
Natural Deduction System in Paraconsistent
Setting: proof search for PCont.

Alexander Bolotov* and Vasilyi Shangin**⋆

* School of Electronics and Computer Science
University of Westminster, UK.

A.Bolotov@wmin.ac.uk

http://www2.wmin.ac.uk/bolotoa/index.html

** Department of Logic, Moscow State University, Moscow, 119991, Russia.
shangin@philos.msu.ru

Abstract. This paper continues a systematic approach to build natural
deduction calculi and corresponding proof procedures for non-classical
logics. Our attention is now paid to the framework of paraconsistent
logics. These logics are used, in particular, for reasoning about systems
where paradoxes do not lead to the ’deductive explosion’, i.e. where for-
mulae of the type false ⇒ A, for any A, are not valid. We formulate
the natural deduction system, explain its main concepts, define proof
searching techniques and illustrate them by examples.

1 Introduction

When we speak about the reasoning tools related to modern computer systems
we must take into account that these systems are complex, dynamic and het-
erogenous. Consider, for example, the problem of formation of heterogeneous
resources into networks or into clouds. Conflicts of various types are inevitable
here and very often a system functions quite well despite their present. This leads
us to the necessity of equipping the system with reasoning techniques capable of
coping with such conflicts. It is natural to think of a conflict as of an anomaly,
some kind of a paradox, or simply of a contradiction. Classical reasoning is not
appropriate here as it validates ex falso quodlibet the famous principle of deriv-
ing anything from a contradiction. If we obtain a specification, S, of a system
with conflicts, and reason classically then S becomes trivial. Therefore, there is
a need to develop deductive methods which makes it possible to reason about
about paradoxical statements correctly, but at the same time without turning
the S into trivial. We will enable then the system to identify, localise conflicts
and to ‘live with them’ not violating its essential functionalities.

Classical reasoning is based on the assumptions that possible worlds cannot
contain contradictions and are complete. If Prop stands for the set of propo-
sitions and W for the set of possible worlds, then the former means that for
every possible world w ∈ W , and any α ∈ Prop, it is not possible that α ∈ w

⋆ The second author is supported by Russian Foundation for Humanities, project 10-
03-00570a

and ¬α ∈ w, while the latter principle suggests that for every w ∈ W , and any
α ∈ Prop, we require α ∈ w or ¬α ∈ w. When the first principle, of bivalence,
is not required we are led to the framework of paraconsistency.

In this paper we concentrate on paraconsistent logic PCont, [3], [2], [1] and
[12]. In our presentation of an ND formulation of PCont we directly follow the
notation of the latter.

The particular approach to build an ND-calculus we are interested in is de-
scribed in detail in [5]. It is a modification of Quine’s representation of subordi-
nate proof [11] developed for classical propositional and first-order logic. Recall
that natural deduction calculi (abbreviated in this paper by ‘ND’) of this type
were originally developed by Jaskowski [9]. Jaskowski-style natural deduction
was improved by Fitch [8] and simplified by Quine [11].

The ND technique initially defined for classical propositional logic was ex-
tended to first-order logic [5, 6] and subsequently to the non-classical framework
of propositional intuitionistic logic [10]. In [4] it was further extended to capture
propositional linear-time temporal logic PLTL and in [7] the ND system was
proposed for the computation tree logic CTL.

to be corrected The paper is organized as follows. In §2 we describe PCont
reviewing its axiomatics and semantics. In §3 we formulate the natural deduction
calculus and give an example of the construction of the proof. Subsequently, in
§4, we introduce the main proof-searching procedures. Finally, in §5, we provide
concluding remarks and identify future work.

2 Paraconsistent Logic PCont

Fixing a set Prop of propositions, we export the following axiomatics of PCont
from [12].

PCont Axiomatics

1. (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C))
2. A ⇒ (A ∨B)
3. A ⇒ (B ∨A)
4. (A ⇒ C) ⇒ ((B ⇒ C) ⇒ ((A ∨B) ⇒ C))
5. (A ∧B) ⇒ A
6. (A ∧B) ⇒ B
7. (C ⇒ A) ⇒ ((C ⇒ B) ⇒ (C ⇒ (A ∧B)))
8. A ⇒ (B ⇒ A)
9. (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))
10. ((A ⇒ B) ⇒ A) ⇒ A
11. ¬(A ∨B) ⇒ (¬A ∧ ¬B)
12. (¬A ∧ ¬B) ⇒ ¬(A ∨B)
13. ¬(A ∧B) ⇒ (¬A ∨ ¬B)
14. (¬A ∨ ¬B) ⇒ ¬A ∧ ¬B)
15. ¬(A ⇒ B) ⇒ (A ∧ ¬B)
16. (A ∧ ¬B) ⇒ ¬(A ⇒ B)

17. ¬¬A ⇒ A
18. A ⇒ ¬¬A
19. A ∨ ¬A.

Rule of inference: From A and A ⇒ B infer B.

Semantics
The axioms of PCont are adequate to the following matrix semantics with

three values 1, t, 0 and two designated values 1, t.

⇒ 1 t 0
1 1 t 0
t 1 t 0
0 1 1 1

p ¬p
1 o
t t
0 1

∨ 1 t 0
1 1 1 1
t 1 t t
0 1 t 0

∧ 1 t 0
1 1 t 0
t t t 0
0 0 0 0

3 Natural deduction system NPCont

Notation

– By a literal we understand a proposition or its negation.
– We will use the symbols ‘⊢’ and ‘|=’ as follows. By writing Γ ⊢ B we mean

a task to establish a natural deduction derivation of a formula B from a set
of assumptions Γ . If Γ , in Γ ⊢ B, is empty then the task is to prove that
B is a theorem, and in this case we will simply write ⊢ B. The abbreviation
Γ |= B stands for establishing that B is a logical consequence of a set of
assumptions Γ . If Γ , in Γ |= B, is empty then the task is to show that B is
a valid formula and in this case we will simply write |= B.

Therefore, we might be given either of the following tasks: to find an ND
derivation Γ ⊢ B or to find an ND proof ⊢ B.

Specifically for an ND calculus, in constructing an ND derivation, we are
allowed to introduce arbitrary formulae as new assumptions. Consequently, any
formula in a derivation is either an assumption or a formula which is obtained
as a result of the application of one of the inference rules.

Further, the set of rules is divided into the two classes: elimination and
introduction rules. Rules of the first group allow us to simplify formulae to which
they are applied.

These are rules for the ‘elimination’ of logical constants. Rules of the second
group are aimed at ‘building’ formulae, introducing new logical constants. In
Figure 1 we define sets of elimination and introduction rules, where prefixes ‘el’
and ‘in’ abbreviate an elimination and an introduction rule, respectively.

Definition 1 (Inference). An inference in the system NPCont is a finite non-
empty sequence of formulae with the following conditions:

– each formula is an assumption or is derived from the previous ones via a
NPCont-rule;

Elimination Rules :

∧ el1
A ∧B

A
∧ el2

A ∧B

B

¬ ∧ el
¬(A ∧B)

¬A ∨ ¬B ∨ el
A ∨B, [A]C, [B]C,

C

¬ ∨ el1
¬(A ∨B)

¬A ¬ ∨ el2
¬(A ∨B)

¬B

⇒ el
A ⇒ B, A

B

¬ ⇒ el1
¬(A ⇒ B)

A
¬ ⇒ el2

¬(A ⇒ B)

¬B

¬ el
¬¬A
A

PCont− ∨ el
[A] C, [¬A] C

C
⊃ P

[A ⊃ B] A

A
Introduction Rules :

∧ in
A, B

A ∧B

¬ ∧ in1
¬A

¬(A ∧B)
¬ ∧ in2

¬B
¬(A ∧B)

∨ in1
A

A ∨B
∨ in2

B

A ∨B

¬ ∨ in
¬A,¬B
¬(A ∨B)

⇒ in
[C] B

C ⇒ B

¬ ⇒ in
A,¬B

¬(A ⇒ B)
¬ in

B

¬¬B

Fig. 1. NPCont-rules

– by applying ⇒in in each formula starting from the last alive assumption
until the result of the application of this rule, inclusively, is discarded from
the inference;

– by applying ∨el each formula starting from assumption A until formula C,
inclusively, as well as each formula starting from assumption B until formula
C, inclusively, is discarded from the inference;

– by applying PCont − ∨el each formula starting from assumption A until
formula C, inclusively, as well as each formula starting from assumption A
until formula C, inclusively, is discarded from the inference.

Definition 2 (Proof). A proof in the system NPCont is an inference from the
empty set of assumptions.

Two rules deserve attention. First, it is PCont∨el rule which is specific for
this logic and is one of variants of the disjunction elimination rule for some non-
classical logics. The ⊃ P rule is analoque to axiom 10 which represents Pierce
law.

As an example of the ND proof let us consider the proof for axiom 7.

list proof annotation
1. A ⊃ C assumption
2. B ⊃ C assumption
3. A ∨B assumption
4. A assumption
5. C ⇒ el, 1,4
6. B assumption
7. C ⇒ el, 2,6
8. C ∨el, 3,4,6, [4-5],[6-7]
9. (A ∨B) ⊃ C ⇒ in, 8, [3-7]
10. (B ⊃ C) ⊃ ((A ∨B) ⊃ C) ⇒ in, 9, [2-9]
11. (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C)) ⇒ in, 10, [1-10]

NPCont has been shown to be sound and complete, i.e. the following theorem
holds:

Theorem 1. Γ ⊢NPCont A ⇔ Γ |= A. [13]

4 Proof Searching Techniques in NPCont

We preserve the goal-directed nature of the proof searching strategy creating
two sequences of formulae: list proof and list goals. The first sequence represents
formulae which forms a proof. In the second sequence we keep track of the list
of goals. An algo-derivation, NDalg, as previously, is a pair (list proof, list goals)
whose construction is determined by the searching procedure outlined below.
On each step of constructing an NDalg, a specific goal is chosen, which should
be reached at the current stage, we call this goal a current goal. The first goal
of list goals is extracted from the given task, we will refer to this goal as to the
initial goal.

A current goal, Gn, occurring in list goals= ⟨G1, G2, . . . , Gn⟩, is reached if
there is a formula in list proof identical with Gn.

When we construct a derivation, we check whether the current goal has been
reached. If it has been reached then we apply the appropriate introduction rule,
and this is the only reason for the application of introduction rules. Alternatively,
(if the current goal has not been reached), we continue searching how to update
list proof and list goals.

Proof-Searching Procedures

Procedure 1. This procedure updates a sequence list proof by searching for
an applicable elimination ND-rule and updates list proof by the conclusion of
the corresponding rule.

The new rule ∨el is now associated with the new strategy. If list proofcontains
a disjunctive formula A∨B then the rule is applicable if only the same formula
C is derivable from both disjuncts. However, what is this formula C? It makes
sense to restrict our search space when we try to apply this rule by considering
C as a goal from list goals, when procedure 2 has been applied, more precisely,
when Procedure 2.5 has been applied.

The relevant strategy is now straightforward. Given that Procedure 2 has
been applied, the current goal is some formula C, the following strategy is in-
voked:

Γ,A ∨B ⊢ ∆,C −→ Γ,A ⊢ ∆,C, Γ,B ⊢ ∆,C

Procedure 2. Here a new goal is synthesized in a backward chaining style.
This procedure applies when Procedure 1 terminates, i.e. when no elimination
ND-rule can be applied, and the current goal, Gn, is not reached. The type
of Gn determines how the sequences list proof and list goals must be updated.
Procedures dealing with conjunctive, disjunctive and implication type goals are
preserved:

(2.1) Γ ⊢ ∆,A ∧B −→ Γ ⊢ ∆,A ∧B,B,A
(2.2) Γ ⊢ ∆,A ∨B −→ Γ ⊢ ∆,A ∨B,A
(2.3) Γ ⊢ ∆,A ∨B −→ Γ ⊢ ∆,A ∨B,B
(2.4) Γ ⊢ ∆,A ⊃ B −→ Γ,A ⊢ ∆,A ⊃ B,B

The new procedure now is the one dealing with an unreachable goal, F , which
is either a literal or a negative formula.

(2.5) Γ ⊢ ∆,F −→ Γ,¬F ⊢ ∆,F

Let us explain the idea behind this last strategy. When we cannot current
goal, F , and procedures 2.1-2.4 are not applicable, we follow similar to the classi-
cal refutation. However, now, in the setting of paraconsistent logic, we deal with
this situation differently. Namely, once we assumed ¬F we aim at achieving the
goal F . If this can be done then we can always add to list proof a proof of F
from F . These two would give us the required basis to apply P − Cont∨el rule,
namely, [¬F], F and [F], F which would enable us to derive the desired F .

Interestingly, the discovery of this strategy prompted us to consider narrow-
ing the P − Cont∨el rule to just

[C] C, [¬C] C
C

However, this would have restricted the manual theorem proving in the sys-
tem thus making some proofs longer.

Procedure 3. This procedure checks the reachability of the current goal in the
sequence list goals. If the current goal Gn is reached then the sequence list goals
is updated by deleting Gn and setting Gn−1 as the current goal.

Procedure 4. Procedure 4 indicates that one of the introduction ND-rules, i.e.
a rule which introduces a logical connective must be applied.

The proof searching algorithm is essentially preserved from the classical set-
ting. Surely, the exception is now the technique to cope with disjunction, i.e with
∨el and PCont specific rules.

Examples

Now we will give two examples of ND proofs. The first example is a successful
proof of axiom 7 following the searching technique. The second example shows
how the procedure terminates without finding a proof.

We will see where an automated proof differs from the manual one given in
previous section. We set the initial goal as axiom 7. As its main symbol is ⇒ and
the goal is not reached we apply Procedure 2.4 which gives us a new assumption
A ⊃ C (step 1) and a new goal (B ⊃ C) ⊃ ((A ∨ B) ⊃ C). Again, the current
goal is not reached and analysing its structure we apply Procedure 2.4 to give
us a new assumption B ⊃ C (step 2) and a new goal (A ∨ B) ⊃ C. Similar
reasoning gives us step 3. Now, the current goal is C, it is not reachable, hence
we apply Procedure 2.5 to give us new assumption ¬C at step 4. This latter
technique is the one which distinguishes automated proof from the manual one
given in previous section. In the analysis, in list goals we explicitly show that C
must be obtained from the assumption [¬C] which should later be discarded.

list proof annotation list goals
G0 = (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))

1. A ⊃ C assumption G0, G1 = (B ⊃ C) ⊃ ((A ∨B) ⊃ C)
2. B ⊃ C assumption G0, G1, G2 = (A ∨B) ⊃ C
3. A ∨B assumption G0, G1, G2, C
4. ¬C assumption [¬C]C

At this stage we fire Procedure 1 once again, after Procedure 2.5 has been
applied, and our target now is the disjunctive formula A ∨ B at step 3. Thus,
we have to create two new subproofs, commencing with the disjuncts of this
disjunctive formula, targeting elimination of disjunction. Now we know that the
formula we want to derive from both disjuncts is the current goal, C. Hence
steps 5 and 7 are new assumptions, disjuncts of A ∨ B and the notation in
list goals is chosen to explicitly show that the goal C should be obtained from
the assumptions [A] and [B] such that both assumptions should be discharged
later. In both cases we derive C, at steps 6 and 8 by modus ponens. Now we have
grounds to eliminate disjunction from step 3 applying ∨el and deriving step 9.
Note that we must discharge assumptions 5 and 7 and discard all formulae that
are dependant on these assumptions, which is shown by the notation [5-6], [7-8].

list proof annotation list goals
5. A assumption [A]C
6. C ⇒ el, 1,5
7. B assumption [B]C
8. C ⇒ el, 2,7
9. C ∨el, 3,5,7, [5-6],[7-8] [A]C, [B], C

The notation at step 9 shows that C has been reached and the corresponding
assumptions have been discharged. As we have completed the algo-proof task to
derive C from ¬C we now need to derive C from C which is trivial, step 10.
At this stage we have all grounds to apply PCont∨el rule to derive C at step
11 This gives us the desired goal C and by applying consecutively ⇒in rule we
complete the proof.

list proof annotation list goals
10. C assumption
11. C PCont∨el:10,9, [10],[4-9]
12. (A ∨B) ⊃ C ⇒ in, 11, [3-10] G2 reached
13. (B ⊃ C) ⊃ ((A ∨B) ⊃ C) ⇒ in, 12, [2-11] G1 reached
14. (A ⊃ C) ⊃

((B ⊃ C)) ⊃ ((A ∨B) ⊃ C) ⇒ in, 13, [1-13] G0 reached

Finally we will give an example of a formula for which proof is not found,
(A ⇒ ¬B) ⇒ (B ⇒ ¬A).

list proof list goals
1. A ⇒ ¬B assumption B ⇒ ¬A
2. B assumption ¬A
3. A assumption [A] ¬A, [¬A] ¬A
4. ¬B ⇒ el, 1, 3

Goal [A]¬A cannot be reached.

5 Conclusion and future work

6 Discussion

We have presented a proof search technique in natural deduction system for
paraconsistent logic PCont. To the best of our knowledge, there is no other
similar works.

Our proof-searching technique preserves many of the strategies developed
earlier but also introduces new techniques that are specific for PCont. Showing
the correctness of the presented proof search technique is our next task. The
development of a proof-search procedure will enable the implementation of the
method.

References

1. F. Asenjo and J. Tamburino. Logic of antinomies. Notre Dame Journal of Formal
Logic., 16:17–44, 1975.

2. A. Avron. On an implicational connective of rm. Notre Dame Journal of Formal
Logic., 27:201–209, 1986.

3. D. Batens. Paraconsistent extensional propositional logics. Logique et Analyse.,
23:127–139, 1980.

4. A. Bolotov, A. Basukoski, O. Grigoriev, and V. Shangin. Natural deduction cal-
culus for linear-time temporal logic. In Joint European Conference on Artificial
Intelligence (JELIA-2006), pages 56–68, 2006.

5. A. Bolotov, V. Bocharov, A. Gorchakov, V. Makarov, and V. Shangin. Let Com-
puter Prove It. Logic and Computer. Nauka, Moscow, 2004. (In Russian), Imple-
mentation of the proof search technique for classical propositional logic available
on-line at http://prover.philos.msu.ru.

6. A. Bolotov, V. Bocharov, A. Gorchakov, and V. Shangin. Automated first order
natural deduction. In Proceedings of IICAI, pages 1292–1311, 2005.

7. A. Bolotov, O. Grigoriev, and V. Shangin. Natural deduction calculus for computa-
tion tree logic. In IEEE John Vincent Atanasoff Symposium on Modern Computing,
pages 175–183, 2006.

8. F. Fitch. Symbolic Logic. NY: Roland Press, 1952.
9. S. Jaskowski. On the rules of suppositions in formal logic. In Polish Logic 1920-

1939, pages 232–258. Oxford Univ. Press, 1967.
10. V. Makarov. Automatic theorem-proving in intuitionistic propositional logic. In

Modern Logic: Theory, History and Applications. Proceedings of the 5th Russian
Conference, StPetersburg, 1998. (In Russian).

11. W. Quine. On natural deduction. Journal of Symbolic Logic, 15:93–102, 1950.
12. L. Rozonoer. On finding contradictions in formal theories. Automatica and tele-

mekhanica, (6), 1983. (in Russian).
13. V. Shangin. Natural deduction systems for logics Par, PCont and PComp. Rostov-

on-Don, 2010. in Russian.

