncertainty	perturbations of different size	gamma distribution for departure and arrival delay					non-nominal events
other						training development; achieved V3	

Project	6SENSE	FLITE	SCLOUD	TREE	ACCESS	SCALES	ACCHANGE	EMFASE
experimental tool	human-in-the- loop simulator	numerical simulator	cloud prototype	numerical simulator; what- if scenarios	agent-based simulator	demonstrator		human-in-the- loop experiments; controlled experiments
airspace	terminal area?	terminal area			network			
roles				aircraft; passengers; crews	slot coordinator; airlines; airports; passengers	experts for 4 cases		ATM experts; security experts; students
experiments	few experts; 8 * 60 mins; observations; auto-reporting (stress)				2 stakeholder workshops; 100p	interviews and observations		demographic questionnaires; focus groups; 7 iterations
data & measurements	Hamburg airport; physiological measurements	traffic up to 2050	synthetic data	1d delay data; 140d traffic data				
uncertainty	noise in sensors			stochastic connection probability				
other		achieved TRL4				achieved TRL2	(No validation information available)	training

Founding Members

Project	SATURN	ERAINT	COMPLEXITY- COSTS	PROGA	AEROGAME	EMERGIA	AGENT	AUTOPACE
experimental	numerical	numerical	numerical	demonstrator;	human-in-the-	numerical	open	
tool	simulation	simulations	simulations	human-in-the-	loop	simulations	demonstrator	
				loop simulations	experiments			
airspace	network	en-route;	network			en-route	U-space	
		terminal area						
roles	regulators;	controllers	ANSPs;	pilots	several			
	airports; airlines;		passengers;					
	ANSPs		airline ops mgr;					
			airport ops mgr					
experiments	stakeholder WS;	100 runs with 8		expert WS	4 experts; 3			preliminary
	100p	subjects			iterations;			hazard
					questionnaires;			assessment;
					observations;			qualitative
					group discussion			performance
								assessment
data &	1 busy nominal	extended BADA	1 busy nominal	from France and				
measurements	day	for RPAS	day	Netherlands				
uncertainty			local or network-					
			wide					
			disturbances					
other							RPAS	training

Project	MINIMA	TACO	STRESS	BIGDATA4ATM	DART	MALORCA	BEST	ATM4E	PNOWWA
experimental			human-in-the-loop			human-in-		numerical	
tool			simulator			the-loop		simulator	
						simulator			
airspace						Vienna and			
						Prague			
roles	15 controllers;	ATCo	ATCos			ATCos			airport
	tool testing	feedback							feedback
experiments			vigilance, attention,						
			workload, stress and						
			type of cognitive control						
			during execution of						
			operational tasks						
data &	neuro-		neuro-physiological	Comparison with	Comparison				
measurements	physiological		indictors	official statistics;	with other				
	indictors			case studies	predictions and				
					real data				
uncertainty									
other		gaming;					Prototyping		
		up to							
		TRL1							

Founding Members

Project	TBO-MET	COCTA	COMPAIR	VISTA	МОТО	RETINA	COPTRA	OPTIFRAME
experimental	human-in-the-					human-in-the-		
tool	loop simulator					loop simulator		
airspace			regional airports					
			in Sweden, UK,					
			Spain and					
			Germany					
roles		Expert (NM)				airport	Judgemental	
		evaluation				controller	techniques using	
							Barcelona ACC	
experiments				use cases				
data &					impact of these			trade-off
measurements					stimuli, in terms			analysis
					of workload,			
					performance,			
					sense of			
					presence and			
					situational			
					awareness			
uncertainty								
other								

Project	PARTAKE	R-WAKE	SALSA	NAVISAS	SAPIENT	APACHE	AURORA	INTUIT	PACAS
experimental		human-in-the-	human-in-the-		Simulation				
tool		loop simulator	loop simulator						
airspace	London TMA								
	data								
roles									
experiments		safety &							testing with
		robustness							SESAR
		analysis							solutions
data &						case studies	"validated by	use cases	
measurements							airlines"		
uncertainty									
other				(No					
				operational					
				validation					
				performed)					

Founding Members

Project	DOMINO	EMPHASIS	COTTON	GATEMAN	ADAPT	ENVISION	EvoATM
experimental tool							
airspace					network-wide	two demonstration	
					tactical assessment	airports	
roles					flight-centred		
					tactical assessment		
experiments	investigative and			Physical testing			
	adaptive case						
	studies						
data &							known scenarios
measurements							and quantitative
							indicators
uncertainty			uncertainty				
			characterisation				
other		(No information					
		available)					

Project	ACF	IMET
experimental tool	mock-up	exploiting
		numerical weather
		prediction
		forecasts
airspace		
roles	airport actors	flight planning
experiments	2 expert WSs	
data &	AMS airport, 2y	large sample of
measurements		meteo
		measurements 36h
		before take-off
uncertainty	Meteo; capacity	ensemble forecasts
	distributions	
other		

-END OF DOCUMENT-

