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Abstract: Weather events have a significant impact on airport performance and cause delayed
operations if the airport capacity is constrained. We provide quantification of the individual
airport performance with regards to an aggregated weather-performance metric. Specific weather
phenomena are categorized by the air traffic management airport performance weather algorithm,
which aims to quantify weather conditions at airports based on aviation routine meteorological
reports. Our results are computed from a data set of 20.5 million European flights of 2013 and local
weather data. A methodology is presented to evaluate the impact of weather events on the airport
performance and to select the appropriate threshold for significant weather conditions. To provide an
efficient method to capture the impact of weather, we modelled departing and arrival delays with
probability distributions, which depend on airport size and meteorological impacts. These derived
airport performance scores could be used in comprehensive air traffic network simulations to evaluate
the network impact caused by weather induced local performance deterioration.

Keywords: airport performance; weather impact; evaluation metric; METAR data; ATMAP algorithm

1. Introduction

Future 4D aircraft trajectories demand consideration of economic, environmental and operational
constraints. The prediction of aircraft processes along their whole trajectories is required to achieve
punctual operations. Uncertainties during the airborne phase of flights represent only a minor
impact on the overall punctuality. In the current operational environment, ground tasks gain more
relevance. The focus on ground operations will allow the different stakeholders to define and maintain
a comprehensive 4D aircraft trajectory over the day of operations. Using a reliable and predictable
departure time is one of the main tasks of the ground activities. Mutual interdependencies between
airports, as departing delays propagate thought the network, result in system-wide far reaching
effects. In 2016, reactionary delays continued to be the main delay cause, followed by turn around
delays, accounting for 46% of departure delays [1]. A flight can be seen as a gate-to-gate or as an
air-to-air process. The gate-to-gate perspective focuses on the flown part of the trajectory whilst an
air-to-air approach would give more relevance to airport ground operations which move the flight from
arrival to departure ensuring the adherence to reliable departure times. Typical standard deviations
for airborne flights are 30 s at 20 min before arrival [2,3], but could increase to 15 min when the
aircraft is still on the ground [4]. As shown in Figure 1a, the average time variability (measured as
standard deviation) during the flight phase (5.3 min) is higher than in the taxi-out (3.8 min) and in
the taxi-in (2.0 min) phases, but it is still significantly lower than the variability of both the departure
(16.6 min) and arrival (18.6 min) phases [1]. The changes experienced during the gate-to-gate phase
are comparatively small, leading to a translation of departure variability into arrival one [5]. Thus, the
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arrival punctuality is driven by the departure punctuality [1]. In addition, 2016 departure and arrival
punctualities (defined as not being later than 15 min with respect to the schedule) are shown in
Figure 1b. All stakeholders (airlines, airport, network manager, air navigation service providers) play
a role on the system punctuality performance.
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Figure 1. Analysis of European flights from 2008–2015 regarding (a) variability of flight phases and
(b) punctuality, not considering flights departing to or arrival from outside Europe (for data, see [1,6]).

For example, airlines strategically implement buffers to absorb a part of the delay generated
by tactically reducing its propagation and achieving a desired target of punctuality [7,8]. In 2016,
only 81% of the flights were punctual with a decreasing trend starting from 84% punctuality in 2013
[1]. According to [1], weather related delays are reported by the flow management positions as the
second most common cause of en-route air traffic flow management (ATFM) delays (18%). For airports,
the closer they operate to their maximum capacity, the more severe is the impact of a capacity loss due
to external events such as weather.

Current research in the field of flight and airport operations addresses economic, operational and
ecological efficiency [9–22]. As presented above, the propagation of delay in the network is paramount
when assessing the impact of congestion [23,24]. This is particularly critical when estimating the
resilience of the Air Traffic Management (ATM) system and the impact of different mechanisms on the
expected performances’ variations [25–27]. Dynamic traffic situations emerge from traffic flow patterns
across Europe and to-from intercontinental flows, military operations [28], volcanic ash eruptions [29],
zones of convective weather [30], prevention of contrails [31], consideration of commercial space
operations [32] and integration of new entrants [33]. Current research also considers passengers metrics
as trade-offs between optimisation of flight performances not possibly being aligned with passengers
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experience [34]. This can be particularly relevant when optimising arrival flows at airports under
uncertainty [35,36]. Thus, delay generation due to weather including location and time of the primary
delay generation and its evolution are relevant to capture the complexity of the system dynamics.

Structure of the Document

In this paper, we analyse the correlation of the on-time performance of flight operations with the
weather present at airports, taken from the Meteorological Aviation Routine Weather Report (METAR).
This approach could be used to predict delay generation and propagation through the network as well
as to analyse and implement reliable mitigation strategies.

The document provides a fundamental analysis of the impact of specific weather phenomena on
the performance of an airport. In this context, the performance is measured as deviation of actual and
schedule timestamps (defined as delay). The weather phenomena are categorized by the ATM Airport
Performance (ATMAP) weather algorithm, which aims to quantify weather conditions at European
airports [37]. The quantified weather conditions are compared against a comprehensive data set of
European flights of 2013 with about 20.5 million flights and are statistically analysed. This analysis
results in both a quantification of the individual airport performance and an aggregated performance
metric, which could be used in comprehensive air traffic network simulations to evaluate the network
impact of local performance deterioration.

In Section 2, the operational data set (flight plan) is introduced, followed by a description of the
weather data (Meteorological Aviation Routine Weather Report, METAR). In Section 3, these data are
used as input for the airport performance metric and the ATMAP algorithm. Then, an exemplary
and detailed analysis of Frankfurt airport is shown to emphasize our general approach of the
weather/performance evaluation (Section 4). Finally, a set of parameters for a common evaluation
function (Burr distribution) is provided to model the performance behaviour of a categorized airport as
a function of weather (Section 5). With Section 6, the document closes with a conclusion and outlook.

2. Data Set

The data set we used for the analysis consists of flight plans and weather data of major European
Airports (20.5 million flights, year 2013). The flight data sets include scheduled and actual time stamps
of specific aircraft movements, and air traffic relevant weather data are derived from the airport specific
METAR data.

2.1. Flight Plan

A flight performance assessment is typically based on a data set of aircraft movements including
scheduled and actual timestamps. This flight schedule was derived and aggregated in a local database
(see Table 1) using data from online available sources. A single data entry contains the actual/scheduled
arrival and departure times, arrival/departure delay, origin and destination airport, aircraft type,
and call sign. In Table 1, fields with time stamps can also be filled with coded, qualified statements from
the underlying database: on-time (−30,000 = no delay reported) indicates a deviation from the schedule
smaller than 15 min, no-time (−31,000 = no value reported) identifies recorded flights without time
stamps for actual or scheduled at arrival or departure, and cancel (−32,000) identifies annulled flights.

Concerning the upcoming analysis, recorded flights considering only qualified statements (no-time)
are not taken into account for the detailed stochastic analysis, but the on-time statement could be
integrated as a measure of punctuality. The data set contains about 20.5 M flights in 2013 between
European airports and airports in the world. These flights are not linked to a specific aircraft tail
number, which does unfortunately not allow us to analyse the reactionary delays of the European air
traffic network. As an example, the data set of Frankfurt airport (ICAO: EDDF, IATA: FRA) contains
approx. 440,000 flights, which covers more than 90% of the air traffic (real movements 2013 at Frankfurt
airport: 472,692 [38]).
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Table 1. Data set of airport related flights.

Date
Airport (IATA) Arrival/

Departure Aircraft Flight ID Scheduled
Time (min)

Actual
Time (min)

Delay (min)

From To Arrival Departure

2013-03-13 FRA PMI departure 320 AB9872 395 750 359 355
2013-03-13 FRA TXL departure 320 AB6552 395 −32,000 −32,000 −32,000
2013-03-13 FRA BRU departure 319 LH1004 400 443 72 43
2013-03-13 FRA ZRH departure 319 LH1182 400 411 49 11
2013-03-13 FRA TXL departure 321 LH170 405 441 126 36
2013-03-13 FRA LCY departure E90 CL926 405 447 82 42
2013-03-13 CAI FRA arrival 321 LH581 405 394 −11 −31,000
2013-03-13 FRA PMI departure 738 AB3328 410 459 118 49
2013-03-13 FRA BRE departure CR7 CL34 410 436 32 26
2013-03-13 STR FRA arrival 319 LH127 415 441 26 −31,000

2.2. Weather Data

Current weather conditions are usually recorded at each airport in the form of METARs
(Meteorological Aviation Routine Weather Report [39]). METARs are reported in combination with
a Terminal Area/Aerodrome Forecast (TAF). While TAF provides forecast values, METAR data are
measured values. The unscheduled special weather report (SPECI) is another format representing
significant changes in airport weather conditions. The time of update and the update interval of a
METAR weather report are not harmonized and implemented differently worldwide. For example,
at larger airports in Germany, a METAR is released twice an hour (20 min past and 10 to the full hour)
while, at small sized airports like Moenchengladbach (EDLN), a new METAR is available once an hour
only during the operating times of the airports. Current and historical METAR and also TAF data are
accessible at different public available websites (such as https://www.ogimet.com). In addition to
information about the location, the day of the month and the UTC-time (“EDDF 190850Z”), the METAR
contains information about wind, visibility, precipitation, clouding, temperature, and pressure that are
relevant for the air traffic, especially for the airport operations (see Table 2).

Table 2. Main components of Meteorological Aviation Routine Weather Report (METAR) message.

Parameter Measurement METAR Code (Example)

wind direction azimuth in degrees/speed [kn] 06010KT
visibility horizontal visibility [m] 7000

precipitation significant weather phenomenon −SN
cloud cover/hight ∗ 100 [ft] above aerodrome level BKN019

temperature air/dew point [◦C] M03/M06
pressure Sea-level pressure (QNH) [hPa] Q0998

(TAF) (NOSIG)

Besides this general weather information, some additional measurements were available related
to adverse weather situations, such as information about wind gusts, runway conditions (e.g., ice layer)
and thunderstorm related clouds, as well as calculated values of the Runway Visual Range (RVR).
The use of METAR weather records for data analysis demands for a detailed analysis, since specific
characteristics exist and the data integrity is not assured by the data provider. Typically, data lacks
(partial) loss of significant information, such as wind data, dew-point data, or runway condition
information (e.g., depth of deposit), variable units of measure, or incomplete information about airport
runway conditions. To allow for an appropriate analysis of the weather phenomena, the METAR is
decoded stepwise. The information has to be parsed, filtered and transformed to a usable measure in
the context of the comparison to the airport performance.

In this paper, METAR data of 84 representative European airports were analysed for the year 2013.
Instead of analysing single meteorological elements of METAR, we use the ATMAP algorithm [37],
which offers an approach to quantify and aggregate the METAR data focusing on their particular

https://www.ogimet.com
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impacts to the air traffic (see following section). This algorithm considers five weather classes (ceiling &
visibility, wind, precipitations, freezing conditions, dangerous phenomena) and also considers different
degrees of severity per weather class.

3. Performance Metric

The introduced flight plan data and weather data are used as an input for the airport performance
and the quantification/categorization of weather phenomena. In this section, the derived metrics will
be introduced.

3.1. ATMAP Algorithm

Eurocontrol’s Performance Review Unit (PRU) in consultation with the ATMAP group published
an algorithm for a unified evaluation of weather conditions at airports [37]. The ATMAP algorithm
quantifies and aggregate major weather conditions at airports, which have significant impact on the
airport operations. Thus, the ATMAP group identifies relevant aviation weather factors and considers
that these factors are additionally coupled with the availability of local airport technologies (such as
precision approaches in poor visibility conditions) and aircraft characteristics (such as defined tolerances
for crosswind and tailwind). Furthermore, the ATMAP algorithm weight the different weather factors,
that similar ATMAP scores will result in comparable impacts on airport operations, although they are
based on different weather events (such as high wind speeds or low visibility conditions).

The following definitions are used in the ATMAP algorithm: weather phenomenon is a single
meteorological element which impacts the safety of aircraft during air and ground operations; weather
class is a group of one or more weather phenomena affecting the airport performance; severity code is a
ranking number of the weather class status (from best to worst); coefficient represents the assignment
of a score to a given severity code in order to describe the nonlinear behaviour of various weather
phenomena. The algorithm identifies five different weather classes with a significant influence on
aircraft and airport operations: (1) ceiling and visibility; (2) wind; (3) precipitation; (4) freezing
conditions; and (5) dangerous phenomena. In Table 3, these five different weather classes are shown,
described with meteorological conditions, and linked to the associated maximum coefficient defined
by the ATMAP-algorithm.

Table 3. Weather classes defined in the ATM Airport Performance (ATMAP) algorithm.

Weather Class Description Meteorological Conditions Coefficient

(1) ceiling and
visibility

deterioration of visibility
(from “non-precision approach” up to
“low visibility”)

precision approach runways:
CAT I-III max. 5

(2) wind strong head-/cross-wind, also gusts. Wind speed > 16 knots (+gusts) max. 4 (+1)

(3) precipitations
Runway friction influencing runway
occupancy times. Complex
procedures for runway clearing.

e.g., rain, (+/−) snow, frozen rain max. 3

(4) freezing
conditions

Reduced runway friction, de-icing:
additional taxi out times.

T ≤ 3 ◦C, visible moisture or not,
any precipitation. max. 4

(5) dangerous
phenomena

Dangerous for aircraft, unsafe
operations, unpredictable impact.

towering cumulus (TCU)/
cumulonimbus (CB), cloud cover,
(+/−) shower.

3–24

(+/−) phenomena
(e.g., thunderstorm) 18–24

Compared to the other weather classes, dangerous phenomenon have a high particular impact on
airport operations which results in the highest coefficients. For both cumulonimbus and towering
cumulus clouds, the ATMAP coefficients are ranging from 3 to 10 (TCU) or from 4 to 12 (CB) depending
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on the cloud coverage (FEW, SCT, BKN, OVC). Showery precipitation and intensive precipitation can
lead to a further increase of the coefficient values up to 18 or 24 for TCU as well as CB. Other dangerous
phenomena with impact on the safety of aircraft operations can be divided into three groups: 30 points
(heavy thunderstorm), 24 points (e.g., sandstorm, volcanic ash), and 18 points (small hail and/or snow
pellets). In Table 4, two examples of METARs from Frankfurt Airport (EDDF) and Munich Airport
(EDDM) are given to show the transformation from the METAR message to the ATMAP score.

Table 4. Calculation of ATMAP weather score using local airport METAR messages from Frankfurt
and Munich airport.

Weather (1) (2) (3) (4) (5) ATMAP
Class Visibility Wind Precipitation Freezing Dangerous Score

METAR
(Frankfurt)

EDDF 241320Z 03007KT 9999 −SN FEW012 SCT018 BKN025 01/M02
Q1013 R07L/295 R07C/295 R07R/295 R18/5//295 NOSIG

measurement 9999 03007KT −SN 01, −SN - (sum)
coefficient 0 0 2 3 0 5

METAR
(Munich)

EDDM 082120Z 25006KT 3200 SHSN FEW005 SCT018CB BKN025 M00/M03
Q1015 TEMPO...

measurement 3200 25006KT SHSN M00, SHSN SCT018CB, SH (sum)
coefficient 0 0 3 4 15 22

The PRU proposes a multi-step procedure to determine the ATMAP weather score [37]: in a
first step, the given METAR observation will be assessed by specifying the severity code and
its associated coefficient for each weather class. In a first step, the METAR message is parsed,
filtered, and transformed to a quantified measure (coefficient). In a second step, these weather class
coefficients are summed up to the corresponding ATMAP score. Finally, for a given time interval
(hours of operations), the sum of all ATMAP scores are divided by the number of METAR observations
to calculate an average ATMAP score per time interval (e.g., per hour, per day). In this context,
the ATMAP algorithm separates days of operations into good and bad weather days, using an average
and airport-independent ATMAP value of 1.5 (default European score for bad weather days [37]).
On the annual level, the proposed separation value of 1.5 seems not to be an appropriate measure to
differentiate between these specific weather days. The analysis of annual ATMAP scores for selected
European airports (year 2013) is outlined in Figure 2.

The annual ATMAP scores and the ratio of specific weather classes show significant differences
between European airports. In particular, Munich airport (EDDM) and Oslo-Gardermoen airport
(ENGM) are frequently affected by significant weather events (indicated by high ATMAP scores).
Copenhagen (EKCH) or Schiphol (EHAM) are notably impacted by strong winds, while the airports of
Zurich (LSZH) or Paris-Orly (LFPO) are less affected by unfavourable wind conditions.



Aerospace 2018, 5, 109 7 of 19

Figure 2. Ratio of different weather classes at selected European airports (top down: Rom-Fiumicino,
Madrid, London-Heathrow, London-Gatwick, Paris-Orly, Brussels, Paris-Charles-de-Gaule, Frankfurt,
Copenhagen, Amsterdam, Zurich, Dusseldorf, Vienna, Oslo, Munich).

3.2. Airport Performance

The performance of an airport is mainly related to the number of aircraft movements handled
(airport capacity). In this case, the term capacity generally refers to the ability of a given transportation
facility to accommodate a traffic volume (e.g., movements) in a given time period (e.g., on hourly,
daily, or yearly basis). If the air traffic demand approaches or exceeds the given airport capacity,
the congestion of provided infrastructure increases which results in delays and cancellations.
This demand–capacity imbalance is a key cause of unpunctual operations and affects different
components of the whole airport system on both airside (e.g., runways, taxiways, aprons) and landside
(e.g., passenger handling [40,41]). Results of a data analysis from Frankfurt airport show that more
than 45% of the variability in daily punctuality are related to local weather impacts [42].

3.2.1. Delay

Flight delays expressed in minutes are defined as the difference between the scheduled and actual
times of arrivals and departures. Reference points for flights are usually their on- and off-block times.
Punctuality is determined as the proportion of flights delayed less than 15 min, an internationally
accepted performance indicator in air traffic. To anticipate the delay in phases of high traffic demand
(peak times), airlines apply buffer strategies, to improve punctuality and mitigate tactical delay
costs [1,25]. The definition of delay can vary according to the stakeholder so that a lot of terms and
definitions have been established, such as acceptable delay, network delay, on-time performance,
reactionary delays, delays per flight-gate to gate, arrival delays, departure delays, surface taxiing
delays, and passenger delay minutes (cf. [40]).

3.2.2. Cancellations

From a passengers’ point of view, disrupted situations (irregularities) in air traffic comprise
various kinds of disorders such as delays, cancellations, diverted flights to alternate airports, or missed
connections. Thus, we consider the number of cancelled flights per day also as a prominent impact
of weather. The analysis of other types of incidents (e.g., diverted flights or missed connections) is
omitted since, at this stage, the information cannot be gained from the recorded data.

4. Airport View

Frankfurt Airport (EDDF) is selected as an example airport to gain a more specific insight into the
dependencies between airport performance and local weather events. The analysis of the air traffic
movements in 2013 results in an appropriate aggregated set of correlation measures between weather
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(quantified with ATMAP algorithm) and arrival/departure performance at the airport (measured in
deviation from schedule). In Figure 3, the yearly air traffic is aggregated to a 24 h time scale.

The available data sample of EDDF covers about 440,000 flights (472,692 flights operated
in 2013 [38]) and will be used to provide a qualitative correlation between weather and airport
performance. In Figure 3, the daily values for the ATMAP score (if greater than 1.5) and the
corresponding measurements for the airport performance are shown. The not on-time value covers
all movements with a delay greater than 15 min. The figure clearly emphasizes that a higher rate
of cancellations or delayed flights comes with a higher value of the ATMAP score, as expected.
Further on, the number of no-time values is nearly constant over the year, and at four days no data
could be recorded.
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Figure 3. Airport performance data and ATM Airport Performance (ATMAP) weather score.

4.1. Correlation of Weather and Performance

A more detailed analysis pointed out a significant correlation against a linear fit of ATMAP
weather score and proportion of both rate of cancellations and delayed flights. In Figure 4, the ATMAP
weather score and the corresponding ratios are shown, using the average values (µ) per category and a
box–whisker representation (box plot). The box–whisker plot uses the 25% and 75% quantiles as lower
and upper boundaries for the box, the whiskers indicate minimum and maximum values inside an
interquartile range of 1.5 as a measure of statistical dispersion. This descriptive statistical approach
allows to identify outliers in the underlying data set. Furthermore, the median (50% quantile) will be
used as the corresponding measure of central tendency.

The analysis of the rate of cancellations and delayed flights is based on a daily aggregated data set
with 361 values. For each day, the average ATMAP weather score is calculated and the corresponding
rates for cancellations and delayed flights are stored accordingly. Weather events with a high ATMAP
weather scores (greater than 4) are rare during 2013, so only 3% of the days have an ATMAP score
of 5 and 2% a score of 6 and greater. Furthermore, on these particular days, the specific weather
conditions impact the airport system differently (see Table 5), which result in a high deviation of
operational figures (such as cancellations rates). Thus, on 27 November 2013, the ATMAP score
consists of significant visibility constraints and freezing conditions, but the cancellations rates are low
(2%). With nearly the same ATMAP score, but a combination of high precipitation and high freezing
coefficient, Frankfurt airport had to be closed for several hours on 12 March 2013 (cancellations
rates >50%). This example shows that the coefficients of the ATMAP should not be considered as
fully independent.
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Table 5. Comparison of two exemplary days with approx. similar ATMAP weather scores.

Date
ATMAP (1) (2) (3) (4) (5) Cancellation Rates

Score Visibility Wind Precipitation Freezing Dangerous Arrival Departure

27 November 2013 4.72 1.87 0.00 0.83 2.02 0.00 2% 2%
12 March 2013 4.83 0.45 0.12 2.47 1.77 0.00 58% 64%

As expected, the relative number of flights affected by delays and cancellations increases with a
higher ATMAP weather score. Additionally, severe weather conditions will also result in network-wide
effects. In Figure 4, a linear correlation between the rate of cancellations and rate of delayed flights is
assumed for both arrival and departure. In the case of the proposed linear regression, the coefficient of
determination (R2) reaches high values between 64% (departure cancellations) and 96% (arrival delay),
when the median is used as reference value. The mean (µ) value is inappropriate for the linear
regression, since the high deviations and low numbers of occurrence result in a shift to higher values.
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Figure 4. Correlation of ATMAP weather score and cancellation rate for (a) arrival and (c) departure
(please notice the staggered scale) and correlation with the rate of delayed flights (b) for arrival and
departure (d). The ATMAP weather score of n (0 < n < 6) contains all measures between n − 1 and n,
the score of 6 contains all values n ≥ 6.

Besides the rate of cancelled and delayed flights, Figure 5 points out a strong correlation between
the ATMAP weather score and a quantified delay measure (using a linear regression). If the daily
weather score increases by 1, the average delay (by means of median) increases by 3.39 min for arrivals
and by 1.89 min for departures. The linear correlation results in R2 = 87% for arrivals and R2 = 77%
for departures. Furthermore, the results depicted in Figure 5 confirm the ability of airport ground
operations to absorb arrival delays (lower median and variation values) [43].
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Figure 5. Quantification of (a) arrival and (b) departure delay if aircraft are not on time (delay greater or
equal than 15 min).

4.2. Classification of Weather Effects

To derive significant weather conditions of a given time interval, an average picture of each
operational hour is created (see Figure 6). This picture allows for differentiating between the two
classifications of good and bad weather days. The classical hub constellation is emphasized by Figure 6
too, with incoming/out-going continental, intercontinental, and feeder flights to/from Frankfurt
airport. The resulting, aggregated delay minutes over the day also depend on the number of aircraft
movements and traffic mix (ratio of heavy, medium, and light aircraft). Furthermore, Figure 6
demonstrates a typical delay characteristic with an increasing delay before noon and a decreasing
delay in the afternoon (depending on the specific traffic pattern). In addition, a time-shift between the
weather event and the operational impact could be recognized in this aggregated view.
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Figure 6. Average weather score and total delay (per hour).

As Figure 7 demonstrates, if the proposed value in [37] of 1.5 is used as a threshold between good
and bad weather, the difference between these two classes is not very prominent and could be hard to
be distinguished from the average day of operation (Figure 6). Therefore, a new value to separate the
two classes of weather has been derived from the data set. To derive this more appropriate separation
value, all days are put into one data pool and both the average maximum delay per hour and the
average sum of delay over the whole day are calculated. Then, daily data sets are stepwise removed
from the pool with an increasing ATMAP score.
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Figure 7. Categorization of weather days, separated by the common ATMAP score 1.5 to distinguish
between (a) good and (b) bad weather conditions; (c) indicates the differences between.

Figure 8 exhibits that the deletion of days with a low ATMAP score results in an increase of
both average values of delay in the data pool of the remaining values. At an ATMAP score of 2.7,
the average sum of delay over the whole day and the average value for the maximum delay reach the
highest values. In this case, 34 days of operations remain in the data pool and will be categorized as
relevant bad weather days and the days that were stepwise deleted from the pool are categorized as
good weather days. If the separation value is increased to an ATMAP weather score of 2.8, the average
delay values decreases, which means that days with a significant delay characteristic will not be
contributing to the bad weather category.
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Figure 8. Identification of relevant weather impacts.

In Figure 9, the new separation value of 2.7 is applied to the Frankfurt airport data set. As expected,
the new separation value of 2.7 provides a more appropriate differentiation between the two weather
categories and its impact on flight operations. This result will be taken as a future research task,
with the recommendation to provide an update of the ATMAP algorithm.

0

250

500

750

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22

d
e

la
y

(m
in

)

M
E

T
A

R
S

c
o

re

Hour of the day  

Good Weather METAR Score delay (1h timeframe)

(a) Good weather

0

250

500

750

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22

d
e

la
y

(m
in

)

M
E

T
A

R
S

c
o

re

Hour of the day  

Bad Weather METAR Score delay (1h timeframe)

(b) Bad weather

0

250

500

750

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22

d
e

la
y

(m
in

)

M
E

T
A

R
S

c
o

re

Hour of the day  

Diff Weather METAR Score delay (1h timeframe)

(c) Difference

Figure 9. Categorization of weather days, separated by the specific ATMAP score of 2.7 to distinguish
between (a) good and (b) bad weather conditions; (c) indicates the differences between.
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4.3. Days of Impact to Operational Performance

To identify days with a specific impact of weather phenomena to the airport performance,
three different values (mean and variance of hourly measured ATMAP values, and sum of delay) are
combined (by multiplying them) into one single value (see Figure 10). In this context, the variance
of the ATMAP score is a measure of disruptiveness of the current weather phenomena. Using the
information presented in Figure 10, different days with specific impact to the airport performance can
be identified. These exemplary days show the common operational behaviour at airports, where the
delay measure follows the weather event (indicated by the ATMAP weather score) with a certain time
distance. Four days in 2013 are used, as an example, to provide additional information about the
weather situation: 20 January, 5 February, 12 March, and 9 June.

The next examples are taken to point out the effect of dangerous events (see Figure 11).
5 February 2013: Between 8:50 a.m. and 10:50 a.m. local time wind gusts occur with a magnitude
of 23–34 kn. Dangerous phenomena like TCU- and CB-clouds can be observed during the day
repeatedly. Particularly in the early evening hours of 6:00 p.m. to 8:00 p.m., additional phenomena
occur: thunderstorms with snow or rain, clouding vision and freezing conditions with temperatures
around the freezing point as well as restricted runway conditions; 9 June 2013: In the period from
8:00 a.m. to 11:00 a.m. local time, there are weather disturbances in the form of dangerous phenomena
(CB-cloud), especially between 9:00 a.m. and 11:00 a.m., with a mild to severe thunderstorm with
heavy rainfall phases and partial sight limitations. Figure 11 also clearly exhibits a temporal shift of
when the meteorological event happens and when it becomes apparent in delayed airport operations
(disruptions). As the progress of 9th June emphasizes, high ATMAP scores around 6:00 a.m. to 8:00 a.m.
in the morning are correlated with high delays at 11:00 a.m. to 12:00 p.m. This delayed response of the
air traffic system to local weather events is typical and has a dimension of 2–4 h at Frankfurt airport.
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Figure 10. Histogram of daily values for ATMAP score at Frankfurt airport (FRA): mean of hourly
ATMAP measures (above), variance of hourly ATMAP measures, sum of delay minutes per day,
and multiplication of these values (below) to indicate relevant weather events.
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Figure 11. Weather/delay progress considering dangerous events.

The next examples are taken to point out the effect of freezing conditions (see Figure 12);
20 January 2013: Visibility is somehow limited all day, being less than 3000 m, due to moist haze.
Temperatures are well below freezing. All-day-lasting precipitation takes the form of (light) snow,
sleet or (freezing) rain. Around 3:00 p.m. local time, dangerous precipitation develops in the form of
ice pellets; 12 March 2013: The whole day is marked by variably strong snowfall. Specifically, 10:00 a.m.
to 1:30 p.m. local time brings heavy snowfall, which is accompanied by fog and haze. Visibility is
sometimes below 500 m in critical areas and improves in subsequent hours but does not become
optimal. The temperatures are in the range of −3 to −6 ◦C.

0

7

14

21

28

35

42

49

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22

d
e

la
y

(m
in

)

x 100

M
E

T
A

R
s

c
o

re

Hour of the day  

20-Jan-13 METAR Score delay (1h timeframe)

(a) 20 Jan 2013

0

7

14

21

28

35

42

49

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22
d

e
la

y
(m

in
)

x 100

M
E

T
A

R
s

c
o

re

Hour of the day  

12-Mar-13 METAR Score delay (1h timeframe)

(b) 12 Mar 2013

Figure 12. Weather/delay progress considering freezing events.

5. Network View

The detailed analysis of one airport points out that the airport performance could be analysed
against the weather data using public available data. However, our individualized analysis approach
is limited, since a deeper insight into actual airport operations is not possible. On the other hand,
the input data can be aggregated at a higher level opening up the possibility of estimating the
amount of delay experienced at airports as a function of weather conditions. With this approach,
weather phenomena extending through Europe could be modelled allowing researchers to analyse the
network-wide impact of dynamic weather conditions. For these reasons, we extended our detailed
view to a network perspective and investigated 83 additional airports (see Figure 13).
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Figure 13. Airport classification according to annual IFR departures in Europe (2013).

The airports have been clustered based on the number of IFR annual departure movements in
small, medium and large airports. Burr distributions [44] for departure and arrival delays are fitted for
each airport category and ATMAP score using maximum likelihood method. The Burr distribution
has been selected for the modelling of delay as this is the distribution which presents a better fitting
for the ATFM delay observed in a year of operations in Europe [25,45]. Examples of uses of Burr
distribution on other fields can be found in [46,47]. Equation (1) presents an extended version of
the Burr distribution, which provides the arrival/departure delay distribution with scaling factor λ

(the value of 60 is used for a better fitness for scaling), and shape factors c and k.

F(x; c, k, λ) = 1 −
(

1 +
(
(x + 60)

λ

)c)−k

. (1)

In Table 6, the corresponding values for the parameters of the Burr distribution are shown,
separated by arrival/departure delays (in minutes) and airport classes. To appropriately fit the Burr
distribution with the corresponding data points, the parameter set with the maximum likelihood is used.

Table 6. Parameters set for the Burr distributions.

IFR (Instrument Flight Rules) Annual Departure Movements

≤50,000 [50,000, 100,000] >100,000

λ c k λ c k λ c k

Daily Average ATMAP Score

0

Arrival

50.44 8.32 0.73 50.10 7.35 0.76 48.59 8.22 0.64
1 50.70 9.00 0.62 51.34 7.24 0.73 49.92 8.14 0.61
2 50.85 8.98 0.56 50.01 8.01 0.61 50.09 8.02 0.56
3 50.03 10.56 0.42 50.36 7.40 0.59 47.75 8.92 0.41
4 48.58 14.68 0.26 52.13 7.81 0.63 50.74 7.56 0.50
5 50.18 25.38 0.12 54.96 6.63 0.71 50.35 7.85 0.41
≥6 no data 54.68 7.29 0.53 65.06 5.22 0.71

0

Departure

51.75 21.23 0.29 52.04 63.42 0.10 53.01 23.94 0.24
1 51.69 21.19 0.25 52.37 58.19 0.10 52.82 26.67 0.19
2 51.93 52.09 0.10 51.38 26.04 0.18 52.38 35.20 0.13
3 52.42 28.69 0.15 52.42 21.63 0.19 52.98 29.14 0.14
4 54.59 13.86 0.28 55.40 13.53 0.34 53.41 21.52 0.15
5 54.92 31.57 0.10 52.43 18.58 0.18 56.05 15.26 0.24
≥6 no data 54.15 14.46 0.20 61.37 13.00 0.23
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Figure 14 shows two examples of the delay distributions for large airports. Note how the use of
Burr distributions provides a qualitative good fitting to the data observed. In the figures, the circle
markers represent the medians, the lines illustrate the Burr distribution per airport category and
ATMAP score (delay = average minutes per movement and average daily ATMAP score). As expected,
higher ATMAP scores, i.e., worse meteorological situations at the airport, lead to higher probabilities
of larger delays (see how an ATMAP score of 6 or higher leads to significant higher delays than scores
between 1 and 4).

(a) Arrival delay for airports with more than 100,000 movements
per year

(b) Departure delay for airports between 50,0000 and 100,000
movements per year

Figure 14. Distributions for (a) arrival and (b) departure delays at airports at different local weather
conditions (cumulative density function).

6. Conclusions

This study is based on an analysis of a data set containing about 20.5 million flights in 2013
between European airports and airports in the world. For the purpose of evaluating the influence of
meteorological events on the airport capacity and performance, the aircraft delay (punctuality) and the
number of cancellations are statistically analysed for both departure and arrival operations. The delay
values are not limited to airport related delays but may also consider delays caused by increased
distances in the en-route phase or reactionary delays.
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The use of delay probability distributions to model the impact of weather as a function of airport
size and ATMAP score is an efficient method to capture the impact of weather on the ATM network
level. As presented in our analysis, there is a correlation between the ATMAP score, which is linked
to the severity of the weather event, and the delay experienced by departure and arrival flights.
The fitting with Burr distributions is suited and will allow modellers to consider weather events and
their temporal evolution in a seamless manner: METARs, which change over time, can be transformed
into ATMAP scores, which, in their application, provide a specific distribution of departure and arrival
delay. With this approach, modelling the temporary evolution of ATMAP scores, the dynamics of
the delay generation due to weather phenomena in Europe can be captured. This is important as
operations at infrastructures affected by meteorological events might be disturbed, even if ATFM
regulations have not been issued. Moreover, for weather related disturbances, not only are their scope
and intensity (delay generated) important, but also their temporal evolution, which would be captured
by the changes on the METAR and their associated ATMAP scores.

Note that the delay generated by using the inverse of the Burr probability distributions captures
the overall delay experienced by flights and not only the effect of weather. This should be considered
when using these distributions to model delay at a network to avoid double counting of delay.
Further research is required to extract from the modelled delay the ones primarily due to weather.
It will be particularly useful to identify which part of the delay is due to the propagation of reactionary
delay as this will help stakeholders to optimise their operations. In order to achieve this modelling of
primary delay, data sets that contain the registration mark of the aircraft and turnaround times will be
required. Finally, the distributions provided in this paper could allow airports and airlines operators
to forecast the average delay experienced at the infrastructure as a function of the current and forecast
weather in order to apply mitigation strategies.
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Abbreviations

The following abbreviations are used in this manuscript:

ARR Arrival
ATM Air Traffic Management
ATFM Air Traffic Flow Management
ATMAP ATM Airport Performance
CB Cumulonimbus Cloud
DEP Departure
IATA International Air Transport Association
ICAO International Civil Aviation Organization
IFR Instrument Flight Rules
METAR Meteorological Aviation Routine Weather Report
PRU Performance Review Unit
RVR Runway Visual Range
SPECI Special weather
TAF Terminal Area/Aerodrome Forecast
TCU Towering Cumulus
UTC Coordinated Universal Time
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