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Abstract 

Camera system performance is a prominent part of many aspects of imaging science and 

computer vision. There are many aspects to camera performance that determines how 

accurately the image represents the scene, including measurements of colour accuracy, tone 

reproduction, geometric distortions, and image noise evaluation. The research conducted in this 

thesis focuses on the Modulation Transfer Function (MTF), a widely used camera 

performance measurement employed to describe resolution and sharpness. Traditionally 

measured under controlled conditions with characterised test charts, the MTF is a 

measurement restricted to laboratory settings. The MTF is based on linear system theory, 

meaning the input to output must follow a straightforward correlation. Established methods 

for measuring the camera system MTF include the ISO12233:2017 for measuring the edge-

based Spatial Frequency Response (e-SFR), a sister measure of the MTF designed for 

measuring discrete systems.  

Many modern camera systems incorporate non-linear, highly adaptive image signal 

processing (ISP) to improve image quality. As a result, system performance becomes scene 

and processing dependant, adapting to the scene contents captured by the camera. 

Established test chart based MTF/SFR methods do not describe this adaptive nature; they 

only provide the response of the camera to a test chart signal. Further, with the increased use 

of Deep Neural Networks (DNN) for image recognition tasks and autonomous vision 

systems, there is an increased need for monitoring system performance outside laboratory 

conditions in real-time, i.e. live-MTF. Such measurements would assist in monitoring the 

camera systems to ensure they are fully operational for decision critical tasks.  

This thesis presents research conducted to develop a novel automated methodology that 

estimates the standard e-SFR directly from pictorial natural scenes. This methodology has 

the potential to produce scene dependant and real-time camera system performance 

measurements, opening new possibilities in imaging science and allowing live 

monitoring/calibration of systems for autonomous computer vision applications. 

The proposed methodology incorporates many well-established image processes, as well as 

others developed for specific purposes. It is presented in two parts. 
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Firstly, the Natural Scene derived SFR (NS-SFR) are obtained from isolated captured scene 

step-edges, after verifying that these edges have the correct profile for implementing into the 

slanted-edge algorithm. The resulting NS-SFRs are shown to be a function of both camera 

system performance and scene contents. The second part of the methodology uses a series 

of derived NS-SFRs to estimate the system e-SFR, as per the ISO12233 standard. This is 

achieved by applying a sequence of thresholds to segment the most likely data corresponding 

to the system performance. These thresholds a) group the expected optical performance 

variation across the imaging circle within radial distance segments, b) obtain the highest 

performance NS-SFRs per segment and c) select the NS-SFRs with input edge and region 

of interest (ROI) parameter ranges shown to introduce minimal e-SFR variation. The 

selected NS-SFRs are averaged per radial segment to estimate system e-SFRs across the 

field of view. A weighted average of these estimates provides an overall system performance 

estimation.  

This methodology is implemented for e-SFR estimation of three characterised camera 

systems, two near-linear and one highly non-linear. Investigations are conducted using large, 

diverse image datasets as well as restricting scene content and the number of images used 

for the estimation. The resulting estimates are comparable to ISO12233 e-SFRs derived from 

test chart inputs for the near-linear systems. Overall estimate stays within one standard 

deviation of the equivalent test chart measurement. Results from the highly non-linear 

system indicate scene and processing dependency, potentially leading to a more 

representative SFR measure than the current chart-based approaches for such systems. These 

results suggest that the proposed method is a viable alternative to the ISO technique. 
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Chapter 1 Introduction 

In this chapter, the Modulation Transfer Function (MTF) is introduced alongside the 

challenges with the current laboratory approaches. The aims and objectives of this 

project are detailed, along with the thesis structure and the contributions to 

knowledge. 

1.1 Camera System Performance 

Evaluation of camera performance, which determines how accurately the image represents 

the scene, is essential in various aspects of imaging science. System performance can refer 

to several areas of image quality, including colour accuracy [1], tone reproduction [2], 

assessment of geometric distortions [3] and image noise evaluation [4]. The research 

conducted in this thesis focuses on the MTF [5], which derives a system’s resolution and 

sharpness performance. Resolution describes the level of detail a system can render, and 

sharpness is the clarity or contrast of the rendered detail, particularly the representation of 

edges [6, p. 443]. The MTF, resolution and sharpness are not interchangeable; they relate to 

the micro-image (spatial) properties of a system [6, p. 443]. In this thesis, when referring to 

performance, it is in terms of the MTF. 

The MTF is a widely used evaluation measurement for system performance. It describes the 

modulation reduction from a camera system as a function of spatial frequency [7, p. 128]. 

This function forms half of a bell-shaped curve, as illustrated in Figure 1.1; as spatial 

frequencies increase, the system’s ability to render the modulation decreases. It is the rate of 

change that describes the performance of the system. A high-performance MTF maintains 

 

Figure 1.1 Examples of a low-performance MTF, a high-performance MTF and a MTF from a 

sharpened edge. 
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higher modulation in the high spatial frequencies than a low-performance MTF. When a 

sharpening spatial filter is applied to a captured edge, the resultant MTF performance is 

increased, a low-frequency lobe above 1.0 modulation is a sign of sharpening being applied.  

Figure 1.2 provides a simple pipeline of a digital camera system. The optical system and 

sensor are significant contributors to performance and can be considered linear system 

components. Further, the low pass filter (if present), infrared (IR) cut filter, colour filter array 

(CFA), micro-lens array, as well as the electronics and signal processing will all affect the 

output image. The interaction of all components of a system contributes to its performance 

capabilities. As a result, the system MTF follows the cascading principle [6, p. 449], 

expressed as: 

were the system MTF, 𝑀𝑇𝐹𝑠𝑦𝑠, is the product of the MTF of each component.  

Image signal processing (ISP) has become a significant part of a system's performance and, 

in turn, the visual (output) image quality (IQ). The ISP can compensate for hardware with 

𝑀𝑇𝐹𝑠𝑦𝑠(𝜔) =  𝑀𝑇𝐹𝐿𝑒𝑛𝑠(𝜔) ∙ 𝑀𝑇𝐹𝐴𝑟𝑟𝑎𝑦(𝜔) ∙ 𝑀𝑇𝐹𝐸𝑙𝑒𝑐(𝜔) ∙ … (1.1) 

 

Figure 1.2 Visualisation of a simplified digital camera system pipeline. 
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significant size and material constraints, such as smartphone camera systems. Examples of 

the ISP include deep learning IQ enhancements [8], locally adaptive sharpening, denoising 

and tone mapping, as well as the fusion of multi-image scene capture to obtain higher pixel 

resolution (digital zoom via super-sampling), noise reduction and improved dynamic range 

[9]. Modern systems also use subject detection and isolation tools to blur backgrounds, 

synthetically adding bokeh (a visually pleasing out-of-focus region of a photographic image 

caused by shallow depth of field, which cannot be obtained with a small lens and sensor 

design) [9]. All these processes are highly non-linear.  

There are several established methods to obtain the MTF, including: 

• The sinewave method (cf. § 2.1.2) 

• The edge method (cf. § 2.1.3) 

• The texture method (cf. § 2.1.4) 

These methods are based on linear system theory [10, p. 233], hence, employed under the 

assumption that the system is linear, homogeneous, and spatially invariant (cf. § 2.1.1). 

Despite camera system non-linearities, the MTF is incorporated in camera performance 

standards [5, 11]. This project has adapted the edge method to obtain natural scene derived 

performance measurements. The edge method works using the idea that a perfect step-edge 

contains constant modulation across all spatial frequencies (cf. § 2.1.3). After such an edge 

is photographed, the system degrades the edge. Taking a trace of the imaged edge provides 

the system’s Edge Spread Function (ESF), 𝑒𝑠𝑓(𝑥). The differentiation of the ESF provides 

the system’s Line Spread Function (LSF), 𝑙𝑠𝑓(𝑥), Equation 1.2. The MTF is calculated 

through the modulus of the Fourier transform of the LSF, Equation 1.3. [10, pp. 244–246].  

Specifically, the ISO12233:2017 standard slanted-edge algorithm [5] (cf. § 2.3) is utilised in 

the methodology, an extension of the edge method that returns an edge-based Spatial 

Frequency Response (e-SFR), which is less susceptible to aliasing and is widely used in the 

industry.  

𝑙𝑠𝑓(𝑥) =
𝑑 [𝑒𝑠𝑓(𝑥)]

𝑑𝑥
 (1.2) 

𝑀𝑒𝑑𝑔𝑒(𝜔) = |∫ 𝑙𝑠𝑓(𝑥)
+∞

−∞

𝑒−2𝜋𝑖𝜔𝑥𝑑𝑥| (1.3) 
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1.2 The Limitations of Current MTF Approaches 

All established MTF methods use a known input signal, which is then compared to the output 

to provide a measure of signal degradation. Problems occur when non-linear ISP is in the 

camera system pipeline, resulting in a system with no simple input-to-output relationship. 

As a result, the system performance will vary depending on what is being photographed and 

the illumination conditions of the scene, i.e. it becomes scene and processing dependant. 

Consequently, for the same system, the MTF varies depending on what method is being 

implemented. 

When using a natural scene as an input, there is potential to obtain a scene-and-process 

dependant MTF (SPD-MTF), more faithfully representing the entire system pipeline 

(including the ISP). In contrast to purpose-made test charts, natural scene inputs are 

uncharacterised. Previous works have used natural scenes as test charts, either physically 

printed [12] or simulated [13, 14] (cf. § 2.8.2), establishing the required input characteristics. 

However, such methods do not provide the possibility for a no-reference real-world 

implementation, i.e. a performance measurement with an unknown input. Alternatively, the 

MTF can be estimated by training a neural network on characterised scenes [15, 16]; such 

approaches have several benefits but also have various drawbacks (cf. § 2.8.4). 

If a no-reference performance measurement is established, it opens up new possibilities in 

imaging science, moving camera characterisation away from laboratory and test chart 

approaches. There are many possible applications; for example, Deep Neural Networks 

(DNN) are currently used as one of the main technologies in image recognition tasks. With 

the application of DNN in decision critical systems, such as autonomous vision systems, the 

development of camera performance measures derived from natural scenes would allow the 

camera output quality to be monitored at any given moment, i.e. in real-time. 

1.3 Scope of Work 

The project investigates and develops a novel methodology that estimates the MTF/SFR 

directly from pictorial natural scenes rather than the standard test charts. The research 

presented in this thesis aims to take the slanted-edge algorithm away from laboratory 

conditions and apply it to natural scene inputs to obtain an e-SFR estimation comparable to 
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the ISO standard method. Natural scene derived camera system e-SFR measurements open 

possibilities to real-time SFR monitoring, suitable for applications related to intelligent 

vision systems, as well as provide a potential for scene dependant performance analysis. 

The slanted-edge method was chosen for this task over alternatives as, firstly, edges are 

readily available in most natural scenes. Secondly, the input scene does not need to be 

characterised for the algorithm to operate (as long as it is of the correct edge profile), 

meaning no-reference performance measurements are potentially possible. Finally, if 

successful, the natural scene derived SFR can be directly compared to the ISO12233 e-SFR. 

The following research objectives are achieved in this thesis: 

1) Develop an automated methodology to locate, isolate and verify step-edges from 

natural scenes. These selected edges pass through the slanted-edge algorithm to 

produce natural scene derived SFR (NS-SFR).  

2) Use NS-SFRs to estimate the camera system e-SFR, measured according to the 

ISO12233 standard. 

3) Determine the best-suited edge parameter ranges that result in a stable system e-SFR 

estimation. 

4) Implement and evaluate this novel approach and provide expected accuracy and 

precision for linear and non-linear ISP cameras. Investigate the type and number of 

images (dataset sizes) for the accurate estimation of the e-SFR. 

Potential applications would include:  

• Camera system comparisons without the capture system at hand, utilising online 

datasets. 

• The development of SPD-MTFs that can be used to improve the performance of 

spatial image quality metric (IQM) that incorporate the MTF/SFR [13, 14, 17]. 

• Monitoring the performance of deployed imaging vision systems over time, such as 

autonomous vehicles and live security systems. 
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1.4 Thesis Structure 

The structure of this thesis is as follows:  

Chapter 2 introduces camera MTF/SFR measuring techniques and associated test charts, 

digital image formation, the slanted-edge method, and sources of variation and error.  

Following this, how SFRs/MTFs are analysed, recent research in improving the ISO12233 

standard, current solutions to obtaining system performance from natural scenes, and finally, 

image noise analysis are all detailed. This critical literature review provides background 

information and current research that influenced the development of the proposed 

methodology presented in the subsequent chapters.  

A framework to extract, isolate and verify natural scene step-edges is presented in Chapter 

3. This chapter includes studies carried out to identify the most suitable edge detection 

algorithm, determine how ROIs are cropped using adaptive window sizes, and establish edge 

isolation techniques. Further, it details the process of using the extracted step-edges in the 

ISO12233 slanted-edge algorithm. The chapter concludes with initial NS-SFR results and 

observations.  

Natural scenes contain edges of various edge angles, contrasts and region of interest (ROI) 

window sizes required for isolation. These numerous parameters and their combinations 

introduce large variations in the NS-SFR data. Chapter 4 details research into the ISO12233 

e-SFR input parameter ranges, expanding upon previous publications. The aim is to provide 

a range of edge and ROI characteristics that return stable system e-SFR estimations without 

excessively restricting NS-SFR data, from which the suitable for purpose step-edges are rare. 

The methodology to estimate the system e-SFR from NS-SFRs is detailed in Chapter 5. This 

methodology is applied to three diverse camera image datasets, assessing the accuracy of the 

method compared to the equivalent ISO12233 e-SFR. The first two camera systems are 

close-to-linear, one equipped with a wide-angle and the other a telephoto lens. The third is a 

smartphone camera system with a highly non-linear ISP. Results and observations 

concerning each dataset are discussed.  

Chapter 6 evaluates the accuracy and precision of the system e-SFR estimation across the 

camera frame when using different dataset sizes, with the number of images ranging from 
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10 to 570. In addition, the datasets are grouped by the scene location. This study evaluates 

the number of images and the scene content suitable for the proposed methodology.  

Detailed discussions on the advantages and caveats of the proposed methodology, the 

implementation, recommended thresholds, comparison to alternative approaches and 

potential applications are provided in Chapter 7. 

Chapter 8 states the conclusions of the thesis and recommends further work. 

1.5 Contributions to Knowledge 

Research in this thesis results in the following original contributions to knowledge: 

• A novel automated framework that extracts step-edges from natural scenes that are 

suitable for implementation with the slanted-edge algorithm. It includes the creation 

of a novel isolation technique that, not only improves the yield of natural scene edges, 

but also reduces the effects of noise and non-uniformity on the resulting NS-SFR. 

• Suitable edge and ROI parameter ranges are established to obtain a stable system e-

SFR estimations without excessively restricting NS-SFR data. These ranges are 

appropriate for edges from test charts as well as natural scenes.  

• The development of a novel methodology to estimate the system e-SFR from NS-

SFRs, with accuracy comparable to the ISO12233 e-SFR. 

• An understanding of the expected accuracy and precision of system e-SFRs estimated 

from natural scenes for various camera systems and scene types.  

 

 

 



 8 

 

1.6 Related Work 

1.6.1 Publications 

O. van Zwanenberg, S. Triantaphillidou, R. Jenkin, and A. Psarrou, ‘Estimation of ISO12233 

edge spatial frequency response from natural scene derived step-edge data’, Journal of 

Imaging Science and Technology, pp. 60402-1-60402-16, Vol. 65 Issue 6, 2022 

O. van Zwanenberg, S. Triantaphillidou, A. Psarrou, and R. Jenkin, ‘Analysis of natural 

scene derived spatial frequency responses for estimating the camera ISO12233 slanted-edge 

performance’, Journal of Imaging Science and Technology, pp. 60405-1-60405-12, Vol. 65 

Issue 6, 2022 

O. van Zwanenberg, S. Triantaphillidou, R. B. Jenkin, and A. Psarrou, ‘Natural Scene 

Derived Camera Edge Spatial Frequency Response for Autonomous Vision Systems’ 

IS&T/IoP London Imaging Meeting, pp. 88-92, 2021.  

O. van Zwanenberg, S. Triantaphillidou, R. B. Jenkin, and A. Psarrou, ‘Camera System 

Performance Derived from Natural Scenes’ IS&T International Symposium on Electronic 

Imaging: Image Quality and System Performance XVII, pp. 241-1-241–10, 2020. 

O. van Zwanenberg, S. Triantaphillidou, R. B. Jenkin, and A. Psarrou, ‘Edge Detection 

Techniques for Quantifying Spatial Imaging System Performance and Image 

Quality’, IEEE: New Trends in Image Restoration and Enhancement (NTIRE) workshop, in 

conjunction with Conference on Computer Vision and Pattern Recognition (CVPR), pp. 

1871-1879, 2019. 

1.6.2 Presentations at Conferences and Symposia 

O. van Zwanenberg (presenter), S. Triantaphillidou, R. Jenkin, and A. Psarrou, ‘Estimation 

of ISO12233 edge spatial frequency response from natural scene derived step-edge data’, at 

IS&T International Symposium on Electronic Imaging: Image Quality and System 

Performance XIX, 2022, San Francisco, USA (Online).   

 



 9 

 

O. van Zwanenberg (presenter), S. Triantaphillidou, R. Jenkin, and A. Psarrou, ‘Analysis of 

natural scene derived spatial frequency responses for estimating the camera ISO12233 

slanted-edge performance’, at IS&T International Symposium on Electronic Imaging: Image 

Quality and System Performance XIX, 2022, San Francisco, USA (Online). 

O. van Zwanenberg (presenter), S. Triantaphillidou, R. Jenkin, and A. Psarrou, ‘Camera 

Performance Derived from Natural Scenes’ at IS&T Seminar Series - Best Student Research 

2020 (Online).  

O. van Zwanenberg (presenter), S. Triantaphillidou, R. Jenkin, and A. Psarrou, ‘Measuring 

Camera Performance from Natural Scenes’ at the University of Westminster, School of 

Computer Science and Engineering Doctoral Conference, 2020, (Online Poster 

Presentation).  

O. van Zwanenberg (presenter), S. Triantaphillidou, R. Jenkin, and A. Psarrou, ‘Measuring 

Camera Performance from Natural Scenes’ at IS&T International Symposium on Electronic 

Imaging: Image Quality and System Performance XVII, 2020, San Francisco, USA.  

O. van Zwanenberg (presenter), S. Triantaphillidou, R. Jenkin, and A. Psarrou, ‘Measuring 

Camera Performance from Natural Scenes’ at The Royal Photographic Society Imaging 

Science Group Symposium, Good Picture 'Imaging Revealed', 2019, University of 

Westminster, Regent Street Campus, London, UK.  

O. van Zwanenberg (presenter), S. Triantaphillidou, R. Jenkin, and A. Psarrou, ‘Image 

System Performance measure through Edge Extraction’ at the University of Westminster, 

School of Computer Science & Engineering Student-Staff Research Conference, 2019, New 

Cavendish Street Campus, London, UK. 

O. van Zwanenberg (presenter), S. Triantaphillidou, R. Jenkin, and A. Psarrou, ‘Edge 

Detection Techniques for Quantifying Spatial Imaging System Performance and Image 

Quality’ at New Trends in Image Restoration and Enhancement (NTIRE) workshop Poster 

Presentation, in conjunction with Conference on Computer Vision and Pattern Recognition 

(CVPR), 2019, Long Beach, California, USA.  

 

 



 10 

 

O. van Zwanenberg (presenter), S. Triantaphillidou, R. Jenkin, and A. Psarrou, ‘Quantifying 

Camera Performance from Natural Scenes using Edge Detection Techniques’ at the 

University of Westminster, School of Computer Science and Engineering Doctoral 

Conference, 2019, New Cavendish Street Campus, London, UK. 

S. Triantaphillidou (presenter), E. W. S. Fry (presenter), and O. van Zwanenberg (presenter), 

“Objective Image Quality Assessment Using Pictures,” at Transactions 

Imaging/Art/Science: Image Quality, Content and Aesthetics, 2019, University of 

Westminster, Regent Street Campus, London, UK. 

O. van Zwanenberg (presenter), S. Triantaphillidou, R. Jenkin, and A. Psarrou, ‘Camera 

System Performance Measure through Edge Extraction’ at the University of Westminster 

Home Office Poster Presentations, 2019, Regent Street Campus, London, UK. 

O. van Zwanenberg (presenter), S. Triantaphillidou, R. Jenkin, and A. Psarrou, ‘Modulation 

Transfer Function Determination from Pictorial Natural Scenes’ at the University of 

Westminster, Faculty of Science and Technology Doctoral Conference, New Cavendish 

Street Campus, London, UK. 

1.6.3 Awards 

Best Paper Award for the Image Quality and System Performance (IQSP) XVII conference, 

2020, at the Society for Imaging Science and Technology’s (IS&T) Electronic Imaging 

Symposium, 2020, San Francisco, USA. Awarded for the paper entitled “Camera System 

Performance Derived from Natural Scenes”. 



  11 

Chapter 2 Background to System Performance  

In this chapter, the theory needed to evaluate camera system performance is 

discussed, laying the foundation for the subsequent chapters. The topics include 

measurement of the MTF/SFR, image formation, the slanted-edge method for SFR 

evaluation, and sources of measurement error. Previous approaches for deriving 

system performance from natural scenes are discussed, and the literature is reviewed 

with the premise of developing a natural scene derived Spatial Frequency Response 

(e-SFR) measure. 

2.1 The Modulation Transfer Function 

The MTF describes the modulation reduction for a camera system as a function of spatial 

frequency [7, p. 128]. This function forms half of a bell-shaped curve, as illustrated in Figure 

1.1; as spatial frequencies increase, the system’s ability to render the modulation decreases. 

It is the rate of change that describes the performance of the system. A high-performance 

MTF maintains higher modulation in the high spatial frequencies than a low-performance 

MTF. This section introduces the fundamentals of MTF measurement. It covers the sine-

wave, edge and texture-MTF methods. Figure 2.1 depicts four common test chart patterns 

used to measure MTF. 

2.1.1  System Requirements 

MTF is measured through various well-established methodologies, that are traditionally 

obtained from captured test charts under laboratory conditions. MTF measurement is 

founded on linear system theory [10, p. 233]. Thus, it is employed under the assumption that 

the system is linear, homogeneous, and spatially invariant. 

 

Figure 2.1 Test chart input patterns for MTF and SFR measurements.  
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A linear system has a simple input-output relationship [18, p. 206]. If two inputs, 𝑓 and 𝑔, 

are input to a linear system, 𝐻, the output would be the same as if the inputs were added 

before passing the system, expressed as [18, p. 205, 19, p. 503]: 

A homogeneous system has a linear transformation mapping one plane (the two-dimensional 

(2D) signal) to another (the sensor array). In other words, when the input, 𝑓, is multiplied by 

a scalar value, 𝑎, the output will be the same as if the system output was multiplied by 𝑎. 

This is expressed as [19, p. 503]: 

The inputs 𝑓 and 𝑔 in these examples can either be individual pixels or 2D image functions.  

A spatially invariant system, also known as stationary, is where a shift in the input signal 

will result in an equivalent shift in the output image [7, p. 124]. 

In practice, however, most camera systems violate these requirements. Many systems utilise 

non-linear ISP and demosaicing algorithms. The quantisation of a sensor array makes the 

camera system both non-linear and non-stationary. Also, optics that contain any aberrations 

are non-stationary. That said, imaging systems are commonly treated as quasi-linear and 

spatially invariant under controlled conditions and restricted sensor areas [7, p. 124]. 

2.1.2 The Sinewave Method 

The first MTF measuring technique is the sinewave method, one of the earliest 

measurements of MTF. In its simplest form, it is derived from patches of sine wave patterns 

of various known frequencies. The ratio between the modulation of the output and input 

provides the MTF [10, pp. 241–244], as expressed in Equations 2.3 and 2.4  [20]. 

H[𝑓 + 𝑔] = 𝐻[𝑓] + 𝐻[𝑔] (2.1) 

H[𝑎𝑓] = 𝑎𝐻[𝑓] (2.2) 

𝑚(𝜔) =
𝑀𝑎𝑥 − 𝑀𝑖𝑛

𝑀𝑎𝑥 + 𝑀𝑖𝑛
  (2.3) 

𝑀𝑠𝑖𝑛𝑒(𝜔) =
𝑚(𝜔)𝑂𝑈𝑇

𝑚(𝜔)𝐼𝑁
 (2.4) 
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where 𝑚(𝜔) is the modulation of a sinusoidal wave with frequency 𝜔, 𝑀𝑎𝑥 and 𝑀𝑖𝑛 are the 

maxima and minima of the sinusoid, and 𝑀𝑠𝑖𝑛𝑒(𝜔) is the sinewave MTF, calculated by the 

input and output modulation. 

More complex extensions of the sinewave method include the frequency sweep and the 

Siemens star methods [5, 21].  

Figure 2.1 a) illustrates the Imatest Log Frequency test chart [21] used in the frequency 

sweep method. The spatial frequencies increase on a logarithmic scale in the chart, allowing 

the sinewave approach to be implemented across known changing frequencies. This chart 

also incorporates decreasing contrast along the y axis to measure system aliasing (cf. § 2.2.2). 

Figure 2.1 b) illustrates the Siemens star test chart. The ISO12233:2017 [5] standardises the 

Siemens star approach and refers to it as the sine-based Spatial Frequency Response (s-SFR). 

2.1.3 The Edge Method 

Like the sinewave method, the edge method originated from analogue film photography. It 

works from the premise that a perfect step-edge contains infinite spatial frequencies [6, p. 

446], as demonstrated in Figure 2.2. When such an edge is photographed, the system 

degrades it. Taking a trace of the imaged edge provides the system’s Edge Spread Function 

(ESF), 𝑒𝑠𝑓(𝑥). The differentiation of the ESF provides the system’s Line Spread Function 

(LSF), 𝑙𝑠𝑓(𝑥), Equation 1.2. The MTF is calculated through the modulus of the Fourier 

transform of the LSF, Equation 1.3. [10, pp. 244–246]. 

A MTF must be measured from a perfect step-edge with respect to the system, i.e. a near-

perfect edge with a modulation equal to one across the camera system spatial frequency 

 

Figure 2.2 Illustration of a perfect step-edge, containing maximum modulation across all spatial 

frequencies.  
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bandwidth, as depicted in Figure 2.3. If the input edge is not near-perfect, it will not yield a 

pure MTF. Suppose the step-edge contains higher modulation than the capturing capabilities 

of the system, as shaded in Figure 2.3, it is suitable to obtain the MTF but must be corrected 

by dividing the output by the input edge MTF, see Equation 1.1. When the step-edge contains 

lower modulation than the capturing capabilities of the system, it is unsuitable for a MTF 

measurement. 

With the introduction of digital systems, the edge method became impractical due to the 

edge having to be perfectly aligned with the pixel array (cf. § 2.2.3) and aliasing becoming 

problematic. In response, the slanted-edge algorithm was established [5, 22, 23], as detailed 

later in this chapter (cf. § 2.3), utilising a slanted step-edge test chart, Figure 2.1 c). This 

method solved many problems with the edge method for digital systems, allowing a simple 

implementation and in-phase measurements. The output is not strictly speaking an MTF; 

instead, it is referred to as an edge-based Spatial Frequency Response (e-SFR) [5]. This is 

due to two reasons. First, the resampling of the ESF (cf. § 2.3.2) obtains a measurement 

above the Nyquist frequency, removing aliasing issues. Secondly, the modulation content of 

the input edge is not corrected for in the measurement. The e-SFR is measured with the 

assumption that the input step-edge is perfect or near-perfect. The step-edge test chart is 

printed and photographed at a set distance to meet this condition (cf. § 2.3).  

 

Figure 2.3  MTF plots depicting the frequency content of a perfect step-edge and a near-perfect 

step-edge, with respect to an example of a system MTF. The shaded area above the example 

system MTF illustrates the region where the frequency content of an input step-edge is suitable 

for measuring the MTF but requires correction. The shaded area below the system MTF illustrates 

the frequency content unsuitable for measuring the MTF. 
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2.1.4 The Texture Method 

Many modern systems apply non-linear adaptive ISP, which results in scene dependent 

system performance [14, 20, 24]. For instance, different levels of sharpening and denoising 

may be added in response to the signal, scene illumination and camera settings. This means 

the performance changes based upon what is being photographed. Furthermore, the ISP is 

set by a manufacturer, and for many systems, it comes as an unknown black box. As a result, 

the sinewave and edge methods would produce different responses from such non-linear 

ISPs, neither representing the output performance from a natural scene. Thus, the texture-

MTF method was developed, using a test chart pattern that contains the statistical properties 

of an average natural scene, [25–29], Dead-Leaves [30, 31] and Imatest’s Spilled Coins chart 

pattern [32] (Figure 2.1 d)) are commonly used. This method is designed to be scale, shift, 

exposure and rotation invariant, texture-like, and robust to denoising [25].  

The texture-MTF is calculated by taking the square root of the output power spectrum 

(𝑃𝑆𝑜𝑢𝑡) over the input (𝑃𝑆𝑖𝑛) [25]. The method was further refined by removing the system 

noise bias by subtracting the output noise power spectrum (𝑁𝑃𝑆𝑜𝑢𝑡) of the system from the 

𝑃𝑆𝑜𝑢𝑡, expressed as [29]: 

The 𝑁𝑃𝑆𝑜𝑢𝑡 is commonly calculated from a captured uniform patch. 

More recently, the texture-MTF method is obtained using cross-convolution, first proposed 

by Kirk et al. [33]. Using the convolution theorem (cf. § 2.2.2), the output, 𝑌(𝜔), of a system 

is given by the product of the Fourier transform of the input, 𝑋(𝜔), and the transfer function 

of the system, 𝐻(𝜔), [33, 34]: 

The output power spectrum is calculated from the amplitude response, |𝐻(𝜔)|2, and the 

input power spectrum [33, 34]: 

where 𝐸[ ] is the expected value of the amplitude of the output signal. In turn, Equation 2.7 can 

be rearranged to form Equation 2.5. 

𝑀𝑡𝑥𝑡(𝜔) =  √
𝑃𝑆𝑜𝑢𝑡(𝜔) − 𝑁𝑃𝑆𝑜𝑢𝑡(𝜔)

𝑃𝑆𝑖𝑛(𝜔)
 (2.5) 

𝑌(𝜔) = 𝑋(𝜔)𝐻(𝜔) (2.6) 

𝑃𝑆𝑜𝑢𝑡(𝜔) = 𝐸[|𝐻(𝜔)|2|𝑋(𝜔)|2] = |𝐻(𝜔)|2𝑃𝑆𝑖𝑛(𝜔) (2.7) 
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The cross-convolution approach aims to provide an MTF that also includes phase 

information. This is achieved by using the cross-correlation power density, 𝑃𝐷(𝜔), from the 

input and output signal [33, 34]: 

where ∗ denotes the complex conjugate. Thus: 

2.1.5 Results and Implementation of the MTF Measurements 

All MTF measuring methods should theoretically provide converging performance 

measurements for an ideal noiseless, linear, and stationary system. In practice, these 

performance measurements vary [35]. Digital camera systems are non-stationary; the signal 

is rarely in phase with the sampling grid, and the frequency response degrades when out of 

phase [20, pp. 82–83, 36, 37]. Furthermore, the source and level of inherent error from each 

method is different [38, 39, 40, p. 22].  

2.2 Digital Image Formation 

In this section, the theoretical basics of the formation of an image by camera optics and a 

sampling array are explained. Then, the process of modelling the expected system MTF is 

discussed. 

2.2.1 Imaging Equation 

As light passes through the camera system, it is spread, blurring the image. The spread 

measure of a single point of light (an impulse) passing through the system is known as the 

𝑀(𝜔) = |𝐻(𝜔)| = √
𝑃𝑆𝑜𝑢𝑡(𝜔)

𝑃𝑆𝑖𝑛(𝜔)
 (2.8) 

𝑃𝐷(𝜔) =  𝑌(𝜔)⨂𝑋(𝜔) = 𝐸[𝑌(𝜔)𝑋(𝜔)∗] = 𝐸[𝑌(𝜔)𝑋(𝜔)𝑋(𝜔)∗] 

=  𝐻(𝜔)𝐸[|𝑋(𝜔)|2] =  𝐻(𝜔)𝑃𝑆𝑖𝑛(𝜔) 
(2.9) 

𝐻(𝜔) =
𝑃𝐷(𝜔)

𝑃𝑆𝑖𝑛(𝜔)
 (2.10) 
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Point Spread Function (PSF), 𝐼(𝑥, 𝑦), and it determines the system resolution and sharpness 

[7, pp. 125–128, 41, p. 56]. The greater the system blurs the impulse, the wider the spread 

in the x y directions, thus, the lower the system performance.  

The LSF is the integral of the PSF in one orientation [7, p. 126]. As the sampling process of 

a digital system is anisotropic, i.e. it does not have the same physical properties in all 

directions, its PSF is not rotationally symmetrical. Hence, the LSF depends upon the 

direction of the integration. Figure 2.4 provides the mathematical relationship between the 

PSF, LSF, ESF, Optical Transfer Function (OTF) and MTF, adapted from [7, p. 133].  

 

Figure 2.4 The fundamental relationships between spread functions and system performance, adapted 

from [7, p. 133]. 

Provided the system is linear and stationary, the image output, 𝑔(𝑥, 𝑦), can be expressed as 

the input 𝑓(𝑥, 𝑦), convolved with the PSF [18, pp. 206–209]: 

𝑔(𝑥, 𝑦) = ∫ ∫ 𝑓(𝑥1, 𝑦1)𝐼(𝑥 − 𝑥1, 𝑦 − 𝑦1)𝑑𝑥1𝑑𝑦1

+∞

−∞

  (2.11) 

Which can be expressed in one direction in terms of the LSF as [7, p. 128]: 

𝑔(𝑥) = ∫ 𝑓(𝑥1)𝑙𝑠𝑓(𝑥 − 𝑥1)𝑑𝑥1

+∞

−∞

  (2.12) 

2.2.2 Digital Sampling 

A Dirac Comb, also known as a Shah function, is a series of impulses, 𝛿(𝑥), and can represent 

a one-dimensional (1D) digital array [42]. The separation between each impulse, ΔX, 

represents the sensor's pixel pitch. This function is described mathematically by Equation 

2.13 [7, p. 134].  
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𝐼𝐼𝐼 (
𝑥

ΔX
)  (2.13) 

The discrete sampled function, 𝑓(𝑥), is obtained by multiplying the Dirac Comb and the 

input function. This process is denoted by the following equation [42]:  

𝑓(𝑥) = 𝑓(𝑥)𝐼𝐼𝐼 (
𝑥

ΔX
) = ∑ 𝑓(𝑥)𝐼(𝑥 − 𝑛ΔX)

∞

𝑛=−∞

 (2.14) 

A Fourier transformation is a process of converting a real-space function into its sinusoidal 

components [18, pp. 190–191, 43, pp. 13–14]. The Fourier Transform, 𝐹(𝜔), is taken of the 

sampled function using a Discrete Fourier Transform (DFT) [7, p. 130]. 

The sampled function is substituted with the convolution of the impulse to obtain the DFT 

of the sampled function [42]:  

𝐹̃(𝜔) = ∫ ∑ 𝑓(𝑥)𝐼(𝑥 − 𝑛ΔX)𝑒−2𝜋𝑖𝜔𝑥𝑑𝑥

∞

𝑛=−∞

∞

−∞

 (2.15) 

This is simplified by using the convolved sample function,  𝑓𝑛:  

𝐹̃(𝜔) = ∑ 𝑓𝑛𝑒−2𝜋𝑖𝜔∆𝑋

∞

𝑛=−∞

 (2.16) 

The sampled function is given by the multiplication of the input signal and the Dirac Comb. 

Hence, in compliance with the convolution theorem, the function is equal to the DFT of the 

input signal convoluted by the DFT of Dirac Comb in the frequency domain: 

𝐹(𝜔) ⨂𝐼𝐼𝐼(𝑢∆𝑋) (2.17) 

In the frequency domain, the impulses of the Dirac Comb are spaced with the interval equal 

to 
1

ΔX
  [7, p. 134]. When ΔX is too large to sample the signal appropriately, the signal becomes 

under-sampled. In the frequency domain, the signal becomes overlapped, forming an 

incorrect sum of the signal, referred to as aliasing. The Nyquist frequency is defined as the 

spatial frequency equal to half times the inverse of the sampling period [18, p. 197, 44]. This 

is mathematically described by: 

𝜔𝑁  =  
1 

2∆𝑥
 (2.18) 

𝜔𝑁 is the Nyquist frequency, the highest frequency that the system can faithfully reconstruct.  
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2.2.3 Expected System MTF 

A system’s MTF can be estimated using calculations that model the expected performance 

from each camera system component. As the MTF follows the cascading principle, Equation 

1.1, each component can be modelled to simulate the MTF of the pipeline [45]. 

For a diffraction-limited lens, the focal length, 𝑓, aperture diameter, 𝐷, and light wavelength, 

𝜆, determine the resolution capability of the optical system. The focal length and aperture 

diameter are represented as a f-number (𝑁 = 𝑓 𝐷⁄ ). A diffraction-limited lens MTF, 

𝑀𝑇𝐹𝐿𝑒𝑛𝑠(𝜔), is modelled using [45–47]: 

𝑀𝑇𝐹𝐿𝑒𝑛𝑠(𝜔) =
2

𝜋
[cos−1

𝜔

𝜔𝑜
−

𝜔

𝜔𝑜

√1 − (
𝜔

𝜔𝑜
)

2

] (2.19) 

where  

𝜔𝑜 =
1

𝜆𝑁
 (2.20) 

where 𝜔 continues to be the spatial frequency, and 𝜔𝑜 is the frequency of the light.  

As the model is based on the input signal wavelength, to obtain a more representative model, 

the 𝑀𝑇𝐹𝐿𝑒𝑛𝑠(𝜔) can be calculated for a range of wavelengths, weighing the MTF based on 

the system’s quantum efficiency (QE) at each wavelength and then computing an average 

response [45]. 

The MTF response from a pixel is a sinc function, based on the 1D pixel size, 𝑝, [45]: 

𝑀𝑇𝐹𝐴𝑟𝑟𝑎𝑦𝐼𝑁
(𝜔) =

sin(𝜋𝑝𝜔)

𝜋𝑝𝜔
= 𝑠𝑖𝑛𝑐(𝜋𝑝𝜔) (2.21) 

As mentioned (cf. § 2.1.1), digital camera systems are non-stationary, with performance that 

varies depending on whether the signal is in or out of phase with the sampling array [20, pp. 

76–85, 36, 37]. Equation 2.21 provides the in-phase MTF (maximum system performance). 

The out-of-phase MTF describes the minimum performance response, calculated by [20, pp. 

76–85, 45]: 

𝑀𝑇𝐹𝐴𝑟𝑟𝑎𝑦𝑂𝑈𝑇
(𝜔) = (

cos(𝜋𝑠𝜔)sin (𝜋𝑝𝜔)

𝜋𝑝𝜔
) (2.22) 

where 𝑠 is the pixel pitch or sampling interval.  
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The average sensor response is calculated by [20, pp. 76–85, 45]: 

𝑀𝑇𝐹𝐴𝑟𝑟𝑎𝑦𝐴𝑉𝐸
(𝜔) = (

cos2 (
𝜋𝑠𝜔

2 ) sin (𝜋𝑝𝜔)

𝜋𝑝𝜔
) (2.23) 

The MTF of the system hardware (optics and sensor),  𝑀𝑇𝐹𝑠𝑦𝑠, is obtained through 

multiplying the 𝑀𝑇𝐹𝐿𝑒𝑛𝑠 with the 𝑀𝑇𝐹𝐴𝑟𝑟𝑎𝑦, Equation 1.1. 

These equations were implemented to simulate the MTF for the Nikon D800 Digital Single 

Lens Reflex (DSLR) system with a 24mm lens at an f/4 aperture, one of the characterised 

systems used in the research presented in this thesis (cf. § 5.3.1). This system has a pixel 

pitch of 4.87µm. The 𝑀𝑇𝐹𝐿𝑒𝑛𝑠 was calculated using a wavelength of 550nm. The in- and 

out-of-phase 𝑀𝑇𝐹𝐴𝑟𝑟𝑎𝑦 were calculated and multiplied with 𝑀𝑇𝐹𝐿𝑒𝑛𝑠 to provide a simulated 

maximum, minimum and average 𝑀𝑇𝐹𝑠𝑦𝑠, plotted in Figure 2.5. 

The models given above do not account for other camera system components, such as the 

low-pass filter, micro-lens array, demosaicing, analogue-to-digital conversion (ADC) and 

ISP, see Figure 1.2, which further degrade the signal. In addition, the simulation does not 

illustrate performance degradation due to the natural performance variation of the optical 

system across the field of view (cf. § 2.4.3), crosstalk, image noise, and other optical 

artefacts, including chromatic aberrations and lens element misalignment. Therefore, the 

 

Figure 2.5 Modelled in-phase (max), out-of-phase (min) and average 𝑀𝑇𝐹𝑠𝑦𝑠 for the Nikon D800 

DSLR system up to four times the Nyquist limit. 
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real-world performance would be lower than these modelled MTFs; if required, more 

complex models can be incorporated into a system simulation [47, 48]. That said, the above 

models offer a guideline to engineers that require an ideal system MTF range. 

A practical measurement for this project is to convert such simulated MTFs to be in the 

spatial domain to provide the spread of a given imaged edge, i.e. the ESF or LSF, allowing 

the minimum distance between neighbouring edges to be determined without their ESFs 

overlapping (cf. § 3.3.1). This is achieved using the spread function conversions stated in 

section 2.2.1. Before converting the MTF, it first needs to be mirrored around the zero 

frequency value and then padded with zeros on either side of the MTF to avoid introducing 

aliasing and high frequencies [45]. Figure 2.6 provides the maximum and minimum LSFs 

and ESFs for the modelled system. The resultant edge spread for this system is expected to 

be between 1.9 and 3.7 pixels, the distance between the points at 50% of the LSF maxima, 

i.e. the Full Width Half Maxima (FWHM). 

 

Figure 2.6 The maximum and minimum a) LSF and b) ESF for the simulated Nikon D800 DSLR 

system. The spread of the system is marked with vertical broken lines, depicting the point at which 

the LSFs reaches 50% of the maximum peak (FWHM).  
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2.3 The Slanted-Edge Method 

The slanted-edge method is the standardised procedure to measure the system e-SFR, as 

detailed in the ISO12233:2017 [5]. Figure 2.7 depicts this method as a flowchart, adapted 

from [5]. 

A straight greyscale edge tilted at an angle is photographed under controlled conditions. The 

illumination across the target should stay within 2% variation [5]. Also, the distance from 

the target to the sensor should be set to ensure that the input printed step-edge is near-perfect 

for the e-SFR measurement (cf. § 2.1). This distance depends on the resolution of the printed 

target and the sensor array. Generally, 1cm of a photographic inkjet print should be 

equivalent to 55 pixels or less on the camera sensor [49]. The e-SFR is orientation dependant 

due to the anisotropic nature of digital systems (cf. § 2.2.1). Hence, many ISO12233 test 

targets use edges in vertical and horizontal orientations to evaluate the e-SFR across multiple 

directions [35]. Horizontal and vertical orientations are typical for the e-SFR, but sagittal 

and tangential orientations are also commonly used (cf. § 2.6.2). The e-SFR orientations 

employed to quantify camera performance depend on the application and intended use.  

2.3.1 System Linearisation 

The tone response of digital camera systems is a function between the output pixel values 

and input scene luminance [50, pp. 383–386]. The RAW output tone from a system is a 

linear function; however, in either the camera firmware or RAW conversion software, a 

nonlinear response is applied, known as gamma correction. The purpose of the gamma 

correction is to mimic the Human Visual System (HVS) response and to account for the 

typical display non-linearity. When the image is displayed, the tonal values are then 

perceived correctly. This transfer function is known as the Opto-Electric Conversion 

Function (OECF). 

Modern computer displays, such as Liquid Crystal Displays (LCDs), have a linear response 

[50, p. 381]. However, all current standards have been based on Cathode Ray Tube (CRT) 

displays, with an exponent power function with gamma between 1.8 and 2.4 [51, pp. 183–

187]. Thus, LCDs are given a transfer function that mimics a CRT by remapping the signal 

via a voltage modification or programmed look-up-table (LUT) [50, p. 381]. 
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As the MTF requires a linear system (cf. § 2.1.1), a linearisation process is necessary prior 

to the measurement. Linearisation is achieved by simply applying the inverse of the Gamma 

power function. However, camera tone reproduction curves are usually more complex than 

a simple power function. Therefore, in the ISO12233, the test target image is linearised by 

first measuring the camera’s OECF through implementing ISO14524:2009 [2]. This, in turn, 

is used in the form of a LUT for applying the inverse to linearise the image. 

The ISO14524 method cannot be implemented without knowledge of the input tone values. 

Therefore, implementing it with natural scenes is impractical. Linearisation is essential for 

 

Figure 2.7 The ISO12233 slanted-edge method flowchart, adapted from the ISO12233:2017 [5].  
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the e-SFR; without doing so, bias is introduced [52]. That said, if an imprecise linearisation 

is implemented, the e-SFR bias is not often such a severe problem [53]. In this work, 

linearisation can effectively be applied using the transfer function of the assigned colour 

space of the file when implementing the slanted edge method to pictorial natural scenes.  

Many image formats incorporate a standardised tone reproduction embedded in the file. A 

typical colour space is the Adobe RGB, which has a gamma value of 2.2 [54] and only 

requires a simple correction process:  

𝐶𝑅𝐺𝐵  =  𝐶𝑅𝐺𝐵′𝛾   (2.24) 

where  γ =  2.19921875, and 𝐶 is each gamma-corrected colour channel, RGB, and 𝐶’ are 

the uncorrected RGB channels. 

The sRGB is another common colour space. This colour space protocol has a more complex 

linearisation transfer process [55]: 

IF  𝐶′
𝑠𝑅𝐺𝐵 <  −0.04045 

𝐶𝑠𝑅𝐺𝐵 = − [
𝐶𝑠𝑅𝐺𝐵

′ + 0.055

1.055
]

𝛾

 

IF  0.04045 ≤ 𝐶′
𝑠𝑅𝐺𝐵 ≤  0.04045 

𝐶𝑠𝑅𝐺𝐵 =
𝐶𝑠𝑅𝐺𝐵

′

12.92
 

IF  𝐶′
𝑠𝑅𝐺𝐵 >  0.04045 

𝐶𝑠𝑅𝐺𝐵 = [
𝐶𝑠𝑅𝐺𝐵

′ + 0.055

1.055
]

𝛾

 

(2.25) 

where 𝛾 = 2.4 and the other terms are as previously defined. 

2.3.2 The Slanted-Edge Algorithm 

Following linearisation, the step-edge of interest from which the e-SFR is measured is 

cropped within a window, i.e. the region of interest (ROI), 𝜑. 

Each row, 𝑟, across the edge spread in the ROI provides an estimate of the ESF, and its 

derivative forms the system’s discrete LSF (cf. § 2.2.1). The centroid, 𝐶, of each of the LSFs 

of all the rows are found by calculating the derivative per row [5]: 



 25 

 

𝐶(𝑟) =
∑ 𝑝[𝜑(𝑝 + 1, 𝑟) − 𝜑(𝑝, 𝑟)]𝑃−1

𝑝=1

∑ [𝜑(𝑝 + 1, 𝑟) − 𝜑(𝑝, 𝑟)]𝑃−1
𝑝=1

− 0.5 (2.26) 

where 𝑃 is the number of pixels and 𝑝 is the pixel number per row.  

The centroid from all rows is then used to find the shift of each row, 𝑆(𝑟), from a reference 

origin, accomplished by first calculating the slope, 𝑚 [5]: 

𝑚 = [
∆𝑟

∆𝐶(𝑟)
]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (2.27) 

𝑆(𝑟) =
𝑅

2⁄ − 𝑟

𝑚
 (2.28) 

where ∆𝑟 is equal to 1 row, and  𝑅 is the number of rows.  

The computed centroids are used to form a projection down the slope of the input edge, 

shifting the data into a single ESF. This stage is represented in Figure 2.8, adapted from 

Reichenbach et al. [22]. Next, the shifted data is binned to form an ESF of 4-times higher 

resolution than that of the original image. The slope projection and subsequent binning are 

expressed as [5]: 

𝑒𝑠𝑓′(𝑥) =
∑ ∑ 𝜑(𝑝, 𝑟) ∙ 𝛼(𝑝, 𝑟, 𝑥)𝑃

𝑝=1
𝑅
𝑟=1

∑ ∑ 𝛼(𝑝, 𝑟, 𝑥)𝑃
𝑝=1

𝑅
𝑟=1

 

𝛼(𝑝, 𝑟, 𝑥) = {
1, −0.125 ≤ [𝑝 − 𝑆(𝑟) − 𝑥] < 0.125

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(2.29) 

where the 𝛼 function is a counter and switch to include or exclude a value in any bin.  

This resampled ESF is then differentiated (Equation 1.2) and windowed to obtain the LSF 

[5]: 

𝑙𝑠𝑓′𝑤(𝑥) = 𝑊(𝑥)
𝑑 [𝑒𝑠𝑓(𝑥)]

𝑑𝑥
 (2.30) 

where 𝑥 is the spatial distance in pixels, and the window is expressed as:  

𝑊(𝑥) = 0.54 + 0.46 𝑐𝑜𝑠[2𝜋(𝑥 − 2𝑋)/4𝑋] (2.31) 
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The modulus of the DFT of the LSF is calculated to yield the e-SFR [56, 23] (Equation 1.3). 

In this calculation, the modulus vector is normalised by the e-SFR at the zero-frequency [5, 

57]. The e-SFR is typically corrected for the discrete derivative response, 𝐷(𝜔) [5]. This is 

expressed as: 

𝑒𝑆𝐹𝑅(𝜔) = 𝐷(𝜔) |
∑ 𝑙𝑠𝑓′

𝑤
(𝑥) 𝑒−2𝜋𝑖𝜔𝑥/𝑁𝑁

𝑥=1

∑ 𝑙𝑠𝑓′
𝑤

(𝑥)𝑁
𝑥=1

| (2.32) 

2.3.3 Benefits of the Slanted-Edge Method 

The slanted edge method provides advantages over other performance measurements. First, 

resampling of the ESF allows the e-SFR to extend beyond the Nyquist frequency without 

the influence of aliasing [58]. Secondly, the resampled ESF from many rows from a ROI 

removes the non-stationary system effects of the system (cf. § 2.2.3), obtaining the in-phase 

pixel response [59]. Also, if required, the slanted-edge method can be adapted to obtain the 

out-of-phase e-SFR, as proposed by Jenkin et al. [60]. 

 

Figure 2.8 Registering scan lines with a slanted edge, allowing the ESF to be resampled. Adapted 

from [22].  



 27 

 

The target simplicity is beneficial for the practical implementation of the method [56]. Any 

high quality printed step-edge can be used effectively, making a step-edge test chart cost-

effective and straightforward to create and print. In addition, unlike the original edge 

method, the slanted-edge method does not need to be aligned with the sampling array, 

providing a practical application for digital systems. In fact, it must not be aligned; the 

misalignment is required for the resampling to occur. 

2.4 Sources of e-SFR Variation 

The slanted-edge method has been shown to be a repeatable and robust measure of 

performance. However, sources of variation in the measurement should be controlled to 

evaluate the e-SFR correctly. Such sources include a number of input parameter values, 

including edge angle, contrast, and ROI window size (cf. § 2.4.1), the effects of the system 

ISP (cf. § 2.4.2), and the performance variation introduced by the optical system (cf. § 2.4.3). 

2.4.1 Edge and ROI Parameter Ranges 

Edge contrast has little effect on the e-SFR, provided that the system to be measured is nearly 

noiseless with a linear ISP. Low contrast edges become more corrupted with noise than high 

contrast edges [61] (cf. § 2.5.1), whilst high contrast edges are more prone to non-linear 

sharpening [28, 62] (cf. § 2.4.2). Consequently, the standard recommends a low to medium 

Michelson contrast of 0.55 to 0.65 to minimise the effect of these conflicting negative 

attributes [5].  

Further, the ISO12233 recommends a 5° edge angle with respect to the orientation of the 

ROI [5]. Previous studies showed that increasing edge angle increases the measurement error 

[61, 63, 64], but generally, a 3° to 30° angle range from the vertical has been found 

acceptable [63]. There are problematic angles that need to be considered when using the 

slanted-edge algorithm. These critical angles are caused by ROIs that have a specific number 

of rows combined with edge angles that create zero-count bins in the oversampling process 

[65–67]; in other words, missing values in the resampled ESF. Van Den Bergh provides 

simulated data that illustrates such critical angles when using an 8-times bin and a ROI height 

of 30 pixels [67], as seen in Figure 2.9. This data shows that several angles do not meet the 

required oversampling factor. Lowering the number of bins reduces the number of critical 
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angles; the 4-times bin is marked in this figure, with 18.435°, 26.565° and 33.690° not 

meeting this oversampling factor. Using taller ROI than the 30 pixels further reduces the 

number of critical angles. For the ISO12233, if the ROI window size is appropriately 

selected, see below (Table 2.1), critical angles are not usually problematic. That said, when 

using natural scenes, both edge angle and height are both dependent on the pictorial image. 

For instance, busy scenes may require short ROI heights to isolate a step-edge.  

The ROI window size also introduces variation in e-SFR [63, 64]. The vertical ROI (height) 

determines the number of ESFs used in the edge resampling process. More rows lead to more 

accurate results (cf. § 2.5.1). Generally, it is recommended to be greater than 80 pixels for 

the highest accuracy, but it can be decreased to 40 pixels if noise is low [68]. 

The horizontal ROI (width) determines the number of data points that are Fourier 

transformed. For low noise ROIs, the width will increase the number of e-SFR sample points 

without any negative consequence. With high image noise, a wide ROI will include more of 

the noisy signal on either side of the step-edge, introducing high-frequency bias to the e-SFR 

(cf. § 2.5.1). Hence, a narrow ROI is recommended [63, 69], as long as it does not inhibit 

the ESF. In addition to a small width, a tall ROI height keeps the ROI vertical-to-horizontal 

aspect ratio high [63], diminishing the effects of noise on the resulting e-SFR. 

 

 

 

Figure 2.9 The mean oversampling factor, capped at 8-times, for simulated step-edges ranging 

from 0 to 45 degrees. The ROI window height used was 30 pixels. Adopted from [67]. 
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Table 2.1 lists the standard parameter ranges recommended by the ISO122233. 

Parameter ISO12233 e-SFR 

Edge Angle <45° (5° Recommended) 

Edge Contrast 0.55 – 0.65 Michelson Contrast 

ROI Size >64 x 80-500 pixels 

Table 2.1 ROI and edge parameter ranges recommended 

for the ISO12233 slanted-edge method. 

These standard parameter ranges are restrictive and limit the number of edges that can be 

extracted from a pictorial natural scene. Subsequently, the parameter ranges employed in a 

natural scene adapted slanted-edge SFR method require further investigation in this thesis 

(cf. § 4.2).  

2.4.2 Non-Linear Image Signal Processing 

The SFR/MTF is based on linear system theory (cf. § 2.1.1); therefore, problems occur when 

measuring the performance of the non-linear systems. The non-linear effect on the SFR/MTF 

is not a new issue; it is present in all implementations of linear system performance 

measurements. The chemical transfer function [10, p. 239, 70] is an example of system non-

linearity caused by the chemical process of photographic film image formation. With the 

introduction of digital systems and the current miniaturisation development, non-linear 

processing has become conventional in most modern systems, significantly improving image 

quality but increasing the complexity of deriving an SFR/MTF. This issue still requires 

further research as many standards proposed for measuring non-linear systems continue to 

use methods based on linear system theory, such as the IEEE P1858 CPIQ standard, 

developed for smartphone systems [71], as well as the ISO12233 [5].  

The e-SFR is particularly susceptible to gradient-based sharpening, where the sharpening 

strength is proportional to the edge gradient [20, 72]. Consequently, when a non-linear ISP 

is incorporated into the system pipeline, the measured e-SFRs become signal-dependent. 

Thus, to minimise the effects of non-linear sharpening on the e-SFR, ISO12233 recommends 

utilising a medium-contrast edge (cf. § 2.4.1). 

Jenkin [20, pp. 162–165, 72] proposed a method to estimate an SFR based on the idea of a 

contrastless edge. The theory behind this approach is to obtain the SFRs of a series of edges 
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at various contrasts, then to use interpolation to estimate the SFR at zero contrast, giving an 

approximate SFR of the system without processing. Such a method assumes that there is 

little noise corrupting the high frequencies of the low contrast edges (cf. § 2.5.1). 

Linear denoising reduces the performance of the system as it adds blur globally. In contrast, 

when measured from a test chart, non-linear denoising does not significantly affect the e-

SFR. This is because it adds blur locally, mainly in the uniform noisy areas, maintaining the 

sharpness of strong edges. Isolated test chart edges with uniform tones on either side make 

it straightforward to preserve the edge. With a natural scene derived SFR, the non-linear 

denoising is more problematic. This is because complex pictorial natural scenes, captured 

with a non-linear ISP, contain edges that are processed depending on the gradient, 

surrounding image noise and scene textures, resulting in various local scene dependant PSFs. 

2.4.3 Optical Performance Variation  

Camera performance varies across the field of view due to restrictions in the optical system. 

The highest performance is obtained in the central region of the optics, whilst the frame 

corners have reduced sharpness and resolution. This performance drops off due to increased 

aberrations, including coma, astigmatism, field curvature, and distortion, which worsen with 

increasing field angle and distance off-axis [73, pp. 82–83]. The extent of this performance 

variation depends on the characteristics of the optical design. The performance variation 

across the imaging circle may have performance peaks and troughs, i.e. it is not necessarily 

a linear degradation from the centre to corners of the field of view. As a result, any 

performance assessment should be related to the edge location in the frame. 

Figure 2.10 illustrates this variation for a wide-angle lens; e-SFRs were measured from an 

ISO12233 test chart, cropping many 64x128 pixel ROIs across the entire field of view. The 

resulting e-SFRs are colour coded to depict the edge location as a radial distance from the 

centre to the corners of the frame.  

The ISO12233 does not describe how this variation should be depicted or how to combine 

measurements across the frame, as it is application dependent. The e-SFRs, or a metric based 

or derived from the e-SFRs (cf. § 2.6.1), can be averaged using radial zone weights, for 

instance, the weighted averages employed in the Imatest software [74] or the ISO20462 IQM 

[75].  Alternatively, the e-SFRs can be plotted against radial distance, such as sagittal and 

tangential graphs (cf. § 2.6.2). 
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Figure 2.10 Illustration of the e-SFR variation introduced by edge location within the field of view, 

captured using the Nikon D800 with a 24mm lens at f/4 [76].  

2.5 Sources of e-SFR Error  

Several sources of error in the slanted-edge method need to be considered when 

implementing the method. Image noise (cf. § 2.5.1), ROI non-uniformity (cf. § 2.5.2), and 

clipping (cf. § 2.5.3) are all sources of error that are controlled in the ISO12233 but need to 

be evaluated when adapting the method for natural scene inputs.  

2.5.1 Image Noise Corruption 

Image noise corrupts the e-SFR and is the most significant source of error, introducing 

positive bias to the high-frequencies [39, 56, 63]. The source of image noise is commonly 

from the system (cf. § 2.10); thus, in practice, the image is photographed using conditions to 

minimise system noise, including a well-illuminated test chart with low ISO gain. High-

frequency scene textures surrounding the edge are a second noise source when utilising 

natural scenes for SFR determination. 

Figure 2.11 demonstrates high-frequency image noise corruption. Eight ROIs were 

simulated with identical edges with decreasing Signal-to-Noise Ratio (SNR) values [4] (cf. 

§ 2.10). Image shot and read noise were simulated for the purposes detailed in Section 4.2.3. 
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Averaging multiple e-SFRs together helps remove random noise [39]; this should be done 

in the spatial domain, i.e. averaging ESFs or LSFs. If SFRs are averaged in the frequency 

domain, the bias accumulates rather than being reduced. Also, this bias can be diminished 

by isolating tall ROIs in the slanted-edge method. Incorporating more ROI rows in the 

resampling of the ESF (cf. § 2.3.2) allow random noise to be averaged out (cf. § 2.4.1). 

Yeadon et al. [39] proposed a confidence limit method that utilises the Phase Transfer 

Function (PTF) to establish precision for a single measurement. The PTF is zero or linearly 

related to the spatial frequency for a noiseless edge input. Any non-linear PTF behaviour can 

be interpreted as noise corruption in the edge trace.  

The Yeadon et al. confidence limit methodology is as follows [39]: 

1. If the area under the PTF is a non-zero value, apply a correction to ensure a zero area. 

First, use values up to ¾ of the cut-off frequency, 𝑘𝑐, to calculate the correction. 

2. Use the modulus component, 𝑀, and modified PTF, 𝜙, to calculate the real, 𝑅, and 

imaginary, 𝐼, components of the OTF: 

𝑅(𝜔) = 𝑀(𝜔) cos 𝜙(𝜔)  

𝐼(𝜔) = 𝑀(𝜔) sin 𝜙(𝜔) 
(2.33) 

 

Figure 2.11 The output e-SFRs for eight simulated ROIs with decreasing SNR values.  
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3. The imaginary component represents a cone-shaped error projection, Figure 2.12. 

The semi-angle, 𝛼, of this error projection is then calculated for each spatial 

frequency up to the termination frequency, 𝜔𝑡: 

𝛼(𝜔) =
tan−1 𝐼(𝜔)

𝜔
 (2.34) 

4. The root-mean-square value (RMS), 𝛼𝑟𝑚𝑠, of the semi-angle function is then 

calculated: 

𝛼𝑟𝑚𝑠 = √
1

𝜔𝑡
∫ 𝛼2(𝜔)

𝜔𝑡

0

𝑑𝜔 (2.35) 

5. Steps 1 to 4 are repeated between values ¾ to ¼ of the cut-off frequency. 

6. Select the lowest RMS value to provide the confidence limits: 

𝑒𝑆𝐹𝑅(𝜔) = 𝑅(𝜔) ± 𝐶(𝜔) 

were 𝐶(𝜔) =  ±𝜔 tan 𝛼𝑟𝑚𝑠 
(2.36) 

The error increases with spatial frequency. These confidence limits represent statistical 

limits with a 70% probability of including the actual value. Figure 2.12 a) illustrates the 

possible spread from the OTF, and b) the MTF.  

 

Figure 2.12 The confidence limits depicting the possible spread due to noise corruption from a) the 

OTF and b) the MTF. Adopted from [39].  
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2.5.2 Tonal Non-Uniformity 

The ISO12233 states that the test chart must be photographed under controlled lighting 

conditions, with a maximum illumination delta of 2% (cf. § 2.3) [5]. Non-uniform lighting 

causes low frequency gradients through extracted ROIs. In turn, this distorts the ESF profile 

and introduces e-SFR bias.  

In natural scenes, lighting and tone are rarely uniform; as a result, many natural scene ROIs 

contain illumination non-uniformity. Unless corrected, this causes a significant source of 

error in natural scene derived SFRs. 

The non-uniformity correction employed in the Imatest software [77] provides a simple 

solution. This method fits a first-order function to the light side of the ROI, as the lighter 

pixel values inherently contain a higher SNR. As this area is meant to be of uniform tone, if 

the fitted function has a gradient, the inverse of this function is applied to provide a corrected 

ROI. For test chart images, this method works well and is due to be part of the upcoming 

revision to the ISO12233:2022 [78], due later this year (2022). 

This non-uniformity bias is depicted in Figure 2.13, where a 128x128 pixel ramp-edge ROIs, 

i.e. gradient step-edge, was simulated using a hyperbolic tangent (tanh) function (cf. § 4.2.1), 

Equation 4.1. Five different angled low-frequency gradients were added to the simulated 

ROI, resulting in five tonal non-uniformities. These simulations were used to demonstrate 

the effect of non-uniformity on the e-SFR.  
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2.5.3  Signal Clipping (Saturation) 

When a signal exceeds the dynamic range of the system, it is clipped. The system response 

at these saturated values is considered non-linear  [63, 69]. When the step-edge tone just 

reaches the maximum or minimum value, the e-SFR is unaffected; this is referred to as soft-

clipping. Severe clipping creates a hard shoulder in the ESF, which in turn overestimates the 

system’s e-SFR. The effect on the e-SFR with soft and hard clipping is demonstrated in 

Figure 2.14. These ESFs were created using noiseless simulated ROIs.  

 

Figure 2.13 The bias introduced to the e-SFR with low frequency non-uniformity. The ESF and 

SFR demonstrate how these non-uniformities affect the result compared to a uniform ROI. 

Adapted from Imatest [77]. 
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In practice, soft-clipping causes error in the e-SFR, as pixel values from noise fluctuations 

and sharpening effects are saturated [69]. Hence, when implementing the slanted-edge 

method, the exposure should be set so that the target values fall around the centre of the 

system's dynamic range. A low contrast target also helps to avoid clipping [79]. 

Natural scenes have a broad range of step-edge contrasts, some of which would be clipped. 

Such edges should be detected and removed from the evaluation (cf. § 3.5). 

2.6 Assessing e-SFRs 

2.6.1 Comparison Metrics 

Comparing and assessing system performance is achieved through taking specific metrics 

from the SFR/MTF. Taking a single value from a function does not provide the whole story 

with regards to system performance but helps compare systems or the method’s accuracy.  

Due to noise corrupting high frequencies, the low-frequencies tend to have the highest 

accuracy (cf. § 2.5.1); therefore, comparison metrics are often taken in the mid to high 

frequencies, where the error is significant. The most common being the MTF50, MTF20 and 

MTF10, i.e. the frequencies that correspond to 50%, 20% and 10% of the modulation, 

respectively. In addition, these metrics also convey important system performance 

characteristics. The MTF50 is a measurement of sharpness, whilst the MTF10 provides the 

 

Figure 2.14 Simulated noiseless ROIs at a 0.60 Michelson Contrast with mid-range un-clipped 

pixel values, soft-clipped pixel values, and hard-clipped pixel values. The output ESFs and the 

resulting e-SFR are plotted, illustrating the clipping error.  
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system limiting resolution [6, p. 449], i.e. the spatial frequency where two points are just 

distinguishable, as defined by the Rayleigh criterion. However, it should be noted that these 

metrics do not account for image noise [58]. When using MTF20/10, the corruption effects 

of image noise will be most significant. Consequently, the boosted high frequency may 

misrepresent the resolution capabilities of the system. In addition, for extreme noise, the 

boosted high frequencies may result in no MTF10 metric below the Nyquist frequency.  

The MTF50/20/10 metrics also are susceptible to sharpening. As a result, these metrics 

incorrectly represent a system that has been subject to sharpening, overestimating the actual 

performance. Koren [49, 50] proposed the MTF50P and a normalised area metric as a 

solution. The MTF50P is similar to the MTF50, but is 50% of the peak modulation. The 

normalised area is the area under the MTF curve (up to the Nyquist frequency) normalised 

to a peak value of one. Both the MTF50P and the area provide a consistent metric with an 

increase of sharpening [80]. Nevertheless, the MTF50P is preferred over the normalised area, 

as it is a more familiar metric in practice and better represents the MTF50. 

An alternative approach is to take the modulation at specific frequencies. Comparing 

SFRs/MTFs at set frequencies illustrate the systems’ rendering ability at the same level of 

detail. For example, this could be at 10, 20, 30, 40 cycles/mm or for a set pixel size at 25%, 

50% and 75% of the Nyquist frequency. Depending on the application, this may be a more 

helpful metric.  

Combining such metrics to calculate the performance variation across the field of view can 

provide an insightful comparison between systems. An example is to measure the asymmetry 

of a lens [81]. Due to misaligned optical elements, or the lens and sensor not being perfectly 

parallel, the performance may not be symmetrical across the field of view. The system 

asymmetry is measured using metrics, such as the MTF50, in four frame locations. 

Measurements are taken from the right, left, top and bottom of the frame. Imatest obtains the 

MTF50 by fitting a second-order function of the measured data and using this function to 

obtain a measurement for each frame location [81]. The x-axis and y-axis asymmetry is 

calculated by [81]: 

MTF asymmetry(x)  =  
𝑀𝑇𝐹50𝑅 −  𝑀𝑇𝐹50𝐿

𝑀𝑇𝐹50𝑅 +  𝑀𝑇𝐹50𝐿
 

MTF asymmetry(y)  =  
𝑀𝑇𝐹50𝑇 −  𝑀𝑇𝐹50𝐵

𝑀𝑇𝐹50𝑇 +  𝑀𝑇𝐹50𝐵
 

(2.37) 
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The sampling efficiency is another helpful metric [5, 58]. It is a measurement of the likely 

signal detail derived from the system, expressed as a percentage. This measurement is 

calculated from the limiting resolution, 𝑅𝐿, and the sampling resolution, 𝑅𝑆. As mentioned 

above, for digital systems the limiting resolution is given by the MTF10. The sampling 

resolution is half the sample rate, i.e. the Nyquist frequency. The 1D sampling efficiency, 

𝐸1𝐷, is expressed as [58]:  

𝐸1𝐷 =
𝑅𝐿

𝑅𝑆
∙ 100% (2.38) 

Obtaining the sampling efficiency for the vertical, horizontal and diagonal e-SFRs, the 2D 

sampling efficiency, 𝐸2𝐷, is calculated by [5, 58]: 

𝐸 =
𝐸𝑑(𝐸𝑉 + 𝐸ℎ)

2
 (2.39) 

2.6.2  SFR Orientation 

As discussed (cf. § 2.3), digital systems are anisotropic, meaning performance is direction 

dependant. It is common to measure the e-SFR using horizontal and vertical edges. The 

measured e-SFR is perpendicular to the edge; in other words, a vertical edge with respect to 

the sampling array provides the horizontal e-SFR. 

 
Figure 2.15 Illustration of the edge orientations for sagittal and tangential e-SFR analysis in 

relation to the optical imaging circle and field of view. 
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The performance of the optical system also changes across its projected imaging circle (cf. 

§ 2.4.3). The slanted-edge method can be used to provide horizontal and vertical e-SFRs 

across the field of view. That said, more appropriate edge orientations for assessing 

performance against radial distance, particularly for optical system analysis, are sagittal and 

tangential (also referred to as radial and meridional) [15, 82]. Figure 2.15 shows the edge 

orientations for sagittal and tangential e-SFR measurement; they are related to the radial 

orientations of the imaging circle and the anisotropic PSF as it moves away from the optical 

centre. 

The sagittal and tangential e-SFRs/MTFs are commonly plotted using the modulation value 

at a stated metric, either MTF50/20/10, the 25%/50%/75% of the Nyquist frequency, or 

similar, which is plotted against radial distance. In many cases, several of these metrics are 

plotted to summarise the system performance. This process is depicted in Figure 2.16, 

adapted from [15]. The sagittal and tangential e-SFR metrics are plotted against the diagonal 

field of view position from corner to corner, crossing the centre. Alternatively, the position 

data points can be averaged, providing an azimuthal e-SFR per radial distance. The 

azimuthal average is used in this thesis, as it provides more data from the entire frame for 

establishing a natural scene derived SFR.  

Using the ability to measure the sagittal and tangential e-SFRs in the natural scene derived 

performance methodology allows for many optical analysis investigations, including 

assessment of the astigmatism of the lens. Astigmatism is when the sagittal and tangential 

focus regions do not align, the distance between them is known as the astigmatic difference 

 

Figure 2.16 The process of plotting the sagittal and tangential e-SFRs/MTFs for 25%/50%/75% of 

the Nyquist frequency and how it relates to the traditional MTF bell curve. Adapted from [15]. 
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[73, pp. 89–90]. It occurs when an off-axis point is not sharp, seen commonly in the corners 

of the field of view, and is detected when the sagittal and tangential e-SFRs do not match 

across the frame, i.e. one becomes significantly worse than the other.  

2.7 Improvements to ISO 12233  

2.7.1 General e-SFR Developments  

The ISO12233 is consistently being improved; it has had three published iterations from its 

first release in 2000. Many studies have proposed improvements to the standardised slanted-

edge method since its last iteration in 2017, aiming to increase the accuracy and precision of 

the measured e-SFR. Some of these will be implemented in the upcoming fourth iteration of 

the standard, the ISO12233:2022 [78]. 

The ISO12233:2017 standard uses a linear fitting function to determine the edge slope. 

Straight input edges may become curved in the image due to optical geometrical distortions, 

which results in e-SFR bias. This bias can be avoided using a higher-order polynomial fitting 

function [83–86]. Under simulated testing, the result from a third-order polynomial fitting 

was almost identical to linear-fitting when the edge input is straight [86]. When a distorted 

edge was used, the polynomial fit returned better accuracy. Since 2018, a higher-order 

polynomial fitting function has been considered for the ISO12233 standard [86]. It has now 

been announced that a 5th order polynomial fitting function will be part of the 

ISO12233:2022 [78]. Such fitting functions have already been implemented in industry 

software, including Imatest [74] and sfrmat4 [87]. Besides the geometrical distortion 

correction, higher-order fitting is valuable for natural scene edges, which are rarely straight. 

Baer has taken the slanted-edge method a step further to derive an e-SFR from a circular 

edge [85], achieved through a similar approach as the higher-order polynomial fitting 

function. Instead of a function, radial scan lines were fitted to a circle, described by a Fourier 

series. This allows the e-SFR to be measured from the circular edge with results equal to the 

standard.  

Williams and Burns [83] have proposed a filter that helps decrease the effects of image noise 

on the e-SFR. Referred to as the filtered tails procedure, it applied a Gaussian blur on either 
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side of the edge while preserving the ESF. The blur removes the variance in the uniform 

areas of the ROI, resulting in the measurement of e-SFR without significant noise bias.  

Another proposed modification to the slanted-edge method is the multi-directional MTF 

estimation by Masaoka et al. [84]. The aim of this method was also to improve the e-SFR 

estimation from images with high noise. It was achieved by modifying how the edge position 

is found. In this method, a two-dimensional function was fitted to the ROI instead of the 

standard method of taking the derivative of each pixel row. This modified method was tested 

against the standard slanted-edge method by measuring the e-SFR 1000 times for a 5° angled 

edge with SNRs ranging between 20dB and 60dB. As a result, this proposed method was 

more precise and robust against noise than the ISO12233 e-SFR. 

Birchfield proposed the Reverse-Projection method [26] to reduce the ISO 12233 slanted-

edge standard variation, caused specifically by edge angle and the size of the ROI. To 

accomplish this, Birchfield proposed significant changes to the ISO12233. These changes 

start with calculating the centroid points within the pixel rows, the edge fitting parameters 

and the resampling processes. The standard method computes the centroid through 

derivatives along the rows, then calculates the slope of the edge through a shift. The ESF is 

created through a forward projection down the edge slope (cf. § 2.3.2). The Reverse-

Projection method proposal changes these three steps. A Ridler-Calvard binary image 

segmentation algorithm was applied to the ROI to segment the edge into the light and dark 

regions. The result yields the coordinates of the edge running through the ROI. Instead of 

finding the edge slope, the line that best fits the coordinates was calculated using the total 

least squares technique [88]. Each pixel of the resampled ESF was obtained by an average 

 
Figure 2.17 A visual representation of the reverse projection method compared to the standard 

forward projection method. Adopted from [64]. 
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linearised pixel value, calculated by reverse projecting into the interpolated two-dimensional 

array. Visually the forward-projection (i.e. the standard) and the reverse-projection are 

shown in Figure 2.17 [64].  

The Reverse-Projection method is unaffected by the size of the ROI or the edge angle. In 

addition, the standard method adds high-frequency noise to the measure when the ESF is 

super-sampled, resulting in an e-SFR that can be overestimated. Whilst the reverse-

projection yields stable results with any amount of upsampling. This method would be 

advantageous in natural scene derived SFRs, as natural scenes contain edges with various 

parameter values. The results presented were shown to be underestimated compared to other 

standard implementations of the slanted edge method [64]. 

Imatest has proposed an alternative approach to correct edge angle variation [61]. The LSF 

was scaled to correct for the edge rotation. The width of the LSF perpendicular to the edge, 

𝑑, is mathematically expressed as [61]: 

𝑑 = 𝑙 cos 𝜃 (2.40) 

where 𝑙 is the width of the LSF across the pixel array and 𝜃 is the edge angle. 

The LSF was then scaled to correct for this rotation [61]: 

𝑙𝑠𝑓𝑐𝑜𝑟𝑟(𝑥) = 𝑙𝑠𝑓(𝑥 cos 𝜃) (2.41) 

As a result, the angle variation introduced in the e-SFR was significantly reduced. This LSF 

scaling correction will be added to the upcoming revision of the ISO12233 [78].  

2.7.2 Real-Time MTF 

Masaoka proposed real-time (60 frames per second) MTF measurements for broadcasting 

camera systems [66]. This method is based on the ISO12233 e-SFR methodology, achieved 

using a starburst test chart containing multi-directional step-edges, shown in Figure 2.18. It 

employs a test chart; thus, it is carried out under controlled conditions.  

To summarise this method, the first input video frames are averaged to calculate the expected 

noise level, which is used to reduce the bias introduced to the measurement. The resampling 

works with a similar concept to the Reverse-Projection method [26] (cf. § 2.7.1), orienting 

the sub-pixel sampling perpendicular to the edge slope; an 8-times bin is employed here. The 
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pixel values are obtained by averaging the values that fall into each sub-pixel. This allows 

an average ESF to be obtained, which is employed to measure the MTF using the established 

spread function calculations (cf. § 2.2.1). Following this, assuming that the edge angle stays 

constant, a look-up-table (LUT) is created to establish the map of the projection of the ROI 

edge slope into the bin locations. Using a LUT for this task significantly reduces the 

computation cost of resampling the ESF, allowing real-time measurements from a single 

ROI, sized 100x200 pixels, at 60 frames per second. 

This proposed approach was shown to have several benefits. As with the ISO12233, a step-

edge test chart is simple to obtain and implement. The MTF can be measured from a small 

ROI that does not have to be rectangular, allowing for the natural variation of an optical 

system to be measured. The frame averaging and proposed binning process made the data 

robust against image noise. As the MTF can be extracted from a live feed, it can be used to 

quickly assess the performance across several focal lengths of a zoom lens over multiple 

apertures, determining the ideal optical settings for the system. In addition, it can be used to 

find the objective optimal focus and calibrate the ISP. Also, the real-time measurements 

allow de-focused MTFs to be quickly obtained, which is useful for astigmatism analysis (cf. 

§ 2.6.2). Unlike the traditional e-SFR, this measurement is unaffected by edge angle. Thus, 

multi-directional MTFs can be extracted, enabling direct measurements of the system 

anisotropy (i.e. misalignment between the optical and sensor planes). 

 

Figure 2.18 Selection process for Masaoka’s real-time MTF measurement. Adapted from [66]. 
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2.8 Natural Scene Derived System Performance  

Measuring the SFR/MTF from natural scenes is not a totally new concept. Previous studies 

have used methods such as the slanted-edge algorithm (cf. § 2.8.1), the texture-MTF 

algorithm (cf. § 2.8.2), Blind Deconvolution (cf. § 2.8.3) and convolutional neural networks 

(CNN) (cf. § 2.8.4) to either correct or estimate the system performance directly from 

pictorial natural scenes. 

There is a drawback when obtaining the system performance from scene inputs, affecting all 

methods detailed below. If the image does not contain sufficient content to employ a specific 

performance measure, it cannot be implemented. This same caveat applies to the method 

proposed by this thesis.  

2.8.1 Edge Isolation 

Previous studies have used natural scene step edges to assess aerial/remote imagery [89–93]. 

A satellite's SFR is often characterised using traditional laboratory methods before launch. 

The launch process, going from air to a vacuum, with thermal changes to the sensor and 

imaging through the atmosphere, changes the output system performance compared to the 

laboratory-based performance [90]. Therefore, performance should be monitored when the 

satellite is in orbit for calibrating the images to the expected SFR. Many applications have 

been proposed to accomplish this task, one of which utilised step-edges to measure the e-

SFR. These step-edges were extracted from captured large targets positioned in known 

locations [89, 93]. The disadvantages of such targets were the required size and that the 

measurement can only be taken when the satellite is in a specific orbit location. Alternatively, 

images of urban areas, buildings, roads, agricultural field boundaries would provide suitable 

step-edges for the e-SFR [89, 90, 92]. Another solution utilised the moon's edge to obtain a 

lunar MTF [85], which can provide successful calibration. The edges can be selected 

manually or through an automated process utilising edge detectors [89]. 

Another application optimises digital scan resolution for film archives [94]. The proposed 

algorithm used photographic negative film slides scanned at high resolutions, for example, 

5000 pixels per inch (PPI). The edges in these scans were located using the Canny edge 

detector [95], the Hough transform was then used to select straight edges, and ROIs were 

isolated. The selected ROIs underwent a selection process to obtain edges with an angle of 
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at least 3° and a contrast level of at least 20%. Any overlapping edges were removed before 

using these ROIs as the input to the slanted-edge algorithm. The optimal scanning resolution 

was determined by applying the three-sigma rule, using the mean distribution of sampling 

efficiencies (calculated using Equation 2.38 and the standard deviation. The result was 

shown to be stable and independent of the initial scanner settings [94].  

These approaches present robust methodologies for using natural scene step-edges as a 

qualitative assessment. The film archive optimisation resembles the project’s proposed 

method, utilising similar processes (cf. § 3.1). However, neither of these applications were 

developed to acquire reliable performance measures from natural scenes compatible with the 

e-SFR standard measurement. Instead, they were mainly designed to assist with calibration. 

2.8.2 Signal-and-Process-Dependent MTFs 

The texture-MTF method [27, 29] (cf. § 2.1.4) was employed with natural scene images to 

provide a signal-and-process-dependent MTF (SPD-MTF) [12, 13, 96] that account for the 

power spectra of natural scenes and the effect of non-linear, adaptive ISP response of the 

system. SPD-MTFs were proposed for assessing the impact of non-linear ISPs. Such 

measurements can improve the performance of relevant signal-to-noise IQMs [13, 17].  

The texture-MTF method traditionally uses test charts with a known input signal and noise 

spectra, such as dead leaves [27] or spilled coins [32] charts. In natural scenes, both are 

unknown. To resolve this problem, the first study in this area used prints of natural scenes 

as test charts and high-resolution scans to obtain the input signal [12]. Subsequent studies 

used camera pipeline simulations to provide control over the signal and noise spectra 

variations, as well as ISP variants [13]. For applications outside the laboratory, the natural 

scene signal and noise spectra are inaccessible; thus, the texture-MTF is not appropriate to 

achieve the aims of this thesis. 

2.8.3 Blind Deconvolution 

When studying the estimation of performance from images of natural scenes, the process of 

Blind Deconvolution is commonly suggested, as it is a well-established procedure to 

estimate and correct for system blur.  



 46 

 

The camera system MTF can be calculated directly from the PSF [18], as stated (cf. § 2.1.4 

& 2.2.1), the system performance is expressed as the DFT of the input function, convoluted 

by the DFT of the sampling comb (the system’s PSF) (see Equation 2.6). This concept is 

rarely used as it is impractical to obtain an impulse of light narrow enough. The concept of 

Blind Deconvolution was first introduced in the 1990s by Haykin [97, 98]; it refers to the 

process which attempts to separate these signals and recover the input function [99–102], 

i.e. to deconvolute the signal from the PSF. This technique was brought to digital camera 

systems to improve sharpness, predicting the defocus of the lens for digital image restoration 

[103]. Digital Blind Deconvolution has advanced with the improvements in computer 

science, for instance, successfully measuring and removing motion blur [104], using scene 

features, such as slanted edges [105], as well as using neural networks [106, 107]. 

Utilising such techniques to obtain the system MTF has not been studied in great depth due 

to Blind Deconvolution being an ill-posed problem [108]; it has many solutions for the same 

goal, with accuracy conditional on the input data signal. Depending upon the approach, Blind 

Deconvolution works well with astronomy, as there are many point sources for the PSF 

estimation. For other applications, such as automotive and consumer cameras that contain 

varied content and a changing PSF across the field of view, Blind Deconvolution would be 

more problematic. 

A comparable method to estimating the system MTF from natural scenes using a Blind 

Deconvolution style method would be the PSF-CNN approach (cf. § 2.8.4).  

2.8.4 Neural Network MTF Estimation 

2.8.4.1 PSF-CNN approach  

The most successful method to date to obtain camera MTFs from natural scenes utilizes a 

Convolutional Neural Network (CNN) to estimate the PSF, as proposed by Bauer et al. [15]. 

The CNN was trained using natural scenes captured using linear camera pipelines, 

characterized using a PSF panel, i.e. a panel of back-illuminated pinholes. The resulting 

network estimates the local image sagittal and tangential MTFs, with the input image 

cropped into 192x192 pixels segments. RAW images were used to avoid compression and 

system linearisation. This method was designed to take the MTF from the individual colour 

channels, but the study simplifies the results by only describing the green channel 
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performance. In this publication, only natural scenes focused on planar subjects were used, 

minimising blur caused by the depth of field defocus (cf. § 2.9). A Gaussian process 

regression was applied to the data to smooth and interpolate the noise estimates, obtaining 

the change in MTF across the field of view. The resulting MTF estimates have high accuracy 

in relation to the characterized data across several DSLR systems [15] (cf. § 7.3).  

Advantages include the MTF being estimated across the entire frame with relatively low 

computation time, at a few minutes per image [15]. This is not a real-time measure, but it 

provides MTF data quickly compared to obtaining it under controlled laboratory conditions. 

A single image can be used for measurement, but multiple images were shown to improve 

accuracy. The method’s drawbacks are that it is not compatible with a standardised method, 

and importantly, the ground truth is difficult to obtain (needs specialist equipment). Also, as 

imaging technology advances and camera system performance improve, the CNN may 

require retraining. This approach has the potential to be developed to obtain many of this 

project's goals (cf. § 1.2); however, like with all neural networks, it is limited by the training 

dataset. The CNN is currently trained using several linear pipelines using a Canon DSLR 

with various lenses; there is no information on the accuracy of other camera brand pipelines, 

as well as the effect of non-linear ISPs and whether an SPD-MTF is possible. 

2.8.4.2 Texture-to-MTF Prediction 

Bohra et al. introduced the TextureToMTF CNN to estimate the e-SFR MTF50 (cf. § 2.6.1) 

from natural scene patches [16]. This CNN was trained using 959 printed natural scene test 

charts surrounded by a slanted edge square. Many scene types were used, including text 

(typed and handwritten), drawing and photographic images. These charts were photographed 

multiple times using hand-held smartphones, introducing motion blur and a variety of 

lighting conditions. The authors have made this dataset open access [109] and refer to it as 

the generalized SFR dataset. The MTF50 from two vertical and two horizontal e-SFR 

measurements alongside 300 randomly selected patches from the natural scene, sized 48x48 

pixels, were used to train the TextureToMTF CNN.  

This work was conducted to produce a method that provides a system performance metric 

that would improve no-reference IQMs. Results show that this approach has exceeded the 

accuracy of state of the art no-reference IQMs [16]. This CNN has also been used to map 

the MTF50 across a frame, depicting the focus point. 



 48 

 

This method works for its intended task to predict and rank image blur for IQMs, but there 

are some aspects to consider if using such an approach for system performance 

measurements. The first is to test whether such an approach would estimate the entire MTF 

and determine the expected accuracy. The second is that smartphone pipelines were used to 

capture the training dataset; thus, non-linear ISP and compression effects would be present. 

Sharpening would be applied strongly on the surrounding isolated step-edges, with various 

levels of local processing occurring on the central image patch. As a result, the MTF50 

measurements used in this publication will be overestimated; an MTF50P may be more 

suitable (cf. § 2.6.1). Finally, utilising nearby isolated step edges to measure the e-SFR 

would not allow for an SPD measure; however, such an approach can be adjusted to 

potentially obtain ISO12233 equivalent e-SFRs from natural scenes. 

2.9 Natural Scene Derived SFR Considerations 

Unlike test charts, natural scenes are not characterised and, as a result, present many 

obstacles to overcome for a successful automated implementation of the slanted-edge 

method. Some have already been mentioned, including scene textures, non-uniform 

illumination and tones, and signal clipping (cf. § 2.5).  

High-frequency scene textures act as a form of image noise. Thus, using a high vertical-to-

horizontal ROI aspect ratio (cf. § 2.4.1) and implementing a filter such as the filtered tails 

procedure [83] (cf. § 2.7) reduces its effects on the e-SFR. 

Non-uniform ROIs should be avoided or corrected for, as discussed (cf. § 2.5.2). In natural 

scenes, non-uniformity exceeds simple low-gradients caused by uneven lighting and 

includes non-uniform tonal changes from natural scene objects. Also, the light side and dark 

side of the ROI may not have the same non-uniformity. Therefore more complex non-

uniform correction may be required than that used in the Imatest software [77]. 

The dynamic range of scenes surpasses the capturing device in many situations, saturating 

either the highlights or shadows. As mentioned (cf. § 2.5.3), signal clipping is 

straightforward to detect so that any clipped edges can be simply removed. 

Natural scene step-edges contain varied unknown spatial frequency. Some of these input 

edges would have to be near-perfect step-edges for the slanted edge method to derive the 

system's performance (cf. § 2.1.3). Many natural scene edges would not contain maximum 
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modulation across the spatial frequency bandwidth of the system. Hence, such e-SFRs 

measured would be a function of both the system performance and the scene content. Some 

scene edges would maintain higher modulation than the rendering capabilities of the system 

across the bandwidth. These are suitable edges for estimating the system SFR, but with error, 

as the input modulation is not corrected for in the measurement. While other scene edges 

would have lower modulation than the rendition capabilities of the system and would be 

unsuitable for the SFR. Figure 2.3 depicts the frequency content of such step-edges in 

relation to an example system MTF. Consequently, this project needs to deselect low-

frequency edges (i.e. step-edges that contain low modulation in the high frequencies), 

leaving the near-perfect and, more likely, suitable step-edges that can estimate system 

performance effectively.  

In contrast with two-dimensional test charts, natural scenes have depth. Thus, depth of field 

needs to be a consideration. As with the PSF-CNN approach (cf. § 2.8.4.1), natural scenes 

focused on planar subjects can be used to avoid defocused edges. This may not be required, 

as the out-of-focus edges can also be identified as part of the low-frequency edge detection 

required to obtain the suitable step-edges. 

If the e-SFR is derived from multiple natural scenes, their focus distances may vary. The 

performance characteristics change with the distance at which an optical system is focused. 

The extent of this near and far field focus variation is dependent on the optical design. Image 

file Exchangeable Image File Format (EXIF) metadata may contain the reported focus 

distance from the lens, but not all systems provide this information, and those that do are not 

always accurate.  

A possible solution to obtaining focus distance is to detect the scene’s sharpest edges by 

measuring their LSF, combined with a depth map of the scene. An accurate distance depth 

map can easily be created through stereo imaging [110], but utilising two images is not 

appropriate for this research. Many studies have established methods to obtain single image 

(monocular) depth estimation [111–115]. Implementing Alhashim and Wonka's proposed 

method [114] provides a good representation of monocular depth map results, shown in 

Figure 2.19.  

Monocular depth estimation has caveats. First, these monocular depth methodologies 

contain neural networks to achieve the depth map, and the result depends on their specific 

training database. Second, the applications reviewed all provide relative distance maps; in 
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other words, the map has no distance scale. Thus, to date, there is not a monocular depth 

estimation suitable for focus distance e-SFR analysis, but it will be a topic to revisit as 

computer vision technologies improve. 

Motion blur is another factor that is avoided when capturing images under controlled 

conditions. However, motion blur is common when capturing natural scenes, particularly in 

low light. Any additional blur to the system will degrade the overall performance and is 

dependent on the direction of the blur in relation to the edge. Theoretically, motion blur 

perfectly parallel to a step-edge and the pixel array does not degrade performance and 

reduces noise by removing unwanted scene textures. Whilst motion blur perpendicular to the 

edge will significantly decrease performance. 

Motion blur can be detected, modelled and removed using Inertial Measurement Unit (IMU), 

an inbuilt system measurement of the angular orientation of a camera in terms of the roll, 

pitch, and heading angles [116]. This method is most effective when the motion blur is less 

than 4 pixels. In this project, motion blur is avoided by deselecting blurred edges in the same 

way as low-frequency and defocused edges. Future research may utilise IMU data to 

estimate and compensate for the degradation of motion blur on the e-SFR. This would benefit 

applications with highly characterised camera systems, such as aerial photography and 

autonomous driving. 

 

 

Figure 2.19 Four examples of implementing monocular depth estimation [114]. 
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2.10 Image Noise 

Image noise can significantly corrupt the e-SFR (cf. § 2.5.1); noise is a significant limitation 

affecting the system performance, especially at low luminance levels. There are many 

sources of noise, including randomness of photons in a uniform exposure and the resultant 

photoelectric effect (shot noise), quantization noise and noise from electrical components. 

Sources of electrical noise include dark current noise, readout noise, reset noise (floor noise), 

amplification noise and pixel response non-uniformity (PRNU) [6]. 

The type of noise has a different effect on the overall image. Many noise types change 

between each frame and are classed as temporal noise. Fixed pattern noise (FPN) refers to 

noise patterns that do not change from frame to frame.  

The primary source of FPN is the dark current non-uniformity; each pixel has a unique dark 

current across the sensor array, which can increase with heat and exposure time [117]. The 

PRNU noise is caused by slight variations in the sensitivity of the pixels created by natural 

variations in the manufacturing process. Therefore, it is not the same as FPN but is constant 

frame-to-frame, so FPN and PRNU are commonly measured collectively [118]. 

The sensor design, ISO setting, and shutter speed will impact system noise level. Also, each 

colour channel may have different amounts of noise due to the relative illumination strength 

available for each colour channel and depending upon the CFA used [119]. 

Generally, the ISO settings on digital cameras is a way to change the sensitivity of the 

system. When increasing the ISO, the sensitivity of the digital sensor is not increased. 

Instead, the Analogue to Digital Conversion (ADC) gain is amplified, increasing the system 

noise along with the signal [120].  

Four main noise types are commonly focused on when evaluating or simulating a camera 

system [48, 121]: 

1. The photon shot noise, 𝜎𝑆𝐻𝑂𝑇 , is caused by the random arrival of photons on the 

sensor. This random process obeys Poisson statistics in electrons or photons [122], 

and the magnitude of shot noise increases with illumination. An exposure of 𝑞 quanta 

(or electrons) provides shot noise of √𝑞.  

2. The read noise, 𝜎𝑅𝐸𝐴𝐷, is the noise from the on-chip preamplifier caused by a 

combination of the pixel not resetting to zero and noise associated with the readout 
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of the sensor array. It has two parts, Gaussian white noise, which decreases as the 

gain increases, and flicker noise, which is inversely proportional to the input signal 

affecting the low frequencies. The variance caused by the read noise is approximately 

equivalent to a distribution of 1 to 3 electrons. 

3. Dark current noise, 𝜎𝐷𝐴𝑅𝐾, has two parts. The first is shot noise, which follows the 

Poisson distribution caused by voltage crossover between the pixels in the array. The 

second is the dark current non-uniformity FPN, discussed earlier, which can be 

modelled using a Gaussian distribution.  

4. Finally, the FPN, 𝜎𝐹𝑃𝑁, is the variation in the signal caused by the discrepancy in 

pixel sensitivity, the CFA, the gain amplifier and the ADC over the sensor array. 

Besides the dark current non-uniformity noise, FPN has two other noise types: first, 

the photon response gain non-uniformity noise, 𝜎𝐺𝐴𝐼𝑁, and secondly, the row-wise 

fixed pattern noise. Both can be expressed as a Gaussian distribution.  

The output signal, 𝑉𝑜, in volts, is expressed as [48]:  

𝑉𝑜 = (𝑣 + 𝜎𝑆𝐻𝑂𝑇) ∙ 𝜎𝐺𝐴𝐼𝑁 + 𝜎𝑅𝐸𝐴𝐷 + 𝜎𝐷𝐴𝑅𝐾 + 𝜎𝐹𝑃𝑁 (2.42) 

were 𝑣 is the input signal in volts, and 𝜎 is the standard deviation introduced by the various 

noise types discussed above.  

System noise evaluation is standardised in the ISO15739:2017 [4]. This standard allows the 

total system noise, the temporal noise and the FPN to be measured. A minimum of eight 

exposures of the uniform diffused target should be taken, with 13% of a system’s saturated 

exposure. These exposures are cropped to 64 x 64 pixels.  

The total, temporal and pattern SNRs are calculated by: 

𝑆𝑁𝑅 =
𝑔𝑆𝑁𝑅 ∙ 𝐿𝑆𝑁𝑅

𝜎
 (2.43) 

where 𝑔𝑆𝑁𝑅 is the incremental gain, which is the first derivative of the system’s OECF, the 

𝐿𝑆𝑁𝑅 is the luminance equivalent to 13% of system saturation, and 𝜎 is the average noise 

deviations, calculated using the eight images. The total noise, temporal noise, and FPN are 

calculated using Equations 2.44, 2.45 and 2.46.  
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𝑛

𝑛 − 1
𝜎2
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𝜎𝐹𝑃𝑁 = √𝜎2
𝑎𝑣𝑒 −

𝑛

𝑛 − 1
∙ 𝜎2

𝑑𝑖𝑓𝑓 (2.46) 

where 𝑛 is the number of exposures and 𝑗 is the exposure number. 𝜎2
𝑎𝑣𝑒 is the variance in 

the average of the 𝑛 exposures, and 𝜎2
𝑑𝑖𝑓𝑓 is the variance between each of the 𝑛 exposures 

and the average exposure. 

2.11 Summary 

This chapter has provided the foundation of knowledge for camera system performance, with 

particular interest around the slanted-edge method to determine the e-SFR. Topics include 

the MTF, image formation, and sources of measurement error. The literature is reviewed 

with respect to adapting the ISO12233 e-SFR for natural scene step-edge inputs.  

The slanted-edge method is a robust, well-established standardised methodology to obtain a 

system’s e-SFR. If appropriate step-edges are isolated from natural scenes, the e-SFR can be 

taken across the field of view, providing a detailed assessment of the system performance.  

The ISO12233 requires specific input parameter values to decrease measurement variation. 

However, these parameter values are restricting when it comes to natural scene step-edge 

extraction. Therefore, each parameter range should be studied to define suitable ranges that 

maximise the number of scene edges used when estimating the system e-SFR from natural 

scenes.  
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Several factors that affect e-SFR accuracy are controlled in traditional lab-based 

measurement, but are unavoidable when utilising pictorial natural scenes. These include:  

• Step-edges that are not near-perfect, i.e. edges that contain modulation equal to one 

across the system's bandwidth (scene content) (cf. § 2.1.3 & 2.9) 

• Step-edges that contain lower modulation across spatial frequencies than the system 

capture capabilities, i.e. unsuitable edges to determine the system performance (scene 

content) (cf. § 2.1.3 & 2.9) 

• Defocused edges due to depth of field (lens aperture and focus distance) (cf. § 2.9) 

• System noise and scene texture (system engineering and scene content) (cf. § 2.5.1) 

• Non-uniformities in illumination and scene tone (scene content)  (cf. § 2.5.2) 

• Signal clipping (system engineering and exposure settings) (cf. § 2.5.3) 

• Various focus distances (system engineering) (cf. § 2.9) 

• Motion blur (capturing conditions) (cf. § 2.9) 

Some of these are directly researched in this thesis, but others are incorporated as a single 

deselection process.
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Chapter 3 Spatial Frequency Response Derived 

from Natural Scene Images  

The research presented in this chapter explores an automated methodology to obtain 

a Natural Scene derived Spatial Frequency Response (NS-SFR). The ISO12233 

slanted-edge method [5] was adapted to measure e-SFR from step-edges in pictorial 

natural scenes. The resulting e-SFRs are referred to as NS-SFRs. 

In this chapter, the NS-SFR framework is detailed, describing how scene step-edges 

are detected, isolated, and validated; the rationale for each step is provided. The 

selected natural scene step-edges are processed with the standard slanted edge 

algorithm. This chapter concludes with examples of NS-SFR envelopes (range of 

SFRs) derived from ideal natural scene images, i.e. well-illuminated scenes 

containing easily isolated step-edges. Results demonstrate that the NS-SFRs are a 

function of both the system performance and the scene contents. 

3.1 Overview of the NS-SFR Framework  

This section summarises the proposed NS-SFR framework, with the subsequent sections 

presenting the main steps of the method in greater depth.  

The proposed framework comprises a series of processes to locate, isolate, and validate step-

edge ROIs from pictorial natural scenes. These edges are used to measure the NS-SFR 

through the ISO12233 slanted edge algorithm [5] (cf. § 2.3.2). The framework is either 

implemented using a single image or a sequence of images (i.e. an image dataset). All images 

in a dataset must originate from the same camera system, captured with identical optics and 

lens aperture, since these settings influence the system performance. 

Figure 3.1 presents a flowchart of the NS-SFR framework. First, each image from a dataset 

is selected, rotating images in portrait orientation by 90 degrees to be landscape to ensure 

that the sensor orientation is constant. Next, the images are linearised using either the Adobe 

RGB [54] or sRGB [55] linearisation transfer function, as discussed (cf. § 2.3.1). The 

function used depends on the colour space stated in the image’s EXIF metadata. Also, each 

image is normalised to allow the same computations, irrespective of the image bit depth. 
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Edges are detected using the Canny edge detector [123] (cf. § 3.2), adapted to separate the 

vertical and horizontal edge orientations. The resultant horizontal edge binary image is 

rotated to conform with the edge direction of the vertical counterpart, allowing for the same 

processing to be applied to both orientations. A proximity filter is applied to both binary 

images to remove edges within five pixels of a neighbouring edge (cf. § 3.3.1). 

Edge locations are then passed through a ROI selection process that crops ROI windows 

from the linearised image, which are sized appropriately for both the standard e-SFR and 

natural scenes edge isolation (cf. § 3.3.1). In addition, an edge isolation filter is used to 

segregate the edge of interest from unwanted artefacts, such as other edges and scene 

textures. This process is referred to as pixel stretching (cf. § 3.3.2). 

The Canny edge detector locates edges based on gradient magnitude, resulting in the 

detection of wanted step-edges but also other unwanted edge profiles, including stair-case, 

line, peak and trough edge profiles. The slanted-edge method requires a step-edge; therefore, 

the isolated edge gradients are examined to select edges with the suitable profile (cf. § 3.3.2). 

In addition to reviewing the edge profiles, the surrounding areas are also examined to ensure 

uniform tones on either side of the edge (cf. § 3.4.1). The directions of the edges of interest 

are measured; any edges with extreme direction change are segmented where possible, or 

removed (cf. § 3.4.2). 

After these isolated natural-scene ROIs have been verified to contain suitable step-edges, 

they are processed through the traditional slanted-edge algorithm, producing a series (an 

envelope) of NS-SFRs for each image. Sfrmat4 [87] is currently utilised for this purpose (cf. 

§ 3.5). 
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Figure 3.1 Flowchart depicting the core structure of the NS-SFR framework, which extracts, 

isolates, and validates step-edges from natural scene images before measuring the NS-SFR from 

a natural scene image dataset. [124].  
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3.2 Edge Detection 

Two automated edge detection workflows were studied for locating and isolating step-edges 

in pictorial natural scenes, each approaching the task differently. The first employed the 

Canny edge detector [123, 125], and the second a feature matched filter [126, 127]. This 

section describes the pilot study that was conducted to compare these two workflows. A 

small, fixed ROI size (27-pixel width by 41-pixel height) was used in this study, as it was 

found empirically that it allows natural edges to be isolated with minimal non-uniformity 

and depth of field changes. The processing required to obtain suitable step-edges is 

implemented in this pilot study, but more advanced isolation techniques (cf. § 3.3.2) were 

not.  

After testing, the Canny edge detector is chosen for the framework for the reasons detailed 

below (cf. § 3.2.3).  

3.2.1 Canny Edge Detection (Workflow 1) 

Canny edge detection is a well documented and implemented edge detection tool, first 

introduced in 1986 [123] and with many revisions for implementation improvement since 

its introduction [125, 128–130]. The following steps summarise the established Canny edge 

detection algorithm [131]: 

1. A Gaussian smoothing filter is applied to the image to remove noise. 

2. A 2-dimensional (2D) first-order derivative gradient detection filter is applied to the 

smoothed image. The Sobel operator is used in this workflow, although other 

common filters include the Roberts and Prewitt operators. The result is x and y 

orientated gradient ridges. 

3. The x and y gradients are then combined to calculate the magnitude. 

4. Non-Maxima suppression is applied to obtain the gradient ridge peaks for edge 

localisation. In other words, this is a skeletonisation process.  

5. Hysteresis thresholding is then applied. Two thresholds are used, an upper threshold 

and a lower threshold. A pixel’s gradient above the upper threshold indicates a 

strong edge and is marked with a one. A pixel gradient below the lower threshold 

indicates a textured area, and it is removed, i.e. marked with a zero. A pixel gradient 

is between the two thresholds indicates an area that contains both edge gradients and 

texture. Thus, this area is accepted if one of the 8-connected gradients surrounding 
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the pixels contains a strong edge gradient. The output is a binary image indicating 

the edge locations. 

The result is a precise edge localisation that is not computationally heavy. Furthermore, the 

hysteresis thresholding allows the result to be robust against image noise, ensuring that long 

edges are not broken down. 

For the workflow implementation, the Canny edge detection algorithm was modified. Rather 

than calculating the magnitude, in step 3, the x and y orientations are kept separate. This 

adjustment provides horizontal and vertical edge orientation locations in separate binary 

images. The rationale for the separation is that the e-SFR performance is dependent on edge 

orientation (cf. § 2.6.2). 

The framework uses the Otsu method to determine the hysteresis thresholds [128, 129]. The 

Otsu method predicts the upper threshold using Adaptive Particle Swarm Optimization 

(APSO), then the lower threshold through constructing a probability model [129]. Applying 

adaptive thresholds to the Canny edge detector allows edges to be detected more accurately 

on an image-to-image basis, locating the sharpest edges from the scene whilst selecting 

fewer false edges and scene texture. 

The drawback to using the Canny edge detector is that it detects edges of many gradient 

profiles, not only the required step-edges. Therefore, once the edges are located, this 

workflow requires a sequence of processing to validate and select step-edge ROIs. 

3.2.2 Matched Filter (Workflow 2) 

The feature matched filter used is a normalised 2D cross-correlation filter [126, 127]. This 

technique locates regions of an image that contain similarity to a desired feature. The desired 

feature is defined by an input template, which depicts any shape or object. The normalised 

2D cross-correlation is summarised as [126, 127]: 

1. The cross-correlation of the image with the template is computed. 

2. Local sums are calculated through precomputing running sums. 

3. These local sums are used to normalise the cross-correlation, forming correlation 

coefficients. 

 



 60 

 

The normalised 2D cross-correlation, 𝛾(𝑢, 𝑣), in the spatial domain is defined as [127]: 

𝛾(𝑢, 𝑣) =
∑ [𝑓(𝑥, 𝑦) − 𝑓𝑢̅,𝑣][𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑡̅]𝑥,𝑦

{∑ [𝑓(𝑥, 𝑦) − 𝑓𝑢̅,𝑣]𝑥,𝑦
2

∑ [𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑡̅]𝑥,𝑦
2

}
0.5 (3.1) 

(where 𝑓(𝑥, 𝑦) represents the image coordinates, 𝑡(𝑢, 𝑣) the feature template coordinates, 

𝑓𝑢̅,𝑣 is the mean value of the image within the feature region window, and 𝑡̅ is the mean of 

the feature). 

The 2D cross-correlation was applied using the MATLAB normxcorr2 function from the 

Image Processing Toolbox [132]. The 2D cross-correlation was applied in the frequency 

domain by convolving the Fourier transformed image and feature template, lowering the 

computation time required for feature detection [127]. 

This workflow used the matched filter to detect step-edge features. The feature templates are 

obtained by simulating a series of ramp-edge ROIs, i.e. gradient step-edges, defined using a 

tanh function (cf. § 4.2.1), Equation 4.1. Due to the normalisation of the 2D cross-

correlation, the detected image regions are unaffected by the template tonal or contrast 

values. 

The edge angle was adjusted to detect various angled edges. Through testing the matched 

filter, the angle tolerance was measured to be 2.5 degrees. To obtain an angle range of 2.5 

to 42.5 degrees, 16 ROI angles are required with an interval of 2.5 degrees. This range is 

doubled when mirroring the ROI templates to acquire the angle range ­42.5 to ­2.5 degrees 

and doubled again to obtain both vertical and horizontal orientations, resulting in 64 matched 

filter convolution pass-throughs to detect natural scene step-edges.  

Only one ROI window size and one tanh function were used in this study. The number of 

targets would need to be expanded to obtain various ROI sizes and edge gradients, doubling 

the number of convolutions for every new variable.  

This workflow targets only step-edges; therefore, no additional processing is required to 

filter out unsuitable ROIs for the slanted edge method. 
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3.2.3 Comparison between Edge Detection Workflows 

The two workflows approach step-edge detection in opposing directions; both methods have 

advantages and disadvantages. Workflow 1 (Canny edge detection) takes a top-down 

approach, selecting edges with an assortment of edge profiles that need to be down-selected 

to include only step-edges. On the other hand, workflow 2 (matched filter) takes a bottom-

up approach; ROIs are gathered and built up through each pass-through of the matched filter, 

isolating ROIs with pre-determined parameters. 

Canny edge detection is computationally faster but requires additional processing time to 

down-select the edges. The matched filter is computationally heavy but requires no 

additional processing. Matched filter computation time can be reduced through processing 

in the frequency domain and utilising acceleration from a Graphics Processing Unit (GPU). 

The advantage of Workflow 2 is the accuracy of obtaining step-edges from natural scenes. 

Nonetheless, there was a significant obstacle with the matched filter; it was proven to be too 

selective. In natural scenes, the probability of obtaining near-perfect step-edges (cf. § 2.1.3), 

with uniform tones on either side, is low due to many natural scene step-edges containing 

unwanted artefacts, including image noise, compression artefacts, signal processing 

artefacts, scene textures, and neighbouring edges. In addition, the modulation content of the 

edge across the spatial frequencies will vary throughout the scene (cf. § 2.9). The matched 

filter is not suited to include such a broad range of possibilities and cannot select all 

appropriate edges from a natural scene image. This is a consequence of a set range of 

templates, which cannot account for all possible edge features without excessive 

computation. 

A top-down approach was therefore deemed more appropriate for the development of the 

NS-SFR measurement method. The Canny edge detection workflow is used in the 

framework despite additional processing requirements. The pilot study showed that, after the 

deselection process, there were still unsuitable anomalous ROIs being selected. However, 

this noise is significantly reduced through further analysis and isolation improvements, such 

as pixel stretching (cf. § 3.3.2). This approach also allows parameter fine-tuning without 

redesigning the edge detection process, such as introducing variable ROI window crop sizes 

to best isolate an edge of interest. 
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3.3 Region of Interest Selection, Isolation and Verification 

This section details the processes implemented after obtaining the edge location binary 

images from the Canny edge detector. First, the ROI windows are cropped from the 

linearised image, using the detected edge locations (cf. § 3.3.1). Second, the edge of interest 

within each ROI is isolated using the pixel stretching filter (cf. § 3.3.2). Finally, each ROI 

passes through a step-edge validation process (cf. § 3.3.3). 

3.3.1 Region of Interest Selection 

Before cropping the ROI windows, the binary images go through a series of pre-processes. 

The horizontal and vertical edge locations are compared, any image location with 

overlapping edge coordinates is removed. The horizontal binary image is rotated 90 degrees 

so that both edge orientations have the same directional ROIs. This allows all the following 

processing to be the same for horizontal and vertical edges.  

The binary images are then filtered to remove edges in close proximity. Edges that are too 

close together cannot be used in the slanted edge method due to ESF overlap. In addition, 

close proximity edges commonly relate to scene areas of high busyness, which is not ideal 

for isolating step-edges without unwanted scene artifacts (scene texture and other edges). 

The proximity filter can be broken down into the following processes; first, a new matrix is 

created, the same size as the binary image being used, 𝐵𝑊𝑃. The distance between each 

neighbouring edge location coordinate per image row is calculated. This calculation is 

implemented by taking the first pair of neighbouring coordinates, 𝑥𝑀 and 𝑥𝑁. The threshold 

𝑇1 is used to determine whether the edge coordinates are at an appropriate distance. If the 

distance is greater than the 𝑇1 the two coordinates are accepted, and their coordinates in 𝐵𝑊𝑃 

are set to one (𝐵𝑊𝑃(𝑥𝑀, 𝑦) and 𝐵𝑊𝑃(𝑥𝑁, 𝑦)); otherwise, they are both set to zero. This 

process is then repeated for the next pair of neighbouring coordinates in the row, this time 

𝑥𝑁 becomes the 𝑥𝑀 coordinate. If 𝑥𝑀 was set to zero in the previous cycle, it will remain 

zero even though the new set of coordinates may be of appropriate distance. This is because 

the previous coordinate pair is too close and must remain deselected. In the framework 𝑇1 is 

set at five pixels, meaning all edges need to be at least five pixels apart. 

The threshold of five pixels is set based on the system MTF model (cf. § 2.2.3), derived for 

the DSLR system used in this project, the Nikon D800 DSLR. As previously shown in Figure 
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2.6, the out of phase MTF (minimum performance) has an ESF distribution of 3.7 pixels. 

Hence, these edges must be at least this distance apart to be isolated without ESF crossover. 

This modelling provides the NS-SFR framework with a method to determine edges of 

interest that can be successfully isolated with an ESF mask (cf. § 3.3.2). The number of 

pixels was rounded up to five to add a margin to account for some further performance 

degradation from other system components (cf. § 2.2.3). The proximity filter does not limit 

the edge isolation to ESFs with a distribution of 5 pixels and below, as edges of greater 

gradients will be isolated from scene areas with fewer neighbouring edges. The threshold 

should be adjusted based upon the camera system of interest, calculating the ESF distribution 

using Equation 2.22. 

A second threshold, 𝑇2, is employed to define a minimum pixel distance. This threshold is 

set at 1 pixel; in other words, if two pixel coordinates are touching, they are likely to be from 

the same staircase edge. Thus, in such cases, they are both treated as one edge coordinate. 

Equation 3.2 details these logical procedures per cycle of the proximity filter: 

𝑖𝑓       (𝑥𝑁 − 𝑥𝑀) ≥ 𝑇1                         𝐵𝑊𝑃(𝑥𝑀, 𝑦) = {  
1        𝑖𝑓 𝐵𝑊𝑃(𝑥𝑀, 𝑦) ≠ 0
0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                        𝐵𝑊𝑃(𝑥𝑁 , 𝑦) = 1  

    

𝑒𝑙𝑠𝑒 𝑖𝑓  (𝑥𝑁 − 𝑥𝑀) = 𝑇2                  𝐵𝑊𝑃(𝑥𝑀, 𝑦) = { 
1        𝑖𝑓 𝐵𝑊𝑃(𝑥𝑀, 𝑦) ≠ 0
0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                                                        𝐵𝑊𝑃(𝑥𝑁 , 𝑦) = {  
1        𝑖𝑓 𝐵𝑊𝑃(𝑥𝑀, 𝑦) ≠ 0
0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  𝐵𝑊𝑃(𝑥𝑀, 𝑦) = 0 

                                                         𝐵𝑊𝑃(𝑥𝑁 , 𝑦) = 0 

 

(3.2) 

After the proximity filter is applied to both binary images, the height of the selected edges 

is measured. Any edge found to be shorter than 20 pixels is deselected as it is too short for 

the purpose of NS-SFR measurements (cf. § 4.4). 

At this stage, the binary images are ready to be used to crop the edges into ROIs. The aim is 

to automatically select ROIs and adjust the window size to best suit each edge. Therefore, 

the coordinates for the crops are determined through the MATLAB bounding box in the 

regionprops function [133] from the Image Processing Toolbox [132]. This function 

provides top left corner coordinates with the height and width to give each binary object 
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(edge) a bounding box. However, these coordinates provide a boundary that presses against 

the edge width. Thus, all the coordinates are expanded by ten pixels, five pixels on either 

side of the edge. This is based on the camera system MTF model and ensures that the ROI 

boundaries do not hinder the ESF distribution. In addition, any widths smaller than twenty 

pixels are expanded to meet this minimum threshold, minimising the error in the NS-SFRs 

(cf. § 4.4). 

When cropping edges from natural scenes, tall edges are more likely to contain unwanted 

artifacts, such as depth of field changes across the edge, intersecting edges and illumination 

non-uniformity. Thus, small ROIs are desired from natural scenes, however, too small ROIs 

have been shown to introduce bias to the e-SFR (cf. § 2.4.1); a height of 128 pixels provides 

a good balance (cf. § 4.3), as well as being a commonly used benchmarking ROI size [22, 

63, 134]. Therefore, the height of the box boundaries is also adjusted; with the goal height 

of 128 pixels, any edge greater than this height is broken down into smaller boundaries. The 

goal height is prioritised before extracting smaller boundary heights. These new boundaries 

are governed by previously set thresholds, including the minimum edge height and boundary 

width.  

Once boundary coordinates are established, they are used to crop the ROI windows from the 

linearised image. The image is rotated 90 degrees for the horizontal edge crops to match the 

previously rotated binary image. 

Figure 3.2 illustrates the processes in the framework to isolate step-edges. This flowchart 

also details edge masking before edge isolation (cf. § 3.3.2) and step-edge validation (cf. § 

3.3.2). 
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Figure 3.2 The ROI selection process, adjusting the box boundaries for cropping the ROIs, 

measuring the ESF mask and applying the pixel stretching (cf. § 3.3.2), then validating that the 

selected ROIs contain the required step-edge profile (cf. § 3.3.2). The position in the framework is 

shown in Figure 3.1, marked with A. [124]. 
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3.3.2 Edge Isolation – Pixel Stretching 

There are image structures other than the desired edge of interest in many ROIs extracted 

from pictorial natural scenes; it is rare to find a scene step-edge with uniform tones on both 

sides of the ROI. Therefore, once the potential ROIs are cropped, the edge of interest is 

isolated, ensuring any unwanted scene content is removed from the ROI. This isolation is 

achieved by developing the pixel stretching filter, influenced by the filtered tails procedure 

[83] (cf. § 2.7.1), a filter that blurs either side of an edge to reduce noise error.  

Before applying pixel stretching, the ESF mask for each ROI is first obtained. The ESF mask 

is the area of the ROI where the edge and its distribution are located; it is created by finding 

where the gradient on either side of the edge location becomes uniform. A threshold is set to 

account for the image noise floor, a static normalised pixel value of 0.02, anything under 

this value is considered uniform. This value was empirically determined to detect image 

noise and low contrast scene content. Ideally, it should be adaptable to the individual ROIs, 

accounting for image noise and scene texture. Next, a dilation of three pixels is applied to 

expand the ESF mask border to ensure that the ESF is within this masked area. The ESF 

mask is illustrated in Figure 3.3. The ROI crop and the corresponding ESF mask are used as 

the input to the pixel stretching. This procedure is depicted in the flowchart in Figure 3.4 

 

Figure 3.3 Depiction of the ESF mask [76]. 
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Figure 3.4 Flowchart highlighting the steps for the pixel stretching filter.  The position in the 

framework is shown in Figure 3.2, marked with A.1. [124]. 
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The mask boundary coordinates to the left (xL,y) and right (xR,y) are located for each pixel 

row in the ROIs. Two T-shaped median values are measured from neighbouring pixel values. 

The left value is measured using the coordinates (xL,y), (xL-1,y), (xL-1,y-1) and (xL-1,y+1). 

Whilst the right median is calculated from (xR,y), (xR+1,y), (xR+1,y-1) and (xR+1,y+1). These 

median values are then used to fill the entire row of the ROI without touching the ESF within 

the masked area, as illustrated in Figure 3.5. Only one side is stretched if the ESF mask is at 

the ROI boundary.  

This pixel stretching filter can introduce a streaking artifact in the ROIs, caused by changes 

in the median value. Although sampling multiple rows by the T-shape median does help to 

reduce this artifact, under high image noise, streaking may still occur. Therefore, a weighted 

Gaussian blur is applied to reduce this artifact. The filter is weighted one in the opposite 

corners of the ROI furthest from the edge and is reduced to zero as it approaches the ESF 

mask boundaries, preserving the edge of interest. The weight values from zero to one follow 

a square power function, meaning the rate of change increases as it approaches one. 

Figure 3.6 illustrates the pixel stretching filter on two simulated edges, a noiseless ROI and 

a ROI containing a high noise level (SNR 4). As intended, the filter helps to isolate the edge 

of interest. The streaking artifact is present in the ROI with high noise, and the blur from the 

weighted Gaussian is demonstrated.  

 

Figure 3.5 Illustration of the T-shaped median coordinates and how they were used to 

fill each pixel row, i.e. stretching the median pixel value. [76]. 



 69 

 

After testing the pixel stretching on simulated step-edges created using a tanh function, 

Equation 4.1 (cf. § 4.2.3), at various levels of simulated image noise (cf. § 2.10), it was 

observed that, as long as the ESF distribution is not affected, no error is introduced to the e-

SFR compared to the noiseless edge input. 

The pixel stretching was shown not only to improve edge isolation, increasing the number 

of edges that are isolated from a natural scene image at appropriate ROI window sizes, but 

also to reduce the corruptive nature of noise (cf. § 3.3.2.1) and non-uniformity (cf. § 3.3.2.2) 

on the e-SFR. 

3.3.2.1 Noise Reduction 

Image noise introduces positive bias to the high frequencies of e-SFRs [39, 56, 63] (cf. § 

2.5.1). The filtered tails procedure [83] (cf. § 2.7.1)  is a filter that blurs either side of a noisy 

step-edge, implemented to reduce this bias effectively. As this procedure inspired the 

development of pixel stretching, they share the same noise reduction benefits. 

Figure 3.7 demonstrates the noise reduction from the pixel stretching filter. Five tanh ROIs 

were simulated with different noise levels. These noise levels were simulated using Poisson 

and Gaussian distributions to model shot and read noise (cf. § 2.10 & 4.2.3). The SNR was 

 

Figure 3.6  An example of edge isolation using the pixel stretching on simulated 

ROIs, one noiseless and the other with a noise level of SNR 4. [76]. 
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measured using 13% of the system saturation (cf. § 2.10), Equation 2.43. The e-SFRs were 

measured and plotted without and then with the implementation of pixel stretching.  

The results are clear; pixel stretching reduces high-frequency noise corruption. This SFR 

noise reduction is valuable when extracting edges from natural scenes. Unlike well-

illuminated test charts, natural scene images can be captured under various illumination 

conditions, requiring different system gain settings resulting in different system noise levels. 

In addition, high-frequency scene textures are also a form of noise that can introduce similar 

positive bias and be reduced with the pixel stretching filter. 

3.3.2.2 Non-uniformity Reduction 

Non-uniform illumination is problematic when extracting step-edges from natural scenes 

[77] (cf. § 2.5.2). Due to the pixel stretching filter masking the ESF and filling the ROI with 

an average value on either side of the edge, much of the non-uniformity is diminished. 

However, it is not eliminated since non-uniformity is maintained within the ESF mask. 

Figure 3.8 demonstrates the effects of pixel stretching on simulated non-uniform ROIs. The 

non-uniform illumination was simulated by creating low-frequency gradients (step-edge 

containing no modulation in high-frequencies) at five angles, 0° to 180°. These gradients 

ranged in pixel values from 0 to 43 (8-bit) and were added to the simulated ROIs.  

 

Figure 3.7  These two graphs illustrate the effect that the pixel stretching edge isolation has on 

ROI with high noise, SNRs 25, 12, 6 and 3. On the left are the resultant e-SFRs from these ROIs 

without pixel stretching, and on the right are e-SFRs from the same ROIs but applying pixel 

stretching [124]. 
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The simulated data shows how the pixel stretching reduces the tone changes on either side 

of the ESF. In turn, it stabilises the resultant e-SFR measure. Although the reduction in error 

from illumination non-uniformity is significant and allows such ROIs to be used, the pixel 

stretching filter does not entirely remove the error introduced. 

3.3.2.3  False Sharpening Artifacts 

When applying pixel stretching to natural scene ROIs, it was observed that it would amplify 

a false sharpening artifact. False sharpening refers to tonal values on either side of the edge, 

creating a lobe in the ESF, imitating the effects of sharpening algorithms on edges (cf. § 

2.4.2). Such ROIs result in NS-SFR overestimation. Note that the pixel stretching does not 

 

Figure 3.8  A demonstration of how the pixel stretching edge isolation reduces the effects of non-

uniform illumination in the ISO12233 e-SFR. The left shows the ESF and SFR from ROIs with a 

low-gradient overlay. On the right are the same ROIs but using pixel stretching [124]. 
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introduce the artifact but amplifies it; the scene tonality and illumination around the edge are 

the most common causes.  

Three natural scene ROI examples are shown in Figure 3.9. First, ROI a) illustrates a building 

corner, where the light and shadow create a highlight and a shadow on either side of the 

edge. Next, ROI b) illustrates a curved corner, where the diffused reflection around the edge 

has caused a highlight increase. Finally, ROI c) provides an example of chromatic aberration 

also causing this false sharpening artifact.  

This artifact can be problematic when estimating the system e-SFR (cf. § 5.1). On average, 

39% of the NS-SFRs gathered from the DSLR 1 and 2 datasets (cf. § 5.3.1) are above the 

expected ISO12233 e-SFR envelope (measured between 0 and 75% of the Nyquist 

frequency, to remove frequencies biased from noise). However, when using an extensive 

dataset of images, these types of ROI are deselected if the LSF is too wide (cf. § 5.1.3) or 

averaged out during the system e-SFR estimation (cf. 5.1.4). 

 

Figure 3.9 Three examples of false sharpening occurring in natural scene ROIs. Each example 

is illustrated without and with pixel stretching, and the pixel stretched ESFs and NS-SFRs are 

plotted. 



 73 

 

3.3.3 Step-Edge Validation 

As discussed (cf. § 3.2), the Canny edge detector locates edges with various edge profiles. 

Therefore, the framework must deselect edges that do not have the suitable step-edge profile 

for the slanted-edge method. To achieve this, after the ROIs are cropped and the edge of 

interest isolated, they are placed through a step-edge validation process. 

The principle of the step-edge validation method is straightforward; if there is a single 

increase or decrease in the edge gradient above the noise floor, then a step-edge is present. 

This logic is illustrated in Figure 3.10. The method flowchart is outlined in Figure 3.11. 

 This method is implemented by taking each row from a potential ROI, measuring its 

gradient. If the gradient meets the requirements, that row is marked as a confirmed step-

edge. Any unwanted edge profiles are detected, as shown in Figure 3.10. As with creating 

the edge mask (cf. § 3.3.2), a static normalised pixel value of 0.02 is used as the gradient 

threshold to define the uniform values, taking into consideration the noise floor. 

 

Figure 3.10 These seven ROIs contain various edge profiles, including step edges, staircase 

edge, line edge, roof edge, and trough edge. This diagram describes how the measured gradient 

can successfully determine useable step edge ROIs [76, 124]. 
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Figure 3.12 further demonstrates how the method reacts with image noise at high and low 

edge contrast. This figure plots a ROI in three-dimensional (3D) space. Without noise, the 

single positive gradient is apparent. The gradient is still detectible for the same edge with 

high image noise. Gradients in the uniform areas of the noisy ROI are highlighted as the 

noise exceeds the gradient threshold. The edge contrast must be above the noise floor, 

otherwise the step-edge is not detected.  

 

Figure 3.11 Step-edge validation flowchart describing the process to select only step-edge 

ROIs. This process is marked with A.2 in the framework in Figure 3.2 [124]. 
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A suitable gradient threshold is important. If the threshold is too low, the method will be 

sensitive to noise. On the other hand, low contrast scene content is missed if it is too high, 

potentially validating unwanted edge profiles. 

Once the ROI row gradients are measured, the percentage of them with a confirmed step-

edge is computed. If this percentage exceeds the set threshold, the ROI is selected as 

containing a step-edge. The percentage threshold is set at 50% of the ROI. 

These thresholds are both constant and were determined using an empirical examination of 

NS-SFRs taken from the DSLR 1 image dataset (cf. § 5.3.1). The gradient and percentage 

thresholds are set in conjunction. The examination determined the best balance between the 

two thresholds to obtain robust NS-SFRs, minimising anomalous data. 

The gradient threshold is set to be sensitive to low contrast edges, allowing the detection of 

scene content; however, this will also include system noise. As noise is random, the rows 

labelled as non-step-edges are randomly distributed through the ROI, whilst non-step-edge 

rows due to scene content are in concentrated areas of the ROI. The percentage threshold 

provides a counterbalance to the sensitive gradient threshold. Low contrast scene content is 

detected, and the ROI removed, whilst this threshold allows ROIs with some noise to pass. 

ROIs with noise exceeding 50% of the rows is not ideal and are deselected. 

The use of a single camera system means that the thresholds are tailored specifically for this 

DSLR system. Ideally, rather than using static thresholds, further work should determine an 

adaptive threshold based on the noise floor to better match each natural scene ROI (cf. § 

7.2.2). 

 

Figure 3.12 Depiction of the step-edge verification process. 0.1 is the gradient threshold in this 

example, any gradient above this threshold is marked. 
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3.4 Removal of Anomalous ROIs 

Although the framework has thus far selected and then validated step-edges from the natural 

scene data, ROI errors and anomalies are still problematic. After edge verification, several 

further stages are implemented to ensure that such ROIs are removed before inputting them 

into the slanted-edge algorithm. 

3.4.1 Non-Uniformity Streaking Detection  

Pixel stretching helps reduce the effects of low-gradient non-uniformity (cf. § 3.3.2.2). 

However, it may cause a streaking artifact with high noise or unwanted scene content 

intersecting the edge of interest (cf. § 3.3.2). This artifact can create areas of non-uniformity 

under extreme circumstances; selecting a mean value that is too high or too low compared 

to the surrounding pixels introduces heavy streaking. ROI b) in Figure 3.13 is a simulated 

example of this. 

To detect such areas, each ROI has two vertical gradients measured from either side of the 

ESF mask boundary. These gradients are demonstrated in Figure 3.13. The framework flags 

the ROI rows where the gradient increases above the gradient threshold, once again set at 

0.02 (cf. § 3.3.2 & 3.3.3). 

 

Figure 3.13 Simulated demonstration of the two vertical gradients following the ESF mask 

boundary. These gradients are used to detect areas of non-uniformity in the isolated ROIs.  
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3.4.2 Multidirectional Edges Detection 

Other than the horizontal and vertical orientation separation (cf. § 3.2.1), the direction of the 

edges have not yet been examined. Although every ROI contains an edge in one orientation 

(horizontal or vertical), the edge may change direction. The direction of each edge is 

therefore examined in the x and y space. Ideally, both dimensions should either have a 

positive or negative increase throughout the ROI. If the edge has a sudden change in 

direction, the ROI row is flagged. 

Figure 3.14 demonstrates a simulated edge with a) two changes in the x-direction and b) two 

changes in the y-direction. When there is an x-direction change, the ROI is easily segmented 

at the flagged ROI row. However, areas of the ROI with a change in the y-direction are 

unwanted and are flagged.  

A slight change in edge direction in the form of curvature is permitted. Curved edges are 

corrected for in the sfrmat4 slanted-edge algorithm [87] (cf. § 3.5). 

Once the position of non-uniform areas and changes in the edge direction are detected, the 

ROI is segmented into new smaller ROIs, removing the rows containing non-uniformity and 

y-direction changes. The height of the segmented ROIs must be greater than the minimum 

threshold (20 pixels (cf. § 3.3.1)).  

 

Figure 3.14 Simulated illustration of the detection and segmentation of unwanted changes in the 

a) x and b) y edge directions.  
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3.5 The NS-SFR Measure 

So far, the framework has extracted, isolated, and verified step-edges from natural scenes. 

The next stage is measuring the NS-SFRs. This measurement is shown in the Figure 3.15 

flowchart.  

The SFR calculation is achieved using the ISO12233:2017 e-SFR slanted-edge algorithm 

[5]. Rather than using linear edge fitting, as described in the standard, a third-order 

polynomial fitting is used to allow curved edges to be used without introducing error (cf. § 

2.7.1) [86, 135]. Burns’ established sfrmat4 MATLAB code [87] is used for this purpose. 

Minor adjustments were made to the sfrmat4 code, which have not impacted the slanted-

edge algorithm itself. The adjustments allow edge angle and contrast to be recorded, as well 

as indicate whether clipping is present; the original sfrmat4 code was already calculating 

these three analytical measurements, but they were not output. 

 

Figure 3.15  Flowchart depicting measuring the NS-SFR from the validated ROIs. This process 

is marked with ‘B’ in the framework in Figure 3.1 [124]. 
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Unlike test charts, natural scene edges are unlikely to be neutral, resulting in higher 

luminance contrast in one colour channel; for example, an edge between a wall and the sky 

will have a predominant blue channel, with low contrast red and green channels. Hence, an 

NS-SFR cannot always be measured for each channel. Thus, only the luminance values of 

the ROI are used in this project to simplify and mitigate this issue. This is achieved by the 

following conversion [136, 137]: 

𝐿 =  0.299 𝑅 +  0.587 𝐺 + 0.114 𝐵 (3.3) 

where 𝐿 is luminance, and 𝑅, 𝐺, 𝐵 refer to the pixel responses of the red, green, and blue 

colour channels. 

Although extensive ROI isolation and verification is implemented in the framework, 

unsuitable ROIs still can make it through to this stage. For example, errors caused by 

incorrect edge location due to the edge having a curvature that cannot be characterised with 

a third order polynormal, such as a complex ‘S’-shaped edge.  These ROIs are identified 

before an error can occur in the sfrmat4 code, and the ROIs are deselected.  

Once the NS-SFRs in an image are measured, they undergo a process to filter out results 

with high noise. An e-SFR should theoretically follow half of a bell-shaped curve; however, 

NS-SFRs can contain noisy scene data, drastically distorting this curve. Such measurements 

are removed to reduce bias in the results. This is achieved by fitting a fourth order 

polynomial to each NS-SFR curve. If the absolute error between the data and fitted function 

exceeds 0.1 modulation, the data is deselected. This modulation threshold was chosen 

empirically based on DSLR and smartphone NS-SFR data (cf. § 5.3.1). It provides enough 

tolerance to permit NS-SFRs with sharpening lobes and bias from high-frequency image 

noise, but is stringent enough to remove the anomalous NS-SFRs that do not conform to the 

correctly shaped e-SFR curve. 

3.6 Initial Testing: The Image NS-SFR Envelope 

After the NS-SFR framework was established, tests were conducted to i) ensure correct ROIs 

were being extracted, ii) observe any correlation between the natural scene and NS-SFRs, 

and iii) find the relation to the equivalent ISO12233 test chart measure. The DSLR 1 image 
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dataset (cf. § 5.3.1) was used in this testing; the DSLR 1 camera system was characterised 

using the established ISO12233 slanted-edge method.  

A pilot study was first carried out to determine if the NS-SFR framework can isolate 

straightforward step-edges before more complex natural scene edges. The test chart image 

used to characterise the system was passed through the framework. Figure 3.16 plots the 

vertical e-SFR envelopes, devised from both manually selecting the ROIs, as per the 

ISO12233, and the framework isolation. SFR envelopes were defined through three curves, 

the 5th and 95th percentiles of the data, and a weighted mean. These two percentiles define 

the statistical position of 90% of the measured e-SFR performance, which was selected to 

remove the outliers. The weights used for the mean were based on the radial distance from 

which the ROI is located in the frame. The centre ROIs were weighted by 1.00, part-way 

was weighted 0.75 and corners 0.50. These weights are the same default zone weight values 

that Imatest use in their MTF evaluation software [74]. Comparing these two envelopes show 

that the framework isolates the correct step-edges and forms a matching e-SFR envelope. 

The negligible variation between the two envelopes is due to the bias introduced by the pixel 

stretching technique, as previously discussed (cf. § 3.3.2). Also, ROI heights of 128 pixels 

and smaller were isolated when using the framework (cf. § 3.3.1), rather than taller ROIs 

from a manual selection process, introducing variation. 

The NS-SFR framework was applied to a small dataset of 30 natural scene images, captured 

with the DSLR 1 system (cf. § 5.3.1). These 30 images were intentionally selected to provide 

 
Figure 3.16 The e-SFR envelope compares the manual isolation of test chart edges with those 

extracted using the NS-SFR framework [76]. 
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optimal conditions for the NS-SFR framework. They are captures of well-illuminated scenes, 

with minimal system noise, containing many step-edges and captured with a large depth of 

field. 

Figure 3.17 illustrates the vertical NS-SFR envelope for four of these scenes compared to 

the equivalent envelope devised from the standard method. These envelopes were defined 

using the same three curves as Figure 3.16, the weighted mean, the 5th and 95th percentiles. 

This data provided important observations of NS-SFR characteristics, indicating that the NS-

SFRs are a function of both the system performance and scene content.  

The first observation is that the NS-SFR envelope is highly dependent on the location of the 

ROIs extracted from the field of view. This variation is because optical performance changes 

across the frame (cf. § 2.4.3). Thus, when most ROIs are isolated from the frame corners, 

such as in Image 1, the NS-SFR envelope is positioned towards the lower performance side 

of the test chart. In contrast, if the majority of ROIs are extracted from the frame centre, such 

as in Images 2 and 3, the NS-SFR envelope is positioned in the higher performance region 

of the test chart envelope. When the ROIs are evenly distributed across the frame, such as in 

Image 4, the NS-SFR and chart e-SFR envelopes match well. 

There is an increase in high-frequencies in the NS-SFR of all four images. Usually, this is 

an effect of image noise (cf. § 2.5.1). Noise, however, is not an issue because these scenes 

are captured with low ISO gain settings. This observation confirms that the high-frequency 

scene texture acts as noise, increasing the NS-SFR in the high-frequencies. As mentioned 

above, Image 1 provides a low-performance NS-SFR envelope, although rather than 

decreasing to zero as frequency increases, the 95th percentile forms a plateau at 0.2 

modulation, a noise floor of the increased frequencies. 

Some NS-SFRs are over- and others are under-estimated compared to test chart e-SFRs. The 

underestimated SFRs are due to the scene content; many natural scene step-edges do not 

contain higher modulation than the system capture capabilities through the frequency 

bandwidth, i.e. suitable step-edges for a system e-SFR estimation (cf. § 2.9). Thus, after the 

system degrades the signal, the NS-SFR are lower than the system's performance, shown in 

Figure 2.3. Overestimated NS-SFRs are because anomalous edge profiles pass through the 

framework due to the ROI content or false sharpening, as previously discussed (cf. § 3.3.2.3). 
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Figure 3.18 shows the mean weighted average from all 30 scene images. The result is a close 

approximation of the average test chart e-SFR envelope. Less suitable scenes are expected 

to introduce higher variation, due to high image noise, out of focus edges, shallow depth of 

field and a range of focus distances (cf. § 2.9). Therefore, the next step to estimate the system 

e-SFR with adequate accuracy from NS-SFRs is to analyse and isolate the data with the least 

variation introduced by scene and system. 

 
Figure 3.17 The NS-SFR envelope from four natural scenes compared to the equivalent test 

chart e-SFR envelope. The envelopes are outlined by the 5th and 95th percentiles of the data and 

a weighted mean [76]. 
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3.7 Summary 

This chapter has given an in-depth account of the proposed methodology designed to 

measure NS-SFRs from pictorial natural scenes, justifying each process used and 

highlighting the areas that would benefit from further development. 

In summary, the edge locations in natural scene captures are first extracted using the Canny 

edge detector [123]. The resultant edge locations are used to crop the regions of interest 

(ROIs) of appropriate window sizes. The pixel stretching filter was developed to improve 

edge isolation and thus increase the yield of ROIs from a scene. Further benefits of this filter 

are decreasing the bias of image noise and illumination non-uniformity on the e-SFR. Each 

ROI go through a process to validate that it contains a step-edge. Where appropriate, the 

ROIs are segmented into smaller ROIs to remove areas with non-uniformity streaking and 

split an edge of interest if the edges have a drastic direction change. The selected ROIs are 

then placed through the standard ISO12233 slanted-edge algorithm to measure the NS-SFRs. 

Burns’ sfrmat4 is utilised for this purpose [87].  

 

Figure 3.18 The mean of the weighted average NS-SFR envelopes of 30 natural scenes 

compared to the mean of a test chart e-SFR envelope [76]. 
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An initial implementation of this framework was applied to 30 natural scenes, chosen for 

being well suited to this method. The results showed that the measured NS-SFRs strongly 

correlate with the ISO12233 e-SFRs. But, in contrast to laboratory-based measurements, the 

system and scene dependencies of the NS-SFR measurements are not controlled, resulting 

in NS-SFR envelopes that vary from scene to scene. 

Assuming the system is linear, the system and scene dependencies that impact the NS-SFR 

envelopes are classified as:  

NS-SFR system dependencies  

• The PSF of the system hardware, including the sensor, optical system, and 

aperture (cf. § 1.1). 

• The ROI edge location in the field of view (due to the natural variation of optical 

performance across the imaging circle) (cf. § 2.4.3). 

• The optical depth of field controls how much of the scene is in focus (cf. § 2.9). 

• The focus distance of a lens impacts system performance. Natural scene captures 

have a range of focus distances (cf. § 2.9). 

• System image noise from the system hardware, introducing bias to the NS-SFRs 

(cf. § 2.10). 

NS-SFR scene dependencies  

• Unsuitable step-edge inputs, underestimating the e-SFR as they contain low 

modulation across the camera spatial frequency bandwidth (cf. § 2.9 & 3.5). 

• High-frequency scene texture, introducing bias to the NS-SFRs (cf. § 3.5). 

• Illumination changes around an edge of interest, forming non-uniformity or false 

sharpening (cf. § 3.3.2.3). 

This separation between system and scene dependencies overlaps when measuring the NS-

SFR from a non-linear system. Non-linear sharpening and denoising will depend on the local 

scene content (cf. § 2.4.2), which will locally affect the PSF. In addition, many modern 

systems use illuminance thresholds to set the strength of various processes, adding further 

scene dependency; for instance, lower light conditions will require higher noise reduction.  

The following two chapters aim to estimate the system e-SFR performance from NS-SFRs. 
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Chapter 4 Sources of Variation in the Edge-Based 

Spatial Frequency Response 

Sources of variation in the standard e-SFR must be first understood to estimate the 

system e-SFR from the NS-SFR data. Natural scene ROIs contain an assortment of 

edges with different parameters, introducing large variations in the data. Hence, these 

must be known and given consideration when developing the estimation 

methodology (cf. § 5.1). 

This chapter details research into the ISO12233 e-SFR input parameters, expanding 

upon previous publications (cf. § 2.4.1) and applying application-specific variables, 

including pixel stretching (cf. § 3.3.2). The study uses simulated and captured edges 

to determine the variation introduced when changing single and multiple parameters. 

The aim is to provide a range of edge characteristics to obtain a stable system e-SFR 

estimation without excessively restricting NS-SFR data within which the ideal step-

edges are rare. 

4.1 Edge and ROI Parameter Variation 

As reviewed (cf. § 2.4.1), the input edge and ROI parameters impact the slanted-edge 

method, causing variation in the e-SFR [5, 61, 63, 64]. The ISO12233 standard [5] minimises 

this variation by controlling the edges through a test chart captured in controlled laboratory 

environments. The established ranges/values: 

i) Edge angle of approximately 5° [5]. 

ii) Edge Contrast between 0.55 and 0.65 Michelson Contrast [5]. 

iii) ROI window width greater than 64 pixels [63, 69]. 

iv) ROI window height between 80 to 500 pixels [63, 64]. 

When the slanted-edge algorithm is implemented using natural scenes, the parameters are 

no longer contained within these ranges, and suitable step-edge profiles are rare. If the 

established parameters, as mentioned above, were kept, few ROIs would be available for the 

e-SFR estimation. Furthermore, those selected edges cannot be guaranteed to be suitable for 

the SFR measure, i.e. contain modulation higher than the rendering capabilities of the system 
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(cf. § 2.1.3 & 2.9). The parameter values need to be re-evaluated to establish a selection 

range that isolates stable NS-SFRs for the system e-SFR estimation. The question now 

becomes, to what extent can the parameter ranges be set to provide good estimation while 

incorporating as many natural scene edges as possible.  

4.2 Variation Study Methodology 

This study builds upon previous publications that evaluated the slanted edge method [28, 

61–64, 69] (cf. § 2.4.1), many of which follow similar methods. A series of ROIs are 

typically simulated or captured using a characterised camera system, and a single parameter 

is adjusted to evaluate the variation introduced. Image noise or processing may also be added 

to the test ROIs.  

This study followed a similar approach; the objective was to benchmark the e-SFR variation 

with attributes specific to NS-SFRs, including edge and ROI parameters, listed below, pixel 

stretching edge isolation (cf. § 3.3.2) and image noise (cf. § 4.2.3). The Mean Absolute Error 

(MAE) was calculated between e-SFRs from an edge with the recommended parameters and 

an edge with varied characteristics to assess the variation (cf. § 4.2.4). 

The tested parameter ranges are as follows: 

• Ten edge angles were used, ranging between 5° to 40°, with 5° intervals. As 0° and 45° 

cannot produce a resampled ESF (cf. § 2.4.1), 2.5° and 42.5° were used to evaluate 

variation close to these ineffective angles.  

• Thirteen edge contrast values were used, ranging between 0.07 and 0.92 Michelson 

Contrast, with intervals of 0.07.  

• Seventeen ROI window heights were used, ranging from 20 to 180 pixels, with an 

interval of 10 pixels. An eighteenth ROI height was isolated at 128 pixels, a commonly 

used ROI height for benchmarking the e-SFR [22, 63, 134], providing the base height, 

i.e. a constant height for assessing the other parameters. 

• Sixteen ROI window widths were used, ranging from 10 to 85 pixels, with an interval of 

5 pixels. As with the ROI height, an additional ROI width was used as the base width, 

also set at 128 pixels. These base ROI height and width provide square ROIs to assess 

the steep edge angles. ROI widths between 85 and 128 pixels were not measured because 

narrow ROIs were of particular interest in isolating step-edges from natural scenes.  
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4.2.1 Simulated Step-Edges 

A tanh function, see Equation 4.1, was used in conjunction with the MATLAB function 

meshgrid [138] to simulate the step-edge 2D ROIs. The ROI window size, edge angle, 

contrast and edge gradient were controlled independently. These simulated step-edges were 

passed through sfrmat4 code [87] to establish the resulting e-SFR. 

The tanh function simulates an ESF profile, ESF𝑠𝑖𝑚(𝑥), across distance 𝑥, expressed by [60]: 

where 𝑓 controls the frequency content of the edge, i.e. the slope of the ESF profile, and 𝐸 

represents the maximum and minimum pixel values on either side of the edge. 

This step-edge simulation technique was implemented to obtain 4,420 ROIs, each containing 

a different combination of the parameters of interest (cf. § 4.2). The mean pixel value was 

kept at 0.5 throughout the various contrast simulations. Not every combination of the edge 

parameters was required; this study focused on the following three: 

i) a base ROI window size of 128x128 pixels, with the entire angle and contrast value 

ranges (as demonstrated in Figure 4.1),  

ii) a fixed ROI height of 128 pixels with all parameter combinations of angle, contrast, 

and ROI width (as demonstrated in Figure 4.2),  

iii) a fixed ROI width of 128 pixels with all parameter combinations of angle, contrast, 

ROI height and noise values (as demonstrated in Figure 4.3). 

ESF𝑠𝑖𝑚(𝑥) = 𝑡𝑎𝑛ℎ(𝑓𝑥) (
𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

2
) + (

𝐸𝑚𝑎𝑥+𝐸𝑚𝑖𝑛

2
) (4.1) 

 

Figure 4.1  Examples of simulated square ROIs (128x128 pixels) ranging in angle and contrast. 

These examples are noiseless and without pixel stretching. 
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Figure 4.2   Examples of simulated ROIs with the height of 128 pixels ranging in contrast and 

ROI width. These examples are noiseless and without pixel stretching. 

 

Figure 4.3    Examples of simulated ROIs with the width of 128 pixels ranging in contrast and ROI 

height. These examples are noiseless and without pixel stretching. 
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Six different SNRs were simulated on each of the ROIs, as described in depth in Section 

4.2.3, which provided seven noise levels (including a noiseless iteration). The noise was 

applied three separate times to obtain an MAE for assessing variation (cf. § 4.2.4), which 

resulted in three simulated ROIs per parameter combination. This was followed by creating 

two versions of each ROI, one without and the other with pixel stretching (cf. § 3.3.2).  

Using the standard slanted edge algorithm [5], the e-SFRs for each of these ROIs were 

obtained. In total, 167,960 simulated ROIs were created. 

4.2.2 Step-Edge Test Chart Captures  

The DSLR 1 system (cf. § 5.3.1) was used to obtain the captured step-edge test chart data. 

All images were captured in RAW, then converted to TIFF files, disabling sharpening and 

denoising in the demosaicing process. Images were also linearised by implementing the 

ISO14524 [2] as required by the slanted edge method [5] (cf. § 2.3.1). The resultant OECF 

can be found in Appendix A.  

When capturing the test charts, the goal was to obtain the same ROI parameter combinations 

as the simulated data. This was achieved by using thirteen step-edge targets across the range 

of contrasts. They were photographed under the required controlled conditions dictated by 

the ISO12233 (cf. § 2.3), the lighting on the test chart stayed within a 2% illumination 

variation [5], and the test charts and camera sensor was at an appropriate distance apart [49]. 

Each test chart was rotated at set markings to obtain the desired edge angle range, 

maintaining the pivot point at the centre of the camera system field of view. Figure 4.4 

provides an example of three of the image captures.  

 

Figure 4.4  Examples of a captured step-edge test chart, at Michelson contrasts of 0.12, 0.52 and 

0.92, positioned at 2.5, 25 and 42.5. 
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The system ISO gain setting was adjusted to obtain the range of image noise levels; the 

shutter speed was adjusted to maintain a constant exposure when changing the ISO. Each 

test chart orientation was captured six times, at ISO100, ISO200, ISO400, ISO800, ISO1600 

and ISO3200, resulting in 780 images.  

These images were then cropped to the appropriate ROI window sizes, obtaining the same 

three parameter combinations as the simulated data. Although close, the parameter range 

intervals were not as precise as intended; for example, the edge angle rotation was subject 

to human error. That said, the angles were all within 4 degrees of the desired angle. In 

addition, the edge contrast range did not have even intervals between 0.07 and 0.98 

Michelson Contrast because the printed charts were not correctly scaled to the linearisation 

of the images. The variation assessment has addressed this (cf. § 4.2.4). 

Again, three ROIs were required for each parameter combination to obtain an MAE, 

achieved by cropping a ROI from the centre, one above and one below, keeping the edge 

central to the ROI window. There were no noiseless images; thus, there were fewer captured 

ROIs than the simulated data. In total, 159,120 test chart captured ROIs were cropped. 

4.2.3 Applying Image Noise 

To achieve the same SNR values as the captured data, first, the ISO15739 [4] (cf. § 2.10) 

was implemented to obtain the SNR of each of the six DSLR 1 (cf. § 5.3.1) ISO gain settings, 

measured from 13% of the saturated exposure as per the ISO15739 [4]. The results were 

SNR values 97, 76, 51, 37, 27 and 18, corresponding to ISO settings from 100 to 3200.  

A combination of Poisson and Gaussian distributions was used to model shot and read noise, 

respectively, as described in the literature [45, 48, 121] (cf. § 2.10) for application to 

simulated images. In practice, the simulated ROI was first converted from pixel values to 

electrons (ROIe-), achieved by normalising the ROI pixel values, Equation 4.2, and 

multiplying the normalised ROI by the simulated well capacity (i.e. the number of electrons 

equal the saturated white level), Equation 4.3. 

𝑅𝑂𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝑅𝑂𝐼(𝑥, 𝑦)

𝑏
 (4.2) 

𝑅𝑂𝐼𝑒−(𝑥, 𝑦) = 𝑅𝑂𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) ∙ 𝑤 (4.3) 
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where 𝑏 is the ROI bit-depth and 𝑤 is the well capacity. The well capacity was determined 

by dividing the full well capacity (FWC), 𝐹𝑊𝐶, by the desired gain value, 𝑔, Equation 4.4.  

Figure 4.5 illustrates this process [139]. A higher gain effectively means a smaller FWC. 

The amount of shot noise applied is equal to the square root of the number of quanta in the 

pixel [45] (cf. § 2.10). If one quanta, 𝑞, is assumed to be equal to one electron, this yields 

shot noise of √𝑞. Using the Poisson distribution shot noise was then emulated across ROIe, 

as expressed as [140]: 

were 

𝜆 = √𝑞 = √𝑅𝑂𝐼𝑒−(𝑥, 𝑦) (4.6) 

𝑤 =
𝐹𝑊𝐶

𝑔
 (4.4) 

 

Figure 4.5  The relationship between the number of electrons and the pixel value. The trend is 

linear for a gain value of 1 (no gain), reaching the FWC. When the gain is applied, the well capacity 

decreases, requiring fewer electrons to reach pixel saturation. Adapted from [139]. 

𝑅𝑂𝐼𝑒−𝑠ℎ𝑜𝑡(𝑥, 𝑦) =
1

𝜆
𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 𝑅𝑂𝐼𝑒−(𝑥, 𝑦)) (4.5) 
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Read noise was generated using a Gaussian distribution, with a standard distribution, 𝜎, of 

3 electrons and a mean value, 𝜇, of zero. At each pixel, the noise term, 𝑅𝑂𝐼𝑅𝐸𝐴𝐷(𝑥, 𝑦) (a 

pixel array with the mean value 𝜇), was characterised by a probability of the Gaussian 

distribution, 𝑝, as expressed in Equation 4.7, [141].  

These noise models were achieved by implementing the MATLAB imnoise function [142]. 

The sum of the resulting noise arrays, the shot noise with the signal and the read noise, 

provided the ROIe- with the total noise.   

The gain value was then multiplied with noisy ROIe- to obtain the desired signal level. The 

noise is also amplified in this process.  

The resulting amplified ROIe- was then converted back to pixel values.  

Changing the gain value in this model results in different SNRs. Increasing the gain results 

in a decreased signal, which in turn decreases the SNR. The SNR was measured by passing 

a 13% grey patch through the same noise model as the simulated ROIs. Rather than combine 

the shot and read noise to the signal in the model, the signal and total noise were kept 

separate, allowing a straightforward measurement of the signal (13% of the well capacity) 

divided by the total noise variance, Equation 2.43. 

To obtain the six SNRs, equivalent to the DSLR 1 ISO gain settings, an FWC of 3000 

electrons were used with the gain values of 1.05, 1.76, 2.90, 4.54, 6.85 and 10.63. Figure 4.6 

provide examples of this simulation.  

𝑝(𝑅𝑂𝐼𝑟𝑒𝑎𝑑(𝑥, 𝑦)) =
1

𝜎√2𝜋
𝑒

(
−𝑅𝑂𝐼𝑟𝑒𝑎𝑑(𝑥,𝑦)2

2𝜎2 )
 (4.7) 

𝑅𝑂𝐼𝑒−𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦) = 𝑅𝑂𝐼𝑒−𝑠ℎ𝑜𝑡(𝑥, 𝑦) + 𝑅𝑂𝐼𝑟𝑒𝑎𝑑(𝑥, 𝑦)  (4.8) 

𝑅𝑂𝐼𝑒−𝑔𝑎𝑖𝑛(𝑥, 𝑦) =  𝑅𝑂𝐼𝑒−𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦) ∙ 𝑔 (4.9) 

𝑅𝑂𝐼𝑛𝑜𝑖𝑠𝑒(𝑥, 𝑦) = 𝑅𝑂𝐼𝑒−𝑔𝑎𝑖𝑛(𝑥, 𝑦) ∙ 𝑏 (4.10) 
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4.2.4 Variation Assessment 

As mentioned, the MAE was used to evaluate the error between a reference e-SFR measured 

from a ROI containing the established recommended parameters and each e-SFR derived 

from the parameter combinations. The reference e-SFR parameters were a 5° angle, a 

Michelson contrast of 0.60 and a window size of 64x128 pixels (cf. § 2.4.1).  

The MAE measurements were obtained by first using Piecewise Cubic Hermite 

Interpolating Polynomial (PCHIP) [143, 144] to resample the e-SFRs to 51 samples at 

spatial frequencies ranging from 0 to 0.5 cyc/pixel, providing equivalent sample points to 

calculate the absolute errors. Every parameter combination was simulated/captured three 

times; the mean of the three MAEs was computed to provide the average variation. 

The resulting MAEs were assigned to a six-dimensional (6D) coordinate system. This 

coordinate system was sized 10x13x17x16x51x6, with dimensions angle, contrast, ROI 

height, ROI width, spatial frequency and SNR. Note, the simulated data has a seventh value 

for the SNR coordinate, 10x13x17x16x51x7, that contained the noiseless ROIs. 

This process was repeated four times, producing coordinate systems describing the variation 

from the simulated and captured test chart data, with and without pixel stretching being 

applied. 

 

Figure 4.6  A simulated 5° step-edge in a 128x128 pixel ROI window, with the six levels of image 

noise emulation used in this study.  
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4.3 Multi-Edge Parameter Variation Results 

This section examines the MAEs from the 6D coordinate system to determine appropriate 

ranges for the system e-SFR estimation. First, the simulated data is discussed (cf. § 4.3.1), 

followed by the captured data (cf. § 4.3.2).  

4.3.1 Simulated e-SFR Results 

Figure 4.7 illustrates the MAE from the four individual parameters. The base settings are a 

5° edge angle, a Michelson contrast of 0.60 and a ROI window size of 64x128 pixels; each 

parameter is exercised over its full range (cf. § 4.2) whilst keeping the others constant.  

The mean MAE is calculated for the high frequencies (0.37 to 0.50 cyc/pixel) to determine 

the effects of error from image noise on parameter variation. The MAE is calculated twice, 

for the data with and without pixel stretching. 

This data highlights how pixel stretching reduces the effects of noise on the e-SFRs. Without 

the edge isolation, noise effects are apparent and greatest for low angles, low contrasts, small 

ROI heights, and wide ROI widths. Variation is significantly reduced with pixel stretching, 

which provides results closer to the expected noiseless behaviour (cf. § 2.4.1 & 3.3.2.1). 

Figures 4.8 and 4.9 show matrices containing plots of the simulated data in colour mapped 

scatter plots, depicting multi-parameter variation without pixel stretching. Figure 4.8 plots 

the results without noise, illustrating only the parameter variation behaviour. Figure 4.9 

shows the variation and impact of image noise, using data with SNR 18. The colours depict 

the mean MAE calculated between the frequencies 0.0 to 0.5 cyc/pixel, which provides the 

average variation behaviour of the entire e-SFR. Finding in these matrices further support 

the literature (cf. § 2.4.1), supporting the expected behaviour:  

• an increase of error with edge angle,  

• low contrast edges prone to error from image noise,  

• a slight decrease in error with the increase of ROI height,  

• narrow ROIs impede the ESF introducing error, whilst the wide ROIs show an 

increase of error from image noise.  

It is also observed that parameters prone to image noise can compile to a further increase the 

variation, the prominent parameters being the combination of low contrast and short ROI 

heights. 
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Figure 4.7 Comparison of the simulated MAE introduced by the SFR parameter ranges, edge 

angle, edge contrast, ROI height and ROI width, between spatial frequencies 0.37 to 0.50 

cyc/pixel, with and without applying pixel stretching at seven noise levels. 
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Figure 4.8  Matrix of simulated noiseless variation introduced to the slanted-edge e-SFR 

measurement when changing edge angle, edge contrast, ROI height and width, across spatial 

frequencies 0.0 to 0.5 cyc/pixel. The diagonal of the matrix plots the MAE introduced by the 

individual parameter ranges.  

 
Figure 4.9 Matrix of simulated SNR 18 variation introduced to the slanted-edge e-SFR 

measurement when changing edge angle, edge contrast, ROI height and width, across spatial 

frequencies 0.0 to 0.5 cyc/pixel.  The diagonal of the matrix plots the MAE introduced by 

the individual parameter ranges [145]. 
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4.3.2 Captured Test Chart Results 

Figures 4.10 and 4.11 illustrate the captured test chart results, plotted in the same manner as 

the simulated data. Many observations are shared between the simulated and captured test 

chart data, including the positive image noise reduction effects of pixel stretching, as seen 

in the low contrast edges, the ROI height, and the wide ROI widths. The ROI window size 

is shown to introduce negligible MAE, especially when pixel stretching is applied, providing 

the grounds to use small ROIs in the e-SFR estimation without introducing variation.  

Observations from the DSLR 1 system indicate inconsistencies compared to the simulated 

data. Although sharpening and denoising were switched off in the demosaicing process, 

MAE variation in the output indicates non-linear behaviour in the system pipeline. It is 

apparent in the contrast variation range in Figure 4.10; there is an increase in MAE with high 

contrast edges, unaffected by pixel stretching (i.e. it is not a noise related error). No 

sharpening lobe is observed when directly evaluating the e-SFRs, whilst a positive error 

appears only in the high frequencies. The edge angle also behaves unexpectedly. Rather than 

the anticipated MAE trend of an increase in MAE with edge angle, there is a peak around 

22.5°; again, this error is only in the high frequencies. It is speculated that these two effects 

are caused by the demosaicing algorithm. The anisotropic nature of the sensor array may 

result in the demosaicing interpolation having non-linear spatial effects. This may lead to 

better interpolation of near-vertical edges and edges at 45°. At 22.5°, it is likely to become 

less efficient, introducing error to the e-SFR. Also, it could be more effective with higher 

contrast edges, altering the output e-SFR. 

Jenkin provided a mathematical model that describes how the recorded modulation changes 

with respect to the skewness of a target [20, pp. 97–104]. Figure 4.12 provides an example 

of the optimal recorded modulation for vertical and 45° edge orientations. 
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Figure 4.10 Comparison of the DSLR 1 captured test chart MAE introduced by the SFR parameter 

ranges, edge angle, edge contrast, ROI height and ROI width, between spatial frequencies 0.37 to 

0.50 cyc/pixel, with and without applying pixel stretching at six SNRs. 
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Figure 4.11 Matrix of variance introduced to the slanted-edge e-SFR measurement when 

changing edge angle, edge contrast, ROI height and width, across spatial frequencies 0.0 to 

0.5 cyc/pixel. The diagonal of the matrix plots the MAE introduced by each SFR parameter. 

The data is from test chart ROIs, captured using the DSLR1 at a gain setting of ISO100 (SNR 

97).  

 

 

Figure 4.12 The optimal edge angles (a) 0° and b) 45°) for recording the modulation with a 

sensor array, demonstrated with a sine-wave test chart with the frequency of 0.27cyc/mm. 

Adopted from [20]. 
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4.4 Parameter Selection for System e-SFR Estimation 

Table 4.1 lists NS-SFR parameter ranges established for estimating system e-SFR (cf. § 5.1). 

There aim to maximise the number of edges utilised from a natural scene without introducing 

excessive NS-SFR variation. These ranges are compared in the table to the ISO12233 

recommended parameters. Since significantly restricting the angle limits the number of 

edges isolated from natural scenes, edge angles were kept within a broad range (from 2.5° 

to 35°). Although pixel stretching improves low contrast edge MAE by reducing the image 

noise, it does not affect the edge itself, thus will not change any non-linear ISP applied. For 

this reason, the contrast range was kept from 0.55 to 0.65 Michelson Contrast, as per 

ISO12233, to reduce the effects of non-linear sharpening.  

Variation from the ROI window size is noise dependent and is reduced by implementing 

pixel stretching; therefore, a broad range of ROI sizes was chosen to be implemented in the 

estimation. When cropping edges from natural scenes, tall ROIs are more likely to contain 

unwanted artifacts, such as depth of field changes across the edge, intersecting edges and 

illumination non-uniformity. Therefore a maximum ROI height was set at 128 pixels, a 

typical small ROI height for the slanted edge algorithm [22, 63, 134]. The NS-SFR 

framework ROI crop sizes (cf. § 3.3) were set from the parameter ranges established here, 

so that the NS-SFR are isolated at appropriate window sizes, and no restrictions are required 

in the system e-SFR estimation (cf. § 5.1). 

 

 

 

 

Parameter ISO 12233 e-SFR NS-SFR 

ROI Size >64 x 80-500 pixels >20 x 20-128 pixels 

Edge Angle <45° (5° Recommended) 2.5° – 35° 

Edge Contrast 
0.55 – 0.65 Michelson 

Contrast 
0.55 – 0.65 Michelson 

Contrast 

Table 4.1  ROI and edge parameter ranges for the e-SFR ISO 12233 method 

against those used to estimate the system-SFR from the NS-SFR data. 
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4.5 Summary 

This chapter has presented a study on the variation introduced to the e-SFR by changes in 

edge angle, contrast, ROI height and width across a relevant SNR range. The research builds 

upon previously established publications [28, 61–64, 69] (cf. § 2.4.1) that have benchmarked 

the e-SFR in terms of their input parameters. The objective was to determine parameter 

ranges to estimate an accurate system e-SFR from NS-SFR data. This should be done without 

restricting the yield of natural scene step-edges, from which suitable step-edge inputs are 

rare. 

The method used both simulated and test chart captures to obtain edges with a range of 

parameters. Three e-SFRs were calculated per unique parameter combination to compute an 

MAE. The e-SFRs were measured with and without pixel stretching (cf. § 3.3.2), resulting 

in 167,960 and 159,120 e-SFRs for the simulated and captured edges, respectively. The 

MAEs were placed into a 6D coordinate system, where each coordinate represented a 

parameter combination of angle, contrast, ROI height, width, spatial frequency and SNR. 

The results were presented in two formats. The first plotted the individual parameter 

variation per SNR, with and without pixel stretching. The second plotted the MAE in a 

colour-coded matrix that illustrates the variation relationship between multiple parameters. 

Due to the traits of pixel stretching, the error from image noise was significantly reduced. 

With this noise reduction, broader parameter ranges can be used without noise becoming a 

decisive factor.  

Although sharpening and denoising in the DSLR camera system TIFF pipeline were 

disabled, the MAE data from the captured edges indicated non-linear behaviour. This is 

assumed to be caused by the anisotropic effects of the sensor array and the interpolation 

algorithms used in the demosaicing process, but is to be confirmed with further work.  

The research provided grounds to establish the parameter ranges to estimate the system e-

SFR from NS-SFRs, as follows: 

• The angle range was set to be 2.5° to 35°. Although this range introduced some 

variation to e-SFRs, it does not restrict the step-edge yield from captured natural 

scenes, from which a broad range of edge angles can be found.  
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• The contrast was kept at a mid-range, between 0.55 to 0.65 Michelson Contrast. Low 

contrast edges are prone to noise bias, and high contrast edges are susceptible to 

non-linear sharpening. That said, if required in certain applications, pixel stretching 

allows the edge contrast range to be increased to lower contrast edges without 

introducing bias from image noise. 

• The ROI window size was set at widths greater than 20 pixels and a height between 

20 to 128 pixels.  

The angle and contrast are set as thresholds in the estimation methodology (cf. § 5.1), whilst 

the ROI window size was programmed into the NS-SFR framework (cf. § 3.3). 
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Chapter 5 Estimation of the System Spatial 

Frequency Response 

This chapter explores the estimation of the ISO12233 system e-SFR (cf. § 2.3) from 

NS-SFR data gathered from the proposed framework (cf. § 3.1). Deriving the system 

e-SFR is based on binning the NS-SFR data in a multi-parameter coordinate system. 

The system e-SFR is estimated by averaging NS-SFRs within the predetermined 

parameter ranges (cf. § 4.4) per radial distance segment. The methodology is 

detailed, providing the rationale behind each step. The established coordinate system 

is also used to confirm that the edge parameter ranges offer the most stable data for 

the estimation, using the NS-SFRs rather than simulated and test chart captures.  

The system e-SFR estimation method is implemented on diverse natural scene image 

datasets from three characterised camera systems, two (near-) linear and one non-

linear. Quantitative analysis is carried out on the system e-SFR estimates to validate 

the accuracy and precision of the method. 

5.1 System e-SFR Estimation Methodology  

An overview of the methodology to estimate the system e-SFR from NS-SFR data is first 

outlined, briefly summarising the approach. Subsequent sections then provide further depth 

to the main elements of the methodology and its development. 

5.1.1 Overview of the Methodology 

The principle behind the system e-SFR estimation is to regulate the NS-SFRs. The data is 

selected and grouped to minimise variation introduced from both the scene and system (cf. 

§ 2.9 & 3.6), which increases the probability of providing an accurate e-SFR estimate. This 

data is then averaged to determine the system e-SFR. The estimate is achieved by the 

following steps:   

1. Data organisation (cf. § 5.1.2) – The NS-SFRs are grouped according to their edge 

orientation (horizontal or vertical) and their position in the field of view. In addition 
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to horizontal or vertical edge orientations, the data is converted into sagittal and 

tangential orientation groups. 

2. Selection of suitable step-edge (cf. § 5.1.3), i.e. step-edges that contain modulation 

higher than the rendering capabilities of the system (cf. § 2.1.3 & 2.9) – The 

narrowest LSFs are selected, corresponding to the NS-SFRs that most likely deliver 

the highest performance, and thus the system e-SFR. 

3. Data binning and system e-SFR estimation (cf. § 5.1.4) – The selected NS-SFRs are 

assigned to a 4-dimensional (4D) coordinate system, binning spatial frequency, edge 

angle, contrast and radial distance. The NS-SFR data from edges with the predefined 

angle and contrast (cf. § 4.4) are averaged per radial distance, deriving the e-SFR 

across the frame. A weighted average of these localised e-SFR estimations gives a 

global e-SFR system estimate. 

This methodology is summarised in the Figure 5.1 flowchart. The 4D coordinate system, 

marked with C, can be used for NS-SFR analysis, for example, verifying edge parameter 

stability (cf. § 5.2).  

5.1.2 Data Organisation 

The NS-SFR data (cf. § 3.1) is first restructured, compiling the data from each image in the 

dataset into a cell array, segmented by radial distance frame partitions. This location 

segmentation reduces the optical e-SFR variation across the imaging circle (cf. § 2.4.3), 

providing a localised estimation of system e-SFR per radial distance. Six radial distances are 

used, 1/6 refers to the central image area, and 6/6 refers to the corners of the field of view. 

The number of radial distance segments can be changed depending on the application of the 

e-SFR. Horizontal and vertical edge orientations are kept separate due to the non-stationary 

nature of a sensor array (cf. § 1.1), i.e. performance is orientation dependant. 

The horizontal and vertical edges are converted to provide sagittal and tangential orientations 

(cf. § 2.6.2), utilising the knowledge of the edge angles and locations in the field of view. 

The frame is divided into 16 diagonal subdivisions passing the frame centre. These 

subdivisions are given two edge angle ranges, determining whether an edge orientation is 

appropriate for sagittal or tangential. If true, the NS-SFR data is copied into a 

sagittal/tangential data array, again segmented by radial distance. The angle ranges used per 

subdivision are shown in Figure 5.2. 
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Figure 5.1  Flowchart depicting the proposed method to estimate the system e-SFR from natural 

scene derived SFR data. 
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5.1.3 Selection of Suitable Step-Edges  

To estimate system performance, the e-SFR must be measured from suitable step-edge inputs 

(cf. § 2.1.3 & 2.9). Therefore, a threshold is set to obtain the suitable step-edges from the 

NS-SFRs, i.e. selecting edge inputs that maintain higher modulation across the spatial 

frequencies than the camera system's rendering capabilities. This threshold is achieved by 

measuring the NS-SFR LSF FWHM distribution per radial distance and orientation, then 

selecting the narrowest LSFs. A threshold is applied to the LSF FWHM distribution to return 

the narrowest LSFs. The top 10th, 20th and 50th percentiles of distribution are compared for 

this purpose. 

The 10th percentile threshold provides only the narrowest LSFs without restricting 

excessively the amount of edge data. The 20th percentile threshold expands the NS-SFR yield 

but still returns narrow edges. Finally, the 50th percentile threshold splits the isolated edges 

in half, using more NS-SFR data and a larger range of LSF widths. 

 

Figure 5.2  The horizontal and vertical angles were converted for each of the 16 diagonal frame 

subdivisions used to obtain the sagittal and tangential edges. 
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Figure 5.3 These histograms illustrate LSF FWHM from the test chart and NS-SFR step-edges for 

data from the DSLR 1 TIFF image dataset. The histograms are normalised using their peak value. 

This example illustrates distances 1, 2 and 6 out of 6 radial segments. The red bars indicate the 

10th, 20th and 50th percentiles for the NS-SFR LSF FWHM distribution [124]. 
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Figure 5.3 depicts the DSLR 1 (cf. § 5.3.1) vertical NS-SFR LSF FWHM distribution for 

radial distances 1/6, 3/6 and 6/6. By comparing the position of the 10th percentile to the 

distribution from a test chart, it is seen that it corresponds to the narrowest ISO12233 test 

chart LSF output. Although expanding the threshold to 20th or 50th percentiles incorporate 

more of the ISO12233 e-SFR LSF FWHM distribution, this was shown to increase the 

probability of introducing unsuitable step-edge inputs (cf. § 5.3.3). Therefore, this input 

uncertainty must be considered when evaluating the system e-SFR estimation from each of 

these thresholds. 

5.1.4 Data Binning and System e-SFR Estimation 

In a similar way to the e-SFR variation study (cf. § 4.2), a coordinate system is used to 

organise NS-SFR data, this time to derive the system e-SFR. Previously established edge 

and ROI parameter ranges have shown that only NS-SFR angle and contrast should be 

restricted (cf. § 4.4). Thus, selected NS-SFR data is arranged into a 4D coordinate system; 

each coordinate refers to a unique combination of the following parameters: spatial 

frequency, edge angle, edge contrast and radial distance, with each coordinate having an 

associated NS-SFR value. The edge selection in the NS-SFR framework controls the ROI 

window size, allowing for the appropriate ROI sizes (cf. § 3.3). 

The binning edge parameter values are set as follows: 

• angle (10 values): at intervals of 5°, ranging from 5° to 40°, plus 2.5° and 42.5°.  

• contrast (21 values): at intervals of 0.05, ranging from 0 to 1 Michelson contrast.  

The two NS-SFR input parameters are assigned to the closest relevant bin edge parameter 

value, resulting in the NS-SFR being assigned a unique set of coordinates. If NS-SFRs have 

the same coordinates, their LSFs are averaged in the spatial domain to reduce the high-

frequency bias caused by image noise [39]. For averaging a series of LSFs, first, they are 

registered, aligning their peak values, then the area under each LSF is normalised, and the 

mean is calculated at each sample point. The average LSF is finally used to recalculate the 

NS-SFR for the given set of coordinates. 

PCHIP interpolation [143, 144] is used to resample the spatial frequencies into 51 samples 

ranging from 0 to 0.5 cyc/pixel. 51 frequency values sample the NS-SFRs at selected 

summary measures (cf. § 2.6.1), such as 25%, 50% and 75% of the Nyquist frequency, as 
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well as providing high-resolution sample points for analysis. The number of samples can be 

adjusted for purpose. 

These sets of NS-SFR values, binned at the given parameter coordinates and specified 

frequencies, are computed per radial distance, resulting in the 4D binning coordinate system, 

sized 51x10x21x6 (spatial frequency, edge angle, edge contrast and radial distance). Any 

coordinate without assigned data is set as Not a Number (NaN). Four coordinate systems 

were created, one for each orientation: vertical and horizontal, sagittal and tangential. 

The binned NS-SFRs are then thresholded using the established parameter ranges in Table 

4.1. This selected data is then averaged in the spatial domain per radial distance, resulting in 

six local system e-SFR estimates across the frame. A weighted average of these six estimates 

is calculated to obtain a global system e-SFR estimate. Again, the average is done in the 

spatial domain. The chosen weightings are 1.00 for the centre, 0.75 for the partway regions 

and 0.50 for the frame’s corners, corresponding to default weights in Imatest software 

employed for the SFR analysis [74]. They can be adjusted depending on the application. For 

example, some image quality metrics apply a heavier weight on the frame’s corners than in 

the centre, emphasising the poorer SFRs [75] (cf. § 2.4.3). 

As seen in Figure 5.3, 3/6 (partway) region of NS-SFR data contained three times the number 

of ROIs than the frame centre and more than six times compared to the frame corners. The 

weighted mean is calculated from the system e-SFR estimates of the radial distances rather 

than individual NS-SFRs, removing bias caused by radial segments areas of high-density 

edges.  

5.2 Validation of the Established Parameter Ranges  

The 4D coordinate system used to estimate the system e-SFR (the output at C in Figure 5.1)  

was utilised to validate the established parameter ranges (cf. § 4.4). A 5th dimension was 

added to the coordinate system, the ROI height, to confirm that the ROI window size 

introduces a negligible variation on the NS-SFR data. The ROI height ranged from 30 to 130 

pixels, at intervals of 10, providing 11 values. 

The resulting 5-dimensional (5D) coordinate system was sized 51x10x21x11x6 (spatial 

frequency, edge angle, edge contrast, ROI height and radial distance), with an NS-SFR value 



 110 

 

per coordinate. Three 5D coordinate systems were calculated per dataset, setting the LSF 

FWHM distribution threshold at 10th, 20th and 50th percentiles.   

Two datasets of NS-SFR were implemented, captured from the characterised DSLR 1 and 

DSLR 2 systems, as detailed later in this chapter (cf. § 5.3.1). DSLR 1 dataset had two 

iterations, the first from the RAW sensor images and the second from demosaiced TIFF 

images with sharpening and denoising turned off. The DSLR 2 data represented only the 

demosaiced TIFF pipeline. 

The MAE was calculated between the systems’ ISO12233 e-SFR [5] (cf. § 5.3.1) and the 

NS-SFRs; this was done per radial distance. As previously (cf. § 4.2.4 & 4.3.1), the spatial 

frequencies were binned to only use a specified range in the MAE. This is either the high 

frequencies (0.37 to 0.50 cyc/pixel) to evaluate error from image noise, or the entire range 

up to Nyquist frequency (0 to 0.5 cyc/pixel) to assess the average variation from the NS-

SFR. The resulting MAEs were assigned to the coordinates for each system based on the 

edge parameters, which resulted in a 4D MAE coordinate system, sized 10x21x11x6 (angle, 

contrast, ROI height and radial distance). 

The data is presented in two ways: plotting MAE for individual parameters (Figure 5.4) and 

MAE for multiple parameters (Figure 5.5).  

The standard parameters (cf. § 2.4.1 & 4.2.4) were used as the fixed baseline, expanding a 

single parameter at a time (angle, contrast and then ROI height), covering MAE across that 

parameter range. Figure 5.4 contains plots of MAE against the tested parameters for the three 

LSF FWHM thresholds per camera system. Since noise introduces high-frequency error (cf. 

§ 2.5.1), the high-frequency range was used when calculating the MAEs to demonstrate the 

highest variation from the parameters. Results indicate that these, now calibrated, NS-SFRs 

follow expected parameter characteristics. For each system, the system e-SFR estimate range 

error floor is consistent at an MAE of 0.1, potentially indicating the average natural scene 

image noise floor. Using more input NS-SFR data, for example, between DSLR 1 and DSLR 

2 datasets, or using the 50th percentile threshold over 10th percentile, the variation around the 

error floor decreases.  

The edge angle MAE range remains at the error floor up to approximately 35°, before the 

error increases. The edge contrast MAE range remains unchanging for the TIFF pipeline, 

fluctuating around the error floor. RAW data shows a low contrast MAE range increase not 
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present in the TIFF data, indicating non-linear demosaicing in the TIFF pipeline (cf. § 4.3.2). 

For DSLR 1, ROI height is stable across the entire range, whilst the DSLR 2 data has 

increased variation but still demonstrates an average trend of 0.1 MAE. 

There are discrepancies when comparing this data, Figure 5.4, with DSLR 1 TIFF test chart 

counterpart (Figure 4.10). Unlike the previous study (Figure 4.10), the characteristic angle 

variation (cf. § 2.4.1) is depicted in Figure 5.4. The non-linear high contrast error seen in the 

test chart data is not present in this natural scene counterpart. This suggests that the previous 

speculation of the anisotropic nature of the sensor array may result in the demosaicing 

interpolation having spatial effects (cf. § 4.3.2) to be an artifact of highly isolated edges, i.e. 

test charts. Step-edges are surrounded by scene textures, noise, and other scene artifacts 

within natural scenes. This results in edges that are not as easily enhanced in the demosaicing 

process. Further work is required to confirm this hypothesis. 

Figure 5.5 depicts a matrix illustrating MAE introduced in the NS-SFR data across multiple 

parameters. This figure uses the MAE from the TIFF DSLR 1 NS-SFR data, calculated 

across the entire spatial frequency range up to Nyquist frequency (0 to 0.5 cyc/pixel). Similar 

results to the parameter variation study (cf. § 4.3) are observed here; notably, parameters 

prone to noise corruption compile to increase MAE.  

Overall, results validate that the selected parameter ranges are stable and suitable for system 

e-SFR estimation. Furthermore, since images used for this validation originate from systems 

with minimal ISP, the plots also indicate that the edge contrast range could be increased, 

including more edges extracted from the natural scenes, potentially improving system e-SFR 

precision. That said, the contrast range is kept as the standard, 0.55 to 0.65 Michelson 

contrast, to diminish variance introduced by non-linear sharpening when implementing the 

method on non-linear systems, as stated in Chapter 4 (cf. § 4.4). 
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Figure 5.4  The comparison of MAE introduced by e-SFR parameters, edge angle, edge contrast 

and ROI height, between spatial frequencies 0.37 to 0.50 cyc/pixel, from NS-SFRs calculated 

using three LSF FWHM thresholds for three systems [124].   

 

Figure 5.5  Matrix of variation introduced to the NS-SFR measurement when changing edge 

angle, edge contrast, ROI height and ROI width, across spatial frequencies 0.0 to 0.5 cyc/pixel. 

The diagonal of the matrix plots MAE introduced by each SFR parameter. Data is from the 

DSLR 1 system using a TIFF pipeline.  
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5.3 System e-SFR Estimation Results 

5.3.1 Characterised Systems and the Respective Image Datasets 

Three digital camera systems were used to capture a large number of scenes used for 

producing three image datasets. These datasets are examples of different system pipelines, 

but not necessarily examples of different types of applications. This section details how each 

dataset was used in its entirety to estimate the corresponding system e-SFR. The camera and 

settings were as follows: 

1. DSLR 1 – Nikon D800, 36.3-megapixel sensor (4.87µm pixel pitch), with a Nikon AF-S 

24-70mm f/2.8G IF-ED lens at 24mm f/4 (wide-angle).  

2. DSLR 2 – Nikon D800, 36.3-megapixel (4.87µm pixel pitch) sensor, with a Carl Zeiss 

135mm f/2 Apo-Sonnar T* lens at f/4 (telephoto).  

3. Smartphone camera – Apple iPhone7, 12-megapixel sensor (1.22µm pixel pitch), with a 

3.99mm lens at f/1.8. 

The DSLR 1 camera dataset contains 1866 images. The wide-angle focal length of this 

system allows for wide depth of fields, thus reducing the number of out of focus edges. It is 

worth noting that wide-angle lenses tend to have a wide variation in performance across the 

imaging circle. This allows the proposed approach to be assessed against significant optical 

e-SFR variations across the field of view. Two versions of this dataset were produced: the 

first comprises of uncompressed TIFF image files without sharpening or denoising applied 

in the demosaicing process; the second is comprised of the green channel of the RAW 

(mosaiced) sensor image. 

The DSLR 2 camera dataset contains 1009 images. Although the camera body is identical, 

the two DSLR systems have different optical system performance characteristics due to their 

lens designs. In contrast to wide-angle lenses, telephoto optics tend to have a smaller 

performance variation across the frame.  Telephoto lenses provide a shallower depth of field, 

producing many edges out-of-focus, which are not suitable for accurate system e-SFR 

estimations. This second dataset tests the estimation method’s robustness against tighter 

optical performance tolerances for each radial segment and its effectiveness in eliminating 

defocused edges from the calculation. Again, only uncompressed TIFF files were used with 

the denoising and sharpening turned off during demosaicing. 
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The smartphone camera dataset, containing 2008 images, was set to test the suitability of the 

proposed method for assessing the performance of non-linear pipelines. Smartphone camera 

images are subject to heavy non-linear ISP and JPEG compression. Both processes are scene 

dependent and introduce different artifacts to the captured edges. Since many modern 

systems use non-linear ISP, studying how the proposed method behaves with such a system 

is essential. 

During capture, the shutter speed and ISO gain settings were set to best expose the images 

(determined by the camera’s global exposure meter). Most images were captured using the 

camera systems' base ISO gain. As a result, each dataset contained a range of noise levels 

and thus different SNR distributions. Figure 5.6 illustrates the distribution of the ISO gain 

settings, as reported in the EXIF image metadata.  

Each of the three datasets is comprised of images that were subsequently classified according 

to three different scene locations: man-made exteriors, indoor scenes, and nature scenes.  The 

AlexNet CNN [147], after being transfer learned [148], was employed for the classification. 

This classification process is detailed in Chapter 6 (cf. § 6.2). Figure 5.7 shows the resulting 

scene class distributions for each dataset.  

The camera systems were characterised using the ISO12233:2017 slanted-edge method [5] 

to obtain e-SFRs across the camera frame. The frame was divided into six radial distances 

in the same fashion as in the e-SFR estimates from natural scenes (cf. § 5.1.4). The test chart 

edges were positioned so that they were evenly distributed around each radial segment. The 

 

Figure 5.6  The distribution of the ISO gain settings for the images in the three datasets [146].  
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e-SFRs within these six segments were averaged using the same weighted values as the 

system e-SFR estimation [74] (cf. § 5.1.4). These e-SFRs were calculated from both the 

TIFF files (with sharpening and denoising turned off in the demosaicing process) and the 

green channel of the RAW files. The difference in these e-SFR results is negligible, as shown 

in Appendix A. Hence only the TIFF ISO12233 e-SFRs were used as the system 

characterised data.  

These averaged ISO12233 e-SFRs are considered the measurement against which estimates 

are assessed. For each average ISO12233 e-SFR measure, ±1 standard deviation was 

calculated to provide a range deemed acceptable for assessing the accuracy of the estimates. 

One standard deviation was chosen as it provides the distribution where 68% of the test chart 

e-SFRs should be statistically found. An accurate system e-SFR estimate comparable to the 

ISO12233 e-SFR should have a mean within this region.  

It is important to note that the radial segments are based on the imaging circle, so the area of 

the field of view segments are uneven. This results in a different number of edges used in 

the standard deviation calculations per segment. Table 5.1 provides the number of edges per 

radial segment for each system. Areas with fewer edges have increased uncertainty in the 

standard deviation, particularly in radial distances with greater performance variation, such 

as the corners of the field of view (cf. § 2.4.3). That said, the even distribution across each 

radial segment would provide the expected performance variation of each segment. 

 

Figure 5.7  Scene type distributions for the three datasets, classified by re-trained AlexNet.  

Adopted from [146]. 
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5.3.2 Region of Interest Utilisation 

The system e-SFR estimation is based on a highly selective process. The process yields small 

numbers of suitable natural scene step-edges. The following sections detail the yield of NS-

SFR that are used in the system e-SFR estimations when using vertical and horizontal (cf. § 

5.3.2.1) and sagittal and tangential (cf. § 5.3.2.2) edge orientations.  

5.3.2.1 Vertical and Horizontal Edge Orientations 

The number of isolated vertical and horizontal ROIs depends on the system pixel resolution 

as well as ISP. For example, an average of 19 ROIs per image were selected from the 

smartphone camera system, whilst for the higher resolution DSLR 1 and DSLR 2 TIFF 

datasets, there were 72 ROIs per image. Furthermore, many of these ROIs were deselected 

in the process of thresholding the most likely suitable step-edge inputs (cf. § 5.1.3) and 

setting limits to the edge parameter ranges (cf. § 5.1.4). When using the 10th percentile of 

the LSF FWHM distribution, on average, only 3.41% of isolated ROIs were utilised in the 

system e-SFR estimation, corresponding to 1.69 ROIs per image. As the percentile threshold 

increases to include more NS-SFR data, utilisation increases linearly, with the 20th percentile 

utilising 6.50% of the ROIs (3.23 natural scene ROIs per image) and 50th percentile 16.83% 

of the ROIs (8.31 natural scene ROIs per image).  

Figure 5.8 plots the number of ROIs extracted from the DSLR 1 TIFF dataset per radial 

segment and the number of these ROIs utilised in the vertical system e-SFR estimation, 

derived using the three LSF FWHM thresholds. The distributions show approximately 80% 

fewer ROIs in the centre (1/6) and corners (6/6) of the frame than the partway segments. The 

two other systems, as well as the horizontal NS-SFRs, exhibit the same trend. 

Radial 

Distance 

Camera System 

DSLR 1 DSLR 2 Smartphone 

V H S T V H S T V H S T 

1 14 14 16 16 15 16 29 16 16 16 26 17 

2 30 28 27 37 33 26 29 45 32 28 33 40 

3 43 42 56 93 42 47 53 89 42 46 48 96 

4 41 46 51 91 55 60 48 87 44 46 51 91 

5 31 24 16 44 50 52 13 31 29 27 15 22 

6 5 4 5 6 17 15 4 6 5 5 6 8 

Table 5.1 Number of test chart edges per radial distance segment for each of the system e-SFR 

orientations (Vertical (V), Horizontal (H), Sagittal (S) and Tangential (T)).  
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Table 5.2 provides the utilisation percentages for the radial segments centre (1/6), partway 

(3/6) and corners (6/6), as well as the entire frame. The ‘average frame utilisation’ is the 

mean utilisation of the entire frame across all the datasets. Three sets of percentages are 

presented in this table, showing the ROIs used for each percentile threshold.  

Knowing that percentile thresholds would initially isolate aproximatly10%/20%/50% of NS-

SFR data, it can be deduced that, on average, parameter range thresholds further deselect 

66% of data. The most significant parameter constraint is the narrow edge contrast range of 

0.55 to 0.65 Michelson contrast. 

System 
Radial 

Distance 

Total 10th 

Percentile 

Utilisation (%) 

Total 20th 

Percentile 

Utilisation (%) 

Total 50th 

Percentile 

Utilisation (%)  

DSLR 1 

TIFF 

Dataset 

 1/6 3.57 6.33 13.34  

 3/6 2.66 6.27 14.82  

 6/6 4.25 6.63 15.03  

Frame 2.89 5.66 14.57  

RAW 

Dataset 

 1/6 5.07 9.30 18.04  

 3/6 3.99 8.13 17.12  

 6/6 4.36 6.18 16.33  

Frame 4.37 7.19 16.69  

DSLR 2 
TIFF 

Dataset 

 1/6 2.68 5.82 13.07  

 3/6 2.15 4.55 13.76  

 6/6 2.72 5.85 14.85  

Frame 2.33 5.00 13.81  

Smartphone 
TIFF 

Dataset 

 1/6 5.18 6.92 19.76  

 3/6 3.34 6.72 19.80  

 6/6 4.95 11.42 28.18  

Frame 4.04 8.16 22.24  

Average Frame Utilisation 3.41 6.50 16.83 
 
 

     

Table 5.2 Percentage utilisation for each dataset used to estimate the vertical system e-SFR for 

radial distance segments representing the centre, partway, corners, and entire frame. 
 

 

Figure 5.8 Number of ROIs isolated and the number of utilised ROIs per radial distance for the 

vertical e-SFR estimation from TIFF DSLR 1 dataset for each LSF FWHM distribution threshold. 
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5.3.2.2 Sagittal and Tangential Orientations 

Converting vertical and horizontal edges to sagittal and tangential orientations (cf. § 2.6.2 & 

5.1) further reduces the data available for the e-SFR estimations. Unlike vertical and 

horizontal, sagittal and tangential orientations have a specific position in the imaging circle. 

From the DSLR 1 TIFF dataset, 261,380 vertical and horizontal ROIs were isolated; this 

number is reduced by 71% when converting the orientation, resulting in only 76,299 sagittal 

and tangential ROIs in total.  

The deselection processes of the LSF FWHM thresholding and parameter restrictions follow 

the same percentage decreases as for the vertical and horizontal data (cf. § 5.3.2.1). Figure 

5.9 compares the number of isolated sagittal ROIs and the utilised ROIs, for the three LSF 

FWHM thresholds. Table 5.3 contains sagittal ROI utilisation as a percentage for each 

dataset.  

Sagittal orientation has a slightly greater decrease in ROIs in the centre and corners of the 

frame than the vertical ROIs, with approximately 85% fewer edges than partway regions. 

This data confirms that, on average, parameter thresholds deselect a further 66% of the data 

after LSF FWHM selection. 

The abovementioned trends are consistent across all datasets for both sagittal and tangential 

orientations. 

 

Figure 5.9 Number of ROIs isolated and the number of utilised ROIs per radial distance for the 

sagittal e-SFR estimation from TIFF DSLR 1 dataset for each LSF FWHM distribution threshold. 
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5.3.3 DSLR (Near-Linear) Camera System e-SFR Estimations 

Absolute error at 25%, 50% and 75% of the Nyquist frequency were used to illustrate the 

accuracy of the vertical estimates from both DSLR systems in Figure 5.10. Nyquist 

frequency metrics were used, rather than the MTF50/20/10 metrics (cf. § 2.6.1) with higher 

standard deviations. Horizontal estimates show similar trends to the vertical and therefore 

are not included in this chapter. Additional system e-SFR metrics from all tested datasets 

can be found in Appendix B.  

The Standard Error (SE) is used for the error bars in Figure 5.10, indicating the accuracy of 

the mean system e-SFR estimates in relation to the number of utilised ROIs, 𝑁, and the 

resultant standard deviation, 𝜎. SE is expressed as:  

𝑆𝐸 =  
𝜎

√𝑁
 (5.1) 

SEs indicate that the precision is high for most system e-SFR estimates; the SE decreases 

with the increase of the LSF FWHM threshold. As mentioned (cf. § 5.3.2), the number of 

utilised ROIs scales linearly with the LSF FWHM threshold, thus going from the 10th to 50th 

System 
Radial 

Distance 

Total 10th 

Percentile 

Utilisation (%) 

Total 20th 

Percentile 

Utilisation (%) 

Total 50th 

Percentile 

Utilisation (%) 
 

DSLR 1 

TIFF 

Dataset 

 1/6 1.87 3.84 12.43  

 3/6 3.10 4.29 13.42  

 6/6 3.39 5.62 15.69  

Frame 2.75 5.27 13.92  

RAW 

Dataset 

 1/6 5.51 9.83 16.73  

 3/6 4.63 8.56 17.34  

 6/6 6.46 6.46 17.05  

Frame 4.13 7.71 16.33  

DSLR 2 
TIFF 

Dataset 

 1/6 3.40 6.45 15.28  

 3/6 2.52 5.07 13.40  

 6/6 2.32 5.05 14.46  

Frame 2.33 5.03 13.74  

Smartphone 
TIFF 

Dataset 

 1/6 4.79 6.46 17.71  

 3/6 2.86 8.26 21.36  

 6/6 6.17 11.52 29.22  

Frame 3.92 8.27 22.21  

Average Frame Utilisation 3.28 6.57 16.55 
 

 
     

Table 5.3 Percentage utilisation for each dataset used to estimate the sagittal system e-SFR for 

radial distance segments representing the centre, partway, corners, and entire frame. 
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percentile, on average, increases the number of ROIs by five times, whilst the increase in the 

standard deviation is only 1.1 times, thus improving the SE. The radial distance segments 

with large SE, for example, 6/6 for the DSLR 2 dataset, are due to the small frame area 

having fewer ROIs, in combination with a greater optical performance variation (cf. § 2.4.3) 

causing higher standard deviations. 

 

 

Figure 5.10 Absolute error at the 25%, 50% and 75% of the system vertical e-SFR estimate Nyquist 

frequency, derived from three LSF FWHM thresholds, for the DSLR systems at radial segments 

1/6, 3/6 and 6/6 as well as the weighted average (WAve.) of the entire frame. Adopted and 

expanded on from [146]. 
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Figures 5.11 and 5.12 contain vertical system e-SFRs derived from DSLR 1 and DSLR 2 

datasets, respectively. The 10th percentile of the LSF FWHM distribution was first used in 

the calculations to begin the analysis of the accuracy of the estimation. The first column 

shows the estimated system e-SFR in relation to the equivalent ISO12233 e-SFR radial 

segment mean and ±1 standard deviation, i.e. e-SFR envelope, indicating the acceptable 

error range (cf. § 5.3.1). The second column shows the absolute error of the estimations in 

respect to the ISO12233 mean e-SFR and its standard deviation envelope. The third column 

depicts radial distance segments from which data is measured; three radial distance segments 

and the weighted average are plotted to provide an overview of estimates across the frame.  

These plots combined with data presented in Figure 5.10 indicate moderate to high accuracy 

in system e-SFR estimations calculated using the 10th percentile threshold. Excluding 

frequencies above 75% Nyquist, estimations are within 0.15 SFR of the ISO12233 e-SFR. 

RAW DSLR 1 dataset returned a more accurate system e-SFR estimate than the TIFF 

counterpart. High frequencies were overestimated throughout all RAW system e-SFR 

estimates, a bias associated with high noise levels [39]. In contrast, DSLR 1 TIFF results do 

not show this noise bias, indicating that the previously discussed incorporation of non-linear 

demosaicing is present in the TIFF pipeline (cf. § 4.3.2). Also, it is observed that the results 

from the TIFF files, although following the same trend as the ISO12233 e-SFRs, are 

overestimated throughout the range of spatial frequencies. 

The DSLR 2 system e-SFR estimates that were calculated using the 10th percentile of the 

LSF FWHM distribution, with fewer pictorial natural scenes, has higher accuracy than from 

the DSLR 1, staying within 0.06 SFR of the standard e-SFR. This suggests that the proposed 

method is robust against shallow depth of field and is proficient with obtaining telephoto 

lens performance with tight precision tolerances.  

Finally, the weighted average estimates use all isolated ROIs across the frame. For both 

systems, the resultant e-SFRs correspond to the average ISO12233 e-SFR, staying within 

one standard deviation. They deliver the most consistent estimate of the system e-SFR from 

natural scene inputs. 
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Figure 5.11 DSLR 1 vertical system e-SFR estimation for three radial distances out of six and a 

weighted mean of all six radial distances. The first column contains the estimated system e-SFR 

in relation to the ISO12233 e-SFR. The second column contains the absolute error between the 

estimated system e-SFR from the mean of the ISO12233 e-SFR. The third column contains a visual 

representation of the radial distance from which the data belongs [145, 146]. 
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Figure 5.12 DSLR 2 vertical system e-SFR estimation for three radial distances out of six and a 

weighted mean of all six radial distances. The first column contains the estimated system e-SFR 

in relation to the ISO12233 e-SFR. The second column contains the absolute error between the 

estimated system e-SFR from the mean ISO12233 e-SFR. The third column contains a visual 

representation of the radial distance from which the data belongs [146]. 
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Estimating the system e-SFR using wider LSFs incorporates more of the NS-SFR data. 

Consequently, the inclusion of wider LSFs resulted in e-SFR estimations depicting lower 

performance. Figures 5.13 and 5.14 compare the weighted average system e-SFR estimates 

for all three LSF FWHM distribution thresholds, the 10th, 20th and 50th percentiles, for DSLR 

1 and DSLR 2 datasets, respectively. As mentioned (cf. § 5.1), this additional data increases 

the probability of introducing unsuitable step-edge inputs. 

The estimates from the DSLR 1 stay within one standard deviation of the ISO12233 e-SFR 

for all three thresholds. That said, the e-SFRs derived from RAW files become 

underestimated when increasing the threshold, whilst those derived from the TIFF 

counterpart increase in accuracy. This is due to lower performance edges offsetting the edges 

that produce overestimation. Whilst, e-SFRs derived from the DSLR 2 dataset become 

underestimated, providing results below the limits of one ISO12233 e-SFR standard 

deviation. 

Given the above results, the 10th percentile is recommended, as it increases the probability 

of selecting the suitable step-edge inputs for an estimate of the system e-SFR. In addition, 

this threshold is shown to provide accurate results for both DSLR systems. If the NS-SFR 

data is limited, this threshold can be increased to include more of the selected data. For an 

optical system with extensive performance variation across its imaging circle, such as a 

wide-angle lens (DSLR 1), there is a greater overlap of system performance and scene 

content. Thus, accuracy limits are more forgiving, allowing this LSF FWHM threshold to 

include more data without decreasing accuracy, although this may decrease the estimation 

precision. In contrast, a telephoto lens (DSLR 2) with narrow performance tolerances is not 

suited to wider LSF FWHMs, as it leads to underestimated e-SFRs. 

System e-SFR estimates for all six radial distance segments and the weighted average are 

included in Appendix C. This data is presented three times per system, each computed using 

a different LSF FWHM distribution threshold (10th, 20th and 50th percentile). 
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Figure 5.13 Comparison between the DSLR 1 (TIFF and RAW datasets) vertical weighted average 

system e-SFR estimates derived from three LSF FWHM distribution thresholds, 10th, 20th and 50th 

percentiles. 
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Figure 5.14 Comparison between the DSLR 2 vertical weighted average system e-SFR estimates 

derived from three LSF FWHM distribution thresholds, 10th, 20th and 50th percentiles. 
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The DSLR 1 RAW image dataset was segmented into three scene classes. These were man-

made (exterior), indoor and nature scenes, as defined using the transfer learned AlexNet 

CNN detailed in Chapter 6 (cf. § 6.1.2). Implementing these segmented datasets to the 

methodology provide close approximations to the test chart e-SFR measurement between 0 

cyc/pixel and 75% of the Nyquist frequency, as shown in Figure 5.15. These results indicate 

that a test chart e-SFR can be derived from various scene classes when using a linear system.  

Figures 5.16 and 5.17 illustrate the estimated DSLR 1 and DSLR 2 sagittal system e-SFRs, 

derived from converting vertical and horizontal NS-SFR edge orientations (cf. § 5.1.2). 

System e-SFR estimates at 25%, 50% and 75% Nyquist frequency are plotted against radial 

distance. The estimates from the tangential orientation are found in Appendix D. 

Through converting vertical and horizontal edges to sagittal and tangential, 71% of isolated 

NS-SFR data is deselected because they do not conform to the desired orientation (cf. § 

5.3.2.2). With this smaller quantity of data available, the accuracy of the e-SFR estimate 

decreases. Both DSLR systems have overestimated sagittal system e-SFRs when using the 

10th percentile of the LSF FWHM distribution. As with vertical e-SFRs, the wider LSF 

FWHMs decreased estimated performance. Further, the proposed method once again is 

 

Figure 5.15 Weighted average vertical system e-SFR estimate from the DSLR 1 sub-datasets of 

indoor, man-made and nature scene classes. These estimates are compared to the average 

ISO12233 slanted edge e-SFR and its standard deviation envelope. 
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shown to work effectively with an optical system with tighter performance tolerances, i.e. 

the DSLR 2 telephoto lens. The DSLR 1 dataset requires a 50th percentile threshold to 

provide the most accurate sagittal estimates for RAW and TIFF pipelines, whilst DSLR 2 

dataset delivers the greatest accuracy at the 20th percentile. This discrepancy between the 

two systems indicates that more edges are required when estimating sagittal or tangential e-

SFRs, particularly for lenses with wide performance variation. Expanding the LSF FWHM 

distribution threshold is not the most appropriate method to achieve this, as it introduces 

edges with unknown modulation content; measuring NS-SFRs from larger datasets is more 

suitable. 

The above indicated that the proposed method to estimate system e-SFR is best suited for 

measuring vertical and horizontal e-SFRs, since these edge orientations commonly occur in 

natural scenes, unlike sagittal and tangential orientated edges. That said, sagittal and 

tangential system e-SFRs can be estimated with reasonable accuracy regarding the 

ISO12233 test chart output when the system is linear, but the caveats discussed must be 

considered when implementing it.  

When implementing the e-SFR estimation, several adjustments can be made to the method 

for specific application requirements. The number of radial distances may be increased to 

deliver a higher resolution measurement across the frame. The method can be modified to 

map sagittal and tangential e-SFRs to 2D coordinates, representing performance across the 

field of view. These adjustments require extensive dataset inputs as they introduce further 

segmentation of the isolated NS-SFR data. 
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Figure 5.16  25%, 50% and 75% Nyquist frequency of DSLR 1 sagittal TIFF and RAW system e-

SFR estimates are plotted against the radial distance. Estimates are derived from the 10th, 20th and 

50th percentile of the LSF FWHM distribution. The absolute error of the estimated system e-SFR 

from the mean ISO12233 e-SFR is also plotted, with a standard deviation of the ISO12233 shaded. 
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Figure 5.17  25%, 50% and 75% Nyquist frequency of DSLR 2 system e-SFR estimates are plotted 

against the radial distance. Estimates are derived from the 10th, 20th and 50th percentile of the LSF 

FWHM distribution. The absolute error of the estimated system e-SFR from the mean ISO12233 

e-SFR is also plotted, with a standard deviation of the ISO12233 shaded. 



 131 

 

5.3.4 Smartphone (Highly Non-Linear) Camera System 

The absolute error for the vertical system e-SFR estimate at the 25%, 50% and 75% Nyquist 

frequency were measured for the non-linear smartphone dataset, as shown in Figure 5.18. 

These errors are greater than those calculated from performance estimations from the linear 

systems, as shown in Figure 5.10. The error increases when using a wider LSF in the 

estimation. The most accurate results are from the weighted average system e-SFR 

estimation, computed using the 10th percentile of the LSF FWHM distribution, staying 

within 0.10 for the 25% Nyquist frequency and 0.05 for the 50% and 75% Nyquist frequency. 

 

Figure 5.18 Absolute error at the 25%, 50% and 75% of the smartphone vertical e-SFR estimate 

Nyquist frequency, derived from three LSF FWHM thresholds, at radial segments 1/6, 3/6 and 6/6 

as well as the weighted average (WAve.) of the entire frame. Adopted and expanded on from 

[146]. 
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The smartphone system e-SFR estimations for radial distance segments 1/6, 3/6 and 6/6, as 

well as the frame weighted average, computed using the 10th percentile of the LSF FWHM 

distribution, are plotted in Figure 5.19. Also displayed in this figure are the corresponding 

ISO12233 e-SFRs and standard deviation envelopes. Figure 5.20 depicts the smartphone 

weighted average estimate in relation to both the texture-MTF (i.e. dead leaves MTF), 

measured using the Imatest spilled-coins test chart [32], and the ISO12233 e-SFR. The 

texture-MTF is designed to simulate an average natural scene signal, resulting in a more 

faithful camera response for systems subjected to non-linear processing (cf. § 1.1). 

 

 

Figure 5.19 The Smartphone vertical system e-SFR estimation for three radial annuli out of six 

and a weighted mean of the entire field of view. The first column contains the estimated system e-

SFR in relation to the ISO12233 e-SFR. The second column contains the absolute error between 

the estimated system e-SFR from the mean ISO12233 e-SFR. The third column contains a visual 

representation of the radial distance from which the data belongs [146]. 
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Scene dependency originating from non-linear processing is observed in the results. When 

isolating step-edges from test charts, adaptive processing (e.g., sharpening, denoising, 

compression) has a significant effect; chart edges are preserved and enhanced, resulting in a 

low-frequency boost in the e-SFR. Processing step-edges in complex natural scenes does not 

result in a sharpening boost. The inclusion of surrounding scene content and textures means 

that sharpening is not as effective on natural scene edges. Thus, the 25% Nyquist frequency 

metric has a greater absolute error than the higher frequency metrics, as seen in Figure 5.18.  

Denoising is also less effective in textured natural scene images than isolated test chart 

edges; hence, image noise further biases the estimation.  

As with the DSLR 1 dataset (Figure 5.15), the smartphone camera dataset was segmented 

into three scene classes to investigate the scene dependency of system e-SFR estimates. 

Vertical e-SFRs for each dataset are plotted in Figure 5.21; horizontal system e-SFR 

estimations follow the same trends. 

 

Figure 5.20 Weighted average vertical system e-SFR estimate from the entire Smartphone dataset. 

These estimates are compared to the ISO12233 slanted edge method and Spilled-Coins Texture-

MTF [145, 146]. 
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Results show that individual class estimated system e-SFRs fall within ISO12233 e-SFR 

acceptable limits (i.e. the standard deviation envelope) but do not follow the boosted high-

frequency trend of the ISO12233 e-SFR. The man-made scene class has a boosted mid-

frequency, indicating stronger sharpening than the other two scene classes. Nature scenes do 

not have strong step-edges but have busy textures that do not respond well to sharpening. 

Indoor scenes may have plentiful step-edges, but, generally, they have lower and non-

uniform illumination levels, higher gain settings, and consequently suffer more from image 

noise, prompting denoising. Denoising results in a slight blur in these indoor scenes, further 

reducing the system e-SFR estimate. High-frequency texture and high system noise prompt 

an ISP that results in a similar e-SFR system response.  

 

Figure 5.21 Weighted average vertical system e-SFR estimate from the Smartphone sub-datasets 

of indoor, man-made and nature scene classes. These estimates are compared to the ISO12233 

slanted edge method standard deviation envelope [146]. 
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5.4 Summary 

This chapter used NS-SFRs (cf. § 3.1) derived from extensive image system datasets to 

estimate the system e-SFR. This estimation was achieved by selecting the most probable 

suitable step-edge inputs followed by further restricting the data to fall within the established 

edge and ROI parameters. Selection thresholds were set to minimise the NS-SFR variation 

without excluding a large amount of data.  

NS-SFRs were grouped into six radial distance segments across the frame to evaluate optical 

performance variations across the field of view. This operation resulted in six system e-SFR 

estimations. The NS-SFR LSF FWHM distribution was thresholded per radial distance 

segment to select edges corresponding to the narrowest LSFs (i.e. the highest performance 

NS-SFRs). Hence, the NS-SFRs most likely measured from suitable step-edge inputs were 

selected, i.e. step-edges that contain modulation higher than the rendering capabilities of the 

system (cf. § 2.1.3 & 2.9). Three LSF FWHM distribution thresholds were tested, the 10th, 

20th and 50th percentiles.  

The resultant NS-SFRs were stored within a 4D coordinate system, which binned the data to 

produce a single NS-SFR per combination of coordinates. The data was further refined by 

isolating NS-SFRs measured from edge and ROI parameters that introduce low variation to 

system e-SFR. These parameter thresholds were determined in Chapter 4 (cf. § 4.4) and were 

verified in this chapter using NS-SFR data. The selected NS-SFR data was averaged in the 

spatial domain to derive successful system e-SFR estimates across the frame, and a weighted 

average of six local system e-SFRs gave a global estimate. The weights used were 1.00 for 

the central part of the frame, 0.75 for partway and 0.50 for the frame’s corners. These zone 

weight values are the default values in the Imatest image evaluation software [74] but can 

be adjusted for specific applications. 

Only a small yield of NS-SFRs were utilised for the system e-SFR estimation. The LSF 

FWHM distribution threshold first isolates approximately 10%/20%/50% of the edges. 

Secondly, parameter thresholds deselected a further 66% of data. When horizontal and 

vertical edge orientations were converted to sagittal and tangential, a further 71% of data 

was deselected. 

Vertical and horizontal system e-SFR estimation was shown to be within the set limits of 

accuracy for near-linear systems. The frame weighted average, computed using the 10th 
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percentile, stays within one standard deviation of the equivalent ISO12233 e-SFR at 25%, 

50%, and 75% of the Nyquist frequency. Sagittal and tangential estimates are not as accurate 

due to less data being available for the calculation. In this case, using wider NS-SFR LSF 

FWHMs increased data quantity, which in turn improved the estimate. That said, if the data 

quantity is available in the dataset, the 10th percentile of NS-SFR LSF FWHM distribution 

is recommended to obtain the most likely suitable step-edge inputs for a system e-SFR 

estimation. 

The proposed method was most accurate when measuring the camera system with the 

telephoto lens. Telephoto lenses generally have characteristics that improve the estimation 

accuracy compared to wide-angle lenses, such as having little performance variation across 

the frame. In addition, wide-angle lenses generally have greater artifacts and distortions that 

negatively impact the estimate.  

Results from the smartphone system indicate that highly non-linear systems produce a scene 

and processing-dependent e-SFR estimate. This was observed when dividing the smartphone 

system dataset into three scene categories. Further work is required to determine the extent 

of the relationship between system performance and non-linear signal processing. 
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Chapter 6 Evaluation of Image Dataset Size and 

Scene Classification for System e-SFR Estimation 

Thus far, images with a variety of scene contents were used to estimate the system 

e-SFR. Such diverse inputs are appropriate in certain use cases, for instance, the 

comparison between consumer camera systems. Some situations, such as monitoring 

real-time camera performance for autonomous vision systems, may require input 

images specific to the application. In this chapter, the effects of restricting scene 

content as well as the number of images from which the system e-SFRs are estimated 

is investigated. 

6.1 Dataset Size Evaluation Methodology  

The rationale for choosing a particular system for this study is presented (cf. § 6.1.1), 

including system and file format considerations. The research is broken into three parts, 

firstly the scene classification (cf. § 6.1.2), secondly subdividing the dataset into subsets (cf. 

§ 6.1.3), finally measuring the NS-SFRs and deriving system e-SFRs for each subset (cf. § 

6.2). Figure 6.1 illustrates an overview of this study. 

6.1.1 Camera System under Evaluation 

The DSLR 1 RAW image dataset (cf. § 5.3.1) was divided into smaller subsets and specific 

scene categories for the purpose. The rationale for using the RAW sensor images rather than 

TIFF files was that the e-SFR estimates derived from RAW files, at 25% and 50% Nyquist 

frequency, have higher accuracy (cf. § 5.3.3). More importantly, the TIFF data showed signs 

of non-linearity in the demosaicing process (cf. § 4.3.2 & 5.2), which would potentially skew 

the results, since any variation should result from the quantity and quality of these isolated 

scene edge inputs, rather than scene and processing system behaviour. 

The DSLR 1 system performance has considerable variation across the field of view. In 

contrast, DSLR 2 has a variation from a shallow depth of field, i.e. defocused edges. These 

optical performance variation characteristics are difficult to separate from the error from the 

number of images used in the estimate. However, the effect of a shallow depth of field on 

the e-SFR estimate becomes more problematic with fewer images, whilst the optical 
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performance across the field of view stays constant. Hence, DSLR 1 was used in this study. 

The estimations were colour coded based on the ISO12233 e-SFR standard deviation to 

account for the performance variation, highlighting the acceptable variation from an 

equivalent test chart measurement. 

 

Figure 6.1 Methodology used to evaluate the accuracy in system e-SFR estimation when changing 

input image dataset size and scene content. 
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6.1.2  Scene Classification 

Scene classification techniques are used in many areas of imaging science to distinguish 

scene types or find objects within images. The exact method for scene classification depends 

on the application, and in many studies, Neural Networks are trained using labelled training 

images to achieve this. 

The AlexNet CNN [147] is a well-known and widely used network for object classification, 

accomplishing top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which, at the 

time of publication, were considerably better than other state-of-the-art classifiers. AlexNet 

was trained using ImageNet [149], a database of 1.2 million training images, 50,000 

validation images and 150,000 testing images, to provide five labels per image with over 

1000 object categories. 

Since AlexNet, there have been significant improvements in scene classification CNN 

architecture accuracy, with the introduction of GoogLeNet [150], VGG [151] and ResNet 

[152]. In addition, larger image databases have been shown to improve these object 

classifiers, such as implementing the 10 million image Places database [153]. 

Using a large number of categories was not a requirement. Instead, the aim was to classify 

scenes according to the general environment. Three categories were selected for this 

purpose:  

i) Man-made exteriors, urban or rural that include built structures. 

ii) Indoor scenes, including interiors of shelters, homes, and public buildings. 

iii) Nature scenes, which include landscapes, plants, and animals.  

This simple classification allowed the breakdown of scenes in groups containing i) well-

defined step-edges with low noise and low scene texture, optimal for the slanted edge 

method, ii) defined edges but with lower contrasts and lower illumination levels, thus 

containing higher image noise levels, and iii) less defined step-edges, containing more 

natural textures, suboptimal for the algorithm. Note that within each class, there is diversity 

in SNRs, scene objects and illumination.  

These three categories are most relevant to the datasets captured for this project. More 

defined categories, such as people or roads, can be added for specific applications and NS-

SFRs requirements. 
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Classifying images under these three scene categories was achieved through transfer learning 

[148] the AlexNet CNN [147]. Transfer learning is the process of fine-tuning a pre-trained 

neural network for a targeted task [148]. Rather than retraining all 25 layers of AlexNet, the 

last three layers were retrained, the Fully Connected, Softmax and Classification Output 

layers. This process keeps the foundation of the pre-trained network but trains it specifically 

for the task at hand. Resulting in less computation time than a full retrain of all 25 layers.  

An extensive database containing 8,574 images was used in the transfer learning process. 

Each image was manually labelled under the desired categories. Half of these images were 

captured for this purpose, using a Nikon D800 DSLR, a Fujifilm X-T1 mirrorless and two 

smartphone cameras, the iPhone 7 and 8. The other half was taken from two open-access 

databases, SUN [154] and the Natural Scene Statistics in Vision Science [155, 156]. The 

SUN database is a collection of images taken from the internet to provide researchers with 

“annotated images covering a large variety of environmental scenes, places and objects”. 

The Natural Scene Statistics in Vision Science database is a collection of images 

photographed for research at the University of Texas at Austin. These images were captured 

using the Nikon D700 DSLR with a Sigma 50mm lens.  

Figure 6.2 describes the entirety of this database. The distribution of the diverse illumination 

sources is shown in the pie charts, and the specific scene locations are illustrated as bar 

charts. The ratio of the images categories indoor, man-made and nature was 38:20:27. The 

larger number of indoor images is to account for the greater diversity of interior scene 

contents. 

Images were split 70:30 for training and validation purposes, respectively. The overall 

classification accuracy was high, at 96.35%. For a secondary validation, 100 DSLR 1 images 

per class were used to calculate the top-1 error rate. The top-1 error rate for the man-made 

classification was 18%, the indoor classification 6%, and the nature classification 2%.  

Incorrectly labelled images were due to multiple factors, the most prominent source of error 

being scenes containing elements from multiple classes. Figure 6.3 displays examples of 

incorrect category labelling. The certainty of prediction is the validation output stated by 

AlexNet, i.e. the confidence that the image belongs to the predicted category.  

These falsely labelled scenes may have caused some uncertainty in this study, particularly 

for the smaller subsets (cf. § 6.1.3) that may contain images that do not meet the intended 
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category, for example, Image e). In addition, uncertainty may have occurred when a scene 

contains two categories, for example, in Image b). The areas of nature structure have few 

isolatable step-edges, whilst most of the valuable step-edges in this example image come 

from man-made path structures. That said, the error was negligible mainly because of the 

low number of falsely labelled images. Also, although the subject matter of the photograph 

is another category, many falsely labelled scenes contain the edges and structures that belong 

to the classed scene type, for example, Images a), c) and d). 

 
Figure 6.2 The distribution of the scene locations and lighting conditions of the indoor, man-made 

and nature datasets used in the AlexNet transfer learning process.  
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Figure 6.3 This figure contains five examples of where the retrained AlexNet predicted the 

incorrect scene location category. 
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6.1.3 Subdividing the Dataset 

The images in the three scene classes of the DSLR 1 dataset were divided into n groups 

containing m randomly selected images; these groups are referred to as subsets. This 

subdivision process was repeated seven different times, each time doubling m, as listed in             

Table 6.1, creating a logarithmic scale. As m increased, the number of subsets, n, decreased 

due to the finite size of the dataset. The images were randomly selected from the scene 

classes and were only used once per subdivision. 

The subsets from the three scene classes were merged for each subdivision, forming an 

additional seven subdivisions. These merged subsets contained 3m images, equal parts man-

made, indoor and nature. The number of subsets for each of the subdivisions remained the 

same. This division process is depicted in Figure 6.1. 

These subsets were used to evaluate the number and type of scenes necessary for obtaining 

system e-SFR estimates comparable to the standard. The 10th percentile of the LSF FWHM 

distribution was used to derive the estimations. The absolute error at 50% Nyquist frequency 

was calculated between the estimate and the equivalent ISO12233 e-SFR for this evaluation.  

 

DSLR 1 Dataset 

Subdivisions 

Number of images per 

subset 

(m) 

Number of subsets 

per scene class 

(n) 

1 10 57 

2 20 28 

3 40 14 

4 80 7 

5 160 3 

6 320 1 

7 
570 

1 
(all available) 

            Table 6.1 Seven subdivisions of the scene classed DSLR 1 dataset [146]. 
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6.2 System e-SFR Estimation Results from Subdivided Dataset 

The absolute error of the individual subset estimations was analysed with respect to subset 

size and scene class. Figure 6.4 provides a sample of this data analysis, showing the absolute 

error of the subdivided DSLR 1 RAW vertical system e-SFR estimates for radial segments 

1/6, 3/6 and 6/6, and the weighted average of the entire frame. The data points are colour-

coded to indicate whether the estimates are within, above, or below the ISO12233 e-SFR 

standard deviation limits. The MAE was calculated by averaging the subset error data points 

per subdivision. The MAE for each subdivision is plotted to show accuracy trends as the 

number of images processed through the proposed method increases. 

Figures 6.5 and 6.6 plot the missing data and the standard deviation for each of the seven 

subdivisions against radial distance. These two figures provide the data for the mixed scene 

and separated scenes, respectively. Missing data is a percentage of subsets that did not 

provide an estimate for a given radial distance segment. The standard deviation plots show 

the spread of the estimates for each subdivision, providing a precision measurement. As 

subdivisions 6 and 7 only contain one subset, their standard deviations could not be 

calculated.  

Three traits affect the accuracy of the estimation, which change across the field of view with 

the number of images used in the estimation: 

i) The quantity of edges available for the e-SFR estimate, 

ii) the scene dependency and suitability of the natural scene step-edges, 

iii) and the inherent performance variation of the system. 

The centre of the frame, 1/6, has the least precise estimates, seen across all three scene 

classes, with high standard deviations. This is due to it containing few isolated ROIs, as 

previously shown, resulting in missing data. For subdivision 1, this missing data reaches up 

to 45% for the man-made and indoor classes and 70% for the nature class, i.e. it is difficult 

to estimate a centre radial distance system e-SFR using a small subset. When this segment 

contains suitable step-edges, a larger subset improves the accuracy and precision of the 

system e-SFR estimation, as seen in man-made and indoor scene classes. The e-SFRs 

estimated from the centre of the frame of the nature scene class, which has higher missing 

data and unsuitable step-edges, have no improvement in either accuracy or precision. 
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Figure 6.4  Plots depicting the precision and accuracy of the 50% Nyquist system e-SFR estimation, 

at radial distances 1/6, 3/6, 6/6 and the weighted average of the frame, using various sized subsets. 

This data is presented for the mixed scene subsets and the three scene classes, man-made (exterior), 

indoor and nature [146].  
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Figure 6.5 Plots illustrating the missing data and standard deviation across the seven DSLR 1 

subdivisions against the radial distance segments for the mixed scene system e-SFR estimates. 

 
Figure 6.6  Plots illustrating the missing data and standard deviation across the seven DSLR 1 

subdivisions against the radial distance segments per separated scene class [146]. 
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This same observation is made for the corner frame segment, which has a maximum of 80% 

missing data due to few isolated ROIs as well as step-edges with lower suitability for all 

three scene classes. Thus, there is no improvement in precision with larger subsets. This is 

the lowest performance frame segment for a system due to high optical distortion and 

artifacts, such as chromatic aberrations, typically avoided in test chart based measurements. 

In contrast to the other frame segments, a larger subset decreases the accuracy, seen clearly 

in the nature class. More images provide more data to select suitable natural scene step edges, 

and the NS-SFR LSF FWHM distribution will impact the 10th percentile threshold. This is 

important in the corners of the frame, as artifacts such as chromatic aberrations can distort 

the measurement, increasing the distribution. Larger subsets have a higher likelihood to 

contain data with more artifacts, negatively impacting the estimate by increasing the 

distribution of the LSF FWHMs. In addition, where the corner edges are located impacts the 

estimation. The corners of the frame, particularly for a wide-angle lens, has the greatest 

performance variation. Small subsets may not be evenly distributed across each corner, 

resulting in subsampling the optical e-SFR range. Incorporating more images (thus, more 

edges) gives a more even distribution, providing an average of the range of e-SFRs, thus the 

increase in MAE for this radial segment. This is a challenging position in the field of view 

for the system e-SFR estimation, with missing data and problematic optical characteristics. 

The partway region, 3/6, yields a high number of ROIs. As a result, fewer subsets contain 

missing data for this region. The standard deviation generally decreases with more images 

per subset, seen clearly in the man-made scene class. Although the standard deviation 

decreased, the MAE values stayed constant across the seven subdivisions for all three scene 

classes. In other words, when there are enough ROIs isolated, the average accuracy remains 

constant, but precision improves with more images. Also, note that the MAE stays within 

the ISO12233 e-SFR standard deviation, providing system e-SFR estimates comparable to 

the standard for all three scene classes. 

The weighted mean system e-SFR estimation is a global measurement derived from plentiful 

data from every subset. Consequently, the standard deviation and MAE decrease with more 

images per subset, i.e. precision and accuracy improve. The accuracy improvement is minor 

in scenes with many suitable step-edges. However, the precision and accuracy improvements 

in suboptimal scenes with fewer suitable step-edges is far more significant.  
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Using 30 images of mixed scenes (the smallest subset) provided estimated system e-SFRs 

within one standard deviation of the ISO12233 e-SFR. Increasing the number of images does 

not significantly improve the MAE, but does increase the precision. That said, the centre of 

the frame is an exception, following the same central segment trends as previously discussed.  

Providing a generalised conclusion of how many images are required for an accurate e-SFR 

estimate is impractical, as it is application dependent; instead, the number of edges should 

be determined using the following criteria: 

i) The scene content - Studying the scene classes, as expected, the system e-SFR is 

estimated with higher accuracy using small datasets containing images with well-

defined step-edges. When using suboptimal scene inputs, it is beneficial to use large 

datasets and/or the weighted average estimate to assess system performance. 

ii) The e-SFR requirements - Suppose the application requires an e-SFR across the 

entire field of view. In that case, more images are required for accurate e-SFR 

estimates in the centre and corner frame segments. In contrast, if a single overall 

estimate is sufficient, fewer images provide an accurate e-SFR estimation across the 

tested scene classes. 

iii) The rate of change/variation of content between each image - In an application where 

the input images contain variety or are constantly changing, few images are required 

as the edges would be distributed across the entirety of the field of view. On the other 

hand, if the signal feed is static, increasing the number of images would not be 

beneficial.  

iv) The camera system - This study has used a high pixel resolution DSLR camera 

system. A lower pixel sensor and different optical characteristics would result in 

different step-edge yields and thus would require different numbers of images to 

achieve a robust e-SFR estimation.  

Considering these criteria and assuming the ROI yields are similar to the DSLR 1 dataset, 

the following are examples of generalised practical applications. An automotive vehicle in 

an urban setting would have plentiful man-made structures. While driving, the movement of 

edges would provide edges distributed across the field of view. If an overall frame average 

is required, 10 images would be adequate to stay within the precision of the test chart e-SFR. 

This would provide three independent estimates every second, assuming 30 frames per 

second video feed.  
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For the same example system, but now requiring the e-SFR variation across the field of view, 

80 images would balance precision and accuracy in the centre and corner frame segments. 

This would provide the e-SFR estimates every 2.67 seconds. 

Another example would be a CCTV system. Such systems would have a static, or slow 

moving, video feed of man-made or indoor structures. Due to the inability to obtain evenly 

distributed edges across the field of view, a weighted average e-SFR of the frame would be 

most suited. Alternatively, the exact field of view location e-SFRs may be more appropriate 

than using azimuthal averages per radial distance segment. 

6.3 Summary 

The study presented in this chapter divided the RAW DSLR 1 dataset into smaller groups of 

images, classed by their scene location. These image subsets were then used as the input to 

the proposed method to estimate the system e-SFR. The aim was to assess the accuracy and 

precision of the estimation using small groups of similar images. 

The AlexNet CNN [147] was used for scene classification. Transfer learning [148] was used 

to retrain the last three layers. This classifier grouped images according to the scene 

locations, either man-made, indoor or nature. These groups allowed the separation of scenes 

containing defined suitable step-edges that are optimal for the slanted edge algorithm, edges 

that are defined but less optimal and edges that are suboptimal. The accuracy of the retrained 

AlexNet CNN was shown to be 96.35%.  

After the RAW DSLR 1 dataset was classified into the three categories, each class was 

subdivided seven times, creating a series of image subsets of seven different sizes. The 

subsets were grouped so that an additional seven subdivisions were created containing equal 

parts man-made, indoor and nature. 

Estimating the system e-SFR from these subsets provided essential observations. The larger 

image subset increased accuracy and precision for radial distance segments found to have a 

low number of isolated step-edges, such as in the centre segment. In radial segments with 

suboptimal and fewer suitable step-edges, such as the frame corners, accuracy decreased 

with larger subsets due to optical distortion artifacts negatively impacting the step-edges. 

Partway radial distances were shown to contain a sufficient number of isolated step-edges; 

these areas maintained the same average accuracy across the subset sizes and for all scene 
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classes, but the precision increased with larger datasets. The weighted average was also 

shown to give the most stable result for small subsets, staying within the ISO12233 standard 

deviation limits, although accuracy and precision improved using larger subsets. 

As expected, the data also showed that scene types with more suitable step-edges produce 

better system e-SFRs. Such scene classes allow estimates that maintain accuracy within one 

standard deviation of the ISO12233 using small datasets across all radial distance segments. 

The weighted average estimate provided the best results for suboptimal scene types, e.g., 

nature. 

These results show that the number of images required in a dataset should be set based on 

the scene content, e-SFR requirements, the rate of change/variation of content between each 

image and the camera system.
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Chapter 7 Discussion 

This chapter contains discussions on the proposed methodology to measure NS-SFRs 

(cf. § Chapter 3) and estimate the system e-SFR (cf. § Chapter 4 & Chapter 5), the 

expected results from such an approach (cf. § Chapter 5 & Chapter 6), and potential 

applications. The strengths and caveats of this methodology and its results for the 

various camera systems tested are highlighted. This evaluation is made in the context 

of the broader subject area and background of system performance measurement (cf. 

§ Chapter 2), identifying the novel research areas that were accomplished. 

7.1 The Proposed Methodology for e-SFR Measurement 

The overarching aim of the project has been to create an automated method that measures 

camera system performance directly from natural scene captures. The methodology 

presented in this thesis was developed across multiple studies and comprises two parts. The 

first presents a foundation that effectively extracts step-edges from natural scenes and 

utilises the ISO12233 e-SFR algorithm to produce the corresponding e-SFRs. These are 

referred to as natural scene derived SFRs (NS-SFRs). The second estimates the system e-

SFR from this NS-SFR data, with the aim to provide a comparable measure to the laboratory-

based ISO12233 e-SFR [5]. Although not all individual processes are original, the 

combination of processes and research behind developing the methodology is novel.  

Edge detection plays an essential role in the framework, as it is the initial step of locating 

the edges within scenes. Two edge detection workflows were evaluated (cf. § 3.2). The first 

was a top-down approach, selecting many edges from the scene, then culling them to the 

required edge and ROI parameters for the e-SFR algorithm. The second was a bottom-up 

approach, directly selecting the appropriate edges. After reviewing both, the former was 

selected for the framework, which implements the Canny edge detector and subsequently 

applies processes to select and verify appropriate step-edges for the measurement. These 

additional selection stages become critical parts of the framework's success. They remove 

unsuitable edges and ROIs that introduce anomalies to the NS-SFR results. This approach, 

although robust, requires a high amount of further processing after the edges are selected. 

Future amendments to the edge detection would be required to make the framework more 

efficient. For example, a CNN trained using the data gathered from the Canny edge detection 
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workflow would result in faster step-edge extraction due to combining location, isolation, 

and verification processes, removing unnecessary computation to achieve the system e-SFR 

estimation. 

Processes, such as the pixel stretching filter, developed to help isolate edges in ROI (cf. § 

3.2.2) would remain in the CNN edge selection. Implementing the pixel stretching filter 

showed that, it not only improved the yield of edges isolated from a natural scene image, but 

also reduced the effects of image noise (cf. § 3.3.2.1) and ROI non-uniformity (cf. § 3.3.2.2). 

Drawbacks of this filter include streaking with noise or scene texture and amplifying the 

false-sharpening artifact found in some natural scene edges (cf. § 3.3.2.3). Also, applying 

the filter to tens of thousands of ROIs adds considerable computation time. A potential 

alternative approach to pixel stretching would be to compute only the ESF mask area and 

use this as a Hamming window in the ISO12233:2017 slanted-edge algorithm (cf. § 2.3.2), 

i.e. input only the masked area of the ROI. This would prevent the streaking and false-

sharpening artifacts, but further studies are needed to implement such an approach and 

determine its impact.  

It is important to note that the NS-SFR is not a camera system performance measure since it 

is derived from uncharacterised scene edges with unknown spatial frequency contents. 

Instead, it is a function of both camera performance and scene content, as observed in the 

NS-SFR scene envelopes (cf. § 3.6). Consequently, further processing is required to extract 

either the system e-SFR (cf. § 7.1.1) or develop a scene and processing dependent (SPD) 

performance measurement (cf. § 7.2.4).  

7.1.1 Estimated System e-SFR Methodology 

The principle of the proposed system e-SFR estimation is to select and group the NS-SFR 

data to reduce SFR measurement variation. This was achieved through thresholding the data 

to:  

a) group the expected optical performance variation across the imaging circle within 

radial distance segments, 

b) obtain the highest performance NS-SFRs per segment,  

c) select the NS-SFRs with input edge and ROI parameter ranges shown to introduce 

minimal e-SFR variation. 
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These selected edges from the NS-SFR framework cannot be guaranteed to be suitable for 

the slanted-edge method, i.e. edges that contain modulation higher than the capture 

capabilities of the system across the spatial frequency bandwidth (cf. § 2.1.3). Therefore the 

thresholds must allow for a stable system e-SFR estimation without excessively restricting 

NS-SFR data since suitable step-edges are rare in natural scenes. 

The threshold to extract the highest performance NS-SFRs, and hence the most probable 

suitable step edges, was crucial for the proposed methodology. Three thresholds were tested 

(cf. § 5.1), being the 10th, 20th and 50th percentiles of the LSF FWHM distribution per radial 

distance segment. The 10th percentile has the advantage of selecting the narrowest LSFs, 

thus most likely to provide an e-SFR equivalent to the system performance. On the other 

hand, the 50th percentile has the advantage of more data inclusion. This is useful for obtaining 

estimates when the image dataset has few suitable step-edges, such as estimating e-SFR for 

sagittal and tangential orientations (cf. § 5.3.3).  

For the most part, utilising a percentile threshold to obtain the highest performance data 

works as intended. However, it should be noted that it is not effective if all input edges are 

suitable, i.e. all the measurements provide an e-SFR, as taken from test charts. In such cases, 

the threshold will isolate the highest optical performance measurements, resulting in an 

overestimated e-SFR. The probability of this becoming a real-world problem is low when 

utilising natural scenes, as shadows, rounded corners and depth of field will incorporate 

unsuitable step-edges that are subsequently filtered out. 

Variation is further reduced by selecting the NS-SFR data measured from the edge and ROI 

parameter ranges shown to be stable (cf. § 4.4); on average, this decreases the amount of 

data by 66% (cf. § 5.3.2).  As a result, this approach produces a low data yield for the system 

e-SFR estimation; only 3.41% of the total isolated ROIs are utilised. Nevertheless, the 

selected data is robust for the estimation process.  

The proposed methodology was applied to estimate the system e-SFR of two DSLR systems 

(DSLR 1 and 2), both using the Nikon D800 body, but each with a different lens system. The 

first lens was a Nikon AF-S 24-70mm f/2.8G IF-ED at 24mm and the second a Carl Zeiss 

135mm f/2 Apo-Sonnar T*, with both lens apertures set at f/4. They were chosen because 

they have significantly different optical characteristics (cf. § 5.3.1).  
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To determine e-SFR estimation accuracy, limits were set according to ± one standard 

deviation of the test chart measurements, per radial distance segment, and for the entire 

frame. These limits reflect the traits of each optical system. The wide-angle lens has 

relatively broad limit boundaries due to the considerable variation in optical performance 

across the imaging circle. In contrast, the telephoto lens has narrow limits due to the lower 

variation in optical performance. The range of these standard deviation limits can impact the 

perceived accuracy of the estimates. For instance, the estimate for the DSLR 1 system may 

be within one standard deviation of the equivalent test chart measurement, and the estimate 

for the DSLR 2 system may be outside the accuracy limits. But the MAE between the DSLR 

2 estimate and the equivalent test chart measurement may be lower than that of DSLR 1. 

Therefore, to assess accuracy, both the standard deviation of ISO12233 e-SFRs and the MAE 

from the average ISO12233 e-SFR per radial distance were considered.  

The estimated system e-SFRs from both systems were, for the most part, within one 

ISO12233 standard deviation, although a number of them were overestimated. The DSLR 1 

results, calculated using the 10th percentile LSF FWHM, show higher accuracy in radial 

segments with narrow envelope variation than segments with broad envelopes, such as the 

centre of the frame, staying within a delta of 0.05 from the mean ISO12233 e-SFR at 50% 

Nyquist. The partway region, which naturally has a broader performance variation, gave an 

absolute error of approximately 0.10 to 0.15 (depending on whether the mosaiced or 

demosaiced image was used). This observation is reflected throughout the DSLR 2 system 

e-SFR estimations using the 10th percentile threshold. The tighter performance tolerances of 

the telephoto lens provide delta values under 0.06 measured at the 50% Nyquist frequency 

across all radial segments. Thus, the proposed methodology works better for systems, or 

radial segments, with little optical performance variation. The weighted average of the local 

system e-SFR estimates across the frame of these near-linear camera systems are within one 

standard deviation of the equivalent ISO12233 e-SFR measurement (cf. § 5.3.3). 

Expanding the LSF FWHM distribution threshold to the 20th or 50th percentile can reduce 

the delta value in radial segments with wide optical performance variation, providing an 

estimate closer to the mean ISO12233 e-SFR. However, this would cause underestimation 

when using an optical system with narrow performance tolerance. This disparity relates to 

the NS-SFR measurements being affected by system performance and scene contents. 

Camera systems with little optical variation will result in a high threshold when using the 

10th percentile of the LSF FWHM. As a result, there would be a minimal overlap between 
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NS-SFRs containing only the system performance and those also containing scene content. 

In contrast, wide variations in performance will result in a significant overlap, making the 

threshold position more problematic. Again, the 10th percentile of the LSF FWHM would 

ensure that the system performance is being selected; however, it may also only select the 

higher performance range of the optical variation. Using a lower threshold (20th or 50th 

percentile) may incorporate the expected optical variance but also adds uncertainty to the 

measurement. It is unknown if the performance variation in the estimation is due to the 

optical system or the inclusion of scene contents. Thus, the LSF FWHM distribution 

threshold must be carefully considered when implementing, as it must also correspond to the 

optical characteristics of the system. This work concluded that the 10th percentile was the 

most appropriate threshold in most applications for excluding the scene content component 

of the NS-SFR. 

When implementing this methodology to highly non-linear systems (cf. § 5.3.4), the 

resulting estimates indicated scene dependency. The weighted average estimation for the 

Smartphone dataset has a low-frequency curve comparable to the texture-MTF results, 

without the typical sharpening lobe. The low-frequencies show bias introduced by image 

noise. This e-SFR estimation does not resemble the edge test chart e-SFR, suggesting that 

sharpening and denoising are applied on the test chart, whilst pictorial natural scene content 

is not processed as strongly. The results further indicate scene dependency after segmenting 

the dataset according to scene location. Additional studies are required to develop a scene 

and processing dependent SFR (cf. § 7.2.4) from the NS-SFR data. 

7.1.2 Methodology Improvements 

Although the method is novel and robust for measuring near-linear camera systems, several 

areas could be improved. 

The focus distance is a known factor that can change the optical performance, but it is not 

taken into account in the method. The focus distance is not an easily obtained measurement, 

it is not commonly present in an image file’s EXIF data, and when it is, it is rarely accurate. 

The concept of obtaining the lens's focus distance by utilising a single image depth map 

prediction [111–115] was reviewed in Chapter 2 (cf. § 2.9). The focus distance could be 

estimated by pairing a depth map and the location of the highest performance step-edges. 

This was not pursued in this research because single image depth map predictions are 
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currently not accurate enough for such purposes. They do not provide quantifiable distances 

or relative distances across multiple images. Further work in this field is required before this 

method can be implemented into this workflow.  

Motion blur is another issue that has not been addressed in the current methodology. Outside 

a laboratory-based measurement, natural scenes captured using a slow shutter speed can 

cause motion blur; this introduces a negative error in the estimated system e-SFR. One easy 

solution would be to remove images captured with low shutter speeds, but this would also 

remove images shot on a tripod. That said, using the highest performance NS-SFRs from 

multiple images mitigated this issue. Motion blur is a topic to be studied for applications that 

use single images and are prone to it. A possible solution would be to utilise motion blur 

detection and correction (cf. § 2.9) [116] for applications where motion blur is in a 

predictable direction at a known speed (such as autonomous vehicles (cf. § 7.4.3)). Further 

research into how, and if, motion blur can be factored into the estimation would also be 

beneficial. 

Illumination non-uniformity is a problem in the slanted-edge method (cf. § 2.5.2), but as 

discussed, the pixel stretching filter helps reduce its effects on the e-SFR. In this work, only 

low gradient non-uniformity were considered; more complex non-uniformities need to be 

studied, for instance, uneven shadows on one side of the ROI. An alternative solution would 

be to use an approach similar to the non-uniformity correction in the Imatest software [77]. 

Imatest’s method estimates a first-order fit on the light side of the ROI, as the light side has 

a higher SNR, then divides the edge with this fit. This successfully removes low gradients 

caused by incorrectly lit test charts. Research into using higher-order fitting functions may 

be valuable for more complex non-uniformities found in natural scenes. 

Rather than selecting the NS-SFR data that most likely provide a reliable performance 

measurement, an alternative approach would be to estimate the e-SFR using statistical 

analysis of the distribution of NS-SFR data and the NS-SFR maxima. A large image dataset 

(2000+ images) would provide many captured scene edges for statistical analysis. In some 

respects, this concept can be more robust than the approach taken in this project because 

there are no predetermined judgements/thresholds. That said, it would also be more 

computationally expensive. It would require knowledge of multiple systems, the ISP and 

scene content to determine a statistical approach that would produce an estimation 

representative of the ISO12233 e-SFR. 
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7.2 Implementation  

7.2.1 Code Optimisation to Improve Usability 

All code has been written using MATLAB, utilising parallel computing to utilise all the 

cores of the available Central Processing Unit (CPU); this code is open access and is 

available on a GitHub repository (cf. § Appendix E). Further work is required to improve 

and fine-tune the usability of this code and the implementation of the proposed method. 

The method is coded as presented in this thesis, first measuring the NS-SFRs from a dataset 

and then estimating the system e-SFR. For any practical implementation, the code must be 

optimised. The system e-SFR estimation is a highly selective process that yields small 

numbers of suitable natural scene step-edges. As a result, assuming that the NS-SFR data is 

not required for the application, such as in SPD measurements (cf. § 7.2.4), and a system e-

SFR is the objective, this procedure is inefficient with 96.59% of the isolated data being 

deselected. The current computation times are, on average, 20 minutes per image (based on 

36-megapixel image files and single CPU core computing).  

Thus, the first step in implementing the proposed methodology for real-world applications 

would be to restructure the code to select the utilised edges used in the estimation (3.41% of 

the currently selected data). However, such an efficient yield of utilised edges would not be 

possible with the current approach, as the full LSF FWHM distribution is required to select 

the highest performing NS-SFRs. Instead, the data with the correct edge and ROI parameter 

values could be isolated at the beginning of the process, reducing the amount of unused NS-

SFR processing by approximately 66%. After implementing this simple optimisation, the 

computation time is expected to reduce to a few minutes per image, further improved by 

applying additional hardware acceleration, specifically Graphics Processing Unit (GPU) 

acceleration. 

Additional optimisation could be achieved by isolating the top 10%/20%/50% sharpest edges 

from each image or dataset prior to e-SFR estimation, removing the need for the LSF FWHM 

distribution threshold. This could be carried out in two ways: the first would use a gradient-

based edge detection algorithm to locate the edges of required sharpness. The Canny edge 

detector could be used for this purpose. Instead of detecting an extensive range of edge 

gradients, appropriate thresholds could be applied to find the highest gradients. However, 
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work is required to determine thresholds that output the 10%/20%/50% of the sharpest edges. 

Secondly, a CNN could be employed and trained to select the required edge gradients and 

profile, significantly improving the computation times. The problem with both methods 

above would be their system dependent nature; the sharpest edges would be system 

dependent. Further work is required to assess such approaches and obtain an optimised 

algorithm, which is also flexible and adaptable for multiple systems.  

7.2.2 Recommended Settings and Thresholds 

All thresholds in the proposed methodology, both in the NS-SFR framework (cf. § Chapter 

3) and the system-SFR estimation (cf. § Chapter 5), must be set appropriately for the dataset, 

system, and system settings for successful implementation. The application for the method 

also is important, as the desired output may influence the settings and thresholds. 

The file format of the image dataset from which the e-SFR is estimated directly impacts the 

estimate. Demosaiced image files are suitable for the estimation, provided the ISP is linear, 

or close to linear. Alternatively, the RAW (mosaiced sensor) image can be used to ensure 

linearity. Compressed image files, such as the JPEG files, and images from non-linear 

pipelines, are not recommended without further study (cf. § 5.3.4).  

Studies conducted in this thesis (cf. § 6.2) have shown that the size of the input dataset and 

the captured scene contents combine to determine the accuracy and precision of the 

estimated e-SFRs. If the application allows, an image dataset containing 1000 or more 

images is recommended, as it was shown to increase the estimate’s accuracy. When such 

large datasets are not available, the accuracy becomes dependent on the type of scenes 

contained in the dataset. Fewer images are required in the dataset to provide accurate 

estimates across the frame when the image contains well defined, suitable step-edges. In 

contrast, a weighted average would be recommended for small datasets (10-80 images) 

containing scenes with suboptimal and few suitable step-edges.  

Crucial thresholds in the NS-SFR framework that should be optimised for each system 

include the thresholds set for proximity filter (cf. § 3.3.2) and noise floor (cf. § 3.3.2 & 

3.3.3). The threshold for the proximity filter is currently set to deselect neighbouring edges 

within a 5 pixel distance. This is appropriate for the Nikon D800 DSLR, as the modelled 

MTF corresponds to an ESF distribution of no more than 4 pixels (cf. § 3.3.1). This threshold 

can be decreased or increased depending on the modelled resolving power of the test system 
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(cf. § 2.2.3). The noise floor should be set to best suit the camera and ISO gain settings of 

the images in the dataset used for the estimation, currently set at the fixed threshold of a 0.02 

normalised pixel value change. Ideally, this value should be adaptive on an image-to-image 

basis. 

In the e-SFR estimation methodology, there are thresholds optimised for the system under 

test and the application. For example, the previously discussed LSF FWHM threshold should 

be set to best suit the dataset and optical characteristics of the system. Other factors that 

should be considered are the weights used in the frame average and the number of radial 

segments required for the application. 

When the e-SFR variation across the field of view is not required, fewer images in the dataset 

are necessary to provide estimation accuracy comparable to the ISO12233 system e-SFR. In 

contrast, if a measurement of performance variation across the field of view is required, 

larger image datasets are needed to obtain accuracy across all radial segments; more radial 

segments mean more edges are necessary, preferably evenly distributed across the frame. 

Alternatively, when the performance variation is required, but the dataset is small or contains 

captured scenes with suboptimal and few suitable step-edges, the number of radial distance 

segments should be reduced, such as dividing the frame into three segments rather than six. 

Decreasing the number of radial distance segments is inappropriate for applications 

involving sagittal and tangential e-SFRs, as they are commonly plotted using a performance 

metric against the radial distance (cf. § 2.6.2). Furthermore, the appropriate sagittal and 

tangential edge orientations are not common in captured natural scenes (cf. § 5.3.3). Hence, 

either a large dataset is required, or as mentioned above (cf. § 7.1.1), if such a dataset is not 

available, the LSF FWHM distribution threshold should be set to incorporate more edges, 

using 20th or 50th percentiles.  

7.2.3 Improvements to the ISO 12233 Algorithm 

The goal of the proposed method is to estimate the ISO12233:2017 e-SFR from natural scene 

captures. The NS-SFRs were calculated using the standard slanted-edge algorithm. The only 

alteration was fitting a 3rd order polynomial to the edge slope projection (Equation 2.29) to 

accommodate for curved edges. This higher-order fitting was essential to reduce bias in the 

measurement [86, 135], since it is rare to obtain straight edges from natural scene images.  
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Further improvements can be made by adjusting the standard algorithm, but at the cost of 

moving away from the ISO method. For example, adjusting the ESF resampling process to 

better conform to the projection down the edge slope has been shown to improve the e-SFR 

measure in multiple papers [61, 64, 84, 157] (cf. § 2.7.1). These publications provide results 

with reduced bias introduced by image noise, edge angle variations and ROI size variations. 

The approaches in these papers differ, with varied impact on comparability and compatibility 

with the standard. Imatest proposes an LSF angle correction, which is not intrusive on the e-

SFR measure [61]. In contrast, the Reverse Projection method remodels the ESF resampling 

process, giving more stable results, across large edge parameter ranges, than other slanted 

edge method algorithms [64]. However, the resultant Reverse Projection e-SFR is 

consistently underestimated compared to ISO12233 algorithms, including sfrmat2 and the 

Imatest implementations. Applying such alternative methods would significantly improve 

the NS-SFR stability, allowing more ROIs to estimate the system e-SFR. However, if 

employed, the accuracy and impact on the standard should be understood. 

A revision of the ISO12233 standard is scheduled for release later this year (in 2022); this 

will be the fourth edition of this standard. The additions and changes that are intended in this 

revision will include [78]: 

• Advanced edge fitting, using a 5th order polynomial fitting function. 

• SFR correction to account for edge angle variation, in the same manner as Imatest 

[61] (cf. § 2.7.1).  

• Improvement to the signal-processing window, replacing the Hamming window 

with a Tukey window. 

• Non-uniform illumination correction, as Imatest includes with their software [77]  

(cf. § 2.5.2).  

• The inclusion of an e-SFR acutance measurement.  

Once released, these advances in the ISO12233:2022 [78] would benefit future revisions of 

the NS-SFR and system e-SFR estimation methodology. Research into the benefits of the 

newly proposed edge angle variation and non-uniformity corrections on natural scene ROIs 

would be of particular interest. 
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7.2.4 Scene Dependant e-SFRs 

Most modern cameras incorporate ISPs, which can be treated as a black box. Results from a 

smartphone system incorporating highly non-linear ISP indicated that the e-SFR estimate is 

SPD. Further work is required to establish correlations between specific scene contents 

(scene edge types, texture, and noise), the NS-SFRs and the resulting e-SFR estimates. Such 

an approach moves away from linear system theory, as assumed in traditionally laboratory 

e-SFR measurements, potentially considering the adaptive nature of systems in future 

performance measurement solutions.  

Scene content can be assessed using spatial based Natural Scene Statistics (NSS) on a global 

or local image level. Simple examples include the mean, median and skewness that can be 

used to assess luminance. Entropy can quantify image structure, while the root mean square 

(RMS) contrast can be measured using the standard deviation and mean pixel value of the 

image or ROI [50, p. 388].  

Natural scene metrics can also be used to measure the spatial content of captured images, for 

example, the busyness metric [158], a texture feature metric [159], noise metric [160], and 

blur quality score [161]. Established aesthetic analysis can also be used or adapted for this 

purpose. The metric established by Aydin et al. [162] could help determine scene and 

performance dependency: 

• Sharpness metric – measurement of absolute contrast magnitude of the in-focus 

region of the image. 

• Clarity metric – quantifies if the image has an identifiable subject region. 

• Depth metric – an index of the dominant spatial frequency at the non-sharp image 

regions. 

• Area of in and out of focus regions. 

NSS and other metrics should strictly reflect the factors affecting the system performance 

and the slanted-edge method. Sharpness, noise and the focus point are important metrics. 

Also, the busyness metric [158], or a texture feature metric based on the Hough transform 

[159], should be considered, as the level of texture directly correlates with the number of 

step-edges extracted. In addition to global measurements, a study that breaks down localised 

scene content combined with the localised NS-SFRs would further this work.  
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Research into the e-SFR estimate from different edge contrast ranges, as well as using 

grouped LSF FWHM distribution thresholds (e.g., percentile ranges 10th to 20th, 20th to 30th, 

30th to 40th etc.), would also be beneficial. Such studies should employ datasets containing 

variations in natural scene content, even distributions of edge contrasts, the RAW and 

processed file formats, allowing linear and non-linear signal processing behaviour to be 

investigated.  

Such studies would provide insight into the nature of scene-and-process dependent camera 

ISP, determining whether e-SFRs estimated from natural scenes would be a more suitable 

non-linear system measurement than the traditional laboratory-based ISO12233 e-SFR. 

7.3 Comparison to the PSF CNN Approach 

As reviewed (cf. § 2.8.4.1), a natural scene derived MTF was proposed by Bauer et al. [15]. 

To summarise, their approach used a neural network to estimate the PSF across the frame 

directly from natural scenes, resulting in the sagittal and tangential MTFs that were 

calculated with high accuracy. This methodology is referred to as the PSF-CNN approach, 

whilst the proposed methodology from this thesis is referred to as the slanted-edge approach.  

In this section, the reported accuracy of the PSF-CNN approach was compared with the 

accuracy of the proposed slanted-edge approach. Ideally, the accuracy of the two 

methodologies should be assessed using the same datasets, across multiple systems, for a 

fair in-depth comparison. Instead, the aim here was to provide a context of the accuracy 

between alternative approaches for pictorial natural scene derived MTF/SFR.  

The paper presenting the PSF-CNN approach published the results and the absolute accuracy 

for ten DSLR systems, each using the Canon 5DS R (containing a 50.6 megapixel sensor, 

with a pixel pitch of 4.13µm) with different lenses. Their study included a Canon EF 24mm 

f/1.4L USM, a Canon EF 135mm f/2L USM, and a Carl Zeiss 100mm f/2 Makro-Planar T*. 

Although not identical lenses to the DSLR 1 and DSLR 2 systems (cf. § 5.3.1), they provided 

similar focal length characteristics to compare. DSLR 1 used a Nikon 24mm lens at f/4, 

comparable to the wide-angle Canon 24mm. The DSLR 2 used a Zeiss 135mm lens set at f/4 

that was compared to the telephoto characteristics of the Canon 135mm and the optical glass 

anti-reflective T* coating qualities from the Zeiss 100mm. The closest aperture setting used 
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in their testing was f/5.6. This aperture discrepancy is negligible in this comparison, as it is 

a test of accuracy with their equivalent test chart measurements. 

Bauer et al. used the 10, 20, 30 and 40 line-pairs per millimetre (lp/mm) to assess their PSF-

CNN approach. Thus, the DSLR 1 and DSLR 2 results were compared using these same 

metrics. Their results were given in graphical form; therefore, the data was approximated 

from the provided graphs. Also, as the azimuthal average was used in both approaches, only 

this averaged data was compared. All tested DSLR sensor sizes are identical, making radial 

distance comparison straightforward; the data was compared at radial distances 3.6mm, 

10.8mm and 19 mm (equivalent to 1/6, 3/6 and 6/6 radial segments). 

The slanted-edge approach is best suited to estimating the e-SFR from horizontal and vertical 

edges (cf. § 5.3.3). This is because there are more of these orientations available from natural 

scenes than sagittal and tangential edges. That said, to provide a direct comparison to the 

PSF-CNN approach sagittal results, the sagittal system e-SFR estimate was also used 

alongside the vertical e-SFR estimations. 

The input images from both approaches were the green channel of the mosaiced RAW files, 

except for the DSLR 2 dataset that used the TIFF file format. 

Figure 7.1 depicts the peak absolute error across all radial distances for the four spatial 

frequencies, 10 to 40 lp/mm. In Figure 7.2, the absolute error for spatial frequencies 10 to 

40 lp/mm at the three radial distances for the slanted-edge approach (vertical and sagittal 

orientations) and the PSF-CNN approach are plotted. The graphs are grouped to compare 

the approaches using similar systems directly.  

This comparison has shown that the proposed vertical e-SFR slanted-edge approach is level 

with or, in some cases, better than the alternative PSF-CNN approach. The peak vertical e-

SFR estimations are approximately half of the comparable PSF-CNN approach estimates. 

There are weaknesses to the slanted-edge approach, for example, converting the wide-angle 

lens system orientation to obtain sagittal e-SFRs caused peak absolute errors to be 26% 

higher than that of the PSF-CNN approach. 

Both methods are shown to provide estimates with higher accuracy when implemented with 

high performance systems. The telephoto lenses, for example, show a lower measured error 

than the wide-angle lenses. For the telephoto lens systems, the peak error of the vertical 
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slanted-edge estimate is half of the equivalent PSF result, whilst the sagittal e-SFR estimate 

peak error is equal to that of the PSF method.  

In the publication presenting the PSF-CNN approach, other high-performance lenses were 

studied, for example, the Zeiss Otus 55mm f/1.4 APO-Distagon, which had an absolute error 

peak of 0.05. It must be noted that this Zeiss lens (and the Canon 24mm) were used in the 

PSF neural network training process [15], thus may bias the accuracy of the result for these 

lenses.  

This is not a comprehensive comparison between the two methods. The number of images 

and the scene types used in the analysis of the PSF-CNN approach are not available from its 

publication. The slanted-edge approach used extensive datasets of 1866 images to achieve 

these estimates. Further work is required to provide a fair study of these different approaches. 

Such a study should use an independent test system. 

 

 

Figure 7.1 The peak absolute error from the slanted-edge (as presented in this thesis) and  PSF-

CNN (as published by Bauer et al.  [15]) approaches, at 10, 20, 30 and 40 lp/mm across the 

entire frame. This comparison is between similar, but not identical, systems. 
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Figure 7.2 The absolute error from the slanted-edge (as presented in this thesis) and PSF-CNN (as 

published by Bauer et al.  [15]) approaches, at 10, 20, 30 and 40 lp/mm for radial distances 1/6, 

3/6 and 6/6. This comparison is between similar, but not identical, systems. 
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7.4 Potential Applications 

There is potential utilisation of the proposed method in several areas of imaging science. The 

following sub-sections address some of these applications, highlighting areas where the 

method should be adapted for each use case. 

7.4.1 Camera Performance Comparison 

The comparison of camera system performance is a simple application of the proposed 

method. A system e-SFR estimate from natural scenes potentially allows multiple systems 

to be assessed by collecting image datasets of similar content from each system. The camera 

itself does not necessarily need to be at hand; the images can be harvested from online 

sources and social media. Large quantities of images can be acquired in such cases, resulting 

in more representative ISO12233 e-SFR estimates.  

Only minor modifications to the method would be required for such comparisons. An image 

file EXIF reader is needed to extract the camera settings from the metadata, categorising the 

dataset by model, aperture and focal length, which are essential system performance factors. 

In addition, the metadata can classify the dataset by ISO gain setting, shutter speed and file 

format, depending on the variables of interest. Using a similar scene classification CNN as 

Chapter 6, the datasets could also be sub-classed to determine the performance under various 

illuminations, scenes, and settings. 

It is important to note that many of the images in online sources are often resized, 

compressed, and stripped of metadata; therefore, careful consideration should be given to 

deselecting these during image collection. 

7.4.2 Image Quality Metrics  

As mentioned, the system e-SFR estimation indicated scene dependent characteristics with 

highly non-linear systems. After implementing the previously proposed study to analyse the 

scope of this scene dependency (cf. § 7.2.4), the NS-SFRs may be developed into an SPD e-

SFR measurement, that in turn, can be used in a similar manner to the SPD-MTF as inputs 

in spatial IQMs to account for the scene dependent nature on non-linear pipelines [13, 17, 

96] (cf. § 2.8.2).  



 167 

 

The SPD-MTF and the NS-SFRs are conceptually very different. The SPD e-SFR is based 

on the slanted-edge method. It will be most sensitive to non-linear sharpening and provide 

local performance measurement. Whilst the SPD-MTF is a global measurement based on the 

texture method (cf. § 2.1.4), hence effectively quantify non-linear sharpening and denoising.  

When implemented into IQMs, these performance measurements may behave differently. 

Therefore, further work is required to compare the IQM accuracy of these approaches.  

The texture-based SPD-MTF is implemented through printed natural scene test charts [12] 

or system simulation [13]. Consequently, it cannot obtain the performance from 

uncharacterised real-world natural scene captures. The NS-SFR are obtained without any 

former knowledge of the input signal; thus, if SPD e-SFR can be established, they can be 

implemented into a no-reference spatial IQM, opening new possibilities for this approach.  

7.4.3 Autonomous Vision Systems 

Deep Neural Networks (DNNs) are currently used as one of the leading technologies in 

image recognition tasks. With the application of DNNs in decision critical systems, such as 

autonomous vision systems, it is important to develop camera performance measures to 

monitor the camera output in real-time. 

One of the most significant appeals for a performance measure derived from natural scenes 

is its potential for providing real-time evaluations. A live-SFR feed would benefit several 

areas of autonomous vision systems, such as autonomous vehicles and security systems.  

There are several reasons why camera signal may deteriorate during real-time operation, 

including camera system failure, motion blur, defocus, and environmental conditions. 

Through live monitoring, the system can be adapted according to the measured and expected 

camera performance, adjusting the image signal processing (ISP), or completely removing 

the automation when the SFR drops under what is deemed safe operation. 

The proposed methodology requires significant optimisation to achieve live-SFRs, i.e. an e-

SFR estimated per frame, at 30 frames per second (1/30th of a second). The optimisation 

would include previously stated code optimisation (cf. § 7.2.1) and application-specific 

computational improvements. For example, edge detection and isolation using a CNN (cf. § 

7.2.1), the application would benefit the CNN being trained with scene contents expected 

for the purpose. In addition, the methodology can be adapted to isolate edges known to be 
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expected within specific scene types, such as, in autonomous vehicles, road signs and road 

markings would be most often in predictable places in the field of view and moving in the 

frame with the speed and direction of the vehicle, potentially facilitating edge isolation.  

Using multiple images (or frames) was shown to increase accuracy and precision. Therefore, 

an alternative solution would be to estimate the e-SFR every x seconds, combining multiple 

frames in the estimation. Such an approach would not necessarily be considered live, but 

would allow autonomous vision systems to be monitored more accurately during operation.
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Chapter 8 Conclusions and Recommendations 

The conclusion of the research conducted to establish a method to obtain natural 

scene derived performance measurement and the recommendations for further work 

are presented in this chapter.  

8.1 Conclusions 

The following conclusions were drawn from the research conducted in this thesis: 

• The thesis presents a novel automated approach to extract appropriate step-edges from 

natural scenes for processing in the slanted-edge algorithm that resulted in the natural 

scene derived spatial frequency response (NS-SFR). 

• A top-down approach was established as the most appropriate method for selecting the 

natural scene step-edges. First, detecting all image edges using the Canny edge detector 

and then filtering them down to produce step-edge regions of interest (ROIs).  

• The pixel stretching filter was developed to improve the edge extraction from natural 

scenes. This filter not only isolated the edge of interest successfully, but also reduced the 

effects of image noise and non-uniformity on the resulting NS-SFR. 

• By minimising the variation in the NS-SFR data to improve conformity with the 

ISO12233 standard method, without excessively restricting the data, the system e-SFR 

can be estimated within one standard deviation of the equivalent ISO12233 e-SFR for 

linear camera systems. 

• Results from a smartphone system incorporating highly non-linear image signal 

processing (ISP) indicate that the e-SFR estimate is scene and processing-dependent 

(SPD). The resultant scene dependency is apparent after classifying the smartphone 

dataset into man-made, indoor and nature scenes. 

• This proposed approach has low NS-SFR data yield, on average, only selecting 3.41% 

of the collected NS-SFR data for the system e-SFR estimation. Suboptimal scenes or 

datasets containing few suitable step-edges may lead to missing data in the centre and 

corners of the field of view. 

• Demosaiced image files are adequate for estimating the system e-SFR, provided the ISP 

is linear or close to linear. Otherwise, the RAW image can be used in the estimation to 

ensure linearity. 
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• The 10th percentile of the LSF FWHM was the most appropriate threshold to isolate 

suitable step-edges per radial segment, as it is more likely to exclude the scene content 

component of the NS-SFR. 

• The use of extensive image datasets (1000-2000 images) from a near-linear camera 

system provided e-SFR estimates across the field of view comparable to the equivalent 

ISO12233 standard measurements. 

• The weighted average e-SFR estimate for a near-linear camera system provided results 

that stay within one standard deviation of the expected field of view distribution of the 

e-SFRs from the test chart. 

• The sagittal and tangential e-SFR estimates correlated with the e-SFRs measured with 

test chart edges. However, they had an MAE greater than the standard deviation of the 

test chart e-SFRs. This error is caused by decreasing the number of isolated step-edges 

by 71% in the horizontal and vertical to sagittal and tangential orientation conversion. 

Hence, expanding the LSF FWHM distribution threshold to utilise broader LSFs was 

shown to reduce this error, as more edges are utilised in the estimation.  

• Extensive image datasets (2000 images) from a highly non-linear camera system 

produced e-SFR estimated that indicated scene and processing dependant behaviour. 

This was further demonstrated when subdividing the dataset into three scene classes 

(man-made, indoor and nature) that induced different levels of processing. 

• Subdividing the DSLR 1 dataset into smaller subsets provided important observations 

on the accuracy and precision of the system e-SFR estimate: 

▪ The larger image subsets increase the accuracy and precision for radial distance 

segments with low numbers of isolated step-edges, such as in the centre segment. 

▪ Larger subsets can decrease estimation accuracy for radial segments containing 

optical distortion artifacts and large e-SFR variation, such as the frame corners. 

This is due to artifacts increasing the spread of the LSF and taking an average of 

a large optical performance variation. Whilst smaller subsets will sample narrow 

parts of the e-SFR variation, increasing accuracy, but decreasing precision.  

▪ Partway radial distances were shown to contain 80% more isolated step-edges 

than the other radial segments; these areas maintained the same average accuracy 

across the subset sizes and all scene classes, but the precision increased with 

larger datasets. 
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▪ The weighted average gave the most stable result for small subsets, staying within 

one ISO12233 e-SFR standard deviation, but accuracy and precision improve 

using larger subsets. 

▪ Captured scenes of man-made and indoor structures contain many isolated step-

edges, but indoor scenes contain more image noise due to the lower illumination 

condition. Scenes of nature are generally more busy, with natural scene textures 

and few easily isolatable step-edges. As expected, the scenes containing more 

suitable step-edges result in more accurate and precise system e-SFRs estimates 

with fewer images.  

• The proposed method has the potential to improve several areas of imaging science, 

including: 

▪ Camera performance comparison using online image datasets. 

▪ Produce a SPD SFR that may open up new possibilities in no-reference spatial 

IQM. 

▪ Create a real-time SFR measurement for monitoring/calibrating autonomous 

vision systems.  

8.2 Further Work 

The further work recommendations are split into two parts; the first presents improvements 

in the methodology proposed in this thesis, and the second lists other related work. 

Further work recommendations for the proposed methodology:  

• The first recommended development is to optimise the proposed method to improve the 

user application and computation times, enabling it to be practically implemented. This 

optimisation should improve the NS-SFR yield in the system e-SFR estimation by 

initially selecting the desired step-edge parameters, removing approximately 66% of 

unprocessed data. Additional optimisation includes hardware acceleration, reducing the 

computation time. 

• Training a Convolutional Neural Network (CNN) to optimise the edge selection and 

verification would significantly improve computation times. Rather than taking the 

Canny edge detection top-down approach (cf. § 3.2.1), this would be more comparable 

to the matched filter (cf. § 3.2.2). Instead of building up the appropriate edges, the CNN 
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could be trained using the data gathered by the current approach, selecting the suitable 

edges straight from the scenes. This method would still benefit from isolation methods 

such as pixel stretching (cf. § 3.3.2). 

• The pixel stretching filter could be replaced using the Edge Spread Function (ESF) mask 

as a Hamming filter in the ISO12233 algorithm to improve computation time further. 

Research should be carried out into the effects of this approach on the e-SFR and whether 

it would remain comparable to the standard. 

• Parameters such as the optical focus distance should be implemented into the system e-

SFR estimation. A possible solution would be to estimate a single image depth map and 

combine it with the location of the highest performance NS-SFRs (i.e. the narrowest 

LSFs). That said, further research is required into the field of monocular depth estimation 

before such an approach can be successfully implemented (cf. § 2.9).  

• Motion blur is another parameter that has not been explored in the course of this project. 

Thresholding the LSF FWHM removed blurred edges; thus, motion blur is not a concern. 

However, further work to account for motion blur in situations where the Inertial 

Measurement Unit (IMU) is known (cf. § 2.9) may benefit specific applications. 

• Although pixel stretching has been shown to mitigate the effects of tonal non-uniformity, 

it does not entirely remove it. Therefore, further work to develop an alternative solution 

to remove non-uniformity would enhance the proposed method, for instance, describing 

the tonal changes in the form of a function and applying the inverse. 

• Applying the latest improvements to the ISO12233 standard, particularly research 

proposals that have shown to help reduce variance in the e-SFR, such as the Reverse-

Projection method [64], would benefit the proposed method. 

Further recommendations for the other related works:  

• The SPD of the NS-SFRs and the resulting system e-SFR estimates should be further 

researched to establish how the results are affected by non-linear ISPs on various scene 

types, both using global and local image content. Such a study would provide insight 

into whether such an approach would be a more suitable non-linear system measurement 

than the traditional laboratory-based ISO12233 e-SFR. 

• If the resulting SPD SFR measurement is effective, research should be conducted into 

whether it can substitute the SPD-Modulation Transfer Functions (SPD-MTF) in spatial 
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image quality metrics (IQM) [13, 17]. This work should determine the error and IQM 

accuracy of the two very conceptually different methods.  

• The performance of the proposed slanted-edge approach should be compared to 

alternative solutions, such as the PSF-CNN approach [15] (cf. § 2.8.4 & 7.3). This 

comparison should use independent datasets, benchmarking the accuracy with various 

ISPs and dataset sizes.  

• Finally, the proposed method should be adapted and implemented for specific practical 

applications, evaluating its effectiveness for various purposes. For example, estimating 

the system e-SFR from datasets for Deep Neural Networks DNN training, security 

systems, and autonomous driving. 
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Appendix A    The ISO12233 e-SFR Measurement  

Figure A.1 contains the Opto-Electric Conversion Function (OECF) of the Nikon D800 

DSLR camera system, measured using the ISO14524:2009 [2]. This OECF was used in the 

linearisation process for the Nikon D800 ISO12233 system e-SFR measurements.  

Figure A.2 contains the average system e-SFR for the DSLR1 system (cf. § 5.3.1), measured 

from a TIFF pipeline (demosaiced) and RAW pipeline (green channel mosaiced) across six 

radial distance segments and a weighted average of the entire frame. They were measured 

following the ISO12233:2017 standard [5]. There is a negligible difference between the  

TIFF and RAW pipelines; hence, all DSLR 1 system e-SFR estimations were evaluated 

against the ISO12233 system e-SFR measured from TIFF images.  

 

Figure A.1 The OECF of the Nikon D800, measured using the ISO14524:2009 [2] standard 

method.  
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Figure A.2 Comparison between the system e-SFR from the DSLR 1 TIFF and RAW pipelines, 

measured using the ISO12233:2017 [5] standard method. 
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Appendix B    E-SFR Estimation Summary Metric 

Tables B.1 and B.2 show the e-SFR summary metric of the vertical system estimates from 

DSLR 1 TIFF and RAW datasets, respectively. Table B.3 contains the same summary metric 

for the DSLR 2 dataset and Table B.4 for the smartphone system. Metrics used were the 

MTF50/50P/20/10, 25%/50%/75% of the Nyquist frequency and sampling efficiency as 

detailed in Chapter 2 (cf. § 2.6.1), as well as LSF FWHM (cf. § 5.1). These metrics were 

calculated for each radial segment system e-SFR estimation and weighted mean. The 

absolute error was calculated for each metric, respective to equivalent ISO12233 e-SFR. 

These error values were colour coded to visualise whether the summary metrics are equal to 

ISO12233 (green), overestimated (blue) or underestimated (red). 

 
* LSF FWHM is measured from the 4-times resampled edge, thus, 4-times the native resolution 

Table B.1 Metrics for the vertical system e-SFR estimates from DSLR 1 TIFF dataset. Eight 

metrics for each radial segment and the weighted average per LSF FWHM percentile threshold 

have been measured.  
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* LSF FWHM is measured from the 4-times resampled edge, thus, 4-times the native resolution 

Table B.2 Metrics for the vertical system e-SFR estimates from DSLR 1 RAW dataset. Eight 

metrics for each radial segment and the weighted average per LSF FWHM percentile threshold 

have been measured. 
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* LSF HPW is measured from the 4-times resampled edge, thus, 4-times the native resolution 

Table B.3 Metrics for the vertical system e-SFR estimates from DSLR 2 TIFF dataset. Eight 

metrics for each radial segment and the weighted average per LSF FWHM percentile threshold 

have been measured. 
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* LSF HPW is measured from the 4-times resampled edge, thus, 4-times the native resolution 

Table B.4 Metrics for the vertical system e-SFR estimates from smartphone JPEG dataset. Eight 

metrics for each radial segment and the weighted average per LSF FWHM percentile threshold 

have been measured. 
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Appendix C    All Vertical e-SFR Estimation Results 

Figures C.1 to C.9 provide the system e-SFR estimations of the DSLR 1, DSLR 2 and 

smartphone systems across all six radial segments used. Three system e-SFR estimations are 

provided per system, using the three LSF FWHM distribution thresholds (10th, 20th and 50th 

percentiles). 
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C.1  DSLR 1 e-SFR Estimation Results 

 

Figure C.1 DSLR 1 vertical system e-SFR estimations using the 10th percentile of the LSF FWHM 

distribution. 
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Figure C.2 DSLR 1 vertical system e-SFR estimations using the 20th percentile of the LSF FWHM 

distribution. 
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Figure C.3 DSLR 1 vertical system e-SFR estimations using the 50th percentile of the LSF FWHM 

distribution. 
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C.2  DSLR 2 e-SFR Estimation Results  

Figure C.4 DSLR 2 vertical system e-SFR estimations using the 10th percentile of the LSF 

FWHM distribution  
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Figure C.5 DSLR 2 vertical system e-SFR estimations using the 20th percentile of the LSF FWHM 

distribution 
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Figure C.6 DSLR 2 vertical system e-SFR estimations using the 50th percentile of the LSF FWHM 

distribution 
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C.3  Smartphone e-SFR Estimation Results 

 

Figure C.7 Smartphone vertical system e-SFR estimations using the 10th percentile of the LSF 

FWHM distribution 
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Figure C.8 Smartphone vertical system e-SFR estimations using the 20th percentile of the LSF 

FWHM distribution 
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Figure C.9 Smartphone vertical system e-SFR estimations using the 50th percentile of the LSF 

FWHM distribution5 



 190 

 

Appendix D    Tangential DSLR e-SFR Estimation  

Figures D.1 and D.2 contain plots of the tangential DSLR 1 and DSLR 2 system e-SFR 

estimates at 25%, 50% and 75% of the Nyquist frequency. 

 

Figure D.1 25%, 50% and 75% Nyquist of the DSLR 1 tangential TIFF and RAW system e-SFR 

estimates are plotted against the radial distance. The estimates are derived from the 10th, 20th and 50th 

percentile of the LSF FWHM distribution.  The absolute error of the estimated system e-SFR from 

the mean ISO12233 e-SFR is also plotted, with the standard deviation of the ISO12233 shaded. 
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Figure D.2 25%, 50% and 75% Nyquist of the DSLR 2 tangential system e-SFR estimates are plotted 

against the radial distance. The estimates are derived from the 10th, 20th and 50th percentile of the 

LSF FWHM distribution.  The absolute error of the estimated system e-SFR from the mean 

ISO12233 e-SFR is also plotted, with the standard deviation of the ISO12233 shaded 
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Appendix E    MATLAB Code 

The MATLAB code used in this thesis to obtain NS-SFR and subsequently estimate the 

system e-SFR can be found at: www.github.com/OlivervZ11/NS-SFR. 

The instructions for implementing the code, the MathWorks Toolbox requirements, and the 

installation guide for the MATLAB data visitation app is found below.  

E.1  Instructions & Implementation Guide  

E.1.1   Requirements 

MATLAB and the following MATLAB Toolboxes: 

• Image Processing Toolbox 

• Parallel Computing Toolbox 

• Statistics and Machine Learning Toolbox 

SFRMAT4 

Sfrmat4 was written by P. D. Burns and is available at [87]. Throughout the provided 

MATLAB code, sfrmat4.m is used to measure the e-SFR via the slanted edge method. Minor 

adjustments were made to the code to output edge angle, contrast and whether clipping is 

present. Also, error flags are placed in the code to catch and deselect unsuitable natural scene 

step-edges.  

E.1.2   Guide 

1. Part 1 – The NS-SFR extraction:  

Running Pt1_NSSFR_Extraction.m isolates step edges from a dataset of images. Before 

running the code, ensure the image dataset is stored in a folder and that all images are taken 

with the same camera system, lens, and aperture.  

When initialising the code, you will first be prompted to state whether the dataset is either 

RAW or TIFF image format (see Figure E.1). The TIFF format is a standard .tif file, whilst 

http://www.github.com/OlivervZ11/NS-SFR
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the RAW must be a .dng. The provided DNG image reader (imreadDNG.m) is based on 

reading a converted Nikon NEF RAW file [163]; therefore, the DNG image reader may need 

to be modified depending on the camera model used to capture the dataset. 

 

Figure E.1 Select dataset file format 

After selecting a file format, you will need to select the folder that the dataset resides. Then 

a second directory panel will appear for you to select a folder where the result (.mat) files 

will be saved, a file will be generated per image, therefore it is recommended to have a 

dedicated results folder directory. The code will then run through processing the images and 

measuring the NS-SFRs. 

Depending on the number of images, pixel resolution, and CPU cores available, this script 

may take time to run. 

2. Part 2 – System e-SFR Estimation:  

To estimate the system e-SFR from the extracted NS-SFR data, run the 

Pt2_ESFR_Estimation.m script. You will be prompted to select which e-SFR orientation you 

want to estimate, Horizontal & Vertical or Sagittal & Tangential, or both orientation groups 

(see Figure E.2). Note, the NS-SFRs are extracted in the Horizontal & Vertical orientation; 

thus, the conversion to Sagittal & Tangential will extend the computation time.  

Select the directory containing the .mat files from Pt1_NSSFR_Extraction.m.  

 

Figure E.2 Select which orientations to estimate 
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Depending on the orientation chosen, you will be asked to load ISO12233 Test chart data 

for the chosen orientations (see Figures E.3 and E.4). If ‘Yes’, choose the appropriately laid 

out .mat file; see Section 4 of this guide. 

 

 

 

 

 

 

 

 

 

 

The script will run and save a file named eSFR_Estimation.mat into the selected results 

directory.  

3. Plotting the Results:  

A MATLAB app user interface is provided to assist with visualising the data. To install the 

app in MATLAB, go to the App Tab in the top left, click Install App, and select 

Plot_NSSFR_Data.mlappinstall. The app Plot NSSFR Data should now be in your Apps 

dropdown.  

Starting the app, a user interface Figure will open (see Figure E.5). Next, click the load 

button and select the eSFR_Estimation.mat file, the text under the button will inform you 

once loaded. A popup window will open when loading the data to ask for the camera’s pixel 

pitch (see Figure E.6), only required for Sagittal & Tangential plots. 

 

Figure E.3 Use Horizontal & Vertical test chart data? 

 

Figure E.4 Use Sagittal & Tangential test chart data? 
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The three tabs in the user interface (see Figure E.7- E.9) provide the plots of: 

1) the NS-SFRs binned to a multidimensional coordinate system, visualising the 

variation in the data, 

2) the Horizontal & Vertical estimates, 

3) the Sagittal & Tangential estimates.  

In each tab, parameters can be adjusted, including the radial segment of the frame, the colour 

channel (if from RAW images), orientation and spatial frequency. In addition, if there is 

ISO12233 test chart data, the absolute estimation error can be displayed. 

 

 

 

Figure E.6 Insert the camera pixel pitch 

Figure E.5 Load Tab of ‘Plot NSSFR Data’ user interface 
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Figure E.7 Multidimensional NS-SFR Plotting Tab 

 

 

Figure E.9 Sagittal & Tangential Plotting Tab 

Figure E.8 Horizontal & Vertical Plotting Tab 
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4. Measuring the ISO12233 Test Chart e-SFR:  

If test chart e-SFR data is used, the data must be correctly stored in a cell array. To achieve 

this, ManualROISelection.m is provided. Running this script will open a user interface to 

select step-edge from test chart images. First, store the test chart captures in a folder and 

select the directory when prompted. After the script loads the images from that directory, it 

will display the first image. Next, move the red selector to each chart Horizontal/Sagittal 

edges and click Select. Once all Horizontal/Sagittal edges are selected from the displayed 

image, click Next. If multiple test chart images are in the directory, the user interface will 

display the next image to repeat the Horizontal/Sagittal edge selection. After the 

Horizontal/Sagittal edges are selected from the images, the user interface will display the 

first image for you to repeat the selection process, but for the Vertical/Tangential edges.  

Clicking ‘Finish’ will close the user interface and will ask you to save the data. The e-SFRs 

are measured using sfrmat4 and are stored ready for Part 2 estimation. 

The test chart should fill the frame, obtaining many e-SFRs across the field of view. Failing 

this, multiple captures of the test chart can be used, moving it across the field of view. Many 

step edges across each radial segment will provide a more accurate standard deviation 

measurement to assess the e-SFR estimate. 
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Abbreviations 

1D 1-Dimensions/Dimensional 

2D 2-Dimensions/Dimensional 

3D 3-Dimensions/Dimensional 

4D 4-Dimensions/Dimensional 

5D 5-Dimensions/Dimensional 

6D 6-Dimensions/Dimensional 

ADC Analogue-to-Digital Conversion  

APSO Adaptive Particle Swarm Optimization  

BSI  British Standards Institute 

CFA Colour Filter Array 

CNN Convolutional Neural Network  

CPU Central Processing Unit 

CRT Cathode Ray Tube  

cyc/pixel  Cycles per pixel 

DFT Discrete Fourier Transform 

DNN Deep Neural Networks  

DSLR  Digital Single Lens Reflex 

ESF  Edge Spread Function 

e-SFR Edge SFR 

EXIF Exchangeable Image File Format 

FPN Fixed Pattern Noise  

FWHM Full Width at Half Maximum 

GPU  Graphics Processing Unit 

HVS Human Visual System  

IMU Inertial Measurement Unit  

IQ Image Quality 

IQM Image Quality Metric  

IR Infrared  

ISO International Organization for Standardization 

ISP Image Signal Processor 

LCD Liquid Crystal Displays  

LSF Line Spread Function 

LUT Look-up-Table  

MAE Mean Absolute Error 

MTF Modulation Transfer Function 

NaN Not a Number 

NSS Natural Scene Statistics 

NS-SFR Natural Scene derived SFR 

OECF  Opto-Electric Conversion Function  
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OTF Optical Transfer Function 

PCHIP Piecewise Cubic Hermite Interpolating Polynomial  

PPI Pixels per inch  

PRNU Pixel Response Non-Uniformity 

PSF Point Spread Function 

PTF Phase Transfer Function  

QE Quantum Efficiency  

RGB Red Green Blue 

RMS Root-Mean-Square  

ROI  Region of Interest 

SE Standard Error  

SFR Spatial Frequency Response 

SNR  Signal-to-Noise Ratio 

SPD Signal and Processing Dependant 

sRGB Standard RGB 
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