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Abstract. Computing pancreatic morphology in 3D radiological scans
could provide significant insight about a medical condition. However,
segmenting the pancreas in magnetic resonance imaging (MRI) remains
challenging due to high inter-patient variability. Also, the resolution and
speed of MRI scanning present artefacts that blur the pancreas bound-
aries between overlapping anatomical structures. This paper proposes a
dual-stage automatic segmentation method: 1) a deep neural network
is trained to address the problem of vague organ boundaries in high
class-imbalanced data. This network integrates a novel loss function to
rigorously optimise boundary delineation using the modified Hausdorff
metric and a sinusoidal component; 2) Given a test MRI volume, the
output of the trained network predicts a sequence of targeted 2D pan-
creas classes that are reconstructed as a volumetric binary mask. An
energy-minimisation approach fuses a learned digital contrast model to
suppress the intensities of non-pancreas classes, which, combined with
the binary volume performs a refined segmentation in 3D while reveal-
ing dense boundary detail. Experiments are performed on two diverse
MRI datasets containing 180 and 120 scans, in which the proposed ap-
proach achieves a mean Dice score of 84.1 ± 4.6% and 85.7 ± 2.3%,
respectively. This approach is statistically stable and outperforms state-
of-the-art methods on MRI.

Keywords: Automatic pancreas segmentation, Energy-minimisation, MRI,
Hausdorff loss function.

1 Introduction

Segmenting the pancreas in 3D radiological scans (e.g. an MRI volume) could
provide significant insight into the severity or progression of type 2 diabetes
[1] and ductal adenocarcinoma [2]. However, pancreas segmentation presents
several challenges due to high structural and inter-patient variability in size
and location. The greyscale intensity of the pancreas can be very similar to



2 H.Asaturyan et al.

neighbouring tissue, and the boundary contrast can vary depending on the level
of surrounding visceral fat. Differing from computer tomography (CT), the low
resolution and slower imaging speed of MRI presents edge-based artefacts that
blur the imaging boundaries between the pancreas and surrounding organs [3].
In existing research literature, pancreas segmentation tasks have been driven by
two major methodologies: multi-atlas based [4, 5] coupled with statistical shape
modeling [6], and in more recent years, convolutional neural networks (CNNs) or
deep learning [7, 3, 8]. While CNNs have achieved higher quantitative accuracy
scores in 2D medical image segmentation, such methods can exhibit discontinuity
in predicting pancreatic regions between consecutive slices for an input volume.

This paper presents a novel approach for automatic pancreas segmentation
in MRI. As illustrated in Figure 1, the proposed method consists of two succes-
sive stages. First, a CNN specialising in blurred boundary detection is trained
to predict targeted pixel-wise pancreas tissue. This deep learning stage firstly
identifies the main pancreas region (ROI) in a dataset of MRI volumes [8] by
training a random forest on extracted texture and probability-wise features on
image patches of 25 × 25 pixels. Next, inspired by the encoder-decoder archi-
tecture of SegNet [9] a new model termed Hausdorff Sine SegNet (HSSN) is
developed using the ROI data. A novel loss function incorporates the modified
Hausdorff distance metric and a sinusoidal component to capture local boundary
information, enforce edge detection and thus raise the true pancreas prediction
rate on a 2D (slice-by-slice) basis. The testing stage consists of two phases. First,
the output of the trained HSSN for a given test MRI volume encodes spatial in-
formation to classify every pixel in each slice, thus forming a volumetric binary
mask (VBM). The second phase generates dense contouring by further tackling
the low dissimilarity between organ boundaries: a digital contrast enhancement
model is utilised to improve the greyscale variation between surrounding back-
ground classes within close proximity to the pancreas. A 3D energy-minimising
algorithm performs refined segmentation on the enhanced pancreas that is fused
with the VBM, producing greater consistency in spatial smoothness and predic-
tion among successive slices.

The proposed method, which is evaluated on two MRI datasets with varying
noise, outperforms the state-of-the-art approaches [8, 10–12], and moreover, sur-
passes the performance of readily employed deep learning-based loss functions.
Although this approach has been tested on pancreas segmentation, the method-
ology is reproducible, scalable and generalisable to other organ segmentation
tasks. The implementation is available at https://github.com/med-seg/p.

2 Methodology

2.1 Training the HSSN

The proposed HSSN model has an encoder-decoder topology, as illustrated in
Figure 2. The decoder network uses max-pooling indices to upsample low-resolution
feature maps, consequently retaining high-frequency details to improve pancre-
atic boundary delineation, and reducing the total number of trainable parameters
in the decoders. Unlike other models that have been fine-tuned from pre-trained
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Fig. 1: Overview of proposed approach. (1) develop the HSSN deep learning model using
training MRI; and (2) apply the test MRI to generate segmented pancreas volume.

CNNs using a large number of natural images [3, 13], this network is trained from
scratch using exclusively pancreas datasets. Since this organ accounts for ∼1%
in a scan, there is a need to weight the loss differently based on the true class:
Median frequency balancing [14] is utilised, in which the weight assigned to a
class in the loss function is the ratio of the median of class frequencies computed
on the entire training set divided by the class frequency. The HSSN also employs
data augmentation of random reflections and translations to reduce overfitting
[15], and further address problems caused by high shape variability.
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Fig. 2: Overview of HSSN model. An encoder stage (5 blocks of HSSN-E) downsamples
the MRI input through convolution, batch normalisation and ReLU. A decoder stage
(5 blocks of HSSN-D) upsamples its input using the transferred pooling indices from
its corresponding encoder to generate sparse feature maps. From here, convolution
is performed with a trainable filter of weights to density the feature map. Resulting
decoder output feature maps are fed to soft-max classifier for 2-channel pixel-wise
classification of the input image as “pancreas” or “non-pancreas”.

Integrated Hausdorff-Sine Loss Function: A novel loss function is proposed
for training the segmentation neural network. The optimisation of the modified
Hausdorff distance and a sinusoidal functionality serves to reduce the bound-
ary matching error and “enhance” a resulting pixel-wise pancreas prediction.
Let TH and YH represent the ground-truth and network boundary predictions
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respectively, where TH , YH ⊂ Rn such that |TH | , |YH | < ∞. Furthermore, tj
and yj ∈ {0, 1} are indexed pixel values in TH and YH respectively, and can be
viewed as boundary points. The Euclidean distance between a point tj and set
of points, YH is s(tj , YH) = min

yj∈YH

‖tj − yj‖, and the distance between a point yj

and set of points, TH is s(yj , TH) = min
tj∈TH

‖yj − tj‖. If εY = 1
|YH |

∑
yj∈YH

s(tj , YH)

and εT = 1
|TH |

∑
tj∈TH

s(yj , TH), the modified Hausdorff distance loss, Lmhd is:

Lmhd = max {εY , εT } (1)

Thus, computing the gradient yields:

∂Lmhd

∂YH
=


∂

∂YH
(εY ) if εY > εT

∂
∂YH

(εT ) if εT < εY

undefined if εY = εT

(2)

An additional sinusoidal component increases non-linearity during network
training and, empirically evaluated, raises the true positive predictions. If T and
Y represent the ground-truth and network predictions, the loss Lsine is defined:

Lsine = − 1

|Y |

nC∑
i=1

sin(Ti) log2(Yi) (3)

where nC = 2 is the number of classes (e.g., Y1 refers to “pancreas” and Y2

refers to “non-pancreas”). From here, computing the gradient yields:

∂Lsine

∂Yi
= − 1

|Y |
sin(Ti)

Yi log10(2)
(4)

The model is updated via the combined gradients of Lsine and Lmhd.

2.2 Testing Stage

(A) Targeted Pancreas Binary Mask: The trained HSSN model performs
pixel-wise prediction on each slice in a test MRI volume to generate a resulting
volumetric binary mask (VBM). Columns (a) and (b) in Figure 3 displays three
sample input slices in three different image volumes, and the corresponding pos-
itive pancreas region (white mask) as predicted by the HSSN model. The red
contouring in each image in column (b) is the ground-truth.

(a) (b) (c) (d) (e)

Fig. 3: Visualising proposed approach.
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(B) Achieve Dense Contouring: The test MRI volume undergoes non-local
means for denoising, after which a learned intensity model incorporates a sig-
moid function to exhaustively differentiate pancreatic tissue against background
classes. Every si-th slice transforms to C(si) = 1/(1 + exp [g(c−si)]), where g
controls the actual contrast, and c is the cut-off value representing the (nor-
malised) greyscale value about which g is changed [12, 16]. The VBM is applied
to the enhanced image volume and processed through a 3D unsupervised energy-
minimisation method via continuous max-flow [17], revealing detailed contouring
as highlighted in Figure 3, column (c). The accurate HSSN predictions reduce
the level of non-pancreatic tissue carried into the max-flow segmentation stage,
as shown in Figure 3, column (d), eliminating the need for post-processing.

3 Experimental Results and Analysis

3.1 Datasets and Evaluation

Two expert-led annotated pancreas datasets are utilised. MRI-A and MRI-B
contain 180 and 120 abdominal MRI scans (T2-weighted, fat suppressed), which
have been obtained using a Philips Intera 1.5T and a Siemens Trio 3T scan-
ner, respectively. Every MRI-A scan has 50 slices, each of size 384 × 384 with
spacing 2mm, and 0.9766mm pixel interval in the axial and sagittal direction.
Every MRI-B scan has 80 slices, each of size 320 × 260 with 1.6mm spacing,
and 1.1875mm pixel interval in the axial and sagittal direction. The proposed
approach is evaluated using the Dice Similarity Coefficient (DSC), precision
(PC), recall (RC) and the Hausdorff distance (HSD) representing the maximum
boundary deviation between the segmentation and ground-truth.

DSC: 83.42%

DSC: 84.24%

DSC: 83.05%

DSC: 86.01%

DSC: 88.79%

DSC: 90.09%

DSC: 88.99%

DSC: 94.99%

DSC: 91.79%

(a) (b) (c)
MRI-A

DSC: 92.16%

DSC: 93.00%

DSC: 88.41% DSC: 85.70%

DSC: 88.10%

DSC: 87.03%

DSC: 85.18%

DSC: 88.04%

DSC: 91.55%

(d) (e) (f)
MRI-B

Fig. 4: Segmentation results in six different MRI scans (volumes). Every column corre-
sponds to a single MRI volume. From left, first row displays sample MRI axial slices
with segmentation outcome (green) against ground-truth (red), and computed DSC.
Second row displays 3D reconstruction of entire pancreas with computed DSC.

3.2 Network Implementation

The training and testing data are randomly split into 160 and 20 (MRI-A)
and 100 and 20 (MRI-B). The HSSN model employs stochastic gradient descent
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with parameters momentum (0.9), initial learning rate (0.001), maximum epochs
(300) and mini-batch size (10). The mean time for model training is ∼11 hours
and the testing phase is ∼7.5 minutes per MRI volume using an i7-59-30k-CPU
at 3.50 Ghz. Future work can potentially reduce these run-times by a factor of
10 via multiple GeForce Titan X GPUs.

Fig. 5: Box plots of DSC and JI.

3.3 Analysis of Proposed Approach

Figure 4 displays the final segmentation results in six MRI scans, equally split
between MRI-A and MRI-B. Columns (a, b, c) are part of MRI-A, yet there is
high variation between intensity and contrast in the original axial MRI slices.
Columns (d, e, f) corresponds to exemplars from MRI-B. As reflected in Figure
5, 85% of MRI-A compared to 95% in MRI-B segmentations score above 80%
in DSC, demonstrating the robust performance of the approach with respect to
poor image quality, intensity distribution and spatial dimensions.
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Fig. 7: Averaged ROC curves via mul-
tiple loss functions.

Hausdorff-Sine Loss: Figure 6 compares the segmentation results (in DSC)
using Hausdorff-Sine and the loss functions, Hausdorff, Cross-entropy, Dice [18]
and Jaccard [19] in the probability range [0.05,0.95]. The cross-entropy penalises
true positive predictions, forcing the “optimum” probability to approximately
0.5. Although the Dice loss minimises the class distribution distance, squar-
ing the weights in the backpropagation stage causes instability and a higher
rate of false negative predictions. Similarly, the Jaccard loss suffers from low
true positive predictions. Empirically tested, the Hausdorff loss minimises the
maximum deviation between a prediction and desired outcome; however, the
addition of a sinusoidal component increases non-linearity during training, and
thus Hausdorff-Sine achieves improved true positive predictions across differing
thresholds while delivering strong discrimination of true negatives. The ROC
curves in Figure 7 highlight the inferior performance of other loss functions in
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the extremely unbalanced segmentation, whereas Hausdorff-Sine generally im-
proves the true positive accuracy results.

Phase B of Testing Stage Integrating the second phase (B) produces contex-
tual boundary information that is essential for accurate segmentation in biomed-
ical imaging. Figure 3, column (b) and column (e) visibly highlights the differ-
ences in segmentation boundary delineation against the ground-truth before and
after this phase. Thus, the mean HSD metric confirms less deviation from the
ground-truth (see Table 1 and 2) by approximately 1 mm, and furthermore, the
mean DSC raises by approximately 4% in both MRI-A and MRI-B.

Table 1: Deep learning model performance using state-of-the-art loss functions versus
the integrated novel Hausdorff and Hausdorff-Sine loss. Datasets MRI-A and MRI-B
are evaluated in 9-fold and 6-fold cross-validation (FCV), respectively. DSC, PC, RC
and HSD are presented as mean ± standard deviation.

MRI-A: Train/Test (160/20) 9-FCV

Loss DSC(%) PC(%) RC(%) HSD(mm)

CE 77.9±3.6 88.4±6.18 95.6±2.26 12.4±5.5

Dice 63.5±9.1 63.8±20.0 86.8±10.5 16.8±5.3

Jac 63.2±9.6 62.5±19.8 87.1±10.0 17.0±5.4

Haus 78.4±6.1 89.5±9.11 96.2±4.06 12.7±4.9

Haus-Sin 79.7±4.0 93.2±7.46 97.2±2.67 11.2±3.6

MRI-B: Train/Test (100/20) 6-FCV

Loss DSC(%) PC(%) RC(%) HSD(mm)

CE 79.9±4.33 92.6±6.89 96.3±2.76 10.5±3.34

Dice 67.1±12.8 77.2±15.1 85.2±16.8 21.4±12.3

Jac 68.6±6.96 68.3±16.9 88.5±8.34 17.9±7.58

Haus 81.0±4.25 94.8±3.84 98.3±2.28 10.2±4.17

Haus-Sin 82.1±2.99 97.7±2.50 99.1±0.78 10.0±6.63

Table 2: DSC, PC, RC and HSD as mean ± standard deviation [lowest, highest] for
automatic segmentation methods. Datasets MRI-A and MRI-B are evaluated in 9-fold
and 6-fold cross-validation (FCV), respectively.

MRI-A: Train/Test (160/20) 9-FCV

Method DSC(%) PC(%) RC(%) HSD (mm)

U-Net [10] 66.8±8.8 [42.3, 77.3] 71.3±4.4 [62.9, 80.5] 85.1±4.8 [76.9, 88.16] 16.9±5.8 [8.22, 24.1]

Cascaded-CNN [8] 52.7±6.9 [34.4, 60.7] 64.0±4.1 [50.4, 68.0] 75.2±4.6 [68.1, 78.25] 21.5±9.3 [15.7, 38.6]

Dense V-Net [11] 73.6±6.1 [49.6, 78.8] 86.1±3.3 [78.5, 88.5] 94.6±3.4 [82.8, 96.37] 14.4±7.2 [6.63, 20.5]

Geo-Desc [12] 78.2 ±5.8 [67.1, 86.3] 85.3±9.7 [70.8, 98.9] 93.9±9.5 [52.5, 99.13] 13.8±4.4 [6.11, 18.4]

Proposed 84.1±4.6 [72.1, 89.6] 95.5±6.3 [71.7, 99.7] 97.6±3.0 [89.9, 100.0] 10.6±3.7 [6.184, 18.4]

MRI-B: Train/Test (100/20) 6-FCV

Method DSC(%) PC(%) RC(%) HSD (mm)

U-Net [10] 72.8±6.0 [58.9, 80.8] 83.8±3.1 [74.2, 87.46] 94.6±3.5 [82.8, 95.72] 14.0±8.1 [6.82, 21.7]

Cascaded-CNN [8] 54.8±5.1 [44.4, 65.7] 64.3±3.5 [59.5, 67.91] 76.2±3.7 [69.9, 79.64] 22.3±8.6 [16.0, 37.5]

Dense V-Net [11] 74.0±5.3 [65.1, 80.3] 85.4±3.1 [78.5, 89.74] 93.0±3.8 [84.9, 96.35] 16.7±7.0 [8.46, 19.8]

Geo-Desc [12] 81.2±5.0 [72.6, 85.8] 84.7±5.8 [73.1, 93.64] 84.6±8.2 [69.2, 97.28] 14.7±4.1 [8.13, 17.6]

Proposed 85.7±2.3 [79.9, 90.3] 96.1±3.6 [86.7, 100.0] 99.3±0.7 [99.9, 100.0] 9.08±2.0 [4.87, 14.8]

Comparison with the State-of-the-art: Table 2 highlights the proposed
approach outperforming state-of-the-art methods [8, 10–12] in terms of accuracy
and statistical stability despite employing non-organ optimised protocol data.

4 Conclusion

This paper presents a novel approach for automatic pancreas segmentation in
MRI volumes generated from different scanner protocols. Combined with the
proposed Hausdorff-Sine loss, an encoder-decoder network reinforces pancreatic
boundary detection in MRI slices, outperforming the rate of true positive pre-
dictions compared to multiple loss functions. In the later stage, a 3D hybrid
energy-minimisation algorithm addresses the intensity consistency problem that
is often the case when segmenting image volumes on a 2D basis. The proposed
approach generates quantitative accuracy results that surpass reported state-of-
the-art methods, and moreover, preserve detailed contouring.
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