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Agent-Based Service Management in Large Datacentres and Grids
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Harrow School of Computer Science, University of Westminster, London, U.K.
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Abstract. Increased computational demands and data
mining present the IT world with new challenges.
Amongst others, the maturing grid technology aims to
address them. To take full advantage of the grid
capabilities and enhance its effectiveness in complex and
dynamic computational environments, we must make
service management more stable, less computationally
expensive and more autonomic. In this paper, we propose
a synthetic approach to deal with service management in
large Unix datacentres that involves the employment of
intelligent agents and ontologies. These agents can
automatically detect and correct faults at run-time and
manage services.

1. Introduction

There are a number of definitions for agents. Of them, the
Wooldridge-Jennings one is the most relevant to our
work. According to them, agents are software or
hardware-based systems that are autonomous, interact
with other agents or humans, are reactive, proactive, can
take initiative and exhibit goal-directed behaviour [15].
Agents have been used in service, task and resource
mapping, security, event management, adaptation,
information organisation and retrieval among other things

{18]. Examples are: RETSINA that manages adaptation in
open Internet environments; RASCAL that handles
service mapping and arbitration services; JAM, a belief-
desire-intention agent architecture that supports goal-
based reasoning with priorities; JACK Intelligent Agents
that provide the infrastructure for developing agents for
distributed applications; OpenCybele for event, thread,
and concurrency management, as well as internal event
generation (send and receive). Agents for query
optimisation have been used in grids [12], but to our
knowledge, there are no references for agents used in
service management or discovery in grids.

Currently, there are a number of methods to discover
services in grids. These include [7]: 1) Flat decentralized
discovery architectures (like LDAP), 2) Hierarchical
Discovery architectures, 3) Relational Approaches with
databases, 4) flat unicast and 5) Multicast. However, more
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than 80% of service requests end up without response [7],
and in general there are a number of problems in the areas
of service and resource discovery and management [7,

16], such as stability, timely resource discovery and
security [2].

In this paper we shall discuss how intelligent agents and
ontologies can be used to discover/present services in
large Unix-based datacentres and improve service
availability. In addition, we shall present a proposed
implementation of our work for grids. The paper is
organized as follows. Section 2 discusses our building
methodology. Section 3 discusses how our work could be
used in grid-enabled environments, while section 4
presents some results from one of our actual
implementations in a production environment.

2. Building Methodology

2.1 Overview

Our approach involves: 1) Unix shell based intelligent
agents that monitor, troubleshoot and manage services
within the datacentre. 2) Dedicated administration servers
that act as external agent co-ordinators in a high-
availability failover configuration to avoid single points
of failure. 3) A dedicated private network, where all agent
related traffic goes through to avoid agent-related
communication errors and congesting the public LAN and
4) Static and dynamic ontologies.

2.2 Ontologies

Ontologies have been widely used in philosophy, logic
and lately in artificial intelligence and software
engineering. Ontologies as described by John F. Sowa
[13], study the categories of things that exist or may exist
in a domain and are catalogues of things that are assumed
to exist in that domain. Based on these principles, our
ontologies describe the concepts (host and services) and
their relations (e.g. a host A “owns™ a service A, that
exists or may exist — i.. available for use or not). These
ontologies include:
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e Static local knowledge templates (SLKT) that contain
information about what the server should be like
hardware-wise, which applications it should run, as
well as all application external and internal
dependencies and requirements (file systems, path
names, application component startup sequences,
binary location, application type, version, name, IP
address, port it listens to — if any, application process
names and numbers etc). These are created manually
whenever a new service is introduced to the datacentre
and they reside on each host locally.

e Dynamic local service profiles (DLSP) that are
generated dynamically and automatically by each agent
controlled host in regular intervals. They contain
information about server hardware, software, load,
capacity and services at run-time. These ontologies are
flat ASCII text files with 3 columns, The first column
contains the description, the second the keyword
corresponding to the description and the third the
description/keyword value. Agents use standard Unix
tools (such as uname —a, ifconfig, uptime, who etc) to
generate these values dynamically.

Based on these ontologies, agents create two main types
of shortlists: index static service lists (ISSL) and dynamic
global service profile lists (DGSP). ISSLs contain very
basic information about each server or service or resource
TP address and services. This shortlist is generated using
SLKTs. It can contain up to 200 entries and looks like:
IP_1, port number, service_name_l.

IP_2, port number, service_name_2 etc

(i.e. each administration server can take care of up to 200

servers if the private agent LAN is 100BASE/T - much

more if it is Gigabit Ethernet. This value has been
experimentally proven to be optimum to avoid congestion
in the private agent LAN). These lists are static once
created and they reside on administration servers. DGSPs
contain information about all running and available
services across the entire datacentre. Available services
are presented as <Server type, OS, memory and CPUs,

Application type and version, Current Load, Users logged

in, Geographical Location, Site Name, IP Address>.

DGSPs are generated dynamically by administration

servers. They are compiled together when administration

servers collect all DLSPs from all servers in their care.

DGSPs are sorted by service type, server hardware

specification (model, CPUs and memory), load and

current users. To this end, an intelliagent local and
specific to administration servers only, uses “awk”
commands to generate them from the DLSP keywords.

The ontological knowledge is automatically processed
by intelliagents to determine host and service status.
Agents using keywords mentioned in ontologies can
“understand” if there are hardware or software problems.
Agents come to this conclusion by comparing values in
static ontologies (SLKTs) against those in dynamic ones
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(DLSPs). When it is determined that there is a fault
(different values, i.e. services, hardware, software or
resources are unavailable), they create a flag in the flags
log directory that describes it appropriately and initiate
“healing” actions to repair it. Various other intelliagents
that monitor applications with multiple dependencies and
required resources can later check these flags and take the
desired course of action in order to achieve their ultimate
goals (i.e. all services, resources and hosts available and
in a good state).

2.3 Intelligent Agents

Intelligent agents or intelliagents are unix programs that
monitor systems and services and wherever possible
automatically correct run-time operational faults with as
little downtime as possible. They are highly modular and
use constraint-based causal reasoning to decide the best
course of action [10]. A causal model is a triple that
encodes the truth-values of sentences that deal with causal
relationships. They include 1) action sentences such as A
will be true if we do B, 2) counterfactuals such as A
would have been different if it were not for B and 3) plain
causal utterance such as A may cause B OR B occurred
because of A.

Intelliagents are installed locally on each server they
monitor, always at the same physical location
“/apps/intelliagents” and are “awakened by local Unix
crons every X minutes (every 5 minutes for example).
Intelliagents do not use a relational database (to avoid
corruptions and for simplicity), they use static and
dynamic ontologies as discussed. Our intelliagents are
mainly developed in bourne shell and are as likely to fail
as any standard system startup script (in Unix-based
systems most startup/shutdown scripts are written in
bourne shell) [11]. They use Unix IPC and exit codes to
communicate with the operating system. The reason why
we used Unix shell is because it is very easy and fast to
write scripts, change them when needed or troubleshoot
them. In addition, we did not have to install additional
compilers that would put more load to monitored systems,
or that would compromise security in any way as is the
case with JAVA or C++ based software [3, 4]. Finally, by
experience, we know that when a system is failing or is
overloaded, complicated measurement/troubleshooting
tools tend to stop working altogether [5, 6]. It should be
noted however that agents can be written in any other
programming language that suits the programmer best.

Intelliagents use 2-phase locking which is a
programming discipline that shows that no lock can be
released, before the last lock has been obtained. This
avoids them operating inconsistently by “healing” the
same type of resource concurrently. All actions are logged
and every time an intelliagent observes a problem and
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takes an action, a message is sent to human operators
(usually by email). On each server a full intelliagent suite
is running locally that is read-only. On each external
administration server intelliagent originals are kept in a
secure location. Human administrators are allowed very
limited access to administration servers. Access control
procedures are in place to ensure that no modifications
take place without detection. Password ageing is also
implemented that forces users and administrators to
change them on a daily basis. The SSH [1] protocol is
used, while all other connection methods (such as remsh,
rlogin, rsh, telnet) are disabled by default during the
server build process. This protects intelliagents, hosts and
services from unauthorised accesses, intrusions and
changes. This type of security was deemed necessary after
we discovered experimentally that human operators were
responsible for a significant amount of errors that caused
1,536 hours of cumulative downtime within 16 months at
a customer site. This confirms surveys [9] reporting that
40% of downtime is due to human errors.

Whenever local intelliagents run, they produce flags in
the dedicated “/logs/intelliagents/intelliagent_name”
directory on the local server disk to show the status of the
run. A number of flags are produced with appropriate
naming conventions that show what happened and exactly
where the agent found a fault. Absence of these flags
means that we either have an internal intelliagent problem
or that they did not run at all. Administration servers
monitor the creation of these flags every X+5 minutes,
where X is the frequency intelliagents run, i.e. every 10
minutes (adjustable parameter). If these flags are not
there, they start troubleshooting intelliagent processes.
Whenever an agent detects an error it tries to fix it. All
intelliagents run in parallel, in a distributed manner and
do not depend on each other as each agent is started by
the local Unix cron. At start-up each intelliagent checks to
see if any other of the same type is running, if so it exits,
i.e. you can never have two backup intelliagents running
at the same time. It also removes its own flags from
previous runs and old status profiles. For each application
type there are customised error categories. Application
health is determined by attempting to connect to them
every Y minutes and run basic commands (such as a “get”
on a web server process for example). This is essentially
the way intelliagents communicate with applications — by
trying to use them and by examining the resulting exit
codes at the Unix shell.

Each intelliagent has 5 major parts: a) Monitoring, b)
Diagnosing, ¢)  Self-Healing/Action/Repair,  d)
Communication/Logging, ¢) Self-maintenance. The
monitoring part is tasked to look after one particular
resource or system aspect. Whenever the monitored
subject does not respond as expected, the diagnosing part
is invoked and goes through a series of tests to determine
the root of the problem. The diagnostic procedure is done
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in two ways; statically and dynamically. Statically from
parsing and examining error logs and flags and
dynamically by the use of Unix administration commands
to ensure the best possible diagnosis. Findings are
recorded automatically in the dynamic ontologies. Based
on these findings the self-healing portion gets activated
and starts repairing the faults.

The communication part is responsible for
communicating with other intelliagents and human
operators. It is also responsible for logging all intelliagent
activities and results. Intelliagents are classified according
to their functions and tasks. Intelliagent categories
include: 1) Hardware agents that look after hardware
components (CPU, memory, boards etc), 2) Operating
system/network agents that look after all OS and network
related aspects, 3) Resource intelliagents that are
responsible for managing and configuring resources such
as disks, network cards, virtual memory etc, 4)
Application/Service intelliagents that manage and
troubleshoot local and global application/services across
the datacentre and 5) Status intelliagents that dynamically
generate status profiles for servers, resources and services
in terms of availability, load, capacity, geographical
location and site name.

2.4 Administration servers

Administration servers are used as external checkpoints
for all intelliagents. They are configured in a high-
availability (HA) fail-over configuration using a
commercial cluster software such as Veritas Cluster
Server [14] and they share common disks mounted via
NFS. These disks contain all agent related information,
such as source code, static ontologies, profiles, logs etc. If
any administration server crashes, the high-availability
software automatically nominates another administration
server in the group to take over activities (default HA
behaviour).

Administration servers work in parallel all together,
They ensure that local service and status server
intelliagents run in a timely manner and that they generate
DLSPs and status flags at the end of each run. They
achieve that by checking if these exist and if so their
creation timestamps. If a DSLP is not present or has an
old timestamp, during their monitoring they start
troubleshooting. They remotely connect to the service
server that is causing the problem, remove any still
running service intelliagents, overwrite the intelliagent
source code and static ontologies from their local
software depots, restart the cron (just in case the cron has
stopped and therefore agents did not run as expected), and
remotely “kick-start” status intelliagents. If intelliagents
still do not run (they establish that by monitoring if a
DLSP has been generated or not) they notify human
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administrators. The service server at that point is
considered as being unable to offer any of its services to
the agent community. Administration servers use ISSPs to
sequentially copy DLSPs over the private network, if
service servers are unable to access the administration
server NFS disks and place their files directly there.

The collection/copy task is initiated with a 1-minute
difference from each other, to avoid congestion in the
private agent LAN. It takes about 1-2 minutes for each
administration server 10 collect DLSPs from all 200
hundred servers in the shortlist, as each DLSP is less than
0.5 KB. If they cannot access a server, human operators
are notified to look into it. ISSLs are used to confirm if all
DLSPs are present and if so, their creation timestamps are
checked to verify if they are up-to-date. If not,
administration servers iry to generate and copy them
remotely. Even if they do not manage to collect all
DLSPs, they still proceed to the classification step. The
ones they have not managed to collect are sent to human
operators via email usually, in the form of a report.
Operators can then troubleshoot services manually.

2.5 Service management

Service management is handled in a what could be called
unorthodox way. Each host in the datacentre is
responsible for “knowing” and taking care of its own
resources and services locally. This has been proven
experimentally, to be the safest and less ‘“resource”
expensive way to manage hosts, services and resources.
The local to each host status intelliagent is “awakened” by
the host Unix cron and compiles dynamically the local
DLSP. To confirm that local services are available on
each server, status intelliagents invoke local service
intelliagents who attempt to connect to running services
and perform very simple queries (query types,
connectivity tests and timeout baselines are provided by
specialised application/service providers). If services that
should be running on that host are not running, service
intelliagents start troubleshooting. Their goal is to ensure
that local services run at all times and if not restart them.
Once they achieve this, they perform the prescribed tests
again and if there is a problem they cannot resolve they
notify human administrators (usually via email or SMS).

SRV_name. UP
DEP.dep_name.SRV_name. FAULTED

All service components run

One or more service dependencies

are not up or cannot be contacted.

Local service requirements are not

present

Local service is stopped

Maximsm number of application

connections has been reached

Qur software waits for a service
dency to become available

Internal extor or our software has

not run

Table 1. Service intelliagent flag names and their
meaning

REQ.req_name.SRV_name FAULTED

SRV_name. STOPPED
SRV_name.CLIM.MAX

dep_name.SRV_name WAITING

Absence of any flag or OLD flags
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Service intelliagents, compare local SLKTs and DLSPs
to monitor and troubleshoot application/service-related
issues (SLKTs contains information about how the
service SHOULD be and DLSPs about what the service
currently IS). Every time they run, they create flags to
indicate the service status (up or not) and any problems
they have encountered. In Table 1, we can see in more
detail some examples of flag naming conventions and
their meaning.

Let us suppose that we need to support a multi-
component application, whose components run on
physically separate servers. We shall call the global
application “EXAMP”. EXAMP has three components, a
web server called “WEB1”, a Sybase database called
“SYB_DB1” and an interface process between the two
called “INTER1”. The IP addresses server/application
components are “IP_WEB1”, “IP_SYBDBI1”, and
“IP_INTER1” respectively. The web server listens at
IP_WEB1 port 80, the database at IP_SYBDB1 port 5000
and the interface process at port IP_INTER1 port 6721.
The correct functionality of the database depends on both
the web server and the interface process being available in
that order. For the sake of this example, we assume that
this service intelliagent is called “exampintelli” and runs
every 15 minutes. The directory where it creates the flags
is called *“/logs/fexampintelli/FLAGS” (the $LOG_DIR).
The service ontology is shown in Table 2.

SERVER NAME HOST1
SERVER IF ADDRESS 1P_SYBDBI
_AFP-LIC ATION RUNNING SYB_DB1
LOCAL APPLICATION PART OF EXAMP
CONFIGURATION DIRECTORY /apps/Sybase/11.9.2
DATA_DIR_1_NAME /apps/Sybase
DATA_DIR_1_MNT tiger:/vol/volroot/sybdir
CONFIGURATION FILE Syb.conf
PROCESS NAME 1 sybase
PROCESS NAME 2 XXXX
MIN NUMBER OF APPL PROC 2
RUNNING
MAX NUMBER OF APPL PROC 30
RUNNING
MAX No FOR APPL CONNECTIONS 30
STARTUP SCRIPT letc/rc3.d/s99sybase
REQUIRES_1 Tapps/sybase
REQUIRES_2 Jopt/sybase
DEPENDS_1 WEBI1
DEPENDS_2 1P_WEBI 80
[ DEPENDS 3 TNTERT
| DEPENDS_4 TP_INTERI 6721
STOP SCRIPT Jetc/rc3.d/k99sybase

Table 2 Service ontology example for EXAMP.

This ontology contains information about the Sybase
requirements such as directories that need to be present,
mount points (e.g. tiger:/vol/volroot/sybdir) etc. It also
contains the other two application components Sybase
needs to be up and running before it starts (i.e.
dependencies). The sequence by which they are defined in
the ontology signifies their precedence in the dependency
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checks. If any single one dependency or requirement is
not satisfied, the database will not start.

The local service intelliagent that monitors the health of
the database component behaves as follows (note that the
flag timestamp is determined by the flag creation date,
flags are created with the Unix command “touch
flag_name”): Removes all its past flags from directory
$L.OG_DIR at startup. Tries to connect to SYB_DB1 port
5000 and runs a simple query such as “select count
from table_name”. If successful it creates the flag
“$LOG_DIR/SYB_DB1.UP”. If not, checks to see if all
application processes are running (all this information is
retrieved from the ontology). If none are running, it
creates the flag “SLOG_DIR/SYB_DB1.STOPPED”. If
all Sybase processes are running, it checks to see if the
maximum connection limit has been reached. If not and it
still cannot connect to it, it creates the flag
“$L.OG_DIR/SYB_DB1.FAULTED”, stops any running
Sybase processes and informs OPS (human operators). If
more Sybase processes are running than they should, it
tries to kill the obsolete ones (zombies or application
processes that should not be there — any application
process not in the ontology is considered illegal). It then
tries to connect to Sybase again. If it succeeds it creates
the flag “SLOG_DIR/SYB_DB1.UP” and informs OPS
else the flag “$SLOG_DIR/SYB_DB1.FAULTED”, stops
any running Sybase processes and informs OPS. If some
Sybase processes are running, it tries to start the missing
ones. It tries to connect again and if it succeeds it creates
the flag “SLOG_DIR/SYB_DB1.UP, else the flag
“$L.OG_DIR/SYB_DB1.FAULTED”, stops any running
Sybase processes and informs OPS. If all Sybase
processes are running and the maximum connection limit
has been reached, it tries to clear any old Sybase
connections using Sybase commands provided by an
experienced Sybase DBA. It then tries to connect again.
If it succeeds it creates the flag
“SLOG_DIR/SYB_DB1.UP” and informs OPS about
what it did. If it cannot comnect it creates the flag
“$SLOG_DIR/SYB_DB1.CLIM.MAX” and informs OPS.
In any case it continues to the next step as it cannot be
sure yet why there is a problem if at all. It tries to connect
to the first dependency, in this case IP_WEB1 80 (the
web server and does an http get), if it is unable to do this
successfully for 3 consecutive times, it stops the Sybase
database if it is not stopped already. It goes into an
infinite loop, where it tries to connect to the web server
every 5 minutes and emails OPS at every iteration.
If/When it finally succeeds, i continues likewise with the
second dependency defined in the ontology (connection
and a small query on IP_INTER1 6721). It behaves
likewise waiting for the connectivity test to succeed. If
not it stays in the infinite loop and emails accordingly
OPS. If/fwhen it successfully goes through all dependency
checks, it proceeds with the local requirement checking.
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(Note that it is not necessary for the loop to be infinite, in
some cases the loop can be finite, by incorporating a
small counter, As Unix shell loops of this type hardly
consume any system resources, we were happy to let it
run until the rest of the application components became
active). It then checks if the local application
requirements are present, i.e. if the “/apps/Sybase”
directory is mounted, if not it tries to mount it with a
command such as  “/usr/sbin/fmount -F  nfs
tiger:/vol/volroot/sybdir  /apps/Sybase”. Likewise, it
checks sequentially if the rest of the dependencies are
present. If not and it is unable to satisfy them it creates the
flag “$LOG_DIR/REQ.requirement_name FAULTED”.
It then emails OPS and exits.

At that point human operators need to intervene and
resolve the problem. They can easily add the resolution
procedure to the intelliagent code so that next time it
knows what t0 do to acquire the resource(s). If the
requirement check succeeds for all Sybase requirements,
it uses the startup script to start the database and checks
the exit code. If the exit code is 0, it performs another
Sybase connectivity test and if successful, it creates the
flag “$L.LOG_DIR/SYB_DB1.UP”. Finally it emails OPS.
At this point it has successfully started the database and
all dependencies are running as well. If the Sybase startup
script returns a non-zero exit code, it stops any Sybase
process that may have started, it creates the flag
“$1.OG_DIR/SYB_DB1.FAULTED” and emails OPS so
they can intervene manually and fix the problem. Please
note that similar types of checks run on the rest of the
servers that are part of the “EXAMP” application. To
avoid time related errors all hosts are time synchronized
via NTP [11].

3. Agents and Grids

We propose that administration servers are used as site-
grid gateways/service brokers and intermediaries amongst
different datacentres. In addition, they can be used to co-
ordinate service management within the local datacentre
by grids. Administration servers have inside knowledge
of all agent-controlled devices as described, that they can
very well present to the grids via their DGSPs.
Administration servers located at different geographical
sites use the same service representation types to “talk”
with each other at the global level. Local site references
can be “aliased” to ontology keywords for intra-site
communication and information exchange. Unix-based
sorting and search algorithms can be used to select
appropriate services based on semantic representations of
services (see EXAMP example). To load balance
potential incoming/outgoing grid requests, we propose
that load balancing network devices are used as the
second point of entry of a grid service request originating
from another geographical site (first point being the
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router/firewall, second the load balancers and third the
servers themselves).

The load-balancing algorithm ensures that only one
gateway deals with a single global grid request, to avoid
logical processing errors. The algorithm that can be used
for this purpose is an MD5 [8] dynamic hashing algorithm
based on both the source and destination IP address (for
extra security we can use both IP addresses — if not
possible we can use the administration server IP addresses
for both). Dynamic hashing aids in improving global
utilisation, by mapping each object to a single server.
Objects are sorted deterministically between hosts and
content synchronisation and duplication are eliminated.

SITE 1

ROUTER

FIREWAW * PUBLIC VLAN 1

LOAD |

BALANCER
PUBLIC VLAN 2

GRID
PORTA
1

HOST-1  HosT-2

GRID
PESEMDORT AL

ﬁlo LAN

HOST-3

This type of hashing has been effectively utilised in
NetCache [19], by Netapps, while the MD5 authentication
algorithm is widely used by CISCO [20] amongst others,
to verify that TCP requests originated by a peer are
indeed so and not by other devices spoofing that peer’s IP
address. These proposed grid gateways can therefore be
used as brokers for global grids amongst service
requestors and service providers, while they protect the
internal structure of the local sites. The grid gateways can
in turn, distribute the requests based on the current load of
each service server. DGSPs are by default sorted by the
least busy server so the first available service server can
be used.

INTERNET OR DEDICATED LINE

N

SITE 2
W ROUTER
FIREWAL

GRID
PORTAI | oa0c0s=cc:
1 < ~ 2
HOST-1 HOST-2 HOST-3

Figure 1. Example of a proposed network infrastructure topology for global grids.

PRESENT SITE A
DGSPs sorted
based on service
— type, server
hardware, load
and current
users

COLLECT ALL
DLSPs FROM
SERVICE
SERVERS SITEA[
AND GENERATE
DGSPs

ADMINISTRATION
SERVERS
SITE A

PRESENT SITEB
DGSPs sorted
based on service

., server
hardware, load
and current
users

COLLECT ALL
DLSPs FROM
<[_V_____ SERVICE
SERVERS SITE B
AND GENERATE
DGSPs

ADMINISTRATION
SERVERS
SITEB

DGSP-SITE A - available services, hosts and resources
< Service Type & version, Current Load, Users logged In, Server type, OS,
memory and CPUs, Geographical Location, Site Name, IP address>

<oracle db/v 8, 5, 120,E4500,S0l 8,6GB RAM, 6 CPU,UK,LON_UK1, 193.x>
<oracle db/v 8, 10,200,E4500,S0l 8,6GB RAM, 6 CPU,UK,| LON UK1 193.x>

<DISK/NFS,100GB(free), 32% util, NETAPP,UK, LON_UK1, 193.x>

<netscape web/v 2, 2, 30,Netra T1,Sol 8,2GB RAM, 2 CPU,UK,LON_UK1, 193.x>
<netscape web/v 2, 4, 40,Netra T1,Sol 8,2GB RAM, 2 CPU,UK,LON_UK1, 193.x>

DGSP-SITE B-avallable services, hosts and resources
< Service Type & version, Current Load, Users logged In, Server type,
OS, memory and CPUs, G L ! Slte Name, IP address>

«<oracle db/v 7, 3, 50,E6800,S0l 8,4GB RAM, 4 CPU,HK,HK_1, 213.x>
«<oracle db/v 8, 5,200,E6800,S01 8,6GB RAM, 6 CPU,HK,HK_1, 213.x>
<apache web/v 1, 2, 20,Netra T1,Sol 8,2GB RAM, 2 CPU,HK,HK_1, 213.x>
<apache web/v 1, 5, 55,Netra T1,Sol 8,2GB RAM, 2 CPU,HK,HK_1, 213.x>
<DISK/NFS,300G B(free), 10% utill, NETAPP HK,HK_1, 213.x>

—

MERGE DGSPs

—

SITES A+B

DGSP-SITE A+B - avallable services, hosts and resources

<oracle db/v 8, 5, 120,E4500,Sol 8,6GB RAM, 6 CPU,UK,LON_UK1, 193.x>
<oracle db/v 8, 5,200,E6800,Sol 8,6GB RAM, 6 CPUHK,HK_1, 213.x>

<oracle db/v 8, 10,200,E4500,S0l 8,6GB RAM, 6 CPU,UK,LON_UK1, 193.x>
<oracle db/v 7, 3, 50,E6800,So0l 8,4GB RAM, 4 CPUHK,HK_1, 213.x>

<apache web/v 1, 2, 20,Netra T1,Sol 8,2GB RAM, 2 CPU,HK, HK 1, 213.x>
<apache web/v 1, 5, 55,Netra T1,So0l 8,2GB RAM, 2 CPU,HK,| HK_1, 213.x>
<hetscape web/v 2, 2, 30,Netra T1,Sol 8,2GB RAM, 2 CPU L,ZUK,LON_UK1, 193.x>
<netscape web/v 2, 4, 40,Netra 71,Sol 8,2GB RAM, 2 CPU,UK,LON_UK1, 193.x>
<DISK/NFS,300G B(free), 10% utli, NETAPP,HK,HK_1, 213.x>
<DISK/NFS, 100G B(free), 32% util, NETAPP,UK, LON_UK1, 193.x>

Figure 2. The role of the administration servers in service presentation.
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Figure 1 shows an example of the proposed network
topology for global grids, where site 1 and site 2 exchange
all resource/service related information via grid gateways
in a high-availability fail-over configuration that are kept
in sync. In addition to the public LANs, there is a
dedicated grid network that is used for all grid-related
communications. The load balancer is using a dynamic
MD5 hashing algorithm based on both the origin and
destination address. In this way both security and load
balancing are achieved. Grid gateways hold all resource
and status information for all grid members and can be
used as service brokers amongst different sites.

Administration servers from each site collect all DLSPs
from all agent-enabled servers and each compile a site-
specific DGSP (see Figure 2). Each DGSP contains
information sorted using the same keywords in exactly the
same way, irrespective of differences in the site-specific
DLSPs. Site DGSPs are merged together and both
administration servers have a common DGSP that
contains information for both sites, sorted by service type,
load, users, server type, geographical location and site
name. Services that are less loaded are presented first. The
constant update of site-specific DGSPs ensures that the
common DGSP is always up-to-date.

4. Results

Our agent software and proposed topology have been
successfully used between two sites, one in the UK and
one in Hong-Kong, in a peer-to-peer configuration.
Administration servers were used as gateways to
exchange service availability and status information
between the two sites. Our agents were used to
automatically perform system administration, check and
maintain multi-component service availability and health
and present available services between the sites whenever
a service/application became unavailable on any one of
them. They were also used to monitor (with “ping”
requests) servers and notify administrators if any of them
became unavailable. Each site runs the complete spectrum
of customer services. Services were duplicated in this
way, but the users wanted to be able to fail-over to either
site if services/applications became unavailable for any
reason, or when the entire site failed altogether. Services
that needed to fail-over, included customer registration, e-
mail, web services and customer billing. The two sites
were connected with dedicated T1 lines. All databases for
the above mentioned services were replicated between
them using commercial software called Veritas Volume
Replicator (VVR) [17], which kept all databases between
the two sites in sync. All databases contained cumulative
information for both sites. Site-specific DGSPs were used
to present services. Whenever the billing database in HK
was unavailable, the UK database was used instead and
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vice versa. When the HK database was available again,
the VVR software was responsible for automatically
updating it with the latest information from the UK
database (default VVR behavior). The UK site had 300
servers dedicated to these services, while the HK site had
about 150. Both had 2 administration servers each in a
fail-over configuration, clustered with Veritas Cluster
Server 1.3.0 [14]. Servers were mainly SUNs running
Solaris and PCs running Linux. Database sizes ranged
between 100-250 Gbyte each.

To explain better how agents were used, we shall
consider the management of customer’s billing services.
Customer bills were requested manually by users on a
daily basis. A Java graphical user interface presented
users with all available databases offering these services
and the load/capacity of the machines they were running
on. Java programs collected this information from
administrator servers from both sites. Users were able to
choose which database was less loaded from the list they
were presented and use it. Access control was relative 10
the user name each user was using. Users (starting from
the Unix level) had access to specific machines and
applications and could only execute a restricted set of
commands. There were additional access control lists at
the database level. Wherever the operating system had
role specification tools (e.g. Solaris 8) we used it,
otherwise we used the sudo tool and detailed sudoers lists
[11]. Intelliagents compiled DGSPs using service name
keywords as previously described. For each site the same
keywords were used. Administration servers maintained
alias lists that linked site specific service names with
DLSP and DGSP keywords. Database naming
conventions were service and site specific (such as
“Billing_dbasel . UK). We did not have to move any data
across the two sites manually, only the jobs. Input and
output data were present in each site’s databases and the
VVR software kept them in sync automatically whenever
any (ransactions were committed. Intelliagents made sure
services were available and presented to the Java user
interface software in the same way, irrespective of the site
they were located at. Users did not know anything about
internal site structures this way. Job scheduling was
handled by in-house developed programs.

The problems we had were mainly network-related.
More specifically, on many occasions we either lost
connectivity between the two sites or latency was bad. As
a result, databases were not properly synchronized. The
second more frequent fault was that databases crashed
while processing a job mid-way. Intelliagents were able to
restart the databases but could not help with the
continuation of the job processing much initially. Oracle
recommended we use Oracle Parallel Server [21] to deal
with these types of problems. However, implementation
costs were prohibitive so the customer did not choose this
option. To deal with this problem, we had to develop job
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scheduling intelliagents that monitored job queues and
automatically re-submitted jobs to databases, using
always the first database in the list of available resources.
This shortcut was successful, but it could not deal with
network related problems effectively across the two sites.

Figure 3 demonstrates how intelliagents have improved
service availability before and after they were
implemented. The graph shows service downtime caused
by all failures for 32 months in total, 16 months before
any of our work was implemented and 16 months after.
The first 16 months prior to our work, cumulative service
downtime was 168 hours. This downtime was caused by
host, resource and network related problems. During the
subsequent 16 months our work was implemented, service
downtime caused by the same type of faults went down to
12 hours in total.

60 LI
BWithout Imelliagents
£ 50
2 40
g 30
.; 20
s 10
0
1 234586 7 8 910111213141516
Months of Oparation

Figure 3. Cumulative service downtime in hours from
all reasons per month for 32 months in total; 16
months before intelliagents and 16 months after.

5. Conclusions and Future Work

Unix based intelligent agents and ontologies can and have
been used successfully to manage services in production
environments. Much work remains to be done, to adapt
them to work successfully in fully dynamic environments
and improve their troubleshooting capabilities and service
presentation policies. We hope that the mechanisms by
which they manage services can help develop further grid
service management. Our future work, involves
integrating a grid toolkit such as Globus [16] with our
agents. We also think that intelliagents should be able to
allocate services using some form of prediction related to
the anticipated service load. Although statically defined
maximum load baselines were attempted to be used
towards that end, the job scheduling software could not
successfully calculate the anticipated load overhead the
server would have to take. Faults caused by database
overload resulted in databases and servers crashing.
Service intelliagents were able to restart services and
make them available for use again or present alternative
services when they were not. Human administrators were
always appraised of the situation, as they received
frequent notifications from intelliagents about the status
of all activities.
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