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Abstract 

Optimisation of a fed-batch fermentation process typically uses the calculus of variations 

or Pontryagin's maximum principle to determine an optimal feed rate profile. This often 

results in a singular control problem and an open loop control structure. 

The singular feed rate is the optimal feed rate during the singular control period and is 

used to control the substrate concentration in the fermenter at an optimal level. This 

approach is supported by biological knowledge that biochemical reaction rates are 

controlled by the environmental conditions in the fermenter; in this case, the substrate 

concentration. Since an accurate neural net-based on-line estimation of the substrate 

concentration has recently become available and is currently employed in industry, we are 

therefore able to propose a method which makes use of this estimation. The proposed 

method divides the optimisation problem into two parts. First, an optimal substrate 

concentration profile which governs the biochemical reactions in the fermentation process 

is determined. Then a controller is designed to track the obtained optimal profile. Since the 

proposed method determines the optimal substrate concentration profile, the singular 

control problem is therefore avoided because the substrate concentration appears 

nonlinearly in the system equations. Also, the process is then operated in closed loop 

control of the substrate concentration. The proposed method is then called "closed loop 

optimal control". 

The proposed closed loop optimal control method is then compared with the open loop 

optimal feed rate profile method. The comparison simulations from both primary and 

secondary metabolite production processes show that both methods give similar 

performance in a case of perfect model while the closed loop optimal control provides 

better performance than the open loop method in a case of plant/model mismatch. The 

better performance of the closed loop optimal control is due to an ability to compensate for 

the modelling errors using feedback. 
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Nomenclature 

X is biomass concentration (g/1) 

S is substrate concentration (g/1) 

P is production concentration (g/1) 

µ is specific growth rate (hr'') 

µmax is maximum specific growth rate (hr-1) 

Ks and K; are rate constants (g/1) 

a is specific substrate consumption rate (hr-) 

it is specific product formation rate (hr-1) 

Ttmax is maximum specific product formation rate (hr-1) 

Kns and Kj are rate constants (g/l) 

K. is biomass coefficient constant (-) 

Kp is product coefficient constants (g/1) 

K; is substrate inhibition constant (g/1) 

YXS is yield of substrate to biomass (g biomass/g substrate) 

Yp, is yield of substrate to product (g product/g substrate) 

kd is decay rate (hr 1) 

Y, is yield of biomass from substrate (g biomass/g substrate) 

ms is substrate used to maintenance biomass (g substrate/g biomass ' hr-1) 
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a is product formation coefficient in growth phase (-) 

P is product formation coefficient in stationary phase (g product/g biomass ' hr-1) 

kp is product decay rate (hr-1) 

D is dilution rate which is the ratio of feed rate and reactor working volume (hr-1) 

V is culture volume (1) 

F is substrate feed rate (1 ' hr-1) 

Sf is substrate concentration in the feed (g/1) 

H is Hamiltonian 

? is costate variable 

OLOFP is open loop optimal feed rate profile 

CLOC is closed loop optimal control 

CVI is control vector iteration 

LQ is linear quadratic 

TPBVP is two-point boundary-value problem 

MPBVP is multi-point boundary-value problem 

OUR is oxygen uptake rate 

CER is carbon-dioxide evolution rate 

DOT is dissolved oxygen tension 

RQ is respiration quotient 

EVOP is evolution operation 
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PHB is poly-ß-hydroxybutyric acid 

OTR is oxygen transfer rate 

ODE is ordinary differential equation 
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Chapter 1. Introduction 

1.0 Introduction 

The history of fermentation (Scragg, 1988) can be traced back to 6000 BC when brewing 

was introduced by the Sumerians. The Egyptians used yeast in bread making around 4000 

BC. Cheese and yogurt were produced before 1865. However, it was not until 1920 that 

research gained better understanding of microbial physiology and subsequently in 1940 

that industrial scale production of the first antibiotic - penicillin - was attained. Today, 

more than 12,000 tonnes of penicillin are produced each year together with other 

antibiotics such as streptomycin, erythromycin, tetracycline, etc. With the advent of 

genetic engineering, production of several complex compounds such as monoclonal 

antibodies and human hormones by fermentation processes has become a reality. 

Antibiotics are examples of secondary metabolites produced by micro-organisms and they 

are also the majority of metabolites being produced nowadays. Secondary metabolites are 

produced through biosynthetic pathways from primary metabolites, which are essential and 

vital to all living organisms. Examples of primary metabolites are amino acid, 

polysaccharides, lipids and other cell constituents (Staunton, 1978). 

Although secondary metabolites are non-essential to life, they are important to the 

organisms that produced them. The role played by secondary metabolites is, however, 

obscure but usually is associated with survival against other micro-organisms (Porter and 

Fox, 1993). 

As the importance of these metabolites, both primary and secondary, become recognised 

particularly to the pharmaceutical purpose, the fermentation process has been explored as a 

tool to produce these desired products. In a fermenter, sometimes called `bioreactor', 
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microbial, mammalian or plant cells are cultured to produce the desired metabolite. Many 

methods have been used to increase the productivity in fermentation processes. These 

include the exploitation of genetic engineering, strain improvement, media development 

and bioreactor design. 

The main function of a bioreactor (Cliffe, 1988) is to provide a favourable environment for 

the micro-organisms to achieve the optimal growth and/or product formation. Optimisation 

of fermentation parameters such as pH, temperature, dissolved oxygen, etc. is therefore 

used in parallel with strain and medium improvement to yield an increased productivity of 

the fermentation processes. 

During the fermentation operation, these parameters especially substrate concentration in 

the reactor are maintained at the favourable levels or profiles for maximum production 

until the end of the batch. The determination of these parameter profiles to achieve some 

objective functions is known in the control literature as the dynamic optimisation or 

optimal control problem. 

The substrate concentration in the fermenter has been emphasised here because of its 

importance as micro-organisms' main energy source and raw material for metabolism. 

Moreover, the substrate concentration also has an effect on metabolite production and 

controls microbial growth and production phase (Rose, 1979). However, the difficulty on 

on-line measurement of the substrate concentration has deterred the application of this 

process optimisation. It is not until recently that a reliable on-line estimation of the 

substrate concentration has been developed and implemented in a large scale production of 

antibiotic (Zhang, et al., 1996) and hence stimulate the main theme of this thesis for the 

process optimisation using the optimal substrate concentration profile. This proposed 
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optimisation approach will be applied to both primary and secondary metabolite 

production processes. 

In the next section, the applications of control theory, particularly optimal control, applied 

to fermentation processes are reviewed. A brief summary of a model-based control will 

also be introduced; this control scheme uses process models explicitly as in the optimal 

control method for determining required control actions. It will also be used later in our 

proposed optimisation method. The optimisation problems of fed-batch fermentation 

processes by conventional methods used in the literature can then be described and 

compared with the proposed method. 

1.1 Optimal Control and Application of Control Theory to 

Fermentation Processes. 

In process control, there are three basic control objectives (Stephanopoulos, 1984). These 

objectives are: 

1. Suppressing the influence of external disturbances. 

2. Ensuring the operational stability of a process. 

3. Optimising the performance of a process. 

The application of control theory to fermentation processes also follows these objectives 

particularly to improve the process performance. 

Melin et al. (1982) applied direct digital control using an adaptive control algorithm to 

control media sterilisation, and control temperature and pH of the culture during 

fermentation. The results showed the robustness of the adaptive control approach although 

the models were simple linear models derived from an input step response. Bastin et al. 
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(1982) modelled and used the adaptive control technique to control a waste water 

treatment process. The authors showed that the nonlinear models that represented the 

process can be simplified to just first order linear models by linearising them around 

nominal steady state in this case. The stability of adaptive algorithms for estimation and 

control of fermentation was described by Dochain and Bastin (1985). Four examples 

together with simulation results were given: 

1. on-line estimation of specific growth rate and substrate concentration by measuring 

biomass concentration. 

2. on-line estimation of specific growth rate, substrate and biomass concentration by 

measuring dissolved oxygen in the fermenter. 

3. adaptive regulator control of an unstable anaerobic process. 

4. adaptive regulator control of substrate in a fed-batch process. 

Williams et al. (1984; 1986) applied an adaptive control for on-line control of baker's yeast 

fermentation. The authors used sequence of pseudo-linear models to describe the 

fermentation process that was highly nonlinear and time-varying. This approach was 

applicable to slow systems like the fermentation process. The advantage of this method 

was that inaccessible state variables could be ignored and the control law was formulated 

only from measuring state variables. This technique can be further improved when 

enhanced with a state estimator of those inaccessible. In the paper, substrate feed rate and 

agitation speed were used to control dissolved oxygen tension (DOT), carbon-dioxide 

evolution rate (CER), respiration quotient (RQ) and alcohol in the exhaust gas. The control 

objective was to control DOT above 10 % and RQ at 1.05, conditions well known for yeast 

production. The results also showed insufficient performance of a Single-Input and Multi- 

Output (SIMO) structure for this process, which can be achieved by a Multi-Input and 
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Multi-Output (MIMO) form. To improve the adaptive control technique, Montgomery, 

et. al (1985) and Williams and Montgomery (1986) also presented the idea of 

reconstruction of process variables for checking the accuracy of parameter estimation. 

With this approach, the performance of the adaptive control was improved. The problem 

of parameter convergence that affected the short time process was also mentioned. In this 

case, a priori initial values of parameters can be used to reduce the convergence time. 

Montague et al. (1985) studied the application of parameter adaptive control to the fed- 

batch penicillin fermentation. Bajpai and tubular reactor models were used in the study. 

An extended Kalman filter was applied to estimate biomass and substrate concentration by 

using CER measurement. Biomass was controlled to follow a desired trajectory by 

manipulation of sugar feed rate. A Generalised Predictive Controller (GPC) was used as an 

adaptive control algorithm. 

The adaptive control was also applied by Samaan et al. (1990) to an alcoholic 

fermentation. Substrate feed rate was used as a control variable to control substrate level in 

the fermenter. Dochain and Bastin (1990) applied the adaptive control approach to fed- 

batch fermentation processes which exhibited substrate inhibition behaviour. 

Dochain (1990) extended a Single-Input and Single-Output (SISO) linearising adaptive 

control to a MIMO in bioprocesses. In the paper, singular perturbation was used to reduce 

model order. An adaptive linearising control law was derived for three processes: yeast 

growth, anaerobic digestion and activated sludge. Good simulation results from applying 

the control scheme to regulate dissolved oxygen and pollutant levels in the activated 

sludge process were obtained which showed the ability of this approach to cope with 

variation of disturbances and uncertainty due to variation in model parameters and singular 

perturbation approximation. 
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Roux et al. (1992) used an adaptive Linear Quadratic Gaussian (LQG) approach to control 

substrate concentration in ethanol production running in continuous mode. A SISO linear 

time-varying model was used to represent the process and dilution rate was used as a 

control variable. Good results in both servo and regulation modes were obtained in 

experimental tests. An adaptive pole placement control (Dahhou, et al., 1991b) and an JJA 

control (Dahhou, et al., 1992a; Vigie, et al., 1991) were also used on the same process. 

The L/A control is a nonlinear control approach that takes into account the positive 

constraints on control and state variables by a logarithmic transformation. 

Dahhou, et al. (1991a, 1992b) applied an adaptive predictive control technique to a 

continuous biomass production process. Dilution rate was used as a manipulated variable 

to control biomass concentration. 

Keulers et al. (1993; 1994) controlled specific growth rate, ethanol concentration and 

dissolved oxygen tension (DOT) in a fed-batch bakers' yeast fermentation. The specific 

growth rate was estimated by an observer, which was designed based on stoichiometry of 

oxygen uptake rate (OUR) and carbon-dioxide evolution rate (CER) with growth rate. Air 

flow rate and stirrer speed were used to control the dissolved oxygen tension while glucose 

feed rate was used to control the specific growth rate and the ethanol concentration. 

Many of the control approaches that are used to improve the performance of the 

fermentation processes can be characterised as servo or regulator techniques in which set- 

points of these processes are maintained at a constant level or follow desired trajectories. 

However, the problem remains of what the optimal set-points or profiles are. 

Determination of these profiles for optimising the processes under certain criteria, thus 

leads to an area of optimal control. 
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The objective of optimal control can be stated (Kirk, 1970) as "to determine the control 

signals that will cause a process to satisfy the physical constraints and at the same time 

minimise (or maximise) some performance criteria". The problem of optimal control when 

solved by the calculus of variations method is known as a two-point boundary-value 

problem (TPBVP). A characteristic of this problem is that initial conditions of state 

variables and final conditions of costate or adjoint variables are usually known. It is also 

referred to as a multi-point boundary-value problem (MPBVP) if there are interior points 

constraints. Several methods are used to solve this problem and they can be divided into 

direct and indirect methods. Examples for indirect methods are boundary iteration or 

generalised shooting technique (Noton, 1972; Ramirez, 1989), Quasilinearisation (Kirk, 

1970; Noton, 1972; Ramirez, 1989), while examples for direct methods are control 

parameterisation (Goh and Teo, 1988; Noton, 1972; Teo, et al., 1989; Teo, et al., 1991), 

Gradient method in function space (Kirk, 1970; Noton, 1972) or sometimes called Control 

Vector Iteration (CVI), second-variations (Noton, 1972), Conjugate gradients (Noton, 

1972), Sequential gradient-restoration (Miele and Wang, 1986; Teo, et al., 1991). There 

are also other methods that are used to solve the optimal control problem without referring 

to the costate. Examples of these methods are dynamic programming (Kirk, 1970; Noton, 

1972) and Rosen gradient projection (Kirk, 1970; Rosen, 1960; Rosen, 1966). 

These methods have the nature of iterative calculation. Optimal control results are 

therefore obtained generally in open-loop pre-calculated input sequence that would 

optimise a desired objective function. It is only in very few cases where a closed-loop 

control problem can be obtained. An example is the Linear Quadratic (LQ) control, in 

which the objective function is in a quadratic form and a process model is linear. The topic 
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of linear optimal control is treated extensively in (Anderson and Moore, 1989; 

Kwakernaak and Sivan, 1972) 

Operation of fermentation processes was originally done by operators who controlled the 

processes following pre-specified trajectories, which had been known from past 

experience. This method gave a certain satisfaction. However, this can not guarantee 

optimality. Hence, the optimality that is calculated explicitly based on a kinetic model 

under chosen criteria is preferable. 

The literature on optimising of fermentation processes is substantial, mostly based on the 

Calculus of Variations, Pontryagin's Maximum Principle. Green's Theorem has also been 

used for this purpose (Ohno, et al., 1976). The optimal substrate profile was derived by 

Guthke and Knorre (1981) using the maximum principle. The obtained optimal profile for 

a wide range of model parameters consisted of sequence of maximum substrate 

concentration, abrupt or steep descent change to minimum substrate concentration and 

minimum substrate concentration. The authors showed that the abruptly changing or fast 

falling of the substrate concentration can be approximated by a batch growth phase that 

resulted in an sub-optimal substrate concentration profile. 

Substrate feed rate is an input of a fed-batch fermentation process. The optimal control 

problem is therefore to calculate the optimal feed rate in order to optimise the process. The 

optimal feed rate can be determined using the calculus of variations. The Pontryagin's 

Maximum principle is also applied due to physical constraints on feed rate. The optimal 

feed rate has been applied to several processes, such as production of biomass (Cazzador, 

1988; Lim, et al., 1986; Weigand, et al., 1979), antibiotic (Lim, et al., 1986), amino acid 

(Modak and Lim, 1987; Ohno, et al., 1978), alcohol (Hong, 1986; Modak and Lim, 1987) 

and glutathione (Shimizu, et al., 1991). The general characteristics of optimal feeding 
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profile for various fed-batch fermentation were described by Modak et al. (1986) and the 

computational algorithms were implemented by Lim, et al. (1986). 

With the feed rate appearing linearly in the system equations, singular control is often 

inevitable. The methods to solve the singular problem have been, however, limited to be 

effective only to low order processes due to computational reasons. As a gradient between 

the Hamiltonian and feed rate is indirectly dependent on the feed rate during the singular 

period, the computation efficiency becomes a problem and it can take a long time for a 

solution to converge (Terwiesch, et al., 1994). Moreover, the sufficient condition for 

optimality in singular control is not satisfied (Noton, 1972). Thus, the singular problem is 

one that should, if possible, be avoided. Several methods have been used to avoid the 

singular control problem. Modak and Lim (1989) proposed a method to convert the 

singular control problem to a non-singular one by introducing another set of state variables 

instead of the usual ones and used culture volume as the control variable instead of feed 

rate. This made the control variable (volume) appear nonlinearly in the model and the 

singular problem changed to a nonsingular one. Kelly's transformation was also used by 

Hong (1986) to reduce the ' order of system equations to be handled by Pontryagin's 

scheme. It was also used to avoid the singular control in the work by Ohno, et al. (1978). 

Under assumption that a specific fermentation rate can be estimated on-line, Agrawal et al. 

(1989) proposed an algorithm to control fed-batch processes at the optimal specific 

fermentation rate. They used the simulation result of biomass production as an example. 

Good control efficiency and maximum productivity were obtained under this algorithm. 

However, there are still problems of on-line estimation of specific fermentation rate that 

are difficult to perform if this algorithm were to be adopted. Moreover, in a secondary 

metabolite production, there might be more than two phases in one batch and therefore 

Wirat Vanichsriratana, 1996, Chapter 19 



time constraint and other factors, such as fermentation volume, have to be taken into 

account if maximum product is needed. 

Although it has been suggested by Modak et al. (1986) that keeping the substrate 

concentration at a constant level is not necessarily optimal, and a sub-optimal result can be 

obtained. This was also mentioned by Biryukov (1982). Van Impe et al. (1991; 1992) 

developed the sub-optimal control by controlling substrate concentration constant at levels 

which maximised bioreaction rates. This needs an iterative search for the switching time 

from the biomass growth phase to the product formation phase in a secondary metabolite 

process. Van Impe and Bastin (1993) also extended the work to cover the fermentation 

processes with multiple substrates. An adaptive control approach was used to control the 

substrate concentration and specific growth rate (Van Impe, et al., 1992). 

Biomass, substrate and product concentration in a fermenter are usually measured by 

laboratory analysis. However the analysis is usually time consuming, expensive and it may 

take up to several hours to finish the task. This makes it inconvenient for monitoring and 

controlling the processes. Therefore many methods have been developed for estimating 

these state variables on-line. These methods are usually based on state estimation and 

filtering using linear or nonlinear Kalman filters. Stephanopoulos and San (1984) proposed 

a method for on-line estimation of specific growth rate. The method was based on 

elementary balance and used on-line measurement (OUR, CER) as input. Bastin and 

Dochain (1986) estimated specific growth rate on-line by assuming one known state 

variable such as biomass, substrate, product or production rate. The method was verified in 

real-life experiments: a continuous fermentation of lactoserum by Rhodopseudomonas 

capsulata, ethanol production by yeast in a batch process and methane production in an 
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anaerobic digestion plant. The stability and convergence properties of the algorithm were 

also described. 

Shimizu et al. (1989b) proposed an algorithm for on-line estimation of specific growth 

rate. The algorithm used the macroscopic balance and the extended Kalman filter. The 

article also discussed the selection of on-line measurements for used in the estimation 

scheme, and proposed that the condition number of the coefficient matrix should be used 

as the selection criterion. The extended Kalman filter was also used by Nahlik and 

Burianec (1988) to estimate biomass concentration in a continuous culture of Candida 

utilis under aerobic condition. The substrate concentration in the fermenter and in the feed 

stream and dilution rate were used to drive the estimator. Montague et al. (1989) derived 

an adaptive observer technique to estimate biomass. The estimator was based on the 

previous measurements of biomass, CER and feed rate. Dochain et al. (1989) developed 

an asymptotic observer for on-line state estimation in fermentation processes. The observer 

was used to estimate biomass and product concentration in the poly-(3-hydroxybutyric acid 

(PHB) production process using measurement of dissolved oxygen and OUR. The results 

showed a very good fit between the estimation and off-line data analysed from a 

laboratory. Chattaway and Stephanopoulos (1989) presented an adaptive state estimator for 

monitoring plasmid instability in a recombinant cell culture. The estimator was a Linear 

Kalman Filter (LKF) whose parameters were identified simultaneously by a recursive 

method. 

Tsao et al. (1991) used an empirical reaction subspace and singular value decomposition 

for on-line estimation of biomass, sugar and glutamic acid concentration in a fed-batch 

glutamic acid production process. For this process, the singular value decomposition 
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showed that only one singular value was significantly larger than others. Therefore, only 

one on-line measurement was needed and OUR was chosen in this application. 

Darouach and Boutayeb (1992) presented a method to estimate states and parameters for a 

linear time variant SISO singular system. The singular system was first transformed to a 

canonical observable form, then the parameters were estimated using a recursive least- 

square method. The state was, consequently, estimated by the Kalman filter in a bootstrap 

manner. Recently, a reliable on-line estimation of substrate concentration has been 

successfully developed and implemented in an industrial production plant of 

oxytetracycline antibiotic (Zhang, et al., 1996). 

Many control schemes have been used for controlling the specific growth rate in the 

fermentation processes. Shioya et al. (1985) estimated specific growth rate on-line based 

on a method proposed by Stephanopoulos (Cooney, et al., 1977; Stephanopoulos and San, 

1984) and used a Program controller/Feedback compensator - Model Reference Adaptive 

Control (PF-MRAC) to control it following the desired trajectory. The method was 

verified with baker's yeast fed-batch experiments. Takamatsu et al. (1985) published their 

work with simulations of baker's yeast fed-batch fermentation. The optimal feeding was 

pre-calculated by the Maximum principle. The authors used a computer to control biomass 

and specific growth rate close to the pre-calculated profile. Four different algorithms based 

on Program controller/Feedback compensator (PF) were used for controlling the process. 

The results were also compared. However, there were no real experimental data at this 

time. Shimizu et al. (1989a) continued this work by incorporating Model Reference 

Adaptive Control (PF-MRAC) into the algorithm to control the specific growth rate of 

baker's yeast in a fed-batch mode. With introducing dead time in the model and using 

bang-bang type profile control, quality of baker's yeast was improved as ratio of budding 
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cells to total cells decreased by 50 % compared with constant control of specific growth 

rate. 

Shimizu et al. (1991) used the Maximum principle to calculate a feed profile to maximise 

glutathione produced by yeast in a fed-batch process. The feed profile was composed of 

two phases. The first one was used to maintain growth rate at the maximum specific 

growth rate. The other was used to maintain growth rate at the maximum specific 

production rate. The model in this process came from mass balance and empirical 

relations. The specific growth rate was estimated by Kalman filter and the process was 

controlled by the PF system. 

Zeng et al. (1992) used model reference adaptive control (MRAC) to control the specific 

growth rate following a specific profile. Hagander and Holst (1992) used a PI controller to 

regulate the substrate concentration in the exponential growth phase. Pomerleau and Viel 

(1992) used adaptive nonlinear control to control the level of ethanol in industrial bakers' 

yeast production. The substrate feed rate was used as the manipulating variable determined 

by a nonlinear function of oxygen transfer rate (OTR) and ethanol concentration. One 

parameter in the control law was time-varying and needed to be estimated on-line. 

Process model can be used explicitly not only for process optimisation but also for 

controller design purpose. In the next section, a control scheme that employs process 

model explicitly for determining the control law is introduced. 

1.2 Model Based Predictive Control 

Process models can be used explicitly to design a class of controller called "model based 

control". Model based predictive control has been the subject of research for many years. 

Its main concepts were however introduced by Wiener (1942) about 50 years ago. Model 
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predictive control has been developed independently in many parts of the world and in 

many names: ANDREA/GERBOIS in France as Model Predictive Heuristic Control 

(MPHC) (Richalet, et al., 1978), Shell Oil Company in the United State as Dynamic 

Matrix Control (DMC) (Cutler and Ramaker, 1979), Quadratic Dynamic Matrix Control 

(QDMC) (Garcia and Morshedi, 1986), IDentification and COMmand (IDCOM) (Froisy 

and Richalet, 1986), Model Algorithmic Control (MAC) (Mehra, et al., 1982; Rouhani and 

Mehra, 1982), Internal Model Control (IMC) (Economou and Morari, 1986a; Economou 

and Morari, 1986b; Garcia and Morari, 1982; Garcia and Morari, 1985a; Garcia and 

Morari, 1985b; Rivera, et al., 1986), Generalised Predictive Control (GPC) (Clarke, et al., 

1987a; Clarke, et al., 1987b), Receding Horizon Tracking control (RHTC) (Kwon and 

Byun, 1989). 

The applications of model predictive control include a furnace (Cutler and Ramaker, 

1979), a catalytic cracking unit (Richalet, et al., 1978), a vinyl chloride production plant 

(Lebourgeois, 1980), a petroleum crude distillation unit (Engrand, 1980), a steam 

generator (Mehra and Eterno, 1980), a fluidized bed reactor (temperature control) (Lee, et 

al., 1993), a distillation column (Lee, et al., 1992; Lee and Morari, 1992; McDonald and 

McAvoy, 1987; Semino, et al., 1993; Zafiriou and Morari, 1988), a rapid thermal 

processing (Breedijk, et al., 1994). These applications cover a wide range of systems 

including multivariables, ill-conditioned, time delays and nonminimum phase behaviour 

plants. 

The main strategy of model predictive control is to predict the effect of potential control 

actions on the future values of the process output over a finite interval and find the best 

control actions which minimise the objective function, which is usually the sum of squared 

errors between predicted outputs and desired set-points. 
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The model predictive control has, therefore, two main parameters that need to be chosen 

by the designer: 

1. Prediction horizon: The process models are used to predict the finite future outputs, 

which are used to compare with the desired set-points. 

2. Control horizon: The sequence of finite future control inputs are determined to optimise 

the objective function based on the finite future outputs and desired set-points. 

However only the first control action is implemented and the optimisation procedure is 

restarted again for the next finite time horizon. This strategy is called moving or receding 

horizon, which allow the disturbances and plant/model mismatch to be compensated. With 

these features, the model predictive control is proved to be popular and practical in 

industrial process control applications. 

IMC control scheme needs an inverse process model that may be difficult to obtain if the 

process model has time delays and zeros outside the unit circle. Arulalan and Deshpande 

(1987) developed simplified model predictive control, which did not require an inversion 

of a process model. The IMC is extended to cover unstable plants by Zafiriou and Morari 

(1991). 

The comparison of IMC and LQG has been considered and shown by Scali et al. (1992) 

for a SISO case. The authors have shown that in the majority of cases, the quality of 

performance is very similar. However, the design of robustness is more straightforward in 

IMC, whose robustness could be met directly via IMC filter parameters. The relationship 

between IMC filter parameters and robustness was shown in (Laughlin, et al., 1986). 

A double filter IMC structure was used by Zafiriou and Morari (1988) for controlling ill- 

conditioned processes. A simpler version was also presented by Semino et al. (1993) 
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Difficulties in process measurements usually arise from long sampling delays, poor signal- 

to-noise ratio and high cost of measurement devices. These lead to the utilisation of 

secondary measurements, which can be more frequent, reliable and convenient. A 

framework for model based inferential control, called Generalised Inferential Control 

(GIC), was therefore proposed by Lee et al. (Lee, et al., 1992; Lee and Morari, 1992) for 

multi-rate sampled-data systems. 

The application of MPC for unstable processes was treated in (Muske and Rawlings, 

1993a; Muske and Rawlings, 1993b). The papers also incorporated the exploitation of a 

state estimator for systems with unmeasured state variables. The problem of multivariable 

systems with time delay and right-half-plane zeros was also treated in (Jerome and Ray, 

1992) 

The stability of model predictive control is usually analysed in the receding horizon 

framework (Bitmead, et al., 1990; Kwon and Byun, 1989; Mayne and Michalska, 1990; 

Mosca and Zhang, 1992) 

Model predictive control uses a linear model as an approximation for a plant, while the 

real plant is nonlinear. The robustness of model predictive control to compensate this 

inaccuracy may be enhanced by adding a filter on the input signal to the controller as in 

internal model control (IMC) (Garcia and Morari, 1982; Garcia and Morari, 1985a) or 

using a nonlinear model in the model predictive control scheme. Adding a filter to improve 

robustness was used in (Arulalan and Deshpande, 1987; Yeo and Williams, 1987). 

McDonald and McAvoy (1987) used a linear model with gain and time constant 

scheduling to compensate for the nonlinear behaviour and improved control system 

performance in a distillation tower. 
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Yeo and Williams (1987) used a bilinear model predictive control for a wider range of 

accurate representation of the plant than a linear model and also included a filter for 

correcting the dynamic effects of model inaccuracies. 

QDMC extended by using a nonlinear process model was considered by Gattu and 

Zafiriou (1992). In this version of QDMC, the linear model was obtained by linearisation 

of the nonlinear model at each sampling time. 

Sistu and Bequette (1991) applied nonlinear model predictive control to control 

temperature in a Continuous Stirred Tank Reactor (CSTR). They included the estimation 

of model parameters with initial conditions of state variables to cope with plant/model 

mismatch. The authors handled the constraints on dynamic model by transforming the 

ordinary differential equations (ODE) into algebraic equations using orthogonal 

collocation on finite elements as an inner loop. Then they used an optimisation code as an 

outer loop. Biegler (1991) reviewed several optimisation approaches based on nonlinear 

programming applied to nonlinear model predictive control. Ali and Zafiriou (1993) 

included an extended Kalman filter for state estimation in nonlinear model predictive 

control. A formalisation of parameter tuning was also attempted. This was done by using 

off-line optimisation to satisfy some specified time-domain criteria such as speed of 

response and overshoot. 

Ozgulsen et al. (1993) applied NMPC to a periodically forced continuous stirred-tank 

reactor (ethylene oxidation process). The authors also demonstrated the use of a nonlinear 

input-output model incorporated into NMPC instead of a first principles model. 

The method used in nonlinear model predictive control usually starts with transforming the 

process model in an ordinary differential equation (ODE) form into algebraic equations 

using orthogonal collocation on finite elements so that it can be handled explicitly with 
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other constraints. The nonlinear programming problem is then solved usually by using a 

Successive Quadratic Programming method (SQP) (Cuthrell and Biegler, 1987; Renfro, et 

al., 1987). This method was used by Sistu and Bequette (1991), Eaton and Rawlings 

(1990). There are many variations of this method, which are also encountered extensively 

in the optimal control literature particularly on trajectory optimisation (Betts, 1989; Betts 

and Huffman, 1990; Hargraves and Paris, 1987). 

1.3 Problem and Objective 

It can be seen from the literature review in previous sections that production improvement 

in early times was based upon process operator experience. Processes were controlled 

following some pre-specified conditions or values that would enhance the production. 

Many control schemes have been used to regulate the processes following these 

approaches. These conditions are, for example, control of biomass for indirectly control of 

penicillin production (Montague, et al., 1989), control of ethanol for good production of 

bakers' yeast (Pomerleau and Viel, 1992) and also control of DOT and RQ to achieve 

good quality of bakers' yeast production (Williams and Montgomery, 1986; Williams, et 

al., 1984; Williams, et al., 1986) . These situation are actually the cascade control in which 

key environmental variables that have effect on the fermentation are controlled. It has been 

mentioned by Lee and Weekman (1976) that the profit from process control arose mainly 

from the optimisation of the operating conditions, i. e., determination of the optimal set- 

points, rather than from regulation. A well functioning regulatory layer is necessary, 

however, to implement the actions dictated by the optimising layer. 

A systematic optimisation method such as the calculus of variations and particularly the 

Maximum principle of Pontryagin has been used extensively in the literature. Most of the 

research on optimisation that has been concerned with fermentation processes are operated 
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in a specific mode of operation called fed-batch mode. This is due to the fact that fed-batch 

fermentation is widely used in industry and has many advantages over other modes 

especially for secondary metabolite production. Moreover, an ability to manipulate feed 

rate also forms a challenging problem in control and optimisation of a fermentation 

process. Details on different modes of fermentation will be given in Chapter 2. 

There are two problems arising, however, in applying variational methods to the 

fermentation process. The first is that a singular control situation may occur during 

operation since the control input or feed rate appears linearly in the Hamiltonian. The other 

problem is that the obtained optimal feed rate profile from the variational method is in 

open loop form and can suffer quite severely when the model parameters are not exactly 

known in real applications. A closed loop control can also be obtained but in a very rare 

and specific case such as a Linear Quadratic Regulator (LQR), in which the process model 

is linear and the cost function is a quadratic formation of state and control variables. 

Therefore in this thesis, we propose an approach that avoids the singular control problem 

and also converts the problem of open loop control into a more tractable closed loop one. 

In the proposed method, we divide the problem of optimisation of a fermentation process 

into two parts. Firstly, the optimal substrate concentration profiles that has direct effect on 

the biochemical reactions in the fermentation process is derived. Then, a controller is 

designed to track the obtained optimal substrate concentration profile. With this two-step 

approach, the singular problem is avoided, as the substrate concentration typically appears 

as a nonlinear function in the Hamiltonian. In order to study an effect of substrate 

concentration profile to the optimisation of the fed-batch fermentation process, other 

environmental variables in the fermenter such as temperature, pH, dissolved oxygen are 

assumed to be maintained at their nominal values. 
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Since the optimal profile of the substrate concentration has been derived, the substrate feed 

rate then naturally becomes a control variable to manipulate the substrate concentration. 

However, it is not until recently that the on-line estimator of substrate concentration 

becomes available (Zhang, et al., 1996) and makes the proposed method applicable. 

It is also the aim of this thesis to show that the optimal feed rate profile presented in the 

last few years can be put under the proposed framework where the optimisation problem is 

separated into two parts as: 

1. The optimal substrate concentration profile determination. 

2. Controller design for which model-based control is used in this work. 

The main advantages of the proposed method can be summarised as: 

" The proposed method operates under feedback control. The feedback information can 

therefore be used to improve control performance. 

9 There is flexibility in designing different types of controllers for controlling the 

processes since the optimal set-points have been determined. 

" This method avoids the singular problem, which occurs when the desired feed rate is 

determined from the calculus of variations or Pontryagin's maximum principle. 

" Most of all, it is transparent for use in industry where the operators prefer to regulate 

the controlled variables such as the substrate concentration at pre-specified values to 

adjust feed rate following the pre-determined pattern. 

To clearly show the area where the proposed research belongs, a diagram showing related 

topics on optimal control of fed-batch fermentation processes is shown in Figure 1-1. In 

the figure, the optimal control problem can be solved directly by iterative search using 

optimisation methods (such as dynamic programming, gradient projection (Kirk, 1970; 
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Rosen, 1960; Rosen, 1966) or nonlinear programming) or indirectly by exploiting the 

optimisation methods to solve the two-point boundary-value problem (TPBVP) (such as 

boundary iteration, Quasilinearisation, Gradient methods in function space, second- 

variations or Sequential gradient-restoration). An Optimal feed rate profile is an optimal 

solution when a constraint optimisation or calculus of variations is applied to a fed-batch 

fermentation process (Cazzador, 1988; Hong, 1986; Lim, et al., 1986; Modak and Lim, 

1987; Ohno, et al., 1978; Shimizu, et al., 1991; Weigand, et al., 1979). However, as the 

substrate feed rate is linear in the system and Hamiltonian equations, the singular control 

problem is often unavoidable. Much work has been done to overcome this problem (Hong, 

1986; Modak and Lim, 1989; Ohno, et al., 1978). 

Optimal specific bioreaction rates such as specific growth rate have also been determined 

and controlled by many algorithms such as PF and PF-MRAC (Shimizu, et al., 1991; 

Shimizu, et al., 1989a; Shioya, et al., 1985; Takamatsu, et al., 1985). However the specific 

reaction rates are rate variables, which can not be measured directly and are subject to 

error especially if the measurement is noisy. 
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are ANalysis and DEsign of Controlled Systems (ANDECS) (Mehlhorn, et al., 1994) and 

Optimal Control CALculator (OCCAL) (Schopf and Deuflhard, 1994). The later has 

symbolic computational capability, which is particularly useful for an analytical 

calculation needed for solving the two-point boundary-value problem or deriving the 

singular feed rate in the optimal feed rate profile determination. Many of these packages 

solve a constrained optimisation problem by transforming it into a nonlinear programming 

problem, which can then be solved by a sequential quadratic programming (SQP) method 

(Bestie and Eberhard, 1994; Fan, et al., 1988; Gill, et al., 1994; Steinbach, 1994). 

1.4 Outline of the Thesis 

The thesis is structured as follows: 

Chapter 1 starts with the presenting of motivation on optimisation of fermentation 

processes. It is followed by a review of literature in this area. The problem is then pointed 

out from the literature and the solution, which forms the theme of this thesis is proposed. 

Chapter 2 will elucidate the type and characteristic of fermentation processes especially 

those operated in fed-batch mode. The modelling of fermentation processes is also 

presented with the aim to help understanding of material in the following chapters. 

Chapter 3 will derive the open loop optimal feed rate profile, which is used to optimise 

fermentation processes in the literature. The results will then apply to two classes of 

fermentation processes, which are characterised by production behaviour, called primary 

and secondary metabolite production processes. 

In Chapter 4, the proposed method is derived. The method separates an open loop optimal 

control into two parts. Firstly, the optimal substrate concentration profile is derived and 

followed by the design of controller, where the predictive control is used in this study. 
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The proposed method and the open loop optimal control method are then compared in 

Chapter 5. The relationship, advantages and disadvantages of each method are explored. 

Examples on primary and secondary metabolite production are used to show the 

relationship and demonstrate for comparison. Then some conclusions are drawn for the 

general classes of fermentation processes. 

The thesis will be concluded in Chapter 6 and the potential topics for further investigation 

are suggested. It is followed by a series of appendices. 

The thesis is organised as shown in the Figure 1-2 
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Chapter 2. Fermentation Process Description, Modelling 

and Analysis 

2.0 Introduction 

The term `fermentation' comes from the Latin verb `fervere', which means "to boil". It 

was first used to describe the boiling appearance of carbon dioxide bubbles during the 

catabolism of sugar in suspended cultures of yeast. However, the term `fermentation' has 

been used later by industrial microbiologists to describe processes for microbial 

production of biochemical compound, through mass culture of micro-organisms (Stanbury 

and Whitaker, 1993). 

2.1 Primary and Secondary Metabolite Production 

Fermentation processes can be generally divided into two classes, depending on product 

formation. These are fermentation for primary or secondary metabolites production. 

In the primary metabolite production process, the metabolites are synthesised directly from 

the primary metabolism. Main functions of primary metabolites are to provide energy and 

important biochemical compounds necessary for microbial activity and growth. Examples 

of primary metabolites are proteins, ethanol and other cell constituents. Growth and 

primary metabolite formation occur almost in parallel. Biomass production is therefore 

referred to as one of the primary metabolite productions, and conditions that are suitable 

for primary metabolite production are also suitable for microbial growth. 

In the secondary metabolite production process, the metabolite production is associated 

with limited or sub-optimal growth. It was initially believed that primary metabolism and 
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secondary metabolites formation occur at separate times and secondary metabolites are 

synthesised after microbial growth has ceased (Figure 2-ib). 

There are generally two phases taking place for the secondary metabolite production: 

growth phase and production phase. The growth phase is sometimes called the 

trophophase and the subsequent phase, in which the secondary metabolites are produced is 

called the idiophase. The enzymes for producing secondary metabolites are synthesised 

during the trophophase and are used in the idiophase. Therefore, in this type of 

fermentation, it starts with growth and primary metabolism, and secondary products are 

formed afterwards. However, the production of secondary metabolites does not necessarily 

start after the growth has stopped. It is not entirely separate from the growth phase (Figure 

2-lc). Many antibiotics and vitamins belong to the secondary metabolite fermentation. 

Diagram showed different production phases for primary and secondary metabolite 

production is shown in Figure 2-1 (Crueger and Crueger, 1989; Wang, et al., 1979) 

r -ý 
1, 
Iý 
1ý 
1ý 

I 
I 

(a) time (b) time (c) time 

Figure 2-1 Diagram showed different phases for primary (a) and secondary (b-c) 

metabolite production. 

Specific growth rate (-), Specific product formation rate (---) 

This classification is quite general and may not cover all the microbial metabolite 

productions since the separation line between primary and secondary metabolites is 
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sometimes vague. Moreover, the fermentation characteristics depend not only upon the 

types of metabolite production but also composition of culture media and regulation of 

production strains. This classification is, nevertheless, a general assortment of 

fermentation category. The relationship between the specific growth rate and the specific 

product formation rate in Figure 2-1 is also referred to as: (a) growth-associated, (b) 

nongrowth-associated, and (c) mixed-growth associated product. 

a 

2.2 Mode of Operation in Fermentation Processes 

There are three modes of operation for fermentation processes namely: batch, fed-batch 

and continuous. The mode of operation is usually decided by types of products being 

produced. These modes are briefly described in the following sections which will, 

however, concentrate more on the fed-batch mode because of its importance in production 

and advantages over the others. 

2.2.1 Batch process 

A batch process is a closed system. A vessel containing appropriate medium is inoculated 

by a strain of micro-organisms. The process starts by adjusting environmental conditions 

(pH, temperature, etc. ) suitable for growth of the micro-organisms. Biochemical 

composition in the fermenter is changed due to metabolism. During the entire 

fermentation, nothing is added except oxygen in the form of air (in case of aerobic 

fermentation), antifoam, and acid or alkali for controlling pH. Typically, there are four 

phases of growth during the entire period of fermentation. These phases are lag, log, 

stationary and death (Figure 2-2) (Crueger and Crueger, 1989). 

Lag phase occurs when the cells are first transferred into the fermenter. There is no growth 

in this period during which the micro-organisms adapt to the new environment. 
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Log phase starts after the lag phase. The growth rate is constant during this period. The 

relationship between biomass and time can be plotted on a semilogarithmic graph and 

results in a straight line, so the name log phase. After a period of time, the substrates 

become exhausted and toxic metabolites may form. As a result, growth rate decreases and 

some of the cells die. When the rate of growth and death are equal, there is no overall 

increase in biomass. This is called the stationary phase. Eventually, due to lack of essential 

nutrient and accumulation of toxic metabolites, the cells die (death phase). These phases 

are shown in Figure 2-2. 

d y 
Cý 

rb 

a 
oc Z 

Time 

Figure 2-2 Growth phases in a batch fermentation 

2.2.2 Continuous process 

In batch culture, growth and product formation will cease after some finite time interval. 

However, microbial growth can be maintained by continually adding substrate into the 

fermenter and the batch process becomes fed-batch or continuous process. The continuous 

fermentation process . 
is an open system. Substrate is fed into the fermenter continuously 

and an equivalent amount of culture in the fermenter is simultaneously withdrawn. By 

continuously adding substrate, the concentration of the limiting substrate can be 
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maintained and microbial growth can be prolonged. Moreover, a steady state can be 

achieved such that the biomass and product concentration, specific growth rate and other 

culture environment (e. g. substrate concentration) do not change with time. Therefore, 

continuous culture provides a valuable tool for studying the response of micro-organisms 

to change in environment conditions such as substrate concentration, pH and temperature 

etc. 

2.2.3 Fed-batch process 

The term "fed-batch" was first introduced by Yoshida et al. (1973) to describe a technique 

in microbial processes where one or more nutrients are supplied continuously or 

sequentially to the fermenter during cultivation and in which the products remain in the 

containment until the end of the operation. Since substrates are added into the fermenter, 

the substrate concentrations in the fermenter are maintained at preferable levels, which suit 

the micro-organisms growth and metabolite production. The fed-batch technique is, in fact, 

identical to semi-batch technique, which is used extensively in chemical engineering. The 

term "fed-Batch" is used in microbial processes because the substrates added into the 

fermenter are nutrients consumed by micro-organisms. 

The fed-batch operation is used widely for production of antibiotic in industry since it can 

overcome drawbacks of secondary metabolite production happening in other modes of 

operations. For example, it can eliminate catabolite repression in batch process and avoid 

the genetic instability of mutant production strain in continuous process. Moreover, fed- 

batch mode also gives the operator the freedom of manipulating the process via substrate 

feed rate. This provides the challenge of effectively controlling and optimising the fed- 

batch process. The advantages of using fed-batch mode has been summarised (Parulekar 

and Lim, 1985; Yamane and Shimizu, 1984) as follows: 
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1. Reduction of substrate Inhibition: substrate inhibition can be reduced by gradually 

adding substrate into the fermenter. The substrate concentration is, therefore, kept at 

low level without causing any inhibition effect. 

2. High cell concentration: As high level of substrates or nutrients might cause substrate 

inhibition, the gradually adding of substrate to the fermenter could reduce this effect 

and therefore results in the optimal microbial growth and, therefore, high cell 

concentration. 

3. Reduction of the glucose effect: Glucose effect is usually referred to in a yeast 

production process as a circumstance in which ethanol is produced even in the presence 

of sufficient dissolved oxygen if an excess of sugar is present in the fermenter. The fed- 

batch technique can, therefore, be used to improve production by adding sugar when the 

micro-organism needed but not too much to produce ethanol. 

4. Reduction of the catabolite repression: Catabolite repression is a phenomenon in which 

a micro-organism is provided with a lot of rapidly metabolised carbon-energy source 

such as glucose. This causes the increase in ATP inside the cells, which leads to the 

repression of enzyme biosynthesis, and consequently causing a slower metabolism of 

the energy source. Fed-batch process, therefore, avoids the catabolite repression by 

gradually feeding of glucose to keep glucose concentration in the fermenter at the low 

level. 

5. Auxotrophic mutants or nutritional mutant. This mutant will grow and produce a lot of 

biomass under the excess of substrate or nutrient. This results in a very small amount of 

metabolite product being produced. In contrast, the starvation of nutrient also results in 

small amount of biomass and hence small amount of product. Therefore, fed-batch 

process is suitable for cultivation of this mutant culture as the nutrient is fed into the 
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process at the controlled rate. Therefore, the nutrient level can be kept at the optimal 

level. This mutant is usually used in industrial amino acid production processes. 

6. Extension of operation time: The fermentation time can be extended by adding 

substrate at the end of a batch operation. If a product is still produced, the final product 

concentration will also be increased by the extension of time. However, operating cost 

also increases and has to be considered together with the increase of the product 

concentration. The extension of operation time is, however, suitable for a nongrowth- 

associated product formation process, in which microbial production of the desired 

metabolite at the later stage in the batch (after microbial growth) can be extended. In the 

fed-batch mode, the substrate was fed to the fermenter to maintain the product 

formation condition and prolonged the production time. 

7. Replacement of water lost by evaporation: In aerobic fermentation, large amount of 

water may be lost through aeration, the fed-batch technique can be used to replace the 

water that was lost during the process. 

8. Decreasing viscosity of the broth: High viscosity usually causes problems of oxygen 

transfer in the fermentation process. The fed-batch technique can be used to reduce the 

viscosity in the process either by feeding substrate or even water to dilute the culture 

and, hence, increases the oxygen transfer. 

A diagram of a basic fermenter is shown in Figure 2-3 with its notation. The diagram is 

applied for the three modes of operation under the following situations: 

" If there is no substrate feed rate and culture removal, it becomes a batch fermentation. 

Fin = Fout = 0) 
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9 If substrate is fed and culture is removed, it becomes a continuous fermentation and 

both substrate feed rate and culture removal have to be equal. 

(Fin = Fout) 

" If there is only substrate feed but no culture removal, it becomes a fed-batch 

fermentation. (F. �t = 0) 

These conditions for different modes of fermentation are summarised in Table 2-1. 

Sf, Fin 

A 

S 

7--l 

X 
S 

Fout 

Figure 2.3 Diagram of a fermentation process 

Where : X: biomass concentration in the fermenter (g/1) 

S: substrate concentration in the fermenter (g/1) 

P: product concentration in the fermenter (g11) 

F;,,: substrate feed rate into the fermenter (1/hr) 
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F0�t: culture removal rate (1/hr) 

A: air flow rate into the fermenter (1/hr) 

Sf: substrate concentration in the feed stream F;,, (g/1) 

Table 2-1 Flow rate for different modes of fermentation. 

Mode of Operation Fin Fout 

Batch 0 0 

Fed-Batch Fin 0 

Continuous Fin = Fout 

In the next section, a brief introduction and review of mathematical modelling for the 

fermentation processes are presented. 

2.3 Modelling of Biotechnological Processes 

Modelling procedure is an iterative task as shown in Figure 2-4. It can be separated into 

two parts as model structure determination and parameter estimation. In the diagram, a 

priori knowledge of the process can be used to design proper experiments or construct a 

model structure. Experimental data is then used to estimate parameters of the model. 

Accuracy of the proposed model is then tested by comparing the model prediction with 

another set of data. This step is called model validation. If the difference between the 

model prediction and data is higher than the specified criteria, the proposed model fails 

and there is a need to go back to modify the structure of the model. The information and 

knowledge obtained from the previous experiment data, also, leads to a better design of the 
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next experiments, as well as the better model structure. This iterative task continues until 

the final model that satisfies the criteria is obtained. 

A PRIORI 
KNOWLEDGE 

DESIGN OF 
EXPERIMENT 

INPUT & OUTPUT DATA 

ýý 
DETERMINATION 
OF MODEL 
STRUCTURE i 14 

PARAMETER 
ESTIMATION 

ý 

MODEL VALIDATION 

I YES 

FINAL MODEL 

NO 

Figure 2-4 Diagram of Modelling Procedure 

Bastin et al. (1992) divided the problem of model structure determination in fermentation 

processes into two parts as determination of the number of biological reactions and 

determination of the kinetic structure of these reaction rates. Model parameters, which are 

yield coefficients and kinetic parameters, were then identified. As mentioned earlier, a 

priori knowledge of the process plays an important role in building up the model structure. 

The different classes of models are served for different purposes. Numerical models, 

which are used for representing a relationship between input and output, such as Auto 

Regressive eXogenous (ARX) and Auto Regressive Moving Average eXogenous 

(ARMAX) are usually sufficient for controlling the processes at pre-specified points. 

While much more sophisticated ones are needed for process simulation or process design 

purpose. Since inside microbial mechanisms such as intracellular biochemical pathways in 

many fermentation processes are not well understood or very complicated, there are many 
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attempts to use numerical models for representing and controlling fermentation processes 

(Tang, et al., 1992; Jalel et al., 1992; Mirzai, et al., 1991; Vanichsriratana, et al., 1994). 

With different degrees of understanding on biological knowledge, two general types of 

models can be derived. 

The so called structured model is used, usually, to study and verify the proposed 

mechanisms inside the micro-organism, and to perform simulation of the processes. This 

type of models is developed by using mass balance of intracellular concentrations such as 

DNA, RNA, enzyme, etc. (Bellgardt, et al., 1989; Palsson and Joshi, 1987). Each cell may 

also be divided into several compartments (Esener, et al., 1982; Fredrickson, 1976; Harder 

and Roels, 1982; Roels, 1983), in which reactions and mass transfer of intracellular 

chemicals are assumed to take place. Structured models need extensive information about 

internal activity of the cells and is very complicated. It may be for this reason that this type 

of model has not been used in optimisation of fermentation processes in the literature 

(Johnson, 1987). There are many articles of structured model available in the literature, for 

instance, structured model for cell growth and enzyme production by recombinant 

Escherichia coli (Korte, et al., 1991), model of plant cell culture (Bailey and Nicholson, 

1989; Gulik, et al., 1993), structured model of Spirulina platensis in photobioreactors 

(Cornet, et al., 1992a; Cornet, et al., 1992b), metabolically structured model of 

Thiosphaera pantotropha (Geraats, et al., 1990), tobacco cell cultures (Hooker and Lee, 

1992), lactic acid fermentation (Nielsen, et al., 1991a; Nielsen, et al., 1991b; Nielsen, et 

al., 1991c), morphologically structured model of filamentous organisms (Nielsen, 1993), 

penicillin fermentation (Nestaas and Wang, 1983), baker's yeast (Yuan and Bellgardt, 

1992), recombinant Escherichia coli (Nielsen, et al., 1991d). 
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The other type of model is called unstructured model. This model assumes that the whole 

culture is homogeneous and non-segregated. There is also no consideration of the 

differences between individual cell as far as size, age, chemical composition or 

morphology are concerned. Therefore the mathematical form of the unstructured model is 

much simpler than the structured one. Despite its relative simplicity, the unstructured 

model contains enough information needed for optimisation of the fermentation processes 

(Cazzador, 1988; Hong, 1986; Lim, et al., 1986; Modak and Lim, 1987; Modak, et al., 

1986; Ohno, et al., 1978; Shimizu, et al., 1991; Weigand, et al., 1979). Based on the 

application potential of the unsturctured model in optimisation of the fermentation 

processes, the formulation of the unstructured model will be given in the next section and 

the obtained model will be used for optimisation of the fed-batch fermentation in the 

following chapters. 

2.4 Unstructured Process Modelling for Primary and Secondary 

Metabolite Production 

In this section, the unstructured models for primary and secondary metabolite production 

are formulated from mass balance equations. Also, the models will be derived for batch, 

continuous and fed-batch fermentation. However, the emphasis will be given to the fed- 

batch process since it will be used as the models for process optimisation in this study. 

2.4.1 Material balance equations for fermentation processes 

The material balance for each component can be written as: 

rate of 
_ 

(rate of rate of (rate of (rate of 
_( 

) 

change addition removal 
+ 

generation utilisation addition) ýremovalJ ýgeneration) lutilisation 

Wirat Vanichsriratana, 1996, Chapter 2 37 



Some of the important components in the fermenter are biomass concentration (X), 

substrate concentration (S), product concentration (P) and culture volume (V). This 

equation can be applied for all three modes of operation, i. e. batch, fed-batch and 

continuous. An assumption commonly used is constant culture density. Note also that 

death rate of the biomass component is assumed to be negligible small and thus omitted 

from the mass balance equations. 

2.4.1.1 Batch fermentation processes 

As there is no substrate feeding and culture removal in a batch process, the rate of addition 

and removal is zero. There is also no change in volume. The cells consume substrate and 

increase in biomass with the rate of . tX. Where µ is the specific growth rate, which is the 

rate of biomass production per unit biomass and can be written as: 

I dX 
X dt µ 

Substrate is utilised at the rate of X. Where ß is the specific substrate usaged rate, which 

is the rate of substrate utilised or consumed per unit of biomass and can be written as: 

1 dS 
-- =a X dt 

Product is produced at the rate of EX. Where n is the specific product formation rate, 

which is the rate of product formation per unit of biomass and can be written as: 

I dP 
X dt 

=n 

The material balance for a batch process is summarised in Table 2-2 and shown in 

Equation (2-1) to (2-3). 
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Table 2-2 Summary of material balance in a batch process. 

component rate of 

change 

rate of 

addition 

rate of 

removal 

rate of 

generation 

rate of 

utilisation 

X dX/dt 0 0 µX 0 

S dS/dt 0 0 0 6X 

P dP/dt 0 0 TI X 0 

V 0 - - - - 

The material balance equations for a batch process are written as: 

dX 
_X dt µ 

dS 
dt 

dP 
dt 

-6X 

nX 

2.4.1.2 Continuous fermentation processes 

(2-1) 

(2-2) 

(2-3) 

As mentioned earlier, the log phase can be extended by adding substrate into the 

fermenter. In continuous fermentation, the culture is taken out at the same rate as 

substrates are added so there is no change in the culture volume. Biomass is generated at 

the rate of µX and removed at the rate of DX. Where D is referred to as dilution rate, 

which is the ratio between the substrate feed rate and the culture volume. Substrate is fed 

into the system at the rate of DSf and utilised at the rate of (TX. Substrate is also lost by 

taking out fermentation culture at the rate of DS. Product is formed at the rate of nX and is 
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taken out at the rate of DP. The material balance for a continuous process is summarised in 

Table 2-3 and shown in (2-4) to (2-8). 

Table 2-3 Summary of material balance in a continuous process. 

component rate of 

change 

rate of 

addition 

rate of 

removal 

rate of 

generation 

rate of 

utilisation 

X dX/dt 0 DX µX 0 

S dS/dt DSf DS 0 aX 

P dP/dt 0 DP 7L X 0 

V dV/dt F F - - 

The material balance equations are written as: 

dX 
= µX-DX dt 

dS 
dt -GX+D(Sf-S) 

dP 
= 1tX - DP 

dt 

dV 
_0 dt 

The dilution rate is also defined as: 

(2-4) 

(2-5) 

(2-6) 

(2-7) 

D=V (2-8) 
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Note also that the continuous fermentation is operated at steady state, in which the 

following conditions apply: 

dX 
dt 0 

dS 
_ dt 

dP 
dt =o 

2.4.1.3 Fed-batch fermentation processes 

In a fed-batch fermentation, substrate is fed into the system but no fermentation culture is 

taken out. Therefore there is no rate of removal in the material balance. However, there is 

rate of dilution instead. This is due to the amount of substrate fed into the system diluting 

other components. The material balance for a fed-batch process is summarised in Table 2- 

4 and shown in Equation (2-9) to (2-13) 

Table 2-4 Summary of material balance in a fed-batch process. 

component rate of 

change 

rate of 

addition 

rate of 

dilution 

rate of 

generation 

rate of 

utilisation 

X dX/dt 0 DX µX 0 

S dS/dt D Sf DS 0 aX 

P dP/dt 0 DP nX 0 

V dV/dt F - - - 
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The material balance equations for a fed-batch process are written as: 

dX 
= uX-DX (2-9) 

dt 

dS 
dt 

dP 
dt 

-6X+D(Sf-S) (2-10) 

= nX - DP (2-11) 

dV 
dt 

F 
D= 

V 

(2-12) 

(2-13) 

The material balance models for different modes of fermentation have been derived. In the 

next section, we will consider the equations that are used to describe the specific 

bioreaction rates (t, ß and ic). These equations usually need biochemical knowledge and 

process understanding to construct. 

2.4.2 Kinetic modelling of primary and secondary metabolite 

production 

As mentioned in the previous sections, the modelling procedures can be generalised into 

two parts, identification of the model structure and parameter estimation. Model structure 

can be derived from material and energy balance incorporated with biochemical 

knowledge which specify the kinetic structure. The model parameters are, then, estimated 

by choosing the values which correspond to the minimum error between data from the 

experiment and model prediction. The kinetic parameters may also be found from the 

published literature. Most parts of fed-batch model structure have been shown above in 

Equation (2-9) to (2-13). To produce a complete model structure, it is necessary to specify 
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the kinetic structure of the three main biochemical reactions involved. These reaction rates 

are specific growth rate (µ), specific substrate consumption rate (6) and specific product 

formation rate (n). These reaction rates may be functions of substrate concentration, pH, 

temperature, etc., however, in this study, it is assumed that these reaction rates are solely 

functions of the substrate concentration. This does not mean that pH and temperature do 

not affect the reaction rates but it is assume that they are already regulated at the optimal 

conditions so that only the effect of substrate concentration on growth and production of 

micro-organisms in fed-batch fermentation can be examined. There is nevertheless an 

implicit assumption that there is no time lag of the specific reaction rates from the change 

of the substrate concentration for these model since the kinetic model or kinetic structure 

of these specific reaction rates assumes an immediate response to the changing 

environment. This is due to the fact that the kinetic model is developed from the data at 

steady state. This immediate response is, commonly, used in chemical reaction kinetics. 

However, the responding time for the micro-organisms to the change in environment 

conditions may not be immediately in the real processes. This assumption is worth 

mentioning here as it is usually failed to be mentioned in the literature. O'Neil and 

Lyberatos (1990) developed a specific growth rate model, in which time delay was also 

included. 

More than 40 structures for the specific growth rate have been mentioned in the literature 

(Bastin and Dochain, 1990). The variation of these structures is due to the differences in 

process characteristics. The most commonly structure used in the literature based on the 

substrate concentration is the Monod's kinetic (Monod, 1949) and substrate inhibition 

kinetic. These kinetic equations are: 
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F"mnx `ý 

K. +S 

9 _ 
ýt 

max `S 

K, 
r +S+ SjK; 

(2-14) 

(2-15) 

where tIfax is the maximum specific growth rate, Ks and K; are rate constants. These 

parameters depend on strain of micro-organisms, type of substrate, etc. The relationship 

between the specific growth rate and substrate concentration based on the Monod kinetic 

and substrate inhibition kinetic are shown in Figure 2-5 and Figure 2-6. Note that although 

both kinetics are often used for representing the relationship between the specific growth 

rate (t) and substrate concentration, they can also be used to describe the relationship 

between other specific rates, such as the specific substrate usage rate ((T) and specific 

product formation rate (n), and the substrate concentration. 

For the Monod type kinetic, the relationship between the specific reaction rate and 

substrate concentration can be described as a monotonic function. The specific reaction 

rate increases and finally reaches the maximum specific reaction rate as the substrate 

concentration increases. The substrate concentration that corresponds to the maximum 

specific reaction rate must be very high as can be approximated from Equation (2-14). 

Note that the maximum specific reaction rate is the highest specific reaction rate and can 

not be increased higher than this value. (The maximum specific reaction rate is specific to 

particular micro-organisms strain, substrate, etc. ) This maximum specific reaction rate can 

therefore be seen as a constraint imposed on the reaction rate. The physical meaning of Ks 

can also be obtained from Equation (2-14) as the substrate concentration for which the 

specific reaction rate equals half of the maximum specific reaction rate. The substrate 
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considered in this case is the limiting substrate because the reaction rates depend on the 

amount of substrate concentration. 

The relationship between the specific reaction rate and substrate concentration for the 

substrate inhibition type kinetic can be described as a nonmonotonic function. It is shown 

in Figure 2-6 that the specific reaction rate increases as the substrate concentration 

increases until substrate concentration reaches a certain level after which the specific 

reaction rate starts decreasing. This is because too much substrate concentration inhibits 

the specific reaction rate. The substrate considered in this case is, therefore, the limiting 

substrate, which also has the inhibition property. This type of kinetic is more realistic than 

the Monod type because it can represents the catabolite repression or glucose effect in the 

fermentation processes. 

specific growth rate 

CIS ý 

0 
tin 
0 

0 

h 

substrate concentration 

Figure 2-5 Relation between specific growth rate (µ) and substrate concentration (S) 

in Monod kinetic 
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specific growth rate 

substrate concentration 

Figure 2-6 Relation between specific growth rate (µ) and substrate concentration (S) 

in substrate inhibition kinetic 

There are, also, many expressions for the specific substrate consumption rate. The most 

commonly used is in the form of Eqaution (2-16), in which Y,, is the yield of biomass 

from substrate. It is, actually, the conversion factor to show how many units of biomass 

can be generated per unit of substrate. The specific substrate consumption rate (a) is 

therefore related to the biomass production and the specific growth rate (µ), and can be 

written as: 

1 
ß= --µ Yxs 

(2-16) 

For the specific product formation rate, a well known `Luedeking - Piret' equation 

(Luedeking and Piret, 1959) as in Equation (2-17) is often used. The model assumes two 

stages of product formation, one during growth phase and the other during stationary 

phase. The values of coefficients, a and ß, therefore, depend on the type of the desired 
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product. To produce a primary metabolite produced during the growth phase, the 

coefficient 0 will be zero. While for a secondary metabolite, produced in the stationary 

phase, the coefficient a will be zero. 

n= aµ+ß (2-17) 

As stated earlier, these structures of the models for the specific reaction rate (µ, a, 7t) are 

based on the biochemical knowledge of the processes. The material balance models in the 

previous section incorporated with the kinetic structures of the bioreaction rates become 

the complete models, in which the unknown coefficients (such as Y,, S, Ks, K;, a, (3, etc. ) are 

left to be estimated from the experimental data. 

In general, a model would be limited only by the knowledge and imagination and therefore 

many different model structures can be obtained. Bosnjak et al. (1978) used Luedeking- 

Piret equation for erythromycin biosynthesis from Streptomyces erythreus. They also used 

three different models as shown in Equation (2-18) to (2-20) to describe the microbial 

growth phase in pellet forms, stationary phase and decline phase respectively (Bosnjak, et 

al., 1979; Bosnjak, et al., 1981; Bosnjak, et al., 1985). Where k, ki, k2, k3 are constant 

coefficients. 

X'1' = kt+X/3 (2-18) 

dX 
_ k, X 2I' - k2 X 

dt 

dX 
- --"z - -- - -- 

dt 
= kýX`'-'-k2X-k3Xt 

(2-19) 

(2-20) 

For penicillin fermentation, Bajpai and Reuß (1980) used Contois kinetic as shown in 

Equation (2-21) to describe the specific growth rate. The specific production rate was 
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modelled by a substrate inhibition kinetic as shown in Equation (2-22). The substrate 

utilisation model was, then, obtained by assuming constant yield and maintenance 

coefficient to the growth and production as shown in Equation (2-23). 

.. - 
Rmax S 

µ= KSX+S 
(2-21) 

µpS (2-22) 
KI, +S (l + S/K; ) 

dS 
dc 

1 dX 
_I 

dPX 
Y'c dt Yn. 

s 
dt 

(2-23) 

where 

µmax : maximum specific growth rate (hr'') 

gp maximum specific production rate (hr"') 

K,, : biomass coefficient constant (-) 

Kp : product coefficient constants (g/l) 

K; : substrate inhibition constant (g/1) 

YXS : yield of biomass from substrate (g biomass/g substrate) 

Y, : yield of product from substrate (g product/g substrate) 

2.5 Model Representation of Primary and Secondary Metabolite 

Production in Fed-Batch Mode 

In this section, the models for primary and secondary metabolite production in fed-batch 

mode are presented. These models are based on material balance of fed-batch fermentation 
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shown in Equations (2-9) to (2-13) incorporated with kinetic structures presented in the 

previous section. 

2.5.1 Primary metabolite production model 

It was mentioned in Section 2.1 that biomass production itself is also a primary product. 

From material balance equation of biomass, model for change in biomass concentration 

can be obtained in Equation (2-24) and model for change of substrate concentration can be 

obtained in Equation (2-25) in which Equation (2-16) is used for the specific substrate 

consumption rate. 

dX 
dt 

S=Y 
µX+D(Sf-S) dt 

. 

dV 
dt 

D= 

2.5.2 Secondary metabolite production model 

=µX-UX (1, -14) 

=F 

F 

V 

(2-25) 

(2-26) 

(2-27) 

As in the primary metabolite production in the previous section, models for change in 

biomass and substrate concentration are shown in Equation (2-28) and (2-29). For change 

in product formation, the model in Equation (2-30) is used for the secondary metabolite 

production. 

dX 
= uX-DX (2-28) 

dt 
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dS 
= -y µX+D(Sr-S) Y. 

dP 
_ nX-DP dt 

dV 
_ F, 

dt 

F 
D= 

V 

2.5.3 Kinetic structure of metabolite production 

(2-29) 

(2-30) 

(2-31) 

(2-32) 

The kinetic structures for the specific growth rate (t) and specific product formation rate 

(n) will be represented by the Monod and substrate inhibition type kinetics because of their 

common and widely used in fermentation kinetic modelling. However, it will be shown in 

Chapter 3 that for the Monod type kinetic, the fed-batch fermentation should operate in 

batch mode, hence the substrate inhibition kinetic will be mostly used for the kinetic 

structures in this thesis and also for the comparison simulation in Chapter 5. 

The `Luedeking - Piret' kinetic in Equation (2-17) will not be used as the kinetic structure 

for the specific product formation rate in this study for the following reasons. 

1. There is a linear relationship between the specific growth rate and the specific product 

formation rate. If both a and ß are not zero, the biomass and product would be 

produced at the same time and have the same production pattern. 

2. If a becomes zero as in the secondary metabolite production case, the specific product 

formation rate would be constant (ß) for the whole batch. This can not really represent 

the secondary metabolite production as the product formation does not begin from the 

start of the fermentation. 
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It has also been shown by Quinlan (1986) that, the specific production rate (? C) for the 

secondary metabolite (P # 0) in this model does not depend on the substrate concentration. 

Therefore the product would be produced by this model even after the substrate has been 

depleted from the fermenter, which is not realistic. 

2.6 Modelling Analysis 

The following constraints are imposed (implicitly or explicitly) on the mathematical model 

of the fed-batch fermentation processes. 

9 Growth rate: The growth rate of micro-organisms is limited by the maximum specific 

growth rate. 

9 Product formation rate: The product formation rate is limited by the maximum specific 

product formation rate. 

9 Substrate concentration. The substrate concentration in the fermenter can not exceed the 

concentration of substrate in the feed stream (Sf). 

" Feed rate. The substrate feed rate is constrained by maximum and minimum feed rates, 

which are the physical constraints of the process. 

In the next chapter, an optimisation of fed-batch fermentation using substrate feed rate is 

introduced. As an objective function and optimisation procedure are established, the 

fermentation model presented in this chapter will be used as equality constraints for this 

optimisation problem. 

Wirat Vanichsriratana, 1996, Chapter 2 51 



Chapter 3. Open Loop Optimal Control of Fermentation 

Processes 

3.0 Introduction 

Calculus of variations or Lagrange optimisation provides a natural approach for process 

optimisation. It has been used to optimise many fermentation processes in the literature 

(Cazzador, 1988; Hong, 1986; Lim, et al., 1986; Modak and Lim, 1987; Ohno, et al., 

1978; Shimizu, et al., 1991; Weigand, et al., 1979). The method results in a two-point 

boundary-value problem in which, due to the nonlinear nature of the process, an iterative 

search is needed to solve the optimisation problem and thus results in an open loop control 

algorithm. In this chapter, the calculus of variations for optimising the fermentation 

processes used in the literature is formulated and then applied to primary and secondary 

metabolite production processes. 

The resulting optimal solution consists of time sequence of maximum, minimum and 

singular feed rates. The physical meaning of these feed rates sequence can be interpreted 

by using a knowledge gained from analysis of the condition where the singular period 

occurs. 

3.1 Calculus of Variations and Open Loop Optimal Feed Rate 

Control 

The general fed-batch process model (Equation (2-9) to (2-13)) from Chapter 2 is written 

here for convenience as Equation (3-1) to (3-5): 
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dX 
= µX-DX dt 

dS 
dt -ßµX+D(Sf-S) 

dP 
= TtX-DP dt 

dV 
F, 

dt 

D= F/V 

(3-1) 

(3-2) 

(3-3) 

(3-4) 

(3-5) 

One of the main objectives of the fermentation process is to produce as much desired 

product as possible under production-time constraints. Process optimisation using the 

calculus of variations (Bryson and Ho, 1975; Kirk, 1970; Noton, 1972; Ramirez, 1994) is 

therefore used here to achieve this purpose. We, firstly, define an objective function, which 

is a function of biomass and/or product at the final operating time: 

J(F) =f 
(X (tf ), P(tf )) (3-6) 

Feed rate (F) is a control input determined to maximise this objective function. With the 

objective function in (3-6) and process model in Equation (3-1) to (3-4), the corresponding 

Hamiltonian equation (refer to (Bryson and Ho, 1975; Kirk, 1970; Noton, 1972; Ramirez, 

1994) for details) can then be written as: 

H 

or 

_ xdX +Xd+%dP+ý, 
dV 

" dt s dt r dt v dt 

H=%, (µX-DX)+, %5(-aµX+D(Sf-S))+, %P(nX-DP)+XvF (3-7) 
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and the costate equations: 

ix DH 
-- ax = -; ýX(µ-D)+a; ýsµ-XPn 

is 
=- 

as 
= -%, Xxµ, 

'-i-6%1, 
SXµ'+D%S-, XPXn, 

(3-8) 

(3-9) 

- kp D (3-10) 
DP = 

iv DH FXX X F, %S F%,. P 
aV V2 

+ 
V2(Ss 

S) - V2 
(3-11) 

Where' indicates the first derivative with respect to substrate concentration and ? x, %s, %p, 

%v are the costates for biomass concentration (X), substrate concentration (S), product 

concentration (P) and culture volume (V) respectively. 

The transversality or final conditions can also be written as: 

..,, ai AIXltf) = axtf 

XP(tr) = aJ 
aP, f 

Where Xtf and Ptf are the biomass and product concentration at the final operating time. 

Xýf = X(tf) 

Pf = P(tj 

Additionally, the substrate concentration at the final time is not fixed, therefore, 

it's(rs) =0 
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Once these conditions have been established, the process optimisation using the substrate 

feed rate (F) can then be determined in the next section. 

3.1.1 Optimal feed rate profile 

The optimal feed rate profile that would optimise the fermentation process is determined in 

this subsection. Since there are constraints on feed rate, which is the control variable, the 

Pontryagin's Maximum principle is therefore applied in this case. The Hamiltonian 

Equation (3-7) is rearranged as: 

H= (%Xµ-%Saµ+%Pn)X+`YF 

where 

DH 
äF - _ 

ýPP xXX 
+ý,. +Xs(Sr-S) 

V,, ý,, 'V V = 'Y (3-12) 

It is stated by the Maximum principle that the Hamiltonian must be maximised at all times 

over all possible feed rate (F). Therefore the optimal feed rate is determined by the sign of 

`Y as followed: 

ifT<Othen F=O 

if '1' >0 then F= Fmax 

However, it is possible that 'P can become zero at some period of time during the process 

operation and the Maximum principle will, thus, fail to provide an appropriate feed rate in 

this case. This situation usually happens when the process model is linear in control 

variables and so is the Hamiltonian. This characteristic is well known in the literature as a 

`singular problem'. It has also been shown in (Ramirez, 1994) that, for a time optimal 
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control of a linear system, the singular control would occur only to a system that is 

uncontrollable. 

The corresponding feed rate for this singular period is referred to as a singular feed rate 

(Fling) and since `I' is zero over the singular period, all of its time derivatives are also zero 

over this period; i. e. 

k 

dtk 
`1' = 0; k= 1,2,3,... (3-13) 

With this condition applied, the singular feed rate can be determined by repeatedly 

differentiating `Y until feed rate (F) reappears in the time derivative equation of T. As the 

patterns of feed rate are known to consist of maximum, minimum and singular feed rates, 

the optimisation problem can therefore be reduced to determine the optimal sequence of 

these feed rates and the corresponding switching times. The computational algorithms for 

this purpose can be found in (Van Impe, et al., 1992; Lim, et al., 1986). 

3.2 Optimal Control of Primary and Secondary Metabolite 

production 

The optimisation scheme obtained from the previous section, which produces an optimal 

feed rate profile will be applied to specific cases of primary and secondary metabolite 

production processes in this section. 

3.2.1 Primary metabolite production 

It is known from Chapter 2 that primary metabolites are produced during the microbial 

growth and the amount of biomass can be used as an indication of the primary metabolite 

production. The biomass production is, therefore, used in this study as an example of the 

Wirat Vanichsriratana, 1996, Chapter 3 56 



primary metabolite production process. The process model is that given in Equation (2-24) 

to (2-27): 

dX 
= µX-DX dt 

dS 1 
µX+D(Sf-S) dt Yý., 

dV 
dt 

D= F/V 

(3-14) 

(3-15) 

(3-16) 

(3-17) 

The aim for this primary metabolite (biomass) production is to maximise the biomass 

concentration (X) at the final operating time using the substrate feed rate (F). This aim can 

be transformed into an objective function as: 

rf 

J(F) =X (t 
f)-Ef dt 

to 
(3-18) 

Where E is the cost factor per unit of operating time. The Hamiltonian equation for this 

process can then be written as: 

H= -E +XX(µX-DX)+%5 -1 µX+D(Sf-S) +%,, F (3-19) 
Yx., 

and the costate equations: 

ix 
= _aH =- IX (µ - D) +1 ks µ ax Yx., 

(3-20) 

is 

= _ax = a, Xxµ'+ 
1 a, sxµ'+Da, s as Yxs 

(3-21) 
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ý`' _ -- aV =-F 
ýZ `Y +- S (Sf - S) (3-22) 

The transversality or final conditions can also be written as: 

XX(tf) =ä=I 7 

and 

o Xs(tf) = 

The optimal control sequence is then calculated from Equation (3-23) in which the sign of 

T is used to indicate the period of maximum, minimum or singular feed rate. 

aH 
- 

ý, Xx+%v+ý'S(Sf-S) _ IF 
aF -vv (3-23) 

if T<O then F=0 

if`P>0then F=F. 

if 'P =0 then F= Fsing 

The singular feed rate can be determined by differentiating Equation (3-23) until feed rate 

(F) reappears in the equation. The first derivative of (3-23) is shown as: 

dIP 
dt 

which implies that 

R' 

or 

aµ 
- as - 

I%Sµ'X(sf -S) 
XX 

µ'X(sf -s) 
V Y" V 

0 

(3-24) 

(3-25) 
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Yx. 
c 

x- 0 (3-26) 

It can be proved by contradiction that Equation (3-26) is not satisfied during the singular 

period. To illustrate this, it is assumed that Equation (3-26) is satisfied during the singular 

period. The Hamiltonian equation (3-19) during the singular period is: 

H= -E+a, XµX-xS 
1 

µX (3-27) 
Y.. 

Since the final operating time for this process is not fixed (free final time problem), the 

Hamiltonian is constant and equals to zero. This condition is not valid if Equation (3-26) is 

satisfied. Therefore Equation (3-25) is the only necessary condition for the singular period 

to happen in this process. 

To determine the singular feed rate, Equation (3-23) is differentiated again. The second 

derivative of `P is: 

d2T 
dt2 

=U (3-28) 

By using Equation (3-14) to (3-16), (3-20), (3-21) and (3-25), the singular feed rate can be 

derived from Equation (3-28) as: 

F. 
sing 

µXV 
Yx, (Sf - S) 

(3-29) 

The substrate concentration (S) during the singular period will be called "the singular 

substrate concentration (Srj,, g)" and can be obtained by solving Equation (3-25). Equation 

(3-29) is then written as: 

F. µXV 
Y. 

r 
(Sf 

- SMng ) (3-30) 
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The singular feed rate can be interpreted as a regulator control law which maintains the 

substrate concentration constant at value Ssing. In the above equation, (tXV/Y,, s) is the 

amount of substrate that is needed to produce biomass, and (Sf-Ssing) is the amount of 

substrate that is provided to produce biomass after keeping the substrate concentration 

constant at Ssing. The ratio of these two values results in a desired feed rate that will control 

the substrate concentration at this singular level (Ssing)" 

It can also be compared with the material balance of substrate concentration in Equation 

(3-15), in which Equation (3-30) can be obtained under a condition that the substrate 

concentration is to be kept constant. 

There are many structures for the specific growth rate (t) as mentioned in Chapter 2. 

However, only the Monod and substrate inhibition kinetic are considered here because of 

their most common and wide use for representing the specific growth rate (p). 

3.2.1.1 Monod kinetic 

The Monod type kinetic for the specific growth rate (p) is in the following structure: 

9 
ýtmax `S 

K, +S 

The graphical representation of the relationship between the specific growth rate (. t) and 

substrate concentration (S) is shown in Figure 2-5 in Chapter 2. In this case, there is no 

singular period as the substrate concentration (S) that will satisfy Equation (3-25) is not 

finite (The substrate concentration would be at infinity). The substrate concentration will 

therefore be kept as high as possible in order to increase the biomass growth rate (see the 

relationship between the specific growth rate (. t) and the substrate concentration (S) in 

Figure 2-5). The optimal feed rate sequence in this case consists of only the maximum and 
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minimum feed rates. The maximum feed rate starts first from the beginning of the batch 

until the reactor is full. It is then followed by the minimum feed rate (no substrate is fed 

into the fermenter) until the process is finished (the final conditions or requirements are 

satisfied). The maximum and minimum feed rates are also decided by the sign of `F in 

Equation (3-23). 

With this kinetic structure and the corresponding optimal feed rate sequence, the process 

operation is, in fact, equivalent to a batch fermentation, as the fermenter is filled up from 

the beginning of the batch and the process then continues without any substrate feeding 

until the end of the batch. 

3.2.1.2 Substrate inhibition kinetic 

The widely use of the substrate inhibition kinetic is due to its ability to represent the 

catabolite repression or glucose effect behaviour in the fermentation process. The 

relationship between the specific growth rate (t) and substrate concentration (S) is in the 

following structure: 

Rmax `S 
µ= 

Ký+S+SjK, 

The graphical representation of the specific growth rate (µ) and substrate concentration (S) 

is shown in Figure 2-6 in Chapter 2. In this case, the singular substrate concentration (Sling) 

can be obtained by solving Equation (3-25) which results in, 

Ssing = K. 
s 
K, (3-31) 

Therefore, the substrate concentration (S) in the reactor is maintained at this constant value 

(Sling) during the singular control period. It is also worth mentioning that the singular 
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substrate concentration (SS;,, g) is in fact the concentration that maximises the specific 

growth rate (µ'=0). The singular feed rate from (3-29) then becomes: 

sing 
µXV 

Yx., (Sf- KrK; ) (3-32) 

In the next section, we will consider the feed rate optimisation of the secondary metabolite 

production process. 

3.2.2 Secondary metabolite production 

For a secondary metabolite production process, the process model from Chapter 2 

(Equation (2-28) to (2-32)) are written here as: 

dX 
dt = µX-DX (3-33) 

dS 1 
-` uX+D(S, -S) (3-34) 

Ut Yx. 
e 

\-j 

dP 
= nX-DP 

dt 

dv 
dt 

(3-35) 

F (3-36) 

D= F/V (3-37) 

The objective function here is to maximise the secondary metabolite product (P) at the 

final time (tf) and can be stated as: 

rf 

J(F) = P(tj)-F-fdt 
If) 

The Hamiltonian equation for this process can then be written as: 

(3-38) 
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H= -E+kX(µX-DX)+a, s -1 µX+D(Sf-S) +a, P(nX-DP)+%,, 
F 

Y. r., 

(3-39) 

or 

H=X 
Yl. r 

(3-40) 

and the costate equations: 

ýX 

is 

ýP 

ýV 

DH I xSµ-%, Pn aX -XX(µ-D)+ Yxs 
(3-41) 

as - -%XXµ'+YXeý, SXµ'+Dý, S-ý, PXn' (3-42) 

DH 
_- aP - D (3-43) 

aH 
_ 

FXX X+ FXS S_ 
Fý, P P 

aV v2 V2 
(sf ) 

V2 

The transversality or final conditions can be written as: 

Qtr) =0 

aP(rf) = 
ai 
aP7 1 

(3-44) 

(3-45) 

(3-46) 

(3-47) 

The optimal control sequence is then calculated from Equation (3-48) in which the sign of 

T is used to indicate the period of maximum, minimum or singular feed rate. 
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DH 
_ _XXx+XV+ý. s(sf-s)-; 

ýPP 
= `I' (3-48) 

aF VVV 

if T<O then F=0 

if `Y>0then F=Fn, 

if `P=0then F=Fsin¬ 

During the singular period (`Y = 0), the singular feed rate is determined by differentiating 

of Equation (3-48) until feed rate (F) reappears in the equation. The first derivative of `Y is: 

dT 
=o= dt 

which implies that, 

VY VV 

2. Sµ' Xxµ'1Pzz' =0 

xSµ'X(Sf -S) %, µ'X(Sf -S) XPn'X(Sf -S) 

And the second derivative of `Y is, 

d2`Y 
dt2 

(3-49) 

(3-50) 

0 (3-51) 

The singular feed rate can then be obtained from Equation (3-5 1) using Equations (3-33) to 

(3-36), (3-41) to (3-44) and (3-50) as: 

E. 
sing 

= V 
(Sf 

- S) 
µX + Yx. 

r 

LS 
Yµ-XXµ-%, P1L 

x. c 

sXPn� 
x. e 

(3-52) 

Where ' and " are the first and second derivatives with respect to the substrate 

concentration. Equation (3-52) is in fact a general form for the singular feed rate both in 

the primary and secondary metabolite production. In the singular period of the primary 
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metabolite process, the conditions in (3-25) and (3-3 1) when applied to (3-52) result in the 

singular feed rate in (3-32). Comparing Equation (3-52) to the mass balance equation of 

substrate concentration in Equation (3-34), the following equation is obtained: 

dSsing 

dt 

µ' 
YS 

µ-ý, Xµ-ý, Pn 
xs 

LS 
xPn� 

Yx., 

(3-53) 

Equation (3-53) is the singular substrate concentration trajectory during the singular 

period. To understand the meaning of the singular feed rate, the analysis from the primary 

metabolite case in the previous section can also be used here by separating the singular 

feed rate into two parts - the substrate consumption part and substrate providing part as 

shown in the following: 

substrate consumed =V µX 
YS 

µ-ýXµ-ýPn 
, xs 

- -r 
I Yxs 7-S 

µ� _ Xx µ� _ %, 
p ? L� 

Y. 

substrate provided = (Sf 
- Ssing) 

The singular feed rate for the secondary metabolite process can therefore be seen as feed 

rate that maintains substrate concentration following the trajectory in Equation (3-53). 

During the singular period, Equation (3-48) equals zero: 

xý +av +ý'S( v-s)Xý _ý=o (3-54) 

Since this is a free time problem (the final operating time is not fixed), the Hamiltonian 

(H) becomes zero and Equation (3-40) during the singular period (Equation (3-54)) then 

becomes; 
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Xs 
µ+ýPý X=0 

Yx., 

or 

- x=- 

Substituting Equation (3-50), which is the condition for the singular period into Equation 

(3-56) results in; 

'17 - 
µ'c A=- 

Equation (3-57) shows the relationship between the substrate and biomass concentration at 

the different operating cost factor (c) during the singular period. The profile of substrate 

concentration (Equation (3-53)) during the singular period, and the singular feed rate 

(Equation (3-52)) in this case become: 

c 

LS 
µ-%Xµ-kPn Yx. e 

(n'µ-nµ') 

(3-55) 

(3-56) 

(3-57) 

dSsing 
dt 

Fing V µX+µ'(n'µ-nµ') 
(sf - Ssing ) Y. (n, µ� - n� µ) 

(3-58) 

(3-59) 

The singular substrate concentration is not constant as in the primary metabolite process, 

but follows the profile in Equation (3-58). This circumstance is, however, different in 

another condition where the given objective function does not take the operating cost into 

account (e = 0). The objective function then becomes: 

J(F) =P (t 
f) (3-60) 
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Following the same procedure, the Hamiltonian equation in (3-40) during the singular 

period, given the objective function (3-60), becomes: 

H= XXµ- S µ+XPTC X=0 
Yx, c 

or 

xXI%Pn =0 Y. 

And the singular feed rate in this case (from Equation (3-52)) becomes: 

E. 
sing 

V µX 
(Sf - Ssing) Vxe 

(3-61) 

(3-62) 

Equation (3-62) shows that the substrate concentration is kept constant at Ss; ng during the 

singular period. The singular substrate concentration (Ss; ng) can be obtained from 

combining Equation (3-50) and (3-61) which results in: 

1%P (µ n' -n µ") =0 

Since Xp is not zero, this implies, 

(p n'-nµ') =0 

or 

d(n/µ) 
=0 dS 

(3-63) 

The substrate concentration is therefore kept constant at the level which maximises the 

ratio of the specific product formation rate over the specific growth rate. Note that this 

level of substrate concentration is not necessarily the level that maximises the product 

formation rate (i. e. n' = 0). With the ratio of high production rate over low growth rate, the 
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process will take long operating time due to the slow growth rate and result in high product 

concentration at the end of the batch. This condition is obtained from the fact that we have 

considered only maximising product concentration and did not put the cost of operating 

time into account. This can be considered as an ideal condition for maximising secondary 

metabolite production. However, most of the process would operate under some 

production-time constraint considered earlier and too long operating time might not be 

applicable in industry. 

In the next section, The optimal feed rate profiles for both primary and secondary 

metabolite production processes are analysed for process understanding. The relationship 

between the feed rate sequence is also explained. 

3.3 Interpretation of Optimal Feed Rate Control in Fermentation 

Processes 

Optimal feed rate profiles have been used extensively for optimising fermentation 

processes in the literature. (Cazzador, 1988; Hong, 1986; Lim, et al., 1986; Modak and 

Lim, 1987; Modak, et al., 1986; Ohno, et al., 1978; Park and Ramirez, 1988; Shimizu, et 

al., 1991; Weigand, et al., 1979). The optimal feed rate profile has been shown in the 

previous section to consist of combinations of minimum, maximum and singular feed 

rates. 

As the method usually results in the pre-determined feed rate profile based on the sign of 

'1' (refer to Equation (3-12)), the physical meaning of these feed rate sequences on the 

fermentation processes can not be seen clearly from the process operational point of view 

because operators would be given only the pre-specified sequence of feed rate to operate 

on the process without any knowledge of what is happening inside. 
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The analysis is therefore carried out to understand the effect of the optimal feed rate profile 

on the process. The meaning of singular period in the fermentation processes will be 

established first since the optimal path in this period is not affected by the feed rate 

constraints. It will be extended later to cover the meaning and effect of maximum and 

minimum feed rate on the fermentation processes. 

During the singular period, the Hamiltonian is maintained at the maximum by keeping 

substrate concentration at the singular level (or profile). Note that the singular feed rate 

(Fsing) is used to keep the substrate concentration at this trajectory and therefore not 

necessarily constant. 

As the singular period is an interval that optimises the process by controlling the substrate 

concentration at the optimal level, the meaning of the maximum and minimum feed rate 

outside the singular period become clear. These feed rates are used to shift the substrate 

concentration from the initial condition that is not optimal to the optimal one and then start 

the singular period. Therefore, if the initial substrate concentration in the reactor starts at 

the optimal level, the process would start with the singular feed rate and continue until it 

reaches the constraints. This can be seen when the maximum feed rate can not provide 

adequate substrate to maintain the optimal substrate concentration (maximum feed rate 

constraint) or the culture volume reaches the maximum (maximum volume constraint), 

which also results in the minimum feed rate (F = 0). The optimality of feed rate at the 

maximum and minimum is due to these constraints and follows the Maximum principle. 
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3.4 Discussion 

There are two problems arising from applying the open loop optimal feed rate profile 

method. These problems are discussed in this section. 

3.4.1 Singular control 

The term singular control is used to describe a situation in which the optimal control 

equation (3-12) fails to determine an optimal control action or feed rate (F) (Noton, 1972; 

Ramirez, 1994; Teo, et al., 1991). This can happen when the system equations and 

therefore the Hamiltonian are linear in the control variables. In general, if we assumed the 

absence of constraint on the control variable or feed rate, it can be shown that, during the 

singular period, the necessary condition for the optimality is satisfied (refer to Equation (3- 

12)): 

DH 
= `I' =0 (3-64) 

aF 

However, the sufficient condition is not satisfied as: 

a2x 
aF2 =o 

This situation is probably one of the main reasons why the singular control is not 

preferable and several methods and transformations have been used to avoid it (Modak and 

Lim, 1989; Hong, 1986; Ohno, et al., 1978). 

Moreover, the singular control introduces further difficulties for determining the optimal 

feed rate profile. In the computational aspect, the difficulty arrives during the 

differentiation of Equation (3-64) until the feed rate (F) reappears. This algebraic 

manipulation can easily take several pages even for a simple fourth-order systems as 
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pointed out by Terwiesch, et al. (1994). Also, if numerical optimisation methods, 

particulary those based on a gradient search, are adopted, the convergence issue becomes 

eminent as the gradient (DH/JF) depends indirectly on the substrate feed rate (F). 

3.4.2 Open loop control 

The calculus of variations is used to determine optimal feed rate profiles that will optimise 

fed-batch fermentation processes. This results in a two-point boundary-value problem and 

because of the nonlinear nature of the processes, the optimal solution usually falls out as 

an open loop control algorithm. One advantage of this approach is that it does not need 

measurements of state variables which are often difficult to obtain on-line. Instead it 

assumes that the state variables are proceeding along known paths a-priori determined by 

models. However, the disadvantage of such an open loop approach is that the performance 

will severely deteriorate in the presence of process disturbances or plant-model mismatch. 

3.5 Summary of the open loop optimal feed rate control method 

The method for determining the optimal feed rate profile presented in this chapter is 

briefly summarised in this section. From the formulation of the Hamiltonian and costate 

equations, the optimal feed rate can be obtained by using the Pontryagin's maximum 

principle as there are constraints on the control variable. The optimal feed rate can be 

obtained from Equation (3-12), which is shown here: 

aH 
_ _kXX+IV+; 

ýs(Sf-S)-2PP 
=T (3-12) 

aF VVV 

The optimal feed rate is determined by the sign of `Y as follows: 

if'I'<Othen F=O 
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if `I' >0 then F= Finax 

if 'I' =0 then F= Fsing 

The fermentation process is started with the maximum or minimum feed rate depending on 

the sign of `Y if the singular condition does not hold at the beginning of the batch. When 

the sign of T becomes zero, which means the singular condition has been satisfied, the 

singular feed rate starts. 

As the optimal feed rate profile comprises maximum, minimum and singular feed rates, 

the optimisation problem here is therefore reduced to the determination of the optimal feed 

rate sequence and the corresponding optimal switching time between these feed rates. 

It is worth noting that the singular feed rate in Equation (3-32) and (3-62) for the primary 

and secondary metabolite production are model-based regulator control. 

E. 
sing 

sing 

µXV 
Yx., (sf- KeK; 

V µX 
(sf 

- `Ssing 
) 

Yx. 
s 

ý 
Ssing S(d(a/µ)ldS 

= 0) 

(3-32) 

(3-62) 

The singular feed rate would control the substrate concentration constant at the level where 

the singular feed rate is started. The singular feed rate would continue until the constraints 

are reached either the singular feed rate becomes higher than the maximum feed rate or the 

culture volume reaches the maximum. At this point, the singular condition could not be 

held any longer and the sign on `P will determine whether the maximum feed rate (the 

singular feed rate reaches the maximum feed rate constraint) or the minimum feed rate (the 

reactor is full) is used. This also applies to the singular feed rate for the secondary 

metabolite production when the operating cost is considered (Equation (3-59)). However, 
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the substrate concentration follows the trajectory generated by Equation (3-58) and is not 

constant. 

F. 
sing 

V µXµ'(9L'R -nµ') 
(sj - ssm. g) Y (71'R" - n� µ, ) xr 

(3-59) 

It is obvious that insight into the phenomena occurring in the fed-batch fermentation 

processes under the optimal control can be gained from considering the substrate 

concentration in a bioreactor. It is the substrate feed rate which is manipulated by the sign 

of `Y that governs the substrate concentration and resulting in desired product obtained. 

This emphasises the important of substrate concentration to optimise the fermentation 

processes. Also, it is not until recently that on-line estimation of state variables has been 

successfully developed and used in the industry (Zhang, et al., 1996). Therefore in next 

chapter, we propose an optimisation in which the optimal substrate concentration is first 

determined and then the corresponding feed rate is calculated. The advantages of the 

proposed method will be shown in Chapter 5 in which these two methods are compared. 
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Chapter 4 Closed Loop Optimal Control of Fermentation 

Processes 

4.0 Introduction 

In the previous chapter, an optimal control for maximising a given objective function in 

fermentation processes has been analysed. It was shown that the objective function is 

optimised by using substrate feed rate to control substrate concentration following the 

optimal path. This clearly showed the effect of the substrate concentration to metabolite 

production in the fermentation processes. From the microbiological point of view, this 

result is not unexpected, as the specific reaction rates (specific growth rate (µ), specific 

substrate consumption rate (6) and specific product formation rate (it)) in the fermenter are 

governed by the environmental conditions of the fermenter such as the substrate 

concentration. The purpose of the substrate feed rate is therefore to maintain the substrate 

concentration in the reactor at favourable levels. 

The relationship between the substrate feed rate and substrate concentration is shown in a 

material balance equation (Equation (2-10)) of substrate concentration in Chapter 2 and is 

also illustrated in Figure 4-1 in which the substrate feed rate with concentration Sf is fed 

into the fermenter and diluted to concentration S. 
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kith substrate 
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Si 

Figure 4-I Diagram shows the reaction in the fermentcr 

The main task for optimisation of the fed-hatch fermentation processes is thus to control 

the suhstrate concentration following the optimal trajectory in order to optimise the desired 

objective function. Ilenee, we propose a method, which separates the optimal control 

problem formulated in the previous chapter into two parts. The first part is to determine 

the optimal trajectory of the substrate concentration. The second part is to design a 

controller to tack the obtained substrate concentration trajectory. It is also due to the 

recently development of on-line estimation of the substrate concentration (Zhang, ('I al.. 

1990) that mikes the proposed method applicable. 

The advantages oI, this method over the optimal Iced rate profile method are two fold. 

First. this method can avoid the singular problem. which usually occurs in the optimal iced 

rate profile method. This is because the substrate concentration appears nonlincarly in the 

, 'stein equations. Secondly, the controller is operated in a feedback mode for controlling 

the obtained substrate concentration trajectory. The closed 1001) control problem is 

preferable over the open loop one as external disturbances can be compensated. The 

proposed method also offers the flexibility that many types of controllers can be designed 
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and used particularly those robust to model/process mismatch errors (Green and Limebeer, 

1994). 

In this chapter, the proposed method is first formulated and then applied to primary and 

secondary metabolite production processes. Most of the work presenting in this chapter is, 

however, devoted for determining the optimal substrate concentration profile. Although 

the model based predictive control is used for the controller part in this thesis, it would not 

be in detail as other types of controller can also be exploited as long as they are capable of 

controlling the substrate concentration to follow the optimal profile. 

4.1 Optimal Substrate Concentration Profile and Feedback 

Control 

In this section, the optimal control problem formulated in the previous chapter is divided 

into two parts. The first part is to determine the optimal substrate concentration profile. 

This optimisation is also performed by the calculus of variations method, but here the 

control variable is changed from substrate feed rate to substrate concentration in the 

fermenter instead. A model predictive control is then used to control the obtained substrate 

concentration trajectory. 

These two parts are complementary with each other. In designing the optimal substrate 

profile, both substrate feed rate and volume are omitted from the system model. The 

controller is then not only used to cope with the omitting of feed rate and volume 

constraints but also to control the substrate concentration following the optimal path. Since 

this provides a closed loop control of the substrate concentration that optimises the given 

objective function, this strategy is called "closed loop optimal control". 
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4.1.1 Optimal substrate profile determination 

The calculus of variations method is used to determine an optimal substrate concentration 

profile that will optimise the objective function. Since the substrate feed rate and volume 

are omitted, the system equations become: 

dX 
dt 

(4-1) =RX 

dP= 
7C X 

dt 
(4-2) 

The objective function to be maximise is a function of biomass and/or product 

concentration at the final operating time as: 

f(S) =f 
(X (tf ), P(tf )) 

The Hamiltonian and costate equations can then be written as: 

H= %XµX+XPnX 

ix 

= -ax = xXµ+XP7c ax 

ir _ 
DH 

=0 aP 

Transversality conditions: 

Ä, 
X(tf) = ai 

ax7 

.,, aý A, Pltf) = aPf 

Where X, f and P, f are biomass and product concentration at the final time. 

(4-3) 

(4-4) 

(4-5) 

(4-6) 
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X, f =X (tf ) 

P, f = P(tf 

Optimal control: 

DH 
= Xxaµ+a xa" =o as " as P as 

(4-7) 

The optimal substrate concentration profile (Soft) can be obtained by solving equation (4- 

7) for the substrate concentration (S). Note also that the optimal control here has no 

singular period due to the fact that the control variable, which is the substrate 

concentration (S) in this case, appears nonlinearly in the system and the Hamiltonian 

equations. (The specific reaction rates (t, ic) are nonlinear functions of substrate 

concentration. ) 

4.1.2 Controller design 

In this subsection, a controller is designed to control the substrate concentration following 

the optimal profile. It has been mentioned earlier that one of the flexibilities of this method 

is that many types of controller can be used to control the obtained optimal substrate 

profile. However, a model based control scheme is used here so that the similarity of both 

the open loop optimal feed rate profile and the proposed closed loop control method can be 

maintained as much as possible, and the comparison of both methods in Chapter 5 is easily 

undertaken. Moreover, the model predictive control scheme and the optimal control 

scheme bear a very similar aspect as both employ the optimisation method to calculate the 

input variable. The main difference might be the implementation of the receding horizon 

by the model based control scheme and hence benefit the feedback advantage. The open 

loop optimal feed rate profile uses a process model for generating the optimal feed rate to 
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optimise the given objective function (It was shown in Chapter 3 that the optimal substrate 

feed rate is used to control the substrate concentration at the favourable condition for the 

product formation). The proposed method should also yield the similar result, since it uses 

the same process model to generate the optimal substrate concentration profile in the first 

step and the substrate feed rate to follow the desired substrate profile in the second step. 

Therefore the comparison of both methods should be justified. 

Another reason for using the model based control is that the calculus of variations method 

has already required the process model for determining the optimal substrate profile. We 

therefore make use of the process model in designing a controller. Since the process model 

is nonlinear, the nonlinear model predictive control is used here for the tracking 

component of the proposed method. (Further details on nonlinear model predictive control 

are given in (Ali and Zafiriou, 1993; Biegler, 1991; Cuthrell and Biegler, 1987; Eaton and 

Rawlings, 1990; Renfro, et al., 1987; Sistu and Bequette, 1991). ) 

Nonlinear model predictive control belongs to a class of model predictive control, in 

which process model is used explicitly to determine a control law. Model predictive 

control is defined (Biegler, 1991; Eaton and Rawlings, 1992) as "a control scheme in 

which the controller determines a manipulated variable profile that optimises some open 

loop performance objective on a time interval extending from the current time to the 

current time plus a prediction horizon". Feedback is incorporated when a further 

measurement becomes available and the optimisation procedures for determining the 

manipulated variable profile is then restarted. This characteristic is called a receding 

horizon or finite moving horizon approach. The general problem to be solved by model 

predictive control can be stated as: 
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min (D[u(t), x(t), y(t)] 
U(I) 

subject to the system equations, constraints and initial conditions: 

dX 
dt -f(X'u) =0 

y-g(x, u) =0 

h(x, u) =0 

k(x, u) >- 0 

x(t(, ) = xo 

with 

tE [ta, to + T] 

The notation here refers only to this subsection: u is the input vector, y is the output vector 

and x is the state vector. The time interval is from the current time to to to + T, in which T 

is the length of the prediction horizon. The functional 1 is the performance objective of 

the controller. The functions f and g represent the process model, and h and k are equality 

and inequality constraints. Model predictive control is therefore suitable for the proposed 

scheme since the constraints on volume and feed rate can be handled explicitly. 

The nonlinear model predictive control applied to a fed-batch fermentation process under 

the proposed control scheme can then be stated as follows where the substrate feed rate 

(F), which is the control variable can be obtained. 

min F(k)... F(k+m-1) 

±((k+i/k)-S(, 

J,, 
(k+i) 

r=i P 
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where 

S(k +i/ k) : model predicted value of substrate concentration at time (k+i) based 

on information at time k. 

S�,, t 
(k + i) : optimal substrate concentration at time (k+i). 

p: prediction horizon 

m: control horizon: (F(k + i) =0Vi >_ m; m<p) 

subject to 

dX 
= µX-DX ; X(O) = Xo 

dt 

I=-YµX+D (Sf - S) ; S(O) = So 
Y. 

dP 
= nX -DP; P(O) = Po 

dt 

dV 
dt =F; V(O) = Vo 

ýýF< Finax 

v(rf )s vf 

with 

tE [to, to + Tý 
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4.2 Closed Loop Optimal Control of Primary and Secondary 

Metabolite Production 

The proposed closed loop optimal control method is applied to primary and secondary 

metabolite production processes in this section. Note that most part of the work presented 

here will refer to only the determination of substrate concentration profile. The controller 

will be included and used in the next chapter. 

4.2.1 Primary metabolite production 

A biomass production process is used as the primary metabolite fermentation process. The 

process model is therefore written as: 

dX 
_ µ(S) X 

dt 
(4-8) 

The specific growth rate (µ) is a function of substrate concentration (S), which is used as 

the control variable. The aim is to maximise the biomass concentration at the final 

operating time, which can be transformed into the objective function as: 

If 

J(S) = X(tf)-E f dt 

to 
(4-9) 

Where e is the cost factor per unit of operating time. The Hamiltonian and costate 

equations are then written as: 

H= -E+7 tX 

DH ýX--äx =-aXµ 

Transversality condition: 

(4-10) 

(4-11) 
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a, X(t, ) = ax= 
1 

7 

The optimal control or the optimal substrate concentration profile in this case will be 

calculated from: 

S= xXX äµ 
as 

which implies that, 

DR 
- as 

(4-12) 

0 (4-13) 

This means that the optimal substrate concentration is the value that maximise the specific 

growth rate. This also coincides with the intuition that to maximise the biomass 

concentration, the specific growth rate needs to be maximised. If we recall the optimal 

control of biomass production in the previous chapter, it can be seen that the condition in 

Equation (4-13) is the condition that singular feed rate occurs. 

Two common structures of the specific growth rate (µ) are also examined here. The first is 

the Monod typed kinetic and the second is the substrate inhibition typed kinetic. 

4.2.1.1 Monod kinetic 

The relationship between specific growth rate (µ) and substrate concentration (S) for the 

Monod kinetic is shown in Equation (4-14) and can be seen in Figure 2-5 in Chapter 2. 

µ 
Rmnx' `S (4-14) 
KS +S 

It can be seen, as in Section 3.2.1.1, that the specific growth rate would be maximised 

when the substrate concentration is kept as high as possible. This knowledge makes the 
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biomass production with this kinetic operates in batch mode. (The fermenter is filled up at 

the beginning of the batch to keep the substrate concentration at high level. The process is 

then started in batch mode. ) 

4.2.1.2 Substrate inhibition kinetic 

The relationship between specific growth rate (µ) and substrate concentration (S) for the 

substrate inhibition kinetic is shown in Equation (4-15) and can be seen in Figure 2-6 in 

Chapter 2. 

µ 
ý"Itlilx ýS 

(4-15) 
KT +S+ SZlK; 

It can be shown that specific growth rate would be maximised when the substrate 

concentration is kept at the following level, which is determined from Equation (4-13): 

SoPf = K` ' Kr (4-16) 

The biomass production in case of the substrate inhibition kinetic is therefore operated in 

fed-batch mode in order to keep the substrate concentration constant at the optimal level 

(S0Pt), which maximises the specific growth rate. 

4.2.2 Secondary metabolite production 

The process model for a secondary metabolite production can be written as: 

dX 

dt 

dt 
"' = u(Sl X 

dP 1-1 -- = n(S) x 
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The specific growth rate (µ) and the specific product formation rate (it) are functions of the 

substrate concentration (S) which is the control variable. The aim of this process is to 

maximise the secondary metabolite product (P) at the final operating time. Therefore the 

objective function can be written as: 

If 

J(S) = P(tf)-E f dt 
to 

(4-17) 

Where e is the cost factor per unit of operating time. The Hamiltonian and costate 

equations can then be written as: 

H= -E+2 tX+X, itX 

DH ýX = -äx = -aXµ-aPn 

jP ax=o 
aP 

Transversality conditions: 

? IX(tf) == ax o 
rf 

XP(rr 
aP =1 

7 

(4-18) 

(4-19) 

(4-20) 

(4-21) 

(4-22) 

The optimal control or optimal substrate concentration profile can be determined from: 

DH 
= xxaµ+Xxan =o as X as P as 

Since the biomass concentration (X) is not zero, this implies that, 

=o X" as + XP as 

(4-23) 

(4-24) 
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As the Hamiltonian (H) is zero for a free time problem (the final operating time (tf) is not 

fixed), the Hamiltonian equation (4-18) becomes: 

H= -C+XXµX+XpnX =0 

or 

Xý (4-25) 
x+ 

XP TC 

Find the value of Xx in Equation (4-24) and substitute into Equation (4-25) yields, 

(? L' µ- 7t µ') 
(4-26) 

where ' is the differentiation with respect to the substrate concentration (S). Equation (4- 

26) shows a relationship between the biomass and substrate concentration at the different 

cost factors (c). 

Taking the time derivative of Equation (4-24) yields, 

-ß, xµµ'-%Pnµ'+ß, Xµ"S+XPn"S =0 

And substitute with Xx from (4-24) and 2p from (4-20) and (4-22) results in: 

S=- µý W µ- n W) 
(µ' n� - n, µ") 

(4-27) 

Equation (4-27) represents the optimal substrate concentration profile that maximises the 

given objective function (4-17). Note that there is no biomass concentration in this 

equation. The relationship between substrate and biomass concentration has been however 

shown earlier in Equation (4-26). During the process optimisation, these two equations 

suggest that the substrate concentration needs to be controlled following the optimal 

profile in Equation (4-27), while the relationship between the biomass and substrate 
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concentration in Equation (4-26) is also hold. This illustrates the fact that the production of 

secondary metabolite depends not only on substrate concentration (suitable condition of 

microbial production) but also on biomass (sufficient amount of biomass for microbial 

production). 

In another case, where the objective function does not take the operating cost into account, 

the objective function is written as: 

J(S) = P(t1) 

Following the same procedure, The optimal control or optimal substrate concentration can 

be determined from: 

ax 
=% xaµ+% xan =o ass as as 

or 

X" as + XP as = ° 

(4-28) 

(4-29) 

For a free final time case, the Hamiltonian (H) equals zero and equation (4-18) in which c 

is zero becomes: 

2. 
Xµ 

+kPn = 0 (4-30) 

Find the value of XX in (4-30) and substitute into (4-29) yields, 

1%, (nµ'-µn') =0 

From Equation (4-20) and (4-22), ?p is not zero. This implies that, 

(nµ'-µn') =0 
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or 

d(n/µ) 
= dS 

(4-31) 

This means that the optimal substrate concentration is to be kept at the level which 

maximises the ratio between the specific product formation rate and the specific growth 

rate. Note that equation (4-31) is the same condition that occurs during the singular period 

in the previous chapter (refer to equation (3-63)). The same explanation can also be used. 

4.3 Substrate Feed Rate Profile and Optimal Substrate 

Concentration Profile 

In this section, the pattern of feed rate that would result in the optimal substrate profile is 

discussed and compared with those from the open loop optimal feed rate control in the 

previous chapter. 

As the sign of `Y in the open loop optimal feed rate control method in the previous chapter 

that designs the desired feed rate as minimum, maximum or singular, it is the optimal 

substrate concentration profile and the constraints on feed rate and culture volume that 

determine the corresponding feed rate in the proposed method. This can be seen, for 

example, if the initial substrate concentration is higher or lower than the optimal substrate 

concentration, the response from the controller is to drive the substrate concentration to the 

desired substrate profile as fast as possible therefore resulting in the minimum or 

maximum feed rate as bounded by the feed rate constraints. The same result is also applied 

when the reactor is full and the controller responds with the minimum feed rate. During 

the controller tracking the optimal substrate concentration profile, the constraints on feed 

rate might be activated again when the substrate concentration need higher feed rate than 
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the maximum level to maintain the substrate concentration following the optimal profile. 

This also results in the maximum feed rate while the substrate concentration starts deviate 

from the optimal path due to constraints. 

In Chapter 3, we start from the optimal feed rate profile and lead to the condition of 

optimal substrate profile. However, in this chapter, the process is reverse and we would 

start from the optimal substrate profile and then envisage the pattern of the optimal feed 

rate. This analysis also gives an insight look in the optimisation of fed-batch fermentation 

processes particularly the similar and difference between the method in Chapter 3 and the 

one in this Chapter. This is also illustrated in Figure 4-1, where the upper part refers to the 

open loop optimal control and the lower part refers to the closed loop optimal control. In 

the open loop optimal control, the optimal substrate feed rate profile is applied to the 

process, which results in the maximum product being obtained. In the closed loop optimal 

control, the optimal substrate concentration profile is directly determined to maximise the 

objective function. The substrate feed rate is then later calculated to provide this optimal 

substrate concentration profile. 
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Figure 4-2 Diagram shows the relation between optimal feed rate profile and optimal 

substrate profile 

Since the specific reaction rates are functions of substrate concentration in this thesis, it is 

also worth mentioning that when the specific reaction rates (µ, a and it) are functions of 

other environmental variables such as pH, temperature, etc. This method can still be used 

by determining the trajectories of these variables instead of substrate concentration. 

4.4 Summary of the closed loop optimal control method 

The proposed method of closed loop optimal control is summarised in this section. As the 

analysis showed the importance of substrate concentration on the bioreaction rates, the 

closed loop optimal control divides the general optimal control problem into two parts as: 

1. determine an optimal substrate concentration profile 
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2. design a controller to track the obtained optimal substrate concentration profile 

The optimal substrate concentration profile is determined using the calculus of variations 

method, which is shown in Equation (4-7): 

ax=axaµ+a, xan=o as X as P as 
(4-7) 

The optimal substrate concentration profile is determined without considering the effect of 

constraints on feed rate and culture volume. Therefore it is actually an ideal optimal path 

for the optimisation of the fermentation process. The omitted constraints are 

accommodated in the second part of the method in which the nonlinear model predictive 

control is designed for tracking the optimal substrate concentration profile. 
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Chapter 5 Relationship and Comparison between Open 

Loop and Closed Loop Optimal Control. 

5.0 Introduction 

Optimisation of fed-batch fermentation processes by the calculus of variations or Lagrange 

optimisation has been presented in Chapter 3. It resulted in an open loop optimal control 

that consisted of a time sequence of maximum, minimum and singular feed rates. It was 

found that the singular feed rate was used to control the substrate concentration at the 

optimal level. This has led to the proposed method in Chapter 4, in which the optimal 

control problem is divided into determining an optimal substrate concentration profile and 

controller design. The proposed method not only avoids the singular control problem, 

which occurs in the system that is linear in control variables, but also operates the system 

in closed loop. Since the substrate concentration is controlled in closed loop mode 

following the optimal trajectory, which satisfies the objective function, this strategy is 

therefore called "closed loop optimal control" as mentioned in the previous chapter. 

In this chapter, we use results from Chapter 3 and Chapter 4 to establish the relationship 

between each other. Performances of both methods are also compared. This is done by 

performing simulation of primary and secondary metabolite production processes. The 

comparison will also applied to both perfect process model and plant/model mismatch 

cases. 
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5.1 Relationship between Open Loop and Closed Loop Optimal 

control 

It has been shown in Chapter 3 and Chapter 4 that the open loop optimal feed rate profile 

was intended to maintain the substrate concentration at the optimal level or trajectory. 

These results are similar for both primary and secondary metabolite production processes. 

However, the closed loop optimal control is more transparent and flexible. Any controller 

can be used to achieve an objective of keeping substrate concentration at the optimum 

level or profile (S0 ), which is known to maximise the biomass or product production. 

This allows for additional features such as closed loop robustness or disturbance rejection 

capabilities to be integrated. Comparing with the method for calculating open loop optimal 

feed rate profile, feed rate sequence is pre-determined to maximise metabolite production 

in one step. Therefore, the optimal substrate concentration level is not explicitly shown 

and transparent to the operator. The closed loop optimal control also gives the closed loop 

control while the open loop optimal feed rate method results in open loop control. Block 

diagrams comparing both methods are shown in Figure 5-1 and Figure 5-2. 

Moreover, the proposed method gives the optimal profile which is specific to the process 

and micro-organism strains. In this case, substrate concentration is to be kept at Sopt. The 

optimal substrate concentration profile (Soft) is independent of constraints on minimum 

and maximum feed rates. This provides more flexibility in its usage comparing to the open 

loop optimal feed rate profile method in which changing in minimum or maximum feed 

rate due to physical process constraints would result in the different time length in the 

combination of each feed rates and therefore different feed rate profiles. Table 5-1 

summarises the comparison between both methods. 
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Figure 5-2 Block diagram for closed loop optimal control method. 
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Table 5-1 Summary of the comparison between both methods 

No. Open Loop Optimal Feed Rate Profile Closed Loop Optimal Control 

1 switching time depends on feed rate Controller objective is to track the 

constraints (e. g., change in minimum or optimal substrate profile, which is 

maximum feed rate results in different independent of the minimum and 

switching time) maximum feed rate constraints. 

optimal substrate concentration profile is 

identical for the same process operating 

at different feed rate constraints. 

2 problem of singular control due to feed no problem of singular control 

rate is linear in the Hamiltonian 

3 difficult to understand and not easy to understand and transparent. 

transparent 

4 feed rate has direct effect to an objective substrate concentration has direct effect 

function (optimal feed rate is determined to an objective function (optimal 

to satisfy the objective function. ) substrate concentration is determined 

and then feed rate is used to control the 

substrate concentration following the 

optimal profile. ) 

5 off-line pre-calculation of feed rate on-line feedback control of substrate 

LJ 

_ 

ýI 
concentration 
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In next section, the performance of both methods are compared by simulation performing 

on primary and secondary metabolite production processes. 

5.2 Performance Comparison 

In this section, performance of the closed loop optimal control (CLOC) using primary and 

secondary metabolite production processes is demonstrated and compared with the open 

loop optimal feed rate profile method (OLOFP). For the primary metabolite production, a 

biomass production process is used as an example. 

In both processes, the substrate inhibition kinetic is employed as it can give the finite 

optimal level and suitable for comparison. Moreover, it is the this type of kinetic that can 

be used to model the catabolite repression effect and thus requiring the fermentation 

process to operate in fed-batch mode. (refer to Section 3.2.1.1 and 3.2.1.2 in Chapter 3 for 

discussion on the Monod and substrate inhibition kinetic. ) 

5.2.1 Primary metabolite production (Biomass production process) 

The fed-batch fermentation models are those shown in Chapter 2 (refer to equation (2-24) 

to (2-27)) and are written here as: 

dX 
= µX-DX dt 

at = -Y µX+D(Sf-S) 
Y. 

dV 
F 

dt 

D_F 
V 

(5-1) 

(5-2) 

(5-3) 

(5-4) 
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where the kinetic reaction of the specific growth rate is in the substrate inhibition form: 

R _ 

Jtmax `S 

Ks +S+S)K; 
(5-5) 

The relationship between the specific growth rate (µ) and substrate concentration (S) is 

shown in Figure 5-3. The parameter values used for the simulation are in Table 5-2. Note 

that the parameters used for simulation are chosen arbitrary without any intention to be 

specific for a particular process but for representing a general characteristic for a class of 

processes with the substrate inhibition type kinetic. 

Table 5-2 Parameters used in the simulation for a primary metabolite 

production 

Parameter Value Unit 

Rmax 0.10 (g biomass / (g biomass * hr)) 

KS 3.0 (g substrate / litre) 

K; 8.34 (g substrate / litre) 

YXS 0.164 (g biomass /g substrate) 

X(0) 1 (g biomass / litre) 

S(0) 20 (g substrate / litre) 

V(0) 20 (litre) 

V(tf) 50 (litre) 

Sf 100 (g substrate /litre) 
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where 

µmax is the maximum specific growth rate 

KS and Ki are rate constant 

Yxs is yield of biomass from substrate 

X(0), S(O) and V(O) are initial condition of biomass and substrate concentration, and 

culture volume 

V(tf) is final culture volume 

Sf is substrate concentration in the substrate feed stream 

specific growth rate 

10 15 
substrate concentration 

20 25 

Figure 5-3 Relationship between the specific growth rate and substrate 

concentration 
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For OLOFP case, the optimal feed rate can be obtained from Equation 3-23, 

DH 
- 

a, X X+ kS (Sf - S) 
= `i' 

aF -vv 

where the optimal feed rate is determined from the following conditions: 

if'Y<0then F=O 

if'P>0then F=F,,, 

if 'P =0 then F= Fsi,, g 

The singular feed rate (Fsi�g) can be obtained from Equation (3-29) as: 

F. 
sing 

µXV 
Y. (5f 

- S) 

(3-23) 

(5-6) 

During the singular period, the substrate concentration is kept constant (refer to Equation 

3-25). This singular substrate concentration (Ssing) can be obtained from Equation (3-31) 

as: 

S,; 
ng = Ký K; =5 

For the CLOC method, the optimal substrate concentration can be obtained from Equation 

(4-16) as: 

S�ý, f = K, K; =5 (4-16) 

In simulation of the CLOC method, the feasible parameters are chosen for using in the 

nonlinear model predictive controller as follows: 

sampling time -1 hr. 

prediction horizon -5 hr. 
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control horizon -3 hr. 

The comparison simulations will be performed in both perfect model and plant/model 

mismatch cases. 

5.2.1.1 Control simulation with perfect model 

Simulation results for the OLOFP and CLOC methods are shown in Figure 5-4 and Figure 

5-5 respectively. (In each Figure 5-4 to Figure 5-11, (a) indicates feed rate, (b) substrate 

concentration, (c) biomass concentration and (d) culture volume. ) It can be seen that in this 

case both methods give quite similar results. The constraints on minimum and maximum 

feed rate, which were omitted in the first part of the CLOC method, are well 

accommodated as shown in the simulation. 

The optimal substrate concentration in this process is equal to 5 g/l. For the OLOFP case, 

it starts with minimum feed rate since the initial condition is higher than the singular level. 

Then the singular feed starts when the substrate level reaches the value of 5 g/l. The 

feeding continues to maintain substrate at this value until it is saturated. Finally the feed 

stops when the reactor is full. The same phenomena also appears in the CLOC case, where 

the controller tries to maintain the substrate concentration at 5 g/l. In the beginning of the 

process, since the substrate concentration is higher than the optimal level, therefore no 

substrate is fed into the process. The substrate level then decreases until it reaches the 

value of 5 g/l, when the controller starts feeding substrate into the process. Feed rate 

continues to maintain the substrate concentration in the fermenter at the optimal level 

(5g11) until it is saturated and stops when the reactor is full. Although both methods give 

similar control action and results, it is mechanisms inside which are different. In next 
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subsection, an advantage of the CLOC method is demonstrated for the plant/model 

mismatch case. 

In summary, both OLOFP and CLOC methods provide similar performance for the 

primary metabolite process under a perfect model situation. 
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Figure 5-4 Results of a primary metabolite production for OLOFP (in perfect model) 
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Figure 5-5 Results of a primary metabolite production for CLOC (in perfect model) 
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5.2.1.2 Control simulation with model/process mismatch 

We now examine the more realistic case where the model is not a perfect representation of 

the process. i. e. There is a process/model mismatch. 

It is shown in the previous section that the CLOC method performs equally well as 

OLOFP in the case of a perfect model. However, consider a small error in parameter Y,, to 

demonstrate where modelling has been inaccurate. 

Parameter Y, in the process is still the same at 0.164. However, it is assumed that the 

parameter Ys that was obtained from modelling is different at 0.149 and 0.182 (10 % 

error). Since the important task is to keep the substrate concentration at 5 g/1 , 
in this 

section, the initial substrate concentration in the process is at 5 g/l. Therefore the singular 

feed rate can start from the beginning for the OLOFP case. In this example, a nonlinear 

state feedback form for calculating the singular feed rate can be obtained as shown in 

Equation (5-6). This form of nonlinear state feedback is not generally obtained by this 

method. Therefore the comparison would be between those using purely open loop feed 

rate profile and nonlinear feedback in Equation. (5-6) for the OLOFP method and those 

obtaining from the CLOC method. 

Considering first the nonlinear feedback in which feed rate is calculated from Equation (5- 

6) for the OLOFP method. It is shown in Figure 5-6 that the smaller value of parameter Yxs 

(0.149) in the model results in the higher feed rate than the process needs and therefore 

increases the concentration of substrate in the reactor and makes the substrate 

concentration deviate from the singular substrate concentration (Ss;,, g =5 g/1). This 

deviation of substrate concentration results in the extension of operating time to 78 hr 

(compared with 72 hr for the CLOC case). This is due to the fact that the specific growth 
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rate is not maintained at the maximum (µ' = 0). For the higher value of parameter Y,, s 

(0.182), the simulation is shown in Figure 5-7. The deviation of substrate concentration 

from the singular substrate concentration at 5 g/l can be explained by the fact that the error 

in the model results in the lower feed rate than the process really needs. The substrate 

concentration in the reactor then gradually reduces to zero. The zero level of substrate 

concentration also results in no growth in the fermenter (i. e. the specific growth rate 

becomes zero), which also results in no feed rate calculated from Equation (5-6). The 

operation has finished before the reactor is full due to no feed rate. 

For the OLOFP method, where feed rate is purely pre-determined without any feedback, 

the simulation results are shown in Figure 5-8 and Figure 5-9 for the smaller and higher 

model parameter. The results also show the deviation of substrate concentration from the 

singular level. This can be explained by the fact that the error in parameter Y, 's causes the 

incorrect pre-determined optimal feed rate. The operating time lasts for 85 hours for the 

smaller parameter and for 77 hours for the higher parameter. However, since the feed rate 

is pre-determined, The substrate is fed until the reactor is full for both smaller and higher 

parameter cases. 

Comparing with the CLOC method, it is shown in Figure 5-10 and Figure 5-11 that the 

error in Y, for both higher and smaller are well accommodated by the controller. The 

substrate concentration was kept at 5 g/1 until the reactor is full. Although the final 

biomass concentration is similar to the ones obtained by using OLOFP method (with or 

without feedback), the time to reach a maximum biomass concentration is shorter (72 hr). 

The same amount of biomass obtained can be explained by the fact that we fed the 

fermenter with an equal amount of substrate and when it is all converted to biomass, it 

gives the same amount of biomass. 
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In this example, the deterioration of performance in the OLOFP method (both purely open 

loop and feedback) comparing with the CLOC method demonstrates the advantages of the 

proposed control scheme. The operating time for the CLOC method is at 72 hr, which is 

the shortest operating time comparing to the OLOFP method. If there are other 

inaccurately modelled parameters or any disturbance particularly in the concentration of 

substrate in the feed stream, the deterioration of performance in OLOFP would be more 

significant. The effect of error in other model parameters will be discussed again later. 

This advantage can also be counted as the result of better understanding of the process 

since we have already known that substrate concentration is one of factors that govern the 

bioreaction rate in the fermentation process. 

In summary, the CLOC method 'provides better performance than the OLOFP method for 

the primary metabolite process under the plant/model mismatch case. This is demonstrated 

by the shortest operating time of the CLOC method (72 hr in Figure 5-10 and 5-11) 

comparing with the OLOFP method (77 hr in Figure 5-9,85 hr in Figure 5-8 and 78 hr in 

Figure 5-6). 

In the next section, we will examine and compare the performance of the CLOC and 

OLOFP methods for a secondary metabolite production process. 
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5.2.2 Secondary metabolite production 

The fed-batch fermentation models for a secondary metabolite production are those in 

Chapter 2 (refer to equation (2-28) to (2-32)) and are written here as: 

dX 
dt = µX-DX 

dS 
= -Y µX+D(Sf-S) 

xs 

dP 
= nX-DP 

dt 

dV 
F 

dt 

(5-7) 

(5-8) 

(5-9) 

(s-lo) 

D=V (5-11) 

where the kinetic reaction of the specific growth rate (p) and specific product formation 

rate (n) are in the substrate inhibition form as shown in the following: 

9 
S max 

Ke +S+SjK; 
(5-12) 

n= 
nmax s 

K,, +S+S j K,,; 
(5-13) 

The relationship between the specific product formation rate (n) and substrate 

concentration (S) is shown in Figure 5-12 and the parameter values used for the simulation 

are in Table 5-3. 
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Table 5-3 Parameters used in the simulation for a secondary 

metabolite production 

Parameter Value Unit 

µmax 0.10 (g biomass / (g biomass * hr)) 

KS 3.0 (g substrate / litre) 

K; 8.34 (g substrate / litre) 

YXS 0.164 (g biomass /g substrate) 

nmax 0.25 (mg product / (g biomass * hr)) 

K,, S 0.4 (g substrate / litre) 

K, j 10 (g substrate / litre) 

X(0) 1.0 (g biomass / litre) 

S(0) 4.6 (g substrate / litre) 

V(0) 20 (litre) 

V(tf) 50 (litre) 

Sf 100 (g substrate /litre) 

where 

is the maximum specific growth rate 

nmýx is the maximum specific product formation rate 
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Ks, K;, Kns and K,, 1 are rate constants 

Y, is yield of biomass from substrate 

X(0), S(O) and V(O) are initial condition of biomass and substrate concentration, and 

culture volume 

V(tf) is final culture volume 

Sf is substrate concentration in the substrate feed stream 

For the secondary metabolite production considered in the previous chapters, there were 

two cases to be considered - include or not include the cost of operating time in the 

objective function (J). 

J= P(tr) 

If 

J= P(tf)-e f dt 

to 

The cost of operating time is used to weight the profit from final product concentration 

with the expense of time during process operation and presented in term of cost factor (E) 

in the objective function. The higher cost factor, the more costly of operating time and the 

higher requirement to shorten the process. 

The determination of optimal feed rate and optimal substrate concentration profiles for 

both cases of objective functions were presented in Chapter 3 (Section 3.2.2) and Chapter 

4 (Section 4.2.2). Considering first the objective function without the cost factor (E). For 

the OLOFP method, the singular feed rate would maintain the substrate concentration at 

the constant level (refer to Equation (3-62)) during the singular period. The condition for 

determining this singular substrate concentration was obtained from Equation (3-63). For 
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the CLOC method, the optimal substrate concentration was kept constant at the level, 

which maximises the ratio between the specific product formation rate (n) and the specific 

growth rate (µ) (refer to Equation (4-3 1)). Note that Equation (3-63) and (4-31) are similar. 

Since the substrate concentration is kept constant, the results from the previous section for 

a primary metabolite process can also be applied here and we will therefore omit this case 

and consider only the second one in which the objective function includes the cost factor. 

This case is more important because most of the processes are usually operated under 

some production time constraint. 

We would start from the beginning at the singular period in the OLOFP case and at the 

optimal substrate concentration profile in the CLOC case since these parts are at the 

optimal as mentioned earlier. Also, there is no effect of feed rate constraints on this period. 

The substrate profile in both conditions are similar (refer to Equation (3-58) and Equation 

(4-27)) and is written here as Equation (5-14), 

S µ'(n'µ-nµ') (5-14) 
(µ, n" - n' µ") 

Note that the substrate profile in (5-14) is only a function of substrate concentration and 

shown in Figure 5-13. As biomass also has effect on production, the biomass concentration 

that corresponds to the optimal substrate profile was also derived in Chapter 3 and 4 (refer 

to Equation (3-57) and Equation (4-26)) and is written here as: 

FE X=- (n, µ-nµ') 
(5-15) 

The relationship between the biomass and substrate concentration during the optimal 

period at different cost factors is shown in Figure 5-14. The far left line shows the smaller 

cost factor, while the far right shows the bigger cost factor. 
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The lines, from left to right, illustrate the effect of the cost factor (e) that increases from 

0.5 to 5 on the relationship between substrate and biomass concentration during the 

optimal period. It is followed from Section 3.2.3 and 4.2.3 in the previous chapters that as 

the cost factor increases, the process is shorter by faster growing of biomass and reduce the 

final product. This will be discussed more with some simulations in the next section. 

For The OLOFP method, the optimal feed rate can be obtained from Equation 3-48, 

DH 
= 

ý, Xx+ý V +ýs(st-S)-ýPP = `Y 
aF -vvv 

with the following conditions: 

if 'Y<0then F=0 

(3-48) 

if 'P>0then F=Fm,, 

if 'P=0then F=Fling 

The singular feed rate (Fling) can be obtained from Equation (3-59) and is written here as: 

Fing V µX+µ'(n'µ-nµ') 
(Sf - S) Yxs (Ir' N'a - 7L" F1') 

(5-16) 

For the CLOC case, the optimal substrate concentration profile can be obtained from 

Equation (4-27): 

S µ'(n'µ-ttµ') 
(µ, 7L" - n, µ�) 

(4-27) 

In simulation of the CLOC method, the following parameters are used in the nonlinear 

model predictive controller: 

sampling time -1 hr. 
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prediction horizon -5 hr. 

control horizon -3 hr. 

The cost factor (c) has an effect on the objective function and therefore process 

trajectories. The cost factor that equals one is used here for the following comparison 

simulations. 

5.2.2.1 Control simulation with perfect model 

The simulation results for the OLOFP and CLOC methods are shown in Figure 5-15 and 

Figure 5-16 respectively. (In each Figure 5-15 to Figure 5-22, (a) indicates substrate 

concentration, (b) substrate feed rate, (c) product concentration, (d) biomass concentration 

and (e) culture volume. ) The comparison between operating time and secondary metabolite 

product obtained is shown in Table 5-4. It can be seen that for the perfect model case, both 

methods give similar results. 

Table 5-4 Comparison between OLOFP and CLOC in perfect model for a 

secondary metabolite process 

Control Method OLOFP CLOC 

Finish time (hr. ) 134 134 

Maximum product (mg/1) 84.43 84.42 

Maximum biomass (mg/1) 10.54 10.54 

From the simulations, the process starts with the singular period. The singular feed rate 

results in the profile of substrate concentration as shown in Figure 5-15 (a) which is 

similar to the optimal substrate concentration calculated from Equation (4-27) and shown 

Wirat Vanichsriratana, 1996, Chapter 5 120 



in Figure 5-13. This optimal substrate profile determined from Equation (4-27) is used as a 

reference profile for a nonlinear model predictive control to follow. The optimal substrate 

profile is shown as a dashed line in Figure 5-16 (a). It can be seen that the controller tracks 

the substrate profile very well. The substrate concentration deviates from the optimal 

profile at around 134 hours because the culture volume reaches the maximum, which 

results in no feed rate and decreasing in substrate concentration as shown in the figure. For 

the OLOFP method, there is no substrate concentration profile to follow. The singular feed 

rate is determined by Equation (5-16) until the reactor is full and the singular period is then 

ended. Without any feed rate, the substrate concentration begins decreasing and eventually 

depleted. For this cost factor (c = 1), most of the whole operation is operated under the 

singular period for the OLOFP method and feed rate does not reach the maximum 

constraint. For the CLOC method, feed rate is sufficient to provide the substrate 

concentration following the desired trajectory without any saturation occuring. 

For the prefect model case, the same phenomena can be obtained from both methods 

however with a different interpretation. The simulations show that both methods provide a 

similar performance for the secondary metabolite production process. In next subsection, a 

case for plant/model mismatch is considered. 
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5.2.2.2 Control simulation with model/process mismatch 

We are now considering the case where the obtained model does not fully correctly 

represent the process. As used in the primary metabolite production in Section 5.2.1.2, we 

assumed a small error in parameter YxS, which can be seen as the conversion rate of 

biomass obtained from a unit of substrate. The process parameter is still at 0.164. The 

variation for Y, is assumed to be plus and minus 10 % of the correct value (0.149 and 

0.182). Since the nonlinear state feedback equation for the OLOFP method is also 

available for this process (refer to Equation (5-16)), we will compare the CLOC method 

with two cases in the OLOFP method. These cases are purely open loop feed rate 

determination and feed rate with feedback calculated from Equation (5-16). The results 

from the previous section on the perfect model case will be used as standard for comparing 

the performance of the OLOFP and CLOC methods as they provided the optimal solutions. 

The simulation results for the plant/model mismatch are shown in Figure 5-17 to Figure 5- 

22. The length of process operating time, the maximum product and biomass obtained are 

tabulated in Table 5-5 and Table 5-6 for the CLOC and OLOFP methods. 

The OLOFP method in which feed rate is purely open loop pre-determined is considered 

first. The simulation results are shown in Figure 5-17 for the model parameter Y, smaller 

than the process and in Figure 5-18 for the model parameter Y, higher than the process. 

For a smaller parameter value (Y,, S = 0.149), the process is fed with higher substrate feed 

rate than it really needs. This results in the substrate concentration in the reactor increases 

higher than the level it should be. (compare Figure 5-17 (a) with the optimal one in the 

perfect model case in Figure 5-15 (a)) The process operation time is therefore reduced to 

128 hr due to the higher biomass growth rate. However, the maximum product obtained is 

only around 80 mg/l comparing with 84 mg/1 in the perfect model case. For a higher 
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parameter value (Y,, S = 0.182), the process is fed with lower rate than it really needs. This 

results in the substrate concentration in the reactor decreases lower than the level it should 

be. (also compare Figure 5-18 (a) with Figure 5-15 (a)) This results in slower growth rate 

hence the operation time lasts longer at 150 hours The maximum product obtained is 

however higher than the optimal and at around 89 mg/1. Although the maximum product is 

higher, the cost factor of the operating time in the objective function is violated. The 

optimal operating time in this process at this cost factor is 134 hr. The shorter time in the 

previous case (smaller parameter) was also not necessary especially when it was scarified 

by lower product being obtained. 

The feedback version of the OLOFP method is then considered. The simulation results are 

shown in Figure 5-19 and Figure 5-20. The singular feed rate is determined by Equation 

(5-16). For a smaller parameter value case, the determined feed rate is higher than 

necessary. This results in an increasing in substrate concentration. With the substrate 

concentration increase, feed rate also increases and stops when the reactor is full. The 

substrate concentration then decreases. This results in the high growth rate and shorter 

operating time. The maximum product obtained is only 33.5 mg/l. For a higher parameter 

value case, the calculated feed rate is lower than the process needs. This results in the 

substrate concentration level lower than the optimal one (compare Figure 5-20 (a) and 

Figure 5-15 (a)). The substrate concentration eventually reduces to zero. As the substrate 

concentration becomes zero, the calculated singular feed rate then becomes zero and the 

process is stopped without fully filling up the reactor volume (see Figure 5-20 (e)). 

For the CLOC method, The simulation results are shown in Figure 5-21 and Figure 5-22. It 

shows that the optimal substrate concentration profile is followed quite well in both higher 

and smaller incorrect parameter value. The patterns are similar to the optimal ones shown 
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in Figure 5-15 and Figure 5-16. The operating time lasts for 137 hr for the smaller 

parameter case and 138 hr for the higher parameter case (comparing with 134 hr for the 

optimal one with correct parameter). In both cases, the maximum products obtained are 

around 86 mg/l which are higher than the one obtained in the correct parameter case. This 

is due to the longer operating time than the optimal in both cases. 

Table 5-5 CLOC method in process/model mismatch 

Control Method CLOC 

Parameter variation in Y, +10% -10% 

Finish time (hr. ) 138 137 

Maximum product (mg/1) 86.32 85.99 

Maximum biomass (mg/1) 10.54 10.54 

Table 5-6 OLOFP method in process/model mismatch 

OLOFP method Pre-determined feed Using feedback 

Parameter variation in Y, +10% -10% +10% -10% 

Finish time (hr. ) 150 128 100 82.5 

Maximum product (mg/1) 89.14 79.85 23.07 33.52 

Maximum biomass (mg/1) 10.54 10.54 4.13 10.54 
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The control objective is to maintain the process as close as possible to the optimal one. 

The comparison of both methods can therefore be shown by the deviation of operating 

time and maximum product obtained from the optimal cases in which the correct model 

parameter is used. The results are shown in Table 5-7 and the following formulations are 

used in the calculation: 

deviation in Time (%) =t 1344 
* 100 

deviation in Product (%) =P- 
84.43 

* 100 
84.43 

Where t is process operating time and P is a maximum product. 

The optimal operating time and product obtained from the correct parameter case for the 

OLOFP method (refer to Table 5-4) are 134 hours and 84.43 mg/1. 

Table 5-7 Comparison of performance between OLOFP and CLOC 

Control method OLOFP CLOC 

1 
Pre-determined 

1 
Feedback 

Parameter variation in Y, + 10 % -10% -10% + 10 % -10% 

Deviation in time (%) 11.9 -4.5 -38.8 3 2 

Deviation in product (%) 5.6 -5.4 -60.3 2.2 1.9 

The OLOFP method in the table does not contain the case of feedback with higher 

parameter value since the process does not complete the operation. 
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From the table, it can be seen clearly that in the case of plant/model mismatch, the 

deterioration of performance for the OLOFP method is more severe than the CLOC 

method. The range in maximum product obtained is varied between -5 % to +5% for the 

OLOFP case comparing with under 3% for the CLOC case. For the variation in operating 

time, the OLOFP case varies between -4.5 % to 11.9 % comparing with 3% for the CLOG 

case. This demonstrates the better performance of the CLOC method over the OLOFP 

method. 

As the cost factor has an effect on the objective function and results in the relationship 

between biomass and substrate concentration during the optimal period as shown in 

Equation (5-15), it will be explained in more detail in the next section. 

5.2.2.3 Effect of cost factor on secondary metabolite production 

In the previous section, we have shown that, at the specific cost factor, the CLOC method 

performed equally well as the OLOFP method for the correct parameter case and 

performed better for the plant/model mismatch case. In this section, we will explain in 

more detail the effect of cost factor on the process operation and optimality. 

Since the CLOC performed equally or even better than OLOFP method, the control 

simulation in this section will be performed using the CLOC method. For convenient on 

discussion, Equation (5-14), which describes the optimal substrate profile and Equation (5- 

15), which describes the relationship between biomass and substrate concentration during 

the optimal period are written here: 

S 

µ'E X=- (n, µ-nµ') 

(n'µ - nµ') 
(µ, n� - n' µ�) 

(5-14) 

(5-15) 

Wirat Vanichsriratana, 1996, Chapter 5 134 



As mentioned earlier, the optimal substrate concentration profile in Equation (5-14) is only 

a function of the substrate concentration. The process invokes into the optimal period and 

following the optimal trajectory by the condition in Equation (5-15). The profile of optimal 

substrate concentration which is shown in Figure 5-13 shows that the optimal profile is 

bounded by two levels of substrate concentration. These bounds can be determined by 

Equation (5-15) following two conditions below: 

µ' =0 (5-17) 

or 

7c' µ- 11'. L' =0 

which implies that, 

d(n/µ) 
=0 dS (s-is) 

The first condition (Equation (5-17)) means that the substrate concentration is kept at a 

level, which maximises the biomass growth rate. This results in the shortest process 

operating time. The second condition (Equation (5-18)) means that the substrate 

concentration is kept at a level, which maximises the ratio between the specific product 

formation rate (n) and the specific growth rate (µ). This condition is similar to Equation 

(3-63) in Chapter 3 and Equation (4-31) in Chapter 4 in which there is no cost factor in the 

objective function. Hence it results in the longest operating time. 

These constant substrate concentration levels are upper and lower bounds for the optimal 

substrate concentration in Equation (5-14) and Figure 5-13. These two boundaries also 

represent two extreme conditions. The first is where cost factor is not important at all and 

we are interested only on maximising the ratio of it and t. This results in maintaining 
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substrate concentration under the condition in Equation (5-18). The other is where the cost 

factor is very important and we want the shortest operating time. This results in 

maintaining substrate concentration under the condition in Equation (5-17), which 

maximises the biomass growth rate. 

To demonstrate the effect of cost factor on the process operating, a set of simulations at 

different cost factors are performed. These cost factors are 0.5,1.0,1.5,2.0,2.5,3.0 and 

maximum. The maximum here means that the cost factor is very important and the process 

operating time needs to be as short as possible. Therefore in this case, the substrate 

concentration will be kept constant at the point which maximises the biomass growth rate 

(5 g/1). The relationship between the specific growth rate, the specific product formation 

rate and the ratio between both rates (70µ) are shown in Figure 5-23. The simulation 

results on the various cost factors are shown in Figure 5-24 to Figure 5-30. 
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The specific growth rate is shown with dashed line while the specific product formation 
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with solid line. Note that these rates are scaled to fit into the figure. 
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As the cost factor increases, the operating time becomes shorter to satisfy the objective 

function. This can also be seen from the increasing of feed rate during the batch and the 

faster growing of biomass. The operating time, maximum product, maximum biomass and 

yields at different cost factors are shown in Table 5-8. 

Table 5-8 Summary of simulation results at different cost factor 

Cost factor 0.5 1.0 1.5 2.0 2.5 3.0 max. 

Substrate 4.132 4.596 4.735 
11 

4.80 4.84 4.87 5.0 
(/1) 

Product 109.34 84.42 69.63 59.70 52.40 47.95 38.39 
(m /1) 

Biomass 10.51 10.57 10.57 10.61 10.57 10.61 10.56 

(/1) 

Time 219 134 104 90 82 78 71 
(hr. ) 

YpX 10.40 7.99 6.59 5.63 4.96 4.52 3.64 
(mg product/g 
biomass) 

YSX 5.87 5.85 5.86 5.84 5.86 5.84 5.87 

(g substrate/g 
biomass) 

Yps 1.77 1.37 1.12 0.96 0.85 0.77 0.62 
(mg product/g 
substrate) 

In the table, substrate means the initial substrate concentration at beginning of the batch. 

The difference in the initial substrate concentration levels is due to the fact that with the 

different cost factor, the optimal relationship between biomass and substrate concentration 

is different as shown in Figure 5-14. However, the initial biomass concentration used for 

all simulations at different cost factors is 1 g/l. The initial substrate concentration is 

therefore chosen to correspond to the initial biomass concentration (1 g/1) at different cost 
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factors. Product is the maximum product obtained at the end of the process. Time is the 

process operating time. Biomass is biomass concentration at the end of the process. 

Yp, is an average yield of product from biomass. It shows the amount of product obtained 

per unit of biomass and can be calculated by the following equation: 

y 
Px 

P(tf) " V(tfý 

X(tf) " V(tfý 
(5-19) 

YS, is an average yield of biomass from substrate. It shows the amount of substrate that is 

used by a unit of biomass and can be determined from the following equation: 

Yx 
S(ti) - V(ti) + (v(t1) - v(t; )) sf 

X(tf)"V(tf) 
(5-20a) 

This equation is used to calculate Y., in Table 5-8. 

YS,, is also referred to as the amount of substrate concentration that is used to produce a 

unit of biomass. In this meaning, it is determined by the following equation: 

Kx 
s(t, )"V(t, )+(V(tf)-V(t, ))sf 

X(tf) " V(tf) - X(t, ) " V(ti) 
(5-20b) 

Note that YS,, in Equation (5-20b) is a conversion of Y, ( used in the simulation. 

YES is an average yield of product from substrate. It shows the amount of product that can 

be obtained from using a unit of substrate and can be determined from the following 

equation, which is the proportion of Yp,, and YS, ; 

Y 
PI 

= 

Ypx 

r, Yrx (5-21) 
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To show the effect of cost factor on the process, the maximum product and yields (Yp,,, YSX 

and Yps) are plotted against the operating time as shown in Figure 5-31 and Figure 5-33 to 

Figure 5-35. 
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Figure 5-31 Relationship between maximum product and operating time at different 

cost factors 

It is shown from the figure that as the cost factor increases, the operating time and 

maximum product decrease. This is due to the fact that the process is operated under a 

condition that increases the biomass growth rate and hence satisfies the increasingly 

importance of process operating time in the objective function. This is however sacrificed 

by the lower production in the process. 

It is also worth mentioning that the graph shows the maximum product that can be 

obtained under the corresponding operating time. In this process, the possible shortest time 
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is when the cost factor is set at maximum and the process lasts for 71 hours The maximum 

product at this cost factor is 38.4 mg/l. 

The operating time and product obtained from the OLOFP and CLOC methods under the 

condition of plant/model mismatch (refer to Table 5-6) are also plotted as shown in Figure 

5-32. This is to show that it is not possible to get higher product than the optimal one 

under the similar operating time. 

final product and final time at different cost factors 

100 150 
final time 

high c 

200 

low 

250 

Figure 5-32 Relationship between final product and operating time length at 

different cost factors 

* refer to the optimal case with exact model 

o refer to the plant/model mismatch case 

According to the figure, the highest maximum product that can be obtained from the 

process that does not operate at the optimal condition due to the plant/model mismatch is 
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equated to the optimal one. Note also that even this does happen, it was a result from the 

violating of cost factor in the objective function. For example, the maximum product for a 

pre-determined feed rate case, which the parameter Y, is 10% higher than the plant (refer 

to Table 5-6) is 89.14 mg/l at the length of operating time at 150 hours Although the 

maximum product is higher than the optimal one at this cost factor (c = 1), the process 

takes longer operating time than the optimal one which is at 134 hours. The maximum 

product for this plant/model mismatch case, however, can not exceed the optimal curve in 

the figure (the co-ordinate of this mismatch example is at 150 hr and 89.14 mg/l in the 

figure). 

. -. CA yield product from biomass 

100 150 
final time (hr. ) 

high E 

200 
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250 

Figure 5-33 Relationship between Yp. and operating time at different cost factors 

As the cost factor increases, the operating time and the yield of product from substrate 

decrease. The reason is the same as for the maximum product described earlier. Although 

this yield is not exactly the same as the ratio of n/µ, it has a very similar meaning. 
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Figure 5-34 Relationship between Ys,, and operating time at different cost factors 

From the figure, the yield of substrate consumed by biomass is constant. There is no effect 

of cost factor or operating time involved in this case since the same amount of substrate 

was added into the process and then converted into biomass with parameter Y, used in the 

simulation. As mentioned earlier, if YSX was determined by (5-20b), it would equal to the 

inversion of parameter Y,,,, which equals 6.1. 
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Figure 5-35 Relationship between Yp, and operating time at different cost factors 

Yield of product from substrate (Yps) is a proportion between Yp, and YsX. It shows the 

improvement of amount of product obtained under the longer operating time. It should be 

noted, however, that Yps used in here is only a generic term intended to show the 

improvement of production. It does not mean that at different conditions the amount of 

substrate that is transformed into a unit of product is different since this would violate the 
r 

rule of material balance and therefore Yps in here does not mean the conversion rate of 

substrate to product. It shows however that at the different conditions, the micro-organisms 

activity on product formation is more emphasised than others and therefore more 

proportion of substrate is devoted for transforming into product which results in the higher 

yield (Yps). 
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5.2.3 Plant and Model Mismatch 

It has been shown in the previous subsection that the proposed closed loop optimal control 

method has a benefit of feedback that makes it more superior than the open loop optimal 

feed rate profile method. For the controller part, both methods are actually the model- 

based controller. The singular feed rates (Equation (5-6) and (5-16)) both in case of pre- 

determined feed rate and nonlinear state feedback lack the ability to compensate the error 

in parameter Y,,, and Sf that are included in the singular feed rate calculation. For the 

CLOC method, the controller would attempt to track the optimal substrate profile 

trajectory while the error of parameter in the controller part is compensated by the 

feedback in the model predictive control scheme. Since the controller part is entirely 

separated from the optimal substrate concentration trajectory determination in the CLOC 

method, other types of controller can also be used particularly those base on robust control 

technique. 

It has been considered only the plant/model mismatch on parameter Y, in this study. What 

is the effect of error in other parameters particularly those used in optimal substrate 

concentration determination ? and what are their effect on performance for both CLOC 

and OLOFP methods. This can be illustrated from considering the structures of the specific 

growth rate (µ) and specific product formation rate (n), as well as the singular feed rate 

and optimal substrate concentration profile for both primary and secondary metabolite 

production processes, which are shown in the following: 

The specific growth rate: 

9 
11 

max `S (5-12) 
K, +S+S/Ki 
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The specific product formation rate: 

7Cmax `) 
Z (5-13) 

Kýc+S+S/ K,,; 

Singular feed rate for a primary metabolite process: 

F. 
sing 

µXV 
Yx, (sf-Sý S=K, K; (5-6) 9 

Singular feed rate for a secondary metabolite process: 

E. 
sing 

Vµ X+ µ' (7L' µ- 7C g') 

(sf -S) Y. (n, µ�-n�µ, ) 

Optimal substrate concentration for a primary metabolite process: 

S�,,, = Ks Kr 

Optimal substrate concentration for a secondary metabolite process: 

S=- µ' (n' µ-n g') 
(µ, n� - n, µ�) 

(5-16) 

(4-16) 

(5-14) 

Considering the singular feed rate and the optimal substrate concentration trajectory, both 

have the specific reaction rates (µ, n) and their derivatives (µ', µ", n', n") in common in 

both primary and secondary metabolite processes. Since the optimal substrate trajectories 

are determined from these reaction rate and their derivatives, error in these parameters - 

µtjnax, KS, K;, nmax, Kns and Kj would result in the incorrect optimal substrate concentration 

profile. Although both the CLOC and OLOFP methods would give the non optimal 

substrate concentration profile and feed rate, the feedback property of the CLOC method is 

still proved to be useful as shown in the following example of a biomass production, in 

which parameter KS in the model is incorrect. 
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In this illustration, it is assumed that parameter KS in the model equals 3, while the real 

parameter in the process equals 2 and 4. The simulation results for both OLOFP and 

CLOC methods in case of higher and lower incorrect parameters are shown in Figure 5-36 

to Figure 5-39. 

For the OLOFP method, the optimal feed rate is determined based on parameter KS equals 

3 and should maintain the substrate concentration in the fermenter at 5 g/l if the model is 

correct. The simulation results in Figure 5-36 in which the true process parameter K. 

equals 2 show that with the pre-determined feed rate, the substrate concentration deviates 

from the optimal substrate concentration that equals 4.083 g/l (S0Pt = Ks K; ). Also, due 

to the incorrect parameter, the substrate concentration can not be kept at 5 g/l either. In 

case of parameter K. equals 4, the true optimal substrate concentration equals 5.774 g/l. 

The simulation results in Figure 5-37 also show that the substrate concentration deviates 

from the optimal level due to the incorrect parameter in the model. Decreasing of the 

substrate concentration from 5 g/l to zero in Figure 5-36 due to the fact that the real 

process has a higher specific growth rate (Figure 5-36 (d)) than that calculated from the 

model. This results in micro-organisms being produced at faster rate than expected from 

the model. Therefore the pre-determined feed rate can not provide enough amount of 

substrate to maintain the substrate concentration in the fermenter at 5 g/l as calculated 

from the model. The same reason also applies for increasing of the substrate concentration 

in Figure 5-37. The specific growth rate in this process (Ks = 4) is lower than that 

calculated from the model (Figure 5-37 (d)). This results in micro-organisms being 

produced at slower rate than expected. Therefore, the pre-determined feed rate provides 

higher amount of the substrate concentration than needed and resulting in the increasing of 
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substrate concentration. In the figure, the substrate concentration starts decreasing after the 

substrate feed rate has stopped. 

For the CLOC method, the substrate concentration is kept at 5 g/l (The optimal substrate 

concentration that is calculated from the model). Although the true optimal levels are 

4.083 g/l and 5.774 g/l (for the process with KS equals 2 and 4 respectively), keeping the 

substrate concentration at 5 g/l has a little effect to the process operating time comparing 

with the OLOFP method. As shown in (d) in Figure 5-36 and Figure 5-37, keeping 

substrate concentration at 5 g/l results in slightly lower maximum specific growth rate than 

keeping it at 4.083 g/l and 5.774 g/l (the optimal substrate concentrations). The process 

operating time for both methods in each case is shown in Table 5-9. 

It is shown in the table that for the incorrect parameter as shown in the simulation (Figure 

5-36 to Figure 5-39), the CLOC method give a better performance than the OLOFP 

method. For the process with KS =2, the operating time if the parameter in the model is 

correct is 68 hours. The operating time for the CLOC method is 68.5 hours, which is a 

little longer than the true one and shorter than that obtained from the OLOFP method, 

which is at 74 hours. For the process with KS = 4, the operating time if the parameter in the 

model is correct is 81 hours. The operating time for the CLOC method is 82 hours and that 

obtained from the OLOFP method is 97 hours. 

This illustration shows the advantage of the CLOC method over the OLOFP method even 

in the case of incorrect parameter that is used in the optimal substrate concentration 

determination. 
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Table 5-9 Effect of incorrect parameter KS to the process operating time 

Correct Operating time (hr. ) 

parameter Correct parameter Incorrect parameter (KS = 3) 

KS for both methods CLOC OLOFP 

2 

(-50%) 

68 68.5 74 

4 

(25%) 

81 82 97 

In the table, the correct process parameter KS is assumed to be at 2 and 4 while the 

incorrect model parameter KS is 3. The percentage of parameter variation is then calculated 

as: 

For Ks = 2, the parameter variation is 
223* 

100 =- 50 % 

For Ks = 4, the parameter variation is 
443* 

100 = 25 % 

The process operating time in the table shows the advantage of the CLOC method over the 

OLOFP method even in the case of incorrect parameter that is used in the optimal 

substrate concentration determination. 
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Chapter 6 Conclusion and Further Work 

The calculus of variations method has traditionally been used for optimisation of fed-batch 

fermentation processes. Since the method usually needs an iterative calculation to get an 

answer, the resulting optimal control strategy is therefore pre-determined off-line and 

performs in an open loop manner. There are some specific cases where the optimal control 

can be calculated for closed loop implementation. An example is a linear quadratic optimal 

control, in which the system is linear and the objective function is in a quadratic form. 

The optimal feed rate profile usually derived in the literature consists of a combination of 

maximum, minimum and singular feed rates. It has been shown in this study that the 

singular feed rate was used to maintain the substrate concentration at an optimal level, 

which optimises a given objective function. This coincides with a knowledge of the 

process since the bioreaction rates are governed by the substrate concentration. Many 

industrial processes also maintain the substrate concentration at a constant level, which is 

known to be suitable for microbial production of desired products. However, the constant 

substrate concentration level might not be optimal for the whole batch particularly for a 

secondary metabolite process in which conditions suitable for microbial growth and 

secondary product formation are different. This raises the need for the development of 

optimal substrate profiles especially as a reliable (neural network-based) on-line estimation 

of substrate concentration is now available (Zhang, et al., 1996). The following two step 

optimisation method of fed-batch fermentation processes has therefore been developed in 

this research. The proposed method divides an optimisation problem in the fed-batch 

fermentation into two parts. 
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1. Determination of an optimal substrate concentration profile, which optimises a given 

objective function. 

2. Designing a controller to track the obtained substrate concentration profile. 

The proposed method operates the system in a closed loop manner and is therefore called 

"closed loop optimal control". The Closed Loop Optimal Control (CLOC) and the Open 

Loop Optimal Feed rate Profile (OLOFP), which is used in the literature are shown to have 

a very close relationship, particularly the similar pattern of substrate feed rate and optimal 

substrate concentration profile. Although the substrate concentration profile obtained after 

applying the pre-determined optimal feed rate is similar to the one obtained by the CLOC 

method, this information on optimal substrate concentration profile is not explicitly shown 

to the operator under the OLOFP scheme. 

The main advantages of the closed loop optimal control strategy compared to the open 

loop optimal feed rate profile approach are two fold: 

1. The closed loop optimal control strategy can avoid a singular control problem that 

happens in the open loop optimal feed rate profile method since the substrate 

concentration appears nonlinearly in the system equation as well as the Hamiltonian. 

2. The control problem is converted into a closed loop control that can be expected to 

perform more robustly than an open loop control. 

Simulations on primary and secondary metabolite processes have been performed to 

compare these two methods. For the comparison simulation, all the specific bioreaction 

rates are functions of substrate concentration as we used substrate feed rate to manipulate 

the fed-batch fermentation. The specific substrate usage rate (a) is a proportion of the 

specific growth rate. The specific growth rate (µ) and specific product formation rate (it) 
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are in a substrate inhibition kinetic form. The Monod type kinetic has not been used for the 

simulation because the fermentation process with this kinetic will be suitable to operate 

the fermentation in batch mode. The simulation results can be summarised as follows; 

" For a primary metabolite production process, the substrate concentration is kept at a 

fixed level, which maximises the specific growth rate. A biomass production process is 

used as an example for the primary metabolite process. Since the substrate 

concentration is kept at the level, which maximises the specific growth rate, the 

maximum biomass can be obtained at the shortest operating time. 

" For a secondary metabolite production process, the secondary metabolite production 

depends not only on the substrate concentration level that maximises the specific 

product formation rate but also on the amount of biomass in the fermenter. Two cases 

are therefore considered. For an objective function, which does not include the cost of 

operating time, the substrate concentration would be kept at the constant level, which 

maximises the ratio between the specific product formation rate (it) and the specific 

growth rate (µ). This results in maximum product at the end of the batch but with the 

expense of long operating time. In the other case where an objective function includes 

the cost of operating time, the optimal substrate concentration is not constant but 

follows an optimal profile. Since the optimal substrate concentration profile is only a 

function of the substrate concentration, the different cost factors (E) take effect on 

different relations between biomass and substrate concentration that provoke the 

optimal substrate concentration profile. 

" For a perfect model case, the CLOC and OLOFP methods give similar results. The 

constraints on feed rate and culture volume is taken care of within the variational 

method and the Pontryagin's maximum principle in the OLOFP method while in the 
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CLOC method, these constraints are accommodated as part of the model predictive 

control. 

" For an imperfect model case, the CLOC method provides better performance than the 

OLOFP method. For the incorrect model parameters that involve in calculating 

substrate feed rate, the better performance is due to the fact that the error in the 

parameters (for example, Yxs) or disturbance in substrate feed rate concentration (Sf) are 

automatically compensated for by feedback in the CLOC method. In case of the 

incorrect model parameters that are used for determining the optimal substrate 

concentration profile (µmax, Ks, K� nmax, K,, S and Kj), The CLOC method still provides 

the better performance than the CLOFP methods. As the controller is used for tracking 

the optimal substrate concentration profile in the CLOC case, the choices of controller 

are also widely open. Several types of controller can be used including robust 

controllers for dealing specifically with the model uncertainty. 

The proposed method can also be extended to other environmental variables that have 

effects on the bioreaction rate. These variables are, for example, DOT, temperature and 

pH. For a combination of these variables, the optimal solution might emerge as an optimal 

surface of these variables. The system then becomes a multi-input and multi-output one. 

The overall scheme can also be extended to cover other factors in the objective function as 

shown in Figure 6-1. 
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Figure 6-1 General diagram of the CLOC method 

The material in this thesis has established the relationship between the open loop optimal 

feed rate control and closed loop optimal control of fed-batch fermentation processes. The 

advantages of the closed loop optimal control have also been shown. However, there is 

more work remains to be undertaken to take into account other aspects that are needed for 

implementation of the closed loop optimal control method and improving the overall 

optimisation of the fermentation processes. This work includes the following: 

" Improvement of the process model. This requirement can be seen clearly from the 

optimisation and controller design point of view on the accuracy of process model. The 

calculus of variations used in this thesis for optimising the fed-batch fermentation 

processes is also based heavily on the process model. Although the proposed method 

can improve the performance on the case of incorrect model parameter compared with 

the conventional open loop method, the improvement is still limited. A lot of 

developments on modelling are needed especially on the structured model despite the 

fact that this type of model has not been used for the optimising of fermentation 

processes (Johnson, 1987). Metabolism understanding and advances in modelling of 

metabolic network inside the micro-organism (Delgado and Liao, 1992; Geraats, et al., 
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1990; Kell, et al., 1989; Liao and Delgado, 1992; Nielsen and Jorgensen, 1995; Rizzi, 

et al., 1995; Shimizu, et al., 1995; Wiechert, et al., 1995) will also play an important 

role in the future of process optimisation. As the computational power of modern 

computers increases dramatically in the past few years, complicated model with 

numerous parameters for the optimisation purposes will be easily implemented in the 

near future. 

" Optimal experimentation. As the modelling procedure needs data from experiments, the 

data should contain as much information as possible. The planning of experiments plays 

an important role especially for the fermentation processes as each experiment is 

usually time consuming and costly. Many experimental methods such as factorial 

design and response surface analysis (Box, et al., 1978) are usually based on static 

experiments in which the dynamics of the process is not considered. Examples of this 

type of experimental design to improve the fermentation processes are in (Banerjee and 

Bhattacharyya, 1993; Chen, 1994; Reinikainen, et al., 1985). Much work on optimal 

experimental design in dynamic mode are usually emphasised on improving the 

accuracy of model parameters and on discriminating between different model 

structures. The criteria are based on evaluation of the information matrix. (Cobelli and 

Thomaseth, 1985; Cooney and McDonald, 1995; Giladi and Sideman, 1989; Hass and 

Munack, 1990; Johnson and Berthouex, 1975a; Johnson and Berthouex, 1975b; 

Munack, 1989; Munack and Posten, 1989; Vanichsriratana, et al., 1993; Vialas, et al., 

1985; Yoo, et al., 1986). Although the optimal experimental design of dynamical 

system and optimal input signal for system identification have been studied in the 

control literature for more than two decades (Aoki and Staley, 1970; Arimoto and 

Kimura, 1971; Godfrey, 1993; Goodwin, 1969; Goodwin, 1971; Goodwin and Payne, 
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1973; Goodwin and Payne, 1977; Goodwin, et al., 1974; Mehra, 1974; Zarrop, 1979), 

the application of this approach into fermentation processes has just started and many 

questions are still waiting for the answers. For example, what are suitable magnitudes 

and frequencies for the excitation signals ? This topic is therefore one of the most 

important tasks to achieve the accurate modelling. 

" On-line measurement of state variables and on-line model updating. The optimisation 

method used in this thesis needs feedback from the measurement of substrate 

concentration. Substrate concentration and other state variables such as biomass and 

product concentration are not usually on-line measurable. These measurements are 

usually done by analytical assay in laboratory, which may take many minutes up to 

hours for analysing one sample. This results in time delay of the feedback in the 

process. The number of samples are also limited by the high analytical cost. There are 

many attempts to overcome this problem. One of them is biosensors. The development 

of biosensors however still does not yet overcome the problem of heat and stability 

from the process sterilisation as well as the measurement specificity and interference of 

other biochemical compounds in fermentation culture. Hence it is not yet truly 

applicable in industry. There is also an effort to integrate analytical equipment into the 

process such as on-line HPLC (High Performance Liquid Chromatography) (Saucedo, 

et al., 1995) and FIA (Flow Injection Analysis) (Hitzmann, et al., 1995). However, 

these equipments still need several minutes for analysing each sample. The variation in 

analytical time depends on the substance being analysed. Although there is a lot of 

improvement from the analysis in the laboratory, the limited number of samples and 

long time delay might still confine the implementation of advanced control techniques 

and also the optimisation in this case. Another method is to use a state estimation 
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technique. This method is based on the Kalman or extended Kalman filter to estimate 

state variables from the on-line measurement such as OUR or CER. The literature in 

this application to fermentation processes is tremendous (Aborhey and Williamson, 

1978; Charbonnier and Cheruy, 1994; Dekkers, 1982; Dochain, et al., 1989; Flaus, et 

al., 1991; Ghoul, et al., 1985; Grosz, et al., 1984; Heijden, et al., 1989; Liu, et al., 

1992; Mirzai, et al., 1990; Nahlik and Burianec, 1988; Park, et al., 1983; Ramirez, 

1987; San and Stephanopoulos, 1984a; San and Stephanopoulos, 1984b; 

Stephanopoulos and San, 1981; Stephanopoulos and San, 1984; Thatipamala, et al., 

1993; Tsao, et al., 1991), although none appears in the recent 6`h -ICAB conference. 

Recently, a reliable estimation of substrate concentration based on an artificial neural 

network has been successfully developed and operates at Pfizer for the Oxytetracycline 

production plant (Zhang, et al., 1996). As state estimation is a current method that can 

provide on-line estimation of state variables, the integration of this estimation into the 

proposed optimisation scheme should be investigated and the effect of the estimation to 

the optimisation performance should be quantified. Figure 6-2 shows the diagram that 

integrates the state estimation into the process optimisation scheme. The diagram also 

shows the possibility for the model to be updated from the available measurements. 

When the process model has been updated, a new optimal substrate concentration 

profile is generated. The optimality on incorporation of the new profile and the 

corresponding control action in this system will need further investigation. The notation 

in the diagram has the following meaning: y are on-line measurements, such as OUR 

and CER, x are state variables, such as biomass, substrate and product concentration 

and z are on-line estimated state variables. 
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Figure 6-2 Diagram of a state estimation integrated into the optimisation scheme 

" On-line optimisation. In some processes, where process models are difficult to obtain or 

inaccurate, an on-line optimisation might be necessary. This direction would be another 

practical step forward in the optimisation of fermentation. A typical on-line 

optimisation scheme is shown in Figure 6-3 (Chang and Lim, 1989; Chang and Lim, 

1990; Chang, et al., 1988; Hamer and Richenberg, 1988; Hilaly, et al., 1994; Rolf and 

Lim, 1984; Rolf and Lim, 1985; Semones and Lim, 1989). 
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Figure 6-3 Diagram of an on-line optimisation scheme 

In figure 6-3, u is referred to as feed rate while y is product concentration. The current 

gradient between u and y is used to calculate the next move of u. As the substrate 

concentration has an effect on product formation, the following scheme shown in 

Figure 6-4 should also be investigated. In the figure, x is referred to as substrate 

concentration. The current gradient between y and x provides the next optimal value of 

substrate concentration and the feed rate (u) can then be calculated. 
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Appendix A Optimal Control Theory and Calculus of Variation. 

Calculus of variation or Lagrange optimisation is a natural method for dynamical 

optimisation. In this appendix, we briefly give an introduction to this subject, which has 

been used in the thesis. Since the material presented here refers to a minimisation, it is 

therefore noted that maximisation of J(u) is equivalent to minimisation of -J(u). Where 

J(u) is a functional we want to minimise. The reader should consult the material in (Bryson 

and Ho, 1975; Kirk, 1970; Noton, 1972; Ramirez, 1994) for more detail on this subject. 

In this appendix, we divide the material into three parts - Unconstrained control variable, 

Constrained control variable or Pontryagin's maximum principle and Necessary and 

sufficient conditions. 

1. Unconstrained control variable 

We want to minimise the following objective functional (J) from time to to tf; 

If 

J(u) = 
[x(t1)] +f L[x(t), u(t), t]dt (A-1) 

to 

by using u(t), which is control inputs, subject to the constraint of the state equations 

.z=ý 
(x, u, tý (A-2) 

The initial condition of the state equations (x(0)) are given. ', L and 0 are assumed to be 

continuous with continuous first partial derivatives. For the application on fed-batch 

fermentation processes in this thesis, u is referred to substrate feed rate (F) or substrate 

concentration (S), (D is a function of biomass (X) and/or product (P) at the final time and 

the state equations constraints (0) are process models. 
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We include the constraints (A-2) into (A-1) and minimise this new objective functional ; 

tf 

J lL (x, u, t)+ ?, T [O(x, u, t)- x]} dt J(u) = 
{x(t1)]+j j 

to 

The Hamiltonian is then defined as: 

H=L (x, u, t) + 7, T O (x, u, t) 

Where % are called costates or dynamic Lagrange multipliers. 

Equation (A-3) then becomes: 

J(u) _ (D[x (tj. )] +J (H - 
XT x) dt 

r0 

or 

r(r 
J(u) = 

[`D (x)-ýTx]rf + [XT x]�, +J(H+; ý x) dt 

to 

The first variation of (A-5) is: 

5 J(u) = [@-Tox}, + 
[9T8 

x]<<, + H+ aýr 5t 
lf 

If 

+f (Hu Su+Hx Sx+; ý Sx)dt 
10 

(A-3) 

(A-4) 

(A-5) 

(A-6) 

In order to minimise the objective functional (J ), it is necessary that the first variation in 

Equation (A-6) equals zero. The following conditions ((A-7) to (A-10)) then constitute 

necessary conditions for this optimisation problem: 

DH 
=p au 

(A-7) 
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ýT DH T 
ax 

[«D 

x- 
%1, )T ö x] 

t, 
+ 

[[H+Jot]t 
f 

(A-8) 

=0 (A-9) 

Note that [%T Sx]to equal zero since the initial states have already been given. Since the 

state equation constraints must also be satisfied: 

x= 
aý 

_ý 

Therefore, minimising J in (A-3) is equivalent to minimise J in (A-1). 

(A-10) 

Equation (A-9) is also known as the transversality condition or final condition. For a 

system with free final state and free final time, the transversality condition gives the 

following results: 

(tr) =a (tr 

H(tf) = 
a`ý (rfý =o 

It can also be shown form the time derivative of the Hamiltonian that: 

dH 
- 

DH T 
ü+ 

aH T. 
z+ 

(DH Tý 

dt au ax aa, 
TT 

- aH ý+(-aTx+xTa) = 
(IH 

ý au au 

And from (A-7), the time derivative of the Hamiltonian becomes: 

dH 
=0 or H= constant 

dt 

(A-11) 

(A-12) 
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From the final condition of the Hamiltonian in (A-12), it can be shown that H=0. 

2. Pontryagin's maximum principle 

The principle was developed by the Russian mathematician Pontryagin in the late 1950's. 

The principle is wider in scope than the previous section. The principle can be stated as: 

H (x°, 9, °, u°, t) <_ H (x°, 9ý, 
u, t) (A-13) 

for all admissible u(t) at all times. This Equation constitutes a necessary condition for the 

principle. The informal statement may be stated as (Noton, 1972): 

In order to minimise the objective functional (A-]), the Hamiltonian must be minimised at 

all times over all possible u. 

3. Necessary and sufficient conditions for the optimal control 

As it was mentioned only the necessary conditions, the following additional necessary and 

sufficient conditions are presented in this section. These conditions are 

Necessary conditions: 

Huu >0 

This condition is so called Legengre-Clebsch Condition. And the strengthened Legengre- 

Clebsch becomes a sufficient condition. 

Huu >0 

For the Pontryagin's principle, a strong necessary condition is: 

H (x°, 9, °, u, t) -H (x°, ý, °, u o, t) >_ 0 ;uýü 

This condition is also called the Weierstrass Condition. And the strengthened Weierstrass 

Condition becomes a sufficient condition. 
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Appendix B Model Predictive Control (MPC) 

The Model Predictive Control (MPC) can be referred to as the family of controllers in 

which there is a direct use of an explicit and separately model. The main strategy of model 

predictive control is to predict the effect of potential control actions on the future values of 

the process output over a finite interval and find the best control actions which minimise 

the objective function, which is usually the sum of squared errors between predicted 

outputs and desired set-points. 

The model predictive control has, therefore, two main parameters that need to be chosen 

by the designer: 

1. Prediction horizon: The process models are used to predict the finite future outputs, 

which are used to compare with the desired set-points. 

2. Control horizon: The sequence of finite future control inputs are determined to optimise 

the objective function based on the finite future outputs and desired set-points. 

However only the first control action is implemented and the optimisation procedure is 

restarted again for the next finite time horizon. This strategy is called moving or receding 

horizon, which allow the disturbances and plant/model mismatch to be compensated. The 

receding horizon in the model predictive control is shown in Figure B-1. 
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Figure B-1 Receding horizon in model predictive control 

The general problem to be solved by the model predictive control can be stated as: 

r 

min jIly(k+ilk)-r(k+i)Ilr + Ilou((k+i-1))Ila 
eu(k)... eu(k+m-1) ! =1 

subject to the system equations, constraints and initial conditions: 

ý 

y-g(x, u) =0 

h(x, u) =0 

k(x, u) >- 0 

x(to) = xo 
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where 

f, g: process model 

h: equality constraints 

k: inequality constraints 

u: input vector 

zu(k+i) = u(k+i)-u(k+i-1) 

y: output vector 

y (k +i/ k) : model predicted value of y at time (k+i) based on information at time 

k. 

r(k + i) : desired set-point at time (k+i). 

p: prediction horizon 

in : control horizon: (0 u(k + i) =0Vi? m; m<p) 

r, B: weighting matrices 
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Abstract - Problems of parameter estimation in biochemical processes can 
be reduced by optimal experimental planning. In this paper, optimal 
sampling time is used to implement the parameter estimation more accurate 
with fewer samples. By considering optimal criteria, variance of estimates, 
as the indication of estimator precision, can be reduced using this strategy. 

1. INTRODUCTION 

There are several problems in determining the value of parameters in a fermentation process. 
Problems such as great variability, time variation, nonlinearity and adaptive response of the 
living microorganism lead to different values of the parameters under different conditions. 

Another estimation problem is that some parameters such as maximum specific growth 
rate and the K constant in the Monod equation have physical meaning and need to belong to 
prespecified acceptable ranges. These two parameters are usually difficult to identify 
accurately as shown in Holmberg(l). Therefore specific data is needed for determining the 
precise value of parameters. Since the parameters are specific random variables, two aspects 
should be considered. The first is that the expectation of the estimated parameters (6) from 
infinite time of estimation equals the true parameters (unbiased estimator). The other is that 
the covariance of the estimated parameters should be very small. This leads to a need for the 
design of experiments in order to generate data rich in information to help towards the 
estimation of parameters. 

Optimal experimental design, generally, involves in two parts. The first is to determine 
an objective function on together with its constraints. The other is to optimise the objective 
function. There are, usually, 4 operation adjustments available for experimental design. (4). 
These are 

1. 'input signal shape 
2. sampling rate 
3. sampling location 
4. filtering of data prior to sampling 
5. ' choice of initial condition 
6. choice of variables to perturb 
7. choice of variables to sample 

2. INFORMATION MEASUREMENT AND SENSITIVITY COEFFICIENT 

The measurement of information in data related to the purpose of experiment. For parameter 
estimation experiment, information data related to parameter accuracy which represented by 
parameter covariance matrix accomplished the Cramer-Rao lower bound. Hence the 

I 
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information content can be measured by scalar function of Fisher's information matrix of that 
system. 

Sensitivity coefficient is an important component in Fisher's information matrix. It is 
formed by taking the first derivative of a dependent variable with respect to a parameter. For 
optimal input design experiment, this coefficients are maximised via Fisher's information 
matrix under pre-specified controlled input sequences. Then dependent variables would be as 
sensitive as possible to the parameters. Inspire of this, covariance of estimator would be 
minimum and parameter estimation would be more accurate. On sensitivity coefficient itself, 
it can be used to indicate the information content of data and used for selecting suitable 
sampling time under the highest period. Sensitivity coefficient is also used to examined 
whether parameters can be estimated. Parameters can be estimated if the sensitivity 
coefficients over the range of observation are not linearly dependent. 

3. SAMPLING TIME STRATEGIES FOR IMPROVING PARAMETER 
ESTIMATION. 

Consider the kinetic models of batch fermentation process. 
dX 

dt 
dS l 
dt Y 
.. - 

PmaxS 

µ= (K+S) 

(1) 

(2) 

(3) 

The difficulties of estimating parameters in Monod model usually appear for estimation µ 

max and K while Y can be estimated not so difficult. Since there is no control input element 
in batch process, optimal experiment can be performed by choosing suitable sampling time 
under the certain period. This is very useful when the number of samples are limited and 
costly. 

Optimal Experiment Criteria 

To find optimal experiment is to determine the conditions under which each data should be 
taken in order to optimise some criteria. Variance of an estimator is used generally for 

measuring its precision. The smaller the variance, the greater the precision. The variance of 
the estimator is approximate in Beck and Arnold(2) for one parameter as 

n -ý 

V(6) = az X; 
ý_ý 

(4) 

Where V is variance of estimator, Xi is sensitivity coefficient, and a2 is variance of data 
error. It can be seen that variance of the estimator can be reduced by maximising the value of 
Xi, or collecting the data at the maximum Xi range. In the same way, covariance is used for 
multi-parameters and criterion becomes 

cov(6) = (XrX)-l a2 (5) 
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Which required the data to be taken at maximum IXTXI, while X is sensitivity coefficient 
matrix in this case. 

To show the effect of sampling time to parameter 
estimation, the simulation data from equation (1), (2) and 30 
(3) was drawn in fig. l. including the sensitivity 
coefficient. After adding white noise, samples were taken 20 

for estimating parameters. (Samples would not be taken 10 
from the range over 100 since it was in the steady state 
and no information to be obtained. ). The results in tablel. 

showed that the variance of estimates from samples 
chosen from the high sensitivity coefficient period (range 
50-100 and 70-100) have lower value than from sampling 
taken uniformly from 1-100 hrs (50 and 100 samples ) as _50 

expected. Comparing 50 and 100 samples in the range 1- äe 
100 hrs, 50 samples case was worse than 100 samples -. --0 50 
case. This was caused by noise effect which made the 

number of samples not enough for estimation. The noise 
effect can also be seen from equation (4) and (5) that 

when a'2 is bigger, it makes the variance and covariance 
bigger. However this problem was relieved by choosing 

100 

100 

150 

150 

Fig. 1 sensitivity of biomass and substrate 

with respect to parameters 

the samples at high sensitivity value. (50 samples in the range of 50-100 hrs and 30 samples 
in the range of 70-100 hrs) 

4. CONCLUSION 

The optimal sampling time was shown to improve parameter estimation. By this strategy, the 
number of samples can be reduced which is important in fermentation process while every 
samples is costly and the number of samples is limited as a constraint in practice. Since 
priori knowledge is necessary to experimental design. The process knowledge and experience 
can be useful for designing experiments. 

range 1-100 1-100 50-100 70-100 

number o 
samples 

100 50 50 30. 

parameter µ1118X K µ,,, e, 1 K µ1I18, K 1111187C K 

estimate 0.0497 2.1073 0.1094 3.1002 0.0501 2.0038 0.0514 1.9707 

variance 0.00013 5.9885 0.0006 7.3664 
, 7.79E-06 1 0.1828 5.3E-05 0.0847 

The value of µmax = 0.05 and K=2 were used for generating simulation data. 

Tablel. Estimated value and variance of parameters 
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ABSTRACT 

It is well known that conventional biological models can not represent industrial fermentation processes with complex 
media. In this study, substrate utilisation rate and product formation rate are modelled in the ARMAX structure and in 
the form of 1 step ahead predictor using available on-line measurements. Model parameters are updated each time 
when the new data are available. Through recursive approach, for every time interval between samples, new linear time 
invariant models are obtained which are then updated each time the new data becomes available. By approximation of 
several linear models during the batch, it is possible to cope with the time varying nature of the process. It is also 
possible to cope with batch to batch variation resulting from variations in raw materials and operating conditions. The 

results show small variations in parameters in the models during the batch which may be. used to indicate the correct 
model structure for this process. When the parameters obtained from the recursive approach were used in different 
batches, without updating parameter values, suitable fitting between predictions and real data was achieved. 

INTRODUCTION 

Fermentation processes usually suffer from low sampling rate of the desired controlled state variables and time delay 
due to the laboratory analysis. This results in inefficient control of these processes and needs for models to help 

prediction of these state variables. Kinetic model for fermentation processes is a mechanistic model based on a priori 
knowledge of the process which can predict, with high accuracy, the behaviour of the process. However, the 
incomplete understanding of culture behaviour, the varying growth condition as well as process disturbances affect 
significantly the accuracy of this model. Hence, there is a need for adaptive schemes for on-line adjustment. For the 
past several years, a significant amount of research has been devoted to the on-line estimation of the state variables 
i. e., biomass, substrate and product concentrations ). Assuming known and constant chemical formulae for each species 
in the reactor, methods based on the elementary balance of C, H, 0 and N molecules have been established to estimate 
overall growth. Extended Kalman filter has been adopted to estimate model parameters [1-3] to predict specific growth 
rate for biomass production. This method is also used in fed-batch penicillin production [4]. However, this is not the 
case in industrial fermentation processes where complex media with unknown formulae are used and raw materials 
vary between batch to batch. 

This paper investigates an industrial process for microbial secondary metabolite production. The process is 

operated under fed-batch mode and two main substrates are defined as sub1 and sub2. Subl is a complex compound 
with an unknown formulae. In spite of incomplete knowledge of mechanism of the process, substrates rather than the 
specific growth rate are used as manipulated variables. In this process, subl and sub2 were kept constant at certain 
limits during the batch. The limits are known from experience as the values for optimal production. Therefore models 
are needed to estimate these state variables. Due to the characteristics of complex medium in the process, the available 
limiting substrate concentration can not be measured (although total concentration can be measured) and therefore the 
Michaelis-Menten equation and its modifications can not be used. Moreover, the elementary balance can not 

be derived 
due to unknown substrate formulae. In this paper, the on-line measurements were used to estimate the substrate 
utilisation-rate and product formation-rate and to have access to unmeasured state variables. 

MODELLING 

We start with the macroscopic mass balance for this process which can be derived as follow. 

dX 
= rX -DX; rX =µX 

dt 
dS no\ 
-= rs t uý 01 -ýý rs = -ýuX 
dt Yxl, 

e 
dP 

= rr -DP; rr=tcX 
dt 

X= biomass concentration (g/litre) 

S= substrate concentration (g/litre) ; refer to as subl and sub2 

(1) 

(2) 

(3) 
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Si = substrate concentration in feed (g/litre) 
P= product concentration (g/litre) 

p. = specific growth rate (hr I) 

Yx/s = yield substrate to biomass (g biomass /g substrate) 
x= specific product formation rate (hr-1) 
ri = reaction rate of species i (g/litre-hr); i=X, S, P 

To model X, S, P in these equations, it is possible to model reaction rate (rx, rs, rp). In many cases in industrial 

processes, biomass concentration can not be measured accurately due to interference by solid substrates. This makes it 

necessary to bypass the modelling of biomass and specific growth rate and model directly to rsubl, rsub2 and r. To 

model rsubl, rsub2 and rp, ARMAX model is adopted in the form of one-step ahead predictor using oxygen uptake 
rate (OUR), dissolved oxygen (DOT) and respiration quotient (RQ) which can be measured on-line as inputs to the 
models. Parameters in the models are estimated in recursive manner [5,6]. The linear model uses available information 

up to time t to predict reaction rate (ri) at time t+I and obtains an upgraded model during this period. When the new 
data are available, the model is updated and the prediction is repeated in the same manner. By this method, time 

varying aspect of the process can be represented by several linear models along the batch. 

RESULT AND DISCUSSION 

The results of model prediction compared with real data of rsubl, rsub2 and rp are shown in fig. 1,3 and 5 with the 
model parameters in fig. 2,4 and 6. Since the batches are operated at the same operating condition, the suitable initial 

parameters of the models can be obtained after testing on several batches. The results show a small variation in the 
parameters which indicates the suitable model structure in this case. These parameters, then, can be used without a 
need for recursive updating as shown in fig. 7 and 8 for prediction of rsubl and rsub2 in another batch. The results also 
show a good fit for rp (not shown here). However, the intention of using recursive method is to cope with the time 
varying aspect of the fermentation process. This means that even when the operating conditions or raw materials 
change, this method can still be used. However, there are limitations. First, this method needs off-line measurements to 
update the models. During that period, the models obtained are linear time-invariant. This is reasonable in fermentation 

processes which have slow dynamic. Second, the sampling period limits the model accuracy. The shorter the sampling 
period, the better the model prediction. The dynamics of the process as well as cost of sampling have to be considered 
when choosing a suitable sampling time. When substrate utilisation in the fermentation process is known, substrate 
concentration can be calculated and optimal feed profile can be obtained to control the substrate concentration at the 
desired level. 
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Abstract 

Optimisation of a fed-batch fermentation 

process is usually done by using the calculus of 
variations to determine an optimal feed rate 
profile. This often results in a singular control 
problem and an open loop control structure. To 

overcome these problems, the closed loop 

optimal control is developed by dividing the 
optimisation problem into two parts. First, an 
optimal substrate concentration profile which 
has direct effect to the biochemical reactions in 
the fermentation process is derived. Then a 
controller is designed to track the obtained 
optimal profile. A biomass production process 
is used to compare the performance of the 
closed loop optimal control method and the 
open loop optimal feed rate control method. 
The results show a better performance of the 
closed loop optimal control than the open loop 

optimal feed rate profile. This is due to the 
feedback property of the closed loop optimal 
control method. 

Keyword : process control, optimisation, 
fermentation process 

1. Introduction 

Fermentation processes are used for producing 
many fine chemical substances such as amino 
acids, antibiotics, biomass, enzymes, etc. From 

modes of operation, (batch, fed-batch and 
continuous), fed-batch operation is often used 
in industry due to its ability to overcome the 
catabolite repression or glucose effect, which 
usually occur during production of these fine 

chemicals [1,2]. Moreover, it also gives the 
operator the freedom of manipulating the 
process via substrate feed rate. This gives the 
challenge to the control and optimisation of the 
fed-batch fermentation processes. 

Optimisation of fed-batch fermentation 
processes have been a topic of research for 
many years. To determine an optimal feed rate 

profile in the fed-batch fermentation, the other 
environment variables such as temperature and 
pH, which also affect bioreaction rates in the 
processes are assumed constant at some levels. 
The approaches used by many research groups 
to determine the substrate feed rate profile that 
optimises a desired objective function are 
usually based on the calculus of variations [3- 
8] or Green function [9]. And since there are 
physical constraints in the minimum and 
maximum feed rates, the Pontryagin's 
Maximum principle is applied. However, there 
are two problems arising in applying the 
variational method to the fermentation process. 
The first is that a singular control situation may 
occur during operation since the control input 
or the substrate feed rate appears linearly in the 
Hamiltonian. The other problem is that the 
obtained optimal feed rate profile from the 
variational method is in the open loop manner 
and can suffer quite severely when the model 
parameters are not exact when used in the real 
application. It is not until recently that a 
reliable neural network-based estimation of the 
substrate concentration has been developed and 
successfully implemented in industry [24] that 
we are ready to proposed a method that can 
avoid these problems [10]. The method 
separates the optimisation problem of the 
fermentation process into two parts. Firstly, the 
optimal substrate concentration profile which 
has direct effect to the biochemical reactions in 
the fermentation process is derived. Then a 
controller is designed to track the profile of the 
obtained optimal substrate concentration. With 
this approach, the singular problem is 
overcome, as the substrate concentration 
usually appears as a nonlinear function in the 
Hamiltonian. The open loop control is also 
converted into a close loop servo or regulator 
control. This method is then called here the 
"closed loop optimal control". The objective of 
this paper is to demonstrate the advantages of 
the closed loop optimal control method 
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comparing to the open loop optimal feed rate 
control method. 

The paper is structured as follows: Section 2 

will describe the mathematical representation 
of a fed-batch fermentation process and 
formulate the closed loop as well as the open 
loop optimal control. The comparison between 
both methods is then shown in Section 3. The 

comparison is concluded in Section 4. 

2. Closed Loop Optimal Control 

The fed-batch fermentation can be represented 
by the following dynamic mass balance 

equations. 

dX 
= µX-DX 

dt 
(1) 

dS 
_1µX+D 

(S 
f- 

S) (2) 
dt y 

X-, 

dP 

dt 

dV 

dt 

= nX -DP (3) 

=F (4) 

D= F/V (5) 

where X, S, P are biomass, substrate and 

product concentration (g/l) in the reactor 

respectively; F is the substrate feed rate (1/hr. ); 

Sf is the concentration of substrate in the feed 

stream (g/1); D is dilution rate (1/hr. ); t and it 

are specific cell growth rate and specific 

product formation rate respectively (1/hr. ); Y, 

is the yield of cell mass from substrate (g cell/g 

substrate) and V is fermenter volume (1). The 

specific rates t and it are functions of substrate 

concentration. Further details and analysis on 
the fed-batch operation can be found in [2,11, 

12]. 

The fed-batch fermentation is constrained by 

conditions on final volume and minimum and 

maximum of substrate feed rates: 

0 <_ FS Fina,, (6) 

V(tf) = Vf (7) 

The objective of the fermentation process is to 

produce as much product as possibly under 

production-time constraint. This objective is 

transformed into an objective function shown 
in Equation (8) and can be solved using the 

calculus of variations [13-15]. 

J(F) = f(X(tf), P(tf)) (8) 

The obtained open loop optimal feed rate 
profile consists of a sequence of maximum, 
minimum and singular feed rates depending on 
the following condition: 

DH_ XXX+X 
+X, 

(Sf-S)X, P=`Y 

aF VVV 
From the Maximum principle, the optimal feed 

rate is determined by 'F as follow: 

if'F <0 then F=0 

if 'P >0 then F= Finaa 

if 'V =0 then F= Fsing 

The singular feed rate can be determined by 

repeatedly differentiating 'P until feed rate (F) 

appears in the time derivative equation of T. 

dk 
q, =0'k=ý2I -- dtk --. .--, -, -, 

The closed loop optimal control method 
separates the optimal control into two parts. 
The first part is to determine the optimal 
substrate concentration using the calculus of 
variations method but change the control 
variable from the substrate feed rate to 
substrate concentration in the fermenter. This 

eliminates the singular problem occurred in the 
open loop optimal feed rate profile method. 

A controller can then be designed to track the 
obtained optimal substrate concentration 
profile and the control problem becomes a 
closed loop control problem. This also offers 
the flexibility that many types of controllers 
can be designed and used particularly those 
robust to model/process mismatch errors [16]. 

To determine the optimal substrate profile, the 
substrate feed rate and volume are omitted and 
the system equations become: 

dX 
= 9x (9) 

dt 

dP 
-= nX 
dt 

(to) 

The objective function is then changed to: 

J(S) = f(x(t1), P(t1)) (11) 

The optimal control can then be written down 
as: 

ax=a, 
Xxaµ+a, PXa1L=o 

(12) 
as as as 
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And the optimal substrate concentration profile 
can be obtained by solving Equation (12) for 
the substrate concentration (S). 

We use a nonlinear model predictive control 
scheme for the tracking control since the 
process model is available and nonlinear. More 
details on nonlinear model predictive control 
are in [17-23]. 

3. Comparison of open loop optimal 
feed rate profile (OLOFP) and closed 
loop optimal control (CLOC) 

A biomass production process is used for 
demonstration and comparison between both 

methods. The objective of the process is to 
maximise the biomass production as shown in 
(13). The specific growth rate is assumed to be 

the substrate inhibition kinetic as shown in 
(14). The substrate inhibition kinetic is used in 

this study not only because it is simple to 

understand but also it can provide an analytical 
solution for comparison. Moreover, this type of 
kinetic can represent the catabolite repression 
and therefore the need for operating the 
fermentation in the fed-batch mode. Note that 
the model for this process consist of Equation 
(1), (2), (4) and (5). 

J(F) = max X(tf) (13) 

It = 
µmnx S 

(14) (Ks+S+s/K) 

It was shown in [10] that the optimal substrate 
concentration under the substrate inhibition 
kinetic can be calculated from the following 
condition, which is also the condition that the 
singular period occurs in the open loop optimal 
feed rate control: 

dµ 

dS 

or 

0 (ls) 

Soar - Ks ' K1 

For the open loop optimal feed rate profile 
method, the following feed rate can be 
obtained during the singular period: 

F; 
,, s _ 

µXV 
Yxs (Sf-S. 

pr) 

(16) 

We consider here only the period in which the 

singular period occurs and therefore the 

substrate concentration is kept at the optimal 
from the beginning of the batch. 

The following parameter values are used in the 
simulation: 

µmax=0.10, K8= 3, K; = 8.34 and Y,, $=0.164 initial condition : X(0) =1 g/l, S(0) =5 g/l, and 
V(0) = 201 
Final condition : V(tf) = 50 1 
substrate concentration in the feed stream: 
Sf = 100 g/1 
optimal substrate concentration: 
S,, pt = KS"Kj =5 g/1 

In the closed loop optimal control, nonlinear 
model predictive control is used with the 
following parameters: 

sampling time -1 hr. 
prediction horizon -5 hr. 
control horizon -3 hr. 

Since the CLOC method use the same process 
model as the OLOFP method to determine the 
optimal substrate concentration profile and 
feed rate, for an exact process model case, both 
methods give the similar results [10]. The 
comparison simulation here will therefore be 
performed under the condition of process- 
model mismatch where a small error (10%) is 
introduced to the parameter Y, 1 to demonstrate 
this situation. 

The simulation results for the OLOFP and 
CLOC methods are shown in Figure 1. It can 
be seen that in the modelling error case, the 
OLOFP method gives a wrong determination 
of the optimal feed rate. This results in the 
accumulation of substrate concentration in the 
fermenter which in turn reduces the growth rate 
and prolongs the operating time up to 85 hr. In 
the CLOC case, the substrate concentration is 
maintained at the optimal at 5 g/l for the whole 
batch until the reactor is full. The operating 
time for the OLOC method is only 72 hr. 

The better performance of the CLOC than the 
OLOFP can be explained from the fact that the 
optimal singular feed rate needs accurate 
values of Y,, s and Sf to calculate the optimal 
feed rate as shown in (16), while the error in 
these two values can be compensated by 
feedback information in the CLOC method. 
Improvement of the CLOC method over the 
OLOFP method at different levels of error in 
the parameter Y,, s is shown in Figure 2. 

Note that in both methods, the optimal and 
singular substrate concentration is determined 
by parameter K. and K, as shown in (15). 
Therefore, if these two parameters are 
inaccurate, both methods would result in the 
incorrect optimal substrate concentration 
profile and incorrect optimal feed rate profile. 
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However, the performance of the CLOC 

method is still better than the OLOFP method 
in these cases as shown from the shorter 
operating time in Table 1 where an error in 

parameter K, is used for illustration. In this 

example, it is assumed that parameter K, in the 

model equals 3, while this real parameter in the 
process equals 2 and 4. The incorrect optimal 
substrate concentration that is calculated from 

the model (K, = 3) is 5 g/l while the true 

optimal levels are 4.083 g/l (K, = 2) and 5.774 
(K, = 4). 

It is shown in the table that for the process with 
K, = 2, the operating time if the parameter in 

the model is correct is 68 hours. The operating 
time for the CLOC method is 68.5 hours, 

which is a little longer than the true one but 

shorter than that obtained from the OLOFP 

method, which is at 74 hours. For the process 
with K, = 4, the operating time if the parameter 
in the model is correct is 81 hours. The 
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Figure 1 Comparison for both methods for plant/model mismatch in a biomass production 
process. 

Solid line: closed loop optimal control method 
Dashed line: open loop optimal feed rate profile method 

operating time for the CLOC method is 82 
hours and that obtained from the OLOFP 
method is 97 hours. The better performance of 
the CLOC method can be explained by the fact 
that keeping the substrate concentration at the 
incorrect optimal level (5 g/l) decreases the 
specific growth rate slightly from the optimal 
growth rate. While in the OLOFP method, the 
error in parameter K. results in deviation of the 
optimal feed rate and substrate concentration, 
which in turn have highly effect on the biomass 
growth rate and prolong the process operating 
time. 

This illustration shows the advantage of the 
CLOC method over the OLOFP method even 
in the case of incorrect parameter that is used 
in the optimal substrate concentration 
determination. 
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% Shorter operating time of the closed loop over the open loop method compared with % 
error in parameter Yxs 
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Figure 2 The closed loop method results in shorter operating time than the open loop method in 
the plant-model mismatch case. 

Table 1 Effect of incorrect parameter K. to the process operating time 

Parameter KS 

Correct parameter 

for both methods 

2 
(-50%) 

68 

4 
(25%) 

81 

4. Conclusion 

The closed loop optimal control method 
divides an optimisation problem in a fed-batch 
fermentation into two parts. 

1. determination of an optimal substrate 
concentration profile. 

2. design a controller to follow the obtained 
optimal substrate concentration profile. 

With this two steps procedure, the singular 

problem is overcome. And by converting the 

open loop into closed loop, it was shown by an 

example on a biomass production process that 

the closed loop optimal control provides a 
better results than the open loop optimal feed 

rate control method. This is due to the 
feedback property that provide the feedback 
information to compensate for the modelling 
error. 
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