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Abstract—The non-invasive measurement of blood glucose is a 

popular research topic where RF/microwave sensing of glucose is 
one of the promising methods in this area. From the many 
available measurement sites in the human body, fingertips 
appear to be a good choice due to a good amount of fresh blood 
supply and homogeneity in terms of biological layers present. 
The non-invasive RF measurement of blood glucose relies on the 
detection of the change in the permittivity of the blood using a 
resonator as a sensor. However, the change in the permittivity of 
blood due to the variation in glucose content has a limited range 
resulting in a very small shift in the sensor’s frequency response. 
Any inconsistency between measurements may hinder the 
measurement results. These inconsistencies mostly arise from the 
varied thickness of the biological layers and variation of 
fingerprints that are unique to every human. Therefore, the 
effects of biological layers and fingerprints in fingertips were 
studied in detail and are reported in this paper.  
 

Index Terms—Glucose; Non-invasive; Permittivity; RF 
 

I. INTRODUCTION 
IABETES Mellitus (DM) is a disease associated with high 
Blood Glucose Levels (BGL) affecting over 400 million 

people worldwide and this number increases rapidly [1]. The 
normal BGL ranges from 72 mg/dl to 108 mg/dl whereas 
patients with DM may experience levels as high as 400 mg/dl. 
In this case, the BGL is advised to be regulated through 
medication or insulin shots to reduce the chance of long-term 
negative health effects [2]. The conventional measurement 
methods are invasive, where an accurate BGL measurement 
can be taken at health clinics/hospitals. However, mostly 
portable BGL measurement devices are preferred by patients 
for convenience that allow for an instant reading, anytime and 
anywhere. In this method, a small blood sample is obtained 
from the fingertip, which is then applied onto a test strip. 
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The test strip is inserted into the measurement device for a 
BGL reading. Depending on the severity of the disease, a 
patient may need to take up to 10 measurements a day, which 
causes discomfort. Furthermore, the blood contaminated 
consumables such as test strips and lancets should be disposed 
of properly to avoid the spread of blood-related diseases. 
Therefore, a non-invasive BGL measurement device is highly 
desirable to avoid the discomfort and the aforementioned 
risks. Researchers have been working on various non-invasive 
BGL measurement methods to measure BGL non-invasively 
[3-5]. Among these methods, the optical method can be 
considered as a notable one due to its potential to solve the 
problem using specific optical wavelengths where glucose 
shows strong absorption [6]. Another exciting yet less relevant 
method to the non-invasive methods is the minimally-invasive 
measurement systems using micro-needles [7] or implantable 
sensors [8]. Having access to the measurement media such as 
interstitial fluid or blood, these systems face less challenge in 
terms of glucose measurement. However, prolonging sensor 
life in the body by utilizing bio-compatible materials remains 
a challenge for minimally-invasive systems.       
One other popular and promising non-invasive method is the 
Radio Frequency (RF)/microwave sensing. There are a 
number publications reporting on dielectric modeling and 
measurement of glucose, non-invasive sensor design such as 
[9-15], as well as few companies developing commercial non-
invasive RF BGL measurement devices [16, 17]. An RF 
sensor is used to measure the change in the dielectric 
properties of blood resulting from the variation of BGL[18-
19]. This change causes a frequency shift in the sensor’s 
frequency response. However, detecting this change is 
challenging as the expected frequency shift is less than 8 MHz 
for the realistic BGL range and error sources such as the 
make-up of the fingertip, its positioning and the pressure 
applied onto the sensor dominate the shift in the frequency 
response [20-22]. Hence, these factors were studied in detail to 
observe their effects and propose novel solutions. 
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II. NON-INVASIVE RF GLUCOSE SENSOR AND MEASUREMENT 
The estimation of blood glucose is done by placing a body 

part (sample) onto a sensor as shown in Fig. 1 and observing 
its frequency response.  

 

 

Fig. 1.  Cross-section of the sensor and the sample 
 

A compact and sensitive non-invasive RF glucose sensor 
that was previously designed and reported in [21] was used in 
this study to perform the simulations and measurements. The 
sensor is a single-port resonator on a 32 mil thick RO3006 
substrate with an unloaded resonance frequency of 4.8 GHz 
where the resonance shifts down to about 3.25 GHz when a 
fingertip is placed on it. The layout of the sensor used is 
shown in Fig. 2. 

 

 
Fig. 2.  Layout of the sensor used 

The sensor was simulated in CST Microwave Studio (MWS) 
[23] and measured using a Rohde & Schwarz ZVL6 Vector 
Network Analyzer (VNA). The simulated and measured 
responses are shown in Fig. 3.  
 

 
Fig. 3. Simulated and measured responses of the sensor 

Deionized water and glucose phantoms comprising deionized 
water and pure D-glucose with concentrations of 100 mg/dl, 
250 mg/dl, 500 mg/dl and 1000 mg/dl were measured with the 
sensor. The samples were prepared this way to solely observe 
the effects of glucose; hence, no other constituents were added 
to make the fluid more physiological-relevant. A Perspex plate 
was placed on the sensor with a circular opening over the 
active region of the sensor holding 125 µl sample volume. 
Each sample was measured 10 times and the results were 
averaged. The measurement results are shown in Fig. 4. 
 

 
Fig. 4. Measured response of the sensor with glucose phantoms 

For a better understanding of the relationship between 
glucose concentration and resonance frequency, the resonance 
frequency value for each concentration was normalized to the 
resonance frequency observed with deionized water. The 
results are shown in Fig. 5 along with confidence intervals for 
10 measurements. 
 

 
Fig. 5. Normalized frequency shift for various glucose concentrations and 

confidence interval 

As it can be seen, the confidence interval is wider for low 
glucose concentrations making it harder to achieve accurate 
and repeatable measurements. A frequency shift of 14 MHz 
was observed between 0 mg/dl and 1000 mg/dl solutions and 
the shift is almost linear, which translates to a frequency 
deviation of 14 𝑘𝑘𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚.𝑑𝑑𝑑𝑑−1⁄ . The reading of an over-the-
counter BGL meter must produce results within ±15% of the 
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real BGL value set by the International Standardization 
Organization (ISO) regulations [24]. For example, for a 
concentration of 100 mg/dl the acceptable range is 85-115 
mg/dl, which means that the RF measurement accuracy must 
be greater than or equal to 420 kHz in an ideal situation. 
However, it can be seen in Fig. 5 that the measurement 
accuracy is within 5 MHz instead.  

It is even harder to take accurate measurements from body 
parts as human tissues are lossy and there are many 
constituents in blood beside glucose contributing to the 
measurement results. For the realistic BGL range the expected 
shift is less than 8 MHz. Moreover, there are several error 
mechanisms in taking measurements that may introduce a shift 
over 100 MHz, which are explained in the following sections. 
For this reason, any source of error in the measurement must 
be eliminated or greatly reduced in order to get an acceptably 
accurate measurement. 

III. NON-INVASIVE GLUCOSE MEASUREMENT FROM THE 
FINGERTIPS 

The permittivity of blood changes as the concentration of 
glucose level varies. The fingertip is a suitable measurement 
site but there are a number of things that play a fundamental 
and pivotal role in the measurement accuracy and 
repeatability. These are; the fingerprints, skin thickness, the 
pressure applied by the fingertip while taking a measurement 
and finger positioning on the sensor.  

The fingertips are imprinted with fingerprints, which are 
uniquely patterned in each finger and each person. They are 
formed of ridges and valleys with an average depth of 50 µm 
[25]. Although this appears to be a small feature to be 
neglected in non-invasive BGL measurements or simulations, 
the frequency shift caused by the fingerprints is greater than 
that caused by the actual glucose level variation. This is 
because the valleys introduce air gaps whose permittivity is 
much lower than skin’s permittivity and this lowers the 
effective permittivity seen by the RF sensor. This is illustrated 
in Fig. 6. 

 

 
Fig. 6.  Cross-section of the sensor and the sample with air gaps. 

 
The frequency response is affected differently depending on 

the depth of the valleys and finger positioning on the sensor 
due to the irregular shape of the fingerprints. Hence, the 
effects of valley depth and fingerprint pattern were 
investigated. 

The finger can be represented by a 4-layer equivalent model 
as shown in Fig. 7 [19]. 

 
Fig. 7.  4-layer model of fingertip. 

 
Skin is the first biological layer on the sensor; therefore, it 

has a pronounced effect on the frequency response of the 
sensor. Any variation in the thickness of this layer directly 
affects the response. The ridges in the fingerprints are 
compressed as pressure is applied onto the sensor by the 
finger. This alters the depth of the valleys, hence the volume 
of the air gaps and the skin thickness, which plays a role on 
the frequency response. Moreover, the fat and blood layers are 
also compressed depending on the pressure applied and the 
blood is pushed away from the fingertip if too much pressure 
is applied. The effects of these issues were studied and are 
reported in the following sections.  

IV. EFFECTS OF FINGERPRINTS 
The effects of fingerprints in non-invasive measurements 

were first reported in [22]. However, only the effect of 
presence of a fingerprint was investigated and it was shown 
that it causes a frequency shift in the sensor’s frequency 
response. This work was expanded by investigating the effects 
of different fingerprint patterns with varied valley depths. For 
this, five random fingerprints were obtained from the internet 
and their patterns were randomly altered to ensure anonymity. 
The patterns were imprinted on the skin layer of the 4-layer 
fingertip model in CST MWS as shown in Fig. 8. The edges of 
the fingerprints were left rectangular instead of rounded to 
simplify the 3D modeling. However, this is expected to have 
little to no effect on simulation results. The model measures 
25 𝑚𝑚𝑚𝑚 x 18 𝑚𝑚𝑚𝑚 in an oval shape to resemble an average 
human index finger. Simulations were performed by varying 
the valley depth in each fingerprint with values of 5 µm, 10 
µm, 20 µm, 40 µm and 80 µm, assuming a 50 µm average 
valley depth for an uncompressed fingerprint [25, 26]. Mesh 
size was set to 20 cells at 5 GHz in MWS.  

TABLE I 
VALLEY DEPTH VS RESONANCE FREQUENCY (MHZ) 

Depth FP* 1 FP 2 FP 3 FP 4 FP 5 

0 µm 3228 3228 3228 3228 3228 
5 µm 3236 3233 3234 3238 3236 

10 µm 3238 3237 3235 3239 3240 
20 µm 3242 3238 3235 3244 3241 
40 µm 3284 3240 3241 3240 3246 
80 µm 3328 3262 3282 3324 3356 

    *FP (Fingerprint) 
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Fig. 8. Fingerprint a) pattern 1 b) pattern 2 c) pattern 3 d) pattern 4            

e) pattern 5 f) close-up section of the 3D ridges and valleys in CST MWS 
 

The main resonance point of the sensor for each fingerprint 
pattern and valley depth value was recorded and are given in 
Table I. As it can be seen, the resonance point is different for 
every pattern and it changes with the varying valley depth 
values. As the depth of the valleys increases the resonance 
frequency increases because the effective permittivity seen by 
the sensor decreases. The valley depth varies from person to 
person, however, it also varies by the amount of pressure 
applied onto the sensor by the fingertip due to compression. 
For this reason, attention must be paid to monitoring the 
pressure applied, otherwise, the sensor response will differ in 
each measurement. 

The relationship between the valley depth and frequency 
offset for each pattern in shown in Fig. 9. 

 

 
Fig. 9. Frequency offset vs. valley depth for different fingerprint patterns 

 
Simulation results show that the frequency shift due to 

valley depth and fingerprint variations may be as high as     
100 MHz in each case. This marks the importance of the need 
to be aware of and take account of the fingerprints in non-
invasive BGL measurements.  

Moreover, as reported in [22], fingertip positioning is also a 
very important factor to pay attention to while taking 
measurements as a positioning error may cause a frequency 
shift well over 100 MHz. Due to the asymmetrical nature of 
fingerprints, the error caused differs in magnitude depending 
on where the finger is positioned on the sensor, impacting the 
repeatability of the measurements. This was shown by 
performing a simulation where the fingertip’s position was 
varied between −2 ≤ 𝑥𝑥 ≤ 2 and −2 ≤ 𝑦𝑦 ≤ 2 , and the 
resulting resonance frequency for each point was normalized 
with respect to the frequency at the center, (𝑥𝑥,𝑦𝑦) = (0, 0), 
where 𝑥𝑥 and 𝑦𝑦 are coordinate points in millimeters. The 
resulting graph is shown in Fig. 10. 

 

 
Fig. 10. Normalized frequency shift vs. fingertip position on the sensor 

a) b) 

c) d) 

e) f) 
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Furthermore, it should be noted that when a fingertip is used 
for measurement, any contaminants such as oil, sweat and dirt 
between the fingertip and the sensor would adversely affect 
the measurement accuracy. The severity of the effect depends 
on the quantity, distribution and dielectric properties of the 
contaminant. We performed a set of experiments on several 
volunteers where we affixed the sensor onto the participants’ 
index finger and asked them to stay still for 10 minutes. We 
observed for each participant that the resonance frequency 
decreased non-linearly during the span of the measurement as 
their fingertips started sweating. The sweating introduced up 
to an 80 MHz shift in the frequency response, depending on 
the sweating rate and pattern of each participant. This was 
expected as the dielectric constant is about double that of skin.  

V. EFFECT OF BIOLOGICAL LAYER THICKNESS 
Next, the effects of skin, fat and blood layers’ thickness 

were studied. The thickness of the skin layer was varied from 
0.25 mm to 1 mm to observe its effect on the resonance 
frequency. The skin is not compressed much with the pressure 
applied onto the sensor, however, its thickness varies from 
person to person. The thickness of the skin clearly affects the 
resonance frequency of the sensor as shown in Fig. 11. A      
0.25 mm difference in the thickness introduces about a 100 
MHz shift. 

 

 
Fig. 11. Resonance frequency for various skin thickness values 

 
The overall thickness of the fingertip reduces with the 

pressure applied because the tissues are compressed. In the 
original 4-layer model it is assumed that the layers are ordered 
and aligned. However, in reality blood exists in a complex 
network of capillaries and soft tissue. Therefore, varying the 
thicknesses of fat and blood layers alone does not wholly 
reflect reality. For this reason, a new voxelized model was 
investigated and is proposed. The cross-sections of the original 
and voxelized models in CST MWS are shown in Fig. 12. The 
fat and blood layers were voxelized with a volume of 
0.4 𝑚𝑚𝑚𝑚 x 0.4 𝑚𝑚𝑚𝑚 x 0.4 𝑚𝑚𝑚𝑚 (8880 total voxels).  
 

 
 

Fig. 12. 4-layer fingertip model in CST MWS a) original b) voxelized 
 
This voxel size was selected as a trade-off between model 

resolution and voxel generation/simulation time. The blood 
and fat voxels were randomly generated and distributed with 
50% probability between the skin and bone layers. The model 
was simulated and its response was compared with the original 
model’s response as well as the measured response of the 
sensor with an actual human fingertip. The results are shown 
in Fig. 13. The model was simulated 5 times by regenerating 
the voxels randomly to observe the effect of distribution of the 
voxels on the frequency response of the sensor. A standard 
deviation of 230 kHz was observed between simulations 
which shows that the random voxel generation offers good 
repeatability. The blood voxels can be replaced with 
glucose/water Cole-Cole permittivity relaxation model [20] to 
investigate the effect of glucose concentration on the 
frequency response.  

 

 
Fig. 13. Simulated frequency response of the sensor with the original and 

voxelized models and measured response with a finger 
 
As it can be seen from Fig. 13, a better agreement between 

the voxelized model and real measurement was achieved with 
the new model compared to the original model.  

After this, the thickness of the voxelized layer was varied 
from 4.8 mm down to 1.6 mm mimicking the compression of 
the fingertip due to applied pressure to observe its effects. The 
results are shown in Fig. 14. 
 

a) b) 
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Fig. 14. Frequency response of the sensor with varied thickness of the 

voxelized layer 

The resonance frequency decreases as the thickness 
decreases. About 90 MHz downward shift was observed for 
75% compression of the layer.  

It can be concluded that the thickness of the mentioned 
biological layers plays a major role in achieving measurement 
repeatability. Layer thicknesses can be determined by 
measuring them and monitoring the pressure applied by the 
fingertip to ensure BGL measurement repeatability. A 
calibration procedure is vital to ensure repeatability of BGL 
measurements between different patients.  

The authors are planning to manufacture synthetic fingertip 
phantoms to validate the concept by taking actual 
measurements and comparing with the computational models. 
Authors are also currently working on a novel system that will 
allow for accurate fingertip positioning on the sensor as well 
as measurement of layer thicknesses for BGL measurement 
calibration to be reported in future publications.  

VI. PRESSURE DEPENDENCY OF BGL MEASUREMENTS  
To investigate the relationship between the resonance 

frequency and the pressure applied, a novel sensitive 
capacitive pressure measuring circuit that was reported in 
detail in [21] was used. The circuit utilizes a 24-bit 
Capacitance to Digital Converter (CDC) chip to monitor the 
capacitance of the RF sensor where the capacitance depends 
on the coupling between the sensor and the fingertip. The 
coupling increases as more pressure is applied. The circuit acts 
as an interface between the RF glucose sensor and the VNA 
utilizing the RF glucose sensor as a capacitive pressure sensor. 
The CDC uses a 16 kHz excitation signal and the RF sensor 
provides a good sensitivity to proximity and pressure due to its 
highly capacitive nature by design. The circuit allows for 
continuous pressure and RF measurement. The circuit 
topology deployed is shown in Fig. 15. A high-pass filter 
(HPF) was used on the VNA line to block the excitation signal 
in that branch and an RF choke (RFC) on the CDC line to 
block the RF signal in that branch. 
 

 
Fig. 15. Circuit topology of the proposed pressure sensing circuit 

 
The pressure data is continuously sent to the computer by the 
microcontroller unit (MCU). The relationship between the 
resonance frequency and the pressure applied was established 
by continuously taking about 300 measurements in 3 minutes 
while varying the pressure applied onto the RF sensor. 
Pressure was varied randomly between light and firm levels 
and results were plotted in real-time in MATLAB [27] with 
the frequency response gathered from the VNA and the 
pressure data received from the proposed circuit. The 
experiment was repeated by taking data from 20 volunteering 
individuals. The obtained graph is shown in Fig. 16 for one of 
the data sets. The graph shows that the resonance frequency is 
almost a linear function of the pressure applied (in Arbitrary 
Units (AU)) and a good repeatability can be achieved for a 
specific pressure level.  
The resonance frequency differs from person to person due to 
differences in the finger structure; however, the almost-linear 
relationship between the pressure applied and the resonance 
frequency is clearly observed for each individual.  
 

 
Fig. 16. Resonance frequency vs. pressure applied 

 
The photograph of the pressure sensing circuit as well as the 

RF sensor in a custom 3D printed enclosure is shown in Fig. 
17. 
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Fig. 17. Photograph of the pressure sensing circuit with the glucose sensor  

 

Several different sensor enclosures were 3D printed as 
shown in Fig. 18 to accommodate for different finger types 
while ensuring correct finger positioning. 

 

 

Fig. 18. Various sensor enclosures for measurements from fingertips  

 

VII. DISCUSSION 

The parameters affecting the measurement accuracy are 
summarized in this section. It should be noted that these 
results are simulation based except the pressure 
measurements. It is expected that these results would draw 
attention to the challenges that could be faced when taking RF 
BGL measurements in terms of measurement accuracy and 
repeatability, which are key factors in BGL measurements. As 
mentioned in the previous section, the authors are working on 
ways to perform realistic measurements to quantify the 
denoted parameters and compare with the simulation results. 
Although these simulations were performed for the case of 
fingertips, the measurement challenges apply for any part of 
the body where the RF BGL measurement is taken from. The 
effects of the mentioned parameters are summarized in Table 
II. 

 
 

TABLE II 
SUMMARY OF PARAMETERS AND THEIR EFFECTS 

Parameter Effect (Frequency shift) 

Fingerprint variation Up to 100 MHz 

Biological layer thickness Up to 90 MHz 

Finger position Up to 250 MHz 

Pressure applied Up to 80 MHz 

Contaminants Up to 80 MHz 

 

As it can be seen from the Table II, any error source may 
cause a frequency shifts around 100 MHz and this may be in 
either direction. Considering that a combination of these errors 
may play a role during measurements, which can make it quite 
challenging to get accurate results. 

VIII. CONCLUSION 
RF non-invasive BGL measurement by tracking the changes 

in the permittivity of blood is a promising but challenging 
research topic. This is mainly because in the realistic BGL 
range the permittivity change is very limited which translates 
to a frequency shift of less than 8 MHz in the sensor’s 
frequency response. It was shown in this paper that external 
factors also play a major role in the sensor’s response. The 
variation in fingerprint patterns, valley depth and biological 
layer thicknesses in the fingertips may cause a frequency shift 
of up to 100 MHz. These variations result due to the layer 
compression from the amount of pressure applied onto the 
sensor. Additionally, these parameters differ in each patient as 
well. The applied pressure can be accurately tracked using a 
pressure sensing circuit as proposed and layer thicknesses can 
be measured for calibration purposes. Moreover, finger 
positioning may cause a shift as high as 250 MHz whose 
effect can be greatly reduced by housing the sensor in a 
custom enclosure to ensure finger position repeatability. 
Although the importance of these parameters were only 
emphasized for fingertips, irregularities such as skin shape and 
thickness, hair and biological layers present at the 
measurement site need to be considered carefully for any body 
part. The findings reported here show the importance of 
several parameters that need to be considered carefully to 
minimize measurement error, maximize repeatability between 
measurements for a patient and also the necessity of a 
calibration procedure to minimize measurement variations 
between different patients. To the authors’ best knowledge 
these factors were not previously addressed in the open 
literature. The authors are currently investigating hybrid 
calibration procedures to mitigate the effects of all the 
mentioned error sources. 

 
 
 
 
 


