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Investigating the asymmetric linkages between infrastructure development, green innovation, 1 

and consumption-based material footprint: Novel empirical estimations from highly resource-2 

consuming economies  3 

 4 

 5 

Abstract 6 

 7 

The role of a reliable resource consumption measurement is essential for devising a relevant climate 8 

policy. The consumption-based material footprint is trade-adjusted domestic resource consumption that 9 

presents an accurate picture of the domestic material footprint. Pursuing the same, this study draws 10 

asymmetric linkages between infrastructure development, green innovation, and consumption-based 11 

material footprint (MF) in the top 11 highly material-consuming countries. Our preliminary findings 12 

strictly reject the preposition of data normality and highlight that the observed relationship is quantile-13 

dependent, which may disclose misleading results in previous studies using linear methodologies. In 14 

compliance, a novel empirical estimation technique popularized as Method of Moments Quantile 15 

Regression is employed that simultaneously deal with non-normality and structural changes in data. 16 

The results exhibit that infrastructure development (green innovation) significantly increases 17 

(decreases) MF mainly across medium to higher quantiles (medium-higher level of MF). Interestingly, 18 

the resource-depleting effect of infrastructure is highest for higher quantiles and lowest for lower 19 

quantiles of MF. Economic growth (globalization) increase MF, and their resource-depleting effect is 20 

higher (lowest) for lower quantiles and lowest (highest) for higher quantiles. Lastly, population exhibits 21 

an inverted-U shape relationship with MF across lower to higher quantiles. These results suggest 22 

pertinent policy recommendations.  23 

 24 
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1.  Introduction: 28 

The increase in material use impacts environmental quality in the form of climate change, natural 29 

resource depletion, increase air and water pollution, and biodiversity reduction. Besides, the increase in 30 

the use of natural resources raises the question of their eventual scarcity for the nations (Fernández-31 

Herrero and Duro, 2019; He et al., 2021; Wang et al. 2020). Amid these rising concerns, Sustainable 32 

development Goals (SDGs) instigate resource conservation that led global economies to take sequester 33 

measures for the sustainable use of natural resources (Razzaq et al. 2021). The SDG 12 is specifically 34 

concerned with the efficient use of natural resources, including domestic material use and material 35 

footprint. Resources consumption is an important area of concern for policymakers due to economic, 36 

social, and environmental vulnerabilities (Ulucak et al. 2020; Wu et al. 2021). On the economic front, 37 

policy reasons are concerned with the sustainable use of natural resources and resource management 38 

cost. Social causes are related to the efficient distribution of the goods produced by using natural 39 

resources and materials. It leads to another challenge that is faced by most of the countries due to 40 

population growth, i.e., either country can meet the needs of its future generations or not. Lastly, the 41 

most important concern is related to the environmental impacts of natural resources and material use 42 

(Li et al. 2021). Schandl et al. (2016) highlighted this scenario and predicted that almost 180 billion 43 

tons of material would be required by 2050, which is nearly three times more than the current levels. 44 

Besides, excessive use of different metals and resources in the infrastructure sector also surges Carbon 45 

(CO2) emissions. 46 

Infrastructure development is considered one of the most significant detrimental factors of 47 

natural resources, particularly construction-related materials.  In this study, we have utilized an 48 

accumulative infrastructure index, which integrates into four broader categories of transport, 49 

telecommunication, energy, and financial infrastructure. The widespread utilization of construction 50 

material in physical infrastructure development is exerting a positive influence on resource 51 

consumption. Also, the excessive focus on infrastructure development to boost economic growth in 52 

developing and developed countries is raising other environmental concerns such as climate change 53 

(Jafri et al.2020), excessive utilization of land (Govindu and Nigusse, 2016), CO2 emissions (Du et al., 54 

2019) and greenhouse gasses pollution (Zhang et al., 2020). These impacts are fully realized during and 55 

after the construction phase of the physical infrastructure (Churchill et al., 2019). Similarly, an 56 

improved and efficient road infrastructure is attributed to the higher number of vehicles on the roads, 57 

which caused a colossal sum of CO2 emissions (Li et al. 2020; Han et al., 2017).  58 

The prior studies explained that physical and transport infrastructure is often characterized by 59 

heavy-duty fuel-intensive equipment, and also the use of large quantities of concrete and asphalt causes 60 

environmental degradation (Rahman et al., 2017; Xie et al., 2017). However, the literature related to 61 

the impact of infrastructure development on ecological and resource degradation is inconclusive and 62 

limited (Chen et al. 2018). One strand of the literature revealed the positive effects of infrastructure 63 

development on environmental quality and resource efficiency (Zhang et al. 2015; Alshehry and 64 

Belloumi 2017; Baloch and Saud, 2018; and Khan et al., 2020; Adams et al., 2020; An et al. 2020). The 65 

second strand of literature supports the negative impacts of infrastructure development on 66 

environmental degradation (Neves et al., 2017; Batool et al., 2019; Lange et al.,2020). However, the 67 

development of well-designed, well-built, well-maintained transport infrastructure is often considered 68 

a meaningful way to reduce net CO2 emissions (European Commission, 2016).  69 

According to ACEA (2015) “intelligently designed, well-built and well-maintained roads are 70 

key to further reducing road transport CO2 emissions.” Our selected countries (see Table 1) are rich in 71 

all categories of infrastructures; therefore, infrastructure is one of the main primary sources of material 72 

footprint in these economies due to the heavy usage of materials in the construction and development 73 



of infrastructures. Based on the Global Material Flows Database (GMFD), Table 1 exhibits that 66% 74 

of global consumption-based material footprint (MF) is attributed to selected sample countries. Similar 75 

sample characteristics are highlighted by Wiedmann et al. (2015) using GMFD.  In today's world, global 76 

integration further fuels infrastructure construction as an imperative input to secure global growth and 77 

employment, translating into higher resource consumption and environmental consequence (Ulucak et 78 

al., 2020). It is well documented that increased interaction and integration empowers countries to boost 79 

their welfare by reducing trade barriers and dispersing technological development that is beneficial to 80 

reduce resource consumption, waste, toxic minerals, and pollution (Han et al. 2021; Shahbaz et al., 81 

2018; Bilgili et al., 2020). Also, globalization surges the intensity of economic activities like trade and 82 

transportation, which demands more resources for their production of goods and services (Plank et al., 83 

2018). All these economic activities put demand pressure on natural resources, as literature shows that 84 

trade improvements have a positive impact on material consumption (Giljum et al., 2014; Li et al., 2018; 85 

Schaffartzik et al., 2014; Wang et al., 2019). Thus, global economies are concerned to find out different 86 

ways to reduce resource depletion and associated CO2 emissions. 87 

                          Table 1: Consumption-based Material Footprint in Sample Countries 88 

Sr.No. Country 

MF 

(Million Tons) 

% of Global 

Share 

1 China 29432 32% 

2 USA 10539 11% 

3 India 6162 7% 

4 Brazil 3306 4% 

5 Japan 1888 2% 

6 Germany 1650 2% 

7 Indonesia 1503 2% 

8 UK 1460 2% 

9 France 1457 2% 

10 South Korea 1456 2% 

11 Russia 1429 2% 

- Total 60281 66% 

 Global MF 91975 - 

                              Note: MF includes resources; biomass, fossil fuels, metal ores, non-metallic minerals 89 
                              Source: Author's calculation from Global Material Flows Database 90 

Technological innovation is considered one of the most prominent and efficient ways to 91 

improve resource efficiency and reduce CO2 emissions. Technological innovation transforms 92 

economies towards environmental-friendly technologies (Lin and Zhu, 2019; Razzaq et al. 2020a). 93 

Notably, green innovation represents all those innovations related to saving resources and energy in 94 

business and economic operations (Razzaq et al. 2021b; Lingyan et al. 2021). For instance, controlling 95 

pollution (preventing the direct release of harmful substances into the air; carbon capture and storage), 96 

waste management (handling, treatment, and elimination of waste), clean technology (integrating 97 

changes in production technology), and clean-up technology (remediation technology) (Schreiber at al., 98 

2016; Chen and Lee, 2020; Costantini et al., 2017). These innovations enhance the new and advanced 99 

technical applications and directly reduce energy consumption and increase energy efficiency (Yii and 100 

Geetha, 2017).  101 

Technology innovations also help in economic restructuring and optimization through the 102 

conversion of traditional economic development that is relying on production factors into an innovation-103 

driven mode. These innovations reduce resource dependency and ensure long-term environmental 104 

sustainability (Chen and Lee, 2020).  The development of green technology and social responsibility 105 



stimulate green growth policies such as consuming less material, use of low-carbon goods, tracing 106 

material footprint, conceptualizing low carbon cities and green agricultures (Bununu, 2016; Bununu, 107 

2020). Concludingly, the consumption of material inputs and their processing intrinsically affect 108 

resources and environmental quality such as resource erosion, water shortage, biodiversity loss, 109 

greenhouse gas emission, impairment to the eco-system, and global warming. Each production process 110 

needs fossil fuels, metals, ores, biomass, water, and land and depletes scarce resources. The 111 

infrastructure rudiments that we take for granted, often contain resource consumption, and resultantly 112 

greenfield land paved-over produces environmental and resource degradation (Churchill et al., 2019). 113 

A large extent of literature has concentrated on factors that agonies global resources such as 114 

population, industrial growth, energy consumption, trade, globalization, and urbanization (Khan et al., 115 

2020; Mi et al., 2015; Shahzad et al., 2017; Shen et al., 2018; Yao et al., 2015). In contrast, 116 

comparatively less attention has been given to factors concerning infrastructure development that are 117 

primarily considered sources of economic growth, resource consumption, and employment. A few 118 

studies scrutinized the effect of construction on the use of construction-related material (resources) or 119 

linked technical innovation with resource efficiency. However, a major strand of literature linked these 120 

factors with domestic material consumption without adjusting traded resources (see Table 2). Unlike 121 

domestic material consumption (DMC), MF, which provides a view of a nation’s material consumption 122 

that, fully accounts for extraction in other countries used for local consumption and for domestic 123 

extraction ultimately used for consumption in other countries, is imperative to calculate domestic 124 

resources consumption. Also, a large extent of literature is limited to linear estimators that assumed data 125 

normality and produced mean-centered estimates. Usually, the economic and financial data follow 126 

asymmetric and non-normal behavior. The countries selected in panel studies are usually falling at 127 

different stages of socio-economic development, experiencing structural changes such as technological 128 

revolution, strong investment flows, substantial industrialization, and population that caused resource 129 

consumption contrarily at different stages  130 

To fill the potential gap, the present study draws an asymmetric linkage between infrastructure 131 

development, green innovation, and consumption-based material footprint in the top 11 highly material-132 

consuming countries. This study adopts a well-known IPAT theoretical framework and contributes 133 

prevailing literature manifold. First, this study analysed consumption-based (trade-adjusted) material 134 

footprint, which produces an accurate picture of domestic resource consumption.  Second, we assess 135 

the impact of the cumulative infrastructure development index as a stimulating factor of resource use 136 

and green technological innovation as a potential mitigating factor towards consumption-based material 137 

footprint. Third, unlike previous studies, which are limited to mean estimators, this study employs a 138 

recently developed non-linear estimator popularised as Method of the Moments Quantile Regression 139 

(MMQR) (Machado and Silva, 2019). It applies moments restrictions of non-crossing estimates, which 140 

help to analyze the impact of infrastructure development and green innovation at different levels of MF 141 

using scale and location parameters. The overall results indicate that infrastructure development 142 

increase MF, while green innovation decrease MF. However, the resource-depleting and resource-143 

saving impact of both variables are more pronounced at higher quantiles and negligible at lowest 144 

quantiles. Figure 1 visualizes the same. 145 



 146 

Figure 1: Graphical depiction of the proposed relationship  147 

Usually, economic and financial data follow asymmetric and non-normal behavior (An et al., 148 

2021; Razzaq et al., 2020). Also, the countries selected for this panel are falling at different stages of 149 

socio-economic development, experiencing structural changes such as technological revolution, strong 150 

investment flows, substantial industrialization, financial crises, and population spur caused resources 151 

consumption contrarily at different stages. Besides these arguments, our preliminary findings from the 152 

Jarque-Bera test (See Table 2) and BDS non-linearity test (See Table 7) strictly reject the preposition 153 

of data normality. Therefore, the use of appropriate methodology is imperative to integrate the non-154 

normality of data, structural changes, and differences across countries. Therefore, MMQR is 155 

advantageous based on the distributional heterogeneity of the proposed relationship between driving 156 

factors of material footprint using moment restrictions. In addition, MMQR helps to explore the said 157 

relationship at different conditional quantiles distribution of the MF, which is not otherwise analyzed 158 

using conventional regression methods. Therefore, to our best knowledge, this paper is the first attempt 159 

to introduce the distributional heterogeneity to assess the impacts of cumulative infrastructure 160 

development index, green innovation, economic growth, globalization, and population on consumption-161 

based MF.  162 

This remainder of this study is organized as;  section two contains literature review, section 163 

three and four present the methods, empirical results, and discussions. The last section provides 164 

conclusion and policy implications.  165 

 166 

2. Literature Review: 167 

The high standards of living all around the world extremely relied on the availability of natural 168 

resources. Besides, abiotic and biotic materials, water, soil, land, air, and biodiversity are also used for 169 

recreational tenacities; and for energy, we consume wind power, tidal flows, and solar power. 170 

Unfortunately, the use of these resources also generates some environmental costs in terms of resource 171 

depletion, emissions, dumping, waste, and essential production factors for forestry and farming  (Adjei 172 

et al., 2018; Hu et al. 2021). The way we consume resources often provokes irrevocable ecological 173 

effects (Yu et al. 2021; Zafar et al., 2019), as natural resource depletion is a significant factor of 174 

upsurging CO2 emissions (Hussain et al., 2020). Procession and extraction of raw material are more 175 

energy-intensive activities and need extensive use of energy, materials, and water, as a large-scale 176 

involvement of eco-system consequently creates water, soil, and air pollution. 177 

The literature on the dynamics of natural resources and consumption of material resources paid 178 

more focus on economic growth as a primary determinant, considering Environmental Kuznets Curve 179 

(EKC) hypothesis. Economic growth and development require the production of new goods and 180 

services, and the production of unavoidably needs more material use (Seppala et al., 2001; Vehmas et 181 

al., 2007; Jaunky, 2012; Auci and Vignani, 2013; Zhang et al., 2017). The pioneering study on this 182 



relationship is explored by Grossman and Krueger (1991). They established that increase in per capita 183 

income affects the environmental quality in three different ways, namely, scale, composition, and 184 

technological effect. At the early stage of growth with no technology change, the increase in the 185 

production process requires more input (material resources and energy inputs), resultantly more waste, 186 

pollution, and deterioration in environmental quality (Torras and Boyce, 1998; Dinda, 2004), this effect 187 

is called as scale-effect. The consumption of material per capita increases in the early stage of income 188 

growth, i.e., scale-effect (Canas et al., 2003; Zhang et al., 2017).  189 

In the second stage of growth, when income reaches a certain level, the economies need a 190 

structural transformation; due to structural transformation (industrial to service sector), economies need 191 

fewer resources as compare to the early stages (composition effect). Hence, they consume less resources 192 

and cause lower pollution. In the final stage of income growth, with technological changes 193 

(technological effect) high-income economies utilized enough resources in the R&D investment and 194 

developed those technologies which are more environment friendly (Bilgili et al., 2016).  In this way, 195 

economies substitute old-fashioned technology with advanced and clean technology (Copeland & 196 

Taylor, 2004). In the latter two stages, industrial and agricultural sectors start to practice efficient and 197 

clean technologies, so the demand for efficient use of natural resource intensify (Grabarczyk et al., 198 

2018). In the whole development, the scale-effect has a detrimental effect on environmental quality by 199 

excess use of material, whereas the composition and technological effect with the rise of per capita 200 

income mitigate the pollution effect by reducing the per capita consumption of material resources 201 

(Jaunky, 2012). 202 

Another important driving factor that affects material consumption is globalization. The 203 

increased interaction and integration increase the economic activities, which demand more material 204 

resources to produce goods and services (Plank et al., 2018). The economic activities in terms of import, 205 

export, and transportation require sufficient resources. In the last decade, the pattern of world trade has 206 

changed, the gap between net-importing and net exporting countries of natural resources has risen. 207 

Consequently, resource extraction comes along with serious issues of environmental degradation, so 208 

raw material importers countries are switched away from consuming country. In such cases, an 209 

economy with high material imports compared to exports may be considered to run as ‘‘ecological trade 210 

deficit’’ (WWF, 2010). Therefore, an increase in economic activities associated with globalization 211 

demands more extraction of material inputs that are positively related to resource depletion (Bruckner 212 

et al., 2012; Giljum et al., 2014; Li et al., 2018; Ulucak et al., 2020). 213 

As a remedial measure, technological innovation is an imperative tool that produces efficiency 214 

in resource consumption and translates into higher productivity and with less socio-economic cost 215 

(Yang and Li, 2017; Ahmad et al., 2019; Razzaq et al. 2021c). In a similar context, Fei et al. (2014) 216 

found a positive link between technological innovation and environmental degradation in Norway. They 217 

argued that R&D investment translates into higher innovation that allows countries to switch from 218 

traditional technologies to the most advanced and clean energies. It provides a buffering effect on 219 

environmental degradation by mitigating the pollution effect (Ahmed et al., 2016; Yang and Li, 2017). 220 

As advanced technologies enable countries to ensure efficient use of resources that demand lesser 221 

materials both on-demand side as well as the supply side (Woetzel et al., 2017). On the demand side, 222 

efficient technologies become highly integrated with business, homes, and transportation. Also, they 223 

reduced the cost of renewable energies with significant change for consumers and producers of fossil 224 

fuels. On the supply side, producers are progressively able to install a range of latest technologies in 225 

their production process, exploring mines and wells that were inaccessible, lead to improving the 226 

extraction technology of materials. So, they extracted the productivity benefit of technologies. On the 227 

other hand, literature also elaborated the inverse association between technological innovation and CO2 228 

emissions (Churchill et al., 2019; Lin & Zhu, 2019; Wang et al., 2020; Wen et al., 2020). 229 



Even though physical infrastructure development is one of the essential factors to enhance the 230 

growth process, however in the recent strand of literature, we found shreds of evidence that physical 231 

infrastructure is causing an increase in overall CO2 emissions, mainly due to excessive material use in 232 

roads network expansion as well as construction. We found very limited relevant literature in defining 233 

the role of physical infrastructure development in resource depletion (MF). However, a few studies 234 

revealed a positive association between physical infrastructures such as road networks and CO2 235 

emissions (Muller et al.,2013; Shahbaz et al., 2015; Rahman et al., 2017; Xie et al., 2017). The 236 

infrastructure requires material inputs for transport, telecommunication, and energy. So, the metal is 237 

combined with rocks when they extract for the use of a variety of purposes that ranges from the 238 

construction of buildings, roads bridges to manufacturing of different, industrial machines (Christian 239 

2019). During this process, the excessive use of materials such as aluminum, cement, and steel upsurge 240 

carbon footprint, which have a detrimental effect on environmental quality (Jafri et al., 2020). 241 

We have observed that most of the existing literature focuses on the determinants of gross DMC 242 

in a single or group of countries using traditional linear methods. However, we could not find any 243 

notable study that links infrastructure development and green innovation with consumption-based MF 244 

in top material-consuming countries. Table 2 compiles a few recent studies for bird-eye view.  245 

Table 2: Literature Review Summary  246 

Authors Countries  Methods Proxy Findings/contributors  

Kassouri et al. 

(2021) 

12 Emerging 

countries 

STIRPAT DMP GDP increase the Domestic Material 

consumption (DMC) while Material 

productivity decreases DMC  

Usman et al. 

(2020) 

US ARDL HFP Renewable Energy consumption and Trade 

policy decrease the ecological footprints, and 

economic growth increases the environmental 

degradation 

Alola et al. 

(2021) 

28 EU 

countries 

PMG 

ARDL 

DMC DMC increases the environmental 

degradation, while Per capita income and 

Renewables decrease the environmental 

degradation  

Li et al.  

(2020) 

China ARDL DMC GDP, Population, Material consumption  

intensity decrease DMC 

Ibrahim & Alola 

(2020). 

MENA 

countries 

PMG 

ARDL 

CE Conventional Energy Efficiency and 

Economic Development decreases the 

environmental quality, whereas Renewable 

Energy increases the Environment 

sustainability 

Ulucak et al.  

(2020)  

 

28 EU 

Countries  

PSTR DMC GDP growth, TFP, Population increases 

DMC, while Human capital, and 

Globalization decrease DMC  

Ansari et al. 

(2020) 

5 Asian sub-

regions 

PMG 

 

EF 

MF 

Energy consumption increases the material 

and  ecological footprint. Moreover, 

globalization and urbanization enhance the 

material and ecological footprint 

Langnel & 

Amegavi (2020) 

Ghana ARDL EF Globalization positively stimulates the 

ecological footprint, while electricity 

consumption deteriorates the environmental 

quality. 



ARDL=Autoregressive distributed lag, PSTR=Panel smooth transition model, POLS/FEOLS =Pooled/Fixed effect Ordinary 247 
least square, PMG= Pooled mean group, CE= Carbon emissions,  EF= Ecological footprint, MF= Material footprint, DOLS= 248 
Dynamic OLS, FMOLS=Fully modified OLS, RBID=Regression based inequality decomposition, MI=Material Intensity, 249 
IV=Instrumental variables, DMP= Domestic Material Productivity, DMC= Material Consumption. 250 

 251 

3.  Materials and Methods 252 

3.1 Sample Selection and Data  253 

This study selects the top 11 highly material-consuming countries to integrate the pronounced impact 254 

of consumption-based material footprint. The relevance of the sample can be endorsed from the fact 255 

that the top 11 countries1 consume 66% of global resources (see Table 1) and secure the highest score 256 

in infrastructure development. These countries are also characterized as technologically advanced 257 

countries by securing the highest rank in the global innovation index 2020. Besides, the sample 258 

countries are embracing higher economic growth and globalization score. According to the well-known 259 

IPAT model, population and economic growth are two key drivers of carbon emissions/ecological 260 

deprivation. Table 3 shows that these countries account for 64.1% of global GDP and 53.9% of the 261 

global population, signifying the importance of sample. Hence, this study draws the linkages between 262 

infrastructure development, green innovation, globalization, economic growth, population, and material 263 

footprint. In doing so, we have used annual data from 1990 to 2017.  264 

            Table 3: Characteristics of Sample Countries  265 

Country 

GDP in Trillion   

(Constant USD 2010) 

% of 

Global 

Share 

Population 

(Million) 

% of 

Global 

Share 

United States 17.9 21.6% 327 4.3% 

UK 2.9 3.5% 66 0.9% 

China 10.9 13.1% 1393 18.3% 

South Africa 0.4 0.5% 58 0.8% 

 
1 Turkey, Italy, Canada, Mexico, Viet Nam consume 1.42%, 1.41%, 1.39%, 1.38%, 1.31% share of global resources (MF) and 

ranked 12, 13, 14,15, and 16, respectively. This study chooses those countries (top 11) which are responsible for more than 

1.5% of MF. 

Watari et al. 

(2019) 

Global LCA TMR Global energy transition increases the Total 

Material Requirements (TMR) , while low 

Carbon Technologies decrease the Total 

Material Requirements 

Fernández-

Herrero & Duro  

(2019) 

94 Selected 

Countries  

 

 RBID  TMP 

  

Agricultural share of GDP, and global Wealth 

stimulate Total material productivity (TMP) 

Trade openness shows insignificant effect.  

  

Grabarczyk et al. 

(2018) 

OECD 

Countries 

OLS, 

DOLS, 

FMOLS 

MI Material Kuznets Curve supported 

Agnolucci et al. 

(2017)  

32 EU 

Countries  

IV 

Approach 

DMC GDP growth caused higher DMC 

Faith G. et al.  

(2016) 

Philippines IPAT 

analysis 

DMC Population growth leads to higher DMC 

Steger & 

Bleischwitz 

(2010) 

25 EU 

Countries  

OLS DMC Energy efficiency, new dwellings, and roads 

construction activities increased DMC 



India 2.8 3.4% 1353 17.8% 

Indonesia 1.1 1.4% 268 3.5% 

Japan 6.2 7.4% 127 1.7% 

Russia 1.7 2.1% 144 1.9% 

Germany 3.9 4.7% 83 1.1% 

France 2.9 3.5% 67 0.9% 

Brazil 2.3 2.8% 209 2.8% 

Total 53.1 64.1% 4094 53.9% 

Global Figure 82.9 - 7592 - 

 266 

The data of MF is sourced from Global Material Flows Database (GMFD)2. Usually, the 267 

previous studies use DMC, which does not incorporate trade-adjusted resources. Unlike them, we used 268 

new data set developed by GMFD which provides trade adjusted resources consumption. The detailed 269 

composition of MF is given in Table 4. It provides a view of a nation’s material consumption that, 270 

unlike DMC, fully accounts for extraction in other countries used for local consumption and for 271 

domestic extraction (DE) ultimately used for consumption in other countries. It is important to mention 272 

that we have used an overall consumption-based material footprint (not only construction-related 273 

materials) that included biomass, fossil fuels, metal ores, and non-metallic minerals. Also, we have 274 

taken cumulative infrastructure development index (quality and quantity) rather than specific 275 

infrastructure construction or stocks that endorse the motivation of taking overall consumption-based 276 

MF. Table 4 exhibits the summary of MF data.  277 

      Source: Global Material Flows Database Revised Guidelines Published on 16/01/2018. 278 

This study used the Global infrastructure index, which represents infrastructure development 279 

of sample countries in multiple dimensions, includes telecommunication, transport, energy, and 280 

financial infrastructure. It comprises different quality and quantity characteristics of 30 sub-indices (see 281 

Appendix Table 5a) of infrastructures constructed by Donaubauer et al. (2016). The data of green 282 

innovation is extracted from OECD Statistics measuring as environmental technologies as % of total 283 

technologies (OECD, 2018). The data of KOF globalization index represent a cumulative measure of 284 

political, social, and economic globalization, which is gathered from KOF globalization database 285 

(Dreher, 2006). Finally, gross domestic product per capita (USD Constant 2010) and population 286 

headcount are sourced from World Development Indicators (WDI, 2018). Except infrastructure index, 287 

 
2 https://www.resourcepanel.org/global-material-flows-database.   

Table 4: Consumption-based Material Footprint  

Indicators Description and Calculation of the Variables 

DE Domestic Extraction (Biomass, fossil fuels, metal ores, non-metallic minerals)  

IM Physical Imports (direct, territorial) 

EX Physical Exports (direct, territorial) 

DMI Direct Material Input = DE + IM 

DMC Domestic Material Consumption =DMI - EX 

RMEIM Raw material (equivalent of imports) 

RMEEX Raw material (equivalent of exports) 

MF Material Footprint = DE+ RMEIM - RMEEX 

https://www.resourcepanel.org/global-material-flows-database


the data of all other variables are transformed into logarithm that helps to deal with outliers. Moreover, 288 

log transformation provides coefficients in the form of elasticities that make the interpretation process 289 

more convenient (An et al., 2021a; Razzaq et al., 2020; Khan et al. 2021). The complete description, 290 

acronyms, and sources of variables are explained in Table 5. 291 

 292 

3.2 Summary Statistics 293 

From Table 6, the results demonstrate that all variables possess a positive mean, and 294 

population shows the highest mean value (8.240) with a minimum value of 7.632, a maximum 295 

value of 9.141, and a standard deviation of 0.460. The skewed distribution comprises that most 296 

of the variables have negative skewness. It can be observed that material footprint, 297 

infrastructure index, environmental innovation, and globalization are negatively skewed while 298 

the population has positive skewness. The infrastructure development index shows the lightest 299 

tail as it has low kurtosis and most volatility due to its highest value of standard deviation. 300 

Finally, Jarque-Bera (JB) test statistics and respective probability values strictly reject the 301 

preposition of data normality for all variables at a 1% level of significance.  302 

Table 6 : Descriptive Statistics 303 

Variables LMF INFR LGI LGLO LGDP LPOP 

Mean 1.125 1.034 0.912 1.823 4.087 8.240 

Median 1.282 1.224 0.927 1.839 4.256 8.160 

Maximum 1.600 3.116 1.311 1.954 4.727 9.141 

Minimum 0.150 -0.968 0.365 1.507 2.760 7.632 

Std. Dev. 0.326 1.120 0.156 0.098 0.581 0.460 

Skewness -0.761 -0.050 -0.396 -0.785 -0.713 0.737 

Kurtosis 2.390 1.728 3.030 3.163 2.205 2.434 

Jarque-Bera 34.55 15.584 8.068 32.025 34.27 32.060 

Probability 0.000 0.004 0.017 0.000 0.000 0.000 

 
3 UN-IRP. (2018). Global Material Flows Database. from UN International Resources Panel 

http://www.resourcepanel.org/global-material-flows-database. 
4 https://data.oecd.org/envpolicy/patents-on-environmenhttps://data.oecd.org/envpolicy/patents-on-environment-

technologies.htmt-technologies.htm 
5 https://databank.worldbank.org/source/world-development-indicators 

Table 5: Data Description and Sources   

Variables Description  Source 

LMF 

 

Consumption-based Material Foot Print 

(Tonnes Per Capita) 

Global Material Flows Database  

(UN-IRP, 2018)3 

INFR 

 

New Global Infrastructure Index 

(Appendix 1, Table 14) 

New Global Infrastructure Index 

(Donaubauer et al., 2016)  

LGI 

 

Environmental technologies (patents)  

 (% of total technologies)  

OECD Statistics 

 (OECD, 2018)4 

LGLO 

 

 

KOF globalization Index  

(Social, Economic, and Financial   

 

KOF Swiss Economic Institute  

(Dreher, 2006) 

 

LGDP 

  

Gross domestic product per capita 

(USD Constant 2010)  

World Development Indicators 

 (WDI, 2018)5  
LPOP 

  

Midyear Population  

 (headcount) 

World Development Indicators  

(WDI, 2018) 



Sum 346.610 237.86 281.09 561.630 1258.931 2538.063 

Sum Sq. Dev. 32.741 287.389 7.528 2.950 103.765 65.0547 

Observations 308 308 308 308 308 308 

 304 

To follow up on JB test, we further employ BDS non-linearity test introduced by Brock, 305 

Dechert and Scheinkman1(1996), which is developed within chaos theory and considered one 306 

of the most popular tests for non-linearity. From Table 7, the test statistics reject the null of 307 

linearity, implying that a wide variety of breaks and other types of non-linearities exist in all 308 

variables across all countries. Furthermore, Figures 1a, 1b, and 1c (Appendix) visualize the 309 

data distribution histograms, quantile distributions, and trends of variables across panel, 310 

respectively.  All visuals of data distribution and BDS non-linearity test confirm the relevance 311 

of asymmetric estimation procedure for reliable empirical results. Therefore, MMQR is the 312 

most appropriate technique which integrates both structural changes and non-normality of data. 313 

Table 7: Results of BDS Nonlinearity Test    314 

Country  

MF INF LGI LGLO LGDP LPOP 

Z-

Sat. 
Prob. Z-Sat Prob. Z-Sat. Prob. Z-Sat Prob. Z-Sat Prob. Z-Sat Prob. 

China 27.60 0.00 15.62 0.00 17.52 0.00 31.06 0.00 26.99 0.00 17.50 0.00 

USA 24.31 0.00 14.58 0.00 16.38 0.00 29.54 0.00 19.27 0.00 19.71 0.00 

India 26.04 0.00 17.75 0.00 18.81 0.00 35.68 0.00 15.36 0.00 17.44 0.00 

Brazil 28.13 0.00 16.12 0.00 15.67 0.00 23.92 0.00 11.57 0.00 17.65 0.00 

Japan 29.53 0.00 13.45 0.00 17.43 0.00 28.74 0.00 23.93 0.00 18.10 0.00 

Germany 25.12 0.00 13.96 0.00 22.28 0.00 30.73 0.00 19.34 0.00 18.75 0.00 

Indonesia 28.46 0.00 19.73 0.00 19.14 0.00 25.14 0.00 15.74 0.00 19.58 0.00 

UK 22.96 0.00 18.41 0.00 15.99 0.00 29.85 0.00 21.07 0.00 20.61 0.00 

France 24.51 0.00 21.67 0.00 23.30 0.00 24.34 0.00 19.27 0.00 21.87 0.00 

South 

Korea 19.60 0.00 16.20 0.00 18.46 0.00 27.10 0.00 19.30 0.00 23.36 0.00 

Russia 26.13 0.00 19.74 0.00 19.74 0.00 24.35 0.00 16.99 0.00 18.10 0.00 

Note:  z-Sat shows z-statistics of BDS test, while Prob. values are bootstrap probability values of respective z-score. z-315 
statistics are calculated on Correlation dimension 2 at 2500 bootstrap replications. A similar result is observed for all 316 
correlation dimensions from m=3 to m6, however not reported for the sake of brevity. The test statistics reject the null of 317 
linearity, implying that a wide variety of breaks and other types of non-linearities exist in all variables across all countries.  318 

3.3  Heterogeneous Panel estimators  319 

Initially, this study used three heterogeneous panel techniques to produce robust and 320 

comparable estimates, namely Fixed Effect Ordinary Least Square (FE-OLS), the Dynamic Ordinary 321 

Least Squares (DOLS), and the Fully Modified Ordinary Least Square (FMOLS). The FE-OLS is 322 

applied with the help of Driscoll and Kraay standard errors, yield robust estimates in the presence of 323 

cross-sectional dependence and autocorrelation in certain lag. In this regard, Pedroni (2004) pointed out 324 

that cross-sections have heterogeneity issues both in terms of their differences in means between cross-325 

sections and their adjusted cointegrating equilibrium as well.  This problem is solved by Pedroni (2004) 326 

by proposing FE-OLS method, considering individual related intercept and includes "heterogeneous 327 

serial-correlation of the error processes" across each cross-sectional unit. This procedure is further 328 

extended by Kao and Chiang (2001), who introduced a new method known as D-OLS. Using Monte 329 

Carlo simulations for a finite sample, D-OLS estimator produces the most efficient estimates compared 330 

to FE-OLS and FM-OLS methods. DOLS is superior as it deals with endogeneity issues to overcome 331 

the endogenous response through the expansion of lead and lag differentials. 332 



The above techniques are linear in nature; therefore, they only consider the average affect 333 

without taking the distribution of data into account. On the other hand, the panel quantile regression 334 

ascertains the association among various variables over different quantiles. This method is established 335 

by Koenker and Hallock (2001), primarily, this method is only used for quantile asymmetries or a range 336 

of quantiles where the response variable depends on the values of the exogenous variable. Additionally, 337 

the technique is also better to deal with outliers in estimation. Moreover, this method is more appropriate 338 

in the situation where relationships of conditional means of variables are weakly exist (Binder & Coad, 339 

2011). However, the simple quantile estimator is unable to deal with non-crossing estimates while 340 

calculating various percentiles that lead to invalid distribution to the response variables.  341 

To address the same, a novel quantile regression popularized as  “Method of Moments Quantile 342 

Regression (MMQR) is introduced by Machado and Santos Silva (2019). This technique produces non-343 

crossing estimates across the grid of diverse quantiles. A simple panel quantile regressions may 344 

vigorous to outliers, and they are incapable of accounting effectively with unknown heterogeneity that 345 

arises in panel cross-sections.  In contrast, by considering the individual effects, the MMQR enables 346 

"conditional heterogeneous covariance effects" of the factors of material footprint  to affect the overall 347 

distribution that is opposite to the effect established by Koenker (2004) and Canay (2011), and they 348 

only permit the fluctuating means. This method is suitable for the models which has the issue of 349 

endogenous explanatory variable, and the panel data is considered to be as individual-specific effects 350 

and also in the more extreme case when the model is non-linear. 351 

 In terms of non-linearity, this method has an advantage on other methods like "Nonlinear 352 

Autoregressive Distributed Lag (NARDL)" that defined non-linearity in exogenous terms as the 353 

threshold is unchosen by data-driven method rather set to zero. This technique also allows for 354 

asymmetries that arise location-wise as the explanatory variables might be contingent on the location 355 

of the response variable, material consumption, in the conditional distribution. In this regard, the 356 

MMQR technique is the most appropriate approach which tackles both asymmetries and the non-linear 357 

association by dealing with endogeneity and heterogeneity, constructing non-crossing estimates 358 

diagonally in the structural quantiles. The conditional quantile approximation Qτ(τ| X) can be explained  359 

for the location-scale model as: 360 

𝑌it = 𝑎𝑖 +   𝑋𝑖𝑡 
′ 𝛽 + (𝛿𝑖 + 𝑍𝑖𝑡′γ)𝑈𝑖𝑡                                                                 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 361 

where the probability, 𝑃{𝛿𝑖 + 𝑍𝑖𝑡
′ γ > 0} = 1, (α, β′, δ, γ′)′are considered as parameters to be 362 

estimated and (𝑎𝑖, δ𝑖 ), 𝑖 = 1, … , 𝑛, warrants the individual 𝑖  fixed effects and 𝑍 is a k-vector of 363 

designated components of 𝑋 which are differentiable transformations by element l specified as: 364 

𝑍𝑙 = 𝑍𝑙(𝑋), 𝑙 = 1, … . , 𝑘                                                                     𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 365 

𝑋𝑖𝑡  has identical and independent distribution for any fixed 𝑖 and also invariant across time (𝑡). 𝑈𝑖𝑡   366 

also has identical and independent distribution across individuals (𝑖),  through time(𝑡), and orthogonal 367 

to 𝑋𝑖𝑡 ,  qualifies to satisfied the Machado and Silva moment conditions. The outcome-driven from 368 

equation (1) is as follows; 369 

𝑄𝜏 (𝜏|𝑋𝑖𝑡 ) = (𝑎𝑖 + δ𝑖 𝑞(𝜏)) + 𝑋𝑖𝑡 
′ 𝛽 + 𝑍𝑖𝑡′γ𝑞                         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3) 370 

Where, 𝑋𝑖𝑡 ′ is a vector of independent variables which comprises 371 

𝐼𝑁𝐹𝑅, 𝐺𝐼, 𝐺𝐿𝑂, 𝐺𝐷𝑃, 𝑎𝑛𝑑 𝑃𝑂𝑃. 𝑄𝜏 (𝜏|𝑋𝑖𝑡 ) specifies the supply of the dependent variable 𝑌it (material 372 

footprint), that is conditional to the distribution of location of explanatory variables 𝑋𝑖𝑡 .  Whereas, 373 

𝑎𝑖 (𝜏) = 𝑎𝑖 + δ𝑖 𝑞(𝜏) is a scalar coefficient that demonstrated quantile-𝜏 (fixed effect) for individual 374 

(𝑖). Though, the individual effect does not have any intercept fluctuation, unlike the OLS fixed effects. 375 

The parameters are time-invariant, and their heterogeneous effects can be differed across the quantiles 376 



of the conditional distribution of the dependent variable (material footprint). The q(τ), denotes the (τ-377 

th) sample quantile, that is obtained from the following optimization problem:  378 

𝑚𝑖𝑛q   ∑ ∑ 𝜌𝜏

𝑡𝑖

 (𝑅𝑖𝑡 − (𝛿𝑖 + 𝑍𝑖𝑡′γ) 𝑞 )                        𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4) 379 

We derive a check function from the above equation is demarcated as “ 𝜌𝜏 (𝐴) =380 

(𝜏 − 1)𝐴𝐼{𝐴 ≤ 0} + 𝑇𝐴𝐼{𝐴 > 0}”.  381 

3.4 Cross-Sectional Dependence (CD) and Unit Root Tests 382 

In most of the cases, CD appeared to be an outcome of unobserved factors that can not only 383 

affect the true parameter values but also disturb the total efficiency gained from the panel data. To 384 

incorporate these effects, Pesaran (2004) CD test gained much importance as it works sound under the 385 

assumption of cross-sectional dependency heterogeneous panels. Although the current study 386 

additionally applies IPS unit root test for comparison (Im et al., 2003); however this approach produces 387 

ambiguous results and could not effectively deal with the issues of panel CD, (Khan & Ozturk, 2020). 388 

In compliance, the present study applies the Pesaran (2007) CIPS unit root test that used the assumptions 389 

of CD and efficiently deal with cointegration models as well. 390 

2.4 Panel Cointegration Tests 391 

The next stage of the investigation is to check the long-term relationship of the variables. We 392 

used two-panel cointegration techniques; panel cointegration test by Pedroni (2004) similar to “Engle 393 

and Granger” two-step procedure and bootstrapped panel cointegration method by Westerlund (2007). 394 

The first method proposes a comprehensive technique to test the panel cointegration. At the initial step, 395 

to control heterogeneity Pedroni (2004) classifies individual-specific effects and short-term parametric 396 

effects by performing two cointegration test based on residual. In the first stage, “within-dimension 397 

test” the study applied four test statistics applied, that includes panel ADF, panel v, panel ρ, and panel 398 

PP. In the next stage, “between-dimension test” three test statistics are used, that are group ADF, PP, 399 

and ρ. These group of statistic can efficiently estimate the panel cointegration. Whereas Westerlund 400 

(2007) offered four tests (Gt, Ga, Pt, Pa) under bootstrap panel cointegration technique with the 401 

proposition of no-cointegration as null hypothesis. 402 

 However, the above method abandons the state of “common factor restrictions” due to 403 

structural dynamics of residuals. The nonfulfillment of the condition “common factor restrictions” lead 404 

to diminish the power of cointegration tests based on residuals because structural-dynamics are 405 

compulsory to accommodate within the model (Kremers et al., 1992). So, when the constraint 406 

assumption is relaxed, then the short-run and long-run adjustment process become incompatible. In 407 

order to produce a robust test statistic, the study alleviates the discretionary effects of CD method using 408 

Westerlund (2007) bootstrap panel cointegration test. The study also used Dumitrescu and Hurlin 409 

(2012) panel causality test to check the casual association between variables. The null hypothesis of 410 

this test suggests no Granger causality between variables against the alternative hypothesis that 411 

causality prevails between variables in one of the cross-sectional units. 412 

4. Results and Discussion  413 

The present study applies some prerequisite tests beforehand estimating the parameters. 414 

Primarily, Tables 8 shows that all model variables are CD as P-values of all variables are less than 0.05, 415 

suggesting the rejection of null hypothesis: Cross sections are independent at a 1% level of significance. 416 

Table 9 represents that LGI, LGLO, and LPOP are stationary at level, while LMF, INFR, and LGDP 417 

are stationary at the first difference in CADF unit root test. Similar stationarity properties are endorsed 418 

by CIPS test except for LPOP, which shows stationarity at first difference.  419 



 420 

Table 8: Cross-Sectional dependency Test  

Variables CD Test P-Value  

LMF 38.929 0.000 

INFR 26.912 0.000 

LGI 26.534 0.000 

LGLO 35.518 0.000 

LGDP 22.415 0.000 

LPOP 19.421 0.000 

 421 

Table 10 and 11 exhibits the results of Pedroni (2004) and Westerlund (2007) bootstrap 422 

cointegration test, respectively. The outcome shows that the test statistics of Pedroni (Panel PP/ADF, 423 

Group PP/ADF) and Westerlund (Gt, Ga, Pt, Pa) rejects the null hypothesis that entails no cointegration 424 

and accepts alternative hypotheses confirming a long-term cointegrating relationship. Both tests 425 

confirm the presence of long-run cointegration in model variables.  426 

Table 9: Results of Stationary Analysis 

Variables 
lm, Pesaran and Shin (2003) 

Order of 

Integration 

I(0) I(I)  

C C&T C C&T  

LMF -1.706 -2.503 -5.125*** -5.195*** I (1) 

INFR -1.711 -2.307 -4.695*** -4.822*** I (1) 

LGI -2.201 -2.748 -5.718*** -5.632*** I (1) 

LGLO 

-

3..642*** -1.921 -4.947*** -6.111*** 

I (0) 

LGDP -0.772 -1.838 -3.999*** -4.145*** I (1) 

LPOP -1.991 -1.832 -4.737*** -4.566*** I (1) 

Cross-Sectionally Augmented Dickey-Fuller (CADF)  

LMF -1.933 -2.248 -4.691*** -4.701*** I (1) 

INFR -2.209 -2.235 -7.963*** -6.576*** I (1) 

LGI -2.201 -3.495*** - - I (0) 

LGLO -2.988*** -2.693* - - I (0) 

LGDP -1.956 -2.038 -3.231*** -3.521*** I (1) 

LPOP -2.720** -2.911** - - I (0) 

Cross-Sectionally Augmented IPS (CIPS)  

LMF -1.933 -2.248 -4.691*** -4.701*** I (1) 

INFR -2.531 -2.603 -4.778*** -4.970*** I (1) 

LGI -2.744*** -3.495*** - - I (0) 

LGLO -2.988*** -2.921*** - - I (0) 

LGDP -1.956 -2.038 -3.231*** -3.521*** I (1) 

LPOP -0.482 -1.395 -2.924*** -2.988*** I (1) 

*,**, and *** show significant levels at 10%, 5% and 1% respectively.  
 427 

The long-run cointegration enables us to estimate long-run elasticities. In this way, it is also 428 

imperious to recapitulate that the present model has the problem of cross-sectional dependency. So, it 429 

is crucial for panel estimation to integrate such methods that are vigorous to CD effects to eliminate the 430 



probable size of distortions. Therefore, this study used several heterogeneous panel estimation 431 

techniques that effectively deal with underlined issues that include FMOLS, DOLS, FE-OLS (linear 432 

estimator), and MMQR (non-linear estimator). The estimating outcomes derived from FMOLS, DOLS, 433 

and FE-OLS procedures can be seen in Table 12. 434 

Table 10: Panel Cointegration (Pedroni 2004) 

Estimates Stats. Prob. 

LMF = f (INF+LGI+LGLO+LGDP+LPOP) 

Panel v Statistics -1.464 0.9285 

Panel rho Statistics 0.684 0.7530 

Panel PP Statistics -2.732 0.0032 

Panel ADF Statistics -2.361 0.0091 

Alternative hypothesis: individual AR coefficient 

Group rho Statistic 1.870 0.9693 

Group PP Statistic -2.962 0.0015 

Group ADF Statistic -1.962 0.0249 

Source: Author Estimation 

 435 

From Table 12, the coefficient of infrastructure index significantly increases the consumption 436 

of material footprint by approximately 0.2188% in the FMOLS estimator, ~ 0.365% in D-OLS 437 

procedure, and ~0.44% in the FE-OLS estimator. Infrastructure has a transformational effect on the 438 

development mode and living standard of people. It delivers various interlinked services, including 439 

construction, transportation, water, energy, and waste management. The construction process also 440 

requires increased demand for material production (cement, steel, wood, and aluminum), which boosts 441 

energy demand and translates into a higher incidence of CO2 emissions (Wang et al., 2020). 442 

Additionally, infrastructure development is also linked with some environmental issues, for instance, 443 

natural resource depletion, climatic changes, and CO2 emission (Zhao et al., 2018; Yang et al., 2019).  444 

These impacts may occur during material production, construction, and manufacturing and when 445 

infrastructures (post-construction phase) need to be replaced or repaired. According to the Global 446 

Commission on the Energy and Climate (2014), worldwide 488.6 trillion dollars investment will be 447 

needed to invest in infrastructure by 2030. To support the infrastructure need, it will also require 448 

material inputs and energy that will lead to raising environmental degradation.  449 

Table 11: Panel cointegration (Westerlund 2007)  

Statistics Values 

Z-

values P-values Robust P-values 

Gt  -9.241 -8.314 0.000 0.000 

Ga -18.678 -19.223 0.000 0.000 

Pt -22.835 -23.639 0.000 0.000 

Pa -26.847 -25.512 0.000 0.000 

  
On the other side, green innovation (environmental technologies) produces emissions 450 

mitigating effect. Technological advancements in the environment reduced the prices of several 451 

material products (aluminum, polyester, silicon) and increased their efficiency to consume material 452 

more efficiently. In this way, the consumption of material goes down and has a beneficial impact on the 453 

overall quality of the environment. Besides, the climate challenge and reducing the human’s ecological 454 

footprint shift the lifestyle and consumption pattern differently. It led to the development of green 455 

technologies and environmentally friendly policies to boost smart growth (with efficient resources and 456 



less material consumption), low carbon emission, low carbon city, and green agricultures (Bununu, 457 

2016; Bununu, 2020). 458 

The globalization index displays a significant positive association with material consumption, 459 

expressing increased globalization leads to increased consumption of material inputs by approximately 460 

0.59% in the FMOLS estimator, ~ 0.621% in the D-OLS estimator, and ~ 0.58% in the FE-OLS 461 

estimator. Numerous studies elucidate that globalization plays an important role in shaping efficient 462 

material usage and developing environmental sustainability (Copeland & Taylor, 2013). It is also 463 

observed that globalization enables economies to expand their welfare and economic activities, for 464 

instance, trade, industrial, production, and transportation, which leads to more resource usage that 465 

produces more contamination, waste, and pollution (Bilgili et al., 2020). 466 

Table 12: Heterogeneous Panel Estimations  

Variables 

 

FM-OLS D-OLS FE-OLS 

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. 

INFR 0.218** 2.502 0.365** 2.389 0.442*** 5.102 

LGI -0.382*** -4.587 -0.298*** -4.119 -0.136** -3.204 

LGLO 0.592** 2.622 0.621** 2.472 0.583** 3.243 

LGDP   0.443*** 3.918 0.693** 2.570 0.245** 3.917 

LPOP 0.307*** 3.559 0.521** 2.651 0.438*** 6.394 

*,**, and *** show significant levels at 10%, 5% and 1% respectively.  
 467 

 The coefficient of economic growth is statistically significant and increases the consumption 468 

of material footprint. It exhibits that GDP surges material consumption by 0.443% in the FMOLS 469 

estimator, ~ 0.693% in the D-OLS estimator, and ~ 0.24% in the FE-OLS estimation procedure. 470 

Likewise, the coefficient of population illustrates that increased population is positively associated with 471 

material footprint by approximately 0.307% in the FMOLS estimation procedure, ~ 0.521% in the D-472 

OLS estimator, and ~ 0.438% in the FE-OLS estimation procedure. The more populated and dense 473 

economies need more resources to satisfy the population’s needs, which require natural and material 474 

resources for their food, housing, transportation, water, and sanitation. Consequently, the population 475 

pressure contributes to waste, soil erosion, air pollution, land degradation, and other environmental 476 

contaminations (Ray & Ray, 2011). 477 

4.1 MMQR Estimations 478 

From Table 13, we can infer that increase in infrastructure significantly increases the 479 

consumption of material footprint primarily in the first quantile and also more significant results in the 480 

grids of median to high (5-9) quantiles while insignificant between middle (2-4) quantiles. As 481 

infrastructure development is a resource-intensive industry, and in 2015 half of the world’s material 482 

consumption was accredited to the construction industry only. Similarly, sand is also accounted as a 483 

major part of concrete used and the main component of material footprint that use as a second major 484 

natural resource after water. The exponential economic growth based on infrastructure industry is highly 485 

associated with material footprint and consequently linked with emissions, waste, and environmental 486 

degradation. Statistics show that one-third of the infrastructure is related to material consumption 487 

(Wiedmann et al., 2015), and most of them are construction-based.  488 

The results of green innovation have a mixed and significant effect on material consumption in 489 

the higher grid (5-9) of quantiles and an insignificant association in lower quantiles. Several studies 490 

explored the positive spillover of green technology through energy and resources conservation and 491 

promoting progressive industrial structure. It advocates the efficient use of material consumption like 492 

iron, steel, copper, and cement, and energy (Liu et al., 2017). Consequently, in countries like China, 493 



India, and European Union, the benefits of efficient use of energy, particularly reduction of sulfur 494 

dioxide and efficiency in the steel production process is achieved (Xu et al., 2014; Deif, 2011; Gandhi 495 

et al.,2018).  Productivity-enhancing technology is already being deployed in mining operations and 496 

more recently, the developments in the copper industry (for instance, tapping reserves used an average 497 

ore grade of less than 1% copper). This elucidates how improved technology getting more with fewer 498 

resources. Similarly, Rio Tinto’s mines Australia adopting automation technology, which is estimated 499 

to rise by 40% utilization of haul trucks and 15% of automated drills utilization.  500 

The results also indicate that the KOF index of globalization is positively and significantly 501 

affects material consumption in the middle of the grid (3-7) quantiles. The results justify the 502 

globalization-material consumption nexus, material consumption increases when countries are at the 503 

initial stage of globalization; in this phase, countries need more material resources to invest in their 504 

project, but once projects become mature, they need not as much amount of material inputs as they need 505 

at initial levels (Bilgili et al., 2020). These results contradict Ulucak et al. (2020), who argued that a  506 



Table 13: Results of Panel Quantile Estimations 

Variables 

Method of Moments Quantile regression 

Location Scale 
                                                  Grid of Quantiles 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

INFR 0.292** 0.427** 0.369* 0.214 0.251 0.525 0.565** 0.614** 0.718** 0.749* 0.811* 

 (0.119) (0.187) (0.201) (0.197) (0.195) (0.328) (0.214) (0.237) (0.269) (0.385) (0.423) 

 [2.453] [2.283] [1.836] [1.086] [1.287] [1.601] [2.640] [2.591] [2.669] [1.945] [1.917] 

LGI -0.137** -0.245** -0.018 -0.051 -0.032 -0.342 -0.361** -0.411*** -0.521*** -0.588** -0.579** 

 (0.0561) (0.0976) (0.013) (0.048) (0.027) (0.209) (0.149) (0.108) (0.119) (0.193) (0.205) 

 [-2.442] [-2.510] [-1.384] [-1.063] [-1.185] [-1.636] [-2.423] [-3.806] [-4.378] [-3.046] [-2.824] 

LGLO 0.287* 0.156 0.057 0.082 0.365* 0.388* 0.263*** 0.298** 0.513*** 0.649 0.682 

 (0.167) (0.149) (0.086) (0.073) (0.197) (0.195) (0.059) (0.123) (0.141) (0.418) (0.473) 

 [1.719] [1.047] [0.667] [1.129] [1.853] [1.989] [4.457] [2.423] [3.638] [1.552] [1.442] 

LGDP   1.579** 0.925* 1.025** 1.118** 0.736* 0.943* 0.914* 0.598** 0.525* 0.358** 0.301** 

 (0.672) (0.477) (0.408) (0.413) (0.401) (0.522) (0.468) (0.240) (0.272) (0.124) (0.107) 

 [2.349] [1.939] [2.512] [2.701] [1.835] [1.806] [1.953] [2.492] [1.930] [2.887] [2.813] 

LPOP 0.302 0.238* 0.038 0.086 0.561 0.573** 0.419* 0.512** 0.433* 0.211*** 0.201*** 

 (0.190) (0.127) (0.093) (0.079) (0.359) (0.211) (0.226) (0.230) (0.226) (0.064) (0.059) 

 [1.589] [1.874] [0.409] [1.088] [1.563] [2.716] [1.854] [2.226] [1.916] [3.297] [3.406] 

Note: ***, ** and * represent significant level at 1%, 5% and 10%, respectively. Robust standard errors and z-score is presented in round brackets and box brackets, 

respectively. Due to possible endogeneity arises from infrastructure to economic growth, and globalization, we have taken lag of all regressors as an instrument. 

Also, we run the same model without instruments using “moment restrictions” as an intrinsic instrument of MMQR estimations and found consistent results. Unlike 

traditional quantile estimates, MMQR possesses additional restrictions that quantiles don't cross during estimations. It helps to deal with endogeneity issues 

(Machado and Silva, 2019). The location and scale parameters represent that most of the model variables are asymmetrically distributed from both location 

dimension and dimension of dispersion (An et al. 2021a; Lingyan et al. 2021).  
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     Figure 2: Graphical depiction of all estimators across quantiles  510 
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higher integration and interaction with other nations enables economies to lower their material usage 513 

and contribute to efficient use of resources at its increasing level. 514 

Economic growth possesses a positive and significant association with material footprint across 515 

the grids of all quantiles, confirming that economic growth leads to excess use of material consumption 516 

that has detrimental effects on the environment. The nexus of material consumption and economic 517 

growth is established based on the Modigliani’s life-cycle hypothesis, which develops the relationship 518 

between consumption and income. After this hypothesis, various studies explored the short-run and 519 

long-run relationships of changing income on consumption (Deaton, 1986; Campbell and Mankiw, 520 

1989; Jappelli and Pistaferri, 2010).  As it is well-documented through empirical observations, the 521 

importance of material inputs makes it more demanding when countries grow over time, so for 522 

economic growth eventually surge the use of economic goods, which leads to more demand of material 523 

consumption (Agnolucci et al., 2017; Weinzettel and Kovanda, 2011). Lastly, the results illustrate that 524 

population is significantly and positively associated with MF across the middle and upper quantiles but 525 

insignificant at lower quantiles.  526 

Figure 2 visualizes the elasticity coefficients of all four estimators, suggesting a horizontal or 527 

mean effect across all quantiles in FM-OLS, D-OLS, and FE-OLS estimators. In contrast, MMQR 528 

coefficients show significant variations across different quantiles, which is also endorsed from 529 

significant location and scale parameters in Table 11, indicating the effect of INFR, LGI, LGLO, LGDP, 530 

and LPOP on MF is significantly varied across lower, medium, and higher level of MF.  The estimates 531 

of infrastructure and green innovation follow different dynamics. The MMQR estimates of 532 

infrastructure index show its highest coefficient at the highest quantile of material footprint, and green 533 

innovation has its highest coefficient at the lowest quantile. It indicates that the resource depleting 534 

(conservation) effect of infrastructure development (green innovation) is lowest (highest) for lower 535 

quantiles and highest for higher quantiles of MF.  It also suggests that MF is at its highest level when 536 

countries are improving their infrastructure embodied with higher resource consumption and lower 537 

when green innovations are improving in response to ensure resource efficiency. Interestingly, the 538 

positive coefficient of infrastructure progressively increases from the lowest quantile to the highest 539 

quantile, while the negative coefficient of green innovation rises from the lowest to the highest quantile.  540 

Similar to the infrastructure development index, globalization insignificantly contributes to 541 

resource depletion at lower quantiles of MF. In comparison, a higher and significant effect is observed 542 

when moving from lower to higher quantiles of MF. Economic growth caused more resource depletion 543 

at the lower levels of MF, and for higher-level of MF, the resource depleting effect of economic growth 544 

reduce. It also suggests the proposition of the EKC, where higher national income after a certain 545 

threshold emits technological spillovers that leads to higher resource efficiency and subsequent 546 

reduction in resource consumption. The MMQR coefficient of population shows an inverted U shape 547 

relationship with MF. The results exhibit that the positive effect of population on MF is increased from 548 

initial to medium quantiles, and after a certain threshold, it turns less pronounced. 549 

The asymmetric effects of Infrastructure development can be attributed to host country’s 550 

distinct characteristics. Countries falling at upper quantiles are relatively larger in the area (size), such 551 

as China, USA, Brazil, and India occupy 6.3%, 6.1%, 5.6%, 2.0% of global landmass, respectively. 552 

These countries are fall in the top ten countries in terms of area occupancy (Worldometer, 2021)6. 553 

Therefore, they have a relatively higher demand for infrastructure and natural resources. Also, it needs 554 

further resources to maintain and repair existing infrastructure stocks. In addition, infrastructure 555 

produces multiplier effects such as financial infrastructure, transport infrastructure, ICT infrastructure, 556 

 
6 https://www.worldometers.info/geography/largest-countries-in-the-world/ 



and energy infrastructure not only require one-time construction material but also stimulate the 557 

subsequent demands of fossil fuels, energy, and other resources due to higher economic activity. As a 558 

result, the magnitude of infrastructure coefficients is significantly higher at the highest quantiles 559 

compared to lower quantiles. Similarly, these countries are highly populated; for example, China, USA, 560 

Brazil, and India account for 18.47 %, 4.25%, 2.73%, 17.70% global population, respectively. Extent 561 

literature echoed that population and economic growth are two main deriving factors of resource 562 

consumption (Ulucak et al. 2020; Razzaq et al. 2020). Therefore, countries falling at higher quantiles 563 

exhibit a relatively higher and significant impact than lower quantiles. Although lower quantiles show 564 

an insignificant impact, however, it remains positive. Countries falling at lower quantiles such as 565 

France, UK, South Korea are comparatively smaller in size and population. Therefore, the requirement 566 

as well as maintenance of new and existing infrastructure facilities are lower and may have a negligible 567 

impact on MF.  568 

Similarly, the effect of green innovation on MF is significantly higher at higher quantiles. 569 

Notably, higher quantile countries are technology leading countries such as USA, China, and Japan. 570 

These countries are investing hefty amounts in R&D to transforming their economies through 571 

innovation-driven models. Due to prevailing ecological challenges, they are striving to minimize 572 

resource consumption. Also, these countries have higher MF, and hence a higher margin to replace 573 

existing technologies with green innovation. Amongst others, these factors lead to a higher impact on 574 

MF at higher quantiles. A similar argument can be expanded to other variables. Apart from these 575 

justifications, there are certain factors that create non-linearity, such as different technical capacities, 576 

institutional governance, industrial transformation, structural changes, financial crises, and much more. 577 

Due to these factors, the impact of infrastructure development, green innovation, economic growth, 578 

globalization, and population on resource consumption varies at different quantiles (lower, medium, 579 

and higher) of MF. 580 

  Lastly, Dumitrescu and Hurlin, (2012) Granger causality test is employed to confirm causality 581 

between variables. The results demonstrate a one-way causality is running from independent variables 582 

(INF, LGI, LGLO, LPOP, LGDP) to the dependent variable (MF) that endorse prior findings from long-583 

run estimators. The detailed results are not reported for the sake of brevity. 584 

4.2 Robustness Regression  585 

Initially, this study applies heterogeneous panel estimators (FMOLS, DOLS, FEOLS) to deal with 586 

possible heterogeneity and endogeneity in a linear framework. However, the robustness of the non-587 

linear estimator (MMQR) is imperative to confirm due to possible cross-sectional dependency and 588 

endogeneity. Therefore, for robustness, this study applies a recently developed dynamic panel quantile 589 

regression based on common correlated effects popularized as “Dynamic Quantile Mean Group 590 

regression (DQMGR)”. This method is proposed by Harding et al. (2020), which is based on principles 591 

of well-known common correlated effects mean group (CCEMG) introduced by Chudik and Pesaran 592 

(2015). DQMGR is superior to prevailing static and dynamic panel quantile estimators because it allows 593 

for the possibility that unobserved factors and included regressors are correlated and integrate the 594 

conditions under which the slope coefficients are estimated. Moreover, it allows lagged dependent 595 

variables as additional regressors to deal with dynamic trends and endogeneity arises from unobserved 596 

factors.  597 

DQMGR is an extension of Chudik and Pesaran (2015) with heterogeneous slopes for a situation 598 

where the time-series dimension (T) and cross-sectional dimension (N) are relatively large. It offers the 599 

possibility of estimating heterogeneous distributional effects in a dynamic quantile framework, which 600 

has great policy relevance. For example, the impact of a policy can be heterogeneous throughout the 601 



conditional distribution of the response variable, and therefore, it might not be well summarized by the 602 

average effects. The detailed assumptions and derivation of DQMGR are given in the seminal paper of 603 

Harding et al. (2020).  604 

Table 14: Dynamic Quantile Mean Group Regression  605 

Variables  
DQMGR Quantiles Grid 

0.10 0.30 0.50 0.70 0.80 0.90 

MFt-1 0.401*** 0.376*** 0.358*** 0.349*** 0.438*** 0.354*** 

 (0.040) (0.091) (0.071) (0.080) (0.087) (0.090) 

 [10.025] [4.132] [5.042] [4.362] [5.034] [3.933] 

INFR 0.261 0.301* 0.297** 0.315** 0.322** 0.375*** 

 (0.183) (0.159) (0.123) (0.140) (0.128) (0.116) 

 [1.426] [1.893] [2.415] [2.250] [2.516] [3.232]  

LGI -0.217 -0.250** -0.216*** -0.343*** -0.326** -0.354**  

 (0.146) (0.090) (0.069) (0.100) (0.144) (0.160)  

 [-1.486] [-2.778] [-3.130] [-3.430] [-2.264] [-2.213] 

LGLO 0.134 0.196 0.217** 0.336*** 0.352* 0.348* 

 (0.126) (0.117) (0.099) (0.109) (0.169) (0.151) 

 [1.063] [1.675] [2.192] [3.0825] [2.083] [2.304] 

LGDP   0.670*** 0.659*** 0.572*** 0.536** 0.510*** 0.523** 

 (0.198) (0.207) (0.169) (0.173) (0.217) (0.195) 

 [3.383] [3.184] [3.384] [3.098] [2.350] [2.682] 

LPOP 0.234 0.280* 0.315** 0.308*** 0.317*** 0.272** 

 (0.167) (0.141) (0.116) (0.102) (0.090) (0.110) 

 [1.401] [1.986] [2.715] [3.019] [3.522] [2.473] 

N. 11 11 11 11 11 11 

Obs. 308 308 308 308 308 308 

Note: ***, ** and * represent significant level at 1%, 5% and 10%, respectively. Robust standard 606 
errors and z-score is presented in round brackets and box brackets, respectively. MFt-1 exhibits lag 607 
of dependent variable.  608 

Table 14 shows the outcome of DQMGR. The results illustrate that the lag term of MF is positive 609 

and significant across all quantiles, suggesting the validity of dynamic model in an asymmetric 610 

framework. It confirms that the current year’s MF is significantly affected by its own lag values at each 611 

level (lower, middle, and higher quantiles). The results of other variables are approximately or 612 

substantially the same in terms of direction of relationship; however, the magnitude and statistical 613 



significance of parameters vary across quantiles. The coefficient values of INF (LGI) are relatively 614 

lower than the former estimation through MMQR. However, it echoes a similar direction portrayed in 615 

Figure 2a (2b), where higher quantiles reflect a higher impact of INF (LGI) on MF. Overall, the 616 

coefficient magnitude of MMQR model is almost double than the DQMGR. Similarly, globalization 617 

(economic growth) shows an increasing (decreasing) trend from lower to higher quantiles, consistent 618 

with former estimations. Lastly, population shows a lower impact on MF at lower and highest quantiles.  619 

5. Conclusions and Policy Implications 620 

This study assessed the asymmetric association between infrastructure development, green 621 

innovation, and consumption-based material footprint in the top 11 highly material-consuming 622 

countries. Initially, this study applies three-panel estimators, namely, FMOLS, DOLS, and FEOLS to 623 

handle possible heterogeneity among cross-sections. To explore the distributional heterogeneity of the 624 

above-mentioned relationship between driving factors of material footprint, we have employed the 625 

MMQR technique. MMQR helps to analyze this relationship on a diverse range of quantiles of the 626 

conditional distribution of material footprint. For robustness, we also employ a recently developed panel 627 

technique popularised as Dynamic Quantile Mean Group regression. The empirical estimates of this 628 

study offer a few important insights that help policymakers to devise sustainable resource policies.  629 

According to the empirical results obtained from FMOLS, DOLS, and FEOLS estimators, infrastructure 630 

development, gross domestic product, globalization, and population are driving factors of material 631 

footprint, while green innovation is found a tool to mitigate material footprint across sample countries.  632 

Unlike linear estimators, the empirical findings from MMQR highlighted significant variations 633 

across the grid of quantiles and offered interesting insights. The MMQR estimates of the infrastructure 634 

index indicate that the resources depleting (conservation) effect of infrastructure development (green 635 

innovation) is lowest (highest) for lower quantiles and highest for higher quantiles of MF.  Interestingly, 636 

the positive coefficient of infrastructure progressively increases from the lowest quantile to the highest 637 

quantiles, while the negative coefficient of green innovation rises from the lowest to the highest 638 

quantile. Similar to the infrastructure development index, globalization insignificantly contributes to 639 

resource depletion at lower quantiles of MF, while a higher and significant effect is observed when 640 

moving from lower to higher quantiles of MF. In contrast, economic growth caused more resource 641 

depletion at the lower level of MF, and for higher-level of MF, the resource depleting effect of economic 642 

growth reduce. It also suggests the proposition of the EKC, where higher national income after a certain 643 

threshold emits technological spillovers that leads to higher resource efficiency and subsequent 644 

reduction in resource consumption. The MMQR coefficient of population shows an inverted U shape 645 

relationship with MF. The results exhibit that the positive effect of population on MF is increased from 646 

initial to medium quantiles, and after a certain threshold, it turns less pronounced.  647 

The primary outcomes of this study suggest that the resource depletion (conservation) effect of 648 

infrastructure development (green innovation) is not the same for all MF levels. Therefore, the non-649 

normality should be taken into account while devising policies. For instance, infrastructure development 650 

and globalization are not significantly contributing to resource depletion at the lower level of material 651 

footprint; therefore, countries falling at the range of lower MF can increase sustainable infrastructure 652 

construction using global integration and transfer for foreign environmental technologies in the 653 

construction and production process. Similarly, the resource conservation effect of green technologies 654 

is more prominent at a higher level of MF, recommending the implementation of these technologies in 655 

highly resource-consuming countries. An integrated policy of sustainable infrastructure construction 656 

embodied with green technologies can help to reduce consumption-based material footprint.  657 



The accomplishment of SDG 12 is imperative to secure scarce resources, which needs sequester 658 

legislation for sustainable management of infrastructure construction. Recycling and Reusing of  659 

Construction and Demolition (C&D) materials consist of the debris generated during the construction, 660 

renovation, and demolition of buildings, roads, and bridges can help to preserve natural resources and 661 

create employment opportunities. Green technologies in C&D Recycling can transform these resources 662 

from waste to reusable inputs with minimum energy cost to construct new infrastructure with minimal 663 

resource extraction. Moreover, optimal utilization of existing infrastructure is highly recommended to 664 

minimize resource consumption.   665 

Funding  666 
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applies.  668 

Appendix  669 

Table 5a: Variables and Data Sources of Infrastructure development Index 670 

S. No Variables Normalization of the 

Variables 

Data Set/Source 

 

 

 

 

 

 

 

 

 

 

 

 

1 

Transport Infrastructure: 

(A) Land Transport: 

(i) Length of Total Road Network 

(ii) Paved Road 

(iii) Proportion of Motorways 

(iv) Registered Passenger-Cars 

(v) No: Registered Commercial-Vehicles 

(vi) Length of Total Railway-Route 

(vii) Goods-Transported 

(viii)Railway Passengers 

 

(B) C Transport Overall Carrying - 

Capacity of Economy Ships. 

(i) Relative to its Geo-Graphic-Area 

(ii) % of aggregate world - carrying 

Capacity 

 

(C) Air Transport (i) Carrier Departure 

Registered  

(ii) Volume of Air-Fright 

 

 

Population Density 

 

 

 

 

 

 

 

 

Area/ 

Population size 

 

 

 

 

Relative to 

population/country size 

 

International Road 

Federation (IRF) World 

Road Statistic & World 

Development Indicators 

(WDI) 

 

Facts and figures of (VDA) 

German Association (GAAI) 

of the Automotive Industry 

 

 

 

United Nations Conference 

of Trade and Development 

Data Base(UNCTAD) 

 

 

 

World Development 

Indicators 

 

 

 

 

2 

Telecommunication infrastructure 

(i) No. of fixed-telephone lines 

(ii) Mobile-cellular-telephone subscribers 

(iii) No. of ISDN subscribers 

For quality measures 

(a) Faults per 100 fixed-telephones lines 

in1 year (expressed in per capita terms) 

 

 

 

Relative to 

population/country size 

 

 

World Development 

Indicators 

 

 

3 

Energy infrastructure 

(i) Consumption of electric power 

(ii) Production of electric power Note: 

both undermentioned indicators are 

 

 

Relative to Country 

 

World Development 

Indicators 



 671 

 672 

measure in per capita terms for quality 

measures:  

(a) Electric-power transmission and 

distribution losses (% of output) 

 

 

 

 

 

 

 

 

4 

Financial infrastructure 

(i) Stock market turn-over ratio [efciency]  

(ii) No. of “Bank Account” per capita (iii) 

Values of overall “traded share” outside 

the major “10 traded companies” as a 

share of the aggregate value of overall 

traded share 

(iv) No. of public recorded “companies 

per capita”  

(v) “Private credit” by deposit money, 

banks “Relative-GDP”  

(vi) Values of aggregate shares traded on 

the “Stock Market” exchange (relative to 

gross domestic product) (vii) Money 

(M2) and quasi-money percentage of 

GDP 

 

 

Relative to Country 

World Bank Global 

Financial Development Data 

Base 



 673 

Figure 1a: Distribution of Data 674 



 675 

Figure 1b: Quantile distribution of Data 676 
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