
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Middle Man: An Efficient Two-Factor Authentication Framework

Costa, J. and Michalas, A.

This is a copy of the author’s accepted version of a paper subsequently published in the

proceedings of the 3rd IEEE International Conference On Computing, Communication,

Control And Automation, Pune, India 17th to 18 Aug 2017, IEEE.

The final definitive version is available online at:

https://dx.doi.org/10.1109%2FICCUBEA.2017.8463686

© 2018 IEEE . Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

https://dx.doi.org/10.1109%2FICCUBEA.2017.8463686
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

Middle Man: An Efficient Two-Factor
Authentication Framework
Jose Costa

Cyber Security Group,
Department of Computer Science

University of Westminster, UK
jose.costa@my.westminster.ac.uk

Antonis Michalas
Cyber Security Group,

Department of Computer Science
University of Westminster, UK
a.michalas@westminster.ac.uk

Abstract—Two-factor authentication (TFA) is increasingly be-
coming a go-to for user security and identification. With an
increase in cyber crimes each year more and more businesses
(ranging from financial institutions to retail) are implementing
TFA mechanisms as a way to ensure user credibility within their
systems which in turn decreases the risk of any malicious users
infiltrating their systems. In this invited paper, we describe a
lightweight two-factor authentication system where legitimate
users are using their mobile devices in order to get access to
certain services. In addition to that, our service can be used as a
single-sign-on framework since our system allows many different
services to connect to our platform and give the option to their
users to connect to their services via our TFA framework. To
achieve that, we have built an Application Programming Interface
(API) that can receive requests from authorised (i.e. registered)
businesses. Finally, users are able to login to a server by using an
iOS app, that we have developed, to receive a dynamic one-time-
password (OTP). The OTP generated in a dynamic and random
way with high entropy and it is valid only for a short period of
time.

Keywords—Security; Two-Factor Authentication; Software To-
ken; One-Time-Password;

I. INTRODUCTION

Protecting users’ online accounts from unauthorized access
is a problem that has been thoroughly studied during the last
decades. However, and despite the considerable effort that have
been put in to providing more robust and secure authentication
mechanisms, most of the existing online services are still
relying on the traditional single password-based systems.

An alternative authentication method that has recently
gained in visibility is the so called two-factor authentication
(TFA). TFA is becoming an increasingly popular approach that
is adopted by many companies across various fields in order to
provide a more reliable and secure user identification. With an
increase in cyber attacks, each year more and more businesses
(ranging from financial institutions to retail) are implementing
TFA mechanisms as a way to ensure user credibility within
their systems which in turn decreases the risk of malicious
users infiltrating into their systems.

Even though there are a multitude of ways that TFA can
work with numerous of combinations available, the most
widely used for secure user identification is based on the use of
One Time Passwords (OTP). The concept behind this approach
is based on the fact that in a single password-based system,

if a malicious adversary manages to get hold of a legitimate
user’s password, then the entire security and privacy of the
underlying user is compromised. To make things worse, it
has been observed that users tend to create easily memorable
passwords while at the same time they use the same password
for several different web services. In addition to that, users
tend to authorize multiple third-party application to access
their accounts and in some cases by giving full access rights.
However, giving access to a third-party application implies that
users share their login information (i.e. secret information)
with an entity that can run under a weak security profile.
Hence, if such a third party becomes compromised, then users’
security and privacy are immediately under attack.

TFA has the potential to provide a realistic and reliable
solution against such attacks. By adding an extra layer, typ-
ically in the form of a physical token, such as biometrics
(fingerprints or retina scans), or an electronic token such as
an OTP generated at the time of the login request, TFAs can
make sure that each login attempt will be verified by the
actual owner of the account. More precisely, during the login
procedure the account holder will be required to prove that she
owns unique information that is bound to her actual account
(e.g. fingerprint, an OTP sent to her mobile phone etc.). As
a result, even if an attacker manages to get access to the
actual/main user’s password, they would also need to get the
user’s current OTP to login. To this end, such authentication
methods are considered more secure than traditional ones since
it is much harder for an attacker to succeed in infiltrating an
account.

While there are some available TFAs, most are either
privately made in house, for a single company or are available
but come with a large overhead which comes attached to
drawbacks; this can be expensive to implement and time-
consuming. The aim of our project is to provide a secure TFA
platform that will enable other businesses to provide their users
with the form of security without any change to their current
infrastructure, making the transition effortless while keeping
users’ data as secure as possible.

A. Our Contribution

The main contribution of this work is the design and
implementation of a lightweight and easy to use two-factor

authentication framework. In addition to that, the overall
framework has been designed in such a way that it allows users
to login to different services without having to completely re-
authenticate themselves. While this is close to a single-sign-on
(SSO) approach it is not considered as such since the user will
eventually need to prove that she knows an OTP that will allow
her to properly login to a service. As a result, our approach
requires the user to enter her credentials once (during the first
login) and then she can move between different services only
by using the corresponding OTPs that they will receive.

B. Organization

The rest of the paper is laid out in the following order. In
Section II we study related work on two-factor authentication
protocols and examples of existing implementations while in
Section III we describe both the system and the adversarial
model. In Section IV we describe the proposed two-factor
authentication framework while in Section V we describe the
system setup and present extensive experimental results show-
ing the effectiveness of our approach. Finally, in Section VI
we conclude the paper.

II. RELATED WORK

This section presents the most important services that follow
a two-factor authentication approach for the identification
of users. In addition to that, we briefly describe how the
underlying TFA protocols work and we present a list of
advantages and drawbacks. Finally, for each described work
we provide a brief comparison with our approach in order to
highlight the differences and clearly present the contribution
of our work.

In [1] authors proposed a two-factor authenticator protocol
which consists of a biometric formulation known as BioHash.
This combines a user specific fingerprint Bi with a tokenized
random number T which in turn produces a set of n binary bit
strings B = {b1, . . . , bn}. This method makes it hard for an
adversary to get hold of the required authentication elements
(B, T) to even make the final product needed for a successful
authentication. One of the main drawbacks of this approach
is that biometrics have a high implementation cost. Therefore,
the proposed approach would not be a viable option to use
for many organizations. Moreover, there are some additional
drawbacks related to the accuracy of such systems. More
precisely, false recognition rate (FRR) and false acceptance
rates (FAR) can lead to many unsuccessful authentication
attempts from legitimate users that are giving the correct input.

Authors in [2] proposed a two-factor authentication mech-
anism using keystroke analysis to identify users in a unique
manner. Furthermore, the proposed solution requires users to
provide a traditional fixed password during the initial login
while authentication via the keystroke analysis is used to re-
authenticate user’s open session. Even though the proposed
solution does not require any extra hardware, it has been
observed that the keystroke analysis may not give accurate
results when it is used on its own.

In [3], authors argued that using OTPs that are sent to users’
devices in order to perform a two-factor authentication login
process is a costly approach due to the SMS charges. Based
on that, they proposed a two-factor authentication scheme a
user’s device produces multiple OTPs from an initial seed.
The initial seed is produced by a set of unique parameters that
are generated by the involved entities. As a result, applying
the many from one function to a certain seed removes the
requirement of sending SMS-based OTPs to users, and reduces
the restrictions caused by the SMS system. Our approach does
not require the use of SMS to send an OTP to a user who
wishes to login. Even though users receive the OTPs on their
mobile devices, this is not done via SMS but through the
mobile application that we have built.

To successfully compile the requirements for our frame-
work, we extensively studied the most important and widely
used existing forms of TFA and how they would compare to
our proposed system. To this end, we covered a variety of
different approaches to TFA and dismissed examples which
would not be suitable for our needs. An example of this would
be using biometrics as TFA, firstly the complexity of this task
would take longer than the allotted time given to complete
this task. Another problem would be that biometric scanning
needs specialised equipment which tends to be expensive, we
would need to supply businesses using our platform with such
devices which takes away from our aim of making it simple
and easily integrable into any business. Hence, we focused our
search on mobile based approaches that had a form of two or
multi-factor authentication implemented.

The popular gaming platform Steam offers a mobile TFA
which is available on both Android and iOS. Once the user has
signed up to Steam Guard using her steam account, she can
add her phone number which steam uses to send a verification
code to finalise the setup and bind the device to the actual user.
After this initial verification, each time the user tries to access
her account the application will produce a code which changes
regularly.

Duo is a company which focuses on verifying the identity
of users for their customers as well as monitoring their devices
for performance. They incorporate agents which monitor and
enforce stronger policies by using TFA. They focus more on
remote login side and ensuring users only have access to
specific applications. This is a useful tool to have in large
corporations that do not have have their own TFA system
that would also like to add some monitoring options to their
systems.

All of the compared systems are TFAs of their own, they are
all at industry standard, some being more focused on specific
areas than others – for example Duo must have an agent to get
system health and performance reports. All of these, generate
dynamic OTPs which is exactly the approach that we follow in
our framework. Additionally, they also all extend their services
onto the mobile platform – an approach that we also followed.
The Steam application and Duo layouts seem more suitable
for our needs as we need the underlying application to be
simple but serve its purpose of providing the OTP to the user.

Duo is the only one which can provide services to different
businesses such as Sofware-as-a-Service (SaaS) [4] cloud-
based services [5], [6], [7], [8] have the drawback of the extra
baggage of needing an agent to be introduced into the client
system. Hence, adoption and implementation are considered
difficult. For the needs of our platform we decided to keep
the functionality as simple as possible in order to achieve high
efficiency while at the same time allowing businesses to use
our service without requiring to make any changes to their
infrastructure.

III. SYSTEM MODEL AND THREAT MODEL

In this section, we identify all the participating entities in
our model and we describe their operations and how they relate
to each other. Furthermore, we define the threat model that we
consider by explicitly describing the capabilities of a malicious
adversary.

Our system consists of three participating entities. The end-
users, a set of webservices that the users have access to and
our actual two-factor authentication server that manages users’
access to the webservices.

User (u): Let U = {u1, . . . , un} be the set of all users
that are registered with our service. Users within the system
can use our service to access/login various webservices1. In
order for a user ui to successfully login and/or switch between
different webservices, she will first have to download our
mobile application. Through this application, ui will send
a login request and if the request is legitimate, she will
successfully receive an OTP that will allow her to authenticate
herself and login to the requested service.

Webservice (ws): Let WS = {ws1, . . . , wsm} be the
set of all webservices that our framework provides service to.
Each wsi ∈ WS has a public/private key pair denoted as
pkwsi/skwsi . The public key is shared with all other entities
in the system model while the private key is kept private.
A wsi communicates directly with our TFA server (AS) to
verify users’ credentials to which AS can respond with a user
validation (i.e. a login response) or a registration response if
the user does not already belong to the underlying webservice.

Two-Factor Authentication Server (AS): AS can com-
municate both with the users and webservices. AS issues
credentials for users to login onto registered webservices.
Furthermore, it also generates and assigns API Keys when
webservices register to the platform. These API keys will be
used to validate and authenticate the received requests for the
webservices’.

A. Adversarial Model

Our adversarial model is based on the Dolev-Yao adversarial
model [9]. In this threat model, a malicious ADV can inter-
cept, overhear, replay and change messages which are sent and
received by any of the involved entities. More precisely, we
assume that ADV can intercept and change all the exchanged
messages between two or more legitimate users.

1These webservices are third-party services operating in a different host
from ours.

Cryptographic Security: We assume that any used en-
cryption scheme is semantically secure. Hence, ADV cannot
find any valuable information about the content of an en-
crypted message as long as she does not have access to the
corresponding decryption key. Furthermore, we assume that
a signature scheme is unforgeable and ADV cannot forge a
valid signature. In addition to that, ADV cannot predict the
output of a pseudorandom function and cannot guess a random
number.

Asset Security: We assume that ADV cannot deny access
to a valid user, such as making a web server unavailable.
Hence, denial-of-service (DoS) attack [10], [11], [12], [13]
is out of the scope of this paper. We also assume physical
security (i.e. ADV does not have access to the memory of
any of the participating devices/entities).

IV. PROTOCOL DESCRIPTION

In this section, we describe our TFA protocol which con-
stitutes the main contribution of the paper. The described
protocol is successively applied to deploy a two-factor authen-
tication infrastructure providing web-services user authentica-
tion as well as data integrity and security. We cover the 2FA
architecture and what programming languages were used.

a) Setup: During the initialization phase, AS and each
wsi ∈ WS obtain a public/private key pair (pkAS/skAS,
pkwsi/skwsi). The public key of each entity is shared with
everyone while the private remains secret.

b) Registration: For each wsi ∈ WS that wishes to gain
access to our platform, they must first sign up providing details
about their actual webservice. Upon completion, they will be
assigned a unique API key which solely identifies the specific
webservice. This key will be used to authenticate requests
made by wsi when they wish to validate user access.

In addition to that, each user uj must also register to
our platform 2. When uj sends a registration request, AP is
responsible to verify the validity of the request (e.g. user uj is
not already registered). If the request is legitimate, then AP
initiates the registration process.

When uj registers they are required to provide personal de-
tails along with a username and password combination. Then,
uj calculates m1 = 〈username||H(password)||details〉 and
encrypts it with pkAP. The generated ciphertext (c1) is
sent to the AP . Upon reception, AP uses skAP to recover
m1 = DecskAP(c1). Next, AP checks if said uj is part of
their system already, if not it saves their details into a secure
database along with a timestamp. Additionally, AP generates
a salt sj , using a cryptographically secure pseudorandom
number generator (CSPRNG) which is unique to uj . Finally,
AP calculates SPujp

= H(H(password) + sj) which is the
stored password for user uj . Furthermore, AP also generates
another random binary sequence of length n, where the
resultant sequence becomes a unique key (ukj) for uj which
will later be used to calculate the OTP .

2Note that registration process of user is different from the registration of
wsi.

c) Requests: User uj wishes to login to a webservice
wsi ∈ WS. First, uj provides their username and password
so that wsi can verify that uj is a legitimate and regis-
tered user. To this end, uj constructs the following message
m2 = 〈username||H(password)||wsiAPIkey

〉. Then, wsi en-
crypts m2 with pkAP and sends it to AP along with a signature
σm2 of the hashed version of the actual message.

Upon reception, AP uses skAP to decrypt the cipertext
and recover m2, calculates its hash and verifies the signa-
ture. Then, the validation of the API key wsiAPIkey

follows.
Providing the key is valid and the user exists, AP proceeds to
find the username supplied in its users table and calculates
the salted hash of the hashed password provided in m2,
H(H(password)+si), comparing it to the stored hash. Once
the users credentials have been certified, AP sends back a
signed response to wsi. Upon reception, wsi verifies that AP
accepted the initial request as valid and prompts uj for an
OTP .

d) OTP Generation: When uj is requested for an
OTP they open their application and an OTP will
be displayed for a given amount of time. The genera-
tion of the OTP is the output of the following function
OTP = PBKDF(uki||si||(C + η)||PRF) where PBKDF is
a key derivation function such as the one described in
Definition 1, C is the base iteration and η is defined as
η = δ(CT − timestamp)/α, where CT is the current time
and α denotes the generation rate.

Definition 1 (Key Derivation Function): KDFs are deter-
ministic algorithms which are used to derive cryptographic
keys, K, from a secret value. Password Based KDFs (PBKDF)
include input of a password denoted as P , a salt, S, an
iteration count , C, the length of the desired key |K| and
the pseudorandom Function PRF to use. We denote K as:
K = PBKDF(P, S,C, |K|,PRF)

By hashing uki η times we can always ensure that the OTP
is always different as η will always change every α seconds.
Our algorithm will give us a hexadecimal string which we will
take a substring of which will serve as our OTP .

e) OTP verification: In the verification step we first
verify the signature of the decrypted ciphertext and AP repeats
the OTP generation algorithm above since the required data
is also stored.

During the last phase of the protocol, uj provides wsi their
current OTP and then wsi makes an API request to the AP
by constructing message m3 consisting of wsi API Key, OTP ,
uj username such that m3 = 〈username||OTP ||wsiAPIkey

〉
and then signing with skwsi and encrypting with pkAP.

V. EXPERIMENTAL RESULTS

We now describe the implementation and setup of our
system and which technologies were chosen to fully meet our
needs and requirements. We will discuss the languages and
frameworks that we used and how they were used throughout
the project.

a) Server-side Setup: We run our authentication platform
on a Node JS server, Node JS is an environment which
allows JavaScript to be run outside a Web Browser. Due to
the lack of object oriented nature of JavaScript we decided
to use Typescript. Typescript is a superset of JavaScript
developed my Microsoft which adds class based objected
oriented programming into JavacScript.

b) Setup: For our server, we needed something which
had asynchronous and non blocking capabilities which would
allow us to upscale or downscale depending on the user base.
Node JS framework matched our criteria on every front; it
also makes it possible to deploy new instances effortlessly in
the event that our user base grows to the point where our
current system model cannot handle the volume of requests.
In [14], Tilkov et al cover the main aspects of using the Node
framework for a high-performance server.

In order to prove the effectiveness of our approach, we
tested the performance of the basic cryptographic algorithms
that we have used throughout our project as well as the main
functions that we built for our framework. For the needs
of our experiments, we used Nodes own built in timer [15]
in the process module. Process.hrtime() method returns a
high-resolution real time tuple Array comprised of <seconds,
nanoseconds>. This method snapshots the time at the start of
a code block and another snapshot at the end and calculates the
time difference. These times are relative to an arbitrary time in
the past and not related to the time of the day and therefore not
subject to clock drift. All the experiments were conducted on a
resizable Virtual Private Server (VPS) with 512 MB Memory,
20 GB Disk running a Debian 8.7 x64 kernel version 3.16.0-
4-amd64.

First, we measured the time that it needed to complete
the PBKDF function on the server with the iteration count
being the variable that changes. The results were gathered by
simulating 4000 requests with jMeter [16] to the server to
which the server returned the time taken to execute the block
of code. Figure 2 illustrates the results.

Our second experiment, included to measure the execution
timer for the decryption (figure 4) process as well as the
execution of verification the verification process (figure 5).
Both experiments we made 1000 iterations.

A. Server performance under load recordings

Using jMeter we also conducted and recorded load testing
on the server. We can vary how many threads (users) we
have active at one time and how many requests are made per
thread as can be seen in figure 6 and figure 7. These tests
were mading while running the PBKDF at 10000 iterations,
which is considered as efficient if we take into consideration
the connection time and loading of all plugins for the website
and security agreements.

B. Keys, Certificates, Certificate Authorities and Safety fea-
tures

For our platform to incorporate our desired security stan-
dards relaying hashed data via an unsecured channel was not

User Web Service Authentication Server

〈
c1 = Encpk

AS
({username ‖H(password)}), wsi, timestamp, σc1

〉
Verify

Response

Login.RequestLogin.Request

〈
OTP = PBKDF(uki||si||(C + η)||PRF)

〉

username,OTP

Gen.OTPGen.OTP

〈
c2 = Encpkwsi ({username ‖OTP ‖wsiAPIkey

}‖σAS)

〉
Verify

Response

Grant or deny access

Gen.OTPGen.OTP

Fig. 1: Sequence Diagram of Login Request and OTP Generation & Verification

Fig. 2: Histograms of Execution time of the PBKDF algorithm
(4 thousand Iterations)

enough. This could easily be intercepted by an ADV and
changed via a man-in-the-middle-attack (MITM) which could

Fig. 3: Histogram of Encrypting execution time (ms), 1000
iterations

change the data without the recipient ever being aware.
At the first stages of development we produced our own

Fig. 4: Histogram of Decrypting execution time (ms), 1000
iterations

Fig. 5: Histogram of Verification execution time (ms), 1000
iterations

Fig. 6: Response Time graph of 20 threads making 50 requests
each

self-signed certificate via OpenSSL [17]. This provides the
means to create our own private key and certificate signing
request which is required to create an SSL certificate. With
our certificate being self-signed it still provided the protection
a Certificate Authority (CA), the entity that is responsible for
issuing certificates, signed certificate would provide but users
would have to add our certificate to their exception list which
would would turn them away. To solve this we turned to Let’s
Encrypt [18]. Let’s Encrypt is a non profit automated CA
whose aim is to promote the adoption of HTTPS for a more
secure and privacy-respecting Web. They provide the means to

Fig. 7: Histogram Response Time graph of 20 threads making
50 requests each

obtain, renew and manage SSL/TLS certificates. Technology to
encrypt web communication has been around for a long time
but it’s been a challenge to use even for technical people,
Let’s Encrypt allows us to acquire, install and manage our
certificates at no cost.

After successfully setting up our certificate and our 2048-
bit RSA keys we ran tests on SSL Labs and HTBridge [19],
[20] which provide the means to perform deep analysis on
configuration of a web server by check NIST guidelines [21],
PCI DSS compiances [22], HIPPA guidance [23] as well as
the industry’s best practices and assigns it a rating.

VI. CONCLUSION

In this invited paper, we proposed a lightweight two-factor
authentication system where legitimate users are using their
mobile devices in order to get access to certain services. In
addition to that, our service can be used as a single-sign-on
framework since our system allows many different services to
connect to our platform and give the option to their users to
switch to different services via our TFA framework. To achieve
that, we have built an Application programming interface
(API) that can receive requests from authorised (i.e. registered)
businesses. Furthermore, users are able to login to a server
by using an iOS app, that we have developed, to receive a
dynamic one-time-password (OTP). The OTP generated in a
dynamic and random way with high entropy and it is valid
only for a short period of time.

In the future we plan to provide detailed experimental
results that we had to omit in this version due to space
constraints. In addition to that, we plan to implement our
protocol in a cloud environment [24], [25], [26] and measure
its performance. Furthermore, we plan to explore the incorpo-
ration of our protocol with mobile sensing applications and
with privacy-preserving reputation systems for cloud-based
participatory sensing applications. The envisioned system will
be based on [27], [28], [29] and will effectively maintain the
privacy and anonymity of users [30], [31]. Finally, we plan
to explore the possibility of the use such an authentication
technique in e-Health applications [32], [33], [34] where users’
data are considered sacrosanct [35], [36].

REFERENCES

[1] A. T. B. Jin, D. N. C. Ling, and A. Goh, “Biohashing: two factor
authentication featuring fingerprint data and tokenised random number,”
Pattern recognition, vol. 37, no. 11, pp. 2245–2255, 2004.

[2] T. Bhattasali and K. Saeed, “Two factor remote authentication in health-
care,” in 2014 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pp. 380–386, Sept 2014.

[3] M. H. Eldefrawy, K. Alghathbar, and M. K. Khan, “Otp-based two-
factor authentication using mobile phones,” in 2011 Eighth International
Conference on Information Technology: New Generations, pp. 327–331,
April 2011.

[4] A. Michalas and M. Bakopoulos, “Secgod google docs: Now i feel
safer!,” in 2012 International Conference for Internet Technology And
Secured Transactions, pp. 589–595, Dec 2012.

[5] Y. Verginadis, A. Michalas, P. Gouvas, G. Schiefer, G. Hbsch, and
I. Paraskakis, “Paasword: A holistic data privacy and security by design
framework for cloud services,” in Proceedings of the 5th International
Conference on Cloud Computing and Services Science, pp. 206–213,
2015.

[6] N. Paladi and A. Michalas, ““One of our hosts in another country”:
Challenges of data geolocation in cloud storage,” in Wireless Com-
munications, Vehicular Technology, Information Theory and Aerospace
Electronic Systems (VITAE), 2014 4th International Conference on,
pp. 1–6, May 2014.

[7] A. Michalas, “Sharing in the rain: Secure and efficient data sharing for
the cloud,” in 2016 International Conference for Internet Technology
And Secured Transactions, pp. 589–595, Dec 2016.

[8] A. Michalas and K. Y. Yigzaw, “Locless: Do you really care your cloud
files are?,” in 2016 IEEE/ACM 9th International Conference on Utility
and Cloud Computing (UCC), pp. 618–623, Dec 2015.

[9] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on information theory, vol. 29, no. 2, pp. 198–208, 1983.

[10] A. Michalas, N. Komninos, N. R. Prasad, and V. A. Oleshchuk, “New
client puzzle approach for dos resistance in ad hoc networks,” in
Information Theory and Information Security (ICITIS), 2010 IEEE
International Conference, pp. 568–573, IEEE, 2010.

[11] A. Michalas, N. Komninos, and N. R. Prasad, “Mitigate dos and ddos
attack in mobile ad hoc networks,” International Journal of Digital
Crime and Forensics (IJDCF), vol. 3, no. 1, pp. 14–36, 2011.

[12] A. Michalas, N. Komninos, and N. Prasad, “Multiplayer game for ddos
attacks resilience in ad hoc networks,” in Wireless Communication,
Vehicular Technology, Information Theory and Aerospace Electronic
Systems Technology (Wireless VITAE), 2011 2nd International Confer-
ence on, pp. 1–5, Feb 2011.

[13] A. Michalas, N. Komninos, and N. R. Prasad, “Cryptographic puzzles
and game theory against dos and ddos attacks in networks,” International
Journal of Computer Research, vol. 19, no. 1, p. 79, 2012.

[14] S. Tilkov and S. Vinoski, “Node. js: Using javascript to build high-
performance network programs,” IEEE Internet Computing, vol. 14,
no. 6, pp. 80–83, 2010.

[15] “Process hrtime.” https://nodejs.org/api/process.html#process process
hrtime time.

[16] “jmeter.” http://jmeter.apache.org.
[17] “Openssl.” https://www.openssl.org/.
[18] “Let’s encrypt.” https://letsencrypt.org/.
[19] “Ssl lab.” https://www.ssllabs.com/.
[20] “Htbridge.” https://www.htbridge.com/.
[21] P. Mell, T. Grance, et al., “The nist definition of cloud computing,”

2011.
[22] A. Shaw, “Data breach: from notification to prevention using pci dss,”

Colum. JL & Soc. Probs., vol. 43, p. 517, 2009.
[23] C. for Disease Control, Prevention, et al., “Hipaa privacy rule and public

health. guidance from cdc and the us department of health and human
services,” MMWR: Morbidity and mortality weekly report, vol. 52,
no. Suppl. 1, pp. 1–17, 2003.

[24] N. Paladi, A. Michalas, and C. Gehrmann, “Domain based storage
protection with secure access control for the cloud,” in Proceedings
of the 2014 International Workshop on Security in Cloud Computing,
ASIACCS ’14, (New York, NY, USA), ACM, 2014.

[25] N. Paladi, C. Gehrmann, and A. Michalas, “Providing user security
guarantees in public infrastructure clouds,” IEEE Transactions on Cloud
Computing, vol. PP, no. 99, pp. 1–1, 2016.

[26] Y. Verginadis, A. Michalas, P. Gouvas, G. Schiefer, G. Hübsch, and
I. Paraskakis, “Paasword: A holistic data privacy and security by design
framework for cloud services,” pp. 1–16, 2017.

[27] T. Dimitriou and A. Michalas, “Multi-party trust computation in decen-
tralized environments,” in 2012 5th International Conference on New
Technologies, Mobility and Security (NTMS), pp. 1–5, May 2012.

[28] T. Dimitriou and A. Michalas, “Multi-party trust computation in decen-
tralized environments in the presence of malicious adversaries,” Ad Hoc
Networks, vol. 15, pp. 53–66, Apr. 2014.

[29] A. Michalas, V. A. Oleshchuk, N. Komninos, and N. R. Prasad, “Privacy-
preserving scheme for mobile ad hoc networks,” in Computers and
Communications (ISCC), 2011 IEEE Symposium on, pp. 752–757, June
2011.

[30] A. Michalas and N. Komninos, “The lord of the sense: A privacy
preserving reputation system for participatory sensing applications,” in
Computers and Communication (ISCC), 2014 IEEE Symposium, pp. 1–
6, IEEE, 2014.

[31] A. Michalas, M. Bakopoulos, N. Komninos, and N. R. Prasad, “Secure
amp; trusted communication in emergency situations,” in Sarnoff Sym-
posium (SARNOFF), 2012 35th IEEE, pp. 1–5, May 2012.

[32] A. Michalas and R. Dowsley, “Towards trusted ehealth services in the
cloud,” in 2015 IEEE/ACM 8th International Conference on Utility and
Cloud Computing (UCC), pp. 618–623, Dec 2015.

[33] K. Y. Yigzaw, A. Michalas, and J. G. Bellika, “Secure and scalable dedu-
plication of horizontally partitioned health data for privacy-preserving
distributed statistical computation,” BMC Medical Informatics and De-
cision Making, vol. 17, no. 1, p. 1, 2017.

[34] K. Yigzaw, A. Michalas, and J. Bellika, “Secure and scalable statistical
computation of questionnaire data in r,” IEEE Access, vol. PP, no. 99,
pp. 1–1, 2016.

[35] A. Michalas, N. Paladi, and C. Gehrmann, “Security aspects of e-health
systems migration to the cloud,” in e-Health Networking, Applications
and Services (Healthcom), 2014 IEEE 16th International Conference
on, pp. 212–218, IEEE, 2014.

[36] R. Dowsley, A. Michalas, and M. Nagel, “A report on design and
implementation of protected searchable data in iaas,” tech. rep., Swedish
Institute of Computer Science (SICS), 2016.

https://nodejs.org/api/process.html#process_process_hrtime_time
https://nodejs.org/api/process.html#process_process_hrtime_time
http://jmeter.apache.org
https://www.openssl.org/
https://letsencrypt.org/
https://www.ssllabs.com/
https://www.htbridge.com/

