

WestminsterResearch

http://www.westminster.ac.uk/westminsterresearch

Changes in plasma concentrations of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D during pregnancy: A Brazilian cohort Cunha Figueiredo, A.C., Cocate, P.G., Adegboye, A.R., Franco-Sena, A.B., Farias, D.R., Trindade de Castro, M.B., Brito, A., Allen, L.H., Mokhtar, R.R., Holick, M.F. and Kac, G.

This is an author's accepted manuscript of an article published in European Journal of Nutrition, DOI: 10.1007/s00394-017-1389-z. First Online: 28 March 2017.

The final publication is available at Springer via:

https://dx.doi.org/10.1007/s00394-017-1389-z

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((<u>http://westminsterresearch.wmin.ac.uk/</u>).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

1

Changes in plasma concentrations of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D during pregnancy: A Brazilian cohort

Vitamin D and Pregnancy

Amanda C Cunha Figueiredo¹; Paula Guedes Cocate¹; Amanda R Amorim Adegboye²; Ana Beatriz Franco-Sena^{1,4}; Dayana R. Farias^{1,3}; Maria Beatriz Trindade de Castro^{1,3}; Alex Brito⁵; Lindsay H. Allen⁵, Rana R. Mokhtar⁶, Michael F. Holick⁶, Gilberto Kac^{1,3}

¹ Nutritional Epidemiology Observatory, Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, RJ, Brazil; ² Division of Food, Nutrition and Public Health, Department of Life Sciences, University of Westminster, London, United Kingdom; ³ Graduate Program in Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, RJ, Brazil; ⁴ Emília de Jesus Ferreiro Nutrition School ⁵ USDA, ARS, Western Human Nutrition Research Center, Davis, CA, USA; ⁶ Boston University School of Medicine, MA, USA.

Author for correspondence

Professor Gilberto Kac, MSc, PhD

Rio de Janeiro Federal University Institute of Nutrition Josué de Castro, Avenida Carlos Chagas Filho, 373, CCS, Bloco J, 2º andar Cidade Universitária – Ilha do Fundão Rio de Janeiro, Brasil - 21941-902 Phone: (+55) 21 39386595; Fax: (+55) 21 22808343 *e-mail*: gilberto.kac@gmail.com

- 1 Abstract

Purpose. To characterize the physiological changes in 25-hydroxyvitamin D [25(OH)D] and 1,25-dihydroxivitamin D [1,25(OH)₂D] throughout pregnancy. *Methods*. Prospective cohort of 229 apparently healthy pregnant women followed at 5th-13th, 20th-26th and 30th-36th gestational weeks. 25(OH)D and 1,25(OH)2D concentrations were measured by LC-MS/MS. Statistical analyses included longitudinal linear mixed-effects models adjusted for parity, season, education, self-reported skin color and pre-pregnancy BMI. Vitamin D status was defined based on 25(OH)D concentrations according to the Endocrine Society Practice Guideline and Institute of Medicine (IOM) for adults. Results. The prevalence of 25(OH)D <75 nmol/L was 70.4%, 41.0% and 33.9%; the prevalence of 25(OH)D <50 nmol/L was 16.1%, 11.2% and 10.2%; and the prevalence of 25(OH)D <30 nmol/L was 2%, 0% and 0.6%, at the first, second and third trimester, respectively. Unadjusted analysis showed an increase in 25(OH)D (β =0.869; 95%CI, 0.723-1.014; P<0.001) and 1,25(OH)₂D (β =3.878; 95%CI, 3.136-4.620; P<0.001) throughout pregnancy. Multiple adjusted analyses showed that women who started the study in winter (P<0.001), spring (P<0.001) or autumn (P=0.028) presented a longitudinal increase in 25(OH)D concentrations, while women that started during summer did not. Increase of 1,25(OH)₂D concentrations over time in women with insufficient vitamin D (50-75 nmol/L) at baseline was higher compared to women with sufficient vitamin D (\geq 75 nmol/L) (P=0.006). Conclusions. The prevalence of vitamin D inadequacy varied significantly according to the adopted criteria. There was a seasonal variation of 25(OH)D during pregnancy. The women with insufficient vitamin D status present greater longitudinal increases in the concentrations of $1,25(OH)_2D$ in comparison to women with sufficiency. Keyword: Vitamin D; pregnancy; micronutrients; cohort; tropical country; seasons.

30 Introduction

Vitamin D deficiency or insufficiency is considered to be a global public health problem [1-2] with an estimated 1 billion people affected worldwide [3]. Pregnant women have been identified as a high-risk group for vitamin D deficiency [4], even in sunny regions [5-7]. Vitamin D is a pro-hormone with an important role in maintaining bone health [3]. Low vitamin D status during pregnancy has been associated with non-skeletal maternal and child outcomes such as preeclampsia, gestational diabetes mellitus, preterm birth, small for gestational age, and low birth weight [5,8]. These pregnancy complications continue to be important public health problems in Brazil [9-12].

Vitamin D can be obtained from foods and supplements, but the main source is sun exposure enabling synthesis in the skin induced by ultraviolet B radiation (wavelengths 290–315 nm) [3,13-14]. It is known that maternal vitamin D concentrations can be influenced by skin pigmentation, age, season, sunscreen use, latitude, physical activity, obesity status, atmospheric pollution, blood concentrations of parathyroid hormone, calcium, and phosphate [3,5,15-18].

43 Vitamin D from the skin and the diet is converted in the liver into 25-hydroxyvitamin D [25(OH)D] which 44 is then metabolized in the kidneys to its active form, 1,25-dihydroxyvitamin D [1,25(OH)₂D] by the 1 α -hydroxylase 45 enzyme. Due to the short biological half-life of 1,25(OH)₂D, vitamin D status is usually determined by measuring 46 the 25(OH)D concentrations, which is the major circulating form of vitamin D in the blood [3,13-14].

During pregnancy there are physiological changes in 1,25(OH)₂D concentrations to ensure sufficient
calcium required for fetal bone mineralization [19]. A gradual increase on plasma 1,25(OH)₂D concentrations during
pregnancy and a modest contribution from synthesis in both the kidney and placenta have been reported [19-20].
However, the profile of the longitudinal changes in 25(OH)D concentrations as well the relationship between
1,25(OH)₂D and 25(OH)D throughout pregnancy remains unclear [20-22].

52 Despite these physiological changes in pregnant women the criteria for defining vitamin D deficiency and 53 insufficiency are the same as for the general adult population and cutoff values remain controversial [4,14]. The 54 Institute of Medicine (IOM) [14] recommends that at least 30 nmol/L of 25(OH)D is necessary to protect against 55 rickets in children and osteoporosis in adults and that concentrations of \geq 50 nmol/L corresponds to the level which 56 meets the requirements of 97.5% of the population to obtain the recommended daily allowance of 600 IU/day [14]. 57 The Endocrine Society Practice Guidelines [4] states that 50 nmol/L is required for optimal bone health but 58 recommends concentrations \geq 75 nmol/L for non-skeletal health benefits associated with vitamin D [4]. Few prospective studies have investigated changes in 25(OH)D and 1,25(OH)₂D concentrations over time during pregnancy [21-22]. Further, there are no studies in healthy pregnant Brazilian women. To the best of our knowledge, the association between 25(OH)D status in the first trimester of pregnancy and the change in 1,25(OH)₂D concentrations throughout gestation has not been assessed by previous studies. Therefore, considering the importance of adequate vitamin D status during pregnancy for positive gestational outcomes, the aim of this study was to estimate the prevalence of vitamin D inadequacy and to characterize the physiological changes in 25(OH)D and 1,25(OH)₂D concentrations among healthy pregnancies.

66

67 *Methods*

68 Design and study participants

69 This is a prospective cohort study conducted at a public health care center in Rio de Janeiro, Brazil. The recruitment was done between November 2009 and October 2011, and 299 women who met the following eligibility 70 71 criteria agreed to participate in the study: being between 5th-13th weeks of gestation, free from chronic (except 72 obesity) and infectious diseases, aged between 20 and 40 years, presenting a singleton pregnancy, residing in the 73 study catchment area, and intending to continue prenatal care in the public health centre. The cohort comprised 229 74 apparently healthy pregnant women after exclusions, including: confirmed pre-gestational diagnosis of chronic non-75 communicable diseases (except obesity) (n=12), diagnosis of infectious or parasitic diseases (n=9), twin pregnancies 76 (n=4), missed baseline evaluation data (n=20) or miscarriage (n=25). We further excluded women with insufficient 77 volume to measure plasma 25(OH)D (n=30) or $1,25(OH)_2D$ (n=23) at the first trimester. Our sample comprised 199 78 and 178 women at the first trimester with available data on 25(OH)D and 1,25(OH)₂D concentrations, respectively. 79 The women were followed at the first [(5-13 weeks (baseline)], second (20-26 weeks), and third trimesters (30-36 80 weeks) of pregnancy (Online Resource Fig. 1).

81

82 Biochemical analyses

A trained professional collected blood samples between 6:50 and 7:50 am into vacutainer tubes at each follow-up visit after a 12-hour fasting period. The samples were centrifuged (5,000 rpm for 5 minutes). The plasma was separated and prepared from blood collected into tubes containing EDTA, and stored at -80°C for subsequent analysis. 87 Plasma concentrations of 25(OH)D and 1,25(OH)2D were measured by liquid chromatography-tandem 88 mass spectrometry (LC-MS/MS) using the LC Thermo Cohesive System coupled to Thermo Quantum Ultra Mass 89 Spectrometer (Thermo Fisher; San Jose, CA, USA). The analyses were performed by Quest Diagnostics Nichols 90 Institute (San Juan Capistrano, CA, USA), which is part of the Hormone Standardization Program conducted by the 91 Centers for Disease Control and Prevention. The LC-MS/MS is considered to be the gold standard for measuring 92 vitamin D status due to its high sensitivity and specificity [4,23]. The analytical measurement range was 19-960 93 pmol/L and 10-640 nmol/L for 1,25(OH)₂D and 25(OH)D, respectively. The coefficient of variation for all analyses 94 was <10%. The 25(OH)D and 1,25(OH)2D are stable in plasma for more than 10 years when stored under 95 appropriate conditions as in the present study [24-25].

96

97 Definition of vitamin D status

Vitamin D status was defined based on plasma 25(OH)D concentrations. Participants were categorized as
vitamin D deficient (<50 nmol/L), insufficient (50-<75 nmol/L), and sufficient (≥75 nmol/L) according the
Endocrine Society Practice Guidelines [4]. We also used the cutoffs of vitamin D status based on IOM: deficient
(<30 nmol/L), insufficient (30-<50 nmol/L) and sufficient (≥50 nmol/L) [14]. Vitamin D status was also analyzed as
a binary variable according to the Endocrine Society Practice Guidelines as inadequate/adequate (<75/≥75 nmol/L)
[4] and IOM [14] as inadequate/adequate (<50/≥50 nmol/L).

104

105 Covariate assessment

Socioeconomic, demographic, reproductive and lifestyle variables were obtained through interviews with structured questionnaires administered at the baseline (5–13 weeks of gestation). The following variables were collected: age (years), self-reported skin color (white/mixed/black), education (years), monthly per capita family income (R\$), parity (nulliparous/parous), first trimester smoking habit (yes/no), first trimester alcohol intake (yes/no) and leisure physical activity before pregnancy (yes/no). The season was classified according to the date of recruitment as follows: winter (June 21st to September 21st; spring (September 22nd to December 20th); summer (December 21st to March 19th); or autumn (March 20th to June 20th).

113 Gestational age was measured from the first ultrasonography (USG) (n=174) or using the reported date of 114 the last menstrual period if the first USG was not performed prior to the 24th week of gestation (n=25). Height (cm) 115 was measured at the beginning of pregnancy using a portable stadiometer (Seca Ltd., Hamburg, Germany). Pregestational body mass index (BMI, weight [kg]/height [m²]) was calculated and categorized (<25/≥25 kg/m²) based
on self-reported pre-gestational weight obtained at the first follow-up visit at the 1st trimester of gestation.

- 118 Total vitamin D (IU/day) and calcium (mg/day) intakes were estimated using a semi-quantitative food 119 frequency questionnaire (FFQ) validated for the adult population of Rio de Janeiro [26]. The questionnaire was 120 administered in the third trimester and referred to intakes during the prior 6 months. The FFQ included 82 food 121 items and had eight frequency options: more than three times a day, two to three times a day, once a day, five to six 122 times a week, two to four times a week, once a week, one to three times a month, and never or hardly ever. Tables of 123 Nutritional Composition of Food Consumed of Brazilian Institute of Geography and Statistics were used for the 124 analysis [27]. The FFQ did not take into consideration the use of supplements. Rather, information on vitamin D 125 supplementation was self-reported in all trimesters.
- 126

127 *Statistical analyses*

The characteristics of the sample were described using mean and standard deviations (SD) for continuous
variables and absolute (n) and relative frequencies (%) for categorical data.

Baseline characteristics of women with complete 25(OH)D and 1,25(OH)₂D information during pregnancy were compared to those women who presented losses to follow-up with missing information for at least one of these variables. In addition, baseline characteristics were presented for each variable and stratified according to 25(OH)D status for both the Endocrine Society Practice Guidelines and the IOM criteria. ANOVA was used to compare means according to 25(OH)D status and the Bonferroni test was employed as the post hoc test. The Chisquared test was used to compare proportions.

Pearson coefficient correlations were calculated between 25(OH)D and 1,25(OH)₂D in the first, second and third trimesters. Linear mixed-effects (LME) regression models were performed to evaluate the longitudinal variation of 25(OH)D and 1,25(OH)₂D concentrations during pregnancy. The models included information from all individuals who had data from at least one time point on 25(OH)D and 1,25(OH)₂D concentrations. The LME models enable the inclusion of time-dependent and time-independent variables and unbalanced time intervals and the correlation between repeated measures was taken into account [28-29]. Gestational age (weeks) was included in the LME models as the time variable for both random and fixed effects.

143 Interactions between season at recruitment and gestational week were tested when assessing the 144 longitudinal behavior of 25(OH)D concentrations. We also tested interactions between gestational age and first 145 trimester vitamin D status to explore the effect on 1,25(OH)₂D longitudinal variation. The LME models were adjusted for parity, season, education, self-reported skin color and pre-pregnancy BMI based on biological plausibility and statistical significance (P<0.2) of the associations on the bivariate analysis with the study outcome.

148 A P<0.05 was regarded as significant. All analyses were performed in STATA 12.0 (Stata Corporation,
149 College Station, TX) [30].

150

151 Results

Losses to follow-up analysis comparing socio-demographic, lifestyle and reproductive characteristics between women with plasma 25(OH)D and 1,25(OH)₂D data in all trimesters and those who had plasma 25(OH)D data in at least one trimester showed no significant differences (P>0.05) between groups (**Data not shown**).

The overall mean 25(OH)D concentrations at the first trimester was 65.0 (17.7 SD) nmol/L which increased to 78.7 (22.0 SD) nmol/L and 84.1 (24.5 SD) nmol/L during the second and third trimesters, respectively. The mean of $1,25(OH)_2D$ pmol/L during the first, second and third trimesters were 173.4 (77.9 SD), 227.6 (91.9 SD) and 257.5 (92.3 SD), respectively. The $1,25(OH)_2D$ mean concentrations were significantly different only in the first-trimester among women within the sufficient category according to Endocrine Society Practice Guidelines. A higher prevalence of vitamin D deficiency was observed among pregnant women who started the study in winter and spring compared to those who started in summer and autumn according to both criteria (**Table 1**).

162The prevalence of pregnant women with plasma 25(OH)D concentrations <75 nmol/L was 70.4%, 41.0%</th>163and 33.9%; the prevalence of women with 25(OH)D concentrations <50 nmol/L was 16.1%, 11.2% and 10.2%;</td>

while 2%, 0% and 0.6%, of women had 25(OH)D concentrations <30 nmol/L at the first, second and third trimester,

165 respectively (**Figure 1**).

166 Plasma 25(OH)D and 1,25(OH)₂D concentrations were weakly but significantly correlated only in the first 167 trimester of pregnancy (Online Resource Fig. 2a, b, c). The concentrations of 25(OH)D and 1,25(OH)₂D 168 significantly increased throughout gestation in the unadjusted model (β=0.869; 95% CI=0.723-1.014; P<0.001 and 169 β =3.878; 95% CI=3.136-4.620; P<0.001, respectively) (Fig. 2a, b). Women who started the study during the 170 summer or autumn seasons had higher mean 25(OH)D concentrations during the first trimester compared to women 171 whose pregnancy began during winter or spring (Fig. 3). The longitudinal change in concentrations of 25(OH)D 172 during pregnancy were modified by the season at recruitment in the adjusted model. Women that started the study in 173 winter (P<0.001), spring (P<0.001) or autumn (P=0.028) presented a longitudinal increase in 25(OH)D 174 concentrations, while women that started during summer did not (Fig. 4 and Online Resource Table 1).

Different patterns of 1,25(OH)₂D concentrations during the course of gestation were also observed according to vitamin D status at baseline considering the cutoffs proposed by the Endocrine Society Practice Guidelines. Women with insufficient concentrations of vitamin D at baseline had greater longitudinal increases in 1,25(OH)₂D in comparison to women with sufficiency in the adjusted model (P=0.006), but not among women with deficient 25(OH)D concentrations (P=0.364) (**Fig. 5 and Online Resource Table 1**). We did not observe interactions between vitamin D status at baseline according to IOM and 1,25(OH)₂D concentrations during pregnancy (**data not shown**).

182

183 Discussion

184 The present study has three main findings. First, it was observed that the prevalence of vitamin D 185 inadequacy varied significantly according to the adopted criteria. The prevalence of vitamin D inadequacy was high, 186 especially in the first trimester using the Endocrine Society Practice Guidelines (<75 nmol/L). It was moderate when 187 the inadequacy criterion from the IOM (<50 nmol/L) was considered, but virtually non-existent when the IOM 188 deficiency criterion was employed (<30 nmol/L). Second, it was observed that the longitudinal patterns of 25(OH)D 189 concentrations during pregnancy were modified by the season at recruitment. Finally, when we stratified the 190 participants according to vitamin D status at baseline, pregnant women who had vitamin D insufficiency (50-<75 191 nmol/L) had a greater increase in $1,25(OH)_2D$ concentrations throughout pregnancy compared to women with 192 25(OH)D adequacy (\geq 75 nmol/L).

193 There is no consensus for the definition of vitamin D inadequacy for pregnant women and results should be 194 interpreted cautiously. We used the cut-off values proposed by the Endocrine Society Practice Guidelines [4] and 195 the IOM [14] to allow comparisons among studies. Our results revealed that the prevalence of 25(OH)D <75 196 nmol/L, <50 nmol/L and <30 nmol/L at the first trimester was 70.4%, 16.1% and 2.1%, respectively. Studies with 197 pregnant women that have used the 25(OH)D cut points of <75 nmol/L also found a high prevalence of vitamin D 198 inadequacy in countries such as Korea (91.4%) [31], Spain (64.1%) [32], the United States (54.4%) [33], and other 199 sunny regions such as Thailand (75.5%) [7], and Australia (80.4%) [6]. Results from a systematic review and meta-200 analysis revealed that the prevalence of 25(OH)D < 50 nmol/L during pregnancy was greater in regions such as the 201 Americas (64%), Europe (57%), Eastern Mediterranean (46%), South-East Asian (87%) and Western Pacific 202 countries (83%), in comparison to the present study [34]. In contrast, it is worth noting that only 2% of women in 203 this cohort presented 25(OH)D concentrations <30 nmol/L, a more restrictive cut-off point that classifies vitamin D 204 deficiency according to the IOM criteria. A higher prevalence of 25(OH)D <30 nmol/L have been reported in 206 [35] observed in a large cohort from Ireland that 17% of the pregnant women had 25(OH)D <30 nmol/L, while

Haggarty et al. (2013) [36] observed in a cohort study from Scotland that 21.5% had 25(OH)D values <25 nmol/L.

208 The mean 25(OH)D concentration observed in our study (65.0 nmol/L) in early pregnancy is higher than other

209 larger cohorts with pregnant women from countries located at higher altitudes such as Ireland (56.7 nmol/L) and

210 Scotland (40.2 nmol/L) [35,36], but is comparable to other studies in sunny regions [2,6,7].

We found only one study comprising healthy pregnant women in Brazil that has addressed a vitamin D research question. This study was a clinical trial with 26 pregnant adolescents in the placebo group and 30 in the supplemented group (calcium and vitamin D) and found plasma 25(OH)D concentrations of 57.9 (20.7 SD) nmol/L and 59.5 (20.6 SD) nmol/L, respectively at baseline (second trimester of gestation) [37]. For the same period of gestation those concentrations were lower than the observed in our sample [78.7 (22.0 SD) nmol/L].

Some other factors could explain the higher prevalence of vitamin D inadequacy observed in this cohort, Air pollution has been inversely associated with 25(OH)D concentration [5]. Air pollution is known to absorb ultraviolet B (UVB) rays and thereby limit cutaneous synthesis of vitamin D [5,38). Rio de Janeiro is known to have high pollution with particulate matter less than 10 μ m in diameter (PM10) estimated to be 67 μ g/m³ in 2010 [39]. This value is above the World Health Organization recommendations (<20 μ g/m³ annual average concentrations) [40]. We hypothesize that air pollution in Rio de Janeiro plays a role in the observed high prevalence of vitamin D inadequacy in this cohort.

223 We found a mean vitamin D intake of only 186.8 IU/day, which is well below the recommendations set 224 forth for pregnant women by both the Endocrine Society Practice Guidelines (1500 - 2000 IU/day) [4] and the IOM 225 (600 IU/day)[14]. Inadequate dietary intake during pregnancy has been observed in other countries such as the 226 United States [41], Iran [5] and Thailand [42]. Few food items naturally contain vitamin D in the Brazilian diet. 227 Also, there is no national mandatory food fortification or supplementation program for vitamin D [23]. The mean 228 calcium intake (760.2 mg/day) was also below the IOM recommendation (1.000 mg/day) for pregnant women. 229 Similar results of low vitamin D and calcium intake were also observed in a systematic review and meta-analysis 230 during pregnancy in regions such as the United States, Europe and Australia [43]. Finally, none of the women from 231 our sample reported vitamin D and calcium supplementation during pregnancy. In Brazil, vitamin D and calcium 232 supplementation are not usual among women receiving pre-natal care in public service [44].

Brazil is a racially diverse country, resulting in a mixed skin pigmentation of the population, which can
affect endogenous production of vitamin D via sun exposure [18,45]. In the current study, 26.7% self-reported to be

10

blacks and 46.2% mixed. Low vitamin D status has been found among obese adults, because vitamin D can be
partially sequestered by body fat [46]. However, we did not find associations between vitamin D status with vitamin
D and calcium intake, skin pigmentation, or pre-pregnancy BMI.

238 Physiological adjustment of vitamin D metabolism occurs during pregnancy. The activity of the 1 α -239 hydroxylase enzyme is increased in the kidney, placenta and decidua [47-48], and an elevation in plasma vitamin D-240 binding protein (DBP) is observed [19]. The kidney has megalin which internalizes 25(OH)D-DBP resulting in the 241 release of 25(OH)D for its conversion to 1,25(OH)₂D [19,49]. Moreover, the expression of vitamin D receptor 242 (VDR) may be increased in the placenta and decidua during pregnancy [50]. These changes are important for the 243 maternal and fetal requirements of 1,25(OH)₂D during this period [4].

244 Few prospective studies have previously measured longitudinal changes in vitamin D concentrations in 245 pregnant women. During this period an increase in 1,25(OH)₂D is well reported while changes in 25(OH)D 246 concentrations remain controversial [20-22]. Lee et al. [22] evaluated a sample of 275 Korean pregnant women and 247 found that the mean 25(OH)D concentration during the first trimester was significantly lower than in the second and 248 third trimesters, even after adjusting for season. Lundqvist et al. [51] reported that 25(OH)D concentrations 249 increased slightly over the duration of pregnancy in 184 Swedish women. However, when the authors considered the 250 months of recruitment, a lower rise of 25(OH)D concentrations during pregnancy was observed between women that 251 started the study in summer, and a peak-shaped pattern during winter. On the other hand, Zhang et al. [21] evaluated 252 30 Irish women at several pregnancy weeks (15, 20, 24, 28, 32, 36 and 40) and reported that 25(OH)D 253 concentrations decreased during this period. However, these women were recruited only during summer. Fernandez-254 Alonso et al. [52] also observed a decrease in 25(OH)D concentrations from first to third trimester in 148 Spanish 255 pregnant women considering the effect of season. We found that women who started the study during spring, winter 256 and autumn increased 25(OH)D concentration over this period. The women that began the study during summer had 257 high 25(OH)D concentrations, and thus presented no change during pregnancy.

- 258 The increase of 1,25 (OH)₂D can be probable attributed to an increase on the metabolism of 25(OH)D and
- thus, resulting in the decreased in the 25(OH)D [19,49,53]. However, we suggest that the elevation of DBP [19]
- 260 during pregnancy could prolong the 25(OH)D half-life during this period as a form of protection [53-54]. Thus,
- 261 besides the influence of season women that begin the study with higher or lower concentrations of 25(OH)D can
- 262 maintain or increase this metabolite during pregnancy, respectively [53-54].

Brazil is a tropical country with abundant sunlight and the State of Rio de Janeiro, situated at approximately
23°S latitude, favors conditions for cutaneous vitamin D production. The ultraviolet B radiation is high throughout

the year and reaches maximum values in summer [23,55]. Therefore, high concentrations of 25(OH)D are expected between women who started the study during summer is plausible, even in a sunny region, as has been reported in other studies [15,42]. Furthermore, in the summer, people are more exposed to the sunlight, and do more outdoor leisure activities, such as going to the beach, which, besides being a cultural habit, is also accessible to the lowincome population. The seasonal variation of vitamin D is even greater in regions with higher latitudes and welldefined seasons, as for example in pregnant woman resident in European countries as Ireland (52°N) or Spain (40°N), with lower concentrations of vitamin D in winter [21,52,56].

In a systematic review and meta-analysis involving twenty studies, the authors found that serum 272 273 1,25(OH)₂D was not related with 25(OH)D in pregnant women at term, and that the 25(OH)D concentrations were 274 not different from the concentrations found in non-pregnant women, though the 1,25(OH)₂D concentrations were 275 twice as high than the non-pregnant women [20]. Nevertheless, this study considered pregnant women at term and 276 was comprised of cross-sectional data only. Hollis et al. (2011) [41] in a randomized controlled trial with vitamin D 277 supplementation found an association between circulating 1,25(OH)₂D concentrations and circulating 25(OH)D in 278 148 pregnant women evaluated at 12, 16, 20, 24, 28, 32 and 36 weeks. However, concentrations of 25(OH)D of at 279 least 100 nmol/L were needed to enable a maximum 1,25(OH)₂D increase during this period. Young et al. (2012) 280 [57] observed that 25(OH)D measured at mid-gestation (\sim 26 weeks) was inversely associated with 1,25(OH)₂D at 281 delivery in a sample with 168 pregnant adolescents.

282 In the present study, we did not find a longitudinal association between 25(OH)D and $1,25(OH)_2D$.We 283 observed that pregnant women with vitamin D insufficiency at baseline according to Endocrine Society Practice 284 Guidelines had a greater increase in $1,25(OH)_2D$ concentrations throughout pregnancy when compared to women 285 with sufficient 25(OH)D concentrations. These results indicate that there is a possible mechanism to meet the 286 additional demands of vitamin D among pregnant women with low concentrations of 25(OH)D in early pregnancy. 287 This may be due to secondary hyperparathyroidism associated with low plasma 25(OH)D, thereby increasing the 288 renal production of $1,25(OH)_2D$ [3-4]. Another possible mechanism is that there are four different 1 α -hydroxylase 289 enzymes with distinct concentrations of regulation, one of which sufficiently converts even small amounts of 290 vitamin D efficiently to 25(OH)D [58-59]. Moreover, considering that there is an increased activity of 1α -291 hydroxylase enzyme [47-48], DBP concentrations [19] and VDR expression during gestation [50], we suggest that 292 these changes are more pronounced among pregnant women with 25(OH)D inadequacy. This may be a form of 293 protection to prevent further reductions in the 25(OH)D concentration during the course of pregnancy. We believe

that with a larger sample size this pattern would have also occurred in women with vitamin D insufficiency atbaseline according to cut points by IOM.

296 The current study has some limitations. First, information on individual sun exposure was not collected. 297 Instead, we considered the season at recruitment. Second, the loss to follow up was 14.6% and 13.5% for 25(OH)D 298 and 1,25(OH)₂D, respectively. Despite the losses to follow-up, we did not identify significant differences in socio-299 demographic, lifestyle and reproductive characteristics between pregnant women with vitamin D data in all 300 trimesters or those with data in at least one trimester. Other limitation of this study is the lack of assessment of 301 serum PTH, calcium, phosphorus and DBP. On the other hand, this cohort study has important strengths. Plasma 302 1,25(OH)₂D and 25(OH)D concentrations were evaluated in each of the three pregnancy trimesters, and when 303 performing the longitudinal models, our analyses were adjusted for several important confounders. 25(OH)D and 304 1,25(OH)₂D were also analyzed by the gold standard method (LC-MS/MS).

305 Low concentrations of vitamin D during pregnancy may be associated with increased risk of adverse 306 maternal outcomes as gestational diabetes mellitus and low birth weight [5,8]. Further, there is a high correlation 307 between maternal and fetal cord blood 25(OH)D concentrations [34]. Studies have suggested that low vitamin D 308 status during pregnancy is associated with short and long-term newborn health consequences [5,8,60-61]. According 309 to the theory of developmental origins of diseases (fetal programming), nutrition allows early life adaptation when 310 there is an adverse environment. Thus, low concentrations of vitamin D during pregnancy can have effects 311 throughout life via fetal programming [62], as for example negative impact in brain health, inflammation and 312 respiratory disorders [61,63-64].

313 The prevalence of vitamin D inadequacy was high throughout pregnancy. Our results indicate that there is a 314 need to examine the vitamin D status of pregnant women residing in other areas of Brazil who may have less sun 315 exposure. There were different patterns of longitudinal 25(OH)D concentrations according to the season at 316 recruitment. Although an increase in $1,25(OH)_2D$ was observed, these changes were not sufficient to reach vitamin 317 D sufficiency in a high proportion of women at the level of the current recommendations for adults. Pregnant 318 women who had insufficient 25(OH)D at the beginning of pregnancy had a higher increase in $1,25(OH)_2D$ across 319 trimesters than those women with sufficient baseline 25(OH)D concentrations, after controlling for important 320 confounders. The findings from this prospective cohort conducted in apparently healthy women from a tropical and 321 sunny region contributes to the understanding of 25(OH)D and 1,25(OH)2D changes during pregnancy and highlights the importance of vitamin D sufficiency in early pregnancy. Our study has the potential for generating 322 323 new evidence since there are few studies that prospectively evaluated plasma 1,25(OH)₂D and 25(OH)D

- 324 concentrations in healthy pregnant women. Further studies are necessary to set the appropriate 25(OH)D cut points
- 325 to compensate for the increased physiological requirements of vitamin D during pregnancy
- 326
- 327 Acknowledgments
- 328The National Council for Scientific and Technological Development (CNPq) and the Carlos Chagas Filho329Foundation for Research Support of Rio de Janeiro State (FAPERJ) supported this study. Gilberto Kac has a
- **330** research productivity scholarship from CNPq.
- 331

332 *Ethical standards*

- The Research Ethics Committees of the Municipal Secretariat of Health and Civil Defense of the State of Rio de Janeiro (Protocol number: 0012.0.249.000-09) approved the present study. Written consent from all participants was obtained freely and spontaneously, after all necessary clarifications were provided in accordance with principles of the Declaration of Helsinki.
- 337
- **338** *Conflict of interest*
- 339 The authors declare that they have no conflict of interest.

References

- Brito A, Cori H, Olivares M, Fernanda Mujica M, Cediel G, López de Romaña D (2013) Less than adequate vitamin D status and intake in Latin America and the Caribbean: a problem of unknown magnitude. Food Nutr Bull 34:52-64.
- Palacios C, Gonzalez L (2014) Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol 144 Pt A:138-145. doi 10.1016/j.jsbmb.2013.11.003.
- Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266-281. doi 10.1056/NEJMra070553.
- Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM, Endocrine Society (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 96: 1191–30. Doi 10.1210/jc.2011-0385
- Kelishadi R, Sharifi-Ghazvini F, Poursafa P, Mehrabian F, Farajian S, Yousefy H, Movahedian M, Sharifi-Ghazvini S (2013) Determinants of hypovitaminosis d in pregnant women and their newborns in a sunny region. Int J Endocrinol 2013:460970. doi 10.1155/2013/460970.
- Schneuer FJ, Roberts CL, Guilbert C, Simpson JM, Algert CS, Khambalia AZ, Tasevski V, Ashton AW, Morris JM, Nassar N (2014) Effects of maternal serum 25-hydroxyvitamin D concentrations in the first trimester on subsequent pregnancy outcomes in an Australian population. Am J Clin Nutr 99:287-295. doi 10.3945/ajcn.113.065672.
- Pratumvinit B, Wongkrajang P, Wataganara T, Hanyongyuth S, Nimmannit A, Chatsiricharoenkul S, Manonukul K, Reesukumal K (2015) Maternal vitamin D status and its related factors in pregnant women in Bangkok, Thailand. PLoS One 10:e0131126. doi 10.1371/journal.pone.0131126.
- Aghajafari F, Nagulesapillai T, Ronksley PE, Tough SC, O'Beirne M, Rabi DM (2013) Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: systematic review and meta-analysis of observational studies. BMJ 346:f1169.
- Dantas EM, Pereira FV, Queiroz JW, Dantas DL, Monteiro GR, Duggal P, Azevedo MdeF, Jeronimo SM, Araújo AC (2013) Preeclampsia is associated with increased maternal body weight in a northeastern Brazilian population. BMC Pregnancy Childbirth 13:159. doi 10.1186/1471-2393-13-159.
- 10. Tedesco RP, Passini R, Cecatti JG, Camargo RS, Pacagnella RC, Sousa MH (2013) Estimation

of preterm birth rate, associated factors and maternal morbidity from a demographic and health survey in Brazil. Matern Child Health J 17:1638-1647. doi 10.1007/s10995-012-1177-6.

- Mendes CQ, Cacella BC, Mandetta MA, Balieiro MM (2015) Low birth weight in a municipality in the southeast region of Brazil. Rev Bras Enferm 68:1169-1175. doi 10.1590/0034-7167.2015680624i.
- Trujillo J, Vigo A, Duncan BB, Falavigna M, Wendland EM, Campos MA, Schmidt MI (2015) Impact of the International Association of Diabetes and Pregnancy Study Groups criteria for gestational diabetes. Diabetes Res Clin Pract 108:288-295. doi 10.1016/j.diabres.2015.02.007.
- Zhang R, Naughton DP (2010) Vitamin D in health and disease: current perspectives. Nutr J 9:65. doi 10.1186/1475-2891-9-65.
- Institute of Medicine (2011). Dietary Reference Intakes for Calcium and Vitamin D. Washington (DC): The National Academies Press. doi:10.17226/13050
- 15. Dror DK, Allen LH (2010) Vitamin D inadequacy in pregnancy: biology, outcomes, and interventions. Nutr Rev 68:465-477. doi 10.1111/j.1753-4887.2010.00306.x.
- 16. Jorde R, Sneve M, Emaus N, Figenschau Y, Grimnes G (2010) Cross-sectional and longitudinal relation between serum 25-hydroxyvitamin D and body mass index: the Tromsø study. Eur J Nutr 49:401-407. doi 10.1007/s00394-010-0098-7.
- Jääskeläinen T, Knekt P, Marniemi J, Sares-Jäske L, Männistö S, Heliövaara M, Järvinen R
 (2013) Vitamin D status is associated with sociodemographic factors, lifestyle and metabolic health. Eur J Nutr 52:513-525. doi 10.1007/s00394-012-0354-0.
- Lips P, van Schoor NM, de Jongh RT (2014) Diet, sun, and lifestyle as determinants of vitamin D status. Ann N Y Acad Sci 1317:92-98. doi 10.1111/nyas.12443.
- Brannon PM, Picciano MF (2011) Vitamin D in pregnancy and lactation in humans. Annu Rev Nutr 31:89-115. doi 10.1146/annurev.nutr.012809.104807.
- Papapetrou PD (2010) The interrelationship of serum 1,25-dihydroxyvitamin D, 25hydroxyvitamin D and 24,25-dihydroxyvitamin D in pregnancy at term: a meta-analysis. Hormones (Athens) 9:136-144.
- Zhang JY, Lucey AJ, Horgan R, Kenny LC, Kiely M (2014) Impact of pregnancy on vitamin D status: a longitudinal study. Br J Nutr 112:1081-1087. doi 10.1017/S0007114514001883.
- 22. Lee DH, Ryu HM, Han YJ, Lee SW, Park SY, Yim CH, Kim SH, Yoon HK (2015) Effects of Serum 25-hydroxy-vitamin D and Fetal Bone Growth during Pregnancy. J Bone Metab 22:127-

133. doi 10.11005/jbm.2015.22.3.127.

- Maeda SS, Borba VZC, Camargo MBR, Silva DMW, Borges JLC, Bandeira F, Lazaretti-Castro M. S. S et al (2014) Recommendations of the Brazilian Society of Endocrinology and Metabology (SBEM) for the diagnosis and treatment of hypovitaminosis D. Arq Bras Endocrinol Metab 58: 411-33. doi 10.1590/0004-2730000003388.
- 24. Joergensen C, Gall MA, Schmedes A, Tarnow L, Parving HH, Rossing P (2010) Vitamin D levels and mortality in type 2 diabetes. Diabetes Care 33:2238-2243. doi 10.2337/dc10-0582.
- El-Khoury JM, Wang S (2012) Stability of 1,25-dihydroxyvitamin D(2) and 1,25dihydroxyvitamin D(3) in human serum. Clin Biochem 45:707-708. doi 10.1016/j.clinbiochem.2012.03.016.
- 26. Sichieri R, Everhart JE (1998) Validity of a Brazilian food frequency questionnaire against dietary recalls and estimated energy intake. Nutr Res 18:1649–1659. doi: 10.1016/s0271-5317(98)00151-1
- Brazilian Institute of Geography and Statistics. National Household Budget Survey. Nutritional composition table of food consumed in Brazil (2011). [cited 2015 Oct 18]. Available from: http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pof/2008_2009_composicao _nutricional/.
- Singer JD, Willet JB (2003) Applied Longitudinal Data Analysis: Modeling Changes and Event Occurrence. New York: Oxford University Press.
- Fox, J (2003). Effect Displays in {R} for Generalised Linear Models. Journal of Statistical Software. 8(15):1-27.
- 30. StataCorp (2011) Stata statistical software: release 12. College Station (TX): StataCorp LP.
- 31. Choi R, Kim S, Yoo H, Cho YY, Kim SW, Chung JH, Oh SY, Lee SY (2015) High prevalence of vitamin D deficiency in pregnant Korean women: the first trimester and the winter season as risk factors for vitamin D deficiency. Nutrients 7:3427-3448. doi 10.3390/nu7053427.
- 32. Pérez-López FR, Fernández-Alonso AM, Ferrando-Marco P, González-Salmerón MD, Dionis-Sánchez EC, Fiol-Ruiz G, Chedraui P (2011) First trimester serum 25-hydroxyvitamin D status and factors related to lower levels in gravids living in the Spanish Mediterranean coast. Reprod Sci 18:730-736. doi 10.1177/1933719110396720.
- 33. Dror DK, King JC, Durand DJ, Allen LH (2011) Association of modifiable and nonmodifiable factors with vitamin D status in pregnant women and neonates in Oakland, CA. J Am Diet Assoc

111:111-116. doi 10.1016/j.jada.2010.10.002.

- 34. Saraf R, Morton SM, Camargo CA, Grant CC (2015) Global summary of maternal and newborn vitamin D status a systematic review. Maternal and Child Nutrition. doi: 10.1111/mcn.12210
- 35. Kiely ME, Zhang JY, Kinsella M, Khashan AS, Kenny LC (2016) Vitamin D status is associated with uteroplacental dysfunction indicated by pre-eclampsia and small-for-gestational-age birth in a large prospective pregnancy cohort in Ireland with low vitamin D status. Am J Clin Nutr 104 (2):354-361. doi:10.3945/ajcn.116.130419
- Haggarty P, Campbell DM, Knox S, Horgan GW, Hoad G, Boulton E, McNeill G, Wallace AM (2013) Vitamin D in pregnancy at high latitude in Scotland. Br J Nutr 109 (5):898-905. doi:10.1017/S0007114512002255
- 37. Diogenes ME, Bezerra FF, Rezende EP, Donangelo CM (2015) Calcium Plus Vitamin D Supplementation During the Third Trimester of Pregnancy in Adolescents Accustomed to Low Calcium Diets Does Not Affect Infant Bone Mass at Early Lactation in a Randomized Controlled Trial. J Nutr 145:1515-1523. doi 10.3945/jn.114.208140.
- 38. Engelsen O, Brustad M, Aksnes L, Lund E (2005). Daily duration of vitamin D synthesis in human skin with relation to latitude, total ozone, altitude, ground cover, aerosols and cloud thickness. Photochem Photobiol. 81(6):1287-90.
- 39. Marques R, Dos Santos ES (2012) Inhalabel particulate matter network monitoring, law and health hazards. Hygeia 8: 115 -28.
- 40. World Health Organization (2006). Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Global update, Geneva: World Health Organization; [cited 2015 Oct 18]. Available from: http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf?ua=1
- Hollis BW, Johnson D, Hulsey TC, Ebeling M, Wagner CL (2011) Vitamin D supplementation during pregnancy: double-blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res 26:2341-2357. doi 10.1002/jbmr.463.
- 42. Charatcharoenwitthaya N, Nanthakomon T, Somprasit C, Chanthasenanont A, Chailurkit LO, Pattaraarchachai J, Ongphiphadhanakul B (2013) Maternal vitamin D status, its associated factors and the course of pregnancy in Thai women. Clin Endocrinol (Oxf) 78:126-133. doi 10.1111/j.1365-2265.2012.04470.x.

- Blumfield ML, Hure AJ, Macdonald-Wicks L, Smith R, Collins CE (2013) A systematic review and meta-analysis of micronutrient intakes during pregnancy in developed countries. Nutr Rev 71 (2):118-132. doi:10.1111/nure.12003
- 44. Brasil (2013). Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Programa Nacional de Suplementação de Ferro: manual de condutas gerais / Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Brasília: Ministério da Saúde 24 p.: il.
- 45. Brazilian Institute of Geography and Statistics (2010). Census: general characteristics of the population, religion and people with disabilities; [cited 2015 Aug 03]. Available from:http://biblioteca.ibge.gov.br/visualizacao/periodicos/94/cd_2010_religiao_deficiencia.pdf
- Pereira-Santos M, Costa PR, Assis AM, Santos CA, Santos DB (2015) Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev 16:341-349. doi 10.1111/obr.12239.
- 47. Novakovic B, Sibson M, Ng HK, Manuelpillai U, Rakyan V, Down T, Beck S, Fournier T, Evain-Brion D, Dimitriadis E, Craig JM, Morley R, Saffery R (2009) Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem 284:14838-14848. doi 10.1074/jbc.M809542200.
- Barrett H, McElduff A (2010) Vitamin D and pregnancy: An old problem revisited. Best Pract Res Clin Endocrinol Metab 24:527-539. doi 10.1016/j.beem.2010.05.010.
- 49. Saito A, Iino N, Takeda T, Gejyo F (2007) Role of megalin, a proximal tubular endocytic receptor, in calcium and phosphate homeostasis. Ther Apher Dial 11 Suppl 1:S23-6. doi 10.1111/j.1744-9987.2007.00514.x
- 50. Shahbazi M, Jeddi-Tehrani M, Zareie M, Salek-Moghaddam A, Akhondi MM, Bahmanpoor M, Sadeghi MR, Zarnani AH (2011) Expression profiling of vitamin D receptor in placenta, decidua and ovary of pregnant mice. Placenta 32:657-664. doi 10.1016/j.placenta.2011.06.013.
- 51. Lundqvist A, Sandström H, Stenlund H, Johansson I, Hultdin J (2016) Vitamin D Status during Pregnancy: A Longitudinal Study in Swedish Women from Early Pregnancy to Seven Months Postpartum. PLoS One 11 (3):e0150385. doi:10.1371/journal.pone.0150385
- Fernández-Alonso AM, Dionis-Sánchez EC, Chedraui P, González-Salmerón MD, Pérez-López FR, Group SVDaWsHR (2012) First-trimester maternal serum 25-hydroxyvitamin D₃ status and

pregnancy outcome. Int J Gynaecol Obstet 116:6-9. doi 10.1016/j.ijgo.2011.07.029

- 53. Jones KS, Assar S, Vanderschueren D, Bouillon R, Prentice A, Schoenmakers I (2015) Predictors of 25(OH)D half-life and plasma 25(OH)D concentration in The Gambia and the UK. Osteoporos Int 26:1137-46. doi 10.1007/s00198-014-2905-0
- 54. Jones KS, Assar S, Prentice A, Schoenmakers I (2016) Vitamin D expenditure is not altered in pregnancy and lactation despite changes in vitamin D metabolite concentrations. Sci Rep 6:26795. doi:10.1038/srep26795
- 55. Lips P (2007) Relative value of 25(OH)D and 1,25(OH)2D measurements. J Bone Miner Res 22:1668-1671. doi 10.1359/jbmr.070716.
- Spiro A, Buttriss JL (2014) Vitamin D: An overview of vitamin D status and intake in Europe. Nutr Bull 39:322-350. doi 10.1111/nbu.12108.
- 57. Young BE, McNanley TJ, Cooper EM, McIntyre AW, Witter F, Harris ZL, O'Brien KO (2012) Vitamin D insufficiency is prevalent and vitamin D is inversely associated with parathyroid hormone and calcitriol in pregnant adolescents. J Bone Miner Res 27:177-186. doi
- 58. Jones G (2007) Expanding role for vitamin D in chronic kidney disease: importance of blood 25-OH-D levels and extra-renal 1alpha-hydroxylase in the classical and nonclassical actions of 1alpha, 25-dihydroxyvitamin D(3). Semin Dial 20:316-24. doi 10.1111/j.1525-139X.2007.00302.x
- 59. Holick MF, Chen TC (2008) Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr 87:1080S-6S.
- Palaniswamy S, Williams D, Järvelin MR, Sebert S (2015) Vitamin D and the Promotion of Long-Term Metabolic Health from a Programming Perspective. Nutr Metab Insights 8 (Suppl 1):11-21. doi:10.4137/NMI.S29526
- 61. Litonjua AA, Carey VJ, Laranjo N, Harshfield BJ, McElrath TF, O'Connor GT, Sandel M, Iverson RE, Lee-Paritz A, Strunk RC, Bacharier LB, Macones GA, Zeiger RS, Schatz M, Hollis BW, Hornsby E, Hawrylowicz C, Wu AC, Weiss ST (2016) Effect of prenatal supplementation with vitamin D on asthma or recurrent wheezing in offspring by age 3 years: The VDAART randomized Clinical trial. JAMA 315 (4):362-370. doi:10.1001/jama.2015.18589.
- Urrutia-Pereira M, Solé D (2015). Vitamin D deficiency in pregnancy and its impact on the fetus, the newborn and in childhood. Rev. paul. pediatr. 33 (1): 104-113. doi: http://dx.doi.org/10.1016/j.rpped.2014.05.004

- Weinert LS, Silveiro SP (2015) Maternal-fetal impact of vitamin D deficiency: a critical review. Matern Child Health J 19 (1):94-101. doi:10.1007/s10995-014-1499-7
- 64. Pet MA, Brouwer-Brolsma EM (2016) The Impact of Maternal Vitamin D Status on Offspring Brain Development and Function: a Systematic Review. Adv Nutr 7 (4):665-678. doi:10.3945/an.115.010330

Table 1. Baseline characteristics according to vitamin D status in women followed at a public health center in Rio de Janeiro, Brazil, 2009-2012.

1,25(OH)₂D=1,25-dihydroxyvitamin D; BMI=Body Mass Index.

Notes: *P-value refers to ANOVA test or to chi-squared test.

^{a, b, c} Different letters at the same line indicate statistically significant difference (P<0.05) between categories of vitamin D using Bonferroni post hoc test. 25(OH)D=25-hydroxyvitamin D;

Fig. 1 Frequency of vitamin D status according to trimester of pregnancy in women followed at a public health center in Rio de Janeiro, Brazil, 2009-2012.

Notes: ^a Vitamin D status according to the Endocrine Society Practice Guidelines, vitamin D inadequacy refers to the sum of vitamin D deficient and insufficient (25(OH)D <75 nmol/L). ^b Vitamin D status according the Institute of Medicine, vitamin D inadequacy refers to the sum of vitamin D deficient and insufficient (25(OH)D <50 nmol/L).

Fig. 2 Changes in plasma 25(OH)D and 1,25(OH)₂D concentrations during pregnancy in women followed at a public health center in Rio de Janeiro, Brazil, 2009-2012.

Notes: ^a Fitted values were predicted using an unadjusted longitudinal linear regression model between 25(OH)D concentration (nmol/L) and gestational age (weeks) (n=225 groups, n=565 observations). ^b Fitted values were predicted using an unadjusted longitudinal linear regression model between $1,25(OH)_2D$ concentration (pmol/L) and gestational age (weeks) (n=214 groups, n=522 observations). CI=confidence interval; 25(OH)D=25-hydroxyvitamin D; $1,25(OH)_2D=1,25$ -dihydroxyvitamin D. The group refers to the number of women with at least one data point in time and observation refers to the total number of data points in time for all women.

Fig. 3 Mean in plasma 25(OH)D concentration according to first, second and third trimester of pregnancy and season of recruitment into the study among women followed at a public health center in Rio de Janeiro, Brazil, 2009-2012.

Notes: Results are presented as mean and standard deviation (error bars); winter=June 21st to September 21st; spring=September 22nd to December 20th; summer=December 21st to March 19th; autumn=March 20th to June 20th; 25(OH)D=25-hydroxyvitamin D.

Fig. 4 Changes in plasma 25(OH)D concentration during pregnancy according to seasons at recruitment in women followed at a public health center in Rio de Janeiro, Brazil, 2009-2012.

Notes: Interaction between season at first trimester and gestational age: summer (n=42: reference); winter (n=51): β =1.441; 95% CI, 1.066 to 1.816, P<0.001; spring (n=54): β =1.126; 95% CI, 0.758 to 1.493, P<0.001; autumn (n=52): β =0.398; 95% CI, 0.044 to 0.752, P=0.028. Longitudinal model adjusted for parity, education, self-reported skin color and pre-pregnancy Body Mass Index. The shaded grey area represents the 95% CI. The black lines at the bottom of the figure represent the scatter of the data. winter=June 21st to September 21st; spring=September 22nd to December 20th; summer=December 21st to March 19th; autumn=March 20th to June 20th. 25(OH)D=25-hydroxyvitamin D; 1,25(OH)₂D=1,25-dihydroxyvitamin D; β =Longitudinal Linear Regression Coefficient; CI=Confidence Interval.

Fig. 5 Changes in plasma 1,25(OH)₂D concentration during pregnancy according to vitamin D status at baseline in women followed at a public health center in Rio de Janeiro, Brazil, 2009-2012.

Notes: Interaction between vitamin D insufficiency (50-<75 nmol/L) (n= 97) and gestational age: β =2.365; 95% CI, 0.675 to 4.054; P=0.006. Longitudinal model adjusted for seasons at recruitment, parity, education, self-reported skin color and pre-pregnancy Body Mass Index. The shaded grey area represents the 95% confidence interval. The black lines at the bottom of the figure represent the scatter of the data. 1,25(OH)₂D=1,25-dihydroxyvitamin D; β =longitudinal linear regression coefficient, CI=Confidence Interval.

Online Supporting Material

Online Resource Fig. 1 Flowchart of the selection process of study final sample of pregnant woman followed at a public health center in Rio de Janeiro, Brazil, 2009-2012.

Notes: ^a 25(OH)D, total number of observations (data)=565 and total number of groups (women=225). ^b 1,25(OH)₂D, total number of observations=522 and total number of groups=214. All women with information for 1,25(OH)₂D also present data from 25(OH)D concentrations. 25(OH)D=25-hydroxyvitamin D; 1,25(OH)₂D=1,25-dihydroxyvitamin D. The group refers to the number of women with at least one data point in time and observations refers to the total number of data points in time for all women.

Online Resource Fig. 2 Correlation between $1,25(OH)_2D$ and 25(OH)D concentrations during first (a), second (b), and third (c) trimester in women followed at a public health center in Rio de Janeiro, Brazil, 2009-2012.

Notes: a first trimester (n=178), b second trimester (n=177), c third trimester (n=167). 25(OH)D=25-hydroxyvitamin D; 1,25(OH)2D=1,25-dihydroxyvitamin D.

Online Resource Table 1. Confounders estimates in the longitudinal model of plasma 25(OH)D and 1,25(OH)₂D concentrations during pregnancy in women followed at a public health center in Rio de Janeiro, Brazil, 2009-2012.

Notes: Longitudinal linear regression coefficient (β), 95% confidence interval (CI) and P were calculated using linear mixed effects; winter=June 21st to September 21st; spring=September 22nd to December 20th; summer=December 21st to March 19th; autumn=March 20th to June 20th; 25(OH)D=25-hydroxyvitamin D;1,25(OH)₂D=1,25-dihydroxyvitamin D; BMI=Body Mass Index.

Season at recrutament

	Vitamin D status at baseline									
	Total	Endocrine Society Practice Guidelines				Institute of Medicine				
Variables	n=199	Deficient < 50 nmol/L n=32	Insufficient 50-<75 nmol/L n=108	Sufficient ≥ 75 nmol/L n=59	P-value*	Deficient < 30 nmol/L n=4	Insufficient 30-<50 nmol/L n=28	Sufficient ≥ 50 nmol/ n=167	P-value*	
		Mean (SD)								
25(OH)D (nmol/L)										
First trimester	65.0 (17.7)	39.6 (8.0) ^a	61.2 (6.7) ^b	85.8 (11.3) ^c	< 0.001	22.5 (6.1) ^a	42.1 (4.5) ^b	69.9 (14.6) ^c	< 0.001	
Second trimester	78.7 (22.0)	61.3 (17.6) ^a	76.2 (19.3) ^b	94.9 (18.7) ^c	< 0.001	35.0 (2.5) ^a	64.8 (15.8) ^b	82.6 (21.0) ^c	< 0.001	
Third trimester	84.1 (24.5)	70.5 (20.9) ^a	81.1 (25.0) ^a	96.1 (22.3) ^b	< 0.001	40.0 (3.5) ^a	73.5 (19.4) ^a	86.3 (25.1) ^b	0.004	
1,25(OH)2D (pmol/L)										
First trimester	173.4 (77.9)	160.4 (65.1) ^a	158.9 (73.6) ^a	203.7 (82.5) ^b	0.001	115.2 (79.2)	166.8 (62.4)	175.4 (79.8)	0.384	
Second trimester	227.6 (91.9)	229.1 (97.5)	224.7 (93.1)	221.3 (88.3)	0.948	231.2 (50.7)	228.8 (104.3)	223.5 (91.2)	0.965	
Third trimester	257.5 (92.3)	241.2 (111.5)	267.7 (90.7)	260.4 (72.9)	0.512	180.0 (115.3)	265.2 (84.8)	226.9 (112.1)	0.328	
Age (years)	26.6 (5.5)	26.8 (5.6)	26.7 (5.5)	26.3 (5.5)	0.876	28.5 (8.1)	26.6 (5.3)	26.6 (5.5)	0.795	
Per-capita family income (R\$)	538.7 (328.8)	599.5 (403.9)	506.3 (314.7)	495.8 (295.2)	0.452	741.5 (326.7)	578.5 (415.2)	527.0 (312.4)	0.348	
Dietary vitamin D intake during pregnancy (IU/day)	186.8 (109.9)	169.6 (91.7)	187.4 (108.8)	196.4 (122.7)	0.607	241.3 (139.4)	161.3 (84.8)	190.4 (113.2)	0.320	
Dietary calcium intake during pregnancy (mg/day)	774.5 (361.1)	748.5 (313.3)	760.3 (366.0)	819.5 (382.5)	0.589	752.4 (504.3)	748.0 (299.3)	780.2 (371.2)	0.912	

Table

n (%)

Vitamin D supplementation during gestation					1.000				1.000
No	199 (100)	32 (100)	108 (100)	75 (100)		4 (100)	28 (100)	167 (100)	
Yes	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)	0 (0.0)	
Calcium supplementation during gestation					1.000				1.000
No	199 (100.0)	32 (100.0)	108 (100.0)	59 (100.0)		4 (100.0)	28 (100.0)	167 (100.0)	
Yes	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)		0 (0.0)	0 (0.0)	0 (0.0)	
Season at recruitment					< 0.001				0.010
Winter	51 (25.6)	15 (46.9)	30 (27.8)	6 (10.2)		2 (50.0)	13 (46.4)	36 (21.6)	
Spring	54 (27.2)	12 (37.5)	29 (26.9)	13 (22.0)		2 (50.0)	10 (35.7)	42 (25.1)	
Summer	42 (21.1)	2 (6.2)	21 (19.4)	19 (32.2)		0 (0.0)	2 (7.2)	40 (24.0)	
Autumn	52 (26.1)	3 (9.4)	28 (25.9)	21 (35.6)		0 (0.0)	3 (10.7)	49 (29.3)	
Pre-pregnancy BMI									
(kg/m ^{2) b}					0.900				0.872
<25	119 (59.80)	18 (56.2)	65 (60.2)	36 (61.0)		2 (50.0)	16 (57.1)	101 (60.5)	
≥25	80 (40.20)	14 (43.8)	43 (39.8)	23 (39.0)		2 (50.0)	12 (42.9)	66 (39.5)	
Alcohol consumption					0.224				0.203
No	158 (79.4)	29 (90.6)	84 (77.7)	45 (76.3)		0 (0.0)	3 (10.7)	38 (22.8)	
Yes	41 (20.6)	3 (9.4)	24 (22.3)	14 (23.7)		4 (100.0)	25 (89.3)	129 (77.2)	
Smoking habit					0.687				0.671
No	186 (93.5)	31 (96.9)	100 (92.6)	55 (93.2)		4 (100.0)	27 (96.4)	155 (92.8)	
Yes	13 (6.5)	1 (3.1)	8 (7.4)	4 (6.8)		0 (0.0)	1 (3.6)	12 (7.2)	
Education (years)					0.207				0.207
<8	60 (30.2)	8 (25.0)	29 (26.8)	23 (39.0)		9 (25.0)	29 (26.9)	33 (39.0)	
≥ 8	139 (69.8)	24 (75.0)	79 (73.2)	36 (61.0)		24 (75.0)	79 (73.1)	36 (61.0)	
Self-reported skin color					0.268				0.306

White	54 (27.1)	4 (12.5)	35 (32.4)	15 (25.4)		0 (0.0)	4 (14.3)	50 (29.9)	
Mixed	92 (46.2)	18 (56.2)	47 (43.5)	27 (45.8)		3 (75.0)	15 (53.6)	74 (44.3)	
Black	53 (26.7)	10 (31.3)	26 (24.1)	17 (28.8)		1 (25.0)	9 (32.1)	43 (25.8)	
Leisure physical activity before pregnancy					0.213				0.342
No	148 (75.1)	26 (83.9)	82 (76.6)	40 (67.8)		4 (100.0)	22 (81.5)	122 (73.5)	
Yes	49 (24.9)	5 (16.1)	25 (23.4)	19 (32.2)		0 (0.0)	5 (18.5)	44 (26.5)	
Parity					0.322				0.393
Nulliparous	78 (39.2)	16 (50.0)	42 (38.9)	20 (33.9)		2 (50.0)	14 (50.0)	62 (37.1)	
Parous	121 (60.8)	16 (50.0)	66 (61.1)	39 (66.1)		2 (50.0)	14 (50.0)	105 (62.9)	

Electronic Supplementary Material

Click here to access/download Electronic Supplementary Material Online Resource Fig. 1.tif Electronic Supplementary Material

Click here to access/download Electronic Supplementary Material Online Resource Fig. 2.tif Electronic Supplementary Material

Click here to access/download Electronic Supplementary Material Online Resource table 1.docx