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A B S T R A C T

Edge Computing harnesses resources close to the data sources to reduce end-to-end latency and allow real-
time process automation for verticals such as Smart City, Healthcare and Industry 4.0. Edge resources are
limited when compared to traditional Cloud data centres; hence the choice of proper resource management
strategies in this context becomes paramount. Microservice and Function as a Service architectures support
modular and agile patterns, compared to a monolithic design, through lightweight containerisation, continuous
integration / deployment and scaling. The advantages brought about by these technologies may initially seem
obvious, but we argue that their usage at the Edge deserves a more in-depth evaluation. By analysing both the
software development and deployment lifecycle, along with performance and resource utilisation, this paper
explores microservices and two alternative types of serverless functions to build edge real-time IoT analytics.
In the experiments comparing these technologies, microservices generally exhibit slightly better end-to-end
processing latency and resource utilisation than serverless functions. One of the serverless functions and the
microservices excel at handling larger data streams with auto-scaling. Whilst serverless functions natively offer
this feature, the choice of container orchestration framework may determine its availability for microservices.
The other serverless function, while supporting a simpler lifecycle, is more suitable for low-invocation scenarios
and faces challenges with parallel requests and inherent overhead, making it less suitable for real-time
processing in demanding IoT settings.
1. Introduction

The Internet of Things (IoT) envisions large-scale deployments of
embedded devices that interact with each other to pursue a common
goal [1]. Gathering and harnessing in real-time the massive amount
of data generated by all those interconnected entities can help organ-
isations to develop new business models and streamline operational
processes, hence supporting the creation of more innovative products
and services across various industries [2]. However, this strategy also
introduces new requirements for both the distributed network and
the computing infrastructures involved in the data processing tasks.
New demands for mobility support and geo-distribution, as well as for
location awareness and low latency, have to be taken into account
when setting up the required end-to-end application layer.

Using Cloud Computing would not be ideal in this context, as large
amounts of data needs to be transferred—from the data producers to
the centralised data centres—to perform the required computation.
As a result, considerable round-trip delays would incur during this
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communication and could ultimately affect the experienced Quality of
Service (QoS) [3]. Therefore, since IoT and data acquisition devices are
usually deployed at the edge of the network, a more effective solution to
this problem may use computing resources that are as close as possible
to the location where the data are generated [4].

The Edge Computing paradigm realises the above idea by shifting the
computation from the core of the network to its edge, i.e., to resources
located close to the data acquisition devices, thereby dramatically
reducing the latency associated with the data transfer [4]. Thanks to
its distributed nature, Edge Computing introduces advantages in terms
of reduced communication time, which makes it a viable approach for
IoT scenarios where real-time process automation is executed based on
the data collected from the ‘‘things’’.

Edge Computing requires an efficient architectural design where both
the computation-constrained and energy-constrained nature of the edge
nodes is taken into account [5]. Consequently, a hybrid distributed
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infrastructure has emerged based on the combination of different re-
source types distributed across the edge and the core of the network.
It can be seen as a spectrum of computing options where the trade-
offs between latency, bandwidth, availability, reliability, and scalability
vary depending on the location and characteristics of the computing
nodes, and is commonly referred to as the Edge–Cloud Continuum [6,7].

A well-engineered use of the resource continuum, according to an
application’s requirements, can improve the data processing latency
and reduce the volume of data needed to be transferred from the
end devices to the network’s core [8]. Therefore, unlike traditional
data analytics, real-time edge analytics typically performs a first pro-
cessing stage on the limited edge resources near the data sources.
Long-term processing tasks with flexible real-time demands, requiring
additional resources, are delegated to the other layers of the computing
continuum, extending up to the cloud data centres.

Meanwhile, emerging modular and scalable application design pat-
terns are replacing monolithic systems with cooperating microservices
or with even smaller building components known as functions [9]. This
trend has been nurtured by the timely growth of more lightweight
virtualisation technologies, such as containers and microVMs (micro
Virtual Machines) in place of traditional VMs [10], as well as by the
adoption of agile software continuous integration and development

orkflows. These, coupled with event-driven programming, have led
to the rise of Serverless Computing—a paradigm whereby third-party
roviders allocate resources dynamically to support the on-demand
xecution of computing services.

The Serverless Function as a Service (FaaS) model embraces this
approach by allowing application logic, written as stateless functions,
to be executed on-demand by containerised runtime environments
without pre-allocating resources [11]. This aims to overcome some
of the limitations of the Infrastructure as a Service (IaaS) Clouds by
delivering a third-party managed resource infrastructure, accessible via
a pure pay-per-use model and supporting effortless scalability [12].

1.1. Contributions of this work

Microservice and FaaS architectures leverage lightweight container-
isation technologies to allocate their components in a significantly
shorter time frame than traditional VMs. Moreover, deploying appli-
cations based on these patterns can align more effectively with the
users’ computing demands, resulting in improved resource utilisation
compared to monolithic systems. While seemingly ideal for the Edge
Computing context, transitioning to these new technologies imposes
constraints on the design of application components and the interfaces
through which they can be accessed externally.

In our previous work [13], we demonstrated how the interface
exposed by edge analytics applications can considerably affect both the
number of bytes transmitted over the network towards the edge and the
amount of CPU and memory resources required by an edge node to per-
form even the simple decoding of the received IoT data. We identified
that those metrics are significantly impacted by the messaging protocol,
network technology, data format, and the programming language and
frameworks utilised for the implementation.

Based on the above results, the research question this paper aims
to answer is: are Microservice and FaaS architectures viable tech-
nologies for executing edge applications that perform real-time IoT
analytics tasks? It is essential to note that the advantages of using
these models at the edge may not be immediately apparent, and it is
crucial to consider various impacting factors when trying to answer
this question [14]. Therefore, in addition to an investigation of the
mechanisms involved in the development and deployment of real-
time IoT edge analytics applications, this paper evaluates the resource
allocation aspects associated with the execution of those applications
on large-scale IoT scenarios: a Smart Factory with a thousand sensors
and a maximum cumulative data rate of 25k messages/sec; a Smart City
205
with ten thousand sensors and ten times the maximum data rate of the
previous scenario.

The analysis is conducted from the perspective of infrastructure
providers or service providers delivering IoT services to their customers
through resources distributed across the Edge–Cloud continuum. The
primary goal is to identify the most suitable approach, choosing be-
tween Serverless FaaS and Microservice architectures, to enhance the
resource utilisation of these providers’ infrastructures—focussing on the
resource-constrained edge. The evaluation considers the fulfilment of the
performance requirements of customers’ applications in the IoT context
of this paper—the end-to-end processing latency of real-time analytics.

Experiments involving microservices and two types of serverless func-
tions reveal that, while microservices entail a less abstract lifecycle with
hands-on tasks like container configuration, they consistently demon-
strate slightly better end-to-end processing latency and resource utilisation
compared to serverless functions, when the data volume remains below
25k messages/sec. In contrast, the two types of serverless functions
we examined present a more abstract lifecycle, but their performance
varies based on the frequency of invocation and data batch sizes.
Moreover, the microservices and one type of serverless function excel
at handling large data streams of up to 250k messages/sec with auto-
scaling. This feature is inherently provided by FaaS architectures, but
its availability for microservices may depend on the framework used for
orchestrating the associated containers. Despite supporting a simpler
and more abstract lifecycle, the other type of serverless function is
suitable for low-invocation scenarios only. It struggles with serving
parallel requests due to its intrinsic overhead, making it inappropriate
for real-time processing in high-demand IoT settings.

The paper is organised as follows. Section 2 discusses the back-
ground concepts and existing research related to this work; Section 3
describes the Edge Computing and IoT analytics scenarios considered
in this paper, while Section 4 provides the details of the testbed;
Section 5 describes the criteria whereby the experiments of Section 6
were performed; finally, Section 7 concludes the work and sheds lights
on potential future work.

2. Background

2.1. IoT real-time analytics and edge computing

Sensors within machines, devices, or other sources—in areas such as
Smart Factories, Smart Cities, and Healthcare applications—produce a
massive amount of data that can be processed to gain valuable insights
and possibly create proactive and predictive business models [2]. Due
to their location in machinery at the network’s border, those data
producers are commonly referred to as the edge. Many of the above
areas require that the data produced at the edge is processed in real-
time. As such, when considering real-time IoT analytics, the latency
between the data generation and the availability of the processing
results should be as small as possible and ideally close to zero [3].

While the volume of data generated at the edge continuously in-
creases, and the real-time processing requirements are becoming more
stringent for certain applications, the sole use of centralised cloud
resources is showing its limitations. Hence, computing and network
resources located along the path between the data source and the
Cloud might be utilised to reduce the intrinsic communication latency
between the edge and the core of the network. These objects, usually
available at the edge of the network, are named edge nodes [4].

The Edge Computing paradigm is an extension of the traditional
Cloud Computing model wherein additional computational, data han-
dling and networking resources (nodes) are placed closer to the end
devices. The consequence of this extension is that all the tasks requiring
data management and processing, along with storage and networking
communication, can now not only occur on centralised cloud servers
but also on the continuum of nodes available between those servers and
the end devices [8]. Thereby, Edge Computing becomes extremely useful
for low-latency applications, as well as for applications that generate an
enormous amount of data that, due to bandwidth constraints, cannot

practically be transferred to cloud servers in real-time [15].



Future Generation Computer Systems 155 (2024) 204–218F. Tusa et al.

c
j
m
h
a
t
l
a
l

s
a
t
b
F
a
d
S
t
t
o
g
t
d

F
c
p
r
i
v
f
A
o
a
o
s
s
s

2

e
o
u
w
f
w
r
b
o
(
t
d
t

E
i

2.2. Microservices, functions and serverless computing

During the last few years, monolithic applications have evolved to-
wards service-oriented architectures and, more recently, to Microservice
architectures. These are based on small and loosely coupled compo-
nents, where each piece can be executed autonomously for a specific
task. The Function as a Service (FaaS) model considers even smaller
omponents at the granularity of stateless functions. These are created
ust in time, following the users’ requests, and combined to build
ore complex, highly modular services [14]. This evolutionary path
as been sustained by the affirmation of event-driven programming
nd the usage of continuous integration and continuous development
echnologies. Furthermore, the rise and diffusion of containerisation,
ed by Docker [16], played a significant role in the above process,
s it facilitated the execution of the above service components within
ightweight, isolated environments [17].

Although the traditional IaaS clouds allow for the allocation of
ervices on-demand, they fall short of a pure pay-per-use billing model
nd of scalability mechanisms transparent to the users, who would have
o implement their auto-scaling methods [14]. Serverless Computing
uilds on the advances brought about by the usage of Microservice and
aaS architectures, event-driven programming and containerisation,
nd tries to overcome the above limitation of IaaS clouds by intro-
ucing a pure pay-per-use model along with effortless scalability [12].
erverless is one step forward in the abstraction staircase from IaaS
o Platform as a Service (PaaS). It provides customers with a platform
hat supports the execution of software without exposing any details
f the underlying Operating System (OS) and virtualisation technolo-
ies [18]. Therefore, the life-cycle management of the VMs/containers,
heir images, and the burden of monitoring the servers will be entirely
elegated to the Serverless provider [19].

Available Serverless Providers include Amazon AWS Lambda, Azure
unctions, Google Cloud Functions, IBM Cloud Functions and Ora-
le Fn [20]. The last two have released their tools as open-source
rojects (respectively, OpenWhisk and Fn project); Amazon has also
ecently open-sourced Firecracker, the platform on which AWS Lambda
s based. Meanwhile, the research community has been actively de-
eloping easy-to-use Serverless solutions such as OpenFaaS [21] (used
or the experiments presented in this paper), Fission, Kubeless, etc.
ll those serverless platforms can be analysed and compared based
n the following list of provided features: (i) functions composition
nd communication patterns; (ii) functions invocation/triggering meth-
ds (e.g., request-reply, pub/sub, etc.); (iii) resource provisioning and
caling specifications (e.g., CPU, memory or both); (iv) resource ab-
tractions or virtualisation (e.g., containers or microVMs [22]); (v)
upported programming languages.

.3. Related work

Our previous work [13] considered utilising microservices for the
xecution of real-time edge analytics and solely investigated the impact
f various encoding and transmission protocols on the edge resource
tilisation, leaving the analysis of the actual computing tasks as future
ork. This paper complements our previous findings and provides

urther insights on the resource utilisation of the actual data analysis
hen both Microservice and FaaS frameworks are considered. Earlier

esults have shown that using JSON over HTTP/REST, widely adopted
y many of those frameworks, requires more CPU resources than
ther types of data encoding (e.g., XDR) and transmission mechanisms
e.g., WebSockets). Nonetheless, these technologies are utilised by the
ools chosen for the evaluation presented in this paper, as they are the
e-facto solution adopted in distributed cloud scenarios and by most of
he existing Microservice and FaaS solutions.

The authors of [3] present an analysis of the state-of-the-art on using
dge Computing in Smart Factory to execute analytical calculations
206

n real-time. In paper [4], the usage of microservices running at the
edge is investigated for the execution of IoT analytics. In paper [17],
a modular and scalable architecture based on lightweight Docker con-
tainers is presented, and its suitability to process IoT data at the edge
is evaluated. Finally, an IoT platform that combines microservices and
Serverless Computing to process data in a smart farming scenario is
discussed in [23].

The work presented in [14] provides an in-depth qualitative evalu-
ation of the suitability of Serverless Computing for the edge. In [24],
the authors analyse the resource utilisation of applications designed
according to the FaaS model and deployed on inexpensive Single Board
Computers to process data generated by an IoT service platform. The
evaluation of a serverless edge platform that supports real-time data-
intensive applications is presented in [25]. The performance of four
alternative open-source serverless frameworks is assessed in [26], but
the evaluation is not performed at the large scale targeted by our paper
and does not include a comparison with the deployment of traditional
preallocated containers.

Motivated by concerns about power consumption in data centres,
brought about by the rise of cloud technologies, the energy efficiency
of serverless computing is evaluated in [27]. The results reveal Open-
FaaS’s [21] enhanced power efficiency relative to Docker [16], espe-
cially when subjected to high CPU and memory demands.

A study on the dynamics of the costs when using serverless com-
puting compared to IaaS deployments is presented in [28]. It reveals
that serverless may not consistently save user costs, urging providers
to diversify use scenarios. Current pricing models pose challenges,
prompting the proposal of an auction-based pricing system for server-
less, reducing function costs for users without compromising provider
revenue, as demonstrated by experimental results.

From the above state-of-the-art analysis, it emerges that some work
done in this area evaluates the usage of edge applications to minimise
the processing latency of real-time analytics considering Microservice
or FaaS models. Other work analyses the energy and cost implications
of using these architectures. However, there is currently no compre-
hensive quantitative comparison between these two approaches for
processing massive IoT data in real-time at the edge—a direct and
detailed analysis conducted on an actual testbed under real conditions
is currently unavailable. Our paper aims to fill this gap by providing
an extensive evaluation and comparison of the lifecycle, performance
and resource utilisation of edge real-time IoT analytics, implemented as
microservices deployed within preallocated containers versus functions
executed via the Serverless Computing paradigm.

3. Scenario

This paper considers the reference scenario in Fig. 1, a distributed
and multi-layered computing infrastructure for processing massive IoT
data, referred to as the Edge–Cloud Continuum [7,8]. At the bottom
layer, a large-scale deployment of IoT devices generates a vast amount
of data to be processed. In general, these are small, low-maintenance,
low-power consumption devices that are deployed in the field for
extended durations, sometimes up to a decade. Although some IoT
devices may offer embedded computation capabilities, those that do
not provide such a feature are mainly considered in this work.

As a consequence, data from the devices is offloaded and pro-
cessed at various layers within the Edge–Cloud Continuum, depending
on the nature of the required tasks and the available resources at each
layer. Initially, IoT data undergoes local pre-processing at accessible
local devices before being transmitted to the subsequent layers in
the computational hierarchy, encompassing the edge and ultimately
the cloud [6]. As shown in Fig. 1, our reference scenario includes
components deployed in these three separate layers: the IoT Adaptation
layer and the Real-time Edge Processing layer, both in the Edge Domain,
and the Long-term Cloud Processing layer, in the Cloud Domain.

While using edge resources can reduce the data transmission latency
compared to a centralised cloud model, it introduces inherent resource
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Fig. 1. Reference computing scenario.

and energy constraints that need to be considered. Therefore, further
long-term processing tasks with non-stringent real-time requirements,
demanding more resources, cannot be executed at the edge and have
to be offloaded to the Long-term Cloud Processing in the cloud. Rather
than evaluating the unified orchestration of the above data processing
on the whole spectrum of the resources of the Edge–Cloud Continuum,
this work assesses the execution of real-time IoT analytics tasks inside
the Real-time Edge Processing layer.

To better understand the context of the proposed reference sce-
nario, some possible application domains are now briefly introduced. A
Smart Factory uses connected devices, machinery, and sensors to create
flexible and self-adapting production systems. In particular, massive
amounts of data generated by IoT devices deployed in a smart pro-
duction line are processed in real-time to collect valuable insights that
can help reduce downtimes, improve production efficiency, achieve
lower energy consumption, etc. Likewise, in a Smart City scenario,
CCTV cameras and analytics functions would be utilised to process data
for detecting and preventing specific situations in real-time, e.g., acci-
dents, crimes, potential threats, or to recognise particular features (face
recognition, demographics, etc.). The details of those three layers are
discussed below.

3.1. IoT adaptation

The IoT adaptation layer is characterised by limited computing
capacity but minimal data transmission latency. Its primary role is
collecting data from diverse types of IoT devices deployed within an
IoT domain. This layer acts as an abstraction, effectively concealing po-
tential heterogeneity in data formats and presenting a harmonised IoT
dataset through processes such as re-encoding and re-aggregation. The
resultant dataset adheres to a specific encoding/serialisation approach
and is subsequently relayed to the upper processing layer, denoted as
the Real-time Edge Processing. As the above adaptation operations do not
require substantial computing power, they can be executed on nodes
close to the IoT devices, such as the IoT Gateways, with minimum
data transmission latency. Such an adaptation layer is often used in
orchestrated distributed cloud environments to normalise data [29].

3.2. Real-time edge processing

Resources in the proximity of the IoT domain, such as cloudlets
and edge servers, nodes of the mobile access network, and other
heterogeneous network nodes, can become part of a distributed pool
that provides enough computational capabilities for executing real-time
analytics with acceptable data transmission latency [30]. The Real-
time Edge Processing layer consists of a dynamic number of processing
elements that can be orchestrated [8], i.e., created and destroyed on-
demand—according to the characteristics of the received data. This
computation is expected to happen without intermediate long-term
storage to minimise the resulting end-to-end processing latency [31].
207
Fig. 2. Hardware and Software Components of the Testbed.

Two alternative implementations of this layer have been developed
as part of this work—a first one based on microservices and containers,
and a second one built via serverless functions. They have both been
used to support the main evaluation targeted by this paper, which was
already briefly introduced in the previous sections. Relevant experi-
ments have been carried out based on those implementations to identify
which technology, among microservices and serverless functions, is
more suitable—from a resource utilisation and latency perspective—for
the execution of real-time IoT analytics at the edge.

3.3. Long-term cloud processing

The Long-term Cloud Processing layer deals with complex processing
tasks, possibly involving vast amounts of data, that are not expected
to be performed with strict real-time guarantees. As data is usually
processed offline, this layer is decoupled from the data producers via
the introduction of Data Lakes (as shown in Fig. 1). This type of
operation usually requires massive resource capabilities compared to
the ones available at the edge. As this work is focussed on the real-time
processing part of the above reference scenario, this layer will not be
considered in the rest of the paper.

4. Testbed implementation

To implement the reference scenario presented in Fig. 1, and to
carry out the performance evaluation of this work, a distributed testbed,
consisting of various hardware and software components, was used.
The details are described in this section. The evaluation focuses on the
two bottom layers of the reference scenario. The testbed representation
of Fig. 2 shows that the Edge Domain is implemented as a cloudlet, on
which the Real-time Edge Processing functionalities are executed; the IoT
Domain is comprised of a distributed network of software IoT devices,
referred to as the IoT Ecosystem.

From a hardware point of view, the testbed consists of three rela-
tively small clusters of compute and network resources—Clay, Gas and
Edu—hosted at University College London (UCL). The Clay cluster com-
prises five servers with 2x AMD Quad-Core Opteron 2347HE @1.9 GHz
and 32 GB of memory. The Gas cluster comprises four servers with
4x Intel Quad-Core Xeon E5520 @2.27 GHz and 32 GB of memory.
Finally, the Edu cluster includes three servers with 4x Intel 12-Core Xeon
E5-2650 v4 @2.20 GHz and 192 GB of memory. All these nodes are
inter-connected via a 1 Gbps Ethernet Local Area Network (LAN) and
run the Linux Rocky 9 OS with kernel version 5.14.

As Fig. 2 shows, two of the above clusters—Edu and Gas—were
specifically utilised to run the software components of the IoT Ecosystem
and the Real-time Edge Processing, respectively. Additionally, the Clay
cluster was dedicated to hosting the necessary tools for managing and
executing experiments involving these components, which from now on
in the paper will be referred to as subsystems.

The IoT Ecosystem is a software IoT platform that generates and

pushes streams of data towards the Real-time Edge Processing subsystem;
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the Real-time Edge Processing implements the functionalities to perform
eal-time computation on those IoT data, using either microservices or
erverless functions; finally, the Tools for Experiments is the subsystem

that automates the configuration of experiments and the collection of
measurements for the performance evaluation.

Using separate clusters to deploy the above subsystems made it
possible to replicate on our testbed the same working conditions of an
actual IoT scenario. Specifically, the Gas cluster acted as a cloudlet—a
esource-constrained edge data centre—on which the two alternative
mplementations of the Real-time Edge Processing were executed during
he performance evaluation. The generation of the large volume of data
equired for the experiments via the IoT Ecosystem demanded relatively
igh resource capabilities. Therefore, Edu was selected for running
hat subsystem, as it is the cluster exhibiting the highest capacity in
he testbed. The Edu and the Gas clusters were interconnected via
n existing 1 Gbps Ethernet network, which allowed reproducing the
ommunication layer whereby, in an actual IoT scenario, the data
enerated by the IoT Domain is transferred to the Edge Domain.

Whilst the IoT Ecosystem and the Tools for Experiments (running
n the Clay cluster) subsystems are both critical for the setup of
his experimentation environment, it should be noted that the core of
ur quantitative performance analysis revolves around the number of
esources consumed by the Real-time Edge Processing on the Gas cluster.
he usage of a software IoT Ecosystem does not affect the general
eaning of the results presented in this paper, as these mainly depend

n how the components deployed in the Edge Domain behave when they
eceive and process IoT data; however, how those data are generated
y the IoT Domain is not relevant to the rest of the system and can be
bstracted away.

.1. IoT ecosystem

This subsystem can reproduce via software the actual behaviour
nd scale of a real-world IoT domain with thousands of physical
‘things’’ [13]. It was deployed on the Edu Cluster to provide a fully
rogrammable software IoT Domain to generate the custom streams
f data required for our performance evaluation. The IoT Ecosystem’s
mplementation is based on the dynamic features and composable
oftware elements of the Lattice monitoring framework [32,33], which
ere used as the foundation for building both its Data Generation and

oT Adaptation components, as represented in Fig. 2.
The Data Generation allows the definition of topologies of Software

oT Devices of various sizes, where each device can be programmed
o generate data at a given rate. Although both the format and the
ncoding of those data can be fully customised, sensor-like measurements
ere considered during our experiments. A topology is described by a

et of the above Software IoT Devices attached to various Software IoT
ateways. While acting as multiplexers, the gateways also support the
xecution of simple data manipulation tasks. Fig. 2 shows that basic
ata formatting operations can be performed via different Adaptors
onnected to the Software IoT Gateways. In effect, these Adaptors form
he distributed IoT Adaptation component of this subsystem, which is
esponsible for (i) receiving the multiplexed streams of data from the
oftware IoT Gateways; (ii) grouping those data in batches of a given
ize; (iii) encoding those batches using a specific data interchange
ormat; and (iv) sending each batch of data to the Real-time Edge
rocessing.

The IoT Ecosystem can be customised to implement a specific ex-
erimental scenario by adjusting the number of Software IoT Devices
nd the rate at which they generate data. Likewise, the number of
oftware IoT Gateways, and the type of Adaptors attached to them, can
e selected; finally, for each Adaptor, the ingress point of the Real-time
dge Processing, and the size of the batches of data to be transmitted,
an both be configured. Further details can be found in [13].
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.2. Real-time edge processing

This subsystem plays a key role in the performance evaluation
f this paper. Consistently with the idea of real-time analytics, it im-
lements a data processing workflow that needs to be executed on
esource-constrained edge nodes in real-time. The individual tasks of
his workflow are represented by the interconnected set of components
hown in the top part of Fig. 2. The Data Collection acts as the ingress
oint of the workflow, as it gathers batches of data generated by the
oT Ecosystem. At each processing step, the output of one component
s provided as input to the next one in the workflow until the Data
ggregation task is eventually performed, and a result is produced as the

inal output. As discussed, in this work, we developed and evaluated
wo alternative versions of the Real-time Edge Processing workflow of
ig. 2. The first one consists of microservices deployed via containers,
ach related to one of the tasks of the above workflow; the second
ersion also implements the same tasks, where each task is built via
erverless functions instead.

Currently, JSON and HTTP/REST are the de-facto solutions for im-
lementing the communication layer of a distributed system, thanks to
he loose coupling and high degree of interoperability they deliver [34].
any Microservice and FaaS frameworks use these technologies to

implement the external interfaces of their components. This practice ex-
tends to the tools used in this work, specifically Flask [35] microservices
deployed on Docker Swarm [36] and the serverless functions managed by

penFaaS [21].
This choice was motivated by the broad support these tools re-

eive from the open-source community and by the relatively lower
emand for computational resources they exhibit compared to similar
olutions [37], which is relevant for resource-constrained edge nodes.
onetheless, the tools should only be considered possible examples of

ystems based on the above technologies. Therefore, our choice of using
hem in our testbed to support the experiments is not to be deemed a
actor directly impacting the collected measurements and the general
alidity of the subsequent results.

We had previously determined that using JSON over HTTP/REST
ight introduce transmission/decoding overhead into a distributed

ystem [13]. Hence, our approach to mitigating this issue consisted of
ggregating IoT data as batches of different sizes before they are sent to
he Real-time Edge Processing for computation. Python was also chosen as
he preferred programming language for both the Microservice and FaaS
mplementations of this subsystem. Python is fully supported by the
hosen frameworks, it is well integrated into their development work-
low, and it provides data analysis functionalities through the Pandas
ibrary [38]. Moreover, it also shows lower memory requirements than
ther languages, such as Java, thus becoming the obvious choice for de-
eloping applications that are expected to run on resource-constrained
dge nodes [13].

.2.1. Microservice implementation
This version of the Real-time Edge Processing subsystem adopts a

odular architecture comprised of microservices, wherein each mi-
roservice corresponds to a specific task in the workflow illustrated in
ig. 2. These microservices were instantiated as separate Docker con-
ainers deployed within the Gas cluster of the testbed. The Gas cluster
erved as cloudlet, i.e., a resource-constrained edge data centre managed
ia Docker Swarm—Docker’s lightweight native container orchestration
ngine for clusters.

Each microservice represents a RESTful Flask web application that
eceives data POSTed via HTTP, performs the required processing tasks,
nd returns the result in the HTTP response. JSON was the data format
xchanged over HTTP/REST. Once running, the whole processing appli-
ation receives batches (i.e., JSON arrays) of IoT measurements POSTed
o the REST endpoint of the (ingress) Data Collection microservice.

The cloudlet utilised for allocating the above microservices encom-

asses three nodes, consisting of one master and two workers, that
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provide the computational resources required to support the operation
of the Real-time Edge processing workflow. To facilitate the instantiation
of the containers, a docker-compose descriptor was employed to define
the individual microservices and outline their intercommunication ap-
proach. More specifically, following the Docker Swarm’s default spread
scheduling strategy [39], the microservices were distributed across the
available hosts of the cloudlet so that an even utilisation of the cluster’s
resources was ensured. Moreover, they could seamlessly communicate
through an overlay network, built on top of the existing Ethernet con-
nection of the testbed, and established at deployment time by Docker
Swarm.

Lifecycle considerations. The microservices were developed in Python 3
and built using the Flask 1.1 microframework [35]. This was used to
implement the required external web-based interface; the features pro-
vided by Pandas 1.1.3 [38] were used for the data analysis/manipulat
ion. The default Flask web server was replaced by a production-ready
Waitress 1.4 [40], running with one worker thread. This implementa-
tion of the Real-time Edge Processing subsystem implied direct exposure
to the low-level setup and deployment aspects of the Docker containers.
Moreover, different Docker images had to be created in the Docker Reg-
istry repository by hand, based on the already available alpine-python3
image; additional package dependencies (i.e., numpy and pandas) had
to be explicitly specified in the relevant Dockerfiles. Finally, references
to the created images were explicitly added to the docker-compose that
described the whole application, together with the details of how the
containers communicate (i.e., endpoints, ports, overlay network).

4.2.2. FaaS implementation
This version of the Real-time Edge Processing subsystem uses server-

less functions, managed by the OpenFaas framework [21], to build
each of the tasks of the workflow illustrated in Fig. 2. Similar to
the Microservice implementation described earlier, this version was
also developed in Python 3 and includes features offered by Pandas
1.1.3. However, it did not require the additional development of the
functions’ external interface since OpenFaaS provides a collection of
predefined templates for various programming languages that enable
developers to create functions easily. These templates include a web
interface that is automatically generated for each function. Developers
only need to add their specific function logic to the template’s desig-
nated handle method. Docker images and containers are still generated
and utilised for function instantiation when a new function is created
using a template. However, OpenFaaS manages these operations trans-
parently, abstracting them from the software development workflow
and system administration.

Functions cold start. Cold start of functions is one of the well-known
concerns associated with FaaS architectures. It stems from using con-
tainers created on-demand—per function invocation—and removed
when that function receives no further requests within a given time
frame. Even though creating a container is much faster than creating a
VM, the required time is still not negligible, mainly when the container
is allocated for the first time on a given host, as its image has to
be fetched from a remote registry. Additional delays can then be
potentially introduced by the container orchestration system, such as
Kubernetes [41], due to the health checks performed after a new
container is created [42].

This inherent delay would not be practical for the specific scenario
of this work, which necessitates minimal processing latency to support
real-time computation of IoT data. Various FaaS frameworks offer al-
ternative approaches to mitigate the cold start problem [43], involving
trade-offs between function response time, resource utilisation, and
process isolation. A widely adopted strategy aims to keep functions
warm based on specific criteria [44] so that there will always be at
least one function instance immediately available to serve an incoming
209

request. OpenFaas’ solution to the cold start issue consists of creating a
persistent container for each type of function during deployment. No-
tably, this long-lived container can handle multiple invocation requests
by leveraging process-level isolation [42] and an initialisation process
known as the Watchdog, which actively monitors the invocations a
function receives and launches these processes as needed.

OpenFaas watchdog. In addition to the Microservice implementation
discussed earlier, to carry out the performance evaluation of this work,
two more variants of the Real-time Processing subsystem were developed
ased on different OpenFaaS templates. These templates address the
bove cold start problem by employing two alternative versions of the

OpenFaas Watchdog process. The first version is built on the classic
watchdog template, while the second version utilises the of-watchdog
template [45].

The classic watchdog provides an unmanaged and generic interface
between a given function and the outside world. It is responsible for
marshalling an HTTP request, accepted on the OpenFaaS API Gate-

ay [21], and invoking the requested function by creating a new
rocess. Every function embeds this binary and uses it as its entry point.
nce a new process is forked, the Watchdog passes in the HTTP request
ia stdin and reads an HTTP response via stdout. Because the above
bstraction is in place, the process does not need to know anything
bout the web or HTTP. Therefore, the classic watchdog simplifies

the development of the application and provides the highest level
of portability. However, it does have the drawback of forking one
process per request that, as we will demonstrate later, may lead to poor
performance.

Conversely, the of-watchdog enables an HTTP mode whereby a
process is first created and reused repeatedly between multiple func-
tion invocations to offset the above latency of forking. However, this
introduces the additional complexity of writing functions that have
to be HTTP-aware, i.e., able to parse data from the received HTTP
request and return the result in the HTTP response. In effect, this
approach embeds a web application within a container using Flask
like the Microservice implementation discussed earlier. To support our
experiments and comparative evaluation, the software components’
versions of the of-watchdog function template and the Microservice
implementation were aligned to use Flask 1.1 and Waitress 1.4 with one
worker thread.

Lifecycle considerations. As discussed earlier in the paper, the IoT data
produced by the IoT Ecosystem were encoded in JSON format and
transmitted over the network via HTTP/REST. This also applies to the
two implementations based on serverless functions, regardless of the
chosen OpenFaaS Watchdog template. However, the endpoints of the
allocated components (functions) were not directly exposed to the rest
of the system; instead, the execution of the data processing workflow
was initiated through interaction with the (ingress) Data Collection
function via the respective endpoint created on the OpenFaaS API
Gateway.

An OpenFaaS application can be defined through a YAML file that
outlines the composition of its various functions and their interactions.
When functions are defined according to either the classic watchdog or
the of-watchdog template, Docker containers are automatically created.
Unlike the docker-compose descriptor used in the Microservice imple-
mentation, the deployment workflow did not require the specification
of low-level container details such as the Dockerfile definition, image
management and run-time instantiation. OpenFaaS dealt with the trans-
parent creation of the functions by automating the deployment and
interconnection of the required Docker containers on the underlying
Docker Swarm.

4.3. Tools for experiments

This subsystem includes the software tools supporting the man-
agement and the execution of the experiments performed during the
evaluation targeted by this paper, i.e., the Metrics Collector and the

Experiment Manager components described hereafter.
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4.3.1. Metrics collector
This component collected metrics related to the performance and

testbed resource utilisation of the Real-time Edge Processing subsystem
during the execution of a given experiment. A purposely developed
Python application, deployed on the Clay Cluster, aggregated values
collected from three different sources: (i) physical resource utilisation
and containers-related metrics are gathered via querying an instance of
the Swarmprom open source tool [46]; (ii) metrics values related to the
execution time and the request-reply time of the processing applications
are collected from the Docker Swarm and the OpenFaaS log files, as well
as from the log files of the Software IoT Gateways; finally, (iii) additional

etrics associated with the sole execution of the serverless functions
ere gathered from the internal OpenFaaS monitoring system.

.3.2. Experiment manager
This subsystem facilitated the setup and execution of diverse ex-

eriments in this work by automating the activation of customised
nstances of the necessary software components on the testbed. The
rocess involved two steps, i.e., generating the appropriate configura-
ion settings for a specific experimental scenario and deploying bespoke
nstances of the IoT Ecosystem and Real-time Edge Processing subsystems
utomatically on the designated hosts of the testbed.

Specifically, the Experiment Manager was responsible for the execu-
ion of the following tasks: (i) activation of a particular implementation
f the Real-time Edge Processing on the testbed; (ii) instantiation of the
oT Ecosystem to generate streams of data according to the experiment’s
ettings; (iii) deployment of an instance of the Metric Collector so that
arious metrics related to the system’s performance were gathered. This
ubsystem [47] was implemented in Python, and for each experiment
o be carried out, it performed the activation of the above components
y interacting with the relevant hosts of the testbed over SSH via the
abric library [48].

. Evaluation approach

This section presents the methodology whereby different experi-
ents were devised to answer the initial research question of this
aper—the viability of Microservice and FaaS architectures for building
dge applications that perform real-time IoT analytics tasks.

A typical stream of data produced by an IoT domain that needs to
e processed in real-time is a continuous flow of events or messages
rom devices that capture various aspects of the physical world, such as
emperature, humidity, motion, location, etc. These data streams need
o be processed quickly and efficiently to enable real-time decision-
aking, analytics and actions based on the insights derived from the
ata [2]. The scale of the streams depends on the type and number of
evices and the size and frequency of the messages.

To investigate how Microservice and FaaS architectures deal with
he above IoT scenario, a comprehensive performance evaluation was
arried out using the different implementations of the Real-time Edge
rocessing subsystem presented earlier. Experiments that reproduced
he type of data and the scale characterising typical IoT systems [49]
ere devised and executed on our testbed to collect and analyse
easurements related to two performance indicators, selected accord-

ng to the specific target of our analysis. As mentioned, this work
s centred on exploring resource allocation and performance of user
eal-time analytics from a provider perspective. Therefore, based on
he study already performed in paper [50] and the metrics used in
ur previous work [13], the performance indicators deemed more
elevant for this work were the end-to-end processing latency of the
nalytics and the related edge resource utilisation. The first performance
ndicator measures the ability of the Real-time Edge Processing to execute
omputations with minimal processing latency, which motivates the
hoice of using edge resources for the computation but also brings
bout additional constraints on the resource infrastructure. Hence, the
210
Table 1
Summary of the IoT settings used for the experiments.

IoT scenario A IoT scenario B

Software IoT Gateways (𝑔) 1 10

Software IoT Devices (𝑑) 1000 10,000

Sensor Rate (𝑟𝑚) 4, 12, 25, 25 4, 12, 25, 25

Data batch size (𝑏𝑠) 4000, 16,000,
32,000, 64,000

4000, 16,000,
32,000, 64,000

Experiments’ duration 120 min 120 min

second performance indicator measures the amount of edge resources
required to perform real-time computation.

The evaluation approach used in our previous paper [13] focussed
solely on the effects that transport and encoding facets have on Massive
Real-time IoT Data systems, leaving out the analysis of the impact of
the data processing tasks. In this paper, we extend that investigation
and focus specifically on the resource capabilities that edge nodes
should have to process IoT data streams in real-time via Microser-
vice or FaaS applications. To facilitate the measurement and direct
comparison of the resource utilisation and end-to-end processing latency
of these technologies, alternative implementations of the Real-time
Edge Processing—where all of the processing logic is encapsulated into
a single subsystem—have been considered. This approach can miti-
gate the run-time complexities of multi-component configurations and
setup and the associated inter-component interactions; moreover, it
has provided valuable insights into the behaviour of microservices and
serverless functions and their possible utilisation as the building blocks
for real-time IoT analytics running at the edge.

The experiments of our performance evaluation, based on the above
approach, were explicitly devised to model the scale—in terms of the
type of devices and volume of generated data—of two alternative IoT
scenarios, which will be referred to as Scenario A and Scenario B. To
reproduce in our testbed different IoT settings related to these scenar-
ios, bespoke instances of the IoT Ecosystem needed to be adequately
configured and instantiated during the execution of the experiments.
In particular, the configuration allowed the selection of the number of
Software IoT Devices (𝑑) and Software IoT Gateways (𝑔), as well as the
ate (𝑟𝑚) at which each IoT device generated the IoT events. Table 1

shows that Scenario A included a single Software IoT Gateway and 1000
Software IoT Devices; Scenario B was based on ten Software IoT Gateways
and 10,000 Software IoT Devices.

The streams of data were modelled as sensor measurements (msgs)
ncoded in JSON format and including the fields Sensor ID, Name,
ype, Unit, and Value. When an experiment was executed, the software
ensors continuously generated IoT msgs at a given rate 𝑟𝑚. Different
xperiments considered growing values of 𝑟𝑚 to model an increas-
ng cumulative number of IoT measurements generated per second.
o mitigate the intrinsic transmission overhead of HTTP/REST, those
ata were buffered on the gateway(s) of the IoT Ecosystem—the IoT
daptation Layer—and a single batch of a given size (𝑏𝑠) was sent to

he Real-time Edge Processing during each workflow’s invocation. This
llowed us to evaluate how the frequency of the workflow’s invocation
nd the size of the elements to be processed affected the performance
ndicators.

As Table 1 shows, the rate 𝑟𝑚 varied during the experiments in the
ange 4−25 msgs/sec, while the size of the batches 𝑏𝑠 was chosen among
he values {4000, 16, 000, 32, 000, 64, 000}. Each IoT gateway sent a single
atch of data to the Real-time Edge Processing during each workflow’s
nvocation, but multiple invocations occurred during the 120-minute
imespan of an experiment. Averaged values of the end-to-end processing

latency and resource utilisation metrics were calculated throughout each
experiment considering multiple executions of the same workflow on
different input data.

The IoT scenarios presented in Table 1 serve as possible models of

real-life use cases that are highly relevant in today’s IoT landscape. In
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particular, Scenario A reproduces the data generation rate that may
ccur in a Smart Factory. In such a setting, a range of IoT devices

and sensors are strategically placed throughout the production floor
to capture data related to machine performance, inventory levels, and
product quality. The generated data, consisting of thousands of events
per second, can provide valuable insights for optimising production
processes, minimising downtime, and ensuring a secure working en-
vironment. On the other hand, the settings of Scenario B may resemble
those found in a Smart City environment, where numerous sensors are
deployed across an urban area to collect data on air quality, traffic flow,
noise levels, and energy consumption. These sensors continuously gen-
erate a significant volume of events per second, with higher frequency
than Scenario A, delivering real-time information essential for urban
planning, resource management, and environmental monitoring [51].

Further details on the performance indicators utilised during the ex-
periments and how they were calculated are described in the remainder
of this section before some considerations on the auto-scaling features
are presented.

5.1. End-to-end processing latency

The effective execution of real-time IoT analytics relies on minimum
latency between data generation, invocation of the processing work-
flow, and availability of the results. During the considered experiments,
these aspects were evaluated by analysing the metrics of type (ii) and
(iii) discussed in Section 4.3.1. These include the execution time 𝑡𝑒𝑥
and the request-reply time 𝑡𝑟𝑟 associated with a single invocation of
he Real-time Edge Processing workflow. Specifically, 𝑡𝑒𝑥 is the actual
ime required to execute the code that performs the requested process-
ng tasks; 𝑡𝑟𝑟 indicates the overall latency detected by a Software IoT
ateway, i.e., the time elapsed between the submission of a processing

equest to the edge domain and the receipt of the related results. While
he execution time 𝑡𝑒𝑥 is included within 𝑡𝑟𝑟, the value 𝑡𝑟𝑟− 𝑡𝑒𝑥 indicates

any overhead due to the invocation handling, such as process forking,
the additional delay introduced by any intermediate components of the
system (e.g., the OpenFaaS API Gateway, the Watchdog, etc.) and the
network communication time.

5.2. Resource utilisation

The deployment of processing functions in close proximity to the
IoT devices can reduce the end-to-end processing latency thanks to a
maller network communication latency. However, the amount of edge
esources available for the execution of those applications is often
imited—determining the resource utilisation associated with either the
icroservice or the FaaS implementation of the Real-time Edge Pro-

essing is therefore strategic to evaluate the usability of edge nodes.
his performance indicator was measured during the experiments via
ollecting several parameters associated with the metrics of types (i)
nd (ii) discussed in Section 4.3.1. These include 𝑐𝑝𝑢% and 𝑚𝑒𝑚, where
𝑝𝑢% represents the average percentage of system CPU utilisation as-
ociated with the execution of the processing application during the
ifetime of an experiment; 𝑚𝑒𝑚 indicates the average amount of RAM
in megabytes) utilised by the processing application throughout an
xperiment. While there were no restrictions on the memory amount
hat both functions and microservices could utilise, CPU limits were im-
lemented to ensure the execution of each of their individual instances
n a single core to facilitate the analysis of the results.

.3. Auto-scaling

A key aspect of Microservice and FaaS architectures, and of lightwe
ght containerisation, is the ability of these technologies to scale out
he number of instances of a service component (or task) promptly
nd dynamically. Serverless FaaS frameworks inherently provide auto-
211

caling capabilities to their users. In OpenFaaS, for instance, when the s
umber of invocations of a given function exceeds a specified threshold
of five requests per second, by default), an additional (configurable)
umber of instances of that function is spawned automatically by the
PI Gateway until a maximum value (20 by default) is reached.

The microservice architectural style was first described by Lewis and
owler [52] as ‘‘an approach to developing a single application as a
uite of small services, each running in its own process and commu-
icating with lightweight mechanisms, often an HTTP resource API’’.
his architecture allows individual microservices to scale out, but this
echanism is not always enforced automatically. Some frameworks,

uch as the Flask microframework [35], only deal with the development
spects of the microservices. The microservice run-time management
s performed by container orchestration engines that do not always
upport auto-scaling features. The Docker Swarm engine, for instance,
oes provide mechanisms for scaling the number of allocated containers
t runtime; however, this is not done automatically and has to be
riggered by an infrastructure administrator, e.g., via the command line
nterface [53]. Auto-scaling could still be built within those frameworks
pon the existing manual scaling functionalities but this would require
eveloping and integrating additional features in their vanilla versions.
ther container orchestration engines have built-in container auto-

caling capabilities that can be applied to microservices. Yet, they often
equire external components and APIs to be configured and launched
eparately, such as in Kubernetes [54] and OpenShift [55].

For completeness, the performance evaluation that will be presented
n Section 6 covers all the above-mentioned scaling alternatives. Specif-
cally, it will investigate a serverless scenario with inherent auto-scaling
apabilities provided by OpenFaaS. The results will be compared with
xperiments performed on microservices deployed via statically pre-
llocated containers (which could be scaled manually) and via a Docker
warm container orchestration engine that supports auto-scaling via an
xternal component.

.4. Frameworks resource utilisation

To ensure a fair comparison of the frameworks utilised for the
eployment of the two versions of the Real-time Edge Processing ap-
lication in the experimentation environment, a brief analysis of the
esource utilisation associated with the execution of the main OpenFaaS
omponents was compared with the resource required for the execution
f the Docker Swarm container orchestration engine. This comparison
s also included in the performance evaluation presented in the next
ection.

. Performance evaluation results

This section presents the results of the experiments executed on
he testbed to evaluate the performance of the Real-time Edge Process-
ng subsystem, according to the methodology discussed earlier. The
wo FaaS implementations presented in Section 4.2.2, based on the
lassic watchdog and of-watchdog templates, were compared to the
icroservice implementation discussed in Section 4.2.1. To simplify

he description of the results, in the remainder of the paper, these
mplementations will be referred to as Classic, Flask, Micro and Micro_s
microservices with auto-scaling), respectively.

The average execution time (𝑡𝑒𝑥) and the Cumulative Distribution
unction (CDF) of the request-reply time (𝑡𝑟𝑟) were utilised for quan-
ifying the end-to-end processing latency, whereas the CPU utilisation
nd Memory utilisation shown in the graphs are related to the resource
tilisation performance indicator of the edge nodes. All the graphs,
hose data points have been calculated as the average of multiple
alues, show the associated 95% confidence interval as a shadowed
rea. However, it should be noted that such intervals are minimal in

ome of the graphs and, therefore, may not be visible.
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Auto-scaling considerations. Our experimentation setup relies on the
auto-scaling capabilities natively provided by OpenFaaS. To ensure a
comprehensive evaluation covering various scaling scenarios, we also
developed an auto-scaler component deployed on the testbed during
some of the experiments with Docker Swarm to provide auto-scaling ca-
pabilities for the microservices. This auto-scaler implements a feedback
loop that monitors CPU core utilisation. Suppose a container utilisation
of the assigned CPU core exceeds a pre-configured threshold (set at 85%
in our tests) for more than one minute. In that case, the auto-scaler
triggers a scaling-out action by instantiating additional containers of
the respective microservice (in our tests, we used four in addition to
the existing one).

Therefore, the microservice evaluation consisted of a group of ex-
periments based on static container allocation (Micro) and another
group executed via Docker Swarm and the above auto-scaler compo-
nent (Micro_s). The auto-scaling was only triggered in OpenFaaS under
the settings of IoT Scenario B, involving the Flask and the experiments
with 𝑏𝑠 = 4000 and 𝑏𝑠 = 16, 000. With identical IoT settings and
unction invocation rate, the Classic did not trigger the auto-scaling
ecause the performed invocations reached a timeout before receiving
reply, as discussed later. The scaling-out action was triggered for the
icroservices under the settings of IoT Scenario B with 𝑏𝑠 = 16, 000,

𝑠 = 32, 000 and 𝑏𝑠 = 64, 000. Comparing the effectiveness of various
uto-scaling mechanisms is a well-known research area [56] that we
eem out of the main scope of this paper. However, it represents an
nteresting topic we plan to consider as potential future work.

.1. End-to-end processing latency

In this subsection, Fig. 3 presents the measured execution time of the
arious implementations of the Real-time Edge Processing, whereas the
ssociated distribution of the request-reply time is reported in Figs. 4 and
.

.1.1. Execution time
The graphs of Fig. 3 show on the 𝑦-axis the execution time 𝑡𝑒𝑥 of the

xperiments related to IoT Scenario A and IoT Scenario B, respectively.
he different sizes of the batches of measurements 𝑏𝑠 are reported
n the 𝑥-axis. It can be observed that 𝑡𝑒𝑥 grows with the size of
he data processed during each invocation. Looking at IoT Scenario
, this growth is faster for the Classic when compared to the Flask

Fig. 3(a)). This behaviour can be explained by considering how a
unction invocation is handled. The Classic is prone to an additional
verhead, as a new process is forked per invocation; conversely, the
lask is devised to offset this latency by reusing the same process
cross different invocations. Even though 𝑡𝑒𝑥 does not measure this
verhead directly, the collected values highlight a slight performance
lowdown—the actual processing task took more time for the Classic
ecause a given percentage of CPU resource was used for the handling
212
f such process allocation. Hence, the 𝑡𝑒𝑥 measured for the Classic
ecame on average 25% higher than the 𝑡𝑒𝑥 of the Micro.

When the Flask is considered, its behaviour in terms of 𝑡𝑒𝑥 is similar
o that of the Micro. This result is expected as they are both based on
imilar software components. Moreover, the presence of the of-watchdog
n the function implementation did not impact the 𝑡𝑒𝑥 in this experi-
ental scenario. The overhead associated with a Flask invocation was
inimal because, unlike the Classic, the same process could be reused

etween independent requests and no additional forking operations had
o be executed.

A different behaviour of the processing applications can be noticed
n the experiments of IoT Scenario B. In this case, concurrent func-
ion invocations significantly impacted the performance of the Classic.
he overhead due to the process forking was too high and required
onsiderable CPU time. This prevented the Classic from working as
xpected, and the received invocations consistently reached a timeout
n all the different experiments. Therefore, the measured 𝑡𝑒𝑥 values were
ot meaningful and have not been reported in Fig. 3(b).

Under the same IoT settings of Scenario B, the 𝑡𝑒𝑥 of the Flask was,
n average, 15% higher than the one of the Micro. Since multiple par-
llel invocations were submitted to the processing applications during
hese experiments, the additional CPU time demanded by the presence
f the of-watchdog became more substantial. This had a higher impact
n the 𝑡𝑒𝑥 than the previous IoT scenario. The difference between the
𝑒𝑥 of the Flask and the 𝑡𝑒𝑥 of the Micro is 10% higher than the same
verage difference measured during the experiments of IoT Scenario
. The results related to this IoT scenario are similar to the previous
ne, even though the OpenFaaS Gateway triggered the autoscale for
he Flask when 𝑏𝑠 = 4000 and 𝑏𝑠 = 16, 000. Therefore, the 𝑡𝑒𝑥 measured
or each invocation does not seem to be related to the total number of
ctive function instances because these are spread by Docker Swarm on
he available CPUs of the cloudlet. Likewise, the 𝑡𝑒𝑥 of the Micro_s did
ot change with the number of (container) instances allocated for that
icroservice when auto-scaling was triggered and, as a result, it is not

hown in the graphs.

.1.2. Request-reply time
Figs. 4 and 5 show the CDF of the 𝑡𝑟𝑟 for the two considered

oT scenarios. As explained, during the experiments related to IoT
cenario B, the Classic failed to achieve real-time processing; in fact,
he associated function invocations consistently reached a timeout in
ll the different experiments. Hence, the measured 𝑡𝑟𝑟 values have not
een represented in Fig. 5.

As seen in Fig. 4, when IoT Scenario A is considered, both the Flask
nd the Micro implementations show a steadier and faster response time
ompared to the Classic. With 𝑏𝑠 = 4000 (see Fig. 4(a)), the measured
𝑟𝑟 values are narrowly distributed around 100 ms for both the Flask
nd the Micro. On the same graph, the distribution of values of the
lassic indicates a slower and less deterministic 𝑡𝑟𝑟, with an average
alue of 1200 ms. The 𝑡 value increases with the buffer size 𝑏 , due
𝑟𝑟 𝑠
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Fig. 4. CDF of Request-reply Time (𝑡𝑟𝑟) in IoT Scenario A (1 gateway, 1000 sensors).
Fig. 5. CDF of Request-reply Time (𝑡𝑟𝑟) in IoT Scenario B (10 gateways, 10,000 sensors).
to the larger number of IoT messages to be transmitted and processed
during a single invocation. The remaining graphs of Fig. 4 show that the
above trend is not critical for both the Flask and the Micro, for which
comparable 𝑡𝑟𝑟 were measured. However, one can notice a slightly
slower and wider distribution of values associated with the Flask. This
is due to the invocations routed through the OpenFaaS API Gateway
and the of-watchdog. The same consideration also applies to the Classic,
with the additional latency due to a new process being forked for each
function invocation.

The CDFs of the 𝑡𝑟𝑟 for the experiments of IoT Scenario B are
presented in Fig. 5. The Classic (not shown in the graphs) could not
cope with the parallel function invocations due to the additional la-
tency introduced by the process forking—the requests submitted by the
software IoT Gateways reached a timeout before receiving the expected
HTTP reply.

The graph of Fig. 5(a), related to 𝑏𝑠 = 4000, highlights that the
Micro has the best performance in terms of 𝑡𝑟𝑟. The Flask shows a
similar behaviour, although the measured 𝑡𝑟𝑟 is slightly more variable.
The auto-scaling feature did not improve the 𝑡𝑟𝑟 in this case, and the
overall measured 𝑡𝑟𝑟 is not impacted by the number of running function
instances. We believe this is due to the small 𝑡𝑒𝑥 of each invocation
when 𝑏𝑠 = 4000. As such, the available instances were not effectively
used in parallel, and the resulting 𝑡𝑟𝑟 did not change significantly.
The Micro_s implementation did not exhibit auto-scaling due to the
relatively low CPU utilisation. Hence, the resulting 𝑡𝑟𝑟 is similar to the
one of the Micro, and it is not shown in the graph.

Fig. 5(b) shows the CDF of the 𝑡𝑟𝑟 when 𝑏𝑠 = 16, 000. It can
be noticed that the Flask exhibits better performance than the Mi-
cro. Moreover, the distribution of the 𝑡𝑟𝑟 before the creation of the
additional functions was around the value of 1500 ms, but after the
instantiation of the additional function replicas, the 𝑡𝑟𝑟 went down to
150 ms. Hence, the auto-scaling effectively reduced the initial 𝑡𝑟𝑟 of a
factor of approximately 1/10th. A similar behaviour can be observed
for the Micro_s, where the allocation of additional replicas resulted in a
performance improvement, with the measured 𝑡𝑟𝑟 decreasing to about
250 ms.

The CDFs of the 𝑡𝑟𝑟 when 𝑏𝑠 = 32, 000 and 𝑏𝑠 = 64, 000 are shown
in Fig. 5(c) and Fig. 5(d), respectively. The rate of incoming requests
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was not as high as required to trigger auto-scaling in OpenFaaS. As
for 𝑏𝑠 = 4000, both the Micro and the Flask show similar CDFs for
the 𝑡𝑟𝑟, although the latter seems to perform slightly worse than the
former. This is again due to the additional delay introduced by the
OpenFaas API Gateway and the of-watchdog. The auto-scaler based on
CPU load we used with the Micro_s did trigger the scale-out during these
experiments, leading to a notable improvement of the 𝑡𝑟𝑟 thanks to the
distribution of requests among all the available replicas.

Although OpenFaaS provides auto-scaling features out-of-the-box,
the scale-out was not automatically triggered under these circum-
stances. Therefore, further investigations may be required to identify
the best metrics an auto-scaler should use to instantiate additional
container or function instances. The effectiveness of using the number
of received requests per second or the measured CPU load depends on
the measurement generation rate and the size of the batch processing.

6.2. Resource utilisation

In this subsection, Fig. 6 shows the 𝑐𝑝𝑢% and 𝑚𝑒𝑚 usage of the
Classic, Flask and Micro implementations of the Real-time Edge Processing
in IoT Scenario A, whereas the same performance metrics related to IoT
Scenario B are reported on Fig. 7.

6.2.1. CPU utilisation
When IoT Scenario A is considered in Fig. 6(a), it can be noticed that

the 𝑐𝑝𝑢% usage of the Classic is significantly higher than the one of the
other implementations. The highest 𝑐𝑝𝑢% usage value (95%) is reached
when 𝑏𝑠 = 4000, and it is almost 90% higher than the one measured
for the Micro. As 𝑏𝑠 increases, the 𝑐𝑝𝑢% metric of the Classic decreases;
conversely, the Micro 𝑐𝑝𝑢% metric increases. When 𝑏𝑠 = 64, 000, both
implementations consume comparable CPU resources. As seen earlier,
the overhead related to the process forking for the Classic overweights
the actual processing tasks with small values of 𝑏𝑠 (i.e., 4000 msgs).
Therefore, with a higher frequency of function invocation, most CPU
time is spent on the process forking. When 𝑏𝑠 = 64, 000, the number
of invocations decreases and, as a result, more time is required for the
actual computation; therefore, the measured CPU utilisation becomes
closer to the one of the Micro.
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Fig. 6. Resource Utilisation in IoT Scenario A (1 gateway, 1000 sensors).
Fig. 7. Resource Utilisation in IoT Scenario B (10 gateways, 10,000 sensors).
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The opposite behaviour can be noticed for the Flask. The measured
CPU usage increases with the selected size of the buffer. This result
differs from the one of the Classic, as the related invocation overhead
s considerably smaller. The Flask brings in a decrease of the CPU usage
n an average of 40% with respect to the Classic. However, the Flask
PU usage is slightly higher than the Micro for a given size of the
eceived input (on average 25% more). Again, this happens because
f the overhead associated with the of-watchdog component.

The CPU usage related to IoT Scenario B is depicted in Fig. 7(a)
on a wider y-range than Fig. 6(a)). Again, it should be noted that the
lassic failed to achieve the throughput required to cope with the rate
f incoming concurrent requests. In fact, the Classic used on average
round 100% of the CPU time just to perform process forking. The
𝑝𝑢% usage metric of the Flask, presented on the same figure, deserves
more in-depth discussion. As mentioned earlier, the auto-scaling was

riggered during the experiments with 𝑏𝑠 = 4000 and 𝑏𝑠 = 16, 000.
This is reflected by a higher average CPU utilisation than the Micro
mplementation because this metric is calculated as the sum of the CPU
tilisation of all the allocated function instances of that type.

The graphs show that with 𝑏𝑠 = 4000 and 𝑏𝑠 = 16, 000, the overall
lask CPU utilisation is higher than the one of the Micro due to the
ultiple function instances allocated during the related experiments.
oreover, since the number of instances changed dynamically during

he experiment (from one to 20), the metrics’ distribution associated
ith those batches is bimodal. This is reflected by the larger confidence

ntervals shown in the graphs. The number of function instances did not
hange during the experiments performed with 𝑏𝑠 = 32, 000 and 𝑏𝑠 =
4, 000, and the 𝑐𝑝𝑢% metrics of the Flask and Micro implementations
re similar.

In the experiment with 𝑏𝑠 = 4000, the behaviour of the Micro
nd Micro_s is identical. The measured container CPU core utilisation
ever exceeded the pre-configured threshold (85%) required to trigger
he auto-scaling. On the other hand, in the experiments with 𝑏 =
214

𝑠

6, 000, 𝑏𝑠 = 32, 000 and 𝑏𝑠 = 64, 000, the same metric was above that
hreshold and approx 100%. As a result, with the Micro_s, the number
f containers increased from one to five at run-time as the auto-scaler
as triggered. This is reflected by higher CPU core utilisation than the
icro because this metric is calculated as an aggregated value of all the

llocated containers, and each of the five containers had an average of
0% CPU core usage. Like with Flask, the number of instances changed
ynamically during the experiment, leading to a bimodal distribution
nd the larger confidence intervals shown on the graph.

.2.2. Memory utilisation
The average memory utilisation related to IoT Scenario A, shown in

ig. 6(b), indicates that the Classic requires slightly less memory than
he Micro. This is justified by the on-demand instantiation mechanism
n which the Classic implementation is based, which creates and de-
troys a process during each function invocation. Conversely, the Flask
ses more memory than the Micro. Although those implementations
re based on similar technologies, slightly higher memory consumption
as measured for the Flask due to the of-watchdog component.

The memory consumption of the processing applications in IoT Sce-
ario B (Fig. 7(b)) shows that the Classic required a substantial amount
f memory, even though it failed to achieve the desired throughput
note a wider y-range than Fig. 6(b)). Again, this behaviour stems
rom the overhead of instantiating a separate process per function
nvocation, which resulted in most memory resources being used for
his task rather than for the actual data computation. Like the CPU
tilisation, the distribution of values of memory utilisation of the Flask
hen 𝑏𝑠 = 4000 and 𝑏𝑠 = 16, 000 is bimodal since it reflects the dynamic

allocation of function instances during these experiments. Therefore, in
this case, the confidence intervals for 𝑏𝑠 = 4000 and 𝑏𝑠 = 16, 000 are
larger than those shown for 𝑏𝑠 = 32, 000 and 𝑏𝑠 = 64, 000. Moreover,
as for the CPU utilisation, this metric is higher than that of the Micro
when 𝑏 = 4000 and 𝑏 = 16, 000, as it represents the sum of the memory
𝑠 𝑠
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Fig. 8. Resource Utilisation of the OpenFaaS Gateway in the considered IoT settings (with Flask).
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consumed by all the allocated function instances. Similarly, the Micro_s
memory consumption is higher than the Micro when 𝑏𝑠 = 16, 000,
𝑏𝑠 = 32, 000 and 𝑏𝑠 = 64, 000. This is because it is calculated by adding
up the memory consumption of individual containers allocated for the
microservice after the auto-scaling has been performed.

6.3. Serverless computing platform resource overhead

This section focuses on analysing the resource utilisation related to
the execution of the OpenFaaS platform. The graphs of Fig. 8 represent
the CPU and Memory utilisation observed during the execution of the
Flask experiments in the two IoT scenarios under consideration. It is
worth noting that the resource utilisation of OpenFaaS components,
apart from the API Gateway, was found to be negligible, and hence,
it is not depicted in the presented graphs.

The 𝑐𝑝𝑢% was mainly affected by the concurrent requests received
by the API Gateway and the selected 𝑏𝑠. When in IoT Scenario A, a
single software IoT Gateway was up and running, the resulting CPU
utilisation was minimal and, on average, nearly 5 times smaller than
the values observed for IoT Scenario B. It can be noticed that, in IoT
Scenario A, the CPU utilisation presents a relative maximum when 𝑏𝑠 =
32, 000. The 𝑐𝑝𝑢% values of IoT Scenario B show a relative maximum
at 𝑏𝑠 = 16, 000. This trend highlights that the number of received
invocations per second impacts CPU utilisation more than the number
of messages sent with each invocation. Moreover, the measured value
above 30%, reported for IoT Scenario B, indicates that the execution of
the auto-scaling operations requires additional CPU resources.

The memory usage, shown in Fig. 8(b), is barely affected by the
number of concurrent functions invocations, although the measured
memory requirements for IoT Scenario B are slightly higher than the
ones related to IoT Scenario A. In general, the number of messages 𝑏𝑠,
sent with each function invocation seems to impact the memory usage,
although the growth highlighted in the graph is not substantial. Finally,
it can be noticed that the memory consumption is not strictly related
to the execution of the auto-scaling mechanisms; this is different from
what is reported on the 𝑐𝑝𝑢% graph of Fig. 8(a).

6.4. Analysis of the results

A comprehensive analysis of the results of the previous experiments
is discussed here. Since several tests have been executed under different
settings, it may be hard to provide a definitive short answer to the
initial research question asked in the paper. In fact, the pros and
cons of using microservices and serverless functions for real-time IoT
analytics at the edge depend on the specific IoT scenario where these
technologies are used and the associated volume of the data streams
they need to process. Therefore, an overview of what we learned from
the experiments with regard to the lifecycle, performance and resource
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utilisation of Microservice ad FaaS architectures is provided below.
From a lifecycle perspective, building Microservice applications
involves creating the necessary components using a framework like
Flask, along with the direct engagement of developers in configuring
and deploying the required containers. Consequently, the lifecycle of
Microservice applications is less abstract compared to the FaaS tech-
nologies used in this work. As indicated by our prior findings [13],
using JSON over HTTP/REST web interfaces in Flask microservices in-
troduces performance and resource utilisation overheads. Nevertheless,
compared to the FaaS technologies examined in this performance eval-
uation, microservices generally exhibited better end-to-end processing
latency and resource utilisation.

This advantage is noticeable in IoT use cases that generate data
volumes similar to IoT Scenario A, where microservices consistently
demonstrated the most favourable request-reply time and exhibited the
lowest resource utilisation. For example, a single instance of a microser-
vice could process a buffered stream of data generated by 1000 sensors
at a rate of 25 messages per second and provide a response to the IoT
Gateway within 500 ms. Such processing might be accomplished on
resource-constrained edge nodes, as evidenced by the CPU utilisation in
this scenario, which slightly exceeds 20% of a single core, and memory
consumption nearing 70MB.

In contrast to microservices, the lifecycle of Flask functions does not
require the involvement of developers in low-level tasks associated with
container configuration, creation, and instantiation, as the OpenFaaS
framework abstracts these aspects. The performance of this technology
demonstrates stability and consistency throughout the conducted tests,
similar to the behaviour observed for microservices. Due to the ability
to reuse the same process across separate function invocations, Flask
exhibited acceptable response time and resource utilisation during the
experiments. Consequently, this technology proves suitable for IoT
analytics scenarios characterised by frequent invocations and varying
data batch sizes. The end-to-end processing latency and resource utili-
sation indicators for Flask were only marginally inferior to those of

icroservices.
The advantages of employing Flask functions become particularly

vident when very large data streams need to be processed, such
s in the IoT use cases exemplified by Scenario B. In this scenario,
penFaaS could dynamically scale the number of function instances on

he available resources, responding to specific runtime conditions that
mpacted the workload. While auto-scaling necessitates additional com-
utational resources, it effectively improved the end-to-end processing

atency compared to static container allocation.
Specifically, by processing multiple parallel requests on the avail-

able replicas, Flask was able to achieve a minimum end-to-end processing
latency of 150 ms when handling buffered requests generated by 10,000
sensors at a rate of 12 messages per second. This demonstrates a
noteworthy improvement over statically allocated microservices, which
proved nearly ten times slower under identical conditions. Allocat-

ing multiple function replicas naturally requires additional resources
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compared to a single microservice instance. However, based on the
collected resource utilisation metric, such auto-scaling capabilities re-
quired two nearly fully utilised CPU cores and less than 1 GB of RAM in
the above-mentioned IoT settings, aligning with the capabilities offered
by typical edge devices. Furthermore, the advantage of this approach
stems from the on-demand creation of replicas, eliminating the need
for preallocation. This can result in more efficient resource utilisation
than statically preallocated microservices, which is paramount from a
provider viewpoint.

The Microservice application with auto-scaling also exhibited no-
table improvement compared to the static version and performance
similar to or, in some cases, better than the Flask version. Specifically,
it achieved a minimum end-to-end processing latency of roughly 1/5
of the static version using up to five containers. The improvement
brought about by the additional auto-scaler component was notable
when handling buffered requests generated by 10,000 sensors at a rate
of 12 and 25 messages per second, buffered in batches of 16,000,
32,000 and 64,000 measurements. This was achieved thanks to the
CPU core utilisation as the metric for triggering the scaling mechanism,
which proved more effective than the number of received requests per
second on which the OpenFaaS built-in auto-scaler is based (by de-
fault). Comments similar to those already made for the Flask also apply
to this implementation, where the allocation of additional containers
required further CPU core resources and memory, like in the scenario
when up to 20 functions were allocated as a result of the auto-scaling
enforced by OpenFaaS.

The Classic function offers the highest level of abstraction in terms
of development and deployment lifecycle when compared to Flask
and Micro. Similar to Flask, developers are relieved from container
reation and management concerns, and the function logic does not
equire HTTP awareness. This flexibility allows for the inclusion of
arious process types, including binary or shell processes, within a
unction. However, it is important to note that this approach introduces

noticeable latency, as demonstrated by the experimental results.
onsequently, the Classic function is not well-suited for processing sce-
arios resembling IoT Scenario B, as it cannot cope with the associated
olume of generated data. Even in the settings of IoT Scenario A, where
he data stream is continuous but less demanding, the experimental
esults indicate that the Classic implementation achieved acceptable
erformance only when dealing with less frequent invocations and
arger batches of measurements.

Compared to the other implementations, the Classic exhibited sig-
ificantly higher end-to-end processing latency and CPU utilisation while
emonstrating slightly less demanding memory utilisation. This is due
o the approach this technology uses, which optimises resource allo-
ation avoiding the instantiation of processes for idle functions. Such
esource management proved inadequate in the considered IoT settings,
here the Classic function failed to handle multiple parallel incoming

equests due to the high overhead associated with creating and destroy-
ng a process per invocation. Since this overhead consumed a significant
ortion of available CPU time and memory, we can conclude that the
lassic function is better suited for scenarios where the invocation rate

s low, and the amount of data to be processed per invocation is large.

. Conclusions and future work

As Edge Computing aims to reduce the latency associated with
ata transfer dramatically, it represents a viable approach for IoT
cenarios requiring latency-sensitive networks and computing resources
or real-time process automation. Lightweight containers and continu-
us integration workflows have been sustaining the rise of modular
nd scalable software design patterns, such as those based on mi-
roservices and functions. Serverless Computing builds on these technolo-
ies and on event-driven programming to overcome the limitations of
aaS Clouds through a pure pay-per-use model with effortless scalabil-
ty [12]. Through an extensive analysis of the software development
216

r

nd deployment lifecycle, as well as of the performance and resource
tilisation of the above technologies, this paper attempted to answer
he research question: are Microservice and FaaS architectures viable tech-
ologies for building edge applications that perform real-time IoT analytics
asks?

An analysis was conducted from the perspective of providers lever-
ging resources distributed across the Edge–Cloud continuum, with
he primary goal of identifying what approach may enhance the re-
ource utilisation of these providers’ infrastructures specifically focusing
n the resource-constrained edge. Microservice applications, built using
rameworks like Flask, involve direct developer engagement in con-
iguring and deploying containers. Compared to FaaS technologies,
hey generally exhibit better end-to-end processing latency and resource
tilisation, despite the inherent overhead introduced by JSON over
TTP/REST interfaces. We found that a single microservice instance
ould be deployed on a resource-constrained edge node and process
oT data streams generated in Scenario A (Smart Factory) in real time.

Serverless functions, deployed via OpenFaaS, can effectively simplify
he software development, configuration and deployment process. The
lassic is the simplest approach that abstracts some of the implementa-
ion details and decouples the external HTTP interface of the function
rom the process performing the computation. However, allocating a
eparate process per invocation is also very slow, especially in the
resence of multiple parallel requests, due to the resulting overhead.
ompared to the other implementations, this approach showed the
ighest resource utilisation with the poorest end-to-end processing latency ;
ence, it could still be used on resource-constrained edge nodes but
ossibly only in those scenarios characterised by occasional bursts of
ata.

The Flask exhibited better performance than the Classic, and resource
tilisation similar to the Micro, because of its internal process being
eused among multiple invocations. However, this approach implies a
lightly more complicated software development workflow, as a func-
ion needs to deal with HTTP requests and responses explicitly. During
he experiments related to IoT Scenario A, with a single continuous
tream of data sent to the processing applications, the Flask end-to-end
rocessing latency and resource utilisation performance indicators were
ust slightly worse than the ones of the Micro. However, when consid-
ring parallel data streams to be processed, such as in IoT Scenario
(Smart City), OpenFaaS could automatically scale out the number

f Flask function instances. This outperformed the simple usage of a
ixed number of microservices deployed via Docker Swarm in terms of
eal-time response.

The Micro_s with custom auto-scaler also proved to be more effective
han the static Micro in the same scenario, thanks to the additional
ontainers allocated dynamically at run-time according to the CPU
ore utilisation. Additional resources were required in both cases to
nable the auto-scaling; however, the experiments showed that such
mechanism could be performed on an edge cloudlet with relatively

ow resource capabilities, and these additional resources would only be
onsumed when requested by the workload.

Finally, the OpenFaaS components and the custom auto-scaler we
eveloped exhibited acceptable resource utilisation—auto-scaling only
ad a minor impact on the CPU resources consumed by the API Gate-
ay, and the resources required to run our auto-scaler on top of Docker
warm were negligible. This slight overhead does not hinder OpenFaaS
tilisation on resource-limited edge environments, and the advantages
f simplified development, deployment, and effortless scalability might
ffset this overhead in some IoT use cases. On the other hand, the
hoice of the container orchestration engine for the microservices can
etermine the availability of built-in auto-scaling capabilities and the
eed to (develop and) deploy additional components.

From the above discussion, we can conclude that infrastructure
r service providers might use Microservice and FaaS architectures to
anage their resource infrastructures and enable customers to perform
eal-time IoT analytics at the edge; however, each of those technologies
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should be carefully selected according to the features—in terms of
number of devices and volume of the generated streams of data—
characterising an IoT scenario. The approach used by OpenFaaS with
Flask functions, in particular, represents a promising solution for the
effective extension of Serverless Computing towards the edge. This work
demonstrated how this technology can ensure a good trade-off between
the complexity of the lifecycle versus the performance achievable by
using a limited number of edge resources, thanks also to the inherent
auto-scaling mechanisms.

The outcome of this paper might be used as the basis for fu-
ture work that explores interactions among multiple microservices or
functions, and where alternative implementations of Serverless Com-
puting based, for instance, on microVMs [22] could also be assessed.
Further evaluations might be carried out to understand how these
technologies perform compared to the Flask approach, to uncover what
metrics should be used to trigger function and container auto-scaling
consistently and identify the trade-off between the frequency of the
invocation, the size of the data to be processed, and the resource
utilisation. Furthermore, the results obtained could be used for the
design and development of an energy-aware and resource-efficient
Serverless FaaS Framework—using the full spectrum of resources of the
computing continuum—to support the demanding real-time requirements
of next-generation IoT applications in a wide range of domains.

Following the results of this work, further studies can investigate
the details of resource and cost allocation within an organisation’s
infrastructure, which may help evaluate the need for leveraging third-
party providers through a cost analysis model. The reason is that many
new pricing models are now emerging in the IaaS landscape, in addition
to the one where users are billed according to the CPU and memory
size of the virtual machines they lease [28]. These cost models include,
e.g., Pay-As-You-Go, Prepaid, Reserved Instances, AWS Saving Plan,
and Spot Instances, or rely on actual execution time and actual memory
consumption, as seen for serverless functions. Therefore, given the com-
plexity introduced by these varied models, an exhaustive exploration
of this subject is imperative for attaining definitive conclusions, and as
such, it is earmarked for future investigation.
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